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Abstract

Ownership of software artifacts has become a point of interest to software teams.

Researchers modeled ownership of software artifacts with different models and in re-

lationship with a variety of code and developers’ performance metrics. These models

have been evaluated for both propriety and open-source software. Bightsquid is a soft-

ware startup that provides a healthcare communication system. At the time of the

COVID-19 pandemic (starting March 2020), the company actively modified its pro-

cesses to improve developers’ experience and accountability. As the provider of health

communications, Brighsquid was receiving an amplified number of user requests to

accommodate the changing needs in the health care system. Yet, the management

team observed the lack of accountability among the developers in accepting and final-

izing these requests. The company changes the task assignment process to the team

with the main motivation to increase developers’ accountability.

Motivated by this problem statement and the status of the partnered company,

this thesis presents four main contributions: a systematic literature review on software

ownership, a case study with Brighsquid to compare their ownership status with

existing research, an evaluation of the impact of enhanced accountability through a

comparative analysis of issue assignment models, and a survey of software developers

to explore the broader relationship between accountability and ownership.
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Chapter 1

Introduction

The concept of software ownership has long been a topic of discussion in the software

engineering literature, particularly in relation to code quality. While the literature

offers a wealth of knowledge on the subject, there is a lack of standardized benchmarks

for comparison. Recognizing this gap, we partnered with an industry organization

to conduct an evaluation that aims to compare code ownership practices with the

state-of-the-art approaches, as well as examine how different task assignment models

impact code ownership and quality. Our collaboration with Brightsquid, a company

specializing in secure communication solutions for the healthcare industry, arose from

their growing concern regarding developer ownership and accountability [1]–[5]. In

a collaborative project, Brighsquid was interested to analyze their current situation

in order to strike a balance between fostering collaboration among developers while

ensuring individual accountability. To accomplish this, our study entails an analysis of

ownership models in software development and investigates the relationship between

ownership and accountability. We then conducted a survey with 67 developers to

evaluate the extent these findings are applicable outside this particular case study

with Brighsquid.

This thesis is based on two manuscripts, one includes a holistic systemic literature

review on ownership and dependent, control and independent variables. Hence, we

only briefly explain the main concepts of ownership and accountability in this section
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and further discuss the objectives of this thesis and moving forward to presenting

each paper.

1.1 Ownership in Software Teams

In the field of Software Engineering, ownership refers to the possession, control, or

rights associated with artifacts, specifically software code. The concept of ownership

has been widely explored in relation to different performance metrics of projects,

products, and teams. Ownership within software teams is of great importance in

cultivating dedication, initiative, and ensuring the delivery of high-quality work [6],[7].

Within the software industry, two primary forms of ownership have been the subject of

discussion: Psychological Ownership, which relates to an individual’s personal sense

of possession [8], and Corporal Ownership, which is associated with the developmental

history of software artifacts such as code, tasks, bugs, and products etc. Corporal

Ownership, in particular, holds significant popularity within the realm of software

development.

1.2 Developers’ Accountability and Productivity

Accountability is an obligation or willingness to accept responsibility or to account

for one’s actions1. In the software development industry, it refers to the responsibility

of individuals or teams for their actions, decisions, and outcomes related to the devel-

opment process [9]. Ownership has a significant impact on both the organization and

the individual and implementing effective accountability systems can lead to positive

outcomes in terms of task performance [10]. When accountability is shared among

team members, it brings about added risks for individuals as if a team member fails

to fulfill their responsibilities, it creates challenges for the entire team to accomplish

their tasks effectively [11].

1https://www.merriam-webster.com/dictionary/accountability
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Another important concept in software development is the developer’s productiv-

ity which is about how efficiently and effectively developers get their work done in

software development teams. In the context of software development, organizations

measure productivity by looking at the amount of work and time invested in produc-

ing software [12]. Productivity in software development extends beyond individual

performance. If a developer focuses solely on their personal productivity, it can neg-

atively impact the overall productivity of the team [13]. Traditionally, managers

measure the productivity of software developers through the number of lines of code

or function points implemented per hour worked, aiming to reduce costs, enhance

quality, and accelerate software development[14] but developers consider their days

productive when they can successfully finish numerous or big tasks without facing sig-

nificant interruptions or context switches [15]. Recently, the COVID-19 pandemic has

led to a widespread discussion on productivity as companies implemented Work From

Home (WFH) arrangements. This shift has had a significant impact both positive

and negative on developer productivity [16].

1.3 Task Assignment in Software Teams

Team culture and project management practices have an impact on task assignments.

In both open source software (OSS) development and agile software development,

team culture holds significant importance as these approaches heavily rely on col-

laboration and cooperation among developers [17]. Agile practices often refer to the

collective and voluntary modes of task assignment where every developer is the owner

of the team’s “product” [18]. This task ownership holds significant importance as it

makes team members more responsible for their own tasks which plays an important

factor in the progress and success of the project [19]. Usually, the team leader takes

on the responsibility of assigning tasks and bugs, dedicating considerable time to

determining the most appropriate developer for each assignment [20]. However, if a

task is assigned to an unsuitable team member, it not only compromises the quality
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of the outcome but also results in the wastage of valuable resources like time, money,

and the trust of the client [21]. For these, Task allocation involves considering various

factors such as technical expertise, time zone differences, resource cost, task depen-

dencies, vendor reliability, and task size. Identifying these factors is crucial to ensure

that important aspects are not overlooked when devising task assignment strategies

[22]. Task prioritization is another critical responsibility for team leaders as it ensures

that the company’s key goals remain in focus and can be successfully achieved. It

serves as the foundation for a successful project, enabling effective allocation of re-

sources and alignment with strategic objectives [23]. Several studies have addressed

the challenges related to task assignment in software development teams and have

proposed various approaches to tackle them [24], [25], [26].

1.4 Motivation and Objectives

Our partner company Brightsquid is a global provider of HIPAA-compliant commu-

nication solutions providing messaging, email, and large file transfer for medical and

dental professionals since 2009. Their comprehensive range of services includes mes-

saging, email, and secure large file transfer, empowering healthcare communities to

aggregate, generate, and share protected health information seamlessly. When we

performed our study Brightsquid had a total of 39 projects, with a diverse team of

52 developers who have contributed to the company from 2009 to 2022.

One notable characteristic of the Brightsquid team is their distributed nature, al-

lowing developers to work remotely from different locations, leveraging the company’s

online-based operations. As part of our collaboration, Brightsquid wanted to evaluate

their code ownership status, recognizing the vital connection between ownership and

software quality. They also expressed interest in benchmarking their status against

other companies that have previously discussed and analyzed ownership dynamics.

Furthermore, as a healthcare service provider during COVID-19 pandemic the user

requests increased significantly. To cope up with excessive market demands and user
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needs Brightsquid realized that they need to expand their developer’s accountability

toward end-customers. Despite maintaining their existing distribution approach, they

proactively responded to the overwhelming customer demands and evolving market

needs by introducing a new issue assignment model to enhance developer accountabil-

ity where developers were fully responsible to execute and deliver a user request to end

users instead of the product manager. Motivated by the change of issue assignment

model, Brightsquid aimed to assess the impact of their revised approach, specifically

focusing on the relationship between expanded accountability and ownership within

the company. Additionally, they expressed a broader interest in understanding devel-

opers’ perspectives on the relationship between ownership and accountability ouside

of Brightsquid. This prompted us to:

• Perform a systematic literature review on the software engineering ownership

model, evaluations, and their applicability status.

• Evaluate and compare the overall status of ownership of Brightsquid with the

state-of-art research.

• Evaluate the status of ownership with the current and previous issue assignment

model of Brightsquid.

• Qualitatively evaluate the relation between ownership and accountability through

a developer survey.

The research questions addressed in our thesis are presented in Table 1.1 where

RQ1, RQ2 and RQ3 were answered through a systematic literature review. We repli-

cated three studies identified in the literature review using Brightsquid data to address

RQ4. Then, for RQ4 and RQ5, we collected Brightsquid data from March 2018 to

March 2020 and March 2020 to March 2022 to analyze the impact of new issue assign-

ment model with enhanced accountability. Finally, we conducted a developer study
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Table 1.1: Research Questions addressed in our thesis

Research Questions Type Chapter

RQ1: How is ownership defined and modeled in software engineering
literature?

Literature
Review

2

RQ2: What treatment and outcomes have been used in modeling
ownership in software engineering literature?

Literature
Review

2

RQ3: What analytics and research methods have been employed in
the study of ownership in software engineering, and to what extent
are these studies replicable?

Literature
Review

2

RQ4: How does the code ownership status in Brighsquid compare
with the findings of state-of-the-art studies?

Replication
and case
study

2

RQ5: How has the relationship between ownership and software qual-
ity metrics changed following the implementation of the new issue
assignment model at Brightsquid?

Case
Study

3

RQ6: How did the revision of BrightSquid’s issue assignment process
affect the performance of prediction models in identifying defective
files and directories?

Case
Study

3

RQ7: How do developers perceive the relationship between account-
ability and ownership?

Survey 3

to explore different aspects of ownership and accountability and their relationship for

addressing RQ4.

1.5 Thesis Outline

The rest of this thesis is organized as follows: Chapter 2 presents the systematic lit-

erature review on the software ownership model (RQ1 -RQ3) and reports the results

of the ownership replication analysis of Brightsquid (RQ4). To address RQ1, we col-

lected and combined definitions from various research papers related to ownership in

software engineering. This includes identifying the type of artifact being discussed,

the role of the artifact owner in its maintenance, and the degree of ownership indicat-

ing the rights, responsibilities, and involvement of team members in maintaining the

artifact. To answer RQ2, We made a comprehensive list of artifacts and outcomes

associated with ownership models and found that bug is the most frequently con-

sidered outcome in the software industry. Then in RQ3, we analyzed the ownership
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model type ( descriptive, diagnostic, predictive, or prescriptive ), data availability,

and replicability of our selected studies. We replicated the three most relevant studies

from our literature review to evaluate the status of code ownership in Brighsquid. We

applied ownership models of those studies to nine active projects of Brighsquid for

addressing RQ4.

In Chapter 3, We conducted a code change analysis of Brightsquid to investigate

the effects of previous and current issue assignment models (RQ5, RQ6). For RQ5, we

examined the relationship between code ownership metrics and code quality, specifi-

cally how this relationship changed with the adoption of the new model. To address

RQ6, we compared the performance of a classification model in predicting defects

before and after the process change, as well as evaluated the importance of metrics

in predicting defects. Additionally, we surveyed 67 developers to gain insights into

their perceptions of accountability and ownership (RQ7).

Finally, we conclude our study at Chapter 4 summarizing our key findings, contri-

butions and future work.
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Chapter 2

Examining Code Ownership in
Software Teams: A Systematic
Literature Review and Replication
Study at Brightsquid

The effective ownership of software artifacts, especially code, is vital for ensuring

accountability, sharing knowledge, and enhancing code quality. Researchers have

proposed models to establish ownership of software artifacts and their relationship

with developer performance and code quality. However, these models have mostly

been evaluated on open-source repositories. Further, there is a lack of systematic

studies on code ownership in proprietary software. Our study aims to systematically

study the different ownership models and assess the current ownership status of our

partner company,Brightsquid.

During our collaboration, the software engineering team at Brightsquid expressed

interest about comparing their code quality against ownership factors in other teams.

We conducted a systematic literature review to establish a comparative baseline and

identified 79 relevant papers published between 2005 and 2022. We created a taxon-

omy of ownership artifacts based on ownership artifacts, type of owners, and degree of

ownership. Also, we compiled a list of modeling variables in software ownership and

examined the type of analytics used in each study. We also evaluated the replication

status of each study. As a result, we identified nine distinct software artifacts whose
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ownership has been discussed in the literature, with ”Code” as the most frequently

analyzed artifact. We found that only 3 papers (3.79%) provided both code and

data, while 9 papers (11.4%) provided only data. After identifying the most relevant

studies in partnership with Brightsquid, we conducted a replication study using their

data. By comparing our findings with those reported in state-of-the-art research, we

observed similar results in terms of the correlation between stronger file ownership

and a lower number of bugs at the file level, as well as the correlation between the

number of major owners and a higher number of bugs. However, unlike previous

studies, our observations did not show a strong predictive power for code ownership

metrics when it comes to predicting code quality.

This study provides a holistic overview of the ownership models. Our study pro-

vided taxonomies and the list of dependent, independent, and controlled variables

used for modeling ownership provides guidance for future research on this topic. Fi-

nally, the findings of this study can also help inform the development of best practices

for software development teams and guide decisions related to code ownership and

collaboration.

2.1 Introduction

Ownership is the act, state, or right of possessing something. Within the Software

Engineering field, the ownership of artifacts and, in particular, software code has

been discussed in various ways and in relation to a variety of performance metrics

of the project, product, and team. Yet, there is no systematic review of the existing

models and the status and availability of the replication packages, benchmarks, and

best practices. Further, there is no benchmark on software ownership acting as a gold

standard. In a collaborative project with a software company, Brighsquid1, we were

interested in evaluating the ownership status within the company and performing a

comparison with the status in other companies.

1https://Brightsquid.com/
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Brighsquid is a provider of healthcare practice data security services. Brighsquid

solutions are HIPPA2 compliant, enabling secure messaging and large file transfer for

dental and medical professionals. Their communication platform supports aggre-

gating, generating, and sharing protected health information across communities of

healthcare patients, practitioners, and organizations. Brighsquid has been working

on a number of projects to achieve these business goals. The company has overall 39

separate software repositories at different stages of the life cycle and with different

activity statuses. The company started its work in 2009 in Alberta, Canada. The

development team is globally distributed and overall 52 developers contributed to the

projects. With the COVID-19 pandemic, the company experienced a change in the

team dynamic and the customer demand in the healthcare offering. Brighsquid have

actively looked into improving the developer’s experience in the team. The company

identifies ownership as an important aspect of developer’s experience and is interested

in (i) identifying how their status is being compared with other software teams, and

(ii) investigating the techniques to balance developer collaboration and accountabil-

ity in a team. In this study, we focus on the first goal and investigate the status of

ownership within the development team.

To enable us to make a meaningful comparison for our partnered company, we

aimed to perform a systematic review and or benchmark that can serve as a gold

standard for comparing the status of Brighsquid with the current state of practice.

Literature has widely acknowledged the important role of identifying ownership in

large-scale software projects for improving the quality of the software product. How-

ever, there is no one source for referring to and defining ownership. After conducting

an initial analysis of the literature, we discovered 28 different definitions of owner-

ship related to code, team, module, collective ownership, organizational ownership,

module ownership, issue ownership, task ownership, build ownership, requirement

ownership, code authorship, and bug authorship. The terms ”Ownership” and ”Code

2HIPAA: Health Insurance Portability and Accountability Act of 1996

10



Ownership” have been frequently referenced in various studies. Code authorship is

commonly understood as the process of identifying the author of a piece of software

based on its source code. With the advent of issue-tracking systems, identifying

authorship in a repository has become a much simpler task. Code ownership, on

the other hand, is concerned with identifying the developer(s) who is responsible for

maintaining a software component or code snippet over time. As personnel and code

changes occur, and with the introduction of peer coding and review practices, the

code author cannot necessarily be considered the sole owner of the code.

The diversity in the range of software artifacts and the terminology, as well as

the difference in the offered models, motivated us to perform a systematic literature

review. We planned to use the results of the systematic literature review to analyze

and evaluate the status of Brighsquid. In particular, we are interested in answering

the below research questions (RQs).

RQ1 (Literature Review): How is ownership defined and modeled in software

engineering literature?

We gathered and synthesized definitions provided for ownership within state-of-the-

art software engineering, along with the different attributes used to model ownership.

For each paper, we collected the author’s definition of ownership, the level or granu-

larity of ownership (file, module, or line of code, etc.), and the type of artifact (code,

documentation, commits, etc.) that ownership was studied. We then synthesized a

comprehensive list of these attributes across the different papers.

RQ2 (Literature Review): What treatment and outcomes have been used in mod-

eling ownership in software engineering literature?

While different studies consider a variety of artifacts and their ownership (RQ1),

each study modeled ownership differently. We have compiled and synthesized a list

of outcomes such as bugs and productivity associated with each ownership model,

including team and individual behaviors.
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RQ3 (Literature Review): What analytics and research methods have been em-

ployed in the study of ownership in software engineering, and to what extent are these

studies replicable?

To build upon existing research and establish a meaningful baseline for new meth-

ods, we seek to understand the extent and type of evaluations conducted on ownership

models. In addressing RQ3, we summarize the model type (descriptive, diagnostic,

predictive, or prescriptive), nature of the project (open source, industrial, etc.), ac-

cessibility of data and tools, and reuse of the study (whether the study replicated a

previous model).

RQ4 (Replication): How does the code ownership status in Brighsquid compare

with the findings of state-of-the-art studies?

We intended to evaluate the status of code ownership in Brighsquid. To this

end, together with the company, we chose the most relevant studies and performed

a parallel case study to three of the studies. We applied these models to 9 active

projects in Brighsquid. To answer RQ4 we provide a comparison of reported results

in the original studies with our observations from Brighsquid.

In this paper, we first describe our methodology for systematic literature review in

Section 2.2 and for benchmarking in Section 2.3. In Section 2.4, we present the results

of our systematic literature review and answer RQ1, RQ2, and RQ3. In Section 2.5,

we provide more insight into the status of Brighsquid’s team and code, and report

the results of our ownership replication analysis in response to RQ4. In Section 2.6,

we discuss the implications of our work, and in Section 2.7, we list potential threats

to the validity of our study. Finally, we conclude our study in Section 2.8.
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Figure 2.1: Study Selection process for our systematic literature review

2.2 Protocols Used for Systematic Literature Re-

view

We followed the systematic literature review by Budgen and Berereton [27]. The

overview of the study selection process is given in Figure 2.1. We took five main

steps in this process:

STEP 1- Defining research questions; to highlight a specific area of interest the

researcher defines the research questions. In this study, we have two research

questions (RQ1 and RQ2) as detailed in the previous section.

STEP 2- Searching for relevant papers; As the result of analyzing the research ques-

tions, researchers create searching string and find the relevant paper in the

scientific database using those search string. We collected the papers for the

systematic literature review among five databases commonly known and used

by the research community that being IEEE Explorer, Scopus, ACM Digital Li-

brary, ScienceDirect, and Inspec.. In Table 2.1 we listed the 17 Search strings

to gather papers in the scope of this systematic mapping. From the selected

databases, we collected 44,605 unique papers using our search string. Of these,

there were 15,911 overlapping results between the searched databases.

Table 2.1: Search string and number of returned records within each database

ID Search Term IEEE Scopus ACM Science
Direct

Inspec
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1 “Software Engineering” & “Own-
ership”

482 389 3,407 2,383 767

2 “Software Engineering” & “Own-
ership” & “Code”

84 94 2,631 1,702 358

3 “Software Engineering” & “Own-
ership” & “Developer”

51 64 1,414 1,208 67

4 “Software Engineering” & “Own-
ership transfer”

24 3 82 32 19

5 “Software Engineering” & “Au-
thorship”

176 92 720 3,900 245

6 “Software Teams” & “Owner-
ship”

53 4 176 158 7

7 “Software Teams” & “Ownership
transfer”

3 0 0 0 0

8 “Software Development” &
“Ownership”

259 207 3080 4,042 353

9 “Software Development” & “Au-
thorship”

52 34 581 2,956 50

10 “Software Engineering” & “Re-
quirements” & “Ownership”

59 42 2,247 2,040 80

11 “Software Engineering” & “User
Requirements” & “Ownership”

12 0 181 251 1

12 “Software Engineering” & “Own-
ership” & “Productivity”

19 18 791 760 38

13 “Software Development” &
“Ownership” & “Productivity”

14 12 857 1,436 28

14 “Software Engineering” & “Own-
ership” & “Code” & “Productiv-
ity”

6 12 680 586 26

15 “Software Engineering” & “Own-
ership” & “Software quality”

80 23 479 287 45

16 “Software Engineering” & “Own-
ership” & “Software quality” &
“Productivity”

7 3 215 152 5
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17 “Software Engineering” & “Soft-
ware Development” & “Owner-
ship” & “Software quality”

28 11 410 241 14

STEP 3- Screening of papers, by reading the titles, keywords, and abstracts. Two

annotators went through the papers and discarded papers irrelevant to the re-

search area considering the paper title, keywords, and abstracts. When applying

the inclusion criteria we ended up with 25,501 papers. Applying the exclusion

criteria, from this set we took out non-English papers and 15,911 papers redun-

dantly appeared from searching multiple databases (As detailed in Table 2.2.

