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Abstract 

This PhD dissertation is about developing a multiscale methodology for coupling two 

different time/length scales in order to improve properties of new space materials. Since 

the traditional continuum mechanics models cannot describe the influence of the 

nanostructured upon the mechanical properties of materials and full atomistic description 

is still computationally too expensive, millions of degrees of freedom are needed just for 

modeling few hundred cubic nanometers, this leads to a coupled system of equations of 

finite element (FE) in continuum and molecular dynamics (MD) in atomistic domain. 

Coupling efficiently and accurately two dissimilar domains presents challenges especially 

in handshaking area where the two domains interact and transfer information. The objective 

of this study is (i) develop a novel nodal position FE method that can couple with the MD 

easily, (ii) develop a proper methodology to couple the FE with MD for FE/MD multi-

scale modeling and let the information transfer in a seamless manner between the two 

domains, and (iii) implement complicated cases to confirm accuracy and validity of the 

proposed model. 
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Chapter 1 INTRODUCTION AND JUSTIFICATION 

1.1 Multiscale Modeling and Its Applications 

Over the past decades the advances in nanotechnology, nanomaterials and nanomechanics 

provide numerous potential applications in science and engineering. With the fast 

development of nanotechnology, more attention has been devoted to enhance the existing 

materials or synthesis of new materials at the nanoscale using nanoparticles as building 

blocks to achieve desirable macroscale properties. An emphasis on nanoscale entities will 

make the manufacturing technologies and infrastructure more sustainable in terms of 

reduced energy usage and environmental pollution [1]. Therefore, new methods and 

techniques are required both experimentally and computationally for modeling, 

synthesizing and characterization of materials at nanoscale to learn more about their 

fascinating properties and characteristics, such as silica aerogels which are very well-

known for their low density and low thermal conductivity [2]. Traditionally, computational 

solid mechanics is widely used for this task. Solid mechanics is based on the continuum 

principle and studies the deformation, force balancing and kinematics of materials. As the 

research focus shifts from macroscale into the microscale and nanoscale details, the 

materials can no longer be treated as the continuum and molecular dynamics (MD) has 
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been considered as one of the most successful tools for characterizing physical properties 

of materials. Therefore, the approach of simulations from continuum mechanics turned to 

atomistic models which involve billions of molecules that are connected by chemical 

bonds. However, applying MD or full atomistic description is unrealistic in engineering 

applications, since even the use of state-of-the-art parallel supercomputers can only handle 

a limited number of atoms (~109), corresponding to less than one cubic micron of material 

[3]. On the other hand, traditional solid mechanics approaches such as finite element 

method (FEM) cannot accurately describe the influence of nanostructure upon material 

properties [4-6]. For the study of this type of problems related to nanomechanics and 

nanomaterials, new approaches are required. This leads us to a coupled system of equations 

of FEM in continuum and MD in atomistic/molecular domain [7]. However, efficient and 

accurate coupling of two dissimilar domains with wide range of time and length scales 

presents challenges, especially in the handshaking area where the atoms meet the 

continuum to transfer information. 

Many efforts have been devoted to the challenges in dealing with the multiscale materials 

modeling and simulation. The multiscale modeling combines existing and emerging 

methods from diverse scientific disciplines to bridge the dramatically different time and 

length scales reflecting essential phenomena of materials at different domains. With the 

fast advance of computing ability, more realistic and detailed descriptions of material 

responses, more efficient computational methodologies, and more accurate numerical 

solutions of initial and boundary value problems have been developed and grown in the 

research of computational solid mechanics for a long time [8, 9]. A more detailed 

description and concepts as well as strength and limitations of most popular coupling 
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methods are presented in Chapter 2 of this dissertation. 

Molecular dynamics was initially developed as a computational method used for physical 

chemistry and thermodynamics to determine the average thermo-chemical properties of 

physical systems such as; solids, liquids and gases. However, nowadays the MD method is 

widely used for simulations of atomic behaviour of materials. There are two fundamental 

assumptions in MD simulations. First, particles or molecules are considered as material 

points that interact with each other through force field or interatomic/ intermolecular 

potential that is a set of functional parameters that calculates potential energy of the system 

of molecules/particles. In order to calculate a trajectory, only initial positions of the 

atoms are sufficient with an initial distribution of velocities and the acceleration, 

which is determined by the gradient of the potential energy function. The molecular 

motion is described with time dependent vectors of position and velocity. Second, the 

number of particles in the system remains the same or the mass of the system does not 

change in simulation. In standard MD simulation, the system is defined to be isolated, 

leading to the energy conservation of the system [10-13]. The method generates the 

trajectories of each particle and expresses them in terms of position, velocity and 

acceleration in the time domain. The information further can be used for determining other 

properties of the system such as; energy, pressure and temperature. In other words, 

molecular dynamics is a step-by-step numerical simulation for solving the equations of 

motion for an atomic system. First, forces acting on the atoms should be calculated and 

these are derived from the potential energy [14]. Therefore, in the most MD simulations, 

the initial positions and velocities as well as proper interatomic potential functions will be 

provided and the model conducts the simulation. Choosing a proper interatomic potential 



4 

 

energy function based on material characteristics and numerical integration algorithm are 

two critical decisions. There are many different potential functions due to various types of 

materials. The desired accuracy as well as the material bonds with consideration of 

computational costs affects the choice of potential. Rafiee-Tabar has an excellent review 

paper published in 2000 [15] about modeling the nanoscale phenomena in condensed 

matter and a full section about different types of interatomic potentials based on various 

bonds and material. Perhaps one of the most popular interatomic potentials in molecular 

dynamic is the Lennard-Jones (LJ) potential [16]. This potential was defined as the total 

interaction potential between the carbon atoms in two 60C molecules. Moreover, LJ 

potential is well-known as the best fit for the van der Waals forces among molecules. 

The Lennard-Jones potential function is 

 

12 6

4M
ij

ij ij
U

r r
σ σε

    
 = −             (1.1) 

 where ε is the depth of potential well, σ is the finite distance at which the inter particle 

potential is zero and ijr  is the distance between atom i and j. Therefore, the LJ potential 

has been widely applied in large-scale simulations to save computational costs, where the 

focus is on fundamental studies in MD methodology and the type of specific material is 

not an issue. After choosing the inter-atomic potential function of the material, numerical 

integration algorithm should be chosen for solving the equation of motion. In MD 

simulation there is no analytical solution to the equation of motion because of the 

complexity of the model. One of the most popular numerical methods used in MD 

simulation is the Verlet algorithm [17]. This method originally was proposed for solving 
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of equation of motion of a system consisting of 864 particles interacting through Lennard-

Jones. Later, two other methods called Verlet leapfrog [18] and velocity Verlet [19] have 

been proposed. These two methods are from Symplectic integrators’ category which is 

subclass of geometric integrators. This class of numerical integrators is designed for 

Hamiltonian systems such as molecular dynamic simulations. The Symplectic structure of 

the algorithm ensures the energy and momentum conservation of the numerical model over 

the long-term time integration, which is critical in MD simulation due to extremely small 

time step and as a result error accumulation. However, in this thesis our focus is on the 

coupling characteristics of MD and FE methods, where the accuracy over the long 

simulation time is not the concern. This is due to the fact that in molecular dynamics 

simulations the behaviour of molecules is studied usually in a longer period of time. 

However, in this study the idea is to ensure that the information transfers from one domain 

to the other smoothly and seamlessly. Thus, the energy conserving Newmark numerical 

[20] method, which is commonly used in the continuum domain, has been applied for 

numerical integration. 

Continuum domain equations are often in the form of partial differential equations (PDE’s) 

and many numerical methods have been proposed to solve the PDE’s. The FEM is one of 

the most popular and successful numerical methods for solving PEDs. In the FEM, the 

PDEs are converted into a set of ODEs by discretizing the continuum domain into elements. 

The conventional FEM has some advantages like flexible geometry, ease of including 

multiple materials, and refinement for convergence. In other words, there is no limitation 

with regards to geometry, physical composition of domain and the elements can get smaller 

and smaller. The smaller the element gets in the body; the more accurate the numerical 
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solution becomes unless the computational costs become prohibitive. Since in FEM a 

complex PDE of the main approximated with a set of ODEs within the element, this method 

is considered local and the deformation of the material is only dependent on the local 

effects such as stress within the element. Accordingly, the energy in the entire element only 

depends on displacement of nodes. Furthermore, one of the features of conventional FEM 

is that its formulation is based on nodal displacement that is a relative movement with 

respect to its previous position. In this research, both static and dynamic of the system have 

been studied. In dynamic system, in continuum and molecular domain, two variables are 

known as state variables; nodal positions and velocities. These state variables are enough 

to describe the behaviour of the dynamic system. Therefore, while displacement is very 

convenient in dealing with solid mechanics problems, it is not a state variable used in the 

MD simulation where the nodal position is a state variable. To couple the FEM and MD is 

a united formation; a new method of coupling molecular dynamic and finite element 

method will be developed in this thesis. Generally, there are four length scales used in the 

simulation. First, angstrom level for atomic studies as well as electrons and nuclei and the 

corresponding model is quantum mechanics. Second is the nanometer level where 

molecular dynamic method explains this length scale. Third is the micrometer level where 

micromechanics techniques are applicable for this scale. Last is the macroscale where the 

continuum mechanics principles are accurate enough for this length scale. Challenges arise 

when a model involves different scale. For instance, let us consider a one-dimensional 

sample for simplicity.  
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Figure 1.1 Coupling of continuum and atomistic domains in coupling zone 

Figure 1.1 illustrates the concepts of coupling molecular and continuum in a simple way. 

On the left hand side, atomic domain exists with the finer scale shown a number of circles 

illustrate atoms/molecules and on the right hand side, continuum domain exists with 

coarser scale which the squares show the FE nodes as shown in Figure 1.1(a). In order to 

be able to combine the two regions first we choose some representative or rep atoms in 

such a way that the distance between two rep atoms matches the distance between two 

nodes as shown in Figure 1.1(b). Finally, the two domains interact and part of continuum 

overlap part of molecular and the coupling zone or handshaking area forms as shown in 

Figure 1.1(c). This dissertation is to investigate on how to couple the two different domains 

based on energy conservation law. First, the total Hamiltonian of the system should be 

constant or the energy should be conserved. Second, the information passes through one 

region to the other smoothly. Detailed information about the methodology and results are 

presented in Chapters 3 and 4. 
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1.2 Justification of the Research 

Material science along with the traditional continuum mechanics and molecular physics 

play an important role in developing desired innovative materials applicable for 

constructing economical spacecraft, satellites, space products and other science and 

engineering applications. To reduce empirical, time-consuming and costly prototype 

testing, modeling of new nanostructured materials can be introduced as a significant 

approach. Multiple-scale modeling methods have become very popular because of the 

following reasons; Firstly, this class of simulation methods has important and useful 

applications in nanotechnology research and developing nanoscale materials. Secondly, the 

existence of connection between microscale physics and macroscale deformation is 

confirmed by experiments, and finally, the ongoing explosion in computational power has 

made the linking of disparate length scales feasible. 

1.3 Limitations of the Existing Finite Element Method 

Many mechanical systems experience large rigid-body motions coupled with small elastic 

deformations. For this type of mechanical systems, the current nodal positions in the 

systems are usually more meaningful than the displacements, the difference between the 

current and original positions, for the designers and analysts. Unfortunately, the existing 

finite element methods are displacement based solution procedures. They solve for the 

displacements of the systems relative to their previous positions in order to obtain the 

current positions of the systems. However, this approach suffers from the accumulated 

errors arising from each step, which will eventually lead to erroneous and unstable 

solutions over a long period due to the violation of energy conservation. The existing 
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approach to this challenge is to improve the numerical integration algorithm by introducing 

the Symplectic type of numerical integrators. Symplectic integrators are numerical 

integration schemes for Hamiltonian systems. Therefore, the Symplectic integrators are 

very well-known schemes for solving molecular dynamic simulations. This research 

studies the Hamiltonian of the system and proposes a model based on energy conservation. 

Three models in three domains are studied, continuum, molecular and coupled continuum 

and molecular. The aim is to satisfy the energy conservation in all three models. In this 

thesis, we propose an alternative approach from the FEM - a new nodal position finite 

element method (NPFEM). The newly developed NPFEM uses the nodal positions as state 

variables instead of the nodal displacements used in the existing FEM. As a result, the 

strain energy of the deformed element is calculated with respect to the undeformed element 

directly from current and original nodal positions as opposed to the conventional FEM 

where the strain energy is calculated based on approximated displacement. In NPFEM, the 

approximation errors in strain evaluation in the existing FEM have been eliminated to avoid 

the accumulated errors over a long period. Furthermore, the new NPFEM formulation will 

be consistent with the MD where the positions are the state variables. Thus, the new 

NPFEM has the potential to provide a convenient way in the proposed multiscale MD/FE 

scheme to link the solution in the atomistic zero using molecule dynamics to the solution 

in the continuum region using finite element method [21].The NPFEM can use the existing 

finite elements to solve for the nodal positions directly and thus can be integrated into 

existing FE codes easily. The numerical examples such as cantilever beam subjected to a 

pulse load presented in details in the published paper [21], show that the NPFEM is robust 

and gives the same results as the existing FEM. The new NPFEM will provide a useful tool 
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in dynamic modeling of mechanical systems where the positions, instead of displacements, 

of the systems are of interest.  

1.4 Limitations of Existing Multiscale Methods 

The concurrent method belongs to a major category of multiscale models, which couples a 

region described with full atomistic details (including all atomic scale’s information) 

interacting with another region using continuum mechanics. Concurrent methods, 

simultaneously and continually transfers information from one domain to another smoothly 

and seamlessly. Since this category of multiscale models are able to pass information from 

one length scale to the other length scale continuously and ensure consistency among 

variables between two simulation methods, it is suitable for models which the two length 

scale are highly depends on one another. A critical segment of the model is the transition 

area where the two domains overlap and should interact and transfer boundary conditions 

in a smooth and seamless fashion. In the last two decades, many concurrent methods have 

been developed to couple molecular level simulations such as molecular dynamics and 

continuum level of simulations such as finite element method [22, 23]. Local and non-local 

Quasi-continuum (QC) are among of the most well-known methods [24], which have been 

developed and applied to a large number of applications [25-28]. The highlights of local 

methods are first the implementation of representative atoms in order to decrease the 

number of degrees of freedom and second the use of Cauchy-Born (CB) rule which means 

the deformation gradient will be uniform in the entire element. The deformation gradient 

is a fundamental measure of deformation in continuum mechanics which maps line 

elements in the original configuration into line elements in deformed configuration. When 



11 

 

the deformation of a unit cell within a body follows the deformation of the whole body, the 

deformation gradient is called uniform. These approximations of the local QC method are 

valid within the element. However, in interfaces between two elements and the free 

surfaces the deformation gradient is not uniform thus the Cauchy-Born rule is not valid. 

Therefore, non-local quasi-continuum for more accurate energy calculation is introduced 

which a representative atom in the interface between two elements will be subject to a 

deformation gradient that is different in each element [29, 30]. The full description about 

Quasi-Continuum method is presented in chapter 2. 

