
IG-JADE-PKSlib: An Agent-Based Framework for
Advanced Web Service Composition and Provisioning

Erick Martı́nez
Department of Computer Science

York University
Toronto, Ontario, Canada M3J 1P3

erickm@cs.yorku.ca

Yves Lespérance
Department of Computer Science

York University
Toronto, Ontario, Canada M3J 1P3

lesperan@cs.yorku.ca

ABSTRACT
In this paper we describe an agent-based infrastructure and
toolkit to develop inter-operable, intelligent, multi-agent sys-
tems for Web service composition (WSC) and provision-
ing. Our toolkit is realized through an interface library
(IG-JADE-PKSlib) that combines state of the art agent-
based and planning technologies (i.e., the IndiGolog model-
based agent programming language, the JADE agent plat-
form, and the PKS planning system). We show that each of
these tools has its strengths and weaknesses, but combined
together, they provide a very powerful toolkit. We argue
that this infrastructure is particularly well suited for devel-
oping next generation Web services (WS) applications.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements / Specifica-
tions—tools; D.2.2 [Software Engineering]: Design Tools
and Techniques—software libraries; I.2.11 [Artificial In-
telligence]: Distributed Artificial Intelligence—intelligent
agents, multiagent systems

Keywords
Multiagent systems, semantic web, web services

1. INTRODUCTION
The Internet is rapidly evolving from being just a repos-
itory of information into a vehicle for emerging Web ser-
vices technologies. Web services (henceforth WS) are self-
contained, self-described, active, and modular software ap-
plications that can be advertised, discovered, and invoked
over the Web [11], e.g., an airline travel service or a book-
buying service. Because of their autonomous and hetero-
geneous nature, WSs are naturally associated with agents.
Agents are persistent computational entities (e.g., a software
program or a robot) capable of perceiving and acting, in an
autonomous manner, in their environment in order to meet

their design objectives. They can also interact and commu-
nicate with other agents. Agents can incorporate reasoning
techniques (e.g., planning, decision making, and learning)
to achieve flexible and effective behaviour [22].

An interesting and demanding challenge is to generate com-
posed services to meet new needs by assembling existing
services, probably offered by different organizations. Thus,
there is a demand for modelling techniques and tools for Web
service composition (henceforth WSC). In this paper, we de-
scribe our efforts to develop next generation tools for WSC
and provisioning. Our main motivation is to provide an
agent-based infrastructure and toolkit to develop software
agents capable of implementing reliable, large-scale inter-
operation of WSs and support advanced features such as
WSC, WS customization, execution monitoring and failure
handling. Such agents should not only be general, easy to
use and customizable, but reusable by different users under
changing conditions.

The use of high-level model-based programming languages
for the specification and execution of complex actions in
dynamic domains has been addressed in [8, 6, 19]. In-
diGolog [8] is part of the Golog-family1 of high-level lan-
guages developed by the Cognitive Robotics Group at the
University of Toronto and extended at York University. In-
diGolog provides a practical framework for implementing
autonomous agents as it supports plan execution, sensing,
exogenous actions handling and planning in incompletely
known dynamic environments. It also has some mechanisms
to provide execution monitoring and re-planning. The lat-
ter capabilities are important for Web service enactment, as
agents can keep track of how responsive particular services
are and control how much is delegated to them. However,
IndiGolog is mainly intended for designing individual au-
tonomous agents. In [16], an extension of the Golog pro-
gramming language is proposed to address the WSC prob-
lem. The designer provides high-level generic procedures for
composed services and these are customized based on user
constraints. This approach operates under the assumptions
of reasonable persistence of sensed information and complete
independence between sensing and world-altering actions.
But there are scenarios where these assumptions do not hold.

1This software is freely available for non-
commercial research purposes; for more details,
visit http://www.cs.utoronto.ca/cogrobo/ and
http://www.cs.yorku.ca/˜lesperan/IndiGolog/.



Many complex applications are best delivered as multi-agent
systems (MAS), that is, systems that involve several inter-
acting, intelligent agents pursuing some set of goals [21].
Various software frameworks/platforms have been developed
for constructing and delivering MAS. The Java Agent De-
velopment Framework (JADE) [2] is an open source, Java-
based, FIPA2-compliant software framework for developing
multi-agent applications. It was jointly developed by TILAB
and AOT Labs. JADE facilitates interoperability with other
agent applications/platforms that are compliant with the
FIPA specifications. It also provides support for some types
of ontologies. However, JADE does not provide reasoning
mechanisms for agents. It does provide an interface to the
JESS [10] expert system shell, but JESS has limitations with
respect to reasoning about dynamic domains.