By that, we excluded 15,911 papers which left us with 9,590 papers.

To narrow down the search, we performed title and keyword-based exclusion

and excluded papers that did not mention any of the words related to ”own-

ership”, ”authorship”, ”productivity”, ”quality”, ”leadership”, ”individual per-

formance”, ”individual vs team performance”, ”team characteristics”, ”team

type”, or ”team size” in the title or keyword. We then found 277 papers.

STEP 4- After filtering the papers based on title and keyword, for the remaining

papers, by reading the abstracts, the two independent researchers scanned titles

and abstracts to evaluate if the included papers match the scope of the research

questions. If one of the researchers were disagreeing with the inclusion, the

authors discussed the reasons and excluded papers which does not match the

Table 2.2: Inclusion and Exclusion criteria for our study

Inclusion Criteria Exclusion Criteria

IC1 Studies related to Software engineering only EC1
Studies not written in En-
glish

IC2
Studies published in journals/conference pro-
ceedings

EC2 Duplicated studies

IC3 Studies published from 2005 to 2022
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criteria.

For synthesizing the papers we made a classification scheme by considering our

research questions, to answer:

• Is paper related to ownership of software artifacts?

• Is the treatment and/or outcome of the paper related to a software product

or project?

• Is there an open-source repository associated with the paper or not?

Two researchers independently read the full paper abstract and categorized the

papers as if the answer to each of the above questions is ”Yes” or ”No”. We

further, excluded 130 Papers that had the answer ”No” for all three categories

leaving us with 147 Papers to be fully read and reviewed.

During this abstract-based exclusion, we encountered a set of papers relevant

to the ownership of software’s Intellectual Property (IP) between collaborating

organizations, in open source, and between different teams within the organi-

zation [28]–[30]. We also excluded papers which were related to the software

design and object ownership discussing the code or UML diagrams [31]–[33]

cloud based ownership [34]–[37] system level ownership [38], [39] , Non-Software

document ownership for example ownership of Wikipedia content [40]–[42]. For

these papers, the answer to two of the three questions above was ”No” and was

not directly related to ownership of software artifacts.

Finally, we read the full text of those 147 papers and found only 79 papers that

are directly related to our study. These 79 papers are the final set of papers for

our study which have been studied in depth.

STEP 5- Data extraction and mapping, in this final step authors, independently go

through the full body of papers and gather and synthesize information relevant

16



to each research question. This step is about extracting data including all the

detailed information which are necessary to present and analyze our research

questions.

At this stage, we recorded all the data needed for answering the research ques-

tions in detail by gathering all the ownership definitions, research questions

studied in the papers, type of applied data analytics, dependent and indepen-

dent variables used for modeling, empirical and evaluation setup, as well as the

replication status and the availability.

By gathering all the information following the described empirical protocol, the

authors synthesized and structured the information to answer the research questions.

In the following section, we discuss the results of our literture review in accordance

with each research question.

2.3 Protocols Used for Benchmarking and Repli-

cation

The field of software engineering has relied heavily on empirical studies and experi-

mentation to advance its state of the art and practice. One crucial aspect of empirical

research is replication, where an independent group of researchers externally repro-

duces the results of a study. Replication is widely regarded as a cornerstone of many

disciplines, serving as an essential means of verifying and validating empirical stud-

ies [43], [44]. However, not all replication studies can be or need to be translated

and discussed to verify the results of an initial study. Replications help researchers

understand the impact and significance of contextual factors on the validity of em-

pirical findings. Without proper replication, it is unclear whether study results are

accidental, artifactual, or actually conform to reality [44].

In this context, we were interested in replicating the software development process

within the partnered company. Our aim was not to verify the original studies but to
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leverage them as an established status quo and evaluate if their results were applicable

in the context of Brightsquid. Thus, our goal was to provide a comparison to assess

the quality of the development processes at Brightsquid. To replicate the studies in

the partnered company, we followed the steps outlined below:

(i) Structuring the existing body of knowledge and Identifying the setup of each

experimentation - We performed a systematic literature review and defined a

taxonomy of what, who, and how the ownership has been measured and mod-

eled. We identified the protocols and the measured dependent, independent,

and controlled variables. These were discussed in RQ1 and RQ2.

(ii) Identifying experimentation elements - We identified the dependent, indepen-

dent, and controlled variables of each model.

(iii) Evaluating if reuse is possible - To build on the existing knowledge and to

reduce divergence between our study and the existing ones, we assessed if any

replication material exists. This is mapped to RQ3 of our study. As a result

of a systematic literature review, we could not identify reusable material (See

Table 2.5) for analyzing our partnered company’s status. Hence, in RQ4 we

took the below steps for replicating chosen studies.

(iv) Selecting studies for replication with Brighsquid - Once having an overview of

all the studies we discussed the context, meaningfulness, and importance of each

ownership model within Brighsquid and prioritizing the studies for replication,

(v) Adjusting the experimental elements for our partnered company data and code

structure,

(vi) Implementing experimental elements and performing experimentation using Brighsquid

data,
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SYSTEMATIC LITERATURE REVIEW

EXPERIMENTATION

Figure 2.2: Process of replicating studies for Brighsquid

(vii) Discussing the results in comparison with the original study and between the

studies and identifying implications in collaboration with Brighsquid.

Our study methodology is summarized in Figure 2.2. Different replication types

have been introduced for software engineering studies, including those discussed by

Wohlin et al. [45] and Gomez et al. [44]. In our study, we performed a close replica-

tion by using the same research questions and following the experimental procedure

as closely as possible. However, as with any non-exact replication, there were dif-

ferences in factors such as the site where the experiment is conducted, experimenters

conducting the experiment, instrumentation and data, and the subjects conducting the

experiment [45], [46]. Using the same taxonomy, we closely followed the design chosen

for the experiment and the variables measureds.

2.4 Result of Systematic Literature Review (RQ1,

RQ2, RQ3)

Our literature review is based on a systematic search of 79 papers, which we thor-

oughly examined. We included publications from 2006 to 2022, covering the period

from 2005 to 2022. Figure 2.3 presents the yearly distribution of these 79 papers. We

found that the highest number of papers (12 papers) was published in 2021, with the

second-highest number of publications occurring in 2015.

To address RQ2, we conducted a thematic analysis and created a summary of the
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Figure 2.3: Total number of publications per year. Most papers have been published
in recent years which makes this study very timely.

dependent and independent variables used to model software ownership, as well as a

summary of all definitions related to the topic. In the following sections, we provide

a detailed discussion of our findings in response to each research question.

2.4.1 Ownership Definitions and Models (RQ1)

The definition and categorization of ownership are largely determined by individual

authors within the specific context of their studies. Consequently, the terminology

used in this field is often inconsistent. To enhance clarity and comprehension, we will

utilize the most widely used terminology and provide cross-references across various

studies. In Software Engineering literature, the two primary types of ownership are

Psychological Ownership, which pertains to an individual’s sense of ownership, and

Corporal Ownership, which refers to an artifact’s development history:

Psychological ownership refers to the feeling of ownership that a person may de-

velop toward an owned entity in the project [8].

Corporeal ownership refers to the development history of an artifact often by re-

ferring to the git history.

In the software engineering literature, the primary focus is on various aspects

of Corporal ownership. According to Bird et al. [6], ownership refers to a general

term used to determine whether a particular software component has a responsible

developer or not. The ownership of a software artifact is subject to change based on
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Figure 2.4: Taxonomy of the nature (What?), the owner (who?), and the degree of
ownership (How?) as the result of our systematic review.

the strategies and logistics implemented by a software team. It is commonly assumed

in such studies that developers have the freedom to modify other teammates’ solutions

whenever necessary [47], [48]. Consequently, the ownership of a software artifact is

often shared among the developers. However, some studies focus on identifying an

individual responsible owner for a particular artifact, while others discuss collective

responsibility among team members. In this study, we present our findings about

ownership from three different aspects to address RQ1.

Type of artifact that its ownership is being discussed within a software team,

Owner of the artifact whom their role in the maintenance of the artifact is being

discussed,

Degree of ownership which indicates the extent of right and responsibility of the

owner as well as the responsibility of team members in maintaining an artifact.

In the field of software engineering, some authors have used the terms authorship

and ownership interchangeably [49] [50]. For example, Muller et al. [50] use the term
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code ownership to refer to the authorship of a particular software artifact; “The

term code ownership is used in software engineering to describe who authored a

certain piece of software.” However, in our systematic review, we distinguish between

authorship and ownership as two distinct yet related concepts. Authorship pertains

to identifying the author of an artifact, such as a line of code. Bogomolov et al. [51]

formulated the authorship problem as ”given a piece of code and a predefined set of

authors, to attribute this piece to one of these authors, or judge that it was written

by someone else.”

In contrast, ownership involves identifying the member(s) responsible for maintain-

ing a software artifact, whether or not they originally wrote it [52]. The collaborative

nature of software maintenance and dynamic code changes make it difficult to identify

a single developer as the author of any artifact. Rahman and Devanbu differentiated

between the terms authorship and ownership [53]. They considered any developer

with a contribution to a code fragment as an author and referred to the developer

with the highest contribution as the owner of a code fragment. In our systematic

literature review, we also differentiate between these two terms, recognizing that

ownership at all levels can be shared or individual.

Type of Artifact (What?)

Software artifacts are tangible products that result from development activities within

software teams. Through our systematic literature review, we identified nine different

artifacts whose ownership has been the subject of one or more studies. Table 2.3

provides a condensed definition of the ownership of each artifact, as a result of our

detailed synthesis in this systematic literature review.

Among all the artifacts, ”Code” ownership has been studied most frequently.

Hattori and Lanza [7] discussed code ownership as identifying the developer who

owns an artifact of a software system ”by measuring who has accumulated more

knowledge of each artifact”. Nagappan et al. [54] studied the impact of organizational
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Table 2.3: Types and definition of corporal ownership in software engineering state
of the art (RQ1).

Artifact Definition Study

Code

Code author is the developer who writes a piece of
source code. Code owner is defined by measuring
who has accumulated more knowledge of each soft-
ware component (e.g. module, file, class, binary).

S1, S3, S4, S5, S6, S7, S8, S10,
S11, S12, S13, S15, S16, S17,
S18, S19, S20, S21, S23, S30,
S35, S36, S37, S39, S41, S42,
S43, S44, S45, S49, S57, S62, S70

Product
Product owner is the person who is responsible for
managing the Product Backlog so as to maximize the
value of the project.

S2, S48, S59, S69, S78

Task
Task owner is the developer who accepts the respon-
sibility of doing a task from a team’s task list.

S14, S52, S64

Issue
Issue Owner is the developer who resolves an identi-
fied issue in an artifact and he may not be the same
person who does work previously.

S9, S73

Project
Project owners are all members of a team who are
responsible for the work completion of a project.

S46

Test
Test owner is any distinct developer that owns at
least one test in the test suite.

S25

Bug
Bug owner is the developer who has written the code
that caused the bug.

S24

Build
Build ownership is the proportion of the developers
who are responsible for build maintenance.

S28

Requirement
Requirement owner is a person who provides a re-
quirement/requirements for a system.

S38

factors on code quality. Among the eight organizational metrics, they invested in the

depth of Master Ownership (DMO). They defined the developer with more than 75%

edits in a binary file as the owner and considered their organizational level as the

DMO. They also defined the Level of Organizational Code Ownership (OCO) as the

percentage of edits from the organization that contains the owner of the binary file.

The authors also introduced Overall Organization Ownership (OOW) as the ratio of

the percentage of developers at the DMO level editing a binary file to the total number

of engineers editing that file. Meng et al. [55] discussed line-level code authorship

by introducing repository graphs, structural authorship, and weighted authorship.

They use Structural authorship and weighted authorship to extract the development

history of a line of code and approximate its authorship. ”Structural authorship is

a subgraph of the repository graph. The nodes consist of the commits that changed
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that line. Development dependencies between the subset commits form the edges.”

Weighted authorship ”is a vector of author contribution weights derived from the

structural authorship of the line. The weight of an author is defined by a code change

measure between commits”. Businge et al. [49] used the amount of code change as

defined by earlier studies [56] to estimate the code ownership for an application. In

the XP methodology, the ideal code ownership scenario is defined as ”any developer

can refactor any area of code in an application as long as it continues to meet the

contract defined by interfaces and unit tests” [56]. As the opposition, Judy et al. [18]

considered the notion of code ownership stating that a single accountable authority

on such is impractical. Hence, they introduce product owner as the individual (one

person and not a team) that is accountable for achieving business objectives. Overall,

33 Papers specifically referred to the code ownership artifacts.

”Product” is the second most frequently appeared artifact in our literature re-

view and its ownership has been discussed in the literature though only four studies

specifically mentioned it. The product owner is a popular term for agile projects.

Judy et al. stated that the Product Owner is typically one person and responsible

for managing the product backlog, which contains an emerging set of requirements.

They also suggest that the success of the product depends largely on the decisions

made by the product owner. Additionally, Shastri et al. note that the product owner

is often the customer representative.

Judy et al. [18] state that Product Owner is typically one person and responsible

for managing the product backlog, which contains an emerging set of requirements.

The success of a product beyond the reliability, supportability, scalability, and time

to market of its implementation entirely depends on the decision of the product

owner [18]. Furthermore, Shastri et al. [57] note that the Product Owner is also

commonly regarded as the customer representative. ”Project” ownership occurs

when all the members of a team take the responsibility to complete the project. It

appears three times in our literature review whereas one paper defined it clearly. In
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[58], authors stated that in project ownership all the team members are responsible

for work completion and they also share benefits among them. Burga et al. [10] dis-

cussed that both project managers and project have a relationship within the project

governance structure. ”Task” ownership was specially studied for agile projects.

In a team, team members take ownership of tasks from the task board by taking

issues and risks [19]. Datta [59] examined factors that influence task ownership in

Android development by introducing eight different variables. ”Requirement” is a

newer concept among all artifacts of ownership. Hadad et al. [60] studied requirement

ownership by identifying the ownership of requirements of a system. They studied

different five types of such ownership where only developers are the owner of each

requirement, or where clients provide requirements of a system, where users are the

author of a system requirement, or where ownership is collaborating and engineer,

client, and user are equally responsible for every requirement, or where ownership is

diffused and there is no one person for a requirement.

”Test” ownership has also been discussed by Herzig and Nagappan [61] and has

later been referred to by studies focusing on code quality. Within a software team,

a test owner is a developer who owns at least one test case from a test suite [61]. It

appears only once [61] in our literature review where authors showed that organiza-

tional structure impacts test case quality. They defined test case quality through test

effectiveness and test execution reliability. They calculated the Spearman rank corre-

lations between sixteen organizational metrics and measures of test suite effectiveness

and test suite reliability and suggest that test suites whose owners are distributed over

multiple organization subgroups with long communication paths are negatively cor-

related with quality. ”Issue” ownership artifact is discussed in two papers in our

literature review. Caglayan et al. [62] discussed issue ownership by identifying the

developer who resolves the issue. The authors showed that a small group of develop-

ers tends to take ownership of a large portion of new issues especially when the active

issue count is relatively high in the software development life cycle. Issue ownership
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can be individual or teamwork [63] and the studies differentiate between the devel-

oper assigned to the issue and the one who resolves the issue [64]. Along the same

line, ”Bug” ownership studied by Zhu et al. [65]. The developer who submitted the

bug-introducing commit is known as the bug owner [65]. A bug can be fixed by the

developer who introduced it or by a different developer. Zhu et al. [65] found that

bug-fixing time by the bug owner is much shorter than that of other developers. They

also found that the owner’s bug fixing commits are larger and have a different pattern

in comparison to non-owners.

”Build” ownership is mainly discussed to maintain and change build systems.

In their study, McIntosh et al. [66] proposed a definition of build ownership based

on the proportion of developers responsible for maintaining a build system. The

authors also identified two distinct styles of build ownership. The first style, referred

to as ”concentrated,” involves a small dedicated team responsible for build system

maintenance. The second style, called ”dispersed,” is characterized by the majority

of developers contributing code to the build system. Shridhar et al. [67] studied six

different build change categories and three different types of ownership styles.

Type of Owner (Who?)

The majority of the studies in our literature review (82%) solely search for identifying

a set of ”developers” (Di where i ≥ 1) as the owners of an artifact. Here, ”developer”

is the general term used for a software team member. A few studies (14 out of

79) distinguished between the team members, either considering their organizational

status or considering their experience in the team.

Nagappan et al. [54] investigated the impact of organizational structure on software

quality. In particular, they consider the organizational level of engineers in Microsoft

for Windows Vista. They consider engineers, managers, and sub-managers within

their analysis and introduce a number of metrics to capture the organizational struc-

ture (see Appendix I, Table 4.1, for further details). Bird et al. [6] examined the
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ownership effect on code quality. While ownership metrics are discussed here from

the developers’ perspective, project managers are also responsible for checking the

code of a developer with less relevant experience. In [68], authors replicated [6] by

introducing some more ownership metrics, which are about the organizational level

of developer and manager.

Thongtanunam et al. [52] discussed reviewing activity in terms of code ownership.

In particular, they introduce some control variables using the code review to identify

code ownership. In this study, they mainly extend the code ownership into review ac-

tivity and consider the reviewer instead of the developer within their research. In [61],

test ownership is discussed from the test engineer’s perspective. They showed orga-

nizational structure impacts test quality by introducing some organizational metrics.

Meneely et al. [69] indicate that team characteristics like team size and team expan-

sion rate affect software quality. They did their analysis at the department level.

Hadad et al. [60] introduced requirement authorship and discussed five authorship

types. They consider users, stakeholders, and developers as the owner of software

requirements in their research. In Figure 2.4 we abstracted these roles into six major

entities by referring to the common roles within software teams.

Degree of ownership (How?)

The majority (60 out of 79) of the studies acknowledge and formulated the authorship

issue as a problem of assigning a degree of responsibility to the different team members

who edited a code snippet. For a software team consisting ofD individuals represented

as Developer = {dev(1), dev(2), ...dev(i)} and a set of artifacts developed by the team

Artifact = {art(1), art(2), ..., art(j)} our literature review and synthesis resulted in

three general ownership models.

With the introduction of version control systems, software engineering literature

gained the ability to study the concept of ownership and model fuzzy and shared

ownership between multiple developers. The most commonly accepted ownership

27



model is the ”Weighted” model, which was followed by 31 out of the 79 studies

in our systematic literature review. In this model, the ownership of an artifact is

determined based on factors such as familiarity or effort spent on the artifact. The

ownership of each artifact is represented as a vector of owners, where each owner is

assigned a weight that corresponds to their contribution to the artifact’s changes. For

example, Meng et al. [55] defined the weighted ownership of a code snippet as a vector

of developers’ contribution weights using the churn per commit. Where the total

amount of contributions made by a developer d, to an artifact a is Contribution(i, a);

Weight(d, a) =
Contribution(d, a)∑︁i=D
i=1 Contribution(i, a)

(2.1)

and

i=D∑︂
i=1

Weight(a, i) = 1 (2.2)

In this model, despite the unit which is being used for measuring the developer’s

contribution to an artifact (e.g., number of lines of code, churn, number of commits),

the weight is the relative contribution of each developer to the rest of the team.

The literature in particular refers to two special cases of this model. First, where

there is only one developer is being identified as the owner of an artifact (we commonly

refer to that as the authorship problem). Second, where every developer in the team

is responsible for all the artifacts despite their degree of involvement. The problem

of finding one developer as the responsible individual for writing and maintaining a

line of code is commonly known as the authorship problem in software engineering.

”Dedicated” Ownership searches for one responsible developer for an artifact and

identify only one individual as the owner of an artifact. In this case, in Equation (1)

for developer dev(d) which is the author of an artifact;

Weight(a, i) =

{︄
1, if i = d

0, otherwise
(2.3)
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Figure 2.5: Treatment-outcome relation as we studied in this SLR. The process and
the diagram are adopted from the work of Wohlin et al. [45].

”Collective” ownership is focused on getting the tasks (such as a bug fix) done

by leveraging the expertise of the entire team. Teams with a high level of collective

ownership have all the team members taking ownership of the software product.

The assumption is that every team member has a minimum degree of expertise and

knowledge of other’s work through collaboration, coordination, or in consideration of

their organizational role. Maruping et al. [70] use the notion of collective ownership.

In this case for any art(a) and dev(i);

Weight(a, i) ̸= 0 (2.4)

”Dedicated” and ”Collective” ownership models are the two extremes of the own-

ership range where either an individual (dedicated) or the whole team (collective) is

responsible for an artifact.