Bridging scale is another successful method. The main idea behind that is to combine both 

MD and FEM in one unified system [22]. Both MD and FEM simulations run 

simultaneously and exchange information. This method decomposes the total displacement 

field into coarse and fine scales. The coarse displacement is a function of initial positions 

of the atoms. However, it is a continuous field and can be interpolated between atoms by 

finite element shape functions. The fine scale is only at atomic positions. In Bridging scale 

method the fine scale is defined to be the projection of the coarse scale subtracted from 

total displacement which is obtained by MD simulations. In this method, the FE domain is 

everywhere; whereas the MD domain will exist in the area of interest where higher 

accuracy is required and can be determined by specific problems. An impedance force 

should be introduced to compensate the effects of the removed atoms [31].This force 

contains time history kernel and acts to dissipate fine scale energy from MD simulation 

into the surrounding continuum. Note that the time history kernel functions are the time-

delayed response to a delta function input, reflecting the underlying lattice structure, 

accurate and efficient calculations of the kernel functions are crucial for the overall 
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accuracy of the multi-scale algorithm. For more information please refer to time history 

kernel functions for square lattice by Pang et al. in 2011 [32].A full description and 

formulation of most important concurrent methods including the quasi-continuum and the 

bridging scale methods is presented in Chapter 2. This research has employed both quasi-

continuum and bridging scale concepts to develop a new multiscale method for modeling 

nanostructured materials and addressing existing limitations such as the wave reflection 

and the ghost force. The wave reflection is a phenomenon that happens in multiscale 

modeling. When the wave from the fine region propagates to the interface of fine and 

coarse region, it may not pass through because the wavelength of the atomistic region or 

MD is much smaller than what can be captured by the coarse region or FEM. Therefore, it 

partially reflects back to the MD region and causes oscillations. The ghost force on the 

other hand, is a phenomenon that arises from local and nonlocal mismatch formulation of 

FEM and MD respectively. FEM formulation in continuum domain is local because the 

definition of energy depends only on the nodal displacements of that element. However, 

MD formulation is nonlocal due to the fact that energy of each atom depends on not only 

the adjacent atoms but also others in cut off distance. When nodal and atomic forces are 

determined by minimizing the total potential energy, usually inaccurate values are obtained 

in the transition region. Therefore, the underlying problem of the ghost force is that some 

force contributions are missing in the transition between the fine and coarse domains 

because overlap atom energies are not included in the calculations. In this dissertation a 

multiscale formulation is proposed to avoid these two phenomena in the transition region. 

In this method, the concept of choosing representative atoms adapted from quasi-

continuum method to decrease the number of degrees of freedom and also the scaling 
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parameter has been adapted from the bridging scale decomposition method for transmitting 

data between the two regions smoothly and efficiently. However, due to the presence of 

representative atoms and the interface region structure there is no need for applying 

impedance force. 

1.5 Objectives of the Research 

The objectives of the current research are to: 

(i) develop a new FE method both static and dynamic capable of coupling with MD, 

(ii) study and choose proper inter-atomic potential among existing potential functions, 

(iii) study and choose proper numerical method for solving both MD and NPFEM, 

(iv) develop MD formulation with chosen potential function and numerical method, 

(v) develop new coupling method formulation for combing FEM and MD, 

(vi) implement all above formulations in FORTRAN code, 

(vii) validate the result by examining energy conservation. 

1.6 Methodology 

The proposed study will involve both the continuum and molecule domains and the 

coupling area, called handshaking zone, between them. Detailed approaches are described 

in the followings. 

1.6.1 Continuum Domain 

In the continuum domain, a new nodal position finite element method (NPFEM) as an 

alternative to the existing finite element method (FEM) for a plane or 2D elastic problem 

has been proposed, where the stress or strain in the third direction is zero depending on if 
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it is plane stress and plane strain assumption. The newly developed method addresses the 

complications of the existing FEM in dealing with dynamic problems experiencing large 

rigid-body motion coupled with small elastic deformation. Unlike the existing FEM that is 

based on nodal displacements, the new NPFEM uses nodal positions as basic variables to 

eliminate the need to decouple the elastic deformation from the rigid-body motion. Full 

description, formulation and validation can be found in the published paper (21) as well as 

chapter 3 of this thesis.  In addition, since the new NPFEM is position based it can be easily 

coupled with the position based molecular dynamics (MD) compare to the displacement 

based finite element (FE) modeling in the multiscale MD/FE analysis. Thus, the NPFEM 

can provide a unified description in multiscale MD/FE modeling.  

1.6.2 Atomic Domain 

In order to model the atomic region, the Molecular Dynamics approach was selected. The 

MD simulations calculate the interaction energies among particles that resolve into forces 

acting on particles, which caused the changes in their accelerations, velocities and 

positions. Therefore, the MD is a suitable method for being coupled with the continuum 

mechanics. The first critical decision in MD simulations is choosing potential function 

which can be determined by factors such as material being modeled, the bond type, desired 

accuracy and so on. Different interatomic potentials and their applications have been 

studied and Lennard-Jones potential is found to be the most suitable for this research. 

Although in most nanostructured materials atoms are bonded covalently, the bond between 

two molecules would be the van der Waals type [33]. The second crucial aspect of this 

class of simulations is choosing the numerical integration method. Since the total potential 
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energy of the system is a function of the molecular positions of all molecules and due to 

the complexity of such a function, the resulting equations of motions should be integrated 

numerically. The Newmark integration method has been chosen as the best match for this 

model. This method is a numerical integrator for solving differential equations mostly used 

in dynamic systems of solids such as finite element method to determine the dynamic 

responses. The method is described in details in chapter 4 of this dissertation.  This method 

was implemented in FORTRAN code, the results for velocities, displacements perfectly 

matched with analytical estimation, and most importantly, the energy was conserved. 

1.6.3 Handshaking Zone 

The handshaking zone connects the continuum and molecule domains. It is constructed by 

overlapping quadrilateral elements with its four nodes with four representative atoms or 

particles - a simple handshaking region where representative atoms overlap the FE nodes. 

In finite element method the first step is dividing the body into a set of finite elements with 

a simple geometry such as; triangles, rectangles or quadrilateral. In this study the rectangle 

elements are chosen because it is good balance between the simplicity in element 

formulation and accuracy of solution. In addition, in MD which calculating pair potential 

is highly dependent on repatoms positions. For consistency, the initial positions between 

repatoms considered being equal and the diagonal effects neglected in this model. 

Therefore, quadrilateral elements were chosen for this multiscale model. Moreover, the 

transition from one domain to another domain is realized in terms of energy conservation, 

where the total energy of the handshaking zone is the weighted sum of continuum and 

molecule domain so that the total energy is the same. In summary, the methodology 
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adopted to achieve the above stated objectives is outlined Figure 1.1. Chapter 4 of this 

dissertation explains thoroughly the static and dynamic part of continuum region 

formulated with NPFEM as well as derivation of equivalent stiffness matrix and mass 

matrix in molecular region with MD model. 
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Figure 1.2 Outline of approach methodology 
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1.7 Layout of Thesis Document 

This thesis contains six chapters. Following the current Introduction and Justification 

Chapter, Chapter 2 provides the literature review in the field. It mainly discusses different 

existing multiscale methods in nanomechanics. The focus of this chapter is on the 

concurrent approaches. Finite element atomistic methods (FEAt), material point method 

(MPM), coupled atomistic dislocation dynamics method (CADD), the atomic-scale finite 

element method (AFEM), coarse grained molecular dynamic (CGMD), the quasi-

continuum both local and non-local formulations, and the bridging scale methods are fully 

discussed. In Chapter 3, the detailed derivation and formulation of a newly proposed Nodal 

Position Finite Element Method (NPFEM), detailed formulation of Molecular Dynamic 

(MD) including determination of inter-atomic potential and force as well as coupling 

NPFEM and MD applicable in the handshaking zone are discussed. Attention has been 

devoted to the calculation of the total Hamiltonian of the system. In Chapter 4, the 

implementations of the NPFEM as well as MD and handshaking zone are discussed in 

details including the flowcharts of the programs. At the end of this chapter the Newmark 

time integration has been adopted for this research and a detailed procedure has been 

discussed. Chapter 5 presents results of two separate models NPFEM and MD as well as 

the combination of these two methods in the newly proposed multiscale approach. Results 

start from simple cases and followed by modeling and comparison of more complicated 

lattice. Finally, Chapter 6 concludes the work, identifies the original contributions of the 

thesis, and outlines the directions for future work. 
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Chapter 2 LITERATURE REVIEW OF MULTISCALE 

MODELING 

2.1 Introduction of Concurrent Coupling Methods 

Researchers currently employ different multiscale methods not only to predict the 

behaviour of various new materials but also to improve materials’ properties in order to 

obtain the most desirable characteristics. In physics the length scales vary from very fine 

or atomistic scale to the much coarser scale, which is the continuum scale. In general, there 

are four fundamental theory or modeling methods corresponding to each length scale: 

quantum mechanics, molecular dynamics, micromechanics and continuum mechanics. 

Behaviour of atoms or the interaction of electrons and nuclei, which happens on the 

Angstrom level, can be described by quantum mechanics. Molecular dynamic method is a 

computational method to address problems on nanometer level. Micromechanics modeling 

method applies continuum mechanics techniques in micrometer level where solids contain 

inhomogeneities and defects. Finally, the continuum mechanics is accurate enough for 

describing material behaviour from micrometer scale up to macroscale. Each of the above 

mentioned methods are accurate in the corresponding length scale. Inaccuracies may arise 

when a suitable technique for a specific scale applies for a different length scale. Therefore, 

multiscale modeling computational approaches that aim at developing systematic 

techniques for bridging scales concurrently, have been developed to treat different scale 

problems in order to increase the speed of, or enable dynamic calculations. The coupling 
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length/time scale methods in nanomechanics include sequential and concurrent coupling. 

In sequential coupling methods, the simulation in each time/length scale is performed 

independently and the outputs of one scale will be the boundary condition of another scale. 

The boundary conditions can be displacement or force field. The disadvantage of these 

category of coupling methods are; first, two totally separate simulations may cause some 

loss of information transfer between two scales. Second, these methods are more suitable 

for weak coupling rather than stronger coupling. One time transferring boundary conditions 

might be insufficient for a desired accuracy. In order to have more accurate and realistic 

results it is necessary to pass information between scales iteratively and concurrently in a 

unified system and this is the definition of another category of coupling methods called 

concurrent coupling.  

Due to the accuracy and efficiency of concurrent coupling methods, this category of 

multiscale models is the most successful method in order to join two domains usually 

atomistic and continuum to develop a unified and concurrent model of the physical 

properties of the system. Among concurrent methods, coupling between the continuum 

domain often modeled by continuum mechanics such as finite element method and the 

atomistic domain usually modeled by molecular dynamics is the most successful. In this 

approach, there is a transition region or handshaking zone, already introduced in section 

1.5.3, that has atomic region in one side and continuum region of the other side. Continuum 

and atomistic domains interact and transfer information within the handshaking area. The 

challenging part of concurrent coupling methods is dealing with this handshaking zone 

because not only all the approximation happens in this transition region but also two 

incompatible formulations meet in this area and should transfer information. The 
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incompatibility arises from the fact that on one hand the formulation of the finite element 

method is local and the formulation of the molecular dynamic is non-local. On the other 

hand, the finite element method is displacement based compare to the molecular dynamics 

that is position based. This issue has already been discussed in Chapter 1, section 1.2.1 

when the limitations of conventional FEM are mentioned. In order to have a smooth and 

seamless transition, the atoms and nodes within this handshaking zone share the positions. 

As we move away from the transition zone into the continuum zone, the nodes become 

sparse and the mesh becomes larger to reduce the computational cost. Depending on the 

desired accuracy and considering computational costs, different types of elements can be 

chosen for the continuum part. Usually, weighting functions are introduced in the 

handshaking zone to ensure consistency and smooth transition from one domain to another 

while the total energy of the material is kept the same across the handshaking zone. 

In this chapter, some of the most popular methods will be reviewed, such as, finite element-

atomistic method, material point method, coupled atomistic dislocation method, atomic-

scale finite element method, coarse grained molecular dynamic, local quasi-continuum 

method, non-local quasi-continuum method, and bridging scale method. Several review 

papers already published about coupling atomic to continuum region in solids, for instance, 

Rudd and Broughton 2000 [34], Miller and Tadmor 2002 [27], Miller 2003 [35], Curtin 

and Miller 2003 [36], Chung and Narnburu 2003 [37],Ghoniem 2003 [38], Liu et al. 2004 

[39], Vvedensky 2004 [40], Miller and Tadmor 2007 [41], Wernik and Meguid 2008 [42], 

Kalweit and Drikakis 2008 [43], Bernstein 2009 [44], Liu et. al.2010 [45]. All of the above 

mentioned papers reviewed existing coupling methods which are summarized in this 

chapter.  
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2.2 Finite element-atomistic method (FEAt) 

The Finite element-atomistic method, FEAt, is one of the earliest methods in coupling 

atomistic to continuum proposed by Kohlhoff et al. 1991 [7], and Gumbsch and Beltz 1995 

[46]. They used this method for studying the crack propagation on cleavage and non-

cleavage planes in b.c.c. (body-centered cubic) crystals as well as brittle fracture. There is 

a good review paper about atomistic simulation method and its application with focus on 

this method by Eidelet. al. 2010 [47]. In this method, the body is divided into three 

distinguished regions: region I is a lattice modeled fully atomistic using interatomic 

potential, region IV is a discretized continuum by finite element (FE) method using local 

nonlinear constitutive law of Kröner’s nonlocal elasticity theory [48], and region II-III, 

which is a transition region between the nonlocal lattice and local continuum, see 

Figure 2.1. In this method, the transition region is divided into two zones where each zone 

provides the displacement boundary condition to the other zone. In the zone adjacent to the 

atomistic domain which can be reduced to a layer of FE, nodes overlap with atoms and 

move with them. Similarly, the atoms from the transition zone adjacent to the continuum 

overlap the FE nodes and move with them. The width of this zone at least must be equal to 

the cut off distance of the potentials that are used in the atomic zone. Cut off distance is 

the maximum length which paired atoms interact and beyond that interatomic potential 

may be ignored. This method is suitable for 2D static and dynamic problems with 

addressing nonlocal/local mismatch between continuum and atomistic regions using 

nonlocal continuum formulation. Therefore, this method can correct the ghost force 

phenomenon, already discussed in Chapter 1, in the handshaking area automatically. This 

model ensures equality of two parameters. One is the equality of displacements in the MD 
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and FE domains throughout the handshaking zone and as a result the equality of strains is 

ensured at the interface. Note that, strain is the displacement gradient or partial derivatives 

of displacement. More details are presented in Chapter 3 of this dissertation. The design of 

this model is in such a way that forces the equilibrium or equality of stress between MD 

and FE domains In order to define a consistent coupling condition, the elastic energy 

expands into a Taylor series as follows: 

 ( ) ( ) 1 10
2 6ij ij ijkl ij kl ijklmn ij kl mnE E C C Cε ε ε ε ε ε ε= + + + +  (2.1) 

where E is the elastic energy, ε is the strain and Cij, Cijkl , Cijklmn are elastic constant tensors. 

