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Abstract

We obtain a rational approximation of the Voigt/complex error function by Fourier expansion of the exponential

function e−(t−2σ)2

and present master-slave algorithm for its efficient computation. The error analysis shows that at

y > 10−5 the computed values match with highly accurate references up to the last decimal digits. The common

problem that occurs at y → 0 is effectively resolved by main and supplementary approximations running compu-

tation flow in a master-slave mode. Since the proposed approximation is rational function, it can be implemented

in a rapid algorithm.

Keywords: complex error function, complex probability function, Voigt function, Faddeeva function, plasma
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1. Introduction

Consider the complex probability function (Faddeyeva & Terent’ev, 1961; Armstrong & Nicholls, 1972; Schreier,

1992)

W (z) =
i
π

∞∫
−∞

exp
(
−t2

)
z − t

dt, (1)

where z = x + iy is a complex argument. The real and imaginary parts of the complex probability function can be

expressed as (Faddeyeva & Terent’ev, 1961; Armstrong & Nicholls, 1972; Schreier, 1992)

K (x, y) =
y
π

∞∫
−∞

exp
(
−t2

)
y2 + (x − t)2

dt (2)

and

L (x, y) =
1

π

∞∫
−∞

(x − t) exp
(
−t2

)
y2 + (x − t)2

dt, (3)

respectively.

At positive y the complex probability function W (z) is reduced to (Faddeyeva & Terent’ev, 1961; Armstrong &

Nicholls, 1972)

W (z) = w (z) , y > 0,

where

w (z) ≡ e−z2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝1 +
2i√
π

z∫
0

et2

dt

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ (4)
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is the complex error function, also known as the Faddeeva function. Consequently, we can write

w (x, y) = K (x, y) + iL (x, y) , y > 0.

The complex error function is a solution of the differential equation with initial condition (Schreier, 1992):

w′ (z) + 2zw (z) =
2i√
π
, w (0) = 1.

The real and imaginary parts of the complex error function satisfy the linear system of the first order partial

differential equations: ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂K(x,y)

∂x = 2
[
yL (x, y) − xK (x, y)

]
∂K(x,y)

∂y = 2
[
yK (x, y) + xL (x, y) − 1√

π

]
,

where in accordance with Cauchy–Riemann equations:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂K(x,y)

∂y =
∂L(x,y)

∂x

∂K(x,y)

∂x = − ∂L(x,y)

∂y .

It is convenient to rewrite Equation (4) in terms of the error and complementary error functions:

w (z) = e−z2

erfc (−iz) = e−z2

[1 − erf (−iz)] (5a)

or

erfc (z) ≡ 1 − erf (z) = e−z2

w (iz) . (5b)

The complex error function has very broad practical applications. In particular, the real part of the complex er-

ror function K (x, y) = Re
[
w (x, y)

]
, known as the Voigt function (Faddeyeva & Terent’ev, 1961; Armstrong &

Nicholls, 1972; Schreier, 1992; Letchworth, 2007), is widely used in many fields of Physics, Astronomy and

Chemistry. Mathematically, the Voigt function represents a convolution of Cauchy (or Lorentzian) and Gaussian

(or Doppler) distributions and can be used to describe the spectral line broadening effects associated with pho-

ton emission and/or absorption, for example, in atmospheric molecules (Berk, 2013; Quine & Abrarov, 2013;

Schreier et al., 2014), photo-luminescent materials (Miyauchi et al., 2013), celestial bodies like stars or planets

(Emerson, 1996) and so on. The Voigt function can accurately describe the spectral characteristics of a system as

it accounts for simultaneous Lorentzian and Doppler broadening effects that occur primarily due to the Heisen-

berg uncertainty principle, particle collisions and their velocity distribution. The imaginary part of the complex

error function L (x, y) = Im
[
w (x, y)

]
is also a useful function that can be applied, for example, to describe accu-

rately spectral behavior in refractive index of various dispersive materials (Balazs & Tobias, 1969; Chan, 1986).

The modern plasma theory involving small-amplitude waves propagating through Maxwellian media utilizes the

plasma dispersion function that is directly proportional to complex error function as given by (Fried & Conte,

1961)

Z (z) =
1√
π

∞∫
−∞

e−t2

t − z
dt = i

√
πw (z) .