2.4.2 Ownership Modeling Treatments and Outcomes (RQ2)

Ownership models in software engineering use different attributes and artifacts. We

followed and referred to the general experimentation process as provided by Wohlin

et al. [45] and outlined in Figure 2.5. As the result of the systematic review, we

identified 18 unique dependent, 73 independent, and 18 control variables. These

variables are detailed in Appendix II and Table 4.1. In Table 2.4, we presented

only those dependent, independent, and control variables used more than once in our

literature review.
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Table 2.4: Independent, Dependent, and controlled variables used “more than once”
in modeling ownership studies.

Independent Variable Study

Number of developers changing a software component S3, S6, S7, S9, S15, S16, S18, S19,
S26

Major contributor (developer with majority of commits
to a component)

S7, S15, S16, S19, S23, S29

Minor contributor (developer with minority of commits
to a component)

S7, S15, S16, S19, S23, S29

Highest % of commits a developer made to a software
component

S7, S15, S16, S19, S23

Code size S19, S43, S54, S65

Code Churn S3, S4, S6, S19, S77

Number of commits S4, S11, S18, S77

Code complexity S3, S6, S77

Developer experience S8, S54

Number of managers S16, S25

Dependent Variable Study

Number of post-release failures S3, S6, S7, S9, S11, S19

Number of bugs S13, S15, S16, S18, S23, S54

Number of pre-release failures S7, S11, S21, S29

Controlled Variable Study

Code complexity S7, S11, S15, S23, S29, S72

Code size S7, S11, S15, S21, S29

Project size S1, S8, S23, S62

Code churn S7, S11, S21

Developer experience S1, S72

Number of developers S8, S21

Number of developers participating in the review pro-
cess (reviewers)

S14, S21

30



We identified 73 identical independent variables. The most popular independent

variable in our literature review is the number of developers who changed a soft-

ware component. The number of developers has been used as the independent

variable in nine papers and in relevance to the ownership of code and issues. The

other popular independent variable within our literature review is the number of ma-

jor and minor contributors. These two were discussed in accordance with each

other and within six papers. Here, a major contributor is a contributor who

made more than a predefined threshold of the changes (commits) to a component.

Similarly, a minor contributor is a contributor who made less than a predefined

threshold of the changes (commits) to a component, and ownership is the highest

value of the ratio of contributions performed by all developers. Code churn, code

size, and the number of commits have been discussed in five to three studies. 63

independent variables are unique to one study within our literature review which are

mostly relevant to test ownership, code ownership, and product ownership. These

independent variables have never been chosen by another study within the scope of

our studied literature. Details of all these variables are in Appendix II.

We identified a total of 18 dependent variables, which are detailed in Appendix

II. The two most frequently appearing dependent variables in our literature review

were the number of bugs and the number of post-release failures, each

appearing in six different studies. This was followed by the number of pre-release

failures, which was used as a dependent variable by four studies. The remaining 15

dependent variables were used only in one study each. More than one-fourth of the

studies in our literature review (23% of the studies in our literature review) chose a

form of code quality metric as a dependent variable, resulting in the identification of

10 different metrics of code quality as dependent variables in code ownership studies.

We also identified 18 distinct controlled variables. The most popular controlled

variable was code complexity, chosen by six different studies. Size, specifically code

size, was chosen by five studies, and project size was selected by four different
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studies as a controlled variable. Additionally, code churn, developer’s experi-

ence, number of developers, and number of code reviewers were used as

controlled variables more than once. Our analysis revealed a total of 18 controlled

variables, with 11 of them appearing in only one study within our literature (detailed

in Appendix I).

2.4.3 Analytical Model, Replicability, and Evaluation setup
(RQ3)

To summarize the papers included in our systematic review, we examined the ana-

lytical models used in each study and categorized them according to the four models

introduced by Kaisler et al. [71]:

Descriptive Analytics is the most basic and commonly used model. It analyzes

existing data statistically to identify patterns and gain an understanding of the

overall state of the data.

Diagnostic Analytics focuses on identifying the root causes of issues or anomalies

within existing data. It answers the ”why” question by providing deep insights

into why certain events occurred.

Predictive Analytics utilizes machine learning techniques to forecast likely future

outcomes based on existing data. This type of analysis helps to anticipate

potential outcomes and enables informed decision-making.

Prescriptive Analytics combines descriptive and predictive models to provide

guidance on the best course of action for achieving optimal outcomes. This

model is focused on the decision-making process.

We applied Wendler’s research method schema [72] to classify the type of research

evaluation used in each study. The classification includes case study, survey, interview,

concept development, literature review, mixed approach, and others. Additionally, we
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Figure 2.6: Distribution of paper based on (a) Type of analytics and (b) Research
Method

examined the availability of data and code for each study to facilitate replication, as

per RQ4. The summary of our findings is presented in Figure 2.6-(a) and Figure 2.6-

(b), where Figure 2.6-(a) shows the number of papers in each analytic category, while

Figure 2.6-(b) shows the number of papers in each research method category.

Descriptive analytics was the most commonly used analytic model, used in 67% of

the studies, while we did not identify any study as prescriptive. Predictive analytics

was used in 21 studies (26.6%), and four studies (6.3%) used diagnostic analytics.

Figure 2.6-(a) provides a detailed breakdown of the analytics used in each study.

Regarding the research method used, case study was the most commonly used

approach, with 24 studies (30.3%) following this method. Concept development was

used in 12 studies (16.0%), followed by interview-based and survey-based studies,

Code & data available
3.79%

Only data available

11.4%

None available

84.81%

Figure 2.7: Percentage of papers which their code and data are available
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which were used in three (4.0%) and four (5.3%) studies, respectively. Only two

studies were based on literature reviews. Ten studies used a mixed approach, such

as Drury-Grogan et al.[73], who performed both a case study and an interview to

identify decision characteristics. Finally, 24 papers could not be classified into any of

these research method categories and were tagged as ”others.” Figure2.6-(b) provides

a detailed breakdown of the research method used in each study.

We also were interested to understand the applicability status of these studies. We

manually checked if the data or the code are available for each study at the time of

writing this paper (Figure 2.7). We found that only 9 studies (11.4%) within our

literature review provided their dataset link. Among them, 3 studies (3.79%) also

provided source code. Moreover, we observed that 32 studies considered open-source

data for their research. Table 2.5 summarizes the overview of these studies.

Table 2.5: Data availability within our systematic literature review. ✕shows the
unavailability of the data while ✓represents data availability.

Paper Data Dataset Description

S3 ✕ 3,404 binaries exceeding 50 Million lines of code of Windows Vista.

S4 ✕ 2,429 changes performed by four developers from one commercial project.

S5 ✕ Organizational database (POST) to get the information of 29 to 252
developers having from 12 to 482 followers and the code changes they
made over a period of seven years.

S6 ✕ 511 lines of code for windows Vista over seven teams in different geo-
graphical locations.

S7 ✕ Commit histories and software failures of two Microsoft projects, Win-
dows Vista and Windows 7.

S8 ✕ Four open source project Apache, Nautilus, Evolution and Gimp.

S9 ✕ A large-scale enterprise software with more than twenty years of develop-
ment history, and (ii) a smart phone Android operating system developed
by Google and distributed as open source.

S10 ✕ 10 open source software products written in Java.

S11 ✕ Source code repositories, bugs, and the locations of developers of Firefox
and Eclipse projects.
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S12 ✕ Student-submitted solutions to programming assignments written in C

from RMIT University.

S13 ✕ Five open source projects Dyninst, Httpd, GCC, Linux, GIMP.

S14 ✓3 Android code review data from Gerrit-Miner.

S15 ✓4 Seven open source projects Apache Ant, Camel, Log4J, Lucene, Eclipse
JDT Core, PDE UI, and Equinox.

S16 ✕ Four major Microsoft products being Office, Office365, Exchange, and
Windows repository.

S17 ✕ Change history from version control system for Visual Studio 2013.

S18 ✕ Repository of six open source Apache projects

S19 ✓5 Repository of seven open source project

S20 Four open source software Ant, Gremon, Struts2, Tomcat.

S21 ✕ Code review dataset of two open source project Qt and Open Stack.

S23 ✕ 45,000 open source Android-based repositories hosted on GitHub.

S24 ✓6 SStuBs dataset which contains 10,231 bug fixes from the top 100 Java

Maven projects.

S25 ✕ organizational metrics datasets provided by the CODEMINE project.

S26 ✕ Code logs, bugs, and historical records from the Human Resources de-
partment from Cisco projects.

S27 ✓7 code and bugs of five open source project Angular.JS, Ansible, Jenkins,
JQuery, and Rails.

S28 ✕ Build log of 18 Apache and Eclips open-source projects over a period of
fourteen months.

S29 ✕ Code and reiews of a large scale commercial project.

S30 ✕ 16 years entire history of the Apache Ant system.

S31 ✓8 Pull Requests of 246 open source projects hosted on GitHub.

S33 ✕ 41,140 open source code file changes from Eclipse and and 6,548 function
changes for a proprietary software project both between January 2001
and September 2013.

3https://github.com/mmukadam/gerrit-miner.git
4http://bug.inf.usi.ch/
5https://se.labri.fr/data/articles/IST-2014/
6https://anonymous.4open.science/r/344cf208-ea32-49f4-90fe-59bdb6e5d7fe/
7https://se.labri.fr/a/FSE15-foucault/
8https://github.com/yuyue/pullreq ci
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S34 ✕ 132 versions of PLAY released between 2008 and 2013 including 14 evolu-
tionary and 118 maintenance releases.

S35 ✓9 270,000 commits of IntelliJ IDEA Community Edition project au-
thored by 500 developers between 2004 to 2020.

S36 ✕ Source code of nine different authors from the Codeisplanet website.

S37 ✕ Four open source systems namely ArgoUML, Mozilla, Samba, and Squid.

S39 ✕ 150 collaboratively written C++ files for 106 programmers active on
GitHub.

S40 ✕ GNU C compiler GCC version 3.3.2 open source project.

S41 ✕ 1,000 programmers’ data, collected from Google Code Jam (GCJ).

S43 ✕ Six Apache projects naming Activemq, Aries, Carbondata, Cassandra,
Derby, Mahout.

S44 ✕ 200,000 source code files written by 898 develoeprs from open source
projects on GitHub.

S45 ✕ Several open source projects, including Apache HTTP Server, Dyninst,
GCC and other projects from GitHub.

S50 ✕ SDT software project user requests over six month period.

S51 ✕ 200 open source projects belonging to Android, Apache, and Eclipse.

S53 ✕ Development history of four releases of a company.

S54 ✕ Commit history and issue from 12 GIT repository.

S57 ✕ Google Code Jam (GCJ) development log between 2008 to 2016 and
1,987 repositories hosted on GitHub.

S62 ✓10 66 releases of 118 open source projects on GitHub.

S63 ✕ Developer’s communication data for three open source projects naming
Gaim, eGroupWare, and Compiere.

S66 ✕ Jira issues from four open source Java projects: Hibernate, JBoss, Mule
and Spring.

S68 ✓11 200 most forked Java projects from GitHub.

S70 ✕ contest code from 2008 to 2016 of Google code Jam

S72 ✕ 1.2 million commits and more than 25,000 developers of multiple Open
Source as well as a proprietary software project

9https://github.com/JetBrains-Research/authorship-detection
10https://github.com/torvalds/linux
11https://github.com/acapiluppi/oometrics developers
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S75 ✕ Commits and issues of GitHub repository

S77 ✕ Source code, version and Jira issues of a commercial project

2.5 Benchmarking State of the Art Model in Brigh-

squid

We discussed the result of our literature review with the partner company (Bright-

squid) to identify the most relevant literature. The intent was to compare the status

quo of ”code ownership” at Brightsquid in comparison to the other companies. We

used the taxonomy we extracted in RQ1 to identify what, who, and how the own-

ership of code has changed at Brightsquid, in comparison to other companies. As

the result, we chose three studies to replicate and compare with the status of code

ownership at Brighsquid:

Study by Bird et al. [6]: This widely-cited study from 2011 developed a model

for code ownership based on proprietary software at Microsoft, analyzing both

code and component ownership. Many studies have built upon these findings

[S7]. The authors posed three main research questions (listed in Table 2.6), and

we answered two of these questions for all nine Brightsquid projects.

Study by Greiler et al. [68]: In 2015, Greiler et al. replicated and extended

the model from Bird et al.’s study, using file and directory-level analysis and

introducing new thresholds for identifying owners. This work was of interest to

our partnered collaborators since it is one of the few studies on non-open source

projects [S16].

Study by Foucault et al. [74]: While focused on open-source software projects,

this paper provides a comprehensive overview of the metrics used in the liter-

ature. We intended to apply the relevant aspects of the model to Brightsquid

[S19].
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Table 2.6: Research Questions addressed in the three replicated studies

Study Research Question Answered?

Bird et
al. [6]

RQS71: Are Higher levels of ownership associated with less defects? Yes

RQS72: Is there a negative effect when a software entity is devel-
oped by many people with low ownership?

Yes

RQS73: Are these effects related to the development process used? No

Greiler et
al. [68]

RQS161: Are ownership metrics indicative for code quality for other
software systems than for windows?

Yes

RQS162: For which levels of granularity (directory and source file)
do ownership metrics correlate with code quality measured by the
number of fixed bugs?

Yes

RQS163: Can ownership metrics be used to build classification
models to identify defective directories and defective source files?

Yes

RQS164: What are the reasons for the lack of ownership? No

Foucault
et al. [74]

RQS191: Does code ownership measured via the code ownership
(CO) metrics, most valued owner (MVO), Minor, and Major, have
a relationship with software modules quality, measured with their
number of post-release bugs?

Yes

RQS192: If so, do these metrics provide an added value for predict-
ing the number of post-release bugs of a software module?

Yes

In Table 2.6, we have listed all the research questions for the three studies under

consideration. While these studies have answered nine different research questions,

there is a significant overlap between the tested hypotheses. However, the empiri-

cal methods used in these studies, such as the chosen dependent, independent, and

controlled variables, differ. After consulting with our collaborators, we have decided

to exclude two of the research questions. Specifically, we have excluded the third

question of Bird et al. [6] (RQS73 in Table 2.6), which investigates the impact of

the development process on the related outcome through an interview. A similar

approach was taken by Greiler et al. [68] using qualitative analysis to understand the

reasons for the lack of ownership within a team.

To answer each of the remaining research questions, we used the results of our sys-

tematic literature review, along with our extracted lists of dependent, independent,

and controlled variables for each study. We then gathered relevant data and metrics
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to provide answers to these research questions.

2.5.1 Hypothesis and Research Methodology in Original Stud-
ies

Bird et al. [6] [S7] built their work based on four hypotheses, two of them associating

the ownership of a software component with the number of failures:

Hypothesis 1: Software components with many Minor contributors will have more

failures than software components that have fewer.

Hypothesis 2: Software components with a high level of Ownership will have

fewer failures than components with lower top ownership levels.

Hypothesis 3: Minor contributors to components will be Major contributors to

other components that are related through dependency relationships.

Hypothesis 4: Removal of Minor contribution information from defect prediction

techniques will decrease performance dramatically.

Analogue to this study, Greiler et al. [68][S16] tested the same hypothesis with

a few differences for the same corporation:

• Changing the granularity - Looking into file level and code directory level instead

of component ownership. Source directories contain those source code files

which has the same enclosing path as defined by the original study.

• Changing the threshold for identifying minor ownership - authors used less than

50% for identifying Minor owners.

• Introducing Minimal ownership - Minimal owners are the developers having

less than 20% of ownership.

• Consider strict ownership - authors separately analyzed the files that have been

edited by only one person. They considered these files as having strict owner-

ship.
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Foucault et al . [74] [S19] as well investigated the same four hypotheses from Bird

et al. [6] with a number of differences:

• They tested the hypothesis in six open-source projects.

• They only invested in the number of post-release bugs as the dependent variable.

• They manually identified software modules using the knowledge of the research

team. A software module could be a file or a directory.

• Considering Touche (the number of files touched by a developer) in addition

to Churn.

• Giving a new name to the Ownership metric and calls it Most Valued

Owner (MVO).

We summarized all the dependent and control variables explained in Table 2.7 and

independent variables in Table 2.8 and separated each of these studies.

Table 2.7: What, who, and How ownership was discussed in the selected studies for
replication and the dependent, and control variables.

ID What? Who? How? Dependent vari-
able

Control vari-
able

S7 Binary files (Code,
Component)

Developer,
Manager

Weighted Number of pre-
release failures,
Number of post-
release failures

Code size, Code
churn, Code
complexity

S16 Binary files (Code,
Component)

Developer,
Manager, Orga-
nization

Collective
shared

Number of bugs N/A

S19 Directories (Code,
Component

Developer) Shared Number of post-
release bugs

N/A
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Table 2.8: Independent variable in the selected studies for replication.

Independent Variables

ID Metric name Definition

S7 Major The number of developers who made more than 5% commits to a file

Minor The number of developers who made less than 5% commits to a file.

Total The total number of developers who contributed to a file.

Ownership Proportion of commits for the highest contributor to a file.

S16 Minors The number of developers who made less than 50% commits.

Minimals The number of developers who made less than 20% commits.

Contributors Total number of contributors.

Ownership
Proportion of commits for the highest contributor. This definition is
identical to the one provided by Bird et al. [56] [S7]

Avgownership
Average ownership values for all files in a directory:
(
∑︁

fileownership)/(#files).

Ownershipdir
% of commits of the highest contributor considering all files in a direc-
tory: (

∑︁
ofmaincontributorcommits)/(#allcommits).

Minownerdir
% of commits of the lowest contributor considering all files in a directory:
(
∑︁

ofcommitsofthelowestcontributor)/(#allcommits).

Avgcontributors
Average of distinct contributors among all files in a directory:
(
∑︁

ofdistinctcontributorsperdirectory)/(files)

Pcminors
% of contributors among all contributors with less than 50% commits
for all directory files: (

∑︁
ofdistinctminors)/(#contributors).

Pcminimals
% of contributors among all contributors with less than 20% commits
across all directory files: (

∑︁
ofdistinctminimals)/(#contributors).

Pcmajors
% of contributors among all contributors with more than
or 50% commits across all directory files: in a directory:
(
∑︁

ofdistinctcontributorswithmorethan50%changes)/(#contributors).

Avgminimal Average minimals in a directory: (
∑︁

ofminimalsperfile/#files).

Avgminors Average minors in a directory: (
∑︁

ofminorsperfile/#files).

Minownedfile The ownership value of the file with the lowest ownership value.

Weakowneds
Number of files in a directory that have an ownership value of less than
50%: (#offileswith < 50%ownership)/#files.

S19 Touches The number of files touched by a developer.

The empirical methods used to investigate the hypotheses in both Bird et al.[6]

and Foucault et al.[74] are largely the same, despite differences in subjects and some

metrics. In the first step (Step 1 in Figure 2.9), they analyzed the correlation between

code attributes and ownership metrics. Subsequently (Step 2), they developed a mul-
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tiple linear regression model to identify the relationship between ownership metrics

and the number of failures while controlling for source code characteristics. To test

the four hypotheses and report on their results, they compared the variance in failure

(also known as R2) (Step 3), and assessed goodness of fit using F-tests (Step 4).

Greiler et al. [68] took their first step similar to the other two studies (Step 1)

and started by looking into the correlation between variables. Then they take a step

further (Step 2 of Figure 2.9) and built a Random Forrest model to predict source code

files and directories associated with at least one bug. Then (Step 3) they performed

feature selection using Principal Component Analysis (PCA) to reduce the number of

orthogonal dimensions. In Step 4, they measured the variable importance for every

individual ownership metric by calculating the area under the ROC diagram. They

complemented the quantitative analysis by performing interviews and surveys and

the qualitative description of the developer’s perception (Step 5).

2.5.2 Empirical Data from Brightsquid

At the time of writing this paper, Brightsquid has a total of 39 projects, each starting

at a different time between 2012 to 2023. A total of 52 developers worked across all

these projects. Also, 13,330 issues exist on the issue tracking system of the company.

In collaboration with our industry partner, we only considered the projects active after

March 2018 for our analysis. As a result, we limited our analysis to nine projects at

Brighsquid as others have been idle at that time. Table 2.9 summarize the project

status based on the number of commits, number of bug fixes, and the lines of code.

All the project source codes are hosted on GitHub, and the company uses Jira as the

issue tracking system. The issues are being traced to the source code using automated

integration tools. Below, we describe the data gathered for replicating the selected

research questions from the studies, as listed in Table 2.6. We gathered these data

through GitHub and Jira APIs. An NDA agreement governs the project; hence all

the identifying information is anonymized.
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Table 2.9: Characteristics of the Brightsquid projects active as of March 2020 and
included in our dataset.