In the above equation, since strains are assumed to be equal at the interfaces in order to 

have stresses in equilibrium, the strain and all the coefficients in the above Taylor series 

should be equal in both MD and FE domain. 
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There are two approximations in this method. First, the Taylor expansion has to be cut off 

at a certain point. Second, there is a transition at the discrete interface from interatomic 

finite-range forces to continuum Cauchy-type stress. Note that for very small separations, 

the interaction should be finite. Cauchy-type stress is a second order tensor which defines 

the state of stress at a point inside a material in the deformed state, or configuration 

completely. In this method the transition between interatomic forces to continuum stress at 

the interface causes discontinuity. 
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Figure 2.1 Finite element-atomistic method 

 

2.3 Material Point Method 

The material point method (MPM) is a general numerical tool for the mechanics analysis 

of continuous media. The idea of MPM is based on particle-in-cell (PIC) method called 

Fluid Implicit Particle, FLIP, that was originally developed in Los Alamos National 

Laboratory for solving fluid dynamic problems [49, 50]. This method was further 

developed into solid mechanics by Sulsky 1995 [51]. FLIP is a Lagrangian particle method 

in which the material has two discretizations, one is the computational mesh and the other 

is a collection of material points. Therefore, it uses both Eulerian and Lagrangian 

advantages and avoids the limitation of each. Note that Lagrangian and Eulerian are two 

mathematical presentations of fluid motion. The Lagrangian keeps tracks of locations of 

individual fluid particle and the observer follows the fluid particle as it moves in time and 
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space. However, in Eulerian approach the coordinates are fixed in space and observer 

exams the particles passing through a spatial window. The Lagrangian and Eulerian 

specifications of the fluid motion are also referred as the Lagrangian and Eulerian frame of 

reference. In fluid implicit particle approach, FLIP, the equations of motions could be 

solved in a Lagrangian frame using conventional finite difference or finite element method. 

FLIP can successfully model fluids. Sulsky et al. [52] gave a weak formulation of the FLIP 

algorithm for solid mechanics and expressed the method in terms of finite element because 

they believed that the properties of FLIP that made it attractive for fluid dynamics also 

make it appealing for solid mechanics. Weak formulation in this method is weak 

formulation of the equation of motion. In general, the ODEs and PDEs can be rewritten in 

such a way that no derivatives of the solution show up. This helps that the solutions which 

are not differentiable found. MPM discretizes the body into square grids with a mass on 

the volume in such a way that it satisfies initial mass density. By means of it, the 

distribution of the masses on the volumes should be equivalent to the mass per unit volume 

that in the beginning defined for the model. These masses carry all the corresponding 

physical properties such as position, velocity, acceleration, stress, strain and constitutive 

parameters as shown in Figure 2.2. This figure illustrates two distinguished regions MD 

region on the left and MPM region on the right which substitutes FE region. Therefore, 

MPM represents the continuum in this model. MPM region has mesh refinement with three 

levels using quadrilateral elements and the third level as shown in Figure 2.2 is comparable 

to the MD scale. In transition region both MD and refined MPM exist and transfer 

information. This method is based on solving momentum conservation on an Eulerian mesh 

to avoid the mesh lock-up in Lagrangian description. The Lagrangian mesh description is 
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that it deforms with the body in such a way that both nodes and material points change 

their positions as the body deforms. In other words, the position of material points remain 

fixed with respect to the background nodes. However, in Eulerian mesh the nodes remains 

fixed and the material points move through the mesh. Therefore, the position of material 

points are not fixed with respect to nodes but varies as body goes under deformation. Each 

method has its own advantages. The advantage of the Eulerian mesh which made it 

appealing for this model is that it prevents mesh lock up. This is due to the fact that when 

body goes under large deformation, since the mesh is fixed in space, there is no mesh 

distortion. However, the domain should be larger to prevent body to leave the domain. This 

method has been developed in the past two decades for different applications in 

engineering, such as, simulations of thin membranes [53], fluid-membrane interaction 

modeled with material point method [54], material point method simulation of material 

failure [55], and finally the most recent application of MPM for quasi-static problems. In 

addition, solving quasi-static equations with MPM [56] is another application of the 

method. Quasi-static problems are problems in which the sources change slowly enough 

that the system considered being at equilibrium all the time. These problems become more 

complicated when several length and time scale get involved. The MPM and its 

applications in modeling solids and fluids is an alternative to FEM. However, this method 

could be also combined with other methods such as MD to develop multiscale methods. 

For the first time, Guo and Yang in 2005 proposed a multiscale method, which seamlessly 

combined the conventional MD with the continuum mechanics formulated under MPM, 

and its application in high energy impacts [57]. In this research, they used Lennard-Jones, 

embedded atom method (EAM) and bonding-angle potential for silicon. These are three 
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different interatomic potentials popular in molecular dynamics simulations; Lennard-Jones 

as explained earlier is a pair potential for neutral atoms with a weak or van der Waals bond, 

embedded is also pair interatomic potential appropriate for metallic bonds. However, 

bonding angle potential is a potential of three atoms with two chemical bonds where the 

two bonds forms fixed angle in equilibrium. In 2006, Lu et al proposed a multiscale 

simulation from atomistic to continuum coupling MD and MPM. They used Tersoff-type, 

three body potential in MD simulation [58]. This research showed the behaviour of silicon 

under nanometric tension with increasing elongation in elasticity, dislocation generation 

and plasticity by slip, void formation and propagation, formation of amorphous structure, 

necking and final rupture. Chen et al. published a paper in 2011that extended the usage of 

handshaking MD and MPM in clarifying the mechanism of nano-processes [59]. In this 

paper the authors addressed the existing limitations of the existing FEM in the handshaking 

area by replacing FEM by MPM and with the focus on nano-processes. They further 

conducted various simulations to validate their method and showed the efficiency of their 

proposed method. More study was done in 2013 by Liu et al to simulate high velocity 

impact process with combined MPM and MD [60]. MPM has some advantages compare 

to FEM. Firstly, it can deal with large deformations in a more natural manner, which avoids 

FEM mesh lock-up. As explained earlier in this section, since MPM uses Eulerian frame, 

when body goes under large deformation, mesh does not deform and distort. The second 

advantage that makes it attractive to multiscale simulations is the fact that it can combine 

with MD easily. The third advantage is that since this method uses grid structure, it is 

consistent with parallel computing grids and makes it easier. However, since the 

discretization of MPM in two dimensions is a square element, in this dissertation referred 
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to as four-nodded or quadrilateral element, and in three dimensions is a cube element. 

MPM does not have the flexibility of choosing proper elements such as triangular elements 

for meshing the body. Therefore, sometimes square mesh is not efficient in the problem 

and cannot be refined to scale down the size to different levels [61]. 

 

Figure 2.2 Combing MD and MPM region scheme 

2.4 Coarse Grained Molecular Dynamic Method 

The coarse grained molecular dynamic method (CGMD) captures the important atomistic 

effects without the computational cost of MD in such a way that the important regions of 

the system may be modeled by MD while the peripheral regions are coarse grained for 

efficiency. MD simulations usually use large computational recourses especially on large 

systems. However, coarse graining by grouping atoms in a cluster or bead of atoms 

decreases the number of degrees of freedom and as a result the computational cost. Coarse 

grain molecular dynamic model was introduced to the field of multiscale modeling in 2005 
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by Rudd and Broughton [62]. As the interests grew into development of nanoscale 

mechanical components for applications in Micro-Electro Mechanical Systems (MEMS) 

and Nano-Electro Mechanical Systems (NEMS), Rudd published another paper that used 

the CGMD for the design of nanomechanical systems [63].CGMD is also very popular in 

computational chemistry for modeling protein structures, lipid bilayers [64] and polymer 

chains [65]. In the same year, Rudd and Broughton extended the procedure to derive a 

coarse grained model for nanoparticles. They applied the methodology to C60 and to 

carbonaceous nanoparticles produced in combustion environments [66]. They further 

expanded the multiscale coarse graining to build a mixed all-atom and coarse grained 

model of the gramicidin A (gA), model membrane protein, ion channel embedded in a lipid 

bilayer and water environment. In this model, they described gA in full atomistic detail 

while the lipid and the water molecules were described by coarse grained representation 

[67]. The authors compared the results of the all-atom coarse-grained AA-CG to all-atom 

MD for the entire system and concluded that the coarse-grained multiscale method is valid. 

Ensing et al. also in 2006 found successful application of the hybrid atomistic/coarse 

grained molecular dynamics in the modeling of polymer melts, bio membranes and proteins 

[68]. To name just a few, materials that have been modeled by atomic to coarse grained 

molecular dynamics could be found in literature: Ionic liquids [69], Polyglutamine 

aggregation [70], single component micelles formed by Iysophospholipids of different 

chain length [71], and sodium dodecyl sulfate micelles [72]. The main idea of the CGMD 

is to group some atoms or particles into a cluster or bead in order to decrease the number 

of degrees of freedom in such a way that these beads or clusters carry all the properties of 

each atom or particle. In this model for coarse graining part, equations can be derived from 
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an atomistic Hamiltonian. Therefore, all the equations are based on MD principals and are 

independent of continuum parameters. The only idea that this method adopts from FEM is 

the idea of meshing. Otherwise there are no other sign of continuum concepts, which 

appear in FEM. This leads to a seamless coupling between two scales and reduces the errors 

that arise in other coupling methods. In this method, the stiffness matrix is computed once 

in the beginning of the simulation and it remains unchanged during the following dynamics 

and it is valid as long as the vibration of atoms across the cell boundaries is negligible. 

More details about calculation of the mass and stiffness matrix are presented in Rudd and 

Broughton [62] publication. The advantages of this method can be summarized as follows. 

Firstly, this method treats the element stiffness matrix in such a way that the number of 

degrees of freedom and the computational costs reduce drastically. Secondly, the identical 

time step can be used for both scales and there is no need to use longer time step for the 

coarser scale. Note that since short range forces change rapidly with time shorter time scale 

is more accurate and in general, shorter time scale ensure the numerical method accurately 

follow the true trajectory. Lastly, like other methods, wherever the high accuracy is desired, 

the mesh can be refined all the way to position the nodes on atoms in MD region. 

2.5 Coupled Atomistic Dislocation Dynamic Method 

Coupled atomistic dislocation dynamic method (CADD) was initially presented by Shilkrot 

et al. [73]. This model couples continuum finite elements to a full atomistic region with 

two advantages: the ability to accommodate discrete dislocations in the continuum region 

by an algorithm for automatically detecting dislocations as they move from the atomistic 

region to the continuum region and the correctly converting the atomistic dislocations to 
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the continuum dislocations or vice-versa. In this work, the authors discussed the application 

of this method to nanoindentation atomic scale void growth under tensile stress, and 

fracture to validate and show the capabilities of the model. Nanoindentation is a technique 

used for material testing in micro-scales. Nanoindentation is also known as an instrumented 

indentation test: A high-strength material with a defined shape penetrates the specimen 

surface by applying a specified load[74]. In this research Shilkrot et al. used CADD mesh 

to simulate nanoindentation and compared the results with full atomic simulation in a very 

small region. Four distinguishable components were introduced: the atomistic model, the 

discrete dislocation framework, the coupling between these regions and the method for 

detecting and passing dislocations between the two regions. The first two components were 

adopted from the literature. The atomistic method was adopted from embedded atom 

method (EAM) developed by Daw and Baskes in 1984 [75] and the discrete dislocation 

dynamics framework were adopted from Giessen and Needleman 1995 [76]. However, the 

important part that was developed by the authors is the coupling of the two regions and the 

automatic detecting and passing dislocations from the atomistic to the continuum and vice 

versa. CADD is the best match to the problems where dislocations tend to travel over a 

long distance. These problems usually can be found in ductile metals. Other atomistic to 

continuum methods connect an atomistic region to a defect-free continuum region. Key 

and distinguishing features of CADD are that (i) dislocations exist in the continuum region, 

(ii) they are mechanically coupled to one another and to the atomistic region, and (iii) they 

can be passed between the atomistic and continuum regions so that the plastic deformation 

is not confined to the atomistic region [73]. In CADD, the important regions such as crack 

tips, inclusions or grain boundaries can be modeled fully atomistically to ensure 
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interatomic forces control of the nucleation. The CADD method was first formulated for 

2D problems. However, it has not successfully extended to 3D yet. One of the advantages 

of this method is that the multiscale treatment of dislocations is independent of the coupling 

method. Therefore, any of the coupling methods that had been developed previously could 

be potentially used. This method was primarily designed for zero temperature but Shiari et 

al in 2005 [77] performed simulations of nanoindentation in single crystals using a finite 

temperature coupled atomistic/continuum discrete dislocation method both in static and 

dynamic cases.  In 2006, Dewald and Curtin [78] quantified the error in the dislocation 

driving forces near the atomistic/continuum interface employed in the CADD method and 

introduced a simple method to modify CADD that permits dislocations to move closer to 

the atomistic/continuum from either side of the interface while maintain high accuracy on 

the forces and deformations.. The CADD method still attracts researchers’ attention since 

in engineering materials the deformation and fracture processes often require treatments at 

different time and length scales. Pavia and Curtin in 2015 [79] presented a high-

performance parallel 3D computing framework for executing large multiscale studies, 

which couples an atomic domain. This model uses MD while the continuum domain is 

modeled explicitly by FEM. In the same work, they used the robust Coupled 

Atomistic/Discrete-Dislocation displacement-coupling method, but without the transfer of 

dislocations between atoms and continuum. The main purpose of the work is to provide a 

multiscale implementation within an existing large-scale parallel molecular dynamics code 

(LAMMPS) that enables use of all the tools associated with this popular open-source code, 

while extending CADD-type coupling to 3D. 
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2.6 Atomic-scale Finite Element Method 

The atomic-scale finite element method (AFEM) was introduced by Liu et al in 2004 [80]. 

They proposed this method as an alternative to MD, which has the same level of accuracy 

but is much faster than the widely used conjugate gradient method. The Conjugate Gradient 

Method is the most prominent iterative method for solving sparse systems of linear 

equations [81].There is two main advantages for the AFEM compare to the MD. Firstly, 

this method can handle discrete atoms and is useful for the multi body interactions among 

atoms. Since this method is order-N method, it is much faster than the order-N² conjugate 

gradient method that often used in atomistic simulations. The reason lies in the fact that in 

order to minimizing the energy of the system, the conventional MD method usually uses 

the order-N² conjugate gradient numerical method, which uses only the first derivative. As 

a result, it requires multiple iterations. However, the AFEM uses both first and second 

order derivatives within one-step for linear systems. Note that this advantage is only valid 

for the linear systems. For nonlinear systems that involve more complicated interatomic 

potentials, the second derivative for minimization of energy does not help the speed and 

simplicity of computation. Secondly, a smooth and seamless link between the AFEM and 

FEM can be made in order to develop a powerful multiscale method that reduces the 

number of degrees of freedom drastically because the theory behind both methods are the 

same and similar structure can be used to establish a unified system of equations. This 

method is applicable in 2D and 3D but limited to static problems. Liu et al in 2005 [82] 

proposed and studied woven nanostructures of carbon nanotubes using their newly 

proposed method. This method has attracted researchers’ attention in the static study of 

carbon nanotubes deformation and crack propagation    [83-85]. In 2009, Morandi Cecchi 
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et al. used atomic-scale finite element method for simulation of mechanical behaviour of 

single-walled carbon nanotubes [86]. In this research, they determined the numerical 

results for Young’s modulus, Poisson ratios, the shear modulus for ground energy 

configurations, where all of the numerical results agreed with the available experimental 

values. The above-mentioned are some examples about the application of AFEM in carbon 

nanotubes. This method also has the potential for solving other optimization problems. One 

of the most recent papers by Zhang et al in 2012 used this method for simulating evolutions 

of ferroelectric nanodomains [87]. 