An algorithm for numerical solving of Equation (4) can be used as a versatile tool in many practical applications as

the complex error function has a direct relation to some functions that are widely applied in Applied Mathematics

and Physics. This includes the error function (see the Equations (5a) and (5b) above), the normal distribution

function that is commonly utilized in theory of probability and statistics (Weisstein, 2003):

Φ (z) ≡ 1√
2π

z∫
0

e−x2/2 =
1

2
erf

(
z√
2

)

=
1

2

[
1 − e−z2/2 w

(
iz√

2

)]
,
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the Fresnel integral (Abramowitz & Stegun, 1972; McKenna, 1984):

F (z) =

z∫
0

ei(π/2)u2

du

= (1 + i)
[
1 − ei(π/2)z2

w
(√
π (1 + i) z/2

)]
/2

and the Dawson’s integral (Abramowitz & Stegun, 1972; Reichel, 1968; McKenna, 1984):

daw (z) = e−z2

z∫
0

eu2

du =
√
π
−e−z2

+ w (z)

2i
.

As we can see, the error function erf (z) (see Equations (5a) and (5b) above), the plasma dispersion function

Z (z), the normal distribution function Φ (z), the Fresnel integral F (z) and the Dawson’s integral daw (z) are just

reformulations of the complex error function w (z).

In this work we obtain a rational approximation of the Voigt/complex error function by Fourier expansion of

the exponential function exp
[
−(t − 2σ)2

]
and present a master-slave algorithm for its rapid and highly accurate

computation. The algorithm, based on the main and supplementary equations, runs the computation in a master

slave mode. Such approach enables us to sustain the high-accuracy even when the parameter y tends to zero

practically without increase of the computational time.

2. Rational Approximation

Applying the Fourier transform, the real and imaginary parts of the complex error function w (z) can be expressed

as (Armstrong & Nicholls, 1972; Pagnini & Mainardi, 2010; Srivastava & Chen, 1992)

K (x, y) =
1√
π

∞∫
0

exp
(
−t2/4

)
exp (−yt) cos (xt) dt, y > 0 (6)

and

L (x, y) =
1√
π

∞∫
0

exp
(
−t2/4

)
exp (−yt) sin (xt) dt, y > 0, (7)

respectively. Combining the real (6) and imaginary (7) parts together results in

w (x, y) =
1√
π

∞∫
0

exp
(
−t2/4

)
exp (−yt) exp (ixt) dt, y > 0. (8)

Although exponential function e−t2/4 is non-periodic, we can use, nevertheless, the Fourier expansion as a useful

approximation methodology. In particular, it has been shown previously that the Fourier expansion series of the

exponential function (Abrarov et al., 2010a, 2010b):

e−t2/4 ≈ −a0

2
+

N∑
n=0

an cos

(
nπ
τm

t
)
, −τm ≤ t ≤ τm, (9)

where the Fourier expansion coefficients are

an ≈ 2
√
π

τm
exp

(
−n2π2

τ2
m

)

and τm ≥ 12 is the margin value (Abrarov, Quine, & Jagpal, 2010a, 2010b; Geetha, 2010), can be effectively

applied to approximate the Voigt/complex error function. The relation (9) is limited by −τm ≤ t ≤ τm since its right

side is periodic with period T = 2τm.
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Figure 1 depicts this periodic function at τm = 12 (black curve) and the original function e−t2/4 (blue curve). As we

can see from this figure, the function e−t2/4 can be approximated by relation (9) only within the range t ∈ [−τm, τm]

near the origin. However, despite such a restriction we can write

∞∫
0

exp
(
−t2/4

)
exp (−yt) exp (ixt) dt ≈

τm∫
0

exp
(
−t2/4

)
exp (−yt) exp (ixt) dt

since the function e−t2/4 rapidly decreases with increasing t and damps to zero the integrand. Consequently, this

leads to (Abrarov & Quine, 2011, 2012)

w (z) ≈ i
2
√
π

⎡⎢⎢⎢⎢⎢⎣
N∑

n=0

anτm

(
1 − ei (nπ+τmz)

n π + τmz
− 1 − ei (−nπ+τmz)

n π − τmz

)
− a0

1 − eiτmz

z

⎤⎥⎥⎥⎥⎥⎦

= i
1 − eiτmz

τmz
+ i
τ2

mz√
π

N∑
n=1

an
(−1)neiτmz − 1

n2 π2 − τ2
mz2
, Im [z] > 0.

(10)

Although this approximation is rapid and highly accurate, it is not based on rational functions due to presence of

the exponential function eiτmz.