Project ID # Commits # Files # Bugfixes # LOC #of Developers

Proj1 69 8 11 981 5

Proj2 178 84 210 4,509 2

Proj3 213 67 74 21,741 5

Proj4 12 6 8 123,873 9

Proj5 422 54 105 30,161 5

Proj6 80 11 18 1,331 7

Proj7 555 42 53 45,528 6

Proj8 1085 292 491 9,685 5

Proj9 1350 339 740 50,918 9

After conducting a literature review, we identified the dependent, independent,

and control variables from three studies. In particular, Bird et al.[56] examined

ownership at the component level, defining components as a ”unit of development

that has some core functionality. [...] In Windows, a component is a compiled binary.”

After discussing with our industry partner, we considered the ”source code file” as the

component to replicate the analysis of ownership at the file level for answering RQS71

and RQS72. We collected four main metrics for file ownership from nine projects at

Brightsquid, following Bird et al.’s[56] methodology, as detailed in Table 2.7. We

then retrieved the number of failures/bugs from the Brightsquid issue management

repository on JIRA. By using integration tools between JIRA and GitHub, we traced

issues back to commits and code, allowing us to gather bugs linked to each source

code file. Interestingly, we found that the majority of files have no bugs assigned.

Additionally, we gathered three code metrics – Size (measured by the number of lines

of code in a file), Complexity (using cyclomatic complexity), and Churn (as the

lines of code changed in each file) – from the source code repository to support our

analysis.

To replicate the study by Greiler et al. [68], we analyzed the same nine Brightsquid
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projects at both the file and directory levels of source code. We measured individual

file ownership using four metrics, which are detailed in Table 2.7. To investigate

directory-level ownership, we aggregated the number of distinct bugs associated with

all source files and used this information to infer the number of directory-level issues.

However, unlike in the original study, we were unable to identify any file that had

been edited only once. We found that all files in the selected Brightsquid projects

had been either edited more than once or not at all since their creation. However,

unlike the original study that included ”organization ownership” metrics, we could

not obtain equivalent data from Brightsquid. As a result, our analysis was restricted

to individual ownership metrics.

We also collected one additional data point, ”Touches,” which measures the number

of files touched by a developer, as introduced by Foucault et al. [75]. Overall, we

gathered three unique dependent, twenty independent, and three controlled variables

from the three studies we chose. These variables are listed in Table 2.7.

2.5.3 Empirical Results and Ownership Status Quo at Bright-
squid

Figure 2.8 summarizes the ownership metrics in Brightsquid based on Greiler et al.’s

[68] measurements. We analyzed ownership statistics for our selected projects using a

50% threshold to identify major and minor contributors. Figure 2.8 - (d) shows that

at the file level, the majority of contributors are minor contributors. In most projects,
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Figure 2.9: Main steps taken in the original studies of Bird et al. [6][S7], Greiler et
al. [68][S16], and Foucault et al. [74] [S19] to analyze ownership

only one contributor is major, with all others minor. However, we also found that

the main contributor accounts for over 85% of the commits.

Figure 2.9 outlines the main steps of the methodology used in the three papers. We

discuss the results of these steps as they relate to Brightsquid. At the directory level,

we observed that the average number of files per directory ranges from a minimum

of three to a maximum of 21 for Proj1 and Proj9, respectively. The majority of

contributors are minor contributors, with over 75% of them being classified as such.

The average percentage of ownership at the directory level is consistently above 72%,

indicating that the main contributor made the majority of the commits to a file or

directory and suggesting a strong sense of ownership at both levels.

Step 1 - Correlation of Code and Ownership Metrics: We followed the protocol

of the three studies we considered and computed Spearman rank correlations between

code ownership metrics and the number of bugs for each of our selected projects.

This was designed to explore the relationship between ownership metrics and software

quality. We investigated correlations between the number of bugs and all metrics,

both at the file and directory level. We performed a Spearman correlation analysis of

the number of bugs with four ownership metrics: ownership, total, major, and

minor, as well as three code metrics: code size, churn, and complexity, for nine

projects of Brightsquid shown in Table 2.10. Note that we aggregated variables that

were called differently but had exactly the same definition, such as LOC, NumDevs,
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Table 2.10: Spearman correlation between metrics and the number of bugs on file
level granularity. Bold and underlined values are absolute correlation coefficients
above 0.50 and 0.75, respectively

Metric Proj1 Proj2 Proj3 Proj4 Proj5 Proj6 Proj7 Proj8 Proj9 Avg.

Owner
ship
(mvo)

-0.61 -0.17 -0.72 -0.89 -0.75 -0.59 -0.66 -0.66 -0.59 -0.63

Major 0.67 0.22 0.73 0.93 0.81 0.62 0.71 0.81 0.61 0.68

Minors
(< 5%)

-0.13 0.24 0.03 0.08 0.27 0.36 0.26 0.28 0.19 0.17

Minors
(<
50%)

-0.39 0.60 0.21 0.85 0.54 0.88 0.53 0.61 0.41 0.47

Minimals-0.21 0.5 0.2 0.82 0.45 0.82 0.52 0.58 0.41 0.45

Total
(NumDev)

0.67 0.27 0.73 0.93 0.81 0.66 0.73 0.81 0.61 0.69

Touch 0.23 0.42 0.26 -0.05 0.33 0.42 0.34 0.44 0.14 0.28

Code
metric

Churn 0.26 0.29 0.24 0.74 0.32 0.43 0.23 0.48 0.54 0.39

Size
(LOC)

0.41 0.52 0.19 -0.22 0.4 -0.01 0.28 0.7 0.4 0.30

Comple
xity

0.69 0.18 0.04 0.53 0.29 0.22 0.26 0.21 0.44 0.32

and MVO, which are the same as size, total, and ownership, as defined by Bird

et al. [6].

File Level Analysis: Table 2.10 shows the correlations at the file level. The results

showed that except for one of the nine projects (Proj2), there is a significant correla-

tion between the number of bugs and ownership, major, and totalmetrics. As

summarized in Table 2.10, for all the Brightsquid projects, ownership is negatively

correlated with the number of bugs, indicating that stronger file ownership corre-

lates with fewer bugs. In other words, the more the code is shared among multiple

developers (the lower the ownership), the higher the likelihood that the application

will contain bugs. Similarly, we found a rather strong positive correlation between

the number of Bugs and both total and major metrics. This indicates that
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Table 2.11: Spearman correlation between metrics and bug numbers on directory
level. Bold values are absolute correlation coefficients above 0.50.

Metrics Proj1 Proj2 Proj3 Proj4 Proj5 Proj6 Proj7 Proj8 Proj9 Avg.

avgowne
rship

-0.310 -0.008 -0.137 -0.04 -0.185 0.630 -0.043 0.106 0.136 0.016

ownersh
ipdir

0.188 -0.328 -0.127 -0.047 -0.069 0.579 -0.213 0.075 0.137 0.022

minowne
rdir

0.145 -0.328 -0.132 -0.042 0.0255 0.463 -0.109 0.082 0.147 0.028

pcminors 0.218 -0.352 -0.121 -0.048 -0.080 0.802 -0.157 0.084 0.143 0.054

pcminim
als

0.306 -0.352 -0.125 -0.047 -0.130 0.617 -0.226 0.077 0.136 0.028

pcmajors 0.218 -0.352 -0.134 -0.042 -0.047 0.802 -0.142 0.022 0.150 0.052

avgmino
rs

0.262 0.034 -0.135 -0.047 -0.163 0.630 -0.084 0.108 0.138 0.082

minowne
dfile

0.599 0.083 -0.66 -0.049 0.062 0.011 0.063 0.242 0.135 0.054

avgmini
mals

0.320 0.034 -0.136 -0.04 -0.136 0.630 -0.136 0.107 0.138 0.087

weakown
eds

0.623 0.344 0.102 -0.024 -0.051 -0.037 -0.088 -0.132 -0.201 0.059

avgcontr
ibutors

0.66 0.506 0.16 -0.28 -0.571 0.626 -0.08 0.281 0.255 0.173

a higher number of total and major owners correlate with a higher number of

bugs.

When it comes to the minor metric, we consistently observed a weak correlation

for all the projects. Even when changing the threshold of minors from 5% to 20%

(minimals as named by Foucault et al.[74]) and then to 50% (as suggested by Greiler

et al.[68]), minors still does not show a consistently strong and significant correla-

tion. Similarly, we only observed a sparse correlation between those and the number

of Bugs and code metrics in Brightsquid projects (see Table 2.10).

Directory Level Analysis: Table 2.11 contains Spearman correlation value for met-

rics on directory level. In the case of Brightsquid we only observed weak correlation

between the ownership metrics for directory level and the Number of bugs across
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almost all projects of Brightsquid. Only, Proj6 presents a significant correlation value

for the directory level. Also, the correlation result is not consistent for all projects.

Within five projects the number of bugs decreases with the increasing percentage

of minor, minimal, and major contributors within a directory. For the other four

projects of Brighsquid it is the opposite; meaning that number of bugs increases

with the increasing percentage of those metrics. While the results are indecisive at

the directory level, we observed that the correlation between the the number of

bugs and ownership metrics is more significant on the file level.

In Brightsquid, stronger file ownership associates with fewer number of bugs at
the file level. Further, the consistently strong correlation between the number of

total and major owners correlate with higher number of bugs.

Step 2 - Multiple Linear Regression Model of Ownership and Failure: The

correlation between the ownership and the code metrics motivated Bird et al. [6] to

build regression models. It is essential to analyze if the increasing number of bugs

in the projects is attributable to moreminor contributors or to other measures such as

size, churn, and complexity that are also known to be related to faults. Similarly,

we used multiple linear regression to examine the relationship of ownership metrics

while controlling source code attributes (here size, churn, and complexity). We

built five statistical models for every project to examine how large or small the effect

of each metric is on the number of bugs.

Step 3, 4 - Comparing Variance in Failure (R2) and Goodness of fit: After

constructing the five models, we evaluated and compared their variance in failure

(R2). We began with the Base model consisting of only the three code metrics: size,

churn, and complexity. We subsequently added each ownership metric one by one

to determine which variables influenced the increase or decrease of bugs, following the

approach of Bird et al. [6].

We summarized the results of this analysis based on our regression model for

Brightsquid in Table 2.12. In this table, the asterisk (∗) indicates cases where we iden-
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Table 2.12: Variance in failures for the base model (Code metrics) which includes
standard metrics of complexity, size, and churn, as well as the models with
Minor, Major and Ownership added

Project Base Base+total Base+minor
Base+minor+
major

Base+minor
+major+ owner-
ship

Proj1 38% 38%(+0%) 38.7%(+0.7%) 38.9%(+0.2%) 40.4%∗(+1.5%)

Proj2 51% 91%∗(+40%) 91%∗(+40%) 91%(+0%) 91%(+0%)

Proj3 84.3% 85.0%(+0.7%) 85%(+0%) 85.8%(+0.8%) 85.8%(+0%)

Proj4 92% 93.3%∗(+1.3%) 93.1%∗(+1.1%) 93.4%(+0.3%) 97.6%∗(+4.2%)

Proj5 56% 56.04%(+0.4%) 56.06%(+0.6%) 57.4%(+0.8%) 59.7%∗(+2.3%)

Proj6 39.7% 44.8%∗(+5.1%) 48.9%∗(+9.2%) 52.9%∗(+4%) 70%∗(+18.1%)

Proj7 84% 85.3%∗(+1.3%) 85.9%∗(+1.9%) 88.3%∗(+2.4%) 89.8%∗(+1.5%)

Proj8 35.3% 50%∗(+14.7%) 51.2%(+1.2%) 51.2%(+0%) 51.2%(+0%)

Proj9 42.5% 47.7%∗(+5.2%) 48.1%∗(+5.6%) 49.7%∗(+1.6%) 49.9%(+0.2%)

Avg. 58.09% 65.68% 66.44% 69.62% 69.48%

tified that adding a variable significantly improved the model through the goodness-

of-fit F-test [6]. Among the five models, the base model comprises only three code

metrics size, churn, complexity. We observed that the Base model and the three

code metrics primarily explained variance for Proj4 and Proj7, with percentages of

92.0% and 84.0%, respectively. By adding total and then minor as predictors, we

observed that both variables significantly increased the proportion of variance for all

projects except Proj5. On average, adding the minor variable increased the variance

in failure by 6.7%, while adding the total variable increased this number by 7.63%.

We added major and ownership variables as predictors for building the fourth

(base + minor + major) and the fifth model (base + minor + major + own-

ership). However, we found that these two metrics had less of an effect compared

to when we added total and minor metrics, especially for the Proj2 and Proj9

projects. Therefore, we can conclude that when controlling for code metrics, the

number of total and minor contributors have a strong relationship with the num-

ber of bugs. Furthermore, minor contributors have a greater impact on increasing
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Figure 2.10: Relative importance of metrics in regression models using the number
of bugs as the dependent variable.
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the number of bugs compared to the higher level of ownership. Our results also

show a positive correlation between the touches metric and the number of bugs,

except for Proj4. However, this correlation is relatively weak, with an average of 0.21.

When comparing the R2 values between LOC and churn and MVO, Major,

and Minor, we observed that code metrics contribute relatively more to the total R2

compared to the other metrics. Figure 2.10 illustrates and compares these results.

In Brighsquid, the number of total and minor contributors has a strong
relationship with code quality when controlling the source code attributes. However,
we did not observe strong prediction power for ownership metrics compared to the

code metrics.

Table 2.13: Details on Precision, Recall, and F-measure for predicting defective source
files and directories.

Directory level File level

Project Precision Recall F1 score Precision Recall F1 score

Proj1 0.70 0.62 0.65 0.36 0.34 0.35

Proj2 0.92 0.89 0.90 0.65 0.61 0.63

Proj3 0.94 0.85 0.89 0.95 0.86 0.90

Proj4 0.62 0.60 0.61 0.60 0.60 0.60

Proj5 0.95 0.92 0.93 0.92 0.85 0.88

Proj6 0.93 0.92 0.92 0.95 0.93 0.94

Proj7 0.95 0.95 0.95 0.89 0.88 0.88

Proj8 0.90 0.88 0.89 0.93 0.91 0.92

Proj9 0.86 0.81 0.83 0.87 0.83 0.85

Avg. 0.86 0.82 0.84 0.79 0.76 0.77

Step 2,3 - Random Forrest Model for Predicting Buggy Files and Directo-

ries: We built a Random Forest machine learning classifier to predict defective source

files and directories. Following Greiler et al. [68], we divided our dataset into files

and directories to investigate both granularities. We used two-thirds of one dataset

for training and one-third for testing, along with 10-fold cross-validation. We also

employed PCA (Step 3 - Figure 2.9) for feature selection and dimension reduction.

Finally, we evaluated the classifier’s performance in terms of precision, recall, and F1
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score.

Table 2.13 summarizes the Random Forest classifier’s performance in predicting

defective sources at both the file and directory levels. At the directory level, we

achieved an average F1 score of 0.84 (ranging from 0.61 to 0.93). At the file level, we

obtained an average F1 score of 0.77 (ranging from 0.35 to 0.94). Our model performed

relatively worse in terms of precision and recall at the file level than directory level.

This classification result indicates that ownership can be a significant factor in code

quality

The Random Forest model applied to Brightsquid demonstrated the potential for
predictive modeling of code quality based on ownership values at both file and

directory levels. However, the model performed poorly in predicting quality based
on file ownership metrics for one of the nine projects.

Step 4 - Variable Importance in Ownership: Further, we conducted a metric

importance analysis for both the file level and directory level to assess the predictive

power of the various metrics. To perform this analysis, we utilized the Random For-

est model implemented in scikit-learn, specifically the Random Forest Regressor

model. We present the metric importance scores for the file level in Table 2.14 and

for the directory level in Table 2.15.

On the file level, Table 2.14 shows that the metric with the highest importance

score for predicting defective source files is the number of contributors, except

for Proj7 and Proj9. On the other hand, the least important metric for predicting

defective source files varies depending on the project. For example, in Proj2, Proj3,

and Proj8, ownership is the least important metric, while in Proj1, Proj5, Proj7,

and Proj9, it’s the minimals metric.

Looking at the attribute importance on the directory level (see Table 2.15), mi-

nownedfile and avgcontributors have the highest importance scores for predict-

ing defective source directories across all projects. However, the importance of other

metrics is inconsistent across different projects. For instance, in Proj3 and Proj8,
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all metrics except minownedfile and avgcontributors have poor importance

scores.

The number of contributors to a file and the lowest ownership value among all the
files in a directory show the highest predictive power among all at Brightsquid.

Table 2.14: Metric importance for prediction model based on ownership metrics clas-
sifying detective source files

Metrics Proj1 Proj2 Proj3 Proj4 Proj5 Proj6 Proj7 Proj8 Proj9 Avg.

ownership 0.032 0.023 0.003 0.008 0.101 0.22 0.102 0.004 0.104 0.121

minors 0.109 0.078 0.007 0.007 0.061 0.112 0.078 0.008 0.116 0.064

minimals 0.013 0.112 0.005 0.026 0.014 0.112 0.023 0.012 0.051 0.041

contributors 0.121 0.268 0.095 0.221 0.022 0.085 0.034 0.087 0.165 0.122

Table 2.15: Metric importance for prediction model based on ownership metrics clas-
sifying source directories

Metrics Proj1 Proj2 Proj3 Proj4 Proj5 Proj6 Proj7 Proj8 Proj9 Avg.

avgcontributor 0.14 0.161 0.145 0.33 0.162 0.27 0.101 0.142 0.131 0.176

pcmajors 0.109 0.077 0.007 0.007 0.061 0.112 0.078 0.009 0.116 0.064

avgminors 0.017 0.023 0.006 0.021 0.095 0.01 0.108 0.004 0.032 0.035

weakowneds 0.148 0.099 0.006 0.020 0.021 0.046 0.086 0.004 0.059 0.054

pcminimals 0.032 0.023 0.002 0.009 0.101 0.022 0.102 0.004 0.014 0.034

pcminors 0.013 0.112 0.005 0.027 0.01 0.112 0.023 0.011 0.051 0.040

avgownership 0.10 0.028 0.009 0.005 0.123 0.124 0.009 0.002 0.088 0.054

minownerdir 0.07 0.164 0.008 0.004 0.08 0.115 0.111 0.003 0.008 0.063

ownershipdir 0.10 0.09 0.006 0.006 0.018 0.104 0.023 0.001 0.068 0.046

minownedfile 0.211 0.184 0.195 0.176 0.201 0.197 0.22 0.205 0.164 0.195

avgminimals 0.107 0.018 0.005 0.001 0.102 0.085 0.178 0.011 0.015 0.058

2.5.4 Comparing results between Brightsquid and the re-
ported state of practice

Greiler et al. [68] replicated the study of Bird et al. [6] in Microsoft but expanded the

analysis by introducing 12 new metrics for directory-level code ownership. They dis-

covered a correlation between these metrics and the number of bugs in four Microsoft
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products. Foucault et al. [74] built on this research with slightly different metrics and

evaluated their model in open-source projects. After consulting with our partner com-

pany, Brightsquid, we selected these three studies as the most representative examples

of code ownership research in practice. To evaluate code ownership in Brightsquid,

we replicated these three studies and compared their findings with those from our

partner company. Although we tested the hypotheses of these papers in Brightsquid,

we adapted our evaluation to account for the specific context of our partner company.

For example, we excluded metrics such as organizational and team ownership values

that were not applicable in Brightsquid.

In their first hypothesis, all three selected studies tested whether components with

many minor contributors have more bugs compared to others. In our analysis of

the Brightsquid projects, we found a strong correlation between the number of

bugs and the major, Total, and ownership metrics in all projects except Proj2.

However, the correlation between the number of bugs and minor contributors was

very weak for all nine projects. This is a completely different result from the original

study, which suggested that software components with many minor contributors will

have fewer failures. Even when changing the thresholds from 5% to 20% and 50%, the

average correlation across the projects remained weak (i.e., ≤ 0.5), and the strength

and direction of these correlations were inconclusive.

Comparison 1: In the case of Brightsquid, we observed that there was no significant

correlation (Avg. = 0.17) between the number of bugs in software projects and

Minor contributors who had made contributions of less than or equal to 5%. This

finding is contrary to the results reported in previous studies, which suggested a

relationship between the number of bugs and Minor contributors.

All of the studies we reviewed indicated a weak correlation between Major con-

tributors and the number of pre-and post-release failures. However, in our analysis

of Brightsquid projects, we found a strong correlation between Major contributors
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and the number of bugs (Avg. = 0.677). Overall, previous studies tended to find

a stronger correlation between code ownership metrics and the number of bugs.

