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1 Introduction

For the past few decades, the Martian atmosphere has been a topic of study for both planetary and at-

mospheric scientists. Its atmosphere is composed of 95% CO2, 2.7% N2 and 1.6% O2 and has a varying

surface pressure between 4.0 and 8.7 mb depending on season and geographical location (Williams, 2016).

At the mean radius of 3389.5 km, the pressure is 6.36 mb; equivalent to 0.6% of Earth’s surface pressure

(Williams, 2016). The obliquity and rotational period are 25.2◦ and 24.66 hours respectively (Williams,

2016). A Martian day is known as a sol and is only 39 minutes longer than a day on Earth. A Martian Year

(MY) corresponds to 686.98 sols, which is equivalent to 1.88 Earth years (Williams, 2016). The first MY

started April 11, 1955 where the current MY is 34 (Clancy et al., 2000).

Having a similar obliquity as Earth, Mars exhibits seasonal behaviour throughout its orbit. Another

factor affecting the seasonal variation is the eccentricity (ε). With ε = 0.09, Mars’s eccentricity is the second

highest in our solar system, after Mercury (Williams, 2016). This is 5.6 times higher than Earth’s eccentricity.

The eccentricity controls the aphelion and perihelion points of the orbit. Aphelion is the furthest orbital

point from the Sun while perihelion is the closest, ranging 1.66 AU to 1.38 AU respectively for Mars. This

significant range in orbital distance allows a wider variation in temperatures. These seasons can be described

by solar longitude (Ls). Solar longitude outlines Mars’ orbit with respect to the equator and Sun. Shown

in Figure 1.1, Ls is measured in degrees and starts at the vernal equinox. The seasons on Mars correspond

to Ls = 0◦ (Northern spring/Southern fall), Ls = 90◦ (Northern summer/Southern winter), Ls = 180◦

(Northern fall/Southern spring), and Ls = 270◦ (Northern winter/Southern summer). In terms of orbit,

aphelion occurs at Ls = 71◦ and perihelion at Ls = 251◦.
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Figure 1.1: Diagram describing the solar longitude Ls (Laboratoire de Meteorologie Dynamique, 2008). A

MY consists of 12 Martian months that span 30◦ individually for a total of 360◦. The difference between

aphelion and perihelion from the highly elliptical orbit is also evident.

1.1 Martian Water-Ice Clouds

Water-ice clouds have been viewed from both the surface and orbit for the past few decades. Smith and

Smith (1972) used telescopic blue light photographs and observations from Mariner 6 and 7 to classify two

types of seasonal varying ”white clouds”. Type I clouds peak in northern mid-summer while Type II peak

in northern mid-winter (Smith and Smith, 1972). Additionally, Type I clouds showed a diurnal cycle with

peaks in late morning and early afternoon while Type II showed no diurnal trend over the course of a sol

(Smith and Smith, 1972). The diurnal cycle of Type I indicate their composition of water-ice and Type II are

more likely to be composed with CO2 (Smith and Smith, 1972). Peale (1973) suggested that Martian clouds

were formed from the circulation of water between the surface and atmosphere, especially around high-

elevated areas. Orographic clouds form near high-elevated surface features such as mountains or volcanoes.

Discussed by (Sagan et al., 1971), Martian clouds that form at high-elevated areas could be caused by

orographic winds. Cloud activity at high-elevated areas was confirmed by Pearl et al. (2001) through TES
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observations. Opacities ranged up to 0.6 and clouds showed possible wave structure, indicating orographic

winds (Pearl et al., 2001). Pearl et al. (2001) also confirmed two Martian seasons, aphelion showing clouds

and perihelion showing major dust storms.

The Aphelion Cloud Belt (ACB) describes the equatorial clouds that form every MY during the aphelion

season. Clancy et al. (1996) first noticed correlations between visual Hubble images, National Radio Astron-

omy Observatory (NRAO) millimeter-wave microwave CO spectra and Viking temperature measurements

during the aphelion season. These images showed a belt of clouds covering 10◦S-30◦N with opacities ranging

from 0.2-0.6 (Clancy et al., 1996). This annual feature is consistent with Mars’s highly elliptical orbit that

causes atmospheric temperatures between 0-60 km to fluctuate by 20 K between aphelion and perihelion

(Clancy et al., 1996). In terms of solar longitude, the ACB occurs every Mars year starting around Ls

45◦ and ending around Ls 150◦. The origin of this cloud belt comes from the condensation of water vapor

through Hadley circulation (Clancy et al., 1996). Similar to Earth, Mars exhibits two Hadley cells, one

in each hemisphere along the equator Haberle (1986). Hadley cells are responsible for the circulation of

warmer air from the equator towards the poles. This air cools, falls to the ground and returns to the tropics.

Easterly winds are caused by the Coriolis force deflecting air from the Hadley cell (Haberle, 1986). Between

the aphelion and perihelion sesason, Haberle et al. (1993) noticed a twofold difference in Hadley cell intensity

in Ames General Circulation Model simulations. At solstices, a single cross-equatorial Hadley cell existed,

while at equinoxes there were two symmetric Hadley cells in each hemisphere (Haberle et al., 1993). An

example of Hadley cells on Mars is shown in Figure 1.2. The ACB season was also seen by Wolff et al. (1999)

through HST images and Pathfinder, confirming results from Clancy et al. (1996).

It was widely believed that Martian water-ice clouds were not important to the global transport of

water due to the low water column abundance measured by Jakosky and Farmer (1982). Using the Mars

Atmospheric Water Detectors (MAWD) on the Viking orbiter, the water vapour column abundance varied

between 0 and 100 precipitable microns (Jakosky and Farmer, 1982). This indicates that if all of the water

on the atmosphere was to condense onto the surface covering the entire planet, it would be 100 microns

thick. Even with low water column abundance, Clancy et al. (1996) argue that low-altitude clouds during
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Table 1.1: Cloud heights calculated by Benson et al. (2003) for five Martian volcanoes. Observations were

made in the afternoon, between 13:00-15:00 local time (Benson et al., 2003).

Surface Feature Ls Cloud top height (km)

Olympus Mons 54◦-147◦ 19.0-21.0

Ascaeus Mons 50◦-143◦ 15.0-18.0

Pavonis Mons 72◦-181◦ 12.0-14.0

Arsia Mons 83◦-182◦ 16.0-17.4

Alba Patera 47◦-138◦ 5.5-6.5

around high topographical locations such as Olympus Mons (Benson et al., 2003). Orographic clouds were

present in this region because of the highly elevated surface features (Benson et al., 2003). Between Ls 110◦

and 205◦ clouds were found to intensify as the day progressed and peaked in mid to late afternoon (Benson

et al., 2003). Tamppari et al. (2003) used Viking data to discover a diurnal pattern of decreasing extent

from morning to midday and an increase from midday to afternoon. This increased extent of clouds in the

afternoon is attributed to uplifting dust from hotter midday temperatures, acting as CCN (Tamppari et al.,

2003). Clouds were also seen at all times of a sol at high topographic features, as seen by Benson et al.

(2003). Wang and Ingersoll (2002) also confirmed through MOC measurements the general behaviour seen

through Viking data by Tamppari et al. (2003).

Benson et al. (2003) also used data from the Mars Orbiter Laser Altitumeter (MOLA) on MGS to

determine the altitude of clouds above five Martian volcanoes. Altitudes were determined by finding the

highest point of contact between the cloud and volcano in contour MOLA maps (Benson et al., 2003). Results

for the five volcanoes are shown in Table 1.1. Higher altitudes peaked in the afternoon where cloud height

varied 1-2 km in altitude depending on local time (Benson et al., 2003).

From the surface, several rovers have captured water-ice clouds during the ACB season. Opportunity

captured images of clouds through regular sky monitoring using the Navigation Camera (Navcam) onboard.

9



No clouds were detected outside Ls 20◦-136◦, with peak activity at Ls 50◦ and 115◦ (Lemmon et al., 2015).

Atmospheric movies taken by the Surface Stereo Imager (SSI) on Phoenix showed cirrus-like clouds and

dense, low cumulus-like clouds. Diurnally, clouds at the Phoenix landing site peaked near 10:00 local true

solar time (LTST), which Moores et al. (2010) use to argue that the cloud builds overnight with peak optical

depth in the early morning and dissipates in the afternoon. Cloud formation at night within the Planetary

Boundary Layer (PBL) was detected with lidar and observed the same pattern as Moores et al. (2010) with

the clouds dissipating in the afternoon (Whiteway et al., 2009).