Figure 1. The Fourier expansion series approximation (9) for the exponential function exp
(
−t2/4

)
. The red arrow

shows the integration domain τm = 12. The blue shadowed line is the original exponential function exp
(
−t2/4

)

For sufficiently large values of the parameter y, the multiplication of exponential function e−yt to the both sides

of Fourier expansion series (9) eliminates the restriction −τm ≤ t ≤ τm since the exponential function e−yt rapidly

tends to zero with increasing t:

e−t2/4e−yt ≈
⎡⎢⎢⎢⎢⎢⎣−a0

2
+

N∑
n=0

an cos

(
nπ
τm

t
)⎤⎥⎥⎥⎥⎥⎦ e−yt, y >∼ 1. (11)

Figure 2 illustrates the graphs of e−t2/4e−yt function approximation computed according to approximation (11). As

the right side of exponential function approximation (9) is periodic with period 2τm = 24, we observe the peaks

at t = {24, 48, 72, 96, 120 . . .}. These peaks vanish as the parameter y increases. This behavior can be observed by

comparison of results corresponding to y = 0.025 (green curve) and y = 0.05 (red curve). When the parameter y is

large enough, say around or greater than 1, the exponential multiplier e−yt effectively suppresses to zero the entire

expression on the right side of Equation (11) as t increases. As a result, all peaks practically disappear and only the

initial part of the integrand contributes for integration. We can apply this observation to obtain the complex error

function based on rational function approximation.

107



www.ccsenet.org/jmr Journal of Mathematics Research Vol. 6, No. 2; 2014

Figure 2. The Fourier expansion series approximation (13) for the function exp
(
−t2/4

)
exp (−yt) at y = 0.025

(green curve) and y = 0.05 (red curve). The blue and brown curves correspond to functions exp (−0.025t) and

exp (−0.05t), respectively

Define a real constant σ > 0 and rewrite the complex error function (8) as

w (x, y) =
1√
π

∞∫
0

e−t2/4e−(y+σ)teσteixtdt

or

w (x, y) =
eσ

2

√
π

∞∫
0

e−(t−2σ)2/4e−(y+σ)teixtdt. (12)

From approximation (9) it follows that

e−(t−2σ)2/4e−(y+σ)t ≈
⎡⎢⎢⎢⎢⎢⎣−a0

2
+

N∑
n=0

an cos

(
nπ
τm

(t − 2σ)

) ⎤⎥⎥⎥⎥⎥⎦ e−(y+σ)t, σ >∼ 1. (13)

Geometrically the peak of the exponential function e−(t−2σ)2/4 is shifted towards right with respect to origin by

value equal to 2σ. We, therefore, will refer to the value σ as the shift constant. Now if the shift constant σ is large

enough, say around or greater than 1, the approximation (13) remains valid even for the worst case scenario when

y → 0. This enables us to retain the upper limit of the integral equal to infinity. Thus, substituting approximation

(13) into Equation (12) leads to the complex error function approximation

w (z) ≈ eσ
2

τm (σ − iz)
+

N∑
n=1

An (σ − iz) + Bn

n2π2 + τ2
m(σ − iz)2

, Im [z] > 0, (14)

where An = 2τmeσ
2−n2π2/τ2

m cos (2nπσ/τm) and Bn = 2nπeσ
2−n2π2/τ2

m sin (2nπσ/τm) are the coefficients that are inde-

pendent of x and y parameters. By default, the values in approximation (14) can be taken as N = 23, τm = 12 and

σ = 2. In contrast to Equation (10), the complex error function approximation (14) is based on superposition of

rational functions. Therefore it is a rational (non-polynomial) approximation and its application can be efficient

for rapid computation.

3. Master-Slave Algorithm

3.1 Implementation

The properties of the rational approximation (14) are quite similar to those of the Chiarella and Reichel approxi-

mation given by (see Appendix A)

w (z) ≈ i
h
π z
− i

2h z
π

N∑
n=1

e−n2h2

n2h2 − z2
+

2e−z2

1 − e−2πiz/h

{
1 − H

(
y − π

h

)}
, (15)
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where h is a small parameter and

H (t) =

t∫
−∞
δ (s) ds ≡

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1, t > 0

1/2, t = 0

0, t < 0,

is the Heaviside step function that can be defined in terms of Dirac delta function δ (s). Particularly, at N =
23, τm = 12, σ = 2 and h ≡ π/τm the approximations (10) and (15) result in highly accurate values for the

typical range of the input parameters 0 < x < 40, 000 and 10−4 < y < 102 applied in quantitative spectroscopy

(Wells, 1999; Quine & Drummond, 2002). However, the Chiarella and Reichel approximation contains exponential

functions e−z2

and e−2πiz/h that requires longer time for computation for input array z = {z1, z2, z3 . . .}, which size

in quantitative radiative transfer applications may contain hundreds of millions or sometimes more than a billion

elements. Therefore, the rational approximation (14) can be advantages for more rapid computation. In particular,

the rational approximation (14) is faster in computation than approximations (10) and (15) by about 20% and

50%, respectively. The enhanced performance is achieved because in contrast to Equations (10) and (15) the

approximation (14) is a rational function that contains no trigonometric or exponential functions dependent on

input parameters x or y.