2.7 Quasi-Continuum Method 

The quasi-continuum method (QC) originally conceived and developed by Tadmor, Ortiz 

and Phillips in 1996 [88] at Brown University. This method is one of the most successful 

methods in multiscale modeling and a number of researchers developed and applied this 

method to a number of different applications. The idea behind this method is rather simple. 

The goal is to model an atomistic system without treating every single atom in the problem. 

Therefore, they developed a technique that uses a largely continuum mechanics framework 

that contains enough atomistic information wherever required. In many examples, this 

means that relatively small fractions of problem require full atomistic detail while the rest 

can be modeled using the assumptions of continuum mechanics [89]. 

In other words, in most cases, relatively small part of the problem requires full atomistic 

information whereas the rest can be modeled by continuum mechanics assumption. There 

exist many good review papers in this regard by Ortiz and Phillips 1999 [90], Ortiz et al 

2001 [91], Miller and Tadmor 2002 [89], and Rodney 2003 [92]. 
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In QC method, the displacements of atoms are determined by finding and minimizing the 

total energy of the system with respect to the atomic positions. This is valid due to the fact 

that the atomistic models are based on interatomic potentials which depend on 

displacements through relative positions of atoms in the configuration and the total energy 

of the system is the summation over all atoms in the problem. However, in QC the total 

energy of the system is the sum over rep atoms. Therefore, in this method; first, the number 

of degrees of freedom and the computer costs are reduced while retaining full atomistic 

description whenever required. Second, the total energy of the system is approximated 

accurately without the need to compute the energy of all atoms, as shown in Figure 2.3 

.This Figure illustrates the selection of rep atoms which is shown with the black filled 

circles. The density of rep atoms are increased around the dislocation core and decreased 

when they get further away from the core and meshed by triangular elements. In order to 

reduce the degrees of freedom in this method, instead of considering all atoms the authors 

considered only a small fraction of atoms and called them repatoms. Therefore, the 

displacements of the repatoms can be calculated and the displacements of the remaining 

atoms can be approximated through interpolation. The density of repatoms may vary to the 

needs of the problem of interest. For instance, wherever the full atomistic description is 

desired, the repatoms can be denser or even all the atoms can be chosen as repatoms. 

Otherwise, the density of repatoms can be reduced. Note that the QC method uses the FEM 

interpolation functions. Interpolation functions or shape functions in finite element method 

are a set of equations which show the relations between different nodes and the shape of 

those functions depend on the form of the mesh. In chapter 4 of this dissertation a set of 

shape function for quadrilateral mesh will be used. Moreover, the repatoms can act as 
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atoms in the atomistic domain and can act as nodes in the continuum domain. Therefore, if 

the position of nodes can be determined by the FEM interpolation functions, the atom 

positions can be also revealed. When the relative positions of atoms are known, the 

interatomic potential of atoms can be determined. In addition to reducing the degrees of 

freedom, an efficient method is required in order to calculate the total energy and force 

without considering every single atom by either local or non-local quasi-continuum 

method. 

 

Figure 2.3 Representative atom selection based on deformation gradient with 

corresponding FE mesh in Quasicontinuum method 

2.7.1 Local Quasi-Continuum Method 

The first approach to calculate the total energy and force without considering every single 

atom is the local Quasi-Continuum method that uses Cauchy-Born rule, see Figure 2.4. The 
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Cauchy-Born rule or Cauchy-Born approximation basically is a formulation of solid 

mechanics. In this approximation the idea is that when a crystalline solid goes under small 

deformation, the atoms in that crystal follow the same deformation. Therefore, it suggests 

that the micro-scale deformation gradient is uniform if the deformation gradient is uniform 

at macro-scale. For instance, in a crystalline solid with a simple structure, all atoms in the 

same crystal that is subjected to a uniform deformation gradient have the same unit cell 

energy. Therefore, the energy of all atoms within an element can be determined for one 

atom and sum over the number of atoms within that element. 

 

 

Figure 2.4 Continuum Scale Deformation and Corresponding Atomic Scale Deformation 

with Cauchy-Born Rule 

Considering the deformation gradient F, an element with periodic boundary conditions can 
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be deformed appropriately and its energy can be calculated. The strain energy density of 

the element can be calculated as follows: 

 0

0

( )( ) E FE F =
Ω

 (2.2) 

where 0E is the energy of the element and 0Ω is the element volume. In addition, the total 

energy of the system is simply the sum of element’s energies: 

 
1

( )
N

tot
e e

e
E W E F

=

= ∑  (2.3) 

Where N is the total number of elements in the system. As shown in the above equation, a 

sum over all the atoms in the body is being replaced by the sum over all the elements. Since 

the number of elements are much smaller than the number of atoms, this method reduces 

the computational costs drastically. This method is more appropriate for the crystalline 

solids with a simple lattice structure where every atom in the region subject to uniform 

deformation gradient has equivalent energy. The limitations of this method are although 

the deformation gradient is uniform within an element it varies from one element to the 

other. Moreover, at element boundaries and free surfaces atoms can have different energies 

and the Cauchy-Born approximation is not accurate anymore. 

2.7.2 Non-Local Quasi-Continuum Method 

In general, the non-local formulation is more accurate but has higher computational costs. 

When the Cauchy-Born rule is applied in local formulation, it means that only uniform 

deformation is assumed for the elements. This assumption can be valid throughout the 

element. However, this is not valid at interfaces and free surfaces. Therefore, in order to 
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accurately calculate the energy of the system, for instance, the energy of the interfaces 

between elements as well as free surfaces where the deformation is non-uniform, non-local 

formulation is suggested [93]. The energy-based and force-based methods are two different 

approaches for formulating non-locality in the QC method. Both cases start from the fact 

that the total energy of the system is equal to the total energy of repatoms. In the first 

approximation (energy-based) of QC, the totE  can be replaced by the htotE , , such that, 

 ,

1
( )

N
tot h h

i
i

E E u
=

= ∑  (2.4) 

In the above equation, the atomic displacement can be found from interpolation functions 

as follows: 

 ∑
=

=
repN

h uNu
1α

αα  (2.5) 

where αN is the interpolation function for repatoms α and repN is the number of repatoms, 

NNrep << . 

The interpolation function contains information that shows the relations between different 

nodes. 

Thus, the energy can be approximated accurately by the total energy of repatoms: 

 ,

1
( )

repN
tot h h

a a
a

E n E u
=

= ∑  (2.6) 

where αn  is the weight function and αE  is the energy for repatom α. Weight functions can 

be physically interpreted as the number of atoms represented by repatom α. Therefore, the 

weight function is large in the region where the repatom density is low and vice versa.  
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Therefore, the weight function has to be such that; 

 ∑
=

=
repN

Nn
1α

α  (2.7) 

Therefore, if 1=αn , then all the atoms in the region considered to be repatom. 

Note that in Eq. (2.5) the sum over the displacement of atom α is simpler due to the support 

of finite element interpolation function. However, the displacement of any atom located 

inside an element is determined by the sum over the three rep atoms overlap finite element 

nodes of that element. Therefore, the energy minimization can be calculated from 

neighbour environment from the interpolated displacement. As a result, the energy of each 

repatom, αE , can be determined from its deformed environment and the next step will be 

the same minimization procedure.  

In force-base QC formulation, forces are derivatives of the total energy on each rep atom. 

Therefore, in equilibrium when energy is minimized, the force will be zero. In other words, 

force base QC adopts a different approach that energy minimization physically corresponds 

to solving the configuration in which the force on each degree of freedom in zero. The 

formulation can be started from the derivatives of energy with respect to each repatom 

displacement as follows: 
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Let us recall that hu is the interpolated displacement field and αu is the displacement of a 

specific repatom. Since we have the following equation from before 

 αα u
uN

h

∂
∂

=  (2.9) 
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the force expression becomes: 

 
( ) ( )i

N

i i
h

h
i XN

Xu
uE

f αα ∑
= ∂

∂
=

1 )(
 (2.10) 

When there is a high repatom density, the clusters can be decreased in such a way that there 

is no overlap between clusters. In this case, the force can be approximated as follows: 

 ∑ ∑ 
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where αC is a set of atoms in the cluster around repatom α and 
( )
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h

h
i

c Xu
uE

g
∂
∂
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The full non-local formulation as discussed in this section is more accurate than local 

formulation. In both energy-based and force-based non-local formulation when the region 

is refined down to the atomic scale, it reduces to lattice static, correctly capturing details 

of dislocation cores, stacking faults and grain boundaries[94]. However, the non-local 

approach has disadvantages. The main limitation is the increase of the computational costs 

comparing to the local formulation. Another issue arises from the fact that for each 

repatom, in order to evaluate energy or force it is required to map a cluster of atoms and 

their neighbors to a deformed shape followed by the determination of interatomic potentials 

for that cluster. The latter needs more calculation than the local approach. 

To sum up the last two sections of this chapter, the local QC is a formulation for crystalline 

solids with simple lattice structure where the deformation gradient is uniform within each 

element and the Cauchy-Born approximation is valid. However, non-local QC is a 

formulation dealing with non-uniform such as free surfaces and interfaces where full 

atomistic details are required. 
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2.7.3 Coupled Local/Non-Local Quasi-Continuum Method 

Recalling the advantages and disadvantages of local and non-local QC formulation from 

previous sections, sometimes it is desirable to have advantages of both approaches in one 

simulation by coupling local/non-local formulation. Therefore, in the same configuration 

the non-local QC can be used where the atomic scale accuracy is required and the local QC 

can be used where the deformation happens slowly to take advantage of the computational 

efficiency. Note that for combining the local and non-local QC, the energy-based 

formulation should be used for non-local approach. In this approach, the energy of 

repatoms is approximated firstly. Then, the total number of repatoms repN  are divided into 

locN for local repatoms and nlN  for non-local repatoms, such that; 

 repnlloc NNN =+  (2.12) 

Then, the energy is approximated as: 

 ∑∑
==

Ε+Ε≈
nlloc N

h
N

hhtot ununE
11
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α

αα
α

αα  (2.13) 

The important decision is how to determine which atom is local, and which one is non-

local. Since the Cauchy-Born rule of local formulation can describe any uniform 

deformation, it can be still considered to be local if the deformation is uniform regardless 

how large it is. However, if there is a variation in the deformation gradient at the atomic 

scale, the repatom should be treated as non-local. 

The followings are some applications of QC method from literature. The density functional 

theory (DFT) of local quasi-continuum was introduced by Fago et al. in 2004 to predict 

dislocation of nucleation [95]. In the same year, Diestler et al. extended the QC treatment 
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of multiscale to solids with non-zero temperature [96]. In 2005, a nanoscale meshfree 

particle method with the implementation of the QC was proposed by Xiao and Yang [97]. 

Dupuy et al in the same year developed finite temperature QC, which was the MD without 

considering all atoms. In this work, they suggested a new approach as an alternative to MD 

which was more efficient, and validated the method by recovering equilibrium properties 

of single crystal Ni as a function of temperature [98]. In 2006, Iglesias and Leiva applied 

the 3D QC method to an indentation process taking into account the atomic structure of the 

indenter and the substrate subject to indentation [99]. In the same year, Hayes et al used 

local QC to predict dislocation nucleation during nanoindentation of Al3Mg [100] while 

the finite-temperature QC method was used for multiscale analysis of silicon nanostructure 

by Tang et al. [101] and carbon nanotube by Park et al. [102-103]. In 2007, Sansoz and 

Molinari used this method for microstructure effects on the mechanical behaviour of FCC 

bicrystals [104]. In 2008, Park at al adapted the non-local QC for deformations of curved 

crystalline structures [105]. From 2009 to 2011 QC was applied for simulations of many 

materials such as; Nano metric cutting of single crystal copper [106], strengthening and 

weakening effect of Cu/Ag interface of nanoindentation [107], crack propagation of 

nanocrystalline Ni [108], and crack propagation of BCC-FE [109]. Moreover, many 

modifications and improvements have been done on this method so far to make it even 

more practical and appealing for simulating different materials. For instance, a local QC 

method for 3D multilattice crystalline materials was proposed by Sorkin et al in 2014 with 

application to shape-memory alloys [110]. Beex et al. in 2014 and 2015 did some QC based 

research and published several papers on the multiscale quasi-continuum method for lattice 

models with bond failure and fibre sliding [111,112] and for dissipative lattice models and 
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discrete networks [113,114] .QC-based multiscale approaches for plate-like beam lattices 

experiencing in-plane and out-of-plane deformation [115]. Finally, the most recent 

application is the investigation of mechanical reliability of an electronic textile by the 

virtual-power-based QC method [116]. 

2.8 Bridging Scale Method 

The bridging scale method was developed by Wagner and Liu in 2003 [117] in order to 

couple atomistic and continuum concurrently in two- and three- dimension. The 

fundamental idea behind this formulation is combining both MD and FE in a unified 

system. It means that both simulations run and exchange relevant information at the same 

time. The fundamental principle of this method is the decomposing of the total 

displacement ( )U x into fine and coarse scales, such that, 

 ( ) ( ) ( )U x u x u x′= +  (2.14) 

where )(xu is the coarse scale part of the displacement and )(xu′ is the fine scale part of the 

displacement. When both systems, continuum and atomic, overlap we come across some 

redundancy in the region. In order to remove the unwanted redundancy of atomic region 

from the system, an external force should be added to the system to compensate the 

removed MD degrees of freedom effects. This force is called impedance force in bridging 

scale method. 
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Figure 2.5 Bridging scale model 

Figure 2.5 illustrates the bridging scale scheme. On the top, atomic region shown in 2D on 

the left hand side, continuum region in the middle and on the right hand side both atomic 

and continuum overlapped. At the bottom of the figure, the combined system of two 

regions has shown as a unified system with illustration impedance force. In this method, 

FEM can be found everywhere in the body. However, MD only appears in the regions 

where higher accuracy is required.  

In this method the equation of motion in the continuum can be written as: 

𝑀𝑀𝑑̈𝑑 = 𝑁𝑁𝑇𝑇𝐹𝐹 

where M is finite element mass matrix, N is finite element shape function and d is nodal 

displacement.  

Atomic region equation of motion is as follows: 

𝑀𝑀𝐴𝐴𝑢̈𝑢 = 𝐹𝐹 

𝑀𝑀𝐴𝐴is atomic mass matrix, u is the MD displacement and F is the total force for MD. 
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Note that the MD equation of motion is only solved in the MD region. However, the FE 

equation of motion is solved across the entire system.  

In the coupling MD and FEM region, where both scales exist and the impedance force has 

been applied, the equations of motions are as follows: 

𝑀𝑀𝐴𝐴𝑢̈𝑢 = 𝑓𝑓(𝑡𝑡) + 𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡) 

𝑀𝑀𝑑̈𝑑 = 𝑁𝑁𝑇𝑇𝐹𝐹 

The first term is the interatomic force and the second term is the impedance force. As we 

already introduced the impedance force in chapter 1, this force contains time history kernel 

and acts to dissipate fine scale energy from MD simulation into the surrounding continuum. 