Currently, Curiosity searches for clouds at Gale Crater every 2-3 sols using similar atmospheric movies

to Phoenix. These movies consist of 8 consecutive images where a Zenith Movie (ZM) is pointed vertically

while a Suprahorizon Movie (SHM) is pointed just above the crater rim. Unlike Phoenix, Curiosity uses

the Navcam which boasts a 45◦ × 45◦ FOV (field of view) versus the SSI 13.8◦ × 13.8◦ FOV (Moores

et al., 2015b). This increase in FOV allows a larger area of the sky to be viewed, but also hinders timing

to minimize exposure from the sun. The difference in latitude between Green Valley (Phoenix) and Gale

Crater (Curiosity) as shown in Figure 1.7, means that the sun’s path during a sol is higher in the sky at

Gale crater. To avoid having the sun within the frames, a ZM cannot be taken within ±2.5 hours from

local noon. A SHM does not have this constraint because of its lower elevation angle. Over the course

of Curiosity’s continued operations, over 400 atmospheric movies have been acquired to characterize their

properties, including altitude.

1.2 Observing Martian Water-Ice Clouds from the Surface

In total, there are currently six orbiters and two rovers still continuing operations today (Mart́ınez et al.,

2017). The Mars Science Laboratory (MSL, Curiosity) studies geology and atmospheric properties in Gale

Crater and is discussed in section 1.3. Opportunity continues to study dust and atmospheric optical depth

at Meridiani Planum. Analyzing Martian water-ice clouds from the surface allows a different perspective on

water content in the atmosphere. Either through direct imaging or instruments, studying from the surface

allows surface processes to be viewed and can verify model parameters. Locations of every spacecraft to the
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Figure 1.8: Image using the IMP to capture wispy blue clouds on sol 39 (Lemmon, 2018). Taken 40 minutes

before sunrise, the bottom clouds are 10◦ above the horizon and are believed to be 10-15 km about the

surface (Lemmon, 2018).

Temperature data taken during entry was used in the Ames Mars General Circulation Model (MGCM)

to try to reproduce characteristics of clouds observed at the Pathfinder landing site (Colaprete et al., 1999).

When using a diurnal temperature profile, a primary cloud formed between 20-40 km that was present

throughout the sol (Colaprete et al., 1999).

Overall, results from Pathfinder showed consistent atmospheric structure and weather, as originally seen

by the Viking 1 lander(Schofield et al., 1997). As measured by Pathfinder, differences from Viking 1 lander

results include cooler nighttime upper atmosphere temperatures and near-surface atmospheric temperatures

being 10-12 K warmer (Schofield et al., 1997).

1.2.2 Mars Exploration Rover (MER)

The Mars Exploration Rover (MER) mission included two twin rovers carrying the Athena science payload

used to explore environmental conditions and if water was once present on the surface (Squyres et al.,

2003). Landing in 2004 during Southern autumn, MER-A (Spirit) operated for over 2000 sols, while MER-B

(Opportunity) is still functional today after 5000 sols (Mart́ınez et al., 2017). They landed on opposite sides

of the planet, at Gusev Crater (14.57◦S, 175.48◦E) and Meridiani Planum (1.95◦S, 354.47◦E) respectively.
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clouds may be too high in the atmosphere to be detected by Mini-TES (Smith et al., 2006). Wolff et al.

(2006) argue that TES limb-derived observations show a cloud layer above 35 km, which is too high for Mini-

TES to observe. Seeing little water-ice in Mini-TES suggests that clouds exist higher in the atmosphere at

both landing sites (Smith et al., 2006).

Another method used to find atmospheric properties with MER was direct imaging of the Sun with the

Pancam. These mast-mounted cameras have independent filter wheels including solar filters at 440 and 880

nm (Lemmon et al., 2004). The first 5 MY of the MER mission showed consistent low dust from Ls 0◦-135◦,

equivalent to the ACB season, while larger amounts were present in the other seasons (Lemmon et al., 2015).

Water-ice clouds were also seen at the Opportunity site over Ls 20◦-136◦, but not significantly at Spirit

(Lemmon et al., 2015). Figure 1.10 is an example of clouds at Meridiani Planum observed by Opportunity

through the Navcam.

Figure 1.10: Clouds captured through the Navcam on Opportunity on sol 290 at 09:30 (NASA/JPL-Caltech,

2004). An imaging technique was used to pull out the thin clouds in the frames including reducing glare

from the sun and geometrical distortion (NASA/JPL-Caltech, 2004).

1.2.3 Phoenix

In 2008, the Phoenix mission landed in the Martian arctic at a site named Green Valley (68◦N, 233◦E) (Smith

et al., 2008). Subsurface water-ice was predicted to exist in the Martian arctic and Phoenix as designed to

verify this hypothesis (Smith et al., 2009). Lasting for 151 sols, the mission exceeded the 90 sol life-time.

For characterizing clouds, a Light Detection and Ranging (lidar) instrument and the Surface Stereo Imager
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Currently, the atmospheric movies taken by the Navcam are used to determine properties of clouds above

Gale crater. Their meteorological wind direction and opacity have been previously determined (Francis et al.,

2014) (Moores et al., 2015b) (Kloos et al., 2016; 2018). However, their altitude has not been constrained.

Unlike Phoenix, Curiosity does not have a lidar that could measure the altitude of these clouds directly as

seen by Whiteway et al. (2009). To solve this problem, cloud movement found through the ZMs can be

correlated to computer modelled values.

1.4 Mars Atmospheric Models

To better understand atmospheric processes in the Martian atmosphere, Global Climate Models (GCMs)

are tailored to Mars. Limited by our current data, numerical models can aid in filling in the blanks that

limited resources on Mars cannot answer. When Martian water-ice clouds were discovered to have an effect

on migration of water in the atmosphere, numerical models were created to better understand the water

cycle on Mars. Richardson and Wilson (2002) used the Mars General Circulation Model (MGCM) to study

the Martian water cycle. Several models are used in today’s studies including the MGCM developed at

Laboratoire de Meteorologie Dynamique (LMD) (Forget et al., 1999) and the Mars Regional Atmospheric

Modelling System (MRAMS) developed at the Ames Research Centre (Rafkin et al., 2001).

Numerical climate models were created for Mars to understand vertical distribution of water vapour in

the atmosphere for cloud studies (Hess, 1976). These initial models were steady-state with assumptions made

for mean particle radius and neglecting particle microphysics (Michelangeli et al., 1993). By expanding these

neglections, Michelangeli et al. (1993) developed a one-dimensional time-dependent aerosol model from Toon

et al. (1988) that computed nucleation rate and growth by condensation sublimation. At this time, surface

and orbital Martian atmospheric data was scarce where Viking orbiter and lander data were only used to

confirm results (Michelangeli et al., 1993). Even with this little amount of data, Michelangeli et al. (1993)

were able to reproduce optical depths and altitude values of water-ice clouds previously observed by Viking.

With the arrival of MGS, more data was available to test and increase accuracy of numerical models.

The NASA Ames MGCM was developed in the 1990s based on an Earth GCM and included radiative
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effects from dust and topography seen by the Mariner 9 and Viking missions (Haberle et al., 1993). First

discussed by Pollack et al. (1990), this model was used after the Viking missions to study polar processes

after more data about the Martian surface became available. The Viking missions showed a difference in

composition between the northern and southern polar cap where the north had water-ice at the surface,

but the south had carbon dioxide (Pollack et al., 1990). Models ran by Pollack et al. (1990) showed that

Martian atmospheric dust has a strong impact on the polar caps where atmospheric advection transports

heat into these regions causes an increase in dust optical depth. CO2 ice clouds were predicted at high

altitudes by the model based on elevated dust in the winter polar regions (Pollack et al., 1990). Pressure

variations measured by the Viking landing sites were confirmed using this model where variations were large

enough that Pollack et al. (1993) argue that the pressure variations should be detected by future spacecraft

missions. Haberle et al. (1993) simulated circulation of the Martian atmosphere using the Ames MGCM

to show that Mars’ circulation is similar to Earth. Hadley and Ferrel cells were observed including a high

altitude jet stream, but Mars’ circulation differed in variability compared to Earth (Haberle et al., 1993).