Another significant advantage of approximation (14) is its integrability. Specifically, unlike approximations (10)

and (15), the rational approximation (14) is integralble with respect to parameter x = Re [z] and, therefore, can be

used for the spectrally integrated (or frequency integrated) Voigt function (Brüggemann & Bollig, 1992; Quine &

Abrarov, 2013).

Approximations (14) and (15) have about same coverage over the complex plane. Specifically, the computational

tests reveal that both these approximations provide high-accuracy in the first quadrant of the complex plane except

a very narrow band area x > 4 ∩ y < 10−5 along y axis. It should be noted, however, that the deterioration

in accuracy in computation of the Voigt/complex error function w (x, y) at y → 0 is a common problem (see

for example recently published Amamou et al. (2013). Although computation with multi-precision can resolve

this problem, the rapid programming languages such as C/C++, FORTRAN and Matlab need multi-precision

libraries of function files that cause installation and validation complexities and also make computation more time

consuming. As a result, the multi-precision computation is quite inconvenient in implementation.

We propose instead the following supplementary approximation (see derivation in Appendix B)

w (x, ε) ≈
(
1 − ε

ymin

)
e−x2

+
ε

ymin

K (x, ymin) + iL (x, ymin) , 0 < ε < ymin, ymin << 1. (16)

This approximation has several advantages. First, it needs no partition of the complex plane in a program code in

order to separate the narrow band area x > 4 ∩ y < 10−5, where approximation (14) has insufficient accuracy. Sec-

ondly, it is unnecessary to use any other approximation for this narrow band area as the approximation (14) alone

performs de facto the main computation (the approximation (16) itself does not determine the values K (x, ymin)

and L (x, ymin) – its role is supplementary). Choosing small ymin, say ymin = 10−5, we can find K (x, ymin) and

L (x, ymin) through main (or master) approximation (14) and then once these two values are found they are just

substituted into supplementary (or slave) approximation (16). As the approximation (16) performs few operations

of multiplication, summation and the exponentiation e−x2

that is nearly instant compared to calculation time for

determination of w (x, ymin) = K (x, ymin) + iL (x, ymin), it returns a rapid result practically without deceleration.

Cases where the input parameter y is less than 10−6 are rarely required in practice. For example, the input parameter

range in radiative transfer applications is 10−4 < y < 102 (Wells, 1999; Quine & Drummond, 2002) and at N = 23,

τm = 12 and σ = 2 the accuracy of the approximation (14) in this domain can be better than 10−14. Therefore, the

application of approximation (14) alone is sufficient almost in all practical tasks.

It should be noted that in program coding it is convenient to rewrite the approximation (14) as

w (z) ≈ ψ (z + iσ) ,

where

ψ (z) ≡ i
eσ

2

τm z
−

N∑
n=1

Aniz − Bn

n2π2 − τ2
mz2
, Im [z] > 0,
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is defined in order to deal with simplified function ψ (z). Consequently, the approximation procedure in the master-

slave approach can be reproduced as

w (x, y) ≈

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ψ (x, y + σ) , {x, y} �

{
x > 4 ∩ y < 10−5

}
(
1 − y

ymin

)
e−x2

+
y

ymin

Re
[
ψ (x, ymin + σ)

]
+ iIm

[
ψ (x, ymin + σ)

]
, x > 4 ∩ y < 10−5.

According to this expression, if {x, y} �
{
x > 4 ∩ y < 10−5

}
the main body of the program passes the complex

argument x + i (y + σ) to function file associated to ψ (z). Otherwise, if x > 4 ∩ y < 10−5 the main body of

the program passes the complex argument x + i (ymin + σ) to function file associated to the slave equation. This

programming procedure simplifies the script and makes the computation flow optimized.

3.2 Error Analysis

In order to perform error analysis, it is convenient to define the relative errors for the real and imaginary parts of

the complex error function as

ΔRe =

∣∣∣∣∣∣∣∣
Re [w (z)] − Re

[
wre f . (z)

]
Re

[
wre f . (z)

]
∣∣∣∣∣∣∣∣

and

ΔIm =

∣∣∣∣∣∣∣∣
Im [w (z)] − Im

[
wre f . (z)

]
Im

[
wre f . (z)

]
∣∣∣∣∣∣∣∣ ,

respectively, where wre f . (z) is the reference. To generate reference values we can use, for example, the Matlab

code in recently published Algorithm 916 (Zaghloul & Ali, 2011). Alternatively, these values can be generated by

latest versions of Mathematica computational software that supports error function of complex argument.