An approach to WSC using planning is presented in [4].
This preliminary work is based on combining a semantic
data-type matching algorithm with another algorithm based
on interleaved search and execution. The former facilitates
the mapping of data between heterogeneous type structures,
and the latter is used to overcome the problem of incomplete
knowledge regarding the actions in the domain. WS proce-
dures usually involve a lot of information gathering/sensing
actions. If we are going to perform WSC as plan synthesis,
we will need a planner that supports incomplete information
and sensing actions. Some work has addressed the problem
of planning under conditions of incomplete knowledge and
sensing, for instance, the PKS planner [17] that uses a gen-
eralization of the STRIPS [9] approach, and the planner dis-
cussed in [3], that uses a model checking approach. One of
the features that makes PKS interesting for WSC, is its abil-
ity to generate parameterized conditional plans that include
sensing actions. In addition, PKS generates plans at the
knowledge level without considering all the different ways
the physical world can be configured. In [14], some prelimi-
nary empirical evidence to validate the effectiveness of using
PKS to represent and solve WSC problems is presented.

In this paper we describe our work on an agent-based infras-
tructure and toolkit, for inter-operable, intelligent, multi-
agent systems for Web service composition (WSC) and pro-
visioning. Our toolkit is realized through an interface library
IG-JADE-PKSlib, that combines state of the art agent-based
and planning technologies, i.e., the IndiGolog agent pro-
gramming language, the JADE agent platform, and the PKS
planning system. Each of these tools has its strengths and
weaknesses, but combined together, they provide a very
powerful toolkit.

A related toolkit is IG-OAAlib [12] an interface library that
supports the inclusion of IndiGolog agents in an Open Agent
Architecture (OAA) system. OAA [13] is a framework de-
veloped at SRI International for integrating heterogeneous
applications in a distributed infrastructure. However, as
OAA provides no built-in support for inter-operation with
other agent platforms, nor for standard communication lan-
guages and ontologies; it has limitations as an infrastructure
for developing WS applications.

The rest of the paper is organized as follows. In Sections 2,

2FIPA stands for Foundation for Intelligent Physical Agents.

3, and 4 we review the basic components of our toolkit,
i.e., IndiGolog, JADE and PKS respectively. Details of
the IndiGolog-JADE interface (IG-JADElib) are presented
in Section 5, Next, in Section 6, we discuss a high-level
approach to supporting FIPA-compliant agent interaction
protocols in IndiGolog agents. We illustrate this by show-
ing the library implementation of the participant role (CN-
participant) of the Contract Net Protocol (CNP). Then, in
Section 7 we present an approach to adding PKS support
to IG-JADElib and describe how it is implemented. A WS
travel planning example is examined in section 8. In par-
ticular, we sketch how we build and deploy this WS appli-
cation as a multi-agent system using the IG-JADE-PKSlib.
Finally, in Section 9 we conclude and discuss future work.

2. INDIGOLOG
IndiGolog [8] is a high-level model-based programming lan-
guage based on the situation calculus [15] a predicate logic
language for representing dynamic domains. IndiGolog sup-
ports plan execution, sensing, exogenous events handling,
planning in incompletely known dynamic environments, ex-
ecution monitoring, and re-planning. In the situation calcu-
lus, the constant S0 denotes the initial situation and the bi-
nary function symbol do(a, s) denotes the situation resulting
from action a being performed in situation s. Relations and
functions whose values vary from situation to situation are
called relational fluents and functional fluents respectively.
These fluents are denoted by predicate and functional sym-
bols that take a situation term s as last argument.

An IndiGolog agent specification has two parts: a declar-
ative specification of the domain and its dynamics in the
situation calculus, and a procedural description of the agent
behaviour in the IndiGolog process language. The domain
dynamics specification is a situation calculus theory that in-
cludes the following types of axioms:

• Axioms describing the initial situation, S0

• Action precondition axioms, one for each primitive ac-
tion a, characterizing Poss(a, s), i.e., when primitive
action a is possible in situation s.