Haberle et al. (1993) found the most similarities between Mars and Earth circulation at the equinoxes where

two symmetric Hadley cells develop in the mid-latitudes of each hemisphere. At the solstices, the two Hadley

cells became a cross-equatorial cell covering half the planet (Haberle et al., 1993).

With data from Mariner 9, Viking and MGS, Richardson and Wilson (2002) developed a general circu-

lation model to study the water cycle on Mars. In order to assess water mechanisms in the atmosphere, the

seasonal evolution must be studied. The model was able to reproduce vapor maxima as seen in measurements

from MAWD and TES, including a peak in cloud activity in the tropics in the aphelion season, agreeing

with Clancy et al. (1996). However, the minimal amount of data available from Mars hindered fine tuning

of this model (Richardson and Wilson, 2002).

A popular Martian circulation model was developed by Laboratoire de Meteorologie Dynamique (LMD).

Originally developed in 1999, it was a combination of previous models to be redesigned as a sophisticated

model accounting for all Martian meteorological processes (Forget et al., 1999). With a vertical domain of

80 km, this model allows interaction between the lower and upper atmosphere to be investigated (Forget

21



et al., 1999). The model was roughly consistent with previous models when below 40 km, but the thermal

and dynamic structure above 50 km was difficult to predict without more observations by orbiters at those

altitudes (Forget et al., 1999). Forget et al. (2011) fixed several aspects of the model including radiative

transfer code and particle size. Used for several studies, the GCM developed by LMD has been used to study

the influence of radiatively active clouds (Madeleine et al., 2012), (Navarro et al., 2014). Both cases raise

the issue of needing better modelling for cloud formation and evolution based on radiatively effects. In most

atmospheric models, it is hard to develop a model that can accurately predict water-ice clouds formation

due to limited data from Mars.

Mars atmospheric models are useful for learning about the water cycle, but also about potential landing

sites for future missions. Haberle et al. (1997) used the NASA Ames Mars GCM to predict the meteorological

environment for the Pathfinder lander site. Predictions were made that Pathfinder would see meteorological

conditions similar to what was observed at the Viking 1 landing site (Haberle et al., 1997). This was confirmed

by Schofield et al. (1997) that found similar atmospheric structure and weather when compared to Viking.

Using the MGCM developed by the Geophysical Fluid dynamics Laboratory (GFDL), Toigo and Richardson

(2003) discussed the different range of topography in MER landing sites and its affect on local meteorology.

However, model predictions can be inconsistent when there is sparse data on differing topographic sites on

Mars where Toigo and Richardson (2003) argue that future landers should have meteorological sensors to

increase this data set. For Phoenix, MRAMS was used to predict meteorological conditions (Michaels and

Rafkin, 2008). Quiet sol-to-sol weather was predicted as well as a 3-7 km PBL during entry (Michaels and

Rafkin, 2008). MRAMS has also been used for Curiosity’s landing site, Gale Crater, to understand local

meteorology (Pla-Garcia et al., 2016).

The most difficult part of Martian atmospheric models is knowing the uncertainty associated with simu-

lated results. This is hard to define, especially for Mars, because of the sparse meteorological data available.

Therefore, parameters calculated through atmospheric models are plausible if they are in the range of ex-

pected values based on remote sensing observations. This method is good for parameters that have remote

sensing data such as temperature and atmospheric aerosols. For parameters associated with circulation,
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such as winds, there is extremely limited data for surface winds and even less above the surface. However,

as variables are highly coupled within an atmospheric model, if observed atmospheric variables are correct

then circulation parameters are generally good.

To verify Martian atmospheric models, data from temperature and atmospheric tracers are used. Using

TES, atmospheric temperature profiles were created using nadir-viewing spectral measurements (Conrath

et al., 2000). Using the NASA Ames Mars GCM, profiles developed by Conrath et al. (2000) were in

agreement with the modelled results. Earth-based radio occultation experiments are also used to measure

the structure of the Martian atmosphere. The Mars Express Radio Science Experiment measured middle

atmosphere parameters from the surface to 40 km (Tellmann et al., 2013). This method allows the middle

atmosphere to be measured with very high vertical resolution (Tellmann et al., 2013). Another method

to measure atmospheric profiles is through incoming surface spacecraft. During entry, descent and landing

(EDL), atmospheric density, pressure and temperature can be measured from 100 to ¡10 km (Withers and

Smith, 2006). To further verify modelled results, the model can be used to replicate diurnal and seasonal

results observed by surface spacecraft. While upgrading the Ames Mars GCM, Haberle et al. (2003) tested

the model by attempting to match seasonal and diurnal pressure results. When compared to Viking lander

1 and 2 data, the GCM gave a good fit to diurnal results (Haberle et al., 2003). Using these methods to

accurately measure Martian atmospheric properties help verify atmospheric modelling results.

1.4.1 The Mars Regional Atmospheric Modelling System (MRAMS)

The Mars Regional Atmospheric Modelling System (MRAMS) is 5 day mesoscale simulation for Mars. It is

based off the Regional Atmospheric Modelling System (RAMS) for Earth that is used to forecast weather

and simulate over complex terrain (Rafkin et al., 2001). When inputting radiation parameterization, cloud

microphysics are not active meaning MRAMS does not consider radiative clouds (Rafkin et al., 2001). The

model outputs parameters during the 3rd sol to allow sufficient time for circulation. The several parameters

outputted by MRAMS are described in Table 1.2 (Rafkin et al., 2001).

To verify MRAMS, Rafkin et al. (2001) ran simulations for the Pathfinder landing site. Running for 3
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Table 1.2: Parameters outputted by MRAMS.

Parameter name Description Unit

u velocity East/west component of wind velocity m/s

v velocity North/south component of wind velocity m/s

w velocity Vertical component of velocity m/s

temperature air temperature K

press air pressure Pa

consecutive sols, the domain was 60 km in the horizontal and 22 km in the vertical with the model starting

at 05:30 LTST at Ls 142◦ (Rafkin et al., 2001). Results showed MRAMS underpredicted the maximum

temperature, but agreed with minimum temperature. Wind speeds were less than observed, but was accepted

by Rafkin et al. (2001) as ASI/MET wind speed data were still under development. MRAMS was able to

resolve the general diurnal atmospheric pressure that the Ames GCM could not, but the amplitude of the

cycle was smaller than observations (Rafkin et al., 2001).

Michaels et al. (2006) coupled MRAMS to the NASA Ames MGCM cloud microphysics code to aid

in modelling water-ice and dust. This new combined model ran for several sols until it stabilized in a

diurnal cloud development cycle (Michaels et al., 2006). Simulations were able to reproduce observed cloud

locations, orientations and morphology over the Olympus Mons region (Michaels et al., 2006). Mountain-

induced circulation appeared to be more significant than previously thought which could inject water and

dust above 40 km in altitude (Michaels et al., 2006). By using atmospheric models like MRAMS, we can infer

knowledge about the Martian atmosphere by comparing observational values from rovers, such as Curiosity.
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2 Method

2.1 Atmospheric Movies

Curiosity has imaged clouds above Gale Crater through atmospheric movies taken every 2-3 sols for the

entirety of the mission. Using the Navigation Camera (Navcam), eight consecutive 512 × 512 pixel images

are taken over a span of 235 seconds, where each frame is taken approximately 32 seconds apart. The main

difference between the two types of atmospheric movies is their pointing. A zenith movie (ZM) is taken at 85◦

while a supra-horizon movie (SHM) is taken at 38.5◦. Regarding azimuthal direction, this pointing changes

depending on the path of the Sun through a MY. To minimize image saturation, azimuth pointing is due

South during Ls 0◦-190◦ and due North during Ls 191◦-359◦. By taking these movies, we can characterize

the opacity, angular distance and wind direction of clouds above Gale Crater.

In previous works done by Moores et al. (2015b), Kloos et al. (2016; 2018), cloud activity was monitored

and analyzed with the Navcam on Curiosity. The first 360 sols showed extremely faint features in the early

morning or late afternoon (Moores et al., 2015b). Moores et al. (2015b) argue that these two peak time

periods of activity correspond to the colder part of a sol, making it likely that they are thin water-ice clouds.