Note that the time history kernel functions are the time-delayed response to a delta function 

input, reflecting the underlying lattice structure. Accurate and efficient calculations of the 

kernel functions are crucial for the overall accuracy of the multi-scale algorithm. The 

existence of impedance force is one of the distinguished features of bridging scale method. 

Another important feature is the fact that the total energy is the linear combination of the 

molecular and continuum energies. A scaling parameter α is introduced in the handshaking 

area. In developing our method in this dissertation we used this definition of bridging scale. 

Details for this method can be found in the works of Liu et al. 2006 [1].Park and Liu 2004 

[118] wrote an introductry paper and tutorial about multi-scale analysis in solids with a 

focus on bridging scale method, Qian et al. 2008 [119] published a paper about concurrent 

coupling of analysis of nanosrtucture using the similar approach, Wagner and Liu 2001 

[120] used meshfree FEM instead of conventional FEM in bridging scale approach, Park 

et al. 2005 [121] published another paper about coupling atomistic/continuum in 2D using 

bridging scale method and Karpov et al. [122] present a coupling approach for material 
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with dynamic internal structure in 2010. 

Study of different concurrent method which introduced in this chapter helped us to 

understand different formulations and the strength and limitations of each method. In this 

research two definitions have been adapted from previous methods. First, is the 

representative atoms adapted from quasi continuum method. Second is the definition of the 

total energy in the handshaking area adapted from bridging scale method which implies the 

total energy is the linear combination of the molecular and continuum energies. 
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Chapter 3 THEORETICAL DEVELOPMENT AND 

FORMULATION 

3.1 Introduction 

The current work is motivated by the need for a multiscale modeling method that couples 

continuum mechanics and atomic or molecules dynamics. The essential part of the work 

concerns the transformation of information from continuum domain to atomistic domain 

smoothly and seamlessly. In other words, the multi-scale modeling leads to a coupled 

system of equations of FEM in continuum domain and MD in atomistic domain. This 

approach is aimed to increase substantially the efficiency of the simulations without 

compromising accuracy. Among all the coupling approaches in the literature, the approach 

based on the energy conservation is most appealing, in which the Hamiltonians of the 

continuum and atomics meet and overlap in the handshaking zone. However, the 

description of the Hamiltonian of traditional FEM is based on the nodal displacement field, 

while the MD describes the position of atoms/molecules using their position vectors. Extra 

procedures are required to couple them together. To overcome this inconsistency and unify 

the description, a new 2D Nodal Position Finite Element Method (NPFEM) is proposed 

here [21]. The new formulation, by using nodal positions as state variables instead of nodal 

displacements, enables the direct coupling of the Hamiltonians of FEM and MD for multi-

scale modeling. Furthermore, it addresses the limitations of existing FEM in dealing with 

large rigid-body motion coupled with the small elastic deformation. As a result, it 
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eliminates the need to decouple the elastic deformation from the rigid-body motion and 

consequently the errors caused by approximation in kinematic relationship and the 

accumulated numerical errors arising from the incremental solution procedure of existing 

nonlinear FEM. 

3.2 Nodal Position Finite Element Method 

3.2.1 Potential Energy and Stiffness Matrix 

Consider a quadrilateral plane element in the global coordinate system OXY as shown in 

Figure 3.1. The nodal coordinates are denoted as (Xi, Yi, i = 1, 2, 3, 4). Assume the element 

moves to a new position under external loads with new nodal coordinates, such as ( ii YX ~ ,~ ). 

To calculate the strain energy due to the elastic deformation within element, let us define 

a local coordinate system (x, y) with x-axis along one side of the element and y-axis 

perpendicular to the x-axis. In addition, let us place the undeformed element (dashed line 

in Figure 3.1) in the local coordinate system as a reference state for calculating the strain 

energy. Thus, one can calculate the strain energy of the element without the need to 

decouple the elastic motion from the rigid-body motion. Denote the nodal coordinate 

vectors of the deformed and undeformed element in the local coordinates as 

 Tyxyxyxyx }~,~,~,~,~,~,~,~{~
44332211=ex  (3.1) 

 Tbyxbyaxyaxyx }~,~,~,~,~,~,~,~{ 11111111 ++++=ex  (3.2) 

Further, assume the position vectors of an arbitrary point P inside the element after and 

before deformation can be interpolated using by-linear shape functions and nodal 
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coordinates, such that: 

 ,      = =e er Nx r Nx   (3.3) 

where { , }Tx y=r   , { , }Tx y=r , and N is the matrix of shape functions: 

 1 2 3 4

1 2 3 4

( , ) 0 ( , ) 0 ( , ) 0 ( , ) 0
0 ( , ) 0 ( , ) 0 ( , ) 0 ( , )

N N N N
N N N N

ξ η ξ η ξ η ξ η
ξ η ξ η ξ η ξ η

 
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 
N

 (3.4) 

 

The shape functions are defined as functions of ξ and η, such that, 

)1)(1(),(1 ηξηξ −−=N , )1(),(2 ηξηξ −=N , ξηηξ =),(3N ηξηξ )1(),(4 −=N  (3.5) 

where 
a
x

=ξ ,
b
y

=η , and (a, b) are the length and width of the undeformed element. 

 

Figure 3.1 Element before and after displacement 

The dashed line in after displacement element shows undeformed (original) 

element and the solid line shows deformed element 

 

Accordingly, the displacement in the element can be obtained as follows: 
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 { }= − = −e eu r r N x x   (3.6) 

where u = {u, v}T. 

Substituting Eqs.(3.1), (3.2), (3.4) into (3.6) yields the displacement vector: 

 

1 1

1 1
1 2 3 4

1 2 3 4
4 4

4 4

0 0 0 0
0 0 0 0

x x
y y

N N N Nu
N N N Nv

x x
y y
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     −
 

−  











 (3.7) 

One of the most fundamental definitions in continuum mechanic, when problems deal with 

deformation, is strain. Strain describes deformation in terms of displacement or in other 

words, strain is displacement gradient and usually shown as ε in formulations. Therefore, 

strain in x direction is 𝜀𝜀𝑋𝑋 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 and in y direction is 𝜀𝜀𝑌𝑌 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

. These partial derivatives are 

valid for normal strain, where the deformation is only extension or compression in length. 

However, when deformation also dealing with rotation, another component should be 

added: 𝜏𝜏𝑋𝑋𝑋𝑋 = 1
2

(𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

). 

The Green-Lagrangian formulation of strain is well known for large deformation 

considering both linear and nonlinear terms in orthogonal Cartesian coordinates. 

The Green-Lagrangian strain of the element is defined as: 

 1 ,      ( , 1,2)
2

ji k k
ij

j i i j

uu u u i j
x x x x

ε
 ∂∂ ∂ ∂

= + + =  ∂ ∂ ∂ ∂ 
 (3.8) 

Or in the expanded form, 
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Denote linear strain vector as: 
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 (3.10) 

Substituting Eq.(3.7) yields the linear strain in the element as, 

 { } { }

0

{ } 0L

x

y

y x

ε

 ∂
 
∂ 

∂ = − = − ∂ 
∂ ∂ 

 ∂ ∂ 

e e L e eN x x B x x 
 (3.11) 

where BL is the strain matrix defined as 

 

1 2 3 4

1 2 3 4

1 1 2 2 3 3 4 4

0 0 0 0

0 0 0 0

N N N N
X X X X

N N N N
Y Y Y Y

N N N N N N N N
Y X Y X Y X Y X

∂ ∂ ∂ ∂ 
 ∂ ∂ ∂ ∂
 

∂ ∂ ∂ ∂ =
 ∂ ∂ ∂ ∂
 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

LB  (3.12) 
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Similarly, the non-linear strain can be written in a matrix form, 

In the expanded Green-Lagrange strain discussed in (3.9) there are two components, linear 

and nonlinear, the nonlinear part of the equation is valid for nonlinear strain when problem 

deals with large and irreversible deformation. 

 { }

0 0

1 10 0
2 2

1 1 1 1
2 2 2 2

N

u u
x xu v
v vx x
x xu v
u uy y
y yu v u v
v vy y x x
y y

ε

∂ ∂   
     ∂ ∂∂ ∂      ∂ ∂∂ ∂     
   ∂ ∂∂ ∂     = =     ∂ ∂∂ ∂     

∂ ∂   ∂ ∂ ∂ ∂ 
     ∂ ∂∂ ∂ ∂ ∂     

∂ ∂      

A  (3.13) 

where 

 

0 0

0 0

1 1 1 1
2 2 2 2

u v
x x

u v
y y

u v u v
y y x x

 ∂ ∂
 

∂ ∂ 
∂ ∂ =  ∂ ∂ 

∂ ∂ ∂ ∂ 
 ∂ ∂ ∂ ∂ 

A  (3.14) 

Considering 

 { } { }

0 0

0 0

0 0

0 0

u
x x x
v

ux x x
u v
y y y
v
y y y

∂ ∂ ∂     
     ∂ ∂ ∂
     

∂ ∂ ∂     
     ∂ ∂ ∂   = = − = −      ∂ ∂ ∂     

∂ ∂ ∂    
    ∂ ∂ ∂    

∂ ∂ ∂         

e e e eN x x θ x x   (3.15) 

we have: 



54 

 

 

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

N N N N
X X X X

N N N N
X X X X

N N N N
Y Y Y Y

N N N N
Y Y Y Y

∂ ∂ ∂ ∂ 
 ∂ ∂ ∂ ∂
 

∂ ∂ ∂ ∂ 
 ∂ ∂ ∂ ∂=  ∂ ∂ ∂ ∂ 

∂ ∂ ∂ ∂ 
 ∂ ∂ ∂ ∂
 ∂ ∂ ∂ ∂ 

θ  (3.16) 

θ is represent nonlinear strain matrix. 

Then, the non-linear strain can be expressed as follows, 

 { } { } { }1 1
2 2Nε = − = −e e N e eAθ x x B x x   (3.17) 

where BN is the non-linear B matrix given by: 

 NB = Aθ  (3.18) 

Therefore, the total strain can be expressed in terms of nodal position: 

 { }1
2L N

 = + − 
 

e eε B B x x  (3.19) 

Furthermore, assume the material obeys the Hooke’s law, such that, 

 =σ Dε  (3.20) 

where { }, ,
T

x y xyσ σ τ=σ  is the stress vector and D is the 2D elastic matrix. 

𝑫𝑫 =
𝐸𝐸

1 − 𝜈𝜈2
�

1 𝜈𝜈 0
𝜈𝜈 1 0

0 0
1 − 𝜈𝜈

2

� 

where E is the Young modulus and ν is the Poisson’s ratio. 

In general, when a body goes under deformation energy will be stored in the system called 
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strain energy. The elastic strain energy can be released to the system when the load is 

removed. Therefore, internal strain energy is equal to the work done by external force. 

Once the kinematic and constitutive relationships in the element are defined, the strain 

energy can be expressed as: 

 1 1 ( ) ( )
2 2

T

A

U tdA= = − −∫ T
e e e eε σ x x K x x   (3.21) 

where A is area and t is the thickness of the element. 

If strain from Eq. (3.19) and stress from Eq. (3.20) are substituted in the above equation  

The stiffness matrix can be determined as follows: 

 
1 1( ) ( )
2 2

T T
L N L N

A

t dA= + +∫K B B D B B  (3.22) 

Where K is the stiffness matrix of element and t is the thickness of element.  

The stiffness matrix in Eq. (3.16) can be further decomposed into linear and nonlinear 

stiffness matrices such that: 

 L N1 N2K = K + K + K  (3.23) 

where 

T
L L

A

t B DB dA= ∫LK ,  1
2

T T
N L L N

A

t ( B DB B DB )dA= +∫N1K ,  
1
4

T
N N

A

t B DB dA= ∫N2K  

It is interesting to note that the element stiffness matrix in NPFEM is the same as in the 

existing finite element method. Since the element stiffness matrix is a function of element 

properties such as shape of the element which is determined by shape function, size of the 

element which is determined by length, width and thickness of the element as well as 
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mechanical properties of material such as Young’s modulus and Poisson ratio. Therefore, 

it is independent of formulation of FE and NPFEM. 

3.2.2 Kinetic Energy and Mass Matrix 

Kinetic energy is that part of the energy which is related to the motion of a body. The 

popular equation expressing the amount of kinetic energy is directly proportional to the 

mass and velocity square of the body 𝑇𝑇 = 1
2
𝑚𝑚𝑚𝑚2. Since 𝑚𝑚 = 𝜌𝜌𝜌𝜌 where ρ is density and V 

is the volume. If ΔT is chosen for kinetic energy of a unit of Δm, then we can integrate it 

over the element to find the kinetic energy of the element. 

The kinetic energy of the element is defined as, 

 1
2 A

T t dAρ= ⋅∫  r r  (3.24) 

where ρ and t are the material density and thickness of the element respectively. 

Assume the velocity and acceleration of any point inside the element can be interpreted by 

its nodal values using the same shape function in Eq. (3.3) as follows: 

 =  er Nx ,          =  er Nx  (3.25) 

Accordingly, the kinetic energy of the element is written as, 

  
1 1
2 2

T

A

T t dAρ= ⋅ =∫     e er r x M x  (3.26) 

where M is the mass matrix defined as 

 ∫=
A

dAt NNM Tρ
  

Mass matrix of individual element represents distributed mass density throughout the 



57 

 

element.  

Again, it is interesting to note that the element mass matrix in NPFEM is the same as in 

the existing finite element method. This is due to the fact that element mass matrix or mass 

distribution throughout the FE is a function of element properties and material such as 

element shape and size, thickness, material density. All of these properties are independent 

of FEM or NPFEM formulation. 

3.2.3 Equation of Motion of NPFEM 

Based on the potential and kinetic energy of the element, the discrete equation of motion 

of the NPFEM can be derived from the variational principle, such that, 

 ( ) { } 0T T
e eU Tδ δ δ  − − = + − − = e e ex F x Mx K x x F     (3.27) 

where F is the external force vector. 

For an arbitrary Tδ ex , there must exist 

 { }+ − = e e eMx K x x F  (3.28) 

Considering the shape of the undeformed element xe is related to the deformed element ex  

by 

 0ee xxQx += ~  (3.29) 

where 
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


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





















=

b

b
a

a

0

0

0
0

0x  (3.30) 

Substituting Eq. (3.29) into Eq. (3.28) yields 

 + = + e e e keMx K x F F  (3.31) 

where 

)()( QIKQIK T
e −−= and ( )= − T

ke 0F I Q Kx  

Ke represents global stiffness matrix, Fke is the equivalent nodal force vector due to the 

elasticity of the element in the global coordinates, and F is the external force, respectively. 

Eq. (3.31) is the discrete equation of motion. It should be noted that (i) the equivalent elastic 

nodal force vector Fke is new in the newly developed NPFEM and does not exist in the 

existing finite element methods; (ii) the NPFEM can be used with other existing elements 

except one needs to re-define the Q matrix and x0 vector shown in Eq. (3.30). 

Mathematically Eq. (3.31) represents a system of differential equations of second order 

and the solution to the equations can be obtained by standard procedures for the solution 

of differential equations like direct integration such as; the central difference method, the 

Houbolt method, the Wilson θ method, and Newmark method or mode superposition. 