• Successor state axioms, one for each fluent F , stating
the conditions under which F (x, do(a, s)) holds in the
situation do(a, s) in terms of what holds in situation s;
these axioms provide a solution to the frame problem
[19].

• Sensed fluent axioms, one for each primitive action a,
relating the value returned by a sensing action to the
fluent condition it senses in the environment.

• Unique names axioms for the primitive actions.

• Some foundational, domain independent axioms.

The behaviour of an IndiGolog agent is specified procedu-
rally using the following set of high-level programming con-
structs:



α, primitive action
φ?, wait for a condition
δ1; δ2, sequence
δ1 | δ2, non-deterministic branch
π x.δ, non-deterministic choice of arguments
δ∗, non-deterministic iteration

if φ then δ1 else δ2 endIf , conditional
while φ do δ endWhile, while loop
δ1 || δ2, concurrent execution
δ1 〉〉 δ2, prioritized concurrency

δ||, concurrent iteration
< x : φ → δ >, interrupt

proc p(~θ) δ endProc, procedure definition

p(~θ), procedure call
P

(δ), search operator
noOp do nothing

Note the presence of several non-deterministic constructs:
δ1 | δ2, which non-deterministically chooses between programs
δ1 and δ2; π x.δ, which non-deterministically picks a binding
for the variable x and performs the program δ for this bind-
ing of x; and δ∗, which performs program δ zero or more
times. IndiGolog also incorporates a rich account of (in-
terleaved) concurrency. In particular, construct δ1 || δ2 cap-
tures the concurrent execution of the programs δ1 and δ2.
Additionally, construct δ1 〉〉 δ2 is used to express prioritized
concurrency, i.e., δ2 executes only when δ1 is completed or
blocked. An interrupt < x : φ → δ > has a trigger con-
dition φ and a body δ. If the interrupt gets control from
a higher priority process and the condition φ holds, then
the interrupt triggers and its body δ is executed. Once δ

completes execution, the interrupt may trigger again. Fi-
nally, construct

P

(δ) does a lookahead search over the non-
deterministic program δ, to find a way to successfully ex-
ecute it – this can be used to do planning. IndiGolog has
a formal semantics based on single steps of computation or
transitions [7].

3. JADE
JADE [2] is a software framework and middle-ware enabling
technology for developing multi-agent systems. As a FIPA-
compliant agent platform, JADE provides an implementa-
tion for the following components:

• Agent Management System (AMS). This agent
is responsible for controlling access to the platform,
authentication and registration of participating agents.

• Directory Facilitator (DF). This agent provides a
yellow page service to the agents in the platform.

• Agent Communication Channel (ACC). This agent
provides a white page service. It also supports inter-
agent communication and inter-operability within and
across different platforms.

JADE also provides an implementation of the full FIPA com-
munication model, i.e., agent interaction protocols (AIPs),
FIPA Agent Communication Language (ACL), SL content
language, ontology support and, transport protocols. In
JADE, agent communication involves the exchange of ACL
messages between agents. ACL has a formally defined se-
mantics and pragmatics which avoid any ambiguity derived

from the usage of the language. ACL messages within the
same platform are exchanged encoded as Java objects. How-
ever, when the communicating agents belong to different
platforms the ACL messages are converted from/into string
format. AIPs describe communication patterns as legal se-
quences of messages exchanged between agents. Many com-
mon AIPs are supported in JADE.

Agent communication languages such as FIPA ACL dis-
tinguish between content languages, and ontologies. The
former, describe how the content of a message is encoded
to be transmitted between two agents. Thus, content lan-
guages are typically domain independent. The latter, de-
scribe the vocabulary used and some of its semantics. By
default, JADE provides support for three content languages:
(i) LEAP, i.e., a lightweight binary representation, well-
suited for embedded applications; (ii) FIPA SL, i.e, a rich
(human-readable) text encoding for messages; and (iii) Java
codec, i.e., an efficient Java encoding for exchanging mes-
sages within the same platform. Additionally, JADE sup-
ports user-defined content languages based on external on-
tologies. In particular, it provides generic XML/RDF codecs
for ACL message content based on XML/XML Schema and
RDF/RDF Schema. JADE also provides some built-in sup-
port for some FIPA-based ontologies. At the time of writ-
ing this paper, other wide-spread ontology languages such
as DAML-S and OWL were not yet supported.