Extending this data set, Kloos et al. (2016) examined the opacity for first 800 sols, while Kloos et al. (2018)

analyzed interannual and diurnal variablility of 2 MYs (Ls 160◦ in MY 31 to Ls 160◦ in MY 33). Seasonally,

clouds above Gale Crater were observed mainly during the ACB season, another suggestion that these clouds

comprise of water-ice. Kloos et al. (2016) measured an average optical depth of 0.02 indicating the cloud’s

thin nature from small amounts detected by Jakosky and Farmer (1982). Diurnally, Kloos et al. (2018) found

higher opacity during the morning than afternoon. Thicker clouds form more favourably in the morning as
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atmospheric temperatures are cooler which is expected (Wolff et al., 1999).

One unknown parameter of the ACB above Gale Crater is altitude. At Green Valley, Phoenix was able

to discern this property through lidar measurements. During Ls 113◦-148◦, clouds were observed within the

boundary layer (Dickinson et al., 2010). Ice-water optical depth was consistent with values derived from

Moores et al. (2010) using the SSI (Dickinson et al., 2010). Using SHMs and ZMs, Moores et al. (2010)

found that the diurnal trend peaks at 10:00 LTST which suggests that morning clouds build overnight. This

is also seen in Figure 1.13, showing clouds forming overnight when the atmospheric temperatures are the

lowest (Dickinson et al., 2010). Unlike the morning, clouds diminished in the afternoon arguing that heating

from the surface inhibits cloud formation (Moores et al., 2010).

The difference in location of Phoenix compared to Curiosity makes it difficult to compare results. Solar

elevation is a bigger problem at Gale crater versus Green Valley because of the difference in latitude. Gale’s

equatorial position means the sun is no more than 30.8◦ away from the zenith point, restricting the time

of sol a ZM can be taken (Moores et al., 2010). For Green Valley, the polar latitude means that the sun is

always low in the sky, which allows the majority of the sol to be used for imaging. Morphology in atmospheric

movies could be different between landing sites due to a 5.5 km mountain (Aeolis Mons) in the center of

Gale crater. Orographic condensate clouds are more likely at Gale because of Aeolis Mons (Moores et al.,

2015b). Kloos et al. (2018) found gravity waves in atmospheric movies that would be related to a surface

features such as Aeolis Mons.

2.1.1 Navigational Camera

The instrument onboard Curiosity that is used to capture atmospheric movies is the Navigation Camera

(Navcam). They are build-to-print copies of the Mars Exploration Rover (MER) Navcams where the only

difference is a slightly more powerful heater allowing operation in colder ambient temperatures (Maki et al.,

2011). If needed, a heater resistor circuit will warm up the electronics to a minimum of -55◦C (Maki et al.,

2011). A 45◦×45◦ field of view (FOV) allows more of the sky to be viewed. Compared to a FOV of 13.6◦ for

the SSI on Phoenix, the Navcam can observe a larger portion of the sky at once (Moores et al., 2015b). While

26









Table 2.1: Quality rating described by Moores et al. (2015b) to classify features of clouds. A quality ranking

of -1 indicates too much saturation from the sun in the atmospheric movie. The majority of movies are a

quality ranking of 5 or less as shown in Figure 2.5a.

Quality Ranking Description

10 No mean frame subtraction necessary to see features

8 Clear features visible upon mean frame subtraction

4 Faint features visible upon mean frame subtraction

0 Featureless frame upon mean frame subtraction

-1 Unusuable frame due to error or proximity to the sun

2.1.3 Supra-Horizon Movie (SHM)

The supra-horizon movie (SHM) is a type of atmospheric movie taken by Curiosity to study clouds above

Gale Crater. At the beginning of the mission, the pointing for these movies was aimed just above Aeolis Mons

at 38◦ elevation and 135◦ azimuth (Moores et al., 2015b). Table 2.2 shows the changes to this observation

throughout the mission to today.

Table 2.2: SHM reference from Kloos et al. (2018)

Sol # of Frames Length pointing

0-594 8 91 seconds 134.8◦, 38.5◦

594-910 4 39 seconds 125.1◦, 10◦

911-1031 8 266 seconds 134.6◦, 43.5◦

1032-1258 8 266 seconds 0◦, 26.3◦

1259-today 8 266 seconds 180◦, 26.3◦

From sol 911 to today SHMs consist of eight 512x512 with a 26◦ elevation and azimuth changing between

0◦ and 180◦ depending on season (Kloos et al., 2018). The sun’s path changes over the course of a MY
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The vertical pointing enables the shortest path length through the atmosphere, allowing higher altitudes

clouds to be observed (Kloos et al., 2016). Wind direction and velocity can be determined through ZMs,

however, we cannot find absolute velocity without also knowing the altitude of the clouds. Curiosity cannot

directly measure this without a lidar onboard. Section 2.2 explores measuring angular distance and meteo-

rological wind direction while section 2.3 relates these two parameters to infer an altitude for clouds above

Gale Crater. As of June 2018, a total of 901 atmospheric movies have been taken with 409 being ZMs.

Figure 2.5 shows the timing and quality versus season.

Opacity and wind direction have been determined in previous works by (Kloos et al., 2016; 2018), (Francis

et al., 2014), but not altitude. This work will go into depth about using ZMs to find angular distance and

wind direction then comparing results from an atmospheric model to estimate an altitude. Only ZMs are

used because of their vertical pointing. 118 out of 409 ZMs have been used due to absence of features in the

majority of movies according to Figure 2.5c.
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2.3 Correlating observational values with MRAMS

There is a total of 12 simulations at Ls 30◦ resolution over a MY, computed by Alexandre Kling at the

AMES Research centre. With each simulation running on the Pleiades computer at the Ames Research

Centre, 17 processors were used for around 48 hours of run time per simulation. The model is spun-up for

three Martian days (sol) and analysis is preformed on the following three sols. As MRAMS is a mesoscale

model, it needs an initial condition to start with boundary conditions provided by the NASA Ames Global

Circulation model (Ames Mars GCM).

The Ames Mars GCM runs at a resolution of 5◦ latitude and 6◦ longitude. It is a fully interactive water

cycle with a dust map scenario derived from observations. This dust map scenario guides moving dust in

the Ames Mars GCM to assimilate dust opacities. Water columns calculated by the model match well with

observations measured by TES and MCS (Kahre et al., 2017).

MRAMS simulations use 4 nested grids with a resolution of 240 km on the mother grid and 8 km for

the smaller grid. 18 points are within Gale crater because of its 150 km diameter. This amount of points

allows the rim and mounds be resolved allowing regional circulation to be captured. The vertical grid has

levels fixed in space, which increase from 30 m at the surface to 2,500 m at the top of the model (50 km)

(Rafkin et al., 2001).

The MRAMS outputs used in this project are wind velocity and wind direction. Wind velocity is given

in u (east/west), v (north/south) and w (vertical) components. The w component is negligible and thus

not used in this study. The wind velocity vector (~v) is calculated by combining u and v components and

translated to an angular wind velocity (dθ) as shown in equation 2.2. The meteorological wind direction (ϕ)

is shown in Figure 2.8b.

~v =
√

u2 + v2

dθ = tan−1

(

~v

h

)
(2.2)

Each parameter is outputted every 30 minutes on day three of the five day simulation. Provided in
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values are normalized for each 30 minute interval. First, the sum of all the individual probabilities is found

then each individual value is divided by that sum.

P (xi)total = P (xi)ad × P (xi)wd (2.5)

Cloud altitude probability contour plots will be assessed diurnally and seasonally. By looking at how

altitude changes diurnally, we can assess how clouds form for the two known peak activity time. Seasonal

patterns are analyzed by plotting results over a MY, as shown in Section 3.
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Diurnally, cloud activity peaked in the morning and afternoon according to our histograms and Figure

2.5a. Additionally, there is a peak in the histograms between 15:00 and 16:30 indicating better movies during

this time of sol. However, the majority of atmospheric movies are taken near 16:00 LTST which could account

for this peak of movies seen in the histograms. (Kloos et al., 2018). Another reasoning for this peak stems

from Tamppari et al. (2003) who argued that an afternoon peak in cloud activity is from uplifted dust

from the surface as the atmospheric temperature increases throughout a sol. With the dust acting as Cloud

Condensation Nuclei (CCN), clouds would form from water-ice nucleating onto the dust particle (Tamppari

et al., 2003). During the morning peak, trends showed that cloud activity decreased towards midsol, which

also is confirmed by our histograms. Atmospheric movies taken at Gale Crater ((Moores et al., 2015b),

(Kloos et al., 2016; 2018)) show a decrease in cloud activity during midsol. Warmer temperatures would

cause the clouds to dissipate from morning to midsol. Clouds in the morning are expected and were originally

viewed through Hubble Space Telescope observations by Wolff et al. (1999).