Similarly, in our analysis, we observed weaker correlations between code metrics and

the number of bugs in Brightsquid projects compared to the studies we reviewed.

For example, Bird et al. reported a relatively strong relationship between classic code

metrics and the number of failures, but we only observed a sparse correlation between

code metrics and the number of bugs in Brightsquid projects.

The product manager of Brighsquid stated that with his above 15 years of experi-

ence in startup companies having Minor owners is unavoidable but also is essential:

“In order to support resiliency, smaller companies in emerging markets require

minor ownership. i.e. all have an equal understanding of the full system.”

Comparison 2: In Brightsquid, we observed a correlation between the number of bugs

and the number of total and major owners, independent of code metrics.

Foucault et al. [74] reported a significant correlation between the number of devel-

opers who modified a file (number of touches) and the number of bugs. However, in

our analysis of the Brighsquid projects, we found no significant correlation between

the number of file modifications and the number of bugs (Avg. = 0.28). Previous

studies have tested the hypothesis that software components with a high level of

ownership have fewer failures compared to others. These studies showed a strong

correlation between ownership metrics (minor, major, total, ownership) and the

number of bugs or failures. Consistent with these findings, we observed a negative

correlation with an average of −0.63 between the ownership metric and the number

of failures in Brighsquid. We also found a strong correlation between total and

the number of bugs, which is similar to the results of previous studies.

Greiler et al. [68] proposed 12 new ownership metrics at the directory level and

reported a strong correlation between the number of bugs and the percentage of

edits made by minor, minimal, or major contributors (pcminor, pcminimal,
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pcmajors, minownerdir). They found that an increase in minimal and minor

contributors in a directory were associated with higher bug counts. They also reported

that the number of bugs decreases if there are more major contributors among the

contributors of a directory.

While having more major contributors in a directory was associated with lower

bug counts. In contrast, our analysis of Brighsquid revealed stronger correlations

between ownership metrics at the file level than those defined at the directory level.

Specifically, we could not observe any significant correlation between any of the di-

rectory level metrics and the number of bugs in Brightsquid. Therefore, we cannot

draw any conclusive results about the relationship between the number of bugs and

the presence of minor, minimal, or major contributors in a directory.

Comparison 3: Unlike the former studies in Brighsquid, we could not observe corre-

lation between directory-level ownership metrics and the number of bugs.

Bird et al. [6] also hypothesized that the removal of Minor contribution met-

rics decreases defect prediction model performance. They build a regression model

and reported a statically significant impact of code metrics on the number of fail-

ures. They reported a clear trend of having a statistically significant relationship

between ownership metrics and the number of failures in Microsoft Windows. In

Brightsquid, our analysis showed a strong correlation between the number of to-

tal and minor contributors and code quality, even when controlling for source code

attributes. However, we did not observe significant predictive power for ownership

metrics compared to code metrics. Greiler et al. [68] took this a step further and

evaluated whether component bugginess can be predicted using ownership and code

metrics, using a Random Forest model. They reported an average F-score of 0.67,

with recall performing poorly compared to precision. In our file-level analysis, we

achieved an F-score of 0.77 on average and similarly observed poor recall compared

to precision in our model.

56



Comparison 4: In Brightsquid, the number of developers is the most important factor

for classifying defective source files. On the directory level, the lowest ownership value

among all the files in a directory has the best power in predicting bugs.

In their studies, Foucault et al.[74] and Greiler et al.[68] assessed the significance

of metrics for categorizing faulty source files and directories. Upon comparing our

findings with theirs, we observed that the metric importance score for Brightsquid

was very low. Nevertheless, similar to their studies, we discovered that the most

important metric for classifying defective source files was contributors. On the

directory level, minownerdir exhibited the highest importance in Microsoft prod-

ucts, whereas in Brightsquid, minownedfile scored the highest. While Foucault et

al. [75] noted that LOC, Touches, and NumDevs performed well in predicting the

number of bugs in source files within open-source projects, our analysis of Bright-

squid indicated that Touches and NumDevs were the most effective metrics for

predicting bugs in terms of relative importance.

2.6 Discussion and Implication of Findings at Bright-

squid

We conducted a Systematic Literature Review (SLR) on ownership in software engi-

neering, which revealed the existence of nine ownership artifacts. The most frequently

discussed artifact in the literature was code ownership. We present and discuss our

findings in this section, highlighting their implications. We in particular highlight

three main implications of this literature review.

• The community and the active researchers in the field of ownership, from uni-

fying the language and terminology used for modeling. While the terminology

introduced by Bird et al. [6] has been widely used, there are numerous variables

with identical meanings but different names. Appendix II provides details on

the naming and definitions used in each paper. We further synthesized this data
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using the most popular terminology, as shown in Table 2.4.

• Authorship refers to the process of determining who wrote a piece of software

based on its source code. Traditionally, ownership of an artifact has been at-

tributed to an individual (dedicated ownership), which is synonymous with

authorship. However, with the advent of version control systems, shared own-

ership of artifacts is being represented either as a weighted value among team

members or as a collective value among all team members. Code ownership and

code authorship should be distinguished in terms of the method of measuring

ownership.

• While the research community is strongly promoting replicability of empirical

research the status is not very promising in the context of ownership as we

evaluated in our systematic literature review. 84.8% of the ownership studies

identified in our SLR are not replicable, while 67.1% of them are descriptive,

and the majority present case study evaluations (see Figure 2.6).

Our SLR can serve as a starting point for future research in this context and help

researchers select appropriate comparisons and terminology.

Brightsquid wanted to assess the status of code ownership in its repositories and

compare it with other organizations. Our systematic literature review found two

studies on proprietary software, both conducted at Microsoft [6], [68]. Bird et al. [6]

examined the relationship between different ownership measures and software failures,

introducing four ownership metrics (”Major”, ”Minor”, ”Total”, and ”ownership”)

and three code metrics (”size”, ”churn”, and ”complexity”). They then analyzed the

correlation between these metrics and pre- and post-release failures. Our review iden-

tified four studies that evaluated code ownership, all of which followed the approach

of Bird et al. [6]. In the majority of cases, our findings were not convergent with those

reported in the literature.
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However, when discussing our findings, we need to consider the context in which

software engineering activities take place. Brightsquid is in essence focusing on new

market/new solution segments as stated by their Chief Information Officer (CIO):

“Our design and development methodologies must be much more adaptive and

experimentation-driven. This is in stark contrast with the Microsoft Windows

team, whose model is highly prescriptive because they’re optimizing an existing

product for an existing market.”

This is critical for understanding and improving the software development pro-

cess [76]. Our findings echo the empirical evidence that shows yet another aspect of

global and local defect prediction models. As put by Menzies et al. [77], simple global

rules are inadequate for managing complex entities like defect prediction and effort

estimation. Moreover, it is insufficient to describe the data by merely dividing it into

local contexts. In the context of Brighsquid we identified that while concerned by the

code quality, the company values developers accountability toward their costumers

higher. Hence, when they receive and triage a costumer request [3] they assign that to

one developer. The developer being assigned to the user request, is then responsible

to make the decisions (either working with others or individually) to accommodate

that request. This is the main reason for having multiple minor developers per file or

directory. The company believes that understanding the customers and the context

of their requests has a significant impact on a successful development:

• The strategy for assigning customer requests have changed the dynamic of own-

ership in Brighsquid. Focusing on user stories and requests rather than as-

signing the issues (or development tasks) to the developers results in significant

number of minor developers working on a file/directory.

• Our results showed that the increase in the number of major contributors re-

sults in more number of bugs in Brighsquid. This is while the former studies
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showed that the number of major contributors has a negative correlation with

code bugginess. It is essential to consider the context of the software where

Bird et al. [6] and Grailer et al. [68] performed analysis on Microsoft prod-

ucts including Windows. These products by their nature are less user driven in

the core and mostly engineering design of an enterprise solution. Whereas in

Brighsquid understanding the context of the user and their request is playing

a pivotal role in a successful implementation of the changes or new features.

In Brighsquid while the team structure is flat, major contributors has less

familiarity and contact with individual customers. Brightsquid’s product man-

ager indicative of feature/code change or evolution by developers:

When developing new solutions for new markets, we have to deal with both

market risk (is our customer base interested in your feature?) and Technology

risk (can we build the feature at an appropriate degree of quality?).

Consequently, major contributions mean the feature has been more volatile.

• Yet, our results show that the number of developers contributing to a file

(contributors) has an impact on the number of failures. While we could

not identify the percentage of contribution as a conclusive factor Brighsquid

should seek a balance between the expertise of the developers with maintaining

particular parts of code (files and directories) and their familiarity with the user

problems.

Our findings indicated comparable outcomes regarding the correlation between

robust file ownership and a reduced number of bugs at the file level, along with

the correlation between the count of principal owners and a higher number of bugs.

However, unlike prior research, our observations did not reveal a substantial predictive

capacity for code ownership metrics in forecasting code quality. Brighsquid’s product

managers reflected on this as a contrast between the impact of process and personnel:
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Greater developer ownership must be balanced against greater developer responsibility

to acceptance criteria. I wonder if this suggests that ”process” impacts quality more

than ”people”?

As recommended by Briand et al. [76], traditional approaches for conducting soft-

ware engineering research which are focused on producing generalizable results, may

not always be the most effective approach. Instead, the specific development con-

texts for Brighsquid are highly important. Hence, the previous studies might not be

applicable to the specific software projects undertaken by Brighsquid, or the method-

ologies used in those studies might not have been appropriate for the context of the

company’s software projects. The difference in the perspective of task assignment in

the team is the main difference that impacts the code ownership in Brighsquid. The

difference between our observations and former studies suggests that other factors,

such as the complexity of the software, the skills of the team members, or the quality

of the testing processes, might have a more significant impact on the number of bugs

in the software than the contributions of minor contributors. Moving forward we

are planning to empirically evaluate the impact of development processes on the code

ownership in Brightsquid.

As a follow up collaboration and based on the, we hope to further invest on test

ownership in Brighsquid. The CIO of the company reflected on these results as;

Looking into the results I believe we should further invest on interface and unit test

”contract” diligence as a greater predictor of software defects (at least in

Brightsquid), in addition to the variables identified in the paper. Diligently defined,

maintained and owned test cases/suites (by developers, not by separate testers) are

predictive indicators of quality. With greater freedom (co-design/co-development)

comes greater responsibilities (i.e. diligence to well-defined contracts). Further

analyzing test case ownership, to me fits into the construct of the strong governance

which perhaps needs to be in place to enable co-design/co-development. So the more
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adaptive and evolutionary your solution is, the more important the maintenance of

these test cases becomes.

2.7 Threats to Validity

Threat to validity refers to the limitations or potential biases in research that can

affect the validity and reliability of the results. We discuss the threats to the validity

of our study.

Are we measuring the right thing? Construct validity in systematic literature

reviews (SLR) refers to the degree to which the review’s operational definitions of the

key concepts or constructs being studied are accurate and complete. When performing

a systematic literature review, the use of correct search keywords plays a critical role

in identifying relevant studies. We identified 17 relevant search strings, which is

a relatively high number compared to SLRs in software engineering. The manual

analysis of many papers and the potential for human errors is another potential

construct validity issue, which we believe we minimized by having at least two authors

independently perform every classification.

When it comes to mining Brightsquid data, we mostly followed the approaches of

the three papers introduced and the measurements suggested by these studies. The

majority of the measurements and variables have been tested by multiple studies,

yet there were a few (such as ’Touches’) that have been proposed by only one of the

studies. Nevertheless, we independently evaluated the potential relationship between

these variables and software ownership in Brightsquid.

Are we drawing the right conclusions about treatment and outcome re-

lation? Conclusion validity in a systematic literature review refers to the extent to

which the conclusions drawn from the review accurately represent the evidence found

in the studies included. It is concerned with whether the conclusions are supported

by the evidence and whether alternative explanations for the findings have been ruled
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out. When performing the SLR, We formed our research questions to identify the

who, when, how and what code ownership have been discussed and identified different

modeling aspects by systematically retrieving and unifying the dependent, indepen-

dent, and controlled variables. Yet, there might be aspects that we missed in this

comparison. We also analyzed all the active projects of Brightsquid at the time of this

study. There were cases in that projects show slight differences in their behavior (for

example correlation between the variables). These can be attributed to several socio-

technical aspects and staffing of the project (for instance human resource retention)

which were not evaluated nor quantified in our study.

Can the results be generalized beyond the scope of this study? External

validity in systematic literature review refers to the generalizability of the findings to

the larger population outside of the studies included in the review. It assesses the

extent to which the results can be applied to other settings, populations, or contexts.

Our study was limited in scope as we only examined active projects from our partner

company. This means that our findings may not be applicable to all the incoming

projects or the projects done in other organizations, particularly open-source projects.

Furthermore, the development process for different projects can vary, and the results

of our study are only applicable to projects written in Java.

Can we be sure that the treatment indeed caused the outcome? For

an SLR, Internal validity refers to the extent to which the review methodology was

applied rigorously and the study results are accurate and reliable. We chose a compre-

hensive set of databases to search in our systematic literature review. However, there

is a risk that there exist other publications that are not indexed by these engines.

Similarly, despite the use of 17 different search strings, the success of this literature

review highly depends on the correct choice of keywords.

When analyzing Brighsquid data, we adopted the hypothesis that there is one de-

veloper as an owner of a project. Yet, this was mostly adopted from open-source

projects. In Brighsquid, we observe that most developers are minor contributors
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across different projects. Secondly, Brighsquid does not maintain the organizational

metrics and the structure of the teams makes these factors irrelevant to this study.

Hence, we only measured individual-level ownership and not team-level ownership.

The absence of organizational metrics leaves room for speculation and interpretation,

which could affect the accuracy of the observation.

2.8 Conclusion

Researchers have proposed various models to establish ownership of software artifacts

and their relationship with the performance metrics of developers and code quality.

However, there is a limited number of studies available on proprietary software, as

the majority of the models have been empirically evaluated on open-source reposito-

ries. Despite this, no systematic study is currently available to provide an overview

and taxonomy of the existing models for code ownership in proprietary software. our

Systematic Literature Review (SLR) on ownership in software engineering revealed

the existence of nine ownership artifacts, with code ownership being the most fre-

quently discussed. Our findings suggest that unifying the language and terminology

used for ownership modeling can benefit the discipline, as numerous variables with

identical meanings but different names have been identified. Additionally, we found

that authorship and ownership should be distinguished, as ownership can either be

a shared value among team members or a dedicated value assigned to an individual.

However, we also found that the status of replicability in ownership studies is not

very promising, with 84.8% of the studies identified in our SLR being non-replicable.

Furthermore, the majority of ownership studies are descriptive and present case study

evaluations.

We identified three relevant research papers on code ownership for our partner

company, Brightsquid. All three studies followed the approach of Bird et al. [6]

which were conducted at Microsoft. After replicating these studies and adjusting our

evaluation to the context of Brightsquid, we found that unlike the state-of-the-art
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studies on code ownership, there is no significant relation between the number of

minor owners and the code ownership status at Brightsquid. However, consistent

with the former studies, the number of contributors has a significant impact on the

bugginess of the source code. Overall, our study can serve as a starting point for

future research in this context and help researchers select appropriate comparisons

and terminology. Given that only 3.79% of ownership studies are replicable through

the provision of their code and data packages, there is a need for more rigorous

research methods and standardization in this field to establish baselines

Future work in this area could focus on developing more standardized methods for

studying code ownership in proprietary software, exploring the relationship between

ownership and other performance metrics, and investigating how ownership mod-

els can be integrated into software development processes. Additionally, researchers

could investigate the factors that contribute to the low replicability of ownership

studies and develop guidelines for improving replicability in this area.
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Chapter 3

Ownership in the Hands of
Accountability at Brightsquid: A
case study and a Developer survey

The COVID-19 pandemic has accelerated the adoption of digital health solutions.

This has presented significant challenges for software development teams to swiftly

adjust with the market need and the demand. To address these challenges, prod-

uct management teams have had to adapt their approach to software development,

reshaping their processes to meet the demands of the pandemic. Brighsquid imple-

mented a new task assignment process aimed at enhancing developer accountability

towards the customer. To assess the impact of this change on code ownership, we

conducted code change analysis. Additionally, we surveyed 67 developers to inves-

tigate the relationship between accountability and ownership more broadly. The

findings indicate that the revised assignment model not only increased the perceived

sense of accountability within the production team but also improved code resilience

against ownership changes. Moreover, the survey results revealed that a majority of

the participating developers (67.5%) associated perceived accountability with artifact

ownership.
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3.1 Introduction

The emergence of the COVID-19 global pandemic has accelerated the transformation

of digital health solutions, as the increasing demand for online appointments and

remote healthcare services became more pressing due to social distancing guidelines.

This sudden shift has resulted in significant changes in the digital health industry

and has added new challenges for software development teams, particularly in the

healthcare sector. Former studies showed that the COVID-19 pandemic has had a

profound impact on software development teams [78]–[81]. In particular, the surge

in demand for digital health solutions has created a new set of challenges for soft-

ware teams, including shifting priorities, increased workload, and rapidly changing

customer demands. In response to these challenges, product management teams have

had to adapt and evolve their approach to software development. To overcome the

challenges posed by the pandemic, software development teams have had to change

the shape and format of their product management processes.

Brightsquid1 is specialized in providing secure communication solutions for the

healthcare industry. The company’s mission is to help healthcare providers com-

municate more effectively and securely, enabling them to improve patient outcomes

and deliver better quality care. Brightsquid’s flagship product, the Secure-Mail plat-

form, is HIPPA2 compliant and offers secure messaging and file-sharing capabilities,

enabling healthcare professionals to exchange protected health information in a safe

and efficient manner. Brighsquid has been involved in several projects and has expe-

rienced an increasing demand for new or enhanced versions of their existing solutions

during the COVID-19 pandemic. The company’s product management team has

made changes to their issue assignment model to increase developers’ accountability

toward end-user, responding to the increased market demand.

The company explains this change as the transition from task assignment to design

1https://Brightsquid.com/
2HIPAA: Health Insurance Portability and Accountability Act of 1996
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assignment. In this new approach, a user story is assigned to developers, and it is

their responsibility to identify relevant tasks and expert team members. While the

team perceived an increase in developers’ accountability, we initiated the partnership

to evaluate the impact of this change on code ownership and code quality, and to

what extent it affects them. We started with an interview with the product manager

and the Chief Technology Officer (CTO) of Brighsquid to identify the problem.

3.1.1 Developer Accountability in the Face of High Customer
Demand

With the rise in demand during the COVID-19 pandemic, the company recognized the

critical importance of enhancing development team accountability toward customers.

The team leads and product managers have increasingly noticed that developers tend

to limit their contributions to simply carrying out assigned tasks, as suggested by

the leads. The company has identified the significance of fostering a culture of co-

creation to promote enhanced product innovation and increase customer satisfaction.

As a result, the team opted for a change that holds developers further accountable

for the outcomes of an implementation task:

“We intended to build a self-organizing team, which resembles how jazz musicians

organize themselves. We have a broad structure and a shared destination that

everyone understands and should commits to. Despite not having been together

(during COVID), we have embraced this approach of self-organization. With the

intent to bring more knowledge, curiosity, diligence, code ownership, and code

robustness to the development team Brightsquid gradually changed the task

assignment process to be more flexible in the last six months.”

To achieve this vision, the team leads emphasized a shift from task assignment and

ownership to user story assignment and design ownership. Figure 3.1 - (a) and Figure

3.1- (b) illustrate the process before and after the assignment shift. Before the shift
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(a) Task assignment model (before March 2020)
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Figure 3.1: The process of (a) product manager details tasks for every user scenario
and assign to a developer - Before March 2020 (b) product manager assign user story
to a developer who is then responsible to design solution and define tasks.

in the task assignment process, the company followed a standard approach where the

product manager identified the user story and collaborated with the users, market

team, and customer management team to determine the specifics of the user story.

The product manager then identified the tasks required to implement that user story.

Subsequently, in a collaborative effort with the developers, the tasks were prioritized

and assigned to developers in a sprint. The team has been practicing agile practices

such as self-assignment following the agile practices [82].

However, after the change (Figure 3.1 - (b)) in the process, once the product manager

identifies and details the user stories, they then identify the most suitable developer

based on expertise and assign the story to them. From there, the developer takes on

the responsibility of making decisions regarding design and implementing solutions.

They identify the necessary tasks, enter them into the issue-tracking system, and pri-

oritize them. Additionally, they collaborate with other team members to complete the

assigned tasks. The product manager remains involved in the process to provide in-

sights from customers, the customer management team, and the business perspective.