Table 1a. The real part values generated by master-slave algorithm at N = 23, τm = 12 and σ = 2

Parameter x Parameter y MS Algorithm Reference ΔRe

10 10 2.827946745423260E-2 2.827946745423246E-2 4.9074E-15

10 5 2.276794835982029E-2 2.276794835982029E-2 0

5 5 5.696543988817736E-2 5.696543988817698E-2 6.5777E-15

5 1 2.300313259406022E-2 2.300313259405996E-2 1.1312E-14

1 1 3.047442052569137E-1 3.047442052569126E-1 3.6431E-15

1 0.5 3.549003328675789E-1 3.549003328675779E-1 2.8154E-15

0.5 0.5 5.331567079121758E-1 5.331567079121750E-1 1.6659E-15

0.5 0.1 7.175877421575957E-1 7.175877421575945E-1 1.7019E-15

0.1 0.1 8.884785624756447E-1 8.884785624756437E-1 1.1246E-15

0.1 0.05 9.370899608463568E-1 9.370899608463564E-1 3.5543E-16

0.05 0.05 9.437569804542533E-1 9.437569804542511E-1 2.3528E-15

0.05 0.01 9.863741674670803E-1 9.863741674670786E-1 1.6883E-15

0.01 0.01 9.887176929549562E-1 9.887176929549546E-1 1.5720E-15

0.01 0.005 9.942841362863454E-1 9.942841362863438E-1 1.5632E-15

0.005 0.005 9.943582909814794E-1 9.943582909814782E-1 1.2282E-15

0.005 0.001 9.988476767367449E-1 9.988476767367436E-1 1.3338E-15

0.001 0.001 9.988716223354132E-1 9.988716223354113E-1 1.8895E-15

0.001 0.005 9.994350614505827E-1 9.994350614505807E-1 1.9995E-15
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Table 1b. The imaginary values generated by master-slave algorithm at N = 23, τm = 12 and σ = 2

Parameter x Parameter y MS Algorithm Reference ΔIm

10 10 2.813843327633706E-2 2.813843327633690E-2 5.6718E-15

10 5 4.516957942734130E-2 4.516957942734106E-2 5.3767E-15

5 5 5.583874277539121E-2 5.583874277539103E-2 3.2309E-15

5 1 1.103328325535806E-1 1.103328325535800E-1 5.5344E-15

1 1 2.082189382028322E-1 2.082189382028316E-1 2.7993E-15

1 0.5 3.428717191311013E-1 3.428717191311007E-1 1.7809E-15

0.5 0.5 2.304882313844586E-1 2.304882313844584E-1 8.4295E-16

0.5 0.1 4.084744016030165E-1 4.084744016030165E-1 0

0.1 0.1 9.433165105728522E-2 9.433165105728510E-2 1.3241E-15

0.1 0.05 1.027211838318162E-1 1.027211838318160E-1 2.0265E-15

0.05 0.05 5.160666571948401E-2 5.160666571948396E-2 9.4120E-16

0.05 0.01 5.533866499448285E-2 5.533866499448279E-2 1.1285E-15

0.01 0.01 1.108529605747726E-2 1.108529605747726E-2 0

0.01 0.005 1.118361107191589E-2 1.118361107191588E-2 7.7557E-16

0.005 0.005 5.592083894931600E-3 5.592083894931594E-3 9.3063E-16

0.005 0.001 5.631813328240978E-3 5.631813328240973E-3 9.2407E-16

0.001 0.001 1.126380671599868E-3 1.126380671599866E-3 1.7326E-15

0.001 0.005 1.127378979781962E-3 1.127378979781961E-3 9.6170E-16

Tables 1a and 1b provide some results computed by main approximation (14) for the real and imaginary parts,

respectively. The fourth and fifth columns show the references and relative errors. As we can see from these tables,

the numbers generated by approximation (14) can match up to the last significant digits with highly accurate

reference values.

It is interesting to note that the Weideman’s approximation (see Equation (38-I) and corresponding Matlab code in

Weideman, 1994):

w (z) ≈ π
−1/2

L − iz
+

2

(L − iz)2

N−1∑
n=0

γn+1

(L + iz
L − iz

)n

, (17)

where L = 2−1/4N1/2 and

γn =
L
π

∞∫
−∞

e−t2
(L − it

L + it

)n

dt

are the expansion coefficients that can be determined elegantly by FFT method, is the only known so far rational

approximation of the complex error function that can provide accuracy better than 10−9. Due to rational function

representation, the Weideman’s approximation (17) is rapid in computation and, consequently, widely applied in

practice. However, as it has been shown in a recent publication, in order to sustain accuracy 10−6 at y ≥ 10−5 and

0 ≤ x ≤ 15 the integer N determining the number of the summation terms in Weideman’s approximation must

be increased up to 32 (Abrarov & Quine, 2011). Furthermore, according to Schreier et al. (2014) in the range

y < 10−5 and 4 < x < 15 the Weideman’s approximation (17) at N = 32 cannot provide accuracy better than

8 × 10−5. Despite the fact that in approximation (14) the integer N = 23 is smaller, it provides essentially higher

accuracy. Specifically, the accuracy of the approximation (14) in the same region y ≥ 10−5 and 0 ≤ x ≤ 15 is

better than 10−12 and, in general, it can be better than 10−14 at y > 10−5 as we can see in the Tables 1a and 1b. This

confirms that the convergence rate in the rational approximation (14) is more rapid than that of in the Weideman’s

approximation (17).