A pattern in the contour plots are low probabilities between 20-40 km in Figures 3.3, 3.4, 3.8 and 3.9.

This indicates that clouds would either form close to the surface or high in the atmosphere. However, the

small number of movies outside the ACB season makes it difficult to select between these two hypotheses.

The majority of clouds seen in atmospheric movies are taken during the ACB season, which is evident in our

histograms. Figure 3.14 shows contour plots for the ACB season (Ls 60◦, 90◦, 120◦ and 150◦) which will be

the focus of this section.
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at higher altitudes. Towards the later part of the ACB season, low probabilities between 20-40 kms start

forming. If clouds do exist at these altitudes, this indicates that mid-altitude clouds are not as common

during the end of the ACB season. As noted in Tamppari et al. (2003), water-ice clouds diminish between

Ls 140
◦-170◦ meaning a possible transition between the Northern to Southern dominant Hadley cell. During

the aphelion season, general circulation models predicted a cross-equatorial Hadley cell in the Martian

atmosphere (Haberle et al., 1993). First mentioned by Clancy et al. (1996), water-ice clouds are expected to

form in the ascending branch of the Hadley cell and are responsible for the movement of water between the

northern and southern hemispheres during aphelion. With the transition of the Hadley cells, this absence

in the early and later part of the ACB could be evidence of this. When investigating seasons on either side

of the ACB season, both Ls 30◦ and 180◦ show low probabilities between 20-40 kms, an indication that it

could be due to the Hadley cell splitting into two relatively weak cells (Zurek, 1992). Evident in Figure 3.15,

equinox shows two weak Hadley cells, while solstice shows one strong Hadley cell (Jakosky and Haberle,

1992). Martian solstice occurs at Ls 90◦ and 270◦, during the two major seasons on Mars.

Another notable feature is a high-probable band under 5 km in the morning. The crater rim of Gale

crater averages 2-3 kms from the bottom of the crater (Moores et al., 2015a). Clouds above the crater rim

are expected because more dust is kicked into the atmosphere which then act as CCN. The more dust in

the atmosphere, the easier clouds would form through nuceleation. As shown in Figure 3.16 from Moores

et al. (2015b), night-time MRAMS simulations show air flowing down the north rim that encounters cold,

stable air and is forced to jump up over the crater at altitudes between 3-5 km. This nighttime air flow

rarely makes it to the crater floor, indicating a relatively dry crater as any water vapour that is forced into

this hydraulic jump and flows over the crater (Moores et al., 2015b). Low altitude morning clouds could be

explained by this jump.

Curiosity’s location on Mars is along the edge of the dichotomy boundary. This boundary is the topo-

graphic division between the northern lowlands and southern highlands (Tanaka et al., 1992). The southern

hemisphere is covered 60% by craters or lava flows that occurred early in Martian history (Tanaka et al.,

1992). The northern hemisphere is considered newer compared to the southern hemisphere because of its
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As noted in section 3.1, Figure 3.17 shows a high-probable band just above the crater rim. This is evident

in all seasons with analyzed ZMs. Clouds below the PBL are also evident in all seasons. During the later

part of the MY, Figure 3.17 shows lower probability for high-altitude clouds in the morning. The absence

of clouds between 20-40 km is also seen as compared to our diurnal results. This absence is evident outside

of the ACB season and during seasons where Hadley cells transition from one cross-equatorial cell to two

weak cells. During Ls 0◦-30◦, Mars approaches aphelion causing the ACB to form. During 150◦-180◦, the

ACB has dissipated and the next seasonal phase is a dusty, cloud-free atmosphere (Smith, 2004). During

perihelion, the atmosphere warms and more dust is circulated. High altitude clouds during Ls 210◦ will be

examined to determine which altitudes are most-probable. Ls 210
◦ is a unique season showing high-probable

clouds through most of the Martian atmosphere, except between 5-10 kms. This would correspond to below

the PBL which was more probable for every other season. This season could perhaps produce clouds at

higher altitudes because circulation at lower altitudes is occurring during the start of dust-storm season.
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Diurnally, afternoon ZMs do not show high-probable values for high altitude clouds when compared to

morning ZMs. Figure 3.18 shows a strong feature 15-30 km above the surface in the ACB season. This

high-probable feature could be related to the movement of water-ice from the northern pole to the southern

pole during aphelion as seen through TES observations (Smith, 2004). Figure 1.3 shows the highest amount

of ice during the ACB season. This is also confirmed through a 3D Martian General Circulation Model

(MGCM) by Montmessin et al. (2004), that showed the migration of water vapor from the North pole to

the South occurring in the ACB season. Gale Crater is near the equator (4.5◦ S) where the water vapour

column has higher abundances as it travels towards the south during aphelion.

This mid-altitude high-probable feature could be represented by thermal tides that have been observed in

the middle atmosphere. Thermal tides are global oscillations in wind, pressure and temperature that create

temporal variability in the atmosphere (?). A Sun-synchronous diurnal tide for Mars was hypothesized

by Lee et al. (2009). Comparing spectral analysis from MCS retrievals and a MGCM showed dramatic

differences between night and day temperatures (Lee et al., 2009). This difference drives large amplitude

oscillations within the atmosphere and causes daily varying pressures and winds (Lee et al., 2009). By

using radio occultation measurements by the Mars Global Surveyor (MGS) and Mars General Circulation

Model (MGCM) simulations, Hinson and Wilson (2004) found thermal tides that coupled to cloud formation.

Cloud formation is correlated to temperature where water-ice condenses when water vapor partial pressure

is greater than the saturation pressure (Heavens et al., 2010). Lower atmospheric temperatures cause their

formation. As shown in Figure 3.19, temperature deviations by thermal tides are seen to change diurnally.

Corresponding to the MRAMS altitude range, negative temperature deviations are seen in the lower and

upper atmosphere in the morning, but mid-altitude in the afternoon. When comparing to our ACB results,

higher altitude clouds are more probable in the morning than in the afternoon. This theory could explain

this change in altitude between the morning and afternoon.

Additionally, Figure 3.20 shows the diurnal temperature structure where the lower temperatures would

indicate higher chance of cloud formation. Each line shows several low temperature points, similar to the

several high-probable regions in our morning results (Figure 3.17). For the afternoon, the lowest temperature
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Consisting of two telescopes with a 4.3◦ FOV, measurements are made in nine spectral bands as shown

in Table 3.1. Telescope A corresponds to channel numbers A1-A6 which measure in the visible and mid-IR

while Telescope B corresponds to channel numbers B1-B3 that measure in the far-infrared (McCleese et al.,

2007). Three different viewing directions are used to observe the atmosphere in the limb; the surface at nadir

for four seconds then forward limb for 16 seconds and lastly the space above the forward limb for four seconds

(McCleese et al., 2007). The viewing of space above the limb is used for calibration while the nadir view is

used to improve retrievals of near-surface atmospheric properties because of its higher horizontal resolution

(McCleese et al., 2007). This three-step observation is done every 34 seconds to have an atmospheric profile

every 110 km (1.86◦ latitude).
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In a Sun-synchronous orbit, MCS passes at 03:00/15:00 LTST and does ”off-track” observations that

can range ±2 hours from the nominal orbit (Kleinböhl et al., 2017). Kleinböhl et al. (2017) apply a two-

dimensional radiative transfer scheme to temperature, dust and water ice opacity retrievals from MCS.

Kleinböhl et al. (2017) assume spherical symmetry and the temperature or aerosol content is the same

within that atmospheric layer. The ”off-track” observations, as shown in Figure 3.21, describe observation

geometries used to improve accuracy of the retrievals. However, if a measurement is an on-planet view, the

two-dimensional radiative transfer scheme is unavailable. This is due to temperatures differing on opposite

sides of the tangent point in the limb path (Kleinböhl et al., 2017). The radiative transfer equation can

be found by assuming the Source function is represented by a homogeneous surface brightness temperature,

which was modified into the code (Kleinböhl et al., 2017).

Figure 3.21: Diagram showing the three consecutive limb views by MCS. The red circles around the planet

indicate layers of the atmosphere. Dotted, solid and dashed lines show limb paths for measurements n-1, n

and n+1 (Kleinböhl et al., 2017). Black lines show atmospheric profiles measured during limb measurements.