In this scenario, the developer assigned to the user story also assumes accountability
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for finalizing and reporting on the story’s progress. The company perceived a general

value in this change, as put by Brightsquid’s CTO:

“It is the developers’ responsibility to get people together to talk about the design

solutions or add subtasks under that user story based on their solution. (By this

change) we observed the greater collaboration and participation. Developers were no

longer just being order takers but also participating actively in figuring out what

ought to be done.”

While the process aligns with the established transition of management in agile

methodologies [83], the organization had only a primitive understanding and descrip-

tion of developers’ accountability and how to measure it. As framed by the product

manager:

“Generally the idea was that whoever is assigned accountability for a particular

story, if it succeeds, it reflects positively on them, but if it fails, it’s like, ‘Hey, you

didn’t fulfill your responsibilities’.”

In this context and as a result of the semi-structured interview and its comparison

with the literature, we formulate three research questions to evaluate the impact

of this change on code ownership. To further gain a deeper understanding of the

significance of accountability among developers. We aimed to explore a more precise

definition of accountability in software teams and examine its relationship with code

ownership among software developers.
3.1.2 Research Questions

Specifically, this paper is focused on answering the following research questions:

RQ1: How has the relationship between ownership and software quality metrics

changed following the implementation of the new issue assignment model at

Brightsquid?
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While Brightsquid aimed to foster a sense of accountability among developers,

the impact of this change on the quality of the product was unclear. There-

fore, we are interested in comparing the code ownership status of Brightsquid’s

project and the impact it has on the quality of the code before and after the

task assignment change. We chose state-of-the-art studies and replicated them

within BrightSsquid to measure the code ownership status in relation to code

quality before and after the process change in March 2020.

RQ2: How did the revision of BrightSquid’s issue assignment process affect the per-

formance of prediction models in identifying defective files and directories?

We aim to investigate the efficacy of ownership metrics in developing a clas-

sification model for predicting defective files and directories in Brightsquid

projects. To assess the impact of the new assignment model implemented in

March 2020, we compare the performance of these models before and after the

process change, evaluating whether the new model improves the predictability

of defects. Furthermore, we analyze the significance of ownership metrics for

both files and directories to determine the extent to which different metrics can

predict code business before and after the process change.

RQ3: How do developers perceive the relationship between accountability and own-

ership?

The relationship between accountability and ownership is a complex and multi-

faceted issue that is perceived differently by developers depending on a variety

of factors. We surveyed 67 participants to explore their interpretation of ac-

countability and ownership and the relation between these two as they perceive.

3.2 Brighsquid Data

Brightsquid has successfully completed 39 projects with the collaboration of 52 de-

velopers between 2012 and 2023, each project commencing at different times. The
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company employs GitHub as a repository for storing its source code and leverages

JIRA, an effective issue-tracking system, to efficiently manage its diverse range of

issues. As of the time of writing this paper, Brightsquid had amassed an impres-

sive count of 10,110 JIRA tickets across eight distinct categories: Story, Document,

Task, Bug, New Feature, Epic, Technical Debt, and Improvement. These categories

consist of 180 Epics, 1,243 Stories, 5,170 Bugs, 1,727 Improvements, 1,135 Tasks, 34

New Features, 548 Documentation, and 73 Technical Debts. To ensure a structured

approach, the Story and Task issues are further classified into sub-stories, sub-tasks,

and technical tasks, amplifying the organization’s ability to address complex prob-

lems. Meanwhile, Bug, Epic, and Improvement issues are divided into sub-stories and

technical tasks, enabling a systematic resolution of these concerns. Notably, Techni-

cal Debt, New Feature, and Documentation issues do not possess any subdivisions,

streamlining their management. Figure 3.2 provides an overview of this structure.

For our paper, we focused on four significant projects from Brightsquid that re-

mained highly active between 2018 and 2022. These four projects contain a total of

1,515 bug fixes. We collected data for two distinct time frames: March 2018 to March

2020, prior to the implementation of the new accountability system, and March 2020

to March 2022, following the change. During our considered time frame March 2018

to March 2020, Proj4 has the most commits (1,350) and bugfixes (740) while Proj2
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Figure 3.2: JIRA issue hierarchy of Brightsquid
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Table 3.1: Characteristics of the studied Brightsquid projects.

March 2018 to March 2020 March 2020 to March 2022

ID Commits Files
Changed
files

Bugs Commits Files
Changed
files

Bugs

Proj1 125 75 20 200 53 34 11 10

Proj2 131 60 48 64 82 14 9 10

Proj3 768 96 177 344 317 96 53 147

Proj4 1,122 312 118 640 228 282 65 100

fixed the least bugs (74). On the other hand, Proj1 and Proj3 have 178 and 1,085

commits and 210 and 491 bugfixes respectively. For these four projects Table 3.1

shows the summary of these projects indicating the number of commits, total files,

and files that have been changed within the time period, bug fixes, and number of

developers for two distinct time periods.

3.3 Background

Software engineering has a significant body of research on code ownership [34], [52],

[53], and Nordberg et al. [84]. For our research, we adopted the methodologies

employed in two prominent studies that examined ownership status before and after

March 2020. Bird et al. [6] conducted a comprehensive study at Microsoft, later

replicated by Greiler et al. [68], which focused on ownership metrics and their impact

on software quality. We selected these studies as they were conducted within a similar

context to ours at Brightsquid, involving proprietary products.

Bird et al. [85] introduced four ownership metrics at the file level being Major,

Minor, Ownership, and Total, which are further explained in Table 3.2. They investi-

gated the relationship between ownership metrics and pre- and post-release bugs for

Windows Vista and Windows 7. In their study on ownership, Bird et al. [6] demon-

strated that software components with numerous Minor contributors tend to expe-

rience more failures compared to components with fewer contributors. Conversely,
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Table 3.2: Definition of metrics inferred from literature and used in our study.

Metric Definition

Major # of developers who committed more than 5% to a file

Minors # of developers who committed less than 5% to a file

Minimals # of developers who made less than 20% commits

Modests # of developers who made less than 50% commits

Total # of developers who contributed to a file

Ownership Proportion of commits for the highest contributor to a file

Avgownership Average ownership values for all files in a directory

Ownershipdir % of commits of the highest contributor among all files in a directory

Minownerdir % of commits of the lowest contributor among all files in a directory

Avgcontributors Average of distinct contributors among all files in a directory

Pcminors
% of contributors among all contributors with less than 50% commits for
all directory files

Pcminimals
% of contributors among all contributors with less than 20% commits for
all directory files

Pcmajors
% of contributors among all contributors with more than or 50% commits
across all directory files

Avgminimal Average minimals in a directory

Avgminors Average minors in a directory

Minownedfile The ownership value of the file with the lowest ownership value

Weakowneds # of files in a directory that have an ownership value of less than 50%

components with a high level of Ownership tend to have fewer failures than those

with lower ownership levels. The researchers also found that contributors classified

as Minor for one component often become Major contributors for other components

that share dependency relationships. Furthermore, their study revealed that remov-

ing Minor contribution information from defect prediction techniques significantly

reduces their performance. Greiler et al.[68] replicated the former study by Bird et

al.[6] and expanded upon it by introducing 11 ownership metrics at the directory

level. They developed a classification model to predict bugs and assessed the bug

predictive power of the ownership metrics for both files and directories. Additionally,

Greiler et al. adjusted the threshold for identifying Modest ownership, considering
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ownership below 50% as the criterion. They also introduced a new concept called

Minimal ownership, which referred to developers with less than 20% ownership. We

provided a summary of all the ownership metrics in Table 3.2.

3.4 Empirical Methodology

The primary objective of our study is to compare the ownership status and metrics

before and after Brightsquid transitioned from assigning tasks to assigning user stories

to software developers. This shift in the process serves as a key focus of our analysis,

allowing us to evaluate the impact on ownership and associated metrics.

3.4.1 The relationship between code ownership and code qual-
ity metrics (RQ1)

We start by calculating the Spearman rank correlations between code ownership met-

rics and the number of bugs across the four projects. Our objective is to investigate

the relationship between ownership metrics and software quality. We examined these

correlations at both the file and directory levels. We explored the association between

the number of bugs and four ownership metrics: Ownership, Total, Major, and Mi-

nor. We constructed a multiple linear regression model to examine the relationship

between ownership metrics and the number of bugs. This model enables us to deter-

mine whether the increase in the number of bugs within projects can be attributed

to code ownership metrics (for example, higher involvement of minor contributors)

or to code-related factors (for example code size, churn, and complexity), which are

known to be linked to software faults. By utilizing multiple linear regression, we ana-

lyzed the association between ownership metrics and bugs while accounting for source

code attributes, specifically size, churn, and complexity. For each project, we created

five statistical models to assess the extent of the impact that each metric has on the

number of bugs. Initially, we established the “Base” model, which incorporated the

three code metrics size, churn, and complexity. Subsequently, we iteratively add each
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ownership metric individually to identify the metrics that exerted an influence. We

compare these models in terms of their variance in bugs (R2).

For both calculating the correlation and constructing the linear regression models,

we divided the data into two segments before and after March 2020. This division was

made to account for the change in the assignment model implemented by Brightsquid.

We then compared the correlation and the variance in bugs measures for each project

and across all the projects. Also, we investigated RQ1 at both the file level and

directory level. Bird et al. [6] conducted an analysis of Microsoft Windows products

using file-level binaries. Following that, Greiler et al. [68] conducted a study that

examined ownership in Windows products at the directory level. Their results showed

an enhanced performance of defect prediction models when ownership was evaluated

at the directory level.

3.4.2 Bug predictability performance (RQ2)

To investigate RQ2, we initially utilized a Random Forest classifier to predict de-

fective source files and directories in Brightsquid. This choice of approach was in-

fluenced by the methodology employed by Greiler et al. [68] when analyzing own-

ership in Microsoft. The performance of our models was evaluated using 10-fold

cross-validation. To assess the impact of the assignment process change on defect

predictability, we constructed separate models for two distinct time periods: the two

years prior to March 2020 and the two years following it. This division enables us to

examine whether the predictability of defects improved (or not) after the assignment

process change. Furthermore, we conducted training and testing of our models at

both the file level and the directory level to provide a comprehensive analysis.

To conduct a more comprehensive analysis and evaluate the prediction power for

each metric, we performed a metric importance analysis to evaluate the predictive

capability of different metrics at the file and directory levels. In this evaluation, we

specifically focused on the files and directories that underwent changes. The analysis
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was carried out using the Random Forest Regressor model from the scikit-learn

library in Python. We then compared the predictive power of these metrics before and

after March 2020, when Brightsquid changed their assignment model. This analysis

allows us to assess the impact of the assignment model change on the effectiveness of

the metrics in predicting defects.

3.4.3 Developer’s perception of ownership and accountabil-
ity in software teams (RQ3)

we discussed the results of RQ1 andRQ2 and their implications with the Brightsquid

team. In order to gain a broader understanding of developers’ perceptions in general,

beyond just Brightsquid, and to investigate the relationship between code ownership

and accountability in software teams, we have performed survey research following

the guidelines outlined by Pfleeger and Kitchenham[86]. Our survey research consists

of four major parts. The first part aimed to collect participants’ demographics. The

second part aimed to investigate the source and degree of a developer’s sense of

ownership within a team then we aimed to understand the definition of accountability

at work for software developers. Lastly, we investigated the relationship between

ownership and accountability. We designed the survey together with the Brightsquid

team to evaluate their hypothesis in a broader population.

In total, the survey consisted of 26 questions, including 24 closed-ended questions

and two open-ended questions. We collected demographic information through four

questions. The remaining questions aimed to gather participants’ opinions, experi-

ences, and decisions using a five-point Likert scale, multiple-choice options, and text

boxes. We obtained ethics approval for this survey from the York University board

of ethics with Certificate # : e2023 − 088. The survey was anonymous, and no per-

sonal information was collected from participants. We used Qualtrics as the survey

instrument. We used convenient sampling for attracting participants [86] and dis-

tribute the survey in our social networks. Overall, 128 times the link was clicked and
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67 developers participate in our survey.

3.5 Results

In this section, we respond to each research question in sequence.

3.5.1 Relationship between code ownership and code quality
metrics (RQ1)

We calculate the correlation between ownership metrics (see Table 3.2) and the num-

ber of bugs for each project at Brightsquid. We did this analysis for files and for

directories. We did this separately for the time period of March 2018 to 2020 and the

period of March 2020 to March 2022. We first present file-level results and follow the

directory-level evaluations.

Table 3.3: Spearman correlation between metrics and bug numbers on file level.

March 2018 to March 2020 March 2020 to March 2022

Ownership
Metrics

Proj1 Proj2 Proj3 Proj4 Avg. Proj1 Proj2 Proj3 Proj4 Avg.

Ownership -0.217 -0.214 -0.394 -0.432 -0.314 -0.334 -0.261 -0.422 -0.457 -0.369

Major
(> 5%)

0.236 0.259 0.43 0.548 0.368 0.349 0.266 0.433 0.474 0.380

Minors (<
5%)

0.236 0.213 0.393 0.429 0.317 0.334 0.261 0.422 0.465 0.370

Modests (<
50%)

0.236 0.214 0.40 0.43 0.320 0.296 0.235 0.192 0.102 0.206

Minimals
(< 20%)

0.217 0.214 0.184 0.425 0.26 0.334 0.261 0.174 0.317 0.271

Total
(NumDevs)

0.236 0.237 0.412 0.50 0.346 0.343 0.264 0.428 0.465 0.375

Code
Metrics

Churn 0.211 0.233 0.416 0.539 0.350 0.434 0.265 0.428 0.477 0.401

Size 0.438 0.191 0.464 0.293 0.346 0.392 0.365 0.093 0.339 0.297

Complexity 0.217 0.214 0.184 0.425 0.26 0.334 0.261 0.174 0.317 0.271

At the file level, Table 3.3 presents a comparison of the Spearman correlations
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between ownership metrics and the number of bugs at the file level before and after

March 2020, when the assignment model changed in Brighsquid. In both time periods,

we observed a negative correlation between the metric “ownership” and the number of

bugs in the projects consistently across all projects. This indicates that higher levels

of code ownership are associated with a decrease in the number of bugs. Furthermore,

we observed a stronger negative correlation between bugs and ownership for all the

projects after the assignment model changed (after March 2020). Additionally, we

found that contributors classified as “Minor,” “Minimal,” and “Modest” all showed a

positive correlation with the number of bugs in the code across all projects. However,

none of the correlations are strong (all are < 0.5).

Furthermore, we discovered a positive correlation between the number of ”Major”

contributors and the number of bugs, which became stronger with the new assign-

ment model. These findings align with previous studies conducted by Bird et al. [6]

and Greiler et al. [68] in Microsoft projects. We also observed that all the correla-

tions became stronger after implementing the new assignment model, except for the

correlation between ”Modest” contributors (< 50%) and code size with the number

of bugs, as reported in Table 3.3.

At the directory level, Table 3.4 presents a comparison of Spearman correlation

values for metrics during the two time periods. Although the correlations generally

become stronger after March 2020 and with the change in the ownership model, they

all remain insignificant and close to zero. This is in contrast to the analysis conducted

by Greiler et al. [68], which showed much stronger correlations between these metrics

and the number of bugs in Microsoft.

Our analysis of Brighsquid projects at the file level revealed a consistent negative
correlation between the number of bugs and the ownership metric for both time peri-
ods. This finding is in line with state-of-the-art research in the field. Furthermore,
when comparing the results before and after March 2020, we observed a strengthen-
ing of the negative correlation between the number of bugs and the ownership metric,
indicating that the assignment of user stories to developers strengthen the negative
correlation between the number of bugs and the ownership metric at Brighsquid.
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Table 3.4: Spearman correlation coefficients between metrics and the number of bug
fixes on directory level.

March 2018 to March 2020 March 2020 to March 2022

Ownership
Metrics

Proj1Proj2 Proj3 Proj4 Avg. Proj1 Proj2 Proj3 Proj4 Avg.

Avgownership 0.219 -0.121 0.026 0.136 0.065 -0.292 -0.046 0.101 0.108 -0.032

Ownershipdir 0.054 -0.124 0.126 0.136 0.048 -0.041 -0.032 0.155 0.113 0.049

Minownerdir 0.054 -0.121 0.162 0.140 0.058 -0.041 -0.038 0.103 0.115 0.034

Pcminors 0.055 -0.109 0.202 0.139 0.071 -0.041 -0.031 0.105 0.169 0.05

Pcminimals 0.044 -0.156 0.130 0.125 0.035 -0.037 -0.035 0.102 0.122 0.038

Pcmajors 0.057 -0.136 -0.037 0.130 0.003 -0.043 -0.035 0.064 0.167 0.038

Avgminors 0.212 -0.120 0.027 0.135 0.063 -0.299 -0.046 0.101 0.101 -0.035

Minownedfile 0.141 -0.052 0.177 0.171 0.109 -0.170 -0.047 0.144 0.429 0.089

Avgminimals 0.210 -0.121 0.026 0.134 0.062 -0.289 -0.055 0.101 0.154 -0.022

Weakowneds 0.355 0.110 -0.060 -0.148 0.064 0.363 0.046 -0.179 -0.181 0.012

Aavgcontri
butors

0.361 0.251 0.441 0.27 0.33 0.175 0.244 0.516 0.37 0.32

Furthermore, we utilized a multiple linear regression model to investigate RQ1

and analyze the influence of each ownership metric at the file level on the number

of bugs. Our objective was to assess the relationship between ownership measures

while accounting for source code characteristics. Additionally, we aimed to determine

if these effects remained consistent or varied across the two time periods. We only

did this evaluation at the file level, as the correlations for the directory level were

nearly zero. To achieve this, we constructed five statistical models. We began with

the “Base” model, which incorporated code metrics churn, size, and complexity. We

then iteratively added ownership metrics one by one. We presented a comparison of

the variance in bugs (R2) for the five statistical models during both time periods in

Table 3.5. For both time periods, we observed that the inclusion of the Minor metric

in our regression model resulted in the most significant improvement in explaining

the variance in the number of bugs (18.8% before March 2020 and 4.5% after March

2020). On the other hand, the addition of the Major and Ownership metrics only led
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Table 3.5: Variance in bugs for the Base model (Code metrics) and models with
Minor, Major and Ownership added. An asterisk∗ denotes that a model showed
models statistically significant improvement when the additional variable was added.

March 2018 to March 2020

Model Proj1 Proj2 Proj3 Proj4 Avg.

Base (Code
metrics)

41% 98.1% 31.1% 85.5% 63.9%

Base + Total 82%∗(+41.0%) 99.7%∗(+1.6%) 70.0%∗(+29.0%) 88.9%∗(+3.3%)
85.1%
(+18.7%)

Base + Minor 83%∗(+42.0%) 99.7%∗(+1.6%) 70.8%∗(+29.7%) 87.6%∗(+2.1%)
85.2%
(+18.8%)

Base + Minor
+ Major

83% (+0%) 99.7%(+0%) 69.9%(-0.9%) 88.6%∗(+1.0%) 85.3(+0%)

Base + Minor
+ Major +
Ownership

83% (+0%) 99.7% (+0%) 77.7%∗(+7.8%) 96.7%∗(+8.1%)
89.2%
(+3.9%)

March 2020 to March 2022

Base (Code
metrics)

79% 90.8% 77.6% 97.7% 86.2%

Base + Total 80%∗(+1%) 91.0%+(+0.2%) 93.0∗(+15.4%) 98.9%∗(+1.2%)
90.7%
(+4.4%)

Base + Minor 98.9%∗(+1.2%)91.0%(+0.2%) 93.0%∗(+15.4%) 98.9%∗(+1.2%)
95.4%
(+4.5%)

Base + Minor
+ Major

98.9%
(+0%)

98.3%∗(+7.3%) 93.0%(+0%) 98.9% (+0%)
97.2%
(+1.8%)

Base + Minor
+ Major +
Ownership

99.9%∗(+1%)
98.7%
(+0.4%)

93.0% (+0%) 98.9% (+0%)
97.6%
(+0.3%)

to marginal improvements in the variance and was statistically insignificant across all

projects (3.9% before March 2020 and 0.3% after March 2020).

In Brightsquid, consistent with the findings in the literature, we observed a positive
correlation between the number of minor contributors and the number of bugs. This
correlation resulted in increased variance in the number of bugs when controlling for
code metrics, both before and after the March 2020 period.

When comparing the Base models before and after March 2020, we observe a

significant improvement in the explanatory power of code metrics for the variance

of bugs. This improvement is consistent across all projects and, on average, the

code metrics can now account for 86.2% of the variance in bugs. This represents a
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notable enhancement of 22.3% compared to the pre-March 2020 period. Interestingly,

we observed a considerable improvement in the resilience of projects after March

2020 toward ownership changes when controlling for code metrics. By changing the

assignment process in March 2020, we observe that the differences between the Base

model and the other four models are significantly lower (see Figure 3.5). When

comparing the Base model with Base + Minor before March 2020, adding the Minor

metric to the model increased the proportion of variance by 18.8% however, the

addition of Minors accounts for only 4.5% increase post-March 2020.