4. PKS
The PKS planning system3 [1, 17, 18] supports the genera-
tion of conditional plans with sensing actions for problems
involving incomplete knowledge. It is based on a general-
ization of STRIPS [9]. In STRIPS, the state of the world
is represented by a database and actions are represented as
updates to that database.
Databases. In PKS, there are four databases, each one
storing a different type of knowledge. The contents of these
databases have a fixed formal interpretation in a first-order
modal logic of knowledge that characterizes the agent’s knowl-
edge state (KB).
Kf : This database stores knowledge of positive and nega-
tive atomic facts and knowledge of the value of functions on
fixed arguments, e.g., p(a, b), ¬q(c), f(a) = b, f(b) 6= c.
The closed world assumption does not apply.
Kw : This database is used for plan time modelling of the
effects of sensing actions. Intuitively, φ ∈ Kw means that
at planning time either the agent knows φ or it knows ¬φ,
where φ can be a conjunction of atomic formulas. The agent
will only resolve this disjunction at execution time.
Kv : This database Kv is used for plan time modelling of
the effect of sensing actions that return numeric values. Kv

stores unnested function terms whose values will be known
to the agent at execution time.
Kx : This database contains information about disjunctive
(exclusive or) knowledge of ground literals of the form
(l1|l2|...|ln). Intuitively, this formula represents the fact that
the agent knows that exactly one of the li is true.
Goals. Simple goals can be represented as primitive queries.
A primitive query can take one of the following forms: (i)
K(α), is α known to be true? (ii) K(¬α), is α known to

3This software is also freely available for non-
commercial research purposes; for more details, visit
http://www.cs.utoronto.ca/˜rpetrick/research/pks/.



Action Precondition Effects

sFSpace(n, d) K(existsF (n, d)) add(Kw, availF (n, d))
bookF (n, d) K(availF (n, d)) add(Kf , bookedF (n, d))

del(Kf , availF (n, d))

Table 1: sFSpace and bookF actions.

be false? (iii) Kw(α), does the agent know whether α? (iv)
Kv(t), does the agent know the value of t? (v) the negation
of any of the previous queries. In the above, α represents
any ground atomic formula, and t represents any variable
free term. Complex goals can be expressed as queries which
include primitive queries, conjunctions of queries, disjunc-
tions of queries, and quantified queries where the quantifi-
cation ranges over the set of known objects.
Actions. Actions are specified in terms of three compo-
nents: parameters, preconditions, and effects. In Table 1,
the specifications for actions sFSpace(n, d) and bookF (n, d)
are given. The former is a knowledge-producing action that
senses for seat availability on flight number n on date d. The
effect of sFSpace(n, d) is modelled by adding a new literal
availF (n, d) to the Kw database, i.e., the agent will know
whether there are seats available on the flight. The latter is
a physical action to book a flight. The agent can only book
flights known to be available. Actions’ effects are specified
as a set of database updates, some of which can be condi-
tional.
Domain specific update rules (DSUR). These rules are
used to specify additional action effects and correspond to
state invariants at the knowledge level, e.g.,

K(¬existsF (n, d)) ⇒ add(Kf ,¬availF (n, d))

captures some additional effects of sensing for flight n on
date d, if the agent finds there is no such flight, then it fol-
lows the flight is not available. DSURs may be triggered in
any KB provided their conditions are satisfied.
Planning problems. A planning problem in PKS is de-
fined as a tuple 〈I, A, U, G〉, where I is the initial state, A is
a nonempty set of action specifications, U is a set of DSURs,
and G is a goal condition.

Note that the only forms of incomplete knowledge that can
be expressed are complete lack of knowledge about an atom,
by leaving it out of Kf , and knowledge that only one of a
finite set of literals is true using Kx (as well as information
about what will be known at run time as supported by Kw

and Kv). There is no reasoning by cases other than by going
through a set of cases that have been explicitly enumerated.
The PKS system relies on an efficient, but incomplete, in-
ference algorithm that uses a forward chaining approach to
find plans [1]. This algorithm examines the KB’s contents
to evaluate preconditions and goals.

5. INTERFACING INDIGOLOG AND JADE
One motivation in our work is to enhance IndiGolog agents’
capabilities to participate in multi-agent systems (MAS). As
well, we want to provide a tool for building reasoning agents
that is JADE compatible. Thus, our IndiGolog-JADE (IG-
JADE) interface adds value to both tools by combining their
strengths. This naturally raises the issue of how to design,
implement and deploy MAS involving heterogeneous plat-
forms, i.e., rule-based and object-oriented.