The 202 profiles used in this study range between 13:00 and 17:00 LTST and were provided by Scott

Guzewich at the Goddard Research Centre. The large horizontal resolution means that the profiles corre-

sponding to Gale Crater are located between −6.3◦S to −3.8◦S and 135◦E to 140◦E (Guzewich et al., 2017).

All retrievals used the two-dimensional radiative transfer algorithm as described in (Kleinböhl et al., 2017).

A constraint of limb observations by MCS is the inability to measure ice extinction below 10 kms. This

poses a problem when confirming results as it will not be possible to confirm any of results that show clouds

within the crater or PBL that is evident in Figures 3.17 and 3.18. Due to its sun-synchronous orbit, limb
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Table 3.1: Table showing the nine different channels measured by MCS. For cloud retrievals, channels B1-B3

would be used (McCleese et al., 2007).

Telescope/

Channel Number

Band Pass

cm−1

Band Center

µm

Measurement

Function

A1 595-615 16.5 Temperature (20-40 km)

A2 615-645 15.9
Temperature (40-80 km)

Pressure

A3 635-665 15.4
Temperature (40-80 km)

Pressure

A4 820-870 11.8 dust and condensate extinction (0-80 km)

A5 400-500 22.2
Temperature (0-20 km)

dust and condensate extinction (0-80 km)

A6 3300-33000 1.65 Polar radiative balance

B1 290-340 31.7
Temperature (0-20 km)

dust and condensate extinction (0-80 km)

B2 220-260 41.7
Water Vapour (0-40 km)

dust and condensate extinction (0-80 km)

B3 230-245 42.1
Water Vapour (0-40 km)

dust and condensate extinction (0-80 km)
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agreement with results seen by Lee et al. (2009), Heavens et al. (2010; 2011). High altitude clouds at 40 kms

are measured for both Ls 0◦ and 30◦ which is in agreement with our results. For altitudes above 45 km,

MCS profiles only show Ls 270◦ and 300◦. Figure 3.18 does not show clouds above 45 kms for Ls 270◦ and

300◦, but instead at Ls 30◦, 150◦ and 180◦. These high-probable altitudes can be excluded because of the

mismatch for clouds above 45 km between Figure 3.22b and 3.22b.

Limited amount of water-ice were measured by MCS between Ls 210◦ and 330◦. This agrees with Smith

(2004) where minimal cloud cover is seen in the tropics during the perihelion season. Clouds are more likely

to form above the PBL according to Figure 3.22b if we exclude any high-probable values above 20 kms as

seen by MCS. However, the limited amount of analyzed movies in this season poses a problem comparing

results. Not enough of a sample is available to be conclusive in our comparison. Capturing more clouds

during this season would increase confidence.

Lastly, a similarity is the absence of water-ice between 20-35 kms between Ls 150
◦ and 180◦. This absence

of clouds was first commented on in the previous section which is confirmed in the MCS results.

Unfortunately, we cannot confirm our morning results and altitudes lower than 10 kms due to MCS

constraints. To determine exact altitudes of clouds over Gale crater, shadows moving over Aeolis Mons is

compared to clouds seen in ZMs overhead as explored in Section 3.4.

3.4 Shadows over Aeolis Mons

To better constrain the altitude of clouds over Gale Crater, a dust-devil movie is repurposed for viewing

shadows moving across Aeolis Mons. Pointing eastwards using the Navcam, this observation looks for dust-

devils at the base of Aeolis Mons including shadows that were recently captured moving across the mountain.

Several types of dust-devil movies exist that can capture these shadows and their descriptions is shown in

Table 3.2. The name of a dust-devil movie used for this analysis is a Cloud Height Movie (CHM). An

example of a CHM is shown in Figue 3.23.

69













Alt. = (CHM vel.)/(tan(ZM vel.))

= (Absolute vel.)/(tan(Angular vel.))

(3.4)

Table 3.3: Values found for shadows moving across Aeolis Mons in CHMs. Figure 3.26 outline how the

vertical distance (y) and horizontal distance (x) were found. The altitude of clouds seen in the ZM and

through shadows in the CHM is calculated by trigonometry shown in Figure 3.28. Errors are calculated

based on average errors for each example. Error in absolute velocity takes into account the pixel difference

error (± 5 pixels). For angular velocity, the error found for angular distance (± 2◦) is divided by the average

ZM length (230 s). Altitude error takes into account both absolute and angular velocity errors. The MRAMS

probability shows the percentage the model predicts clouds at the altitude found from the CHM analysis.

Sol Ls

y

(m)

x

(m)

Solar

Elevation

(◦)

Absolute

Velocity

(± 5 m/s)

Angular

Velocity

(± 0.009 ◦/s)

Altitude

(± 3.5 km)

MRAMS

Probability

(%)

1787 48◦ 2750 8306 34.06 21.33 0.029 40.9 30

1878 89◦ 515.6 1557 45.18 41.40 0.068 34.8 47

1959 127◦ 1375 4153 46.79 42.87 0.047 52.1 N/A

1976 135◦ 1289.1 3893 11.94 39.49 0.038 59.8 N/A

1980 137◦ 1718.8 5191 18.69 27.54 0.051 30.7 19

1980 137◦ 1804.7 5450 16.52 24.91 0.051 27.8 14

1990 142◦ 1804.7 5450 40.72 20.23 0.070 16.5 46
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Altitudes calculated through analysis of CHMs had a wide range throughout the atmosphere, with some

higher than the MRAMS altitude range. Higher altitude clouds were measured for earlier seasons compared

to later as shown in Table 3.3. In diurnal and seasonal MRAMS results, clouds were predicted below the PBL,

however, this was not consistent with calculated altitudes. Sol 1959 and 1976 are unable to be confirmed

with MRAMS probabilities as their altitudes were measured above the maximum MRAMS altitude (50 km).

All examples only agreed with probabilities lower than 50%. This may indicate model inconsistencies and

more of a population would help compare model results and reliability. It could be argued that MRAMS

does not represent high enough altitudes. With two CHM analysis (sol 1959 and 1976) showing altitudes

above the MRAMS domain (50 km). Acquiring more CHMs in the next ACB will help with our analysis of

clouds above Gale crater. Morning probabilities are unable to be confirmed through other methods because

both MCS profiles and CHMs are taken in the afternoon.

81



4 Conclusions

Altitudes of clouds above Gale crater have been estimated through correlation between observed values from

atmospheric movies taken by Curiosity and modelled values calculated by the atmospheric model MRAMS.

By following features in Zenith Movies (ZMs), an angular distance is found through the pixel size and Navcam

FOV which is compared to wind velocities calculated by MRAMS. The half-normal probability distribution

is used to determine the probability of cloud altitudes. Diurnal and yearly results can be assessed for any

patterns.

Diurnal results showed a difference in altitudes between morning and afternoon results. Higher alti-

tude clouds are more probable in the morning rather than the afternoon which could be caused by cooler

temperatures overnight. Morning probabilities showed high probability of clouds at altitudes under 5 km,

corresponding to the crater rim. Clouds are expected at this altitude as dust is more likely to act as Cloud

Condensation Nuclei (CCN) and form clouds (Tamppari et al., 2003). Within the Planetary Boundary Layer

(PBL), at 10 km, is also expected to yield high probability of clouds. This is evident in both morning and

afternoon results. Low probabilities between 20-40 km are noticed in several seasons indicating that either

high altitudes or low altitudes are more probable. More ZMs during the morning in seasons outside the ACB

season would the conclusion of these results.

Morning seasonal results show higher altitude clouds in early MY seasons while lower altitudes are more

probable in later MY seasons. Low probabilities between 20-40 km seen in diurnal results are also shown

during Ls 150◦-180◦, 240◦-30◦, during dustier seasons. High probability at the crater rim, between 2-3 km,

is seen in every season. Clouds under the PBL are also common in the morning. The ACB season shows
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multiple altitudes that are most probable for clouds. Advocating for more morning ZMs throughout the MY

would help increase the credibility of this data.