The change in the assignment model in March 2020 effectively mitigated the impact
of Minor contributors on the number of bugs when controlling for code metrics.
This resulted in a reduction of 14.3% in the contribution of Minor contributors to
the variance.

3.5.2 Bug predictability performance (RQ2)

Table 3.6: Details on Precision, Recall, and F-measure for predicting defective files.

File level

March 2018 to March 2020 March 2020 to March 2022

ID Precision Recall F-measure Precision Recall F-measure

Proj1 0.55 0.40 0.46 0.67 0.65 0.66

Proj2 0.53 0.38 0.44 0.45 0.40 0.43

Proj3 0.44 0.65 0.52 0.69 0.65 0.67

Proj4 0.70 0.63 0.66 0.77 0.73 0.75

Avg. 0.55 0.51 0.52 0.64 0.61 0.63

Directory level

Proj1 0.70 0.55 0.61 0.66 0.65 0.65

Proj2 0.67 0.61 0.64 0.68 0.68 0.68

Proj3 0.71 0.65 0.68 0.79 0.75 0.77

Proj4 0.69 0.61 0.65 0.71 0.69 0.70

Avg. 0.69 0.60 0.64 0.71 0.69 0.70

In Table 3.6 we provided a summary and comparison of the performance met-

rics (precision, recall, and F-measure) of the Random Forest classifier for classifying
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defective sources at both the file and directory levels for Brightsquid projects.

At the file level, considering all four projects from March 2018 to March 2020 and

March 2020 to March 2022, we achieved an average F-measure of 0.52 and 0.63, re-

spectively. Moving on to the directory level, we attained an average F-measure of

0.64 and 0.70, respectively, for the same time periods. Analyzing the results pre-

sented in Table 3.6, it is evident that the Random Forest classifier performs better

for identifying defective files and directories in the period from March 2020 to March

2022, compared to the period from March 2018 to March 2020, across all projects,

with the exception of Proj2 at the file level.

The Random Forest model demonstrates improved precision and recall in predicting
buggy files and directories following the change in the assignment model in 2020 at
Brighsquid.

In line with the approach taken by Greiler et al. [68], we conducted a metric

importance analysis to assess the predictive power of individual performance metrics

at both the file and directory levels. Table 3.7 summarize our file-level observation

and Table 3.8 summarizes the metric importance at the directory level. However, we

only focused on the files and directories that have been changed during each time

period. At the file level, the average importance scores for all ownership metrics

increased for the four projects during the period from March 2020 to March 2022.

Notably, Minors exhibited the highest predictive power for defective files, accounting

Table 3.7: Metric importance in accordance to ownership metrics across the changed
files

March 2018 to March 2020 March 2020 to March 2022

Project
Owner
ship

MajorMinorsMinimalsTotal
Owner
ship

Major MinorsMinimalsTotal

Proj1 0.09 0.13 0.19 0.21 0.25 0.17 0.16 0.30 0.10 0.25

Proj2 0.13 0.12 0.23 0.15 0.11 0.20 0.17 0.23 0.13 0.28

Proj3 0.22 0.13 0.18 0.12 0.15 0.24 0.21 0.27 0.27 0.17

Proj4 0.11 0.15 0.17 0.14 0.15 0.23 0.15 0.32 0.20 0.40

Avg. 0.14 0.13 0.17 0.14 0.15 0.21 0.17 0.28 0.17 0.27
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Table 3.8: Metric importance in accordance to ownership metrics across the changed
directories

March 2018 to March 2020 March 2020 to March 2022

Metric Proj1 Proj2 Proj3 Proj4 Avg. Proj1 Proj2 Proj3 Proj4 Avg.

Avgownership 0.10 0.17 0.22 0.27 0.19 0.17 0.18 0.34 0.12 0.20

Ownershipdir 0.24 0.10 0.33 0.10 0.19 0.21 0.13 0.27 0.08 0.17

Minownerdir 0.13 0.21 0.17 0.16 0.1 0.22 0.20 0.15 0.13 0.17

Pcminors 0.19 0.08 0.18 0.28 0.19 0.21 0.14 0.19 0.29 0.21

Pcminimals 0.05 0.09 0.05 0.12 0.17 0.09 0.14 0.08 0.15 0.11

Pcmajors 0.10 0.12 0.10 0.17 0.12 0.11 0.08 0.10 0.15 0.11

Avgminors 0.08 0.13 0.09 0.09 0.10 0.10 0.14 0.10 0.13 0.12

Minownedfile 0.14 0.13 0.18 0.19 0.16 0.15 0.13 0.17 0.22 0.17

Avgminimals 0.10 0.09 0.15 0.09 0.11 0.09 0.15 0.10 0.12 0.11

Weakowneds 0.12 0.12 0.10 0.17 0.12 0.10 0.13 0.09 0.09 0.10

Avgcontributors 0.13 0.21 0.08 0.09 0.13 0.09 0.19 0.08 0.07 0.11

for 17.5% before March 2020 and 27.8% after March 2020.

After the change in the assignment model, all file ownership metrics showed an
increase in predictive power in and across all the projects. The number of Minor
contributors is the metric with the highest importance score for both time periods.

Moving to the directory level, as shown in Table 3.8, our metric importance analysis

indicated that the average percentage of commits by the highest contributor in a

directory (Ownershipdir) possessed the highest average importance score (19.4%) for

predicting defective source directories across all four projects from March 2018 to

March 2020. During this period, the second most important metric on average was

the average ownership value of a directory. However, after the process change in

March 2020, the percentage of contributors with less than 50% commits (Modests)

demonstrated the highest predictive power (20.9%) at the directory level. Analyzing

the average importance scores of these directory-level metrics, we found that the scores

of Avgownership, Pcminors, Pcmajors, Avgminors, Minownedfile, and Avgminimals

increased after March 2020, while the importance scores of other metrics were higher

prior to March 2020. Hence the results are inconclusive.
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Figure 3.3: Demographics of survey participants

3.5.3 Survey with developers (RQ3)

A total of 67 developers participated in the survey, out of which 40 developers com-

pleted the survey. We discard the incomplete responses and present the results of the

complete survey. 38 of the participants had the title of software developer in their

team. The survey consisted of three demographic questions, the results of which are

presented in Figure 3.3. 32.5% of the participants had one to three years of ex-

perience, 27.5% had less than one year of experience, and 15.0% had more than 10

years of experience. Regarding team management, 50.0% of the participants did not

manage any developers in their team while 7.5% managed 10-20 developers. 70% of

our participants were contributing to open-source projects.

Table 3.9 summarizes the questions and results regarding the source and degree

of developers’ sense of ownership. 85.0% of our participants expressed that they feel

ownership toward the software artifacts. Among them, 20.95% felt most ownership

toward code, 14.86% toward Tasks, and 13.51% toward bugs or issues.

When asked about the circumstances in which they experience the strongest sense

of ownership for an artifact, 35% of our participants stated that it occurs when they

are the sole authors of the artifact, while 22.5% mentioned feeling a heightened sense

of ownership when they contribute more than others. Additionally, 17.5% of the

developers reported feeling ownership based on their higher knowledge and expertise,
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I am accountable for software artifacts that I own.
I am accountable for the tasks I have been assigned to.

I am accountable for tasks related to the artifacts I developed in the previous release.

I am accountable for the tasks that I volunteered to work on.

I am accountable for the procedures and steps I take to fulfill an assigned task.

I am accountable for the time taken to finalize the assigned tasks and the outcome I achieve.

I am accountable for the quality of  the assigned tasks and the outcome I achieve.

I am accountable for tasks related to the artifacts I developed or maintained in past.
As long as the artifact I maintained has no faults, I met my accountability limits.
I am accountable if my manager is unhappy/dissatisfied about a task I have done.

I am accountable if my teammate cannot  maintain the artifact I developed.

I am accountable if the customer/client/end user does not like the product.

I should be held accountable only for the artifacts I own.

Statement
5.3% 2.6% 5.3% 28.9% 57.9%

5.3% 2.6% 5.3% 86.8%

18.4% 28.9% 52.6%

7.9% 44.7% 47.4%

5.3% 26.3% 68.4%

7.9% 2.6% 34.2% 55.3%

10.5% 21.0% 42.1% 26.3%

5.3% 13.2% 31.6% 26.3% 23.7%

18.4% 26.3% 36.8% 18.4%

13.2%

31.6%

10.5%13.2% 31.6% 31.6%

13.2% 13.2% 23.7% 18.4%

13.2% 15.8% 23.7% 31.6% 15.8%

10.5% 18.4% 15.8% 28.9% 26.3%
Totally Disagree Somewhat Disagree Neutral Somewhat Agree Totally Agree

Figure 3.4: Accountability Levels of Developers in a Team. Participants’ account-
ability were measured using a Likert scale.

while 12.5% attributed their sense of ownership to their historical contributions in

maintaining the artifact. However, 60.0% of them indicated that they frequently or

always perceive the ownership of artifacts as shared between themselves and others.

Developers mainly perceive ownership towards code and tasks, and they primarily
determine their ownership based on their level of contribution, which accounts for
the majority of cases (57.5%).

We provided the developers with a dictionary definition of accountability, which

states that ”Accountability refers to the real or perceived likelihood that the actions,

decisions, or behaviors of an individual, group, or organization will be evaluated. It

also entails the potential for the individual, group, or organization to receive rewards

or sanctions based on this expected evaluation.” After presenting this definition, we

proceeded to ask the participants to identify the person towards whom they feel the

highest level of accountability. Among developers, team leads and managers hold

the highest level of accountability (84.2% of participants). Following that, developers

feel accountable towards themselves (79%) and the developers express accountability

towards their teammates and co-workers (73%) in the third place.

We conducted a survey in which we presented a series of 13 statements regarding

accountability within their current software team. The developers were asked to

indicate their level of agreement with each statement using a five-point Likert scale.

The results, shown in Figure 3.4, revealed interesting insights.

A significant majority of participants, 94.7%, expressed agreement in feeling ac-
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Table 3.9: Source and degree of developer’s sense of ownership

Do you feel ownership towards any software artifacts? % of Participants

Yes 85.0%

No 15.0%

Which artifact do you feel most ownership towards? % of Participants

Code 20.95%

Task 14.86%

Bug/Issue 13.51%

Product 9.46%

Test 9.46%

User Story 9.46%

Project 8.78%

Requirement 6.76%

Build 5.41%

Others 1.35%

When do you consider yourself an artifact owner? % of Participants

All the artifact is written by me 35.0%

I contributed more than others 22.5%

I have the most knowledge and expertise on artifact 17.5%

I was assigned to maintain it 12.5%

Proposed the idea behind artifact (IP) 7.5%

Initiated implementation 5.0%

How often do you feel ownership of an artifact is shared
between you and others?

% of Participants

Rarely 7.50%

Sometimes 32.50%

Frequently 42.50%

Always 17.50%
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The developer with the highest
knowledge/skills about that code

The developer who fixed more
bugs for that code

The developer who has owned
the user story related to that code

The developer who has the
most availability

The developer who made the
last changes

The developer who originally
wrote the code

20% 20% 15% 27.5% 12.5% 5%

15% 27.5% 20.0% 12.5% 15.0% 10.0%

32.5% 20.0% 15.0% 12.5% 17.5% 2.5%

10.0% 5.0%10.0%15.0% 17.5% 42.5%

12.5% 15.0%5.0%17.5% 30.0% 20.0%

10.0% 12.5% 35.0% 15.0% 7.5% 20%

1st 2nd 3rd 4th 5th 6th

Figure 3.5: Who should be held accountable for maintaining an artifact with shared
ownership?

countable for the quality of the outcome of the tasks assigned to them. Similarly,

92.1% of developers felt accountable for the procedure and steps taken to fulfill

the assigned tasks. When it came to the tasks specifically assigned to them, 92.1%

felt accountable without any disagreement. However, for tasks they volunteered to

take, slightly fewer developers, 81.5%, expressed accountability with no disagreement.

Moreover, 89.5% of developers showed a sense of accountability for timely task deliv-

ery. Interestingly, in the scenario where a teammate is unable to maintain an artifact

developed by the participating developer, 44.8% of participants disagreed with feel-

ing accountable for it, indicating a lower level of accountability in this particular

situation.

Developers generally agreed on being accountable for the tasks assigned to them, as
well as the time and steps taken to deliver them, and the quality of the outcomes.

Only 86.8% of developers feel accountable towards the artifacts they own. We

then asked the developers to rank the individuals who should be held accountable for

maintaining an artifact with shared ownership. The results of their ranking are pre-

sented in Figure 3.5. The majority, 52.5%, believe that developers with the highest

knowledge and skills should be held accountable for maintaining a shared artifact.

Additionally, 62.5% of the participants believe that the person who made the last

changes to the file should be accountable for its maintenance, followed by 57.5% who
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Figure 3.6: Developers’ perceived degree of relationship between accountability and
ownership (5 = strongest degree).

believe that the developer with the highest number of bug fixes in a file should be

held accountable for maintaining it.

When directly asked about the relationship between accountability and ownership

(Figure 3.6), 5% of participants considered it a weak relationship (score of 2), while

67.5% considered it a strong or very strong relationship.

The majority of developers feel accountable towards their owned artifacts and per-
ceive a significant relationship between accountability and ownership of these arti-
facts.

3.6 Discussion

Two years after transitioning from task assignments to assigning user stories to de-

velopers, the leadership team at Brightsquid has observed a positive impact on de-

velopers’ accountability, transforming the team culture from being solely focused on

order-taking to fostering a culture of design and innovation:

“We have to get the team more involved in the kind of design, conversation leading

to the solution that we want. In the current digital health ecosystem, we do not

always have a defined product for a specific market. Therefore, our continuous effort

is to encourage the market to adopt new solutions. This change our role from

development management to vision management.”

While this change was inevitably driven by the increasing demand for digital health

during the COVID-19 pandemic, the company has continued this practice due to

the perceived higher level of accountability. Furthermore, our measurements have

indicated improved code ownership across projects.
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3.6.1 Assignment process and relation to accountability, own-
ership, and code quality

The sociotechnical aspects of software systems are inherently complex, and they con-

tain intricate details that may have been overlooked in empirical investigations, mak-

ing it challenging to establish causality. However, for this analysis, we have carefully

selected four Brightsquid projects. The key distinguishing factor between the periods

of 2018-2020 and 2020-2022 in these projects is the assignment model. Our selection

is based on observations and has been agreed upon by the production team. Our

investigation in RQ1 and RQ2 revealed that the change in the assignment process

strengthened the correlation between ownership metrics and code quality factors. It

also made code defects more predictable by using ownership metrics. These findings

align with previous literature on the subject.

Our analysis at the directory level did not provide much insight into the changes

when compared between the two time periods. However, through our analysis of

Brighsquid projects at the file level, we discovered a consistent negative correlation

between the number of bugs and the ownership metric for both time periods. This

finding aligns with current research in the field. Additionally, when comparing the

results before and after March 2020, we observed a strengthening of the negative cor-

relation between the number of bugs and the ownership metric. When discussing this

matter with the production team, it was perceived that the assignment of user stories

to developers enhances their sense of accountability. This, in turn, ensures that the

quality of the designed solution meets expectations, thereby reinforcing the negative

correlation between bugs and the ownership metric at Brighsquid. In Brightsquid,

the product manager does not specifically monitor ownership metrics, which include

historical data on how developers have interacted with and modified a file. However,

they interpret these findings as evidence that improved code quality and enhanced

ownership are direct outcomes of the change in the assignment process. This change

involves assigning user stories with greater delegation to the developers, making the
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developer responsible for the overall outcome of the story rather than just a piece of

code:

“Code quality, and I am not just talking about testing, but also considering

acceptance criteria and peer reviews, depends upon the diligence of the process. The

combination of people and process is what gives you the greatest likelihood of quality.

Code ownership can vary on a sliding scale, and in my experience, the relevance of

how many people touch the code becomes less significant when the process is

well-defined and delegated appropriately.”

We observed a stronger correlation and predictive power between ownership metrics

and the number of bugs at the file level (Table 3.3 and Table 3.5). Interestingly, when

comparing the variance in the number of bugs controlled by code metrics (Table 3.5),

we found:

First, the base model, which measures variance in the number of bugs based on

code metrics, experienced a significant increase of 38% in enhanced variance.

This indicates that code attributes alone can explain a considerable degree of

variance in the number of bugs after the change in March 2020.

Second, the quality of all projects demonstrates greater resilience to change and

ownership metrics. Previously, the addition of minor contributors could improve

the variance in bugs by 18.8% compared to the base model. However, following

the process change in 2020, this improvement was reduced to 4.5%.

We interpret this as the shift in the assignment model distributing ownership among

all team members and shifting the mindset from code perfection to implementing

feature sets and releasing the product. Consequently, the significance of who owns

the code and their historical contributions in a file becomes less relevant in defining

its quality.
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“... along with engaging developers more in design they became more diligent about

releasing the product and less about technical quality (to balance their efforts). This

helped in reducing risk and adopting to the change during pandemic because we could

see if the market adapts to what we have built.”

With the change in the assignment model, the team spends less effort on pre-

defining the requirements which leads into identifying more requirement-related bugs

after development;

“We do less diligence testing before a release hence the bugs can go up. We spent

way less time on requirements hence there were more issues coming up because the

features are less specified in advance. We became more reactive toward bugs and

improvement requests.”

3.6.2 Survey Implications (RQ3)

When surveying the developers, it was found that 20.95% felt ownership towards

code, while 14.86% felt ownership towards tasks. In comparison, only 9.46% perceived

ownership towards user stories, and 6.76% towards requirements. Furthermore, when

asked about accountability, the majority (52.7%) expressed controversial or neutral

feelings towards being accountable for the satisfaction of customers or end users. This

is whilst the survey showed a clear tendency of developers feeling accountable toward

assigned tasks. When discussing these results with Brighsquid, the product manager

stated:

“It all depends on the team culture. In Brightsquid, it is time to time from our team

asking that what’s the task but usually we go around that by starting with a story,

gathering the information like investigating the story present all the facts what is

happening and then we talk with team on that story to decide the designer solution

going forward.”
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We observed a strong correlation of 0.82 between the participation of users in

open-source development and their accountability toward end-user satisfaction. This

suggests that the open-source mindset fosters a culture that encompasses a broader

spectrum of accountability. In addition, we employed the Mann-Whitney test to

assess potential differences in group means for the sense of accountability in a team

(Figure 3.4) among open-source participants. Our analysis revealed that users with

experience in open-source development feel significantly more accountable if their

teammates cannot maintain the artifact they have developed (p− value = 0.008).

3.7 Threats to validity

This study should be interpreted within the limitations of being a case study for

research questions RQ1 and RQ2 [45], [87]. Our focus was solely on the four most

active projects within Brightsquid, which may restrict the generalizability of our

findings to other organizations or open-source projects. However, it provides a fair

evaluation of the situation within Brightsquid, as the majority of developers and

resources are involved in these projects. We carefully observed all relevant factors

before and after March 2020 to identify the roots of ownership changes, and no sig-

nificant changes other than the assignment model were found. Nonetheless, as a

sociotechnical system, the software team is complex, and there may be confounding

factors that we did not identify. In our case study, we considered ownership metrics

used in previous studies [6], [68], and it’s worth noting that using different ownership

metrics may yield different findings. We acknowledge a limitation of our study, as

we focused solely on individual ownership levels and did not consider team ownership

within Brightsquid. This limitation can impact the internal validity of our findings.

To address this gap, future studies should include an examination of team ownership

levels, as this may provide a more comprehensive understanding of how ownership

impacts software development dynamics.

For the survey of RQ3, the conclusions drawn in our study are based on a survey,
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which may introduce some inaccuracies and the number of participants is limited,

the larger group of participants can make our conclusion more vigorous. Surveying

software developers may not always capture a comprehensive perspective of real-

world practices [87], [88]. However, surveys have been widely used as a research tool

in software engineering. We view the survey as a complementary approach to other

types of studies, such as mining, in order to gain a more holistic understanding of the

research topic.

3.8 Related Work

While accountability has been discussed in various teams as a scientific discipline

[89], [90], it has not been specifically studied within software teams. In this context,

we provide a concise overview of related studies on accountability and ownership in

software teams.