Among all of excising methods Newmark method has been chosen to solve the above 

equations for displacement in this research. 
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3.3 Molecular Dynamics 

The formulation of molecular dynamics starts with the variational principle in the atomic 

region. Consider the total energy in the atomic region as 

 
1

1
2

n
M M M ext M ext

i i
i

U T W U m W
=

Π = − − = − ⋅ −∑ r r   (3.32) 

where MU is the potential energy and Wext is the work done by external forces. 

The work done by external force can be written 

 ( )
1

n
ext ext

i i
i

W
=

= ⋅ −∑ 0f r r  (3.33) 

Now, let us focus on the dynamic relation between a pair of atoms. The potential between 

atoms is assumed as the Lennard-Jones potential: 

 
12 6

4M
ij

ij ij
U

r r
σ σε

    
 = −           

 (3.34) 

where ε is the depth of potential well, σ is the finite distance at which the inter particle 

potential is zero. This is similar to bond length in molecules which is a length between two 

atoms’ nuclei in a bonded molecule. ijr is the distance between two particles. 

The equation of motion of MD can be derived from 

 
2

1
0M M M ext M ext

ij ij ij ij ij i i ij
i

U T W U m Wδ δ δ δ δ δ δ
=

Π = − − = − ⋅ − =∑ r r   (3.35) 

where 

 
2

1

ext ext
ij i i

i
Wδ δ

=

= ⋅∑ r f  (3.36) 
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6 6

2
24 1 2M

ij ij ij
ij ijij

U r r
r rr

ε σ σδ δ
    
 = −           

 (3.37) 

Consider ∑
=

−=
2

1

2)(
k

jkikij xxr , then  

 
2 2

1 1

1 1( ) ( )

ij ij
ij ik jk

ik jk

ik jk ik ik jk jk
ij ijk k

r r
r x x

x x

x x x x x x
r r

δ δ δ

δ δ
= =

∂ ∂
= +

∂ ∂

= − − −∑ ∑
 (3.38) 

Rearrange the above equations leads to the matrix form: 

 

{ }

{ }

1 1 1 2 2 2

1 1 1 2 2 2

1 1

2 2
1 2 1 2

1 1

2 2

1

1 2 1 2

1 ( ) ( )

1 ( ) ( )

1

1 0 1 0
0 1 0 11
1 0 1 0

0 1 0 1

ij i j i i j i
ij

i j j i j j
ij

i j

i j
i i j j

i jij

i j

i

i i j j
ij

r X X X X X X
r

X X X X X X
r

X X
X X

X X X X
X Xr
X X

X
X

X X X X
r

δ δ δ

δ δ

δ δ δ δ

δ δ δ δ

 = − + − − 

 − + − 

− 
 − =  − + 
 − + 

− 
 − =  − 
 − 

{ }

2

1

2

1

2
1 2 1 2

1

2

1 0 1 0
0 1 0 11
1 0 1 0

0 1 0 1

i

j

j

i

i
i i j j

jij

j

X
X

X
X

X X X X
Xr
X

δ

 
 
 
 
 
  

−   
  −   =    −   

   −   

 (3.39) 

Substituting Eq. (3.39) into Eq. (3.37) yields: 
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{ }

{ }

1
6 6

2
1 2 1 22

1

2

1

2
1 2 1 2

1

2

1 0 1 0
0 1 0 124 11 2
1 0 1 0

0 1 0 1

i

iM
ij i i j j

jij ij ijij

j

i

i
i i j j

j

j

x
x

U x x x x
xr r rr
x

x
x

x x x x
x
x

ε σ σδ δ

δ

−   
       −    = −           −             −   

 
 
 =  
 
  

MDK

 (3.40) 

where KMD is the stiffness matrix analog to FEM 

 

1 0 1 0
( ) 0 1 0 1

1 0 1 0
0 1 0 1

ij

ij

f r
r

− 
 − =
− 

 − 

MDK and
6 6

2
24( ) 1 2ij

ij ijij
f r

r rr
ε σ σ    

 = −           
 (3.41) 

It should be noted that the stiffness matrix KMD in Eq. (3.41) is highly nonlinear because if 

it is the function of distance between two particles. Furthermore, the variation of the kinetic 

energy can be simplified, such that, 

 { }
1

2
2

1 2 1 2
11

2

i

i
i i i i j j

ji

j

x
x

m x x x x
x
x

δ δ
=

 
 
 − ⋅ =  
 
  

∑ MDr r M




 





 (3.42) 

where (if assume mi = mj = m) 

0 0 0
0 0 0
0 0 0
0 0 0

m
m

m
m

 
 
 =
 
 
 

MDM

 

Thus, dynamic relationship between a pair of atoms is 
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1 11

2 22

1 11

2 22

i ii

i ii

j jj

j jj

X fX
X fX
X fX
X fX

     
     
     + =     
     
         

MD MDM K









 (3.43) 

The equation of motion in the molecular dynamic domain can be obtained by adding all 

pairs together. 

3.4 Coupling of FEM/MD 

The coupling of MD and FEM in the transition or handshaking zone is achieved by 

ensuring the energy conservation. Consider the transition or handshaking zone shown in 

Figure 3.2 Transition region from molecules domain (M) to continuum domain (C) from 

the molecules domain (M) to continuum domain (C). This transition region is called CM.  

 

 

It is assumed that the energy in the CM zone is continuously passing through the zone, 

such that,[22]. 

 (1 )CM C Mα αΠ = Π + − Π  (3.44) 

 

In Eq. (3.44), Π is the Hamiltonian function and the subscript “C”, “CM” and “M” 

CM C 
α=0 α=1 

Π 

Figure 3.2 Transition region from molecules domain (M) to continuum domain (C) 
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represent the corresponding zones, and α is the weight linearly varying from 0 to 1.It 

enforces the total energy is conservative in the handshaking area. 

Then, the total energy in the coupling region can be written as: 

 (1 ) (1 ) (1 )ext ext
CM C C C M M MT U W T U Wα α α α α αΠ = − − + − − − − −  (3.45) 

Or it can be reorganized like: 

 (1 ) (1 ) (1 )ext ext
CM C M C M C MT T U U W Wα α α α α αΠ = + − − − − − − −  (3.46) 

where ΠCM is total Hamiltonian of handshaking area, TC is kinetic energy of continuum 

region, UC is potential energy of the continuum region, WC
ext work done by external force. 

Moreover, TM, UM , and WM
ext are kinetic, potential energy and work done by external force 

in molecular dynamic region. Eq. (3.46) shows that the energy within the handshaking 

region goes from entirely atomistic at MD boundary, to entirely continuum at FE boundary 

[123]. 

Thus, the equation of motion in the transition zone can be derived by the same steps, 

0CMδΠ = , as in the previous sections. 

3.5 Numerical Integration Scheme 

Once the equations of motion of the system in different zones derived, the total equation 

of motion of the system can be assembled and written as follows, 

 t t t t t t t t t t+∆ +∆ +∆ +∆ +∆+ =M X K X F  (3.47) 

where M is mass matrix, 𝑿̈𝑿 is acceleration vector, K is stiffness matrix, X is position vector, 

t is current position and Δt is time step. 

There are many numerical integration schemes available in the literature [124]. Among 
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them, two numerical integration methods were chosen namely, the Newmark time 

integration scheme [20], and Stormer-Verlet leapfrog [17]. Both numerical integrations 

were used to model continuum (NPFEM) and atomic (MD) domain for comparison. 

However, at the end, the Newmark Method was chosen as the best match for this research 

for the sake of simplicity. 

The Newmark time integration scheme adopts the following time stepping scheme,  

 ttttttt ∆αα ∆∆ }]{}){1[(}{}{ XXXX  ++ +−+=  (3.48) 

 2}{}{
2
1}{}{}{ tt ttttttt ∆








+






 −+∆+= ∆+∆+ XXXXX  ββ  (3.49) 

where t∆  is the time integration step, α  and β  are the integration parameters, respectively.

α and β  are two variables that control two factors in this method; the stability of the 

method and the damping of the system in this method. For example for  5.0=α  , there is 

no numerical damping. Therefore, depending on the chosen value for α  and β  different 

set of data will be generated. Two popular set of parameters are as follows: 

1. Average acceleration method 𝛼𝛼 = 1
2

, 𝛽𝛽 = 1
4
 

2. Constant acceleration method 𝛼𝛼 = 1
2

, 𝛽𝛽 = 1
6
 

The integration parameters are chosen to be 5.0=α  and 25.0=β  in order to ensure the 

energy conservation of the algorithm. In the current research, the Newmark integration 

scheme includes two parts: the initial preparation and the time integration loop. Since the 

global mass matrix is constant, it is calculated in the initial preparation phase and set 

outside of the time integration loop. However, the stiffness matrix and load vectors have 
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to be calculated at each time step because they are functions of time and positions.  

The initial steps are shown as: 

1. Initialize 0 0 0, ,X X X  ; 

2. Calculate integration constants 0a  - 7a  as:  

  20
1
t

a
∆

=
β

; 
t

a
∆

=
β
α

1 ; 
t

a
∆

=
β
1

2 ; 1
2
1

3 −=
β

a ; 

  14 −=
β
αa ; ( )α−∆= 16 ta ; ta ∆= α7 ; 

3. Form mass matrix M . 

Each time step includes the following calculations: 

1. Form stiffness matrix t t+∆ K  at time tt ∆+ ; 

2. Form effective stiffness matrix ˆt t+∆ K : 

 0
ˆt t t t a+∆ +∆= +K K M  (3.50) 

3. Calculate effective loads: 

 ( )0 2 3
ˆt t t t t t ta a a+∆ +∆= + + +F F M X X X  ; (3.51) 

4. Solve for positions t t+∆ X at time tt ∆+ :  

 ( ) 1ˆ ˆt t t t t t−+∆ +∆ +∆=X K F  (3.52) 

5. Update accelerations and velocities at time tt ∆+ : 

 ( )0 2 3}t t t t t t ta a a+∆ +∆= − − −X X X X    (3.53) 

 6 7
t t t t t ta a+∆ +∆= + +X X X X     (3.54) 
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To summarize the procedure developed in this chapter, formulation started by deriving the 

stiffness and mass matrix for quadrilateral element in continuum region. The equation of 

motion has been written and forces determined. In atomic domain mass matrix and the 

equivalent stiffness matrix of pair particles have been formulated and the equation of 

motion has been written in this region. Newmark numerical integration has been deployed 

to solve the equation of motion for positions, velocities and accelerations of all atoms and 

nodes. Therefore, the behaviour of the system can be predicted. Finally, knowing velocities 

and displacements, kinetic energy, potential energy as well as the total Hamiltonian of the 

system can be determined and if the Hamiltonian in constant or in other words, the total 

energy of the system is conserved then the method is working properly and valid. 
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Chapter 4 IMPLEMENTATION OF NPFEM, MD AND 

MULTISCALE METHOD 

4.1 Program Layout 

The new nodal position finite element method was used to simulate the behaviour of one 

quadrilateral element, 3-element and 25-element with initial velocities. The same schemes 

were also modeled by molecular dynamic method. At the end, all models were modeled by 

combination of NPFEM, MD and handshaking are NPFEM/MD in the middle where the 

two domains interact and transfer information. All were implemented using the 

FORTRAN 95 programming language. The FORTRAN compiler is the Compaq Visual 

FORTRAN Professional Edition 6.1.0. 

The program consists of one Master routine and numerous supporting subroutines. The 

Master routine starts the program, defines the dimensions of dynamic arrays. Then it calls 

the input subroutine to input all data, executes all calculations by calling various 

subroutines like forming mass matrix, stiffness matrix, deploy time integration and solving 

to determine the position, displacement, velocity, acceleration, kinetic energy, potential 

energy, Hamiltonian and at the end call another subroutine to output all the results. The 

description of functionality and main routine are outlined in a flow chart shown in 

Table 4.1 and Figure 4.1 - Figure 4.3. 
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Table 4.1    Description of master routine. 

Main Routine 

Call routine to read control parameters and define dynamic dimensions 

Call routine to input data from input file 

Call routine to initialise arrays and apply initial conditions 

Call routine to calculate initial status of system 

Calculate Newmark time integration parameters 

Call routine to form global mass matrix 

Loop over each time increment, t = t + ∆t 

 

Call routine to compute stiffness matrix 

Form effective stiffness matrix 

Compute effective loadings 

Call routine to apply boundary condition 

Call routine to solve system equation for nodal positions 

Compute values for nodal accelerations and velocities 

Compute kinetic energy, potential energy and Hamiltonian 

Output solutions 

 

This table shows how the main routine involves with the subroutines and call them one by 

one to calculate global mass matrix. It also shows where the time integration starts and 

calculate global stiffness matrix to solve the equation of motion for positions, velocities 

and accellerations of all the nodes/particles and finally detremination of the kinetic energy, 

potantial energy and finally total Hamiltonian of the system. If the model is working 

properly a constant Hamiltonian is expected to show the energy conservation. 
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Figure 4.1  Flow chart of master routine for NPFEM. 
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For all three structures including one-element, 3-element and 25-element, all three models 

including NPFEM, MD and coupled MD/NPFEM have been used and the results compared 

in chapter 5. Figure 4.1 demonstrates the flow chart of master routine when the whole 

system is modeled by the newly proposed NPFEM. This shows clearly where the global 

NPFEM mass matrix forms. Moreover, Figure 4.6 shows the flow chart of NPFEM mass 

matrix subroutine in details. In the beginning of the master routine program inputs data and 

control parameters, form corresponding mass matrix, apply initial conditions, initializing 

for the time integration. The next step is the time integration where the NPFEM stiffness 

matrix, NPFEM effective stiffness matrix as well as effective loads are calculated and after 

applying the boundary conditions the equation will be solved for nodal positions. Based on 

calculated nodal positions, nodal velocities and accelerations will be determined in each 

time step. Kinetic energy can be determined using mass matrix and nodal velocities. Nodal 

displacements are always the difference of current positions and original positions and it is 

applicable in determination of the potential energy. Finally, the total Hamiltonian of the 

system is the summation of the kinetic and the potential energy in each time step. At this 

time all the nodal positions, velocities and accelerations should be updated before going to 

the new time step. In the new time step, stiffness matrix, effective stiffness matrix, effective 

loads, positions, velocities, accelerations, kinetic and potential energy and total 

Hamiltonian will be updated. If the NPFEM model works properly and accurately, a 

constant Hamiltonian is expected at the end. 
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Figure 4.2  Flow chart of master routine for MD. 
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The second model which is used in this research is MD. Figure 4.2 demonstrates the flow 

chart of MD model. In figure 4.1 we already showed the flow chart of NPFEM and 

discussed the details of the model’s algorithm and the outputs. In MD model, first the data 

and the control parameters are input and the array’s dimensions are allocated. The global 

MD mass matrix is formed. The details of MD mass matrix calculation are discussed in 

details in chapter 3 and the flow chart is shown in figure 4.7. Before starting the time 

integration, it is necessary to calculate Newmark constants and apply the initial condition. 