During the afternoon, seasonal results show high probability for low altitude clouds during the ACB

season, but not for seasons during the dust season. Clouds are expected to form closer to the surface during

the afternoon because warmer temperatures kick dust into the atmosphere acting as CCN (Tamppari et al.,

2003). However, during the dust seasons (Ls 210◦-330◦) no clouds are expected below the PBL (10 km),

which is unexpected. Low amount of movies analyzed in these seasons might also explain this, where more

afternoon ZMs should be advocated to better constrain the results. The ACB season shows most probable

altitudes for clouds at the crater rim, under the PBL and between 15-30 km. No clouds are probable

higher than 35 km during the ACB season. The high probable altitude between 15-30 km may be explained

through thermal tides, observed in the middle atmosphere through model simulations (Hinson and Wilson,

2004). The temperature changes between the morning and afternoon can cause a thermal tide that affect

the pressure and winds (Lee et al., 2009). The middle atmosphere high probability between 15-30 km in the

afternoon could be evident of this thermal tide.

To verify our altitude probabilities, observational data from the Mars Climate Sounder (MCS) onboard

Mars Reconnaissance Orbiter (MRO) is used. Limb measurements using MCS characterizes the altitude

above geographical features to measure the ice and water extinction. This allows clouds to be viewed from

10 km to the upper atmosphere. Using this method hinders being able to validate the model for altitudes

below 10 km. Water-ice extinction from MCS matched the high probable altitudes seen during the ACB

season between 10-35 kms. High altitude clouds are more frequently seen by MCS during the ACB season.

During the dusty season, small amounts of ice-extinction is measured indicating low probabilities of clouds.

This eliminates Ls 210◦ high probabilities seen between 20-40 kms which is not seen by MCS.

Promising results are seen in the analysis of cloud heights calculated from shadows seen in a Cloud Height

Movie (CHM) pointed towards Aeolis Mons in the afternoon. Shadows moving across the mountain in Gale

crater allows an absolute velocity to be calculated from geo-referencing. With a ZM paired with a CHM, the

same analysis done in this work can be applied to calculate angular wind velocity. The absolute and angular
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velocities are compared to determine the altitude of clouds at that particular time of sol and season. With

6 pairs, altitudes calculated ranged, but showed no clouds below the PBL at 10 km. Collecting more CHMs

during the ACB season will increase confidence in results.

Moving forward, this analysis will continue as more ZMs with clouds are discovered throughout the

continued mission. Advocating for CHMs, especially during the ACB season, will allow the altitude to be

determined without an atmospheric model. MRAMS is tested by using both CHMs and MCS profiles to

compare to contour probability plots that quantify the altitude of clouds through direct measurements. This

makes CHMs valuable and should be analyzed further to reduce error in results. The majority of probability

results from MRAMS match up with expected diurnal and seasonal observational and simulated results

(Tamppari et al., 2003), (Smith, 2004), (Hinson and Wilson, 2004), (Kloos et al., 2016; 2018).

Several aspects of the results found using an atmospheric model help point towards reasonable results.

The model, MRAMS, is a well cited model and has been used for landing assessments for Phoenix (Michaels

and Rafkin, 2008), MSL (Vasavada et al., 2012) and Mars 2020 (Pla-Garćıa and Rafkin, 2015). MRAMS is

coupled to the Ames Mars GCM, which is another respected model in the planetary science community. The

results predicted in this research shows high probabilities for altitudes that are expected. The crater rim and

PBL are examples where clouds are expected and where these results predict. The diurnal plots showing

high clouds in the morning could be due to colder atmospheric temperatures, while the lower altitude clouds

in the afternoon are from dust becoming CCN as they are kicked into the atmosphere midsol. These results

are explainable based on current Martian atmospheric knowledge, however, by expanding the cadence of

CHMs during aphelion season, we will be able to pinpont the altitude of clouds above Gale crater.

The results in this work are significant to the scientific community as it allows a more in depth look

into the behaviour of water throughout a Martian Year. High probabilities exist in the middle atmosphere

during the ACB season, which may be analogous to thermal tides. The clouds may also be associated with

lower altitudes at the PBL or crater rim which could indicate crater circulation causing clouds. These results

compared to the CHMs are highly useful and provides the best answer to the altitude of Martian clouds

above Gale crater.
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5 Future Work

The altitude of clouds on Mars can be estimated through correlation between observational and modelled

values. This work can be improved by advocating for more atmospheric movies, especially during the morning

and outside the ACB, and further analysis into Cloud Height Movies (CHMs) that observe shadows moving

across Aeolis Mons. Clouds on Mars are not solely at Gale crater, where observations from different landing

sites can aid in finding any geological patterns to cloud formation and altitudes across Mars.

An important addition to this work is adding more data from atmospheric movies taken at Gale crater,

including CHMs during the Aphelion season. Atmospheric movies will continue to be taken every 2-3 sols

according to cadence while Curiosity remains operational. By advocating for ZMs during the morning and

outside the ACB will help fill in blanks in histograms. If any clouds are captured within the frames, they

will attempted to be analyzed and added to the data set. Increasing our population, especially outside the

ACB season, will help shape the contour plots to increase confidence in results. Once the ACB season starts

again, ZM and CHM cadence will increase to take advantage of clouds being in the frames during this season.

A missing piece to the puzzle for this work is evaluating the altitude of clouds between the ±2.5 hours

from local noon constraint from the ZMs. SHMs do not have this constraint because of their lower elevation

and do capture clouds within this constraint. By understanding how to incorporate SHMS into this work

would prove valuable for studying diurnal changes.

To better study clouds on Mars, a lidar on any future missions would be very useful. Just this one

instrument would be able to determine cloud altitude without correlating values with an atmospheric model.

With an altitude found through lidar and atmospheric movies, an atmospheric model can be used to test
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the reliability of the model, including any microphysics. The MRAMS simulation used in this study did not

incorporate any microphysics due to the high uncertainties. The exploration of Mars is still ongoing, where

questions still need to be answered including how dust and water vapour interact in the Martian atmosphere.

Terrestrial models still struggle with this for Earth even though the atmospheric data set is easier to access

compared to Mars. Therefore, any ways we can to try to improve Martian atmospheric models is useful.

To verify our method of estimating altitude with ZMs, we can use Phoenix data with the same obser-

vation. If a lidar measurement accompanied this atmospheric movie, it could provide the exact altitude

of clouds overhead. Even without a direct lidar measurement, clouds were previously observed within the

PBL (Whiteway et al., 2009), which could be used to test model results. If MRAMS could be used to

model conditions at Green Valley, the comparison to Phoenix lidar measurements could help verify MRAMS

results. Other methods of verifying altitude through our procedure is testing with known Terrestrial cloud

data. Using the lidar on York University campus, an experiment could be set up to take an ZM and lidar

measurement simultaneously to measure the accuracy of our procedure with ZMs taken by MSL.

Curiosity is not the only spacecraft to be on the Martian surface collecting scientific data. Besides

Phoenix, Opportunity both used atmospheric images to classify the atmosphere, including cloud activity.

These data sets can be used to aid our understanding on Martian water-ice clouds by evaluating differences

between landing sites. By assessing how clouds are in different regions across Mars, patterns could develop

describing cloud formation in a MY and geographical location. With Insight and Mars 2020 upcoming,

these surface spacecraft can also help develop the current timeline of clouds in the Martian atmosphere.

The landing site for Mars 2020 is not definite, but could provide another location on Mars to analyze cloud

activity. Insight is planned to land on Mars before the end of 2018, at a location just north of Gale Crater.

This location provides an opportunity to understand circulation and cloud activity from outside the crater.

The hypothesis of a dry crater would mean that clouds seen at Gale Crater most likely come from outside

the crater as low water content in the crater would inhibit cloud formation. By viewing cloud activity near

the crater, we can assess if this hypothesis is correct.
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Moores, J. E., Lemmon, M. T., Kahanpää, H., Rafkin, S. C. R., Francis, R., Pla- Garcia, J., Bean, K.,

Haberle, R., Newman, C., Mischna, M., Vasavada, A. R., de la Torre Juárez, M., Rennó, N., Bell, J.,
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Appendix A: ZM Values per Season

Table 1: ZM Values for Ls 0◦.

Ls Sol
Time

(LTST)
Angular
Distance

Meteorological
Wind Direction

6.80◦ 363 17:41 6.32◦ 285◦

7.47◦ 1033 15:17 3.62◦ 10◦

9.71◦ 1706 17:03 8.96◦ 260◦

Table 2: ZM Values for Ls 30◦.

Ls Sol
Time

(LTST)
Angular
Distance

Meteorological
Wind Direction

16.59◦ 1720 16:17 5.56◦ 244◦

27.62◦ 1743 15:02 3.54◦ 49◦

34.51◦ 1758 06:46 6.69◦ 66◦

38.49◦ 429 16:29 6.15◦ 89◦

44.91◦ 443 15:17 5.29◦ 265◦
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Table 3: ZM Values for Ls 60◦.