3.8.1 Individual and team accountability

Software development is a collaborative endeavor, and its social aspects have long

been a topic of discussion. Many parallels can be drawn between the social behavior

of human society and various aspects of software development. Research has ex-

plored the relationship between psychological ownership, self-identity, organizational

accountability, a sense of belonging, and organizational citizenship [91]. Interest-

ingly, psychological ownership has received limited attention in the field of software

engineering [8], [92].

A sense of ownership inherently encompasses a sense of responsibility towards a

target. This responsibility entails protecting and improving possessions and may

involve controlling or limiting access by others [93]. On the other hand, accountability

involves the expected rights and responsibilities of individuals, including the right to

hold others accountable and the expectation of being held accountable oneself [94].

Feelings of psychological ownership are closely tied to attachment towards places,
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objects, and people [93], [94]. The need for belongingness in the organization or

workplace [95] is fulfilled when individuals feel like owners within the organization,

satisfying their socio-emotional needs [96], [97].

3.8.2 Ownership in Software Teams

Ownership within software teams plays a pivotal role in fostering commitment, initia-

tive, and delivering high-quality work [6], [7], [70], [98]. It encompasses two primary

forms: Psychological Ownership, which relates to an individual’s sense of possession

[8], and Corporal Ownership, which pertains to the developmental history of software

artifacts. Code ownership is widely recognized and facilitates accountability, task

delegation, and identification of experts within a software product [53]. Research in-

dicates that weak code ownership is associated with an increased likelihood of defects

[6], [68], [75], [85]. In the agile context, task ownership is particularly important as it

empowers team members to take responsibility for assigned tasks from task boards,

thereby enhancing collaboration and project progress [19]. Bug ownership serves as a

means to identify the responsible developers involved in bug-fixing efforts, whether it

be the developer who introduced the code or another team member [65]. Additionally,

test ownership designates individuals who contribute to specific tests within a test

suite, streamlining test management and accountability [61]. Ownership and task as-

signment are closely interconnected [74], [75], [99]. Typically, the team lead assumes

responsibility for task and bug assignments, investing significant time in determining

the most suitable developer for each task [20]. Incorporating ownership considera-

tions in task assignment enhances the efficiency and effectiveness of bug resolution

within the team [24]–[26], [100]. Several systematic literature reviews have provided

comprehensive insights into the relationship between code ownership, quality, and

task assignments [22], [101], [102].
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3.9 Conclusion

Brighsquid implemented a new task assignment process aimed at enhancing developer

accountability toward customers. The findings from both code change analysis and

a survey of 67 developers demonstrate the positive impact of increased accountabil-

ity on code ownership. Notably, the revised assignment model not only heightened

the perceived sense of accountability within the production team but also improved

the resilience of the code against ownership changes. Moreover, when comparing the

data before and after March 2020, there was a notable reinforcement of the negative

correlation between the number of bugs and the ownership metric. This observation

suggests that the assignment of user stories played a significant role in reducing the

occurrence of bugs. The survey results revealed an intriguing statistic, with 67.5%

of developers associating perceived accountability with artifact ownership. This em-

pirical examination sheds light on accountability within software teams, opening up

new avenues for further evaluation. By understanding the impact of accountability

on ownership, future research can focus on developing effective strategies to foster

motivation and a sense of belonging within teams, ultimately leading to increased

productivity.
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Chapter 4

Conclusion and Future Work

This thesis focuses on the various aspects of ownership and accountability within

software teams and their relationships. Motivated by the problem in our partner

company, we primarily focused on investigating the influence of ownership and ac-

countability on code quality in two separate case studies (2 and 3) and across overall

nine projects of Brightsquid. We further complemented our study with a survey to

gather insights and perspectives from software developers. The scope of our study was

constrained to active projects within our partner company. Consequently, the findings

derived from our research may not be generalizable to projects of other organizations,

particularly those in the open-source domain. It is also essential to acknowledge that

the development processes can vary across various projects in different companies.

As a result, the impact of ownership and accountability on code quality may differ

significantly from what we observed in our case study.

4.1 Conclusion

In Chapter 2, we conducted a systematic literature review to identify existing own-

ership models. As a result of the systematic gathering of the studies, we analyzed

79 papers published between 2005 and 2022. Our study established a taxonomy of

ownership artifacts, examined modeling variables, and assessed the replication status

of each study. We found that code ownership emerged as the most widely discussed
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artifact in the software industry. Furthermore, in collaboration with our partner com-

pany Brightsquid, we replicated three different studies from Bird et al. [6], Greiler

et al.[68], and Foucault et al. [75]. Using Brightsquid data, we compared their code

ownership status with the reported state-of-the-art and practice. This analysis con-

tributes to a better understanding of code ownership and its implications for software

development.

Further, we deepened this study by analyzing the impact of task assignement on the

code ownership. In Chapter 3, we investigated the impact of a new task assignment

process implemented at Brightsquid, focusing on enhancing developer accountability

towards customers. In March 2020 and with the emergence of COIVD-19 pandemic,

Brightsquid changed their task assignment process for enhanced accountability. To

understand the impact of task assignment on developers’ accountability, we performed

code change analysis using Brightsquid data before and after March 2020. The results

indicate that the revised model enhanced both the perceived sense of accountability

within the production team and the code’s ability to handle ownership changes effec-

tively. We also did a survey with software developers to understand the relationship

between ownership and accountability in other software teams. The survey find-

ings revealed that a significant majority of developers (67.5%) associated perceived

accountability with artifact ownership. These findings highlight the positive rela-

tionship between accountability and ownership in software development and suggest

the importance of fostering a culture of accountability for improved code quality and

team productivity.

4.2 Future Work

In this thesis, we focused on only code ownership metrics, specifically individual code

ownership. Software engineering research includes a wide spectrum of ownership

definitions and metrics (see Chapter 2). In the future, it would be beneficial to

expand the analysis beyond individual code ownership and explore the impact of
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organizational code ownership on code quality. Investigating other ownership artifacts

such as tasks, tests, bugs, and requirements could provide further insights into their

influence on software companies.

In this study, we focused on bug prediction using the Random Forest model, as it

was consistent with previous studies (Greiler et al., 2015). However, future research

can explore the performance of other classification models to compare their effec-

tiveness in bug prediction. By evaluating and comparing multiple models, we can

gain insights into which approach yields better results. Furthermore, our analysis

involved running the Random Forest model separately for different projects within

Brightsquid. In the future, it would be beneficial to combine the ownership metrics

data from all considered projects and apply the classification model to assess if the

overall performance improves. This approach would provide a more comprehensive

understanding of the relationship between ownership and bug prediction across the

entire organization. Additionally, to further enrich our analysis, it would be valuable

to consider additional metrics such as developer experience (Rahman et al., 2011),

bug-fixing time (Zhu et al., 2021), and the number of lines of code required to fix bugs

(Rahman et al., 2011). Including these metrics can provide a more comprehensive

view of the factors influencing bug prediction and ownership dynamics within the

software development process.

In our exploration of the relationship between ownership and accountability, we

focused primarily on Brightsquid through the case study and surveyed other software

developers. However, it is important to acknowledge that there are other measures

that can impact the relationship between ownership and accountability, such as au-

tonomy, responsibility, organizational size and culture, developer incentives, and per-

formance rewards. By considering these additional measures, we can gain a more

comprehensive understanding of how ownership and accountability interact and in-

fluence each other within the software development context. These factors may play

a significant role in shaping individuals’ sense of ownership, their willingness to take

99



responsibility for their work, and their overall accountability within the organization.

To gain a more comprehensive understanding of the relationship between ownership

and accountability, it is possible to conduct separate surveys on each concept and then

analyze the correlation between them. This approach allows for focused exploration

of the dimensions and factors related to ownership and accountability individually.

Furthermore, further research can involve analyzing different teams and companies,

including open-source projects, to determine if the impact of ownership is consistent or

varies. The size, the culture, the geographical distribution, the life cycle management

method can be controlled in these further experimentation to evaluate if and to what

extent accountability and ownership are interconnected in different circumstances. It

would be valuable to further explore how different teams increase their developer’s

productivity and improve team culture within their organization and how it affects

the ownership of different artifacts. Conducting surveys with a larger number of

developers would provide diverse perspectives and valuable advice.

Overall, the insights derived from this study can provide valuable guidance for

establishing best practices in software development teams and assist in making the

right decisions regarding code ownership and accountability. By understanding the

impact of accountability on ownership, organizations will gain clarity on the metrics

they should prioritize to enhance developers’ sense of ownership and accountability.

Additionally, this study will help future researchers to understand how accountability

influences ownership in improving collaboration and productivity within teams in

software development.
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era of multiple device ownership and its implications for software architecture,”
in 2014 IEEE 38th Annual Computer Software and Applications Conference,
IEEE, 2014, pp. 338–343.

[35] J. Hur, D. Koo, Y. Shin, and K. Kang, “Secure data deduplication with
dynamic ownership management in cloud storage,” IEEE Transactions on
Knowledge and Data Engineering, vol. 28, no. 11, pp. 3113–3125, 2016.

103



[36] R. Kaur, S. Singh, and H. Kumar, “An intrinsic authorship verification tech-
nique for compromised account detection in social networks,” Soft Computing,
vol. 25, no. 6, pp. 4345–4366, 2021.

[37] J. Huh, M. W. Newman, and M. S. Ackerman, “Supporting collaborative help
for individualized use,” in Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, 2011, pp. 3141–3150.

[38] D. Rayside and L. Mendel, “Object ownership profiling: A technique for finding
and fixing memory leaks,” in Proceedings of the twenty-second IEEE/ACM
international conference on Automated software engineering, 2007, pp. 194–
203.

[39] T. Ravitch and B. Liblit, “Analyzing memory ownership patterns in c li-
braries,” in Proceedings of the 2013 international symposium on memory man-
agement, 2013, pp. 97–108.

[40] C. Zhao, W. Song, X. Liu, L. Liu, and X. Zhao, “Research on authorship
attribution of article fragments via rnns,” in 2018 IEEE 9th International
Conference on Software Engineering and Service Science (ICSESS), IEEE,
2018, pp. 156–159.

[41] M. Narayanan, J. Gaston, G. Dozier, et al., “Adversarial authorship, senti-
ment analysis, and the authorweb zoo,” in 2018 IEEE Symposium Series on
Computational Intelligence (SSCI), IEEE, 2018, pp. 928–932.

[42] J. Ji, S. Park, G. Woo, and H. Cho, “Understanding the evolution process of
program source for investigating software authorship and plagiarism,” in 2007
2nd International Conference on Digital Information Management, IEEE, vol. 1,
2007, pp. 98–103.

[43] A. Brooks, J. Daly, J. Miller, M. Roper, and M. Wood, “Replication of ex-
perimental results in software engineering,” International Software Engineer-
ing Research Network (ISERN) Technical Report ISERN-96-10, University of
Strathclyde, vol. 2, 1996.
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Table 4.1: Specifications of the papers directly relevant to ”Ownership” of software artifacts included in our systematic literature
review. Paper which did not discuss ownership directly (such as S66) are excluded from this table.

PaperWhat? Who? How? Dependent
variable

Independent variable Control vari-
able

S1 Code, Com-
ponent

Developer Collective shared Number of
coding errors

Expertise location, Expertise aware Developer
experience,
team size, and
project size

S2 Product Product
manager

Collective shared N/A N/A N/A

S3 Code (binary
files)

Developer Weighted shared Number of
post release
bugs

Code Churn, Code Complexity, Code
dependencies, Code coverage, Number
of pre release bugs, Number of develop-
ers, Number of ex-developers, Edit fre-
quency, Depth of master ownership, %
of Org. contributing to development,
Level of org. code ownership, Overall
org. Ownership, Org. intersection fac-
tor

N/A

S4 Code, File Developer Weighted shared N/A Code churn, Number of commits N/A

S5 Code, File developer Collective shared N/A N/A N/A

S6 Code, Com-
ponent

Developer Weighted shared Number of
post release
failures

Code churn,Code complexity,Test cov-
erage,Binary dependencies, Number of
developers

Developer geo-
graphical loca-
tion
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S7 Code, Com-
ponent

Developer,
Manager

Weighted shared Number of pre
release fail-
ures, Number
of post release
failures

Highest % of contribution a developer
made to a software component, Num-
ber of major contributor, Number of
minor contributor, Number of develop-
ers

Code size,
Code churn,
Code complex-
ity

S8 Code, file Developer Weighted shared Number of line
of code to fix
defect

Developer experience, Collective own-
ership

Project size,
Number of
bugs linked
with bug fix-
ing revision,
Number of
developers

S9 Issue Developer Weighted shared Number of ac-
tive issues

Number of developers N/A

S10 Code Developer Weighted shared Collective
ownership of a
class

Linguistic Topics using LDA N/A

S11 Component Organization Weighted shared Number of pre
release fail-
ures, Number
of post release
failures

Number of commits Code size,
Code churn,
Code complex-
ity

S12 Code (au-
thorship)

Developer Weighted shared N/A N/A N/A

S13 Code (au-
thorship)

Developer Dedicated Number of
bugs

Characters churn per line per commit, N/A
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S14 Task,Review Developer Weighted shared The time be-
tween review
creation and
last updating

The level of involvement of a review’s
owner in the overall review process

Number of
patches asso-
ciated with
a review,The
median of
the approval
scores received
by a reviewer,
The degree
centrality of
review in a
network based
on review simi-
larity, Number
of reviewers,
Number of
comments on a
review by de-
velopers who
do not own
it, Number of
reviews owned
by its owner
for each review

S15 Code,ComponentDeveloper Weighted shared Number of
bugs

Highest % of contribution a developer
made to a software component,Number
of major contributor,Number of minor
contributor,Number of developers

Code size,
Code complex-
ity
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S16 Code, Com-
ponent

Developer,
Manager,
Organization

Collective shared Number of
bugs

Highest % of contribution a developer
made to a software component, Num-
ber of developers, Number of minor
contributor, Number of minimal con-
tributor, Number of manager, Average
ownership value of files in a directory,
% of commits of highest contributor
in a directory, % of commits of low-
est contributor in a directory, Average
contributors in a directory,% of minor
contributor in a directory, % of mini-
mal contributor in a directory, % of ma-
jor contributor in a directory, Average
of minimal contributor in a directory,
Average of minor contributor in a di-
rectory, Lowest ownership value of file
, Number of files with 50% ownership
value

N/A

S17 Code Developer Weighted shared Fractional
ownership

Number of change of every character in
a source code file

N/A

S18 Code,commit Developer Weighted shared Number of
bugs

Number of developers,Number of com-
mits

N/A

S19 Code, Com-
ponent

Developer Weighted shared Number of
post release
bugs

Code size, Code churn, Number of de-
velopers, Number of files touched by
a developer, Highest % of contribution
a developer made to a software com-
ponent, Number of major contributor,
Number of minor contributor

N/A

S20 Code Developer Weighted shared N/A N/A N/A
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S21 Code, compo-
nent

Developer,
Reviewer

Weighted shared Number of
post release
defects

Highest code ownership value, Highest
review specific ownership value, Pro-
portion of minor developer and ma-
jor reviewer,Proportion of major de-
veloper and major reviewer,Proportion
of major developer and minor re-
viewer,Proportion of minor developer
and minor reviewer,Proportion of mi-
nor developer and major reviewer

Code size,
Code
churn, En-
tropy,Number
of devel-
oper,Number
of reviewer

S22 Code Developer Collective N/A N/A N/A

S23 Code, file Developer Weighted Shared Number of
faults

Number of major contributor,Number
of minor contributor,Number of devel-
opers, Highest% of contribution a de-
veloper made to a software component

Project size,
Code complex-
ity

S24 Bug fix Developer Dedicated Code churn,
Bug fixing
time

Authorship of bug fixing code N/A

S25 Test cases Developer
(Test En-
gineer),
organization

Weighted shared Number of
fixed bugs,
Relative num-
ber of fixed
bugs per test
suite execution

Number of engineers and ex-engineers
who contributed to a test suite, Length
of organizational communication path,
Number of mailing list and user ac-
count as test owner in a test suite

N/A

S26 Project Developer,
Department

Weighted shared Number of fail-
ures per hour

Number of developers, Number of
new developers, Expansion accelera-
tion, Department modularity

N/A

S27 Code, com-
mit

Developer Dedicated N/A N/A N/A
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S28 Build Developer Dedicated, Collec-
tive shared

Build change
type, Build
ownership
style

% of all build commits of a project that
belongs to a specific category (Adap-
tive, Corrective, Perfective, Preven-
tive, new functionality, Reflective) of
build changes, Average amount of build
churn per file changed by the commits
of a build change category (Adaptive,
Corrective, Perfective, Preventive, new
functionality, Reflective), The median
number of unique build files modified
by the build commits in a build change
category (Adaptive, Corrective, Perfec-
tive, Preventive, new functionality, Re-
flective)

N/A

S29 Code,Commit Developer Weighted shared Number of
post-release
defects

Number of developers, Number of ma-
jor contributor, Number of minor con-
tributor, Highest % of contribution a
developer made to a software compo-
nent

Code Size,
Code complex-
ity

S30 Code, File Developer Weighted shared Number of
refactored files

Mean ownership computed on
file,Mean ownership computed on
author

N/A

S31 Code Developer Shared N/A N/A N/A

S32 Product Developer Collective shared Turnover
Intention

Value Fit, Demands-Abilities Fit , Psy-
chological ownership

Financial
Compensation

S33 Code Developer Collective Shared N/A N/A N/A

S34 Code, compo-
nent

Developer Weighted shared N/A N/A N/A
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S35 Code, com-
ponent
(fragment)

Developer Collective Shared N/A N/A N/A

S36 Code (au-
thorship)

Developer Weighted shared N/A Programming style and code smell
metrics based on variables and natural
language

N/A

S37 Code (au-
thorship)

Developer Weighted shared N/A N/A N/A

S38 Requirement Developer,
User, Stake-
holder

Shared N/A N/A N/A

S39 Code (au-
thorship)

Developer Dedicated N/A N/A N/A

S40 Code Organization Weighted shared N/A N/A N/A

S41 Code,fragment
(authorship)

Developer Shared N/A N/A N/A

S42 Code Developer Dedicated N/A N/A N/A

S43 Code, File,
commit

Developer Collective shared N/A Code size, Number of line of code of
each author

N/A

S44 Code (au-
thorship)

Developer Weighted shared N/A N/a N/A

S45 Code, Func-
tions

Developer Dedicated N/A N/A N/A

S46 Project Developer,TeamCollective shared N/A N/A N/A

S47 Task Developer Weighted shared N/A N/A N/A
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S48 Product Developer Dedicated

S49 Code Developer Dedicated N/A N/A N/A

S50 Issue Developer Shared N/A N/A N/A

S51 Code,File,
Commit

Developer Dedicated N/A N/A N/A

S52 Task Developer Weighted shared N/A N/A N/A

S53 Code, file Developer Dedicated N/A N/A N/A

S54 Code Developer Dedicated Number of de-
fects

Developer experience, Code size N/A

S55 File Developer Dedicated N/A N/A N/A

S56 Project User Shared N/A N/A N/A

S57 Code (source
and binary)

Developer Dedicated N/A N/A N/A

S58 Product Manager Dedicated N/A N/A N/A

S59 Product Developer Dedicated N/A N/A N/A

S60 Code Developer Shared N/A N/A N/A

S61 Code and
Product

Developer Collective Shared N/A N/A N/A

S62 Code, file Developer Shared Degree of au-
thorship of a
specific devel-
oper

First authorship of developer through
file creation, Number of changes made
by file creator developer, Number of
changes made by other developer ex-
cept file creator

Project size

S63 Code Developer Shared N/A N/A N/A
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S64 Task Developer Dedicated N/A N/A N/A

S65 Code Developer Shared N/A Code size N/A

S67 Task, Project Developer,
Manager

Dedicated N/A N/A N/A

S68 Code Developer Weighted shared N/A N/A N/A

S69 Product Manager Dedicated N/A N/A N/A

S70 Code (au-
thorship)

Developer Weighted shared N/A N/A N/A

S71 Code Developer Shared N/A N/A N/A

S72 Code, File Developer Weighted shared N/A N/A Code complex-
ity, Developer
experience,
Type of
project

S73 Issue Developer Dedicated N/A N/A N/A

S74 Code Developer Collective shared N/A N/A N/A

S76 Code Developer Collective shared N/A N/A N/A

S77 Code Developer Dedicated, Collec-
tive shared

Proportion of
contribution

Number of commits, Code churn, Code
complexity, Ticket complexity, Pull Re-
quest complexity, Number of pull re-
quests, Number of Tickets

N/A

S78 Product Product
owner

Collective shared N/A N/A N/A

S79 Code Developer Collective shared N/A N/A N/A
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