One important technical issue that has to be addressed is the
communication scheme of the participating agents / plat-
forms. At a lower level of abstraction this involves routing
the communication flows between platforms, and establish-
ing what kind of communication protocols are supported by
each platform. Our current low level implementation uses
TCP/IP sockets. At a higher level, our interface should
also address other issues like the structure of the messages,
the use of standard communications languages (e.g., FIPA
ACL) vs. application specific languages, and similarly with
respect to the use of content languages (e.g., FIPA SL).

To interface an IndiGolog agent to JADE, one must relate
the messages it receives and sends to its internal represen-
tation/domain theory. Incoming messages can be treated
as exogenous actions and outgoing messages can be viewed
as primitive actions (or ways of implementing primitive ac-
tions). In principle, our approach is based on incorporating
a JADE peer agent for each IndiGolog agent. We support
two approaches for interfacing IndiGolog agents to JADE in
our toolkit. The first approach is perhaps the most portable
and flexible, and it involves using a generic JADE agent
that can act as a messenger for its IndiGolog peer and han-
dles FIPA ACL (and eventually FIPA SL) messages. The
IndiGolog agents can process ACL messages using Prolog
library functions that we will describe in Section 5.1. So in
the first approach we exploit Prolog’s strengths for build-
ing language processing software. In the second approach,
the implementer of the application creates an instance of
the generic JADE messenger agent, that performs specific
actions as response to the reception of different types of
messages. This agent translates ACL messages into domain
specific exogenous actions for the corresponding IndiGolog
agent, and similarly it translates primitive actions into ACL
messages. An instance of the messenger agent is created for
a specific IndiGolog agent. Basically, they communicate us-
ing a private, application specific content language that only
handles the relevant interactions in terms of defined primi-
tive and exogenous actions. So in the second approach, we
use JADE’s full library support for dealing with FIPA ACL
and SL.

5.1 IndiGolog Interface Details
One way to make IndiGolog agents portable as part of cross-
platforms MAS is to enhance them with mechanisms to
support agent communication languages. To this end, our
current implementation provides flexible functionalities for
monitoring, processing, storing and retrieving FIPA ACL
messages as part of complex communication flows. Figure 1
illustrates the main components of the IndiGolog interface
(all our contributions are depicted using dotted lines). Note
that incoming messages correspond to exogenous events and
outgoing messages correspond to actions.

• Message Processor. This module handles all incom-
ing and outgoing communication, in particular, syn-
tactic and semantic processing of messages. The Mes-
sage Processor module has been implemented using a
Prolog definite clause grammar (DCG) that covers a
large portion of FIPA ACL and it is realized through
the following three predicates:
(i) tokenize acl(+Stream,−TokList), i.e., produces a



Prolog Interpreter

Message 
Processor

Exogenous 
Events Poll

Message 
Poll

Socket Interface 

IndiGolog Program

Exogenous
Actions

Primitive
Actions

JADE

Figure 1: IndiGolog single agent interface high-level
view

tokenized list TokList from the incoming Stream;
(ii) analyze acl(−SemContent, +TokList, [ ]), i.e., first
do syntactic analysis to check whether a given list of
tokens TokList is legal, and then if desired, do se-
mantic analysis (which can be done in the usual DCG
way by introducing additional predicates in the gram-
mar); SemContent is instantiated to the resulting Pro-
log term or to nil if the message does not conform to
the specification;
(iii) generate acl(+Envelope, +ContExpr,−Msg), i.e.,
generates an ACL-compliant message Msg from the
specified Prolog term Envelope and the content ex-
pression ContExpr. Msg is instantiated to a list which
is a string representation of an ACL message.

• Message Poll. This module stores all messages re-
ceived by the IndiGolog agent and provides function-
ality for adding and retracting messages.

• Exogenous Actions Poll. This module provides a
mechanism for monitoring, storing and retrieving ex-
ogenous actions that represent incoming messages. It
is monitored by the IndiGolog interpreter which inserts
new exogenous actions in the agent’s situation, updat-
ing its KB. This can then influence the behaviour of
the agent.