It should also be noted that the Weideman’s approximation (17) is a rational function, dependent on the power

n. As a result of exponentiations in polynomial terms, the Weideman’s approximation needs more computational

resources and, consequently, it is more sensitive to the size of input array z = {z1, z2, z3 . . .}. In particular, the com-

putational tests show that array programing software Matlab requires longer computational time when size of input
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array z exceeds several million elements (Abrarov & Quine, 2011). Therefore application of the approximation

(14) may be more efficient for extended size of the input array as it is a rational function, independent of power n.

Tables 2a and 2b show some results computed by supplementary approximation (16) for the real and imaginary

parts in the narrow area x > 4 ∩ y < 10−5. As one can see from the last columns, the accuracy in this narrow area

is better than 10−9. Although further improvement in accuracy can be obtained by higher orders of Taylor series

in derivation of the slave approximation (16), this is absolutely unnecessary since the accuracy better than 10−9 is

more than enough for practical applications.

Table 2a. The real part values generated by master-slave algorithm at N = 23, τm = 12 and σ = 2 and small y

Parameter x Parameter y MS Algorithm Reference ΔRe

10 1E-6 5.728717564491399E-9 5.728717562239249E-9 3.9313E-10

10 1E-7 5.728717564491400E-10 5.728717562239307E-10 3.9312E-10

10 1E-8 5.728717564491400E-11 5.728717562239308E-11 3.9312E-10

10 1E-9 5.728717564491400E-12 5.728717562239308E-12 3.9312E-10

10 1E-10 5.728717564491400E-13 5.728717562239308E-13 3.9312E-10

10 1E-11 5.728717564491400E-14 5.728717562239308E-14 3.9312E-10

10 1E-12 5.728717564491400E-15 5.728717562239308E-15 3.9312E-10

10 1E-13 5.728717564491400E-16 5.728717562239308E-16 3.9312E-10

10 1E-14 5.728717564491399E-17 5.728717562239308E-17 3.9312E-10

10 1E-15 5.728717564491401E-18 5.728717562239308E-18 3.9312E-10

Table 2b. The imaginary part values generated by master-slave algorithm at N = 23, τm = 12 and σ = 2 and small

y

Parameter x Parameter y MS Algorithm Reference ΔIm

10 1E-6 5.670539423282959E-2 5.670539423288701E-2 1.0127E-12

10 1E-7 5.670539423282959E-2 5.670539423288759E-2 1.0229E-12

10 1E-8 5.670539423282959E-2 5.670539423288760E-2 1.0230E-12

10 1E-9 5.670539423282959E-2 5.670539423288760E-2 1.0230E-12

10 1E-10 5.670539423282959E-2 5.670539423288760E-2 1.0230E-12

10 1E-11 5.670539423282959E-2 5.670539423288760E-2 1.0230E-12

10 1E-12 5.670539423282959E-2 5.670539423288760E-2 1.0230E-12

10 1E-13 5.670539423282959E-2 5.670539423288760E-2 1.0230E-12

10 1E-14 5.670539423282959E-2 5.670539423288760E-2 1.0230E-12

10 1E-15 5.670539423282959E-2 5.670539423288760E-2 1.0230E-12

The computational accuracy of the master-slave algorithm can be seen in the Figures 3a-4b. Due to logarithmic

values of the relative errors, the color bars in these figures indicate the order of the accuracy. Figure 3a illustrates

the relative error for the real part of the complex error function in the range 0 < x < 15 and 10−6 < y < 15. Figure

3b shows the relative error for the real part of the complex error function in the range 0 < x < 15 and 0 < y < 10−6.