The time integration starts and the first steps are calculating the equivalent stiffness matrix 

in MD and corresponded effective stiffness matrix. From this point the procedure is very 

similar to what has already done in NPFEM model since the same time integrator, the 

Newmark method, has been used for both model and this is required because in the third 

model both method would be combined in the same main routine. Therefore, the equation 

will be solved for the nodal positions in each time step and velocities, accelerations are 

calculated based on that. This information should be updated before starting the new time 

step. In the new time step, equivalent MD stiffness matrix, effective stiffness matrix, 

effective loads, positions, velocities, accelerations, kinetic and potential energy and total 

Hamiltonian will be recalculated. If the MD model works properly and accurately, the same 

scenario as NPFEM model, a constant Hamiltonian is expected at the end. 
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Figure 4.3  Flow chart of master routine for multiscale method. 
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The third model is coupling previous models, NPFEM and MD in the same main routine 

and combines these two models in the handshaking area. Figure 4.3 shows the main routine 

for coupling NPFEM/MD. The last algorithm is similar to those of NPFEM and MD except 

the mass and stiffness matrices. In coupling NPFEM/MD the main routine, instead of 

calling one subroutine as mass matrix calls three subroutines. One subroutine is formed for 

the continuum part of the lattice and uses NPFEM formulation to calculate mass matrix. 

The second subroutine is formed for the atomic part of the lattice and is based on the MD 

simulation principals. The third subroutine is based on the newly proposed multiscale 

bridging model to address the handshaking area where the continuum and the atomic 

domain overlap and share information. This subroutine carefully calculates the portion of 

the MD mass and NPFEM mass contribute in the handshaking area using the formulation 

derived and discussed in chapter 3. The same scenario is valid for the stiffness matrices. 

There are three subroutines; one address the continuum part of the lattice, the other 

subroutine addresses the atomic part of the lattice and the last one is uses for the 

handshaking area and follows the bridging scale method formulation already derived and 

presented in details in chapter 3.This main routine inputs data and control parameters, 

allocates arrays’ dimension and calculates mass matrices in all domains. The routine 

continues with initializing for time integration and Newmark constants. The time 

integration starts with determination of stiffness matrices in all domains, calculating 

effective loads, applying boundary conditions and solving the equation of motion for the 

nodal positions. Calculating nodal velocities, accelerations followed by kinetic and 

potential energy as well as the total Hamiltonian at each time step is similar to the NPFEM 

and MD routines. If the coupling NPFEM/MD model works properly and accurately, a 
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constant Hamiltonian is expected for this simulation. 

4.2 Evaluation Modules for Stiffness Matrices 

4.2.1 NPFEM for Continuum Domain 

The evaluation of NPFEM stiffness matrix is performed by the subroutine FORMFEGK in 

continuum domain. The global force also is evaluated in the same matrix for the same 

domain. This subroutine loops over the number of NPFEM quadrilateral elements and then 

calls another subroutine to assemble global stiffness matrix and the global force. This 

subroutine is called by the main routine in each time step and the stiffness matrix and the 

force is being updated each time based on updated nodal positions. Figure 4.4 illustrates 

the flow chart of the subroutine.  
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Figure 4.4 Evaluation modules for NPFEM global stiffness matrix. 

 

 

 



77 

 

 

 

4.2.2 MD for Atomic Domain 

The evaluation of MD stiffness matrix is performed by another subroutine FORMMDGK 

in atomic domain. In this subroutine, like the continuum domain, the global force is 

evaluated in the same matrix for the same domain. This subroutine loops over the number 

of MD pair atoms and then calls another subroutine to assemble the equivalent global 

stiffness matrix and the global force. This subroutine is called by the main routine in each 

time step and the stiffness matrix and the force is being updated each time based on updated 

atom positions. Figure 4.5 shows the flow chart of the subroutine. 
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Figure 4.5 Evaluation modules for MD equivalent global stiffness matrix. 

 

 



79 

 

4.3 Evaluation Module for Mass Matrices 

4.3.1 NPFEM for Continuum Domain 

As we discussed in section 4.2 one of the most critical part of this implementation is the 

determination of stiffness matrices in both continuum and atomic region. Other matrices, 

which play an important role in this research, are mass matrices in each region. First, the 

integration in Eq. (3.26) has performed in Maple and then the result has converted to 

FORTRAN code. A subroutine called FORMFEMTX is used for calculation mass matrix 

in continuum region based on the derived equations and formulas from Nodal Position 

Finite Element Method. The mass matrix depends on material density, element size and 

element thickness. Therefore in this subroutine there is a loop over the number of elements 

and at the end use the same assembler as applied for stiffness matrix. Since the mass matrix 

does not update during the time integration, it is calculated before starting the time 

integration and remains constant during time integration process. Figure 4.6 illustrates the 

flowchart of the formation of NPFEM mass matrix. 
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Figure 4.6 Evaluation module for NPFEM global mass matrix. 

4.3.2 MD for Atomic Domain 

Mass matrix in Atomic domain using Molecular Dynamic method is not as complicated as 

NPFEM. Here mass matrix is a diagonal matrix with diagonal entries equal to mass of each 

particle. Therefore, this matrix highly depends on particle mass which has been input in 

the beginning of the main routine. In this program, a subroutine called FORMMDMTX 

calculates the MD mass matrix. Figure 4.7 shows the flowchart of the routine calculate the 

mass matrix. 
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Figure 4.7 Evaluation module for MD global mass matrix. 

In order to validate the formulation and implemented code, three different models have 

been chosen; one-element, 3-element and 25-element. Each model has been solved by three 

approaches discussed in this research; NPFEM, MD and multiscale MD/NPFEM. The 

results will be discussed in details in the next chapter. In all three models, the most 

important achievement is the fact that the energy is conserved and the Hamiltonian found 

to be constant in time. For the most complicated lattice with 25-element, one extra 

simulation has done. A sinusoidal wave has been applied to the top nodes of the lattice by 

changing the position of the top nodes and the behaviour of all the nodes have been studied 

under this condition. The results shows that the wave can successfully pass through the 

three different domains; continuum, handshaking and atomic, and finally reaches to the 

bottom layers.   
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Chapter 5 RESULTS AND DISCUSSION 

5.1 Modeling with One Element 

In previous chapters a new multiscale modeling of molecules and continuum is proposed. 

This new model used bridging scale method for coupling MD and NPFEM methods to 

transfer information smoothly and seamlessly from one domain to the other through 

handshaking area. In this chapter, three examples including one-element, 3-element, and 

25-element are studies and the results are compared with three different models; NFPEM, 

MD and NPFEM/MD. The first example is the study of a body illustrates in Figure 5.1 

consists of one four-node element subject to an initial velocity on top nodes like a pulse 

and the system’s reaction to this pulse. The system responses like velocity, displacement 

and the total energy of the system have been studied carefully in two dimensions in time. 

However, in this case we are mostly interested in the reaction of the body in y-direction 

where the initial velocity has been applied. The element was first modeled in continuum 

mechanics scale by Nodal Position Finite Element Method (NPFEM) Figure 5.1 (a) and 

then in atomic scale by Molecular Dynamics method (MD) Figure 5.2 (b) and finally the 

same element modeled with the proposed multiscale model by combining the two above-

mentioned methods. The following figure is the illustration of the four-node element goes 

under the downward initial velocity. 
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Figure 5.1  (a) four-node element in two dimensional plane scheme (b) four pair molecule 

interacting two by two 

In this example, Figure 5.1 (a) illustrates four-nodded element modeled by NPFEM and 

Figure 5.1 (b) illustrates four pair molecules modeled by MD. Since this study is focused 

on methodology and developing new multiscale model and it is valid in any system of 

units, the dimensionless properties are used in these simulations. In Figure 5.1(a), the 

dimensionless properties of the element in continuum scale are: Young’s modulus, E = 

258.5; element side length, a = 7.745; thickness, t = 0.07745; density, ρ= 51.5 and the 

Poisson ratio, ν = 0. An initial velocity V0= −0.01downwards is applied at top nodes and 

the following results have been obtained by running the NPFEM formulation by the 

Newmark numerical integration. The results are shown in Figure 5.2 - Figure 5.4. As 

expected, the displacement and velocity oscillates in a harmonic motion after the initial 

velocity pulse, because no internal material damping effect is considered. Figure 5.4 shows 

the time history of the Hamiltonian function of the element. For generating the results 

presented in Figure 5.2- Figure 5.4, the flowcharts shown in Figure 4.1, Figure 4.4 and 

Figure 4.6 are applied. The total energy of the element is conserved, which indicates the 
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NPFEM and the Newmark integration scheme are energy conserving as expected. It 

demonstrates that our codes are correct. 

 

Figure 5.2 Time history of displacement in y direction of one element using NPFEM. 

 

Figure 5.3 Time history of velocity in y direction of one element using NPFEM. 
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Figure 5.4 Time history of Hamiltonian of one element using NPFEM. 

Figure 5.2 (b) shows the same body modeled with MD with four particles “equivalent 

atoms”. The dimensionless properties of equivalent atoms are: depth of potential well, ε = 

8.33, the finite distance corresponding to zero the inter particle forces, σ = 6.9 and the mass 

of each particle, m = 40.0. The results are shown in Figure 5.5 - Figure 5.7. As expected, 

the results of displacement and velocity are the same as that of NPFEM. The result of 

system energy, the Hamiltonian function, is almost the same as that of NPFEM, except for 

the small (2.5% of the correct value of Hamiltonian) oscillation around the correct value. 

This is due to nonlinearity of the stiffness matrix of MD. As shown in Eq. (3.41), the KMD 

is highly nonlinear. For generating the results presented in Figure 5.5- Figure 5.7, the 

flowcharts shown in Figure 4.2, Figure 4.5 and Figure 4.7 are applied. The energy 

conservation of the Newmark integration scheme adopted in the current study is valid only 

for linear systems. However, the fluctuation caused by the nonlinearity is small and 
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acceptable. 

 

Figure 5.5 Time history of displacement in y direction of four particles using MD. 

 

Figure 5.6 Time history of velocity in y direction of four particles using MD. 
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Figure 5.7 Time history of Hamiltonian of four particles using MD. 

Finally, the same body has been modeled with coupled NPFEM/MD, where the 4-noded 

quadrilateral element is overlapped with four particles - “equivalent atoms” at four nodes. 

They are coupled as per Eq. (3.46). The results are shown in Figure 5.8 - Figure 5.10. The 

results of displacement and velocity are the same as that of NPFEM, which indicates that 

the NPFEM/MD coupling is effective to maintain the energy conservation in the transition 

zone. For generating the results presented in Figure 5.8- Figure 5.10, the flowcharts shown 

in Figure 4.3 is applied. The result of system energy, the Hamiltonian function, is almost 

the same as that of NPFEM. The oscillation due to nonlinearity of the stiffness mass of MD 

has been reduced to the level not noticeable. The results show that our codes are correct. 
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Figure 5.8Time history of displacement in y direction using coupled NPFEM/MD. 

 

Figure 5.9 Time history of velocity in y direction using coupled NPFEM/MD. 
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Figure 5.10 Time history of Hamiltonian using coupled NPFEM/MD. 

 

5.2 Modeling with Three Elements 

After the codes have been validated in the first sample with three different models, 

NPFEM, MD and coupled NPFEM/MD, the second example that has been studied involves 

three different zones, the FE, MD and FE/MD, as shown in Figure 5.11. Figure 5.11 (a) 

illustrates 3-element body with 8 nodes fixed at the bottom of the body only in y direction 

which is modeled by NPFEM. Figure 5.11 (b) illustrates the same body with 8 particles 

which two adjacent particles interact. Therefore, there are 10 pair particle and modeled by 

MD. Figure 5.11(c), illustrates the same body which is divided into three domains. The 

first domain is the MD domain. It is located at the bottom of the body. The domain on the 

top of the body is the FE domain. The domain in the middle is the handshaking/transition 

area which two domains interact and transfer information. Therefore, the middle element 
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is the combination of both models.  

 

Figure 5.11 Three-element model. 

The material properties in the FE and MD scales used in this sample are the same as those 

in the previous section. The initial conditions are the same as before: a velocity pulse V0= 

−0.01 is applied at top nodes simultaneously downwards. Before conducting the multiple-

scale modeling, the problem is analyzed by using only NPFEM, Figure 5.11 (a), and MD, 

Figure 5.11(b), separately for comparison and validation. 

The results by NPFEM and MD are shown in Figure 5.12 - Figure 5.17. The results show 

that the dynamic characteristics obtained by continuum mechanics and molecular dynamics 

are different for the same body although the total system energy is kept the same. In the 

continuum mechanics based, NPFEM, the degrees of freedom of each node within one 

element are coupled both in the stiffness and mass matrices. In contrast, the element is 

replaced by four representative atoms at four nodes and the nodes are linked to their 

adjacent nodes by the LJ potentials. No diagonal LJ potentials are in the model. 

Furthermore, the mass matrix in MD is diagonal, which implies that there is no inertial 
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coupling between nodes. Thus, there exist higher order modes in NPFEM as shown in 

Figure 5.12 and Figure 5.13 than MD as shown in Figure 5.15 and Figure 5.16.  

 

Figure 5.12 Time history of displacement of top nodes in Y direction by NPFEM – 3 

element model. 
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Figure 5.13 Time history of velocity of top nodes in Y direction by NPFEM – 3 elements 

model 

 

Figure 5.14 Time history of system Hamiltonian by NPFEM – 3 element model. 
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Figure 5.15 Time history of displacement of top nodes in Y direction by MD – 3 element 

model 

 

Figure 5.16 Time history of velocity of top nodes in Y direction by MD – 3 element 

model 
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Figure 5.17 Time history of system Hamiltonian by MD – 3 element model. 

The results with NPFEM and MD coupling are shown in Figure 5.18 - Figure 5.20. The 

body divided by three domains as shown in Figure 5.11 (c) the first domain at the bottom 

of the body consists of one element and is molecular domain the second domain is also 

consists of one element and located on the top of the element and is continuum domain. 

The last domain is in the middle of the body and consists of one element and considered 

and hand shaking area where both domains overlap and transfer information. As Figure 

5.18 - Figure 5.20 clearly shown the dynamic characteristics, reflected by the displacement 

and velocity of top nodes, are different from the ones by either NPFEM or MD as expected. 

However, the total energy of the system remains the same. Thus, we can conclude that the 

coupling method used in the NPFEM/MD zone ensure energy conservation in the 

multiscale modeling. 
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Figure 5.18 Time history of displacement of top nodes in Y direction by NPFEM/MD – 3 

element model. 

 

Figure 5.19 Time history of velocity of top nodes in Y direction by NPFEM/MD – 3 

element model. 
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Figure 5.20 Time history of system Hamiltonian by NPFEM/MD – 3 element model. 