We think that this generic interface provides some basic
communication functionalities on the IndiGolog side for com-
municating with other agent platforms. The programmer
should decide what kind of communication language is best
suited for each particular application. In principle, we think
that a standard communication language (e.g., FIPA ACL)
should be used for application domains where complex agent
conversation flows are expected. Otherwise, a simpler ap-
plication specific language can be used. The current im-
plementation provides support for a large portion of FIPA
ACL as well as for a limited subset of the FIPA SL content
language standard. In particular, all the performatives of
the FIPA interaction protocols are supported as part of the
content language. We also intend to explore how to handle
the mapping between ontological representations encoded in
content languages and action theories.

JADE Agent Platform

Message Transport System

Directory 
Facilitator (DF)

Agent 
Management

System (AMS)

Messenger
Agent A

Messenger
Agent B

IndiGolog

Figure 2: JADE interface high-level view

5.2 JADE Interface Details
Figure 2 illustrates the main components of the JADE in-
terface (our contributions are depicted using dotted lines).
The messenger agent is socket-based, and provides client
and server functionalities to handle incoming and outgoing
communication from/to other JADE agents. Basically, this
agent maintains two queues of messages. As can be ex-
pected, the incoming queue corresponds to exogenous ac-
tions on the IndiGolog side, and similarly, the outgoing
queue corresponds to primitive actions.

The IG-JADElib is still a work-in-progress, and at present a
proof of concept. It would be interesting to explore a more
robust approach to low level communication, perhaps us-
ing the Java Messaging System (JMS). JMS [20] defines a
generic Java language interface to message services and sup-
ports most common messaging models (e.g., point-to-point
and publish/subscribe). JMS seems well-suited for hetero-
geneous application integration because it is an industry-
supported interface specification – not an implementation.
However, it remains to be seen whether this approach can
be effectively applied to Prolog-based applications.

6. FIPA PROTOCOLS IN INDIGOLOG
6.1 Overview
Another way to enhance the IndiGolog agent capabilities
to participate in MAS is to incorporate support for com-
plex agent interaction protocols (AIP). In this section we
use an example, the Contract Net Protocol (CNP), to illus-
trate a high-level approach to adding AIP roles to IndiGolog
agents. In particular, we demonstrate how some built-in In-
diGolog mechanisms, i.e., concurrency with prioritized in-
terrupts; can be gracefully adapted for this task. Our ap-
proach provides a way to integrate (as part of the agent’s
behaviour) the typical reactive nature of some interaction
protocol roles, without compromising the proactive capabil-
ities of the agent. That is, we want our IndiGolog agent to
be capable of participating in complex interactions, while
still working to satisfy their objectives. We plan to support
all FIPA protocols. Note that all FIPA protocols have a
formally defined semantics.

6.2 An Example: FIPA Contract Net Partici-
pant Role

This role is encoded in (1) as a generic reactive behaviour
to three kinds of exogenous events:



(i) requestForBids(Cno, Task), i.e., a new request for bids;
(ii) acceptProposal(Aid, Cno, Task), i.e., the agent’s pro-
posal was accepted by the CN-initiator; and
(iii) rejectProposal(Aid, Cno, Task), i.e., the proposal was
rejected by the CN-initiator.

proc mainCNParticipant(Aid)

% initialize bidding process

< cn, t :

bid requested(cn, t) = true

→ initCNParticipant(cn, t) >

% inform task results

〉〉 < cn, t :

(task status(cn, t) = completed ∨

task status(cn, t) = aborted)

→ informTaskResults(cn) >

% if proposal rejected reset fluents

〉〉 < aid, cn, t :

(initiator responded(aid, cn) = true ∧

(proposal accepted(aid, cn, t) = false)

→ handleRejection(cn) >

% if nothing to do, wait

〉〉 < true → noOp >

endProc

(1)

The top priority interrupt in (1) takes care of initiating the
CN-participant behaviour whenever a new bid requests ar-
rives. This is handled by executing the following procedure:

proc initCNParticipant(Cno, Task)

% non-deterministic pick of agent ID

π aid [

(my bidding ID = aid)?;

% acknowledge not understood proposal

if ¬understoodCall(Cno, Task) then

sendNotUnderstoodMsg(aid, Cno, Task)

% handle bidding process

else

ack(aid, Cno, Task);

decideBid(Cno, Task);