Ls Sol
Time

(LTST)
Angular
Distance

Meteorological
Wind Direction

45.58◦ 1113 16:04 10.25◦ 232◦

45.75◦ 1782 15:01 7.69◦ 300◦

48.05◦ 1787 15:39 6.72◦ 288◦

50.62◦ 1124 17:28 6.82◦ 255◦

52.92◦ 1798 08:28 7.09◦ 81◦

56.78◦ 1138 08:58 9.47◦ 22◦

59.65◦ 1813 07:08 12.60◦ 37◦

61.92◦ 1818 08:11 8.10◦ 49◦

63.05◦ 1152 07:04 11.83◦ 234◦

63.85◦ 1822 15:06 10.30◦ 100◦

65.08◦ 1825 09:13 9.00◦ 40◦

68.14◦ 1163 14:45 9.65◦ 122◦

72.46◦ 504 16:22 7.67◦ 79◦

72.68◦ 1842 07:57 14.60◦ 213◦

73.70◦ 1844 14:07 7.55◦ 80◦

73.80◦ 507 15:51 4.91◦ 95◦
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Table 4: ZM Values for Ls 90◦.

Ls Sol
Time

(LTST)
Angular
Distance

Meteorological
Wind Direction

75.81◦ 1849 07:17 12.09◦ 65◦

76.23◦ 1181 15:57 9.18◦ 107◦

76.50◦ 513 14:57 5.35◦ 78◦

79.89◦ 1858 09:16 9.91◦ 74◦

80.27◦ 1190 15:40 14.60◦ 74◦

81.62◦ 1193 15:43 10.26◦ 79◦

81.80◦ 1862 15:33 8.83◦ 87◦

81.91◦ 525 15:27 8.10◦ 140◦

83.21◦ 528 15:36 7.46◦ 136◦

83.62◦ 1866 16:30 11.56◦ 79◦

89.01◦ 1878 14:32 15.35◦ 73◦

89.12◦ 541 16:26 6.21◦ 134◦

89.61◦ 1211 08:22 9.67◦ 264◦

89.96◦ 1880 17:08 11.02◦ 85◦

91.57◦ 1215 16:15 10.02◦ 127◦

91.86◦ 1216 07:29 11.82◦ 319◦

93.22◦ 550 16:10 5.12◦ 150◦

94.49◦ 1890 16:06 8.40◦ 52◦

94.64◦ 1222 10:16 14.63◦ 32◦

94.94◦ 1891 15:59 8.40◦ 85◦

96.32◦ 1894 16:23 15.04◦ 83◦

97.21◦ 1896 15:05 7.15◦ 50◦

98.22◦ 561 15:24 14.10◦ 121◦

98.66◦ 562 14:51 5.59◦ 135◦

98.88◦ 1900 06:23 19.78◦ 232◦

100.54◦ 1235 07:22 11.43◦ 93◦
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Table 5: ZM Values for Ls 120◦.

Ls Sol
Time

(LTST)
Angular
Distance

Meteorological
Wind Direction

105.38◦ 1914 08:12 9.24◦ 244◦

105.51◦ 1914 15:09 10.29◦ 71◦

105.65◦ 1246 08:24 10.99◦ 122◦

106.29◦ 1916 07:13 10.25◦ 243◦

106.46◦ 1916 16:14 12.15◦ 77◦

107.25◦ 1918 08:44 8.96◦ 244◦

107.39◦ 1918 15:50 10.02◦ 110◦

108.17◦ 1920 08:17 10.69◦ 258◦

108.33◦ 1920 16:17 15.84◦ 84◦

110.02◦ 1924 06:49 13.45◦ 231◦

111.25◦ 1258 07:46 12.43◦ 353◦

113.03◦ 1930 16:27 11.90◦ 87◦

113.10◦ 593 16:26 4.59◦ 108◦

116.21◦ 1937 09:17 7.56◦ 44◦

117.28◦ 1939 15:22 13.19◦ 89◦

117.84◦ 603 15:44 4.33◦ 342◦

121.74◦ 1278 08:29 7.77◦ 228◦

122.09◦ 1949 15:35 11.26◦ 42◦

122.17◦ 612 16:07 4.33◦ 200◦

124.03◦ 1953 15:57 18.90◦ 67◦

125.81◦ 1957 07:43 9.14◦ 235◦

126.93◦ 1959 14:31 10.56◦ 93◦

127.30◦ 1960 08:51 8.66◦ 26◦

127.56◦ 1292 07:20 8.49◦ 293◦

130.99◦ 630 14:39 5.78◦ 100◦

132.53◦ 1302 08:46 10.99◦ 307◦

132.68◦ 1302 16:16 9.51◦ 125◦

132.70◦ 1971 07:03 9.40◦ 310◦

134.52◦ 1306 08:20 11.01◦ 332◦

134.52◦ 1306 08:20 9.77◦ 79◦
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Table 6: ZM Values for Ls 150◦.

Ls Sol
Time

(LTST)
Angular
Distance

Meteorological
Wind Direction

135.22◦ 1976 07:47 9.05◦ 62◦

135.41◦ 1976 17:08 9.05◦ 62◦

136.17◦ 1309 15:22 9.83◦ 154◦

137.42◦ 1980 16:53 12.24◦ 251◦

137.55◦ 1312 09:21 6.21◦ 7◦

137.72◦ 1981 07:08 7.09◦ 290◦

138.56◦ 1314 08:50 5.35◦ 9◦

142.31◦ 1990 07:14 9.27◦ 260◦

142.48◦ 1990 15:20 15.84◦ 214◦

143.52◦ 1992 15:54 7.92◦ 266◦

144.89◦ 1326 17:38 11.20◦ 208◦

145.94◦ 1997 08:05 4.39◦ 319◦

146.66◦ 1998 17:23 10.02◦ 192◦

147.77◦ 663 16:38 4.59◦ 167◦

150.89◦ 669 15:21 3.17◦ 227◦

151.44◦ 670 15:27 3.52◦ 271◦

151.95◦ 671 15:06 3.17◦ 306◦

152.76◦ 2010 07:43 1.81◦ 280◦

Table 7: ZM Values for Ls 180◦.

Ls Sol
Time

(LTST)
Angular
Distance

Meteorological
Wind Direction

165.71◦ 1365 15:16 2.81◦ 264 ◦

168.26◦ 701 15:44 3.35◦ 241◦

168.89◦ 1371 08:30 5.32◦ 122◦

176.24◦ 1384 08:13 4.85◦ 22◦

185.53◦ 1400 08:16 6.86◦ 48◦

193.24◦ 1413 07:42 2.20◦ 32◦

Table 8: ZM Values for Ls 210◦.

Ls Sol
Time

(LTST)
Angular
Distance

Meteorological
Wind Direction

198.30◦ 1421 16:17 4.54◦ 100◦

205.50◦ 1433 09:32 8.00◦ 135◦

209.83◦ 1440 08:43 8.21◦ 199◦

Table 9: ZM Values for Ls 240◦. No movies within this season had clouds with strong enough features to
analyze.

Ls Sol
Time

(LTST)
Angular
Distance

Meteorological
Wind Direction
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Table 10: ZM Values for Ls 270◦.

Ls Sol
Time

(LTST)
Angular
Distance

Meteorological
Wind Direction

268.07◦ 193 09:25 10.12◦ 5◦

271.30◦ 198 08:50 11.46◦ 4◦

280.07◦ 880 17:11 8.83◦ 276◦

Table 11: ZM Values for Ls 300◦.

Ls Sol
Time

(LTST)
Angular
Distance

Meteorological
Wind Direction

286.40◦ 1559 06:36 21.26◦ 86◦

287.50◦ 892 07:09 11.12◦ 247◦

290.30◦ 1565 07:31 9.67◦ 90◦

295.19◦ 904 15:40 7.47◦ 297◦

299.57◦ 1580 07:01 10.69◦ 192◦

307.90◦ 925 07:52 8.9◦ 297◦

309.29◦ 927 16:01 7.48◦ 228◦

Table 12: ZM Values for Ls 330◦.

Ls Sol
Time

(LTST)
Angular
Distance

Meteorological
Wind Direction

339.00◦ 310 17:55 4.05◦ 328◦
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