5.3 Modeling with Five by Five Mesh/Lattice 

The code has already been validated with two samples, one and three elements, each with 

three different models; NPFEM shown in Figures 5.2 - 5.4 and Figures 5.12 - 5.14, MD 

shown in Figures 5.5 - 5.7 and Figures 5.15 - 5.17 as well as coupled NPFEM/MD 

demonstrated in Figures 5.8 - 5.10 and Figures 5.18 - 5.20. The final and the most 

complicated case study has been performed is a lattice of 5 by 5 elements with 36 

nodes/particles shown in Figure 5.21. For this model, 25 quadrilateral elements exist and 

for the body 72 by 72 mass and stiffness matrices have been determined manually for 

solving the total Hamiltonian of the system. One approach to ensure the method is valid is 

making the samples more complicated. In this study the number of nodes and as a result 

the number of elements has been increased in both directions. Therefore, in the 

handshaking region we have 5 elements instead of one and the stiffness and mass matrices 
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are much more complicated. Has the method worked accurately and the results shown 

energy conserved and information transferred from one region to the other smoothly, any 

other lattice should work as well. In this model, like the last two samples the body is divided 

into three domains. The first domain at the bottom of the body consists of 10 elements is 

MD. The second domain at the top of the body consists of 10 elements as well is NPFEM 

and the third domain in the middle of the body consists of 5 elements is the 

handshaking/transition area where two domains interact and transfer information. 

Therefore, in the handshaking area the two models, MD and NPFEM, are coupled and we 

have the combination of both models. 

The material properties in NPFEM and MD domains in this sample are the same as those 

in previous sections for one and three elements samples. The initial condition is also the 

same as before: an initial velocity as a pulse of V0= −0.01 is applied at the top nodes 

downwards. For simulation of this model, coupling MD/NPFEM, the problem is solved by 

using MD and NPFEM separately for comparison and validation. 

The results by MD and NPFEM are presented in Figures 5.22 – 5.27. The results are 

consistent with that of obtained from three-element sample Figure 5.11.By means of it, 

although the dynamic characteristics of this model obtained by MD and NPFEM are 

different, the total energy of the system remains the same. In NPFEM model which is based 

on continuum mechanics principals, the degrees of freedom of each node within one 

element are coupled in both stiffness and mass matrices. However, when the nodes of this 

four nodded element is replaced by four atoms in MD model, the atoms interact only with 

adjacent atoms through L-J potentials. In this study no diagonal L-J potentials are 

considered in the model. Moreover, in MD simulation no inertial exists between atomic 
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masses and the mass matrix is diagonal. As a result, higher order modes exist in NPFEM 

as shown in Figures 5.22 and 5.23 than MD as shown in Figures 5.25 and 5.26.  

The results for coupled MD/NPFEM are shown in Figure 5.28 – 5.30. As expected and 

confirmed by previous sections’ results the dynamic characteristics of the coupled 

MD/NPFEM  reflected by displacement and velocity of the top nodes, are different than 

those modeled by MD or NPFEM separately. However, the total energy of the system, 

given by the Hamiltonian, remains the same. Therefore, it can be concluded that the 

coupling methodology used in MD/NPFEM ensure the energy conservation in the 

multiscale modeling. 
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Figure 5.21 5 by 5 lattice. 
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Figure 5.22Time history of displacement of top nodes in Y direction by NPFEM  

25-element model. 

 

Figure 5.23 Time history of velocity of top nodes in Y direction by NPFEM          

         25-element model. 
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Figure 5.24Time history of system Hamiltonian by NPFEM – 25 element model 

 

Figure 5.25 Time history of displacement of top nodes in Y direction by MD              

25 element model. 
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Figure 5.26Time history of velocity of top nodes in Y direction by MD      

                 25-element model 

 

Figure 5.27Time history of system Hamiltonian by MD – 25 element model 
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Figure 5.28Time history of displacement of top nodes in Y direction by MD/NPFEM           

25 element model 

 

Figure 5.29Time history of velocity of top nodes in Y direction by MD/NPFEM                      

25 element model 
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Figure 5.30 Time history of system Hamiltonian by MD/NPFEM – 25 element model 

 

In this section, a body of 5 by 5 element model is studied when a velocity pulse is applied 

downward on all of the top nodes simultaneously. The results shown in Figure 5.22- 5.30 

modeled with MD and NPFEM separately as well as MD/NPFEM coupled to observe 

dynamic characteristics such as displacement and velocity as well as total energy of the 

system. Figures 5.22 -5.24 illustrate the time history of displacement and velocity of the 

top nodes and the total Hamiltonian of the system respectively based on NPFEM 

formulation. Figures 5.25-5.27 illustrate the time history of displacement and velocity of 

the top nodes and the total Hamiltonian of the system respectively this time based on MD 

for the same 5 by 5 lattice. Moreover, Figures 5.28-5.30 illustrate the time history of 

displacement and velocity of the top nodes and the total Hamiltonian of the system using 

multiscale modeling of coupled NPFEM/MD using bridging scale method for comparison. 



105 

 

The results show that the total energy of the system is conserved. Following these results 

another simulation conducted for validation in such a way that a sinusoidal wave applied 

on the top nodes. Then the behaviour of all the nodes was observed from top to the bottom 

of the body in different layers. The purpose of this simulation is to ensure that the sinusoidal 

pulse can pass through all the layers especially the handshaking area. Therefore, the wave 

pass through two layers of continuum model, NPFEM, the handshaking/transition zone, 

MD/NPFEM  and two layers of atomic model, MD, and reaches to the bottom of the lattice 

without losing energy. Figures 5.31 – 5.35showthe dynamic characteristics while the wave 

applies on top nodes and propagate in the body. A sinusoidal wave applied on the top nodes 

simultaneously and the reaction of the nodes in different layers was studied when the wave 

pass through all the layers and reach to the bottom of the lattice. Figure 5.31 shows the 

time history of displacement of the nodes/atoms on different layers in the middle of the 

body. In order to make the results more clearly, Figure 5.32 and 5.33 show the time history 

of displacement and velocity of the top nodes in the beginning of the motion. Figure 5.34 

shows the total energy of the system is conserved. Finally, the last Figure, Figure 5.35, 

shows how the sinusoidal signal applied on the top nodes pass through the different layers 

and reaches to the bottom of the lattice. Therefore, two very important results are achieved; 

firstly, the information can pass through different domains smoothly specially through 

handshaking zone. Secondly, the total energy remains conserved. 
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Figure 5.31 Time history of displacement indifferent layers in Y direction by 

MD/NPFEM 25 element model 

 

Figure 5.32 Magnified time history of displacement of top nodes in Y direction by 

MD/NPFEM 25 element model. 
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Figure 5.33 Magnified time history of velocity of top nodes in Y direction by 

MD/NPFEM 25 element model. 

 

Figure 5.34 Magnified time history of system Hamiltonian by MD/NPFEM                    

25 element model 
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Figure 5.35 Magnified time history of displacement in different layers in Y direction by 

MD/NPFEM 25 element model 
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Chapter 6 CONCLUSIONS AND FUTURE WORK 

6.1 General Conclusions 

In this work, we developed a multiscale modelling method to couple the molecules 

dynamics and continuum mechanics using bridging scale method by energy conservation. 

A new NPFEM has been developed and coupled with the MD for multiscale modeling. In 

the molecular dynamic simulation, the formulation and derivation of the mass matrix as 

well as interatomic force is determined based on Lennard-Jones pair potential. These two 

models overlap in the handshaking area and transfer information such as displacement, 

velocity, acceleration, force, kinetic and potential energy. In this new model, a coefficient 

is chosen to determine the contribution of each model in the handshaking area, which 

should be consistent with the structure of the region such as number of layers, nodes, and 

the type of mesh. 

6.2 Thesis Accomplishments 

The new model successfully passed all the information from one domain to the other 

without energy drift such that the sinusoidal signal, which applies on the top nodes of the 

structure, transferred from all the layers and reached to the bottom of the structure while 

the total energy of the system was constant during this process. Moreover, the newly 

developed method addressed the limitation of the existing models like the ghost force and 

the wave reflection because the formulation from the beginning starts from calculating the 

total Hamiltonian of the system. As we already mentioned in chapter 3, the description of 
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the Hamiltonian of traditional FEM is based on the nodal displacement field, while the MD 

describes the position of atoms/molecules using their position vectors. To overcome this 

inconsistency and unify the description, a new 2D Nodal Position Finite Element Method 

(NPFEM) is proposed here (21). Therefore, in this study two very important goals were 

achieved. First, from the continuum point of view, a new position based model and so 

called nodal position finite element method was developed to replace the conventional 

finite element method. The advantage of this method is that it can be coupled with the 

molecular dynamic more easily and efficiently. Second, from the multiscale modeling point 

of view, a new methodology was developed based on the conservation of energy for both 

regions. Therefore, the formulation starts from writing the Hamiltonian of the system, 

kinetic and potential energy of the two separate models in two different length scales. These 

two models coupled in the handshaking area and transfer information in a smooth and 

seamless way. In the whole process the Hamiltonian of the system was checked and showed 

that the total energy of the system (the sum of the kinetic energy and the potential energy) 

is constant. In the following subsections, we review the results achieved in the model 

separately and in details. 

6.2.1 Development of Nodal Position Finite Element Method 

The dissertation developed a novel Nodal Position Finite Element Method (NPFEM) to 

address the limitations of conventional finite methods in the simulation of the large rigid 

body motion coupled with small elastic deformation. Existing approaches in this field are 

dominated by the finite difference method instead of the most popular and efficient 

engineering analysis method – the finite element method. The work demonstrated that the 
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simulation could be done accurately and more efficiently by the newly developed NPFEM. 

Since, the method is position based rather than displacement based, this is the suitable to 

be coupled with molecular dynamic simulation, which are also positions based. 

6.2.2 Implementation and Validation of NPFEM 

The NPFEM have been implemented into a FORTRAN program. The numerical 

integration is Newmark method. Validation started from one quad-lateral element, which 

goes under two downwards vertical loads on the top nodes, and it is fixed on the bottom 

nodes. The behaviour of the model studied in terms of displacements, velocities, 

accelerations and total energy of the system or Hamiltonian. We observed that the 

Hamiltonian of the system is constant in time or the total energy of the system is conserved. 

Moreover, the results match with rough analytical estimation for this simple model. The 

model gets more complicated first with 3 and then with 25 elements and for all the cases 

the energy is conserved and the values are predictable and matches with the commercial 

software simulation based on conventional finite element method. 

6.2.3 Molecular Dynamic Simulation in Atomic Domain 

In order to model the atomic domain, molecular dynamic is chosen. In MD modeling two 

critical decision should be made one is choosing the interatomic potential and the other one 

is the numerical integration. Lennard-Jones is chosen as interatomic potential and the 

Newmark method is chosen as numerical integration method. The same integration scheme 

has been chosen for both continuum and atomic simulations since for coupling two 

domains the main routine uses for both scales.  
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6.2.4 Implementation and Validation of Molecular Dynamic 

Molecular Dynamic is implemented in FORTRAN code as well. For simulating the atomic 

domain with molecular dynamic, the same one element as continuum was the starting point. 

However, in this method we are dealing with pair atom instead of elements. Therefore, the 

first sample consists of four pair atom with the same element structure goes under the same 

vertical loads. The results show that energy is conserved and the values match with the 

NPFEM results. The same code was run for 3 and 25 elements and the good results 

achieved. 

6.2.5 Development of Multiscale Method Coupling NPFEM and MD 

The purpose of this study is to develop a method as well as program to simulate and study 

characteristics and properties of new materials with application in space and other 

disciplines of science and engineering. From the atomic domain, some of the atoms are 

chosen as representative atoms. These are the same atoms overlap with the continuum finite 

element nodes. In this simulation, atomic region modeled by MD is at the bottom and 

continuum domain modeled by NPFEM is on the top these two regions overlap in the 

middle of the lattice called handshaking area. The most difficult part of this research is 

transferring information like mechanical properties from one domain to the other smoothly 

such that the energy remains constant. All the formulation of this approach is based on 

determination of the total energy of the system or Hamiltonian.  
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6.2.6 Implementation and Validation of Multiscale Method 

Both MD and NPFEM are brought in the same program. The challenging part of the 

problem is writing the mass matrix and the stiffness matrix in the handshaking area. The 

first step was considering one element and treating it like a coupled area. Therefore, the 

mass and stiffness matrices are written with half MD and half NPFEM force calculation 

and reliable results achieved. The results were totally agreed with the pure MD and pure 

NPFEM region and the energy was conserved. The example is the three-element structure 

such that it is fixed vertically at the bottom and free to move horizontally. The bottom 

element is modeled by MD, the top element is modeled by NPFEM and in the middle, and 

both methods have been coupled. As always, it goes under two vertical downward loads 

on the top. As we can see in this model, we have all three regions in the same structure and 

each region has its own simulation strategy or in other words, we have three sets of stiffness 

and mass matrices for this model. These three regions transfer information from one region 

to the next smoothly and the total energy of the system remains conserved. The last part of 

validation is considering a lattice of 5 by 5 elements, fixed at the bottom vertically and free 

to move horizontally. The first two rows from the top are modeled by NPFEM, the first 

two rows from the bottom are modeled by MD and one row in the middle is handshaking 

area and modeled by combination of both NPFEM and MD. Writing the stiffness and mass 

matrices for each node or atom considering all the forces with the proper weight function 

when two models interact is the challenging part of the implementation. The promising 

results achieved for this more complicated lattice as well. This model was tested in three 

different ways; first, loads applied on the top nodes and the behaviour of all the nodes and 

atoms were studied. Second, no loads applied to the lattice and only an initial displacement 
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applied to the first rows and the reaction of the all nodes and atoms were studied. Third, a 

sinusoidal wave applied to the top nodes and the propagation of the sin wave were studied 

through out the layers to make sure the wave pass through all the layers and reaches from 

the top to the bottom of the lattice. In all three cases reasonable results were achieved in 

addition, the energy was conserved. 

6.3 Contributions of Thesis Work 

This dissertation proposed a novel nodal position finite element method to address the 

limitations of conventional finite element method. This research followed two goals; 

proposing an effective way first to solve the dynamic analysis of large rigid body motions 

when coupled with small elastic deformations and second to be coupled with another 

position based model like MD. The limitations of existing finite element methods in 

dealing with the large scale rigid body motions coupled with small elastic deformations is 

one of the motivation of the new formulation. On the other hand, since some of the 

simulation methods for atomic regions such as molecular dynamic formulation are based 

on position vectors rather than displacements. The existing finite element approach is prone 

to accumulated errors due to (a) in each time step the approximation of linearization (b) the 

numerical round off over the long time. This approximation and round off may result in 

the solution being out of balance in the end. However, by proposing the NPFEM we 

overcame this difficulty by deriving a position vector finite element method, in which the 

nodal displacements were replaced by the nodal position as basic variables this ensured 

that at each time step the total balance was enforced. Since the nodal position finite element 

method was solved for the nodal positions of each element, it can eliminate the limitation 
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of small rotation and it can be coupled with the molecular dynamic easily. Molecular 

dynamic also was modeled for the atomic region such that Lennard-Jones interatomic 

potential was used as well as Newmark numerical integration. The formulation of the 

newly proposed multi-scale modeling is such a way that it addresses the limitations of 

existing multiscale methods like ghost force and the wave reflection. The formulation is 

based on determination of the total Hamiltonian of the system. Therefore, it automatically 

solves the problem of the above-mentioned limitations. 

6.4 Future Work 

From the course of thesis studies, the following areas are considered worthy of further 

studies: 

• Developing Nonlinear Nodal Position Finite Element Method, 

• Developing Molecular Dynamic with more complicated interatomic potential, 

• Simulating more complicated lattice with wider handshaking area and proper 

weight function, and 

• Choosing a material such as crosslinked silica aerogels and simulate the actual 

material with this model. 
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