(bidDecisionMade(Cno, Task))?;

handleBidding(Cno, Task);

endIf ]

endProc

(2)

This acknowledges the receipt of the request for propos-
als, whether it was understood or not and if so, tries to
make a bid decision and then handle the bidding. Note that
decideBid(Cno, Task) and handleBidding(Cno, Task) are
domain specific procedures that should be provided for each
application. The second highest priority interrupt in (1)
takes care of detecting task completion or task failure and
informing the contractor of the results. This makes the agent
highly reactive not only to new incoming requests, but also
guarantees that the CN-initiator always gets rapid feedback.
The next interrupt handles the case where the proposal is

rejected by the CN-initiator. The handleRejection(cn) pro-
cedure is provided to handle situations where the agent has
to reallocate some resources. This procedure should be de-
fined by the implementer, but often it will do nothing.

Accepted proposals must be handled by the agent, as part
of its overall objective-achieving behaviour, at a time of the
agent’s choosing. This not part of the CN-participant role
procedure, but is handled in a domain specific way. Usually,
the task solver behaviour will run concurrently with the CN-
participant role and perhaps other behaviours. For example,
we might have:

proc mainControl(Aid)

% concurrent exec. task solver and AIP role

taskSolver || mainCNParticipant(Aid);

endProc

(3)

A simple example of a task solver procedure goes as follows
[5]:

proc taskSolver(Cno, Task)

% if contract granted call task solver

< new contract granted = true

→ resetNewContractF luent;

[ ...implementation... ]

% if nothing to do, wait

〉〉 < true → noOp >

endProc

(4)

Note that the new contract granted fluent is associated to
the acceptProposal(Aid, Cno, Task) exogenous event. There-
fore, whenever a new contract is granted the interrupt is
triggered and the task solver takes over the task.

IndiGolog supports planning for finding ways of achieving
tasks or scheduling their achievement. A new contract being
granted could trigger re-planning. In this way, the agent can
deal with incoming contracts “on the fly” and optimize their
scheduling. Also note that we can handle multiple auctions
and contracts concurrently as we use the contract number
cn to distinguish between them.

7. ADDING PKS-BASED CAPABILITIES
Another motivation in our work is to develop software agents
capable of implementing reliable, large-scale inter-operation
of Web services, Web service composition, customization,
etc. Such agents should be general, easy to use and reusable
by different users under changing conditions. In [14], some
preliminary empirical evidence to validate the effectiveness
of using PKS to represent/solve WSC problems is presented.
Even if in terms of the overall scalability more experiments
are still required, some early results are very promising. In
particular, PKS provides an interesting alternative to the
computational drawbacks of possible worlds reasoning and
also supports a high-level specification for automated WSC.
A sample goal, book a flight with a price equal or less than



the user’s maximum price, is illustrated in (5):

% book company within budget

∃k(x)[K(airCo(x)) ∧ K(bookedF light(x))∧

K(¬priceGtMax(x))] |

% no flight booked

KnowNoBudgetF light |

KnowNoAvailF light |

KnowNoF lightExists

(5)

Note that quantifiers are restricted to range over the set of
known objects / constants in the domain. For convenience,
we introduced three abbreviations: KnowNoBudgetF light,
which represents the case where there is at least one available
flight but none within the budget; KnowNoAvailF light,
which encodes the case where there is no seat available;
and KnowNoF lightExists, which represents the case where
there is no flight. PKS will generate a plan that satisfies user
customization constraints. The domain specification should
be represented as described in Section 4. In [14] we show
how a range of WSC problems, like the above example, can
be represented and solved in PKS.

We considered several alternatives for incorporating knowl-
edge-based planning capabilities into our infrastructure. We
could either directly interface JADE and PKS, or IndiGolog
and PKS, or both. In the end, we chose the former ap-
proach (i.e., JADE-PKS) as PKS is implemented in C++
and it seemed simpler and more natural to interface two
object-oriented systems by just assembling their correspond-
ing APIs. Our implementation is realized through a full-
fledged JADE agent which acts as a wrapper for the PKS
planning system. As a result, the wrapper agent implicitly
benefits from all the functionality available within the JADE
platform, and can also interact with IndiGolog agents con-
nected to JADE using the IG-JADE interface. In particular,
the wrapper agent can participate in complex conversation
flows as part of standard interaction protocols. In addition,
our architecture can also eventually accommodate the im-
plementation of different