Figure 4a depicts the relative error for the imaginary part of the complex error function in the range 0 < x < 15

and 10−6 < y < 15. Figure 4b shows the relative error for the imaginary part of the complex error function in the

range 0 < x < 15 and 0 < y < 10−6. As one can see from these figures, at y > 10−5 the accuracy of the master-slave

algorithm can be better than 10−14 while at y < 10−6 the accuracy still remain high and better than 10−9. Thus,

the computational test reveals that almost in all first quadrant of the complex plane except a very narrow band area

x > 4 ∩ y < 10−5 along y-axis, the approximation (14) is rapidly convergent.
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Figure 3a. Logarithm of relative error log10ΔRe for the real part of the complex error function in the range

0 < x < 15 and 10−6 < y < 15

Figure 3b. Logarithm of relative error log10ΔRe for the real part of the complex error function in the range

0 < x < 15 and 0 < y < 10−6

Figure 4a. Logarithm of relative error log10ΔIm for the imaginary part of the complex error function in the range

0 < x < 15 and 10−6 < y < 15
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Figure 4b. Logarithm of relative error log10ΔRe for the imaginary part of the complex error function in the range

0 < x < 15 and 0 < y < 10−6

3.3 Application at Large |z|
When a complex argument z is large enough by absolute value, say |x + iy| >∼ 15, the computation of the complex

error function w (z) is not problematic and many rapid rational approximations are available in literature for algo-

rithmic implementation. For example, if the high accuracy is required, it is reasonable to apply the approximation

by truncating a continued fraction equation (Gautschi, 1970; Poppe & Wijers, 1990a, 1990b):

w (z) =
μ0

z−
1/2

z−
1

z−
3/2

z−
2

z−
5/2

z−
3

z−
7/2

z− · · · , μ0 = i/
√
π.

Otherwise, if the high accuracy is not a concern, a rational approximation reported by Hui et al. (1978) may be

used for rapid and reasonably accurate computation of the complex error function w (z).

As we can see from this implementation, the actual range of the parameter x in slave approximation (16) cannot be

smaller than 4 and nor greater than 15 at y ≤ 10−5. Therefore the second term ε
ymin

K (x, ymin) in approximation (16)

remains considerably larger compared to the first term
(
1 − ε

ymin

)
even for the worst case scenario when ε → ymin

and x→ 15. This prevents the uncertainty in the real part of the complex error function due to computer limitation

for the smallest number.

At |x + iy| >∼ 1000, the high-accuracy can be obtained by using very simple rational approximations (Zaghloul &

Ali, 2011): ⎧⎪⎪⎨⎪⎪⎩
K (x, y) ≈ y√

π(x2+y2)
L (x, y) ≈ x√

π(x2+y2)
,

for the real and imaginary parts of the complex error function, respectively. Obviously, these equations can be

combined together as

w (x, y) = K (x, y) + iL (x, y) ≈ y + ix√
π
(
x2 + y2

) .
3.4 Coverage Extension at y < 0

Approximations (10) and (14) of the complex error function are valid only when the parameters y = Im [z] is

positive. However, these approximations applicability are not limited only in the first x > 0, y > 0 and second

x < 0, y > 0 quadrants, but can also be extended in the third x < 0, y < 0 and fourth x > 0, y < 0 quadrants.

Specifically, from the property of the complex error function (McKenna, 1984; Zaghloul & Ali, 2011):

w (−z) = 2e−z2 − w (z)

it follows that

w (∓x − i |y|) = 2e−(±x+i|y|)2 − w (±x + i |y|) .
As we can see from the last identity, application of the rapid master slave algorithm, based on approximation (14),

can be extended for coverage over the entire complex plane even at negative y.
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4. Generalization

For future prospects in applications, the described methodology can be generalized to an integral of kind:

∞∫
0

e−t2

f (t) dt (18)

by defining a real shift constant ς > 0. The exponential function e−t2

can be approximated as (Abrarov & Quine,

2011)

e−t2 ≈ −θ0
2
+

N∑
n=0

θn cos

(
nπ
tm

t
)
, −tm ≤ t ≤ tm,

where

θn ≈
√
π

tm
exp

(
−n2π2

4t2
m

)

are the Fourier expansion coefficients and tm is the margin value that according to Milone et al. (1988) can be taken

equal to 6. As a conversion from function e−t2/4 to function e−t2

can be obtained by change of the variable t/2→ t,
the corresponding margin value tm and shift constant ς for the Fourier expansion series of the exponential function

e−t2

are changed by factor of two, i.e.: tm = τm/2 and ς = 2σ. Similar to approximation (13) we can write now

e−(t−ς/2)2

e−ςt ≈
⎡⎢⎢⎢⎢⎢⎣−θ02 +

N∑
n=0

θn cos

(
nπ
tm

(t − ς/2)

) ⎤⎥⎥⎥⎥⎥⎦ e−ςt, ς >∼ 2. (19)

Lastly, applying the series expansion (19) in integral (18) leads to the generalized approximation

∞∫
0

e−t2

f (t) dt = eς
2/4

∞∫
0

e−(t−ς/2)2

e−ςt f (t) dt

≈ eς
2/4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
θ0
2

∞∫
0

e−ςt f (t) dt +
N∑

n=1

∞∫
0

θn cos

(
nπ
tm

(t − ς/2)

)
e−ςt f (t) dt

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ .
(20)

If f (t) is an elementary function or a combination of elementary functions, the integrations on the right side of

approximation (20) may result in a rational function.

In fact, the complex error function approximation (14) is a specific case that can be obtained from the generalized

approximation (20). In particular, by substituting f (t) = 2 exp
[
2 (ixt − yt)

]
/
√
π into integral (20), we get the

complex error function w (x, y) since change of the variable t → t/2 results in (see Equation (8))

2√
π

∞∫
0

e−t2

e2(ixt−yt)dt =
1√
π

∞∫
0

e−t2/4e−yteixtdt ≡ w (x, y) .

Thus, at f (t) = 2 exp
[
2 (ixt − yt)

]
/
√
π we can obtain approximation (14) directly from the generalized approxi-

mation (20).

5. Conclusion

We derived a rational approximation of the Voigt/complex error function by Fourier expansion of the exponential

function e−(t−2σ)2

and present master-slave algorithm for its rapid and high-accuracy computation. The error esti-

mation shows that at y > 10−5, the proposed approximation (14) can generate numbers with accuracy better than

10−14. As the main approximation is a rational function, it can be implemented in rapid computation. The common

problem that occurs at y → 0 is resolved by main and supplementary approximations running in a master-slave

mode. Such approach enables the high-accuracy computation even at y << 1 practically without deceleration in

computation.
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Appendix A

Using the Goodwin’s method (Goodwin, 1949) Chiarella and Reichel derived an approximation for the following

integral (Chiarella & Reichel, 1968):

W0 (x, t) = U0 (x, t) + iV0 (x, t) =
w

(4πt)1/2

∞∫
−∞

e−u2

u2 + w2
du,

where

U0 (x, t) =
1

(4πt)1/2

∞∫
−∞

e−(x−y)2/(4t)

1 + y2
dy,

V0 (x, t) =
1

(4πt)1/2

∞∫
−∞

e−(x−y)2/(4t)y
1 + y2

dy,

and w = (1 − ix) /
(
2
√

t
)
. In particular, according to Matta and Reichel (1971), the integral above can be repre-

sented as (see also Chiarella & Reichel, 1968)

W0 (x, t) =
h

w(4πt)1/2
+

2hw
(4πt)1/2

∞∑
n=1

e−n2h2

w2 + n2h2

+

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
P, if t > h2/

(
4π2

)
P
2
, if t = h2/

(
4π2

)
0, if t < h2/

(
4π2

)
,

− w
(4πt)1/2

E (h,w) ,

(A.1)

where h is a small parameter, P = πew2

(πt)1/2(1−e2πw/h)
and

E (h,w) = 2e−π
2/h2

∞∫
−∞

e−z2

{
(z − iπ/h)2 + w2

} {
1 − e−2πiz/h−2π2/h2

}dz

is a small error term. Making use of

K (x, y) =
1

y
√
π

U0

(
x
y
,

1

4y2

)
,

L (x, y) =
1

y
√
π

V0

(
x
y
,

1

4y2

)

and ignoring the error term, the Equation (A.1) can be expressed in terms of the complex error function as shown

by approximation (15).

Appendix B

The dependence K (x, y) vs. y in the range
[
0, ymin

]
is nearly linear when ymin << 1. Since

∂K(x,y)

∂x

∣∣∣∣
y=0
� 0 and

K (x, y = 0) � 0, from trivial geometry it follows that

K (x, ε) ≈ ε

ymin

[
K (x, ymin) − K (x, 0)

]
+ K (x, 0) , 0 ≤ ε < ymin, ymin << 1

or

K (x, ε) ≈
(
1 − ε

ymin

)
e−x2

+
ε

ymin

K (x, ymin) , 0 ≤ ε < ymin, ymin << 1. (B.1)

since K (x, 0) ≡ e−x2

.
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As the partial derivative of the L (x, y)-function is

∂L (x, y)

∂x

∣∣∣∣∣
y=0
= 0,

and L (x, y = 0) = 0, its approximation is straightforward

L (x, ε) ≈ L (x, ymin) , 0 ≤ ε < ymin, ymin << 1. (B.2)

Combining the real (B.1) and imaginary (B.2) parts together we obtain the complex error function approximation

as shown by Equation (16). It should be noted that approximation (16) is actually obtained by low order of the

Taylor expansion series. The higher order of the Taylor expansion series can be used for further improvement of

the accuracy. However, this is not required as accuracy better than 10−9 is sufficient practically for all applications.

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution

license (http://creativecommons.org/licenses/by/3.0/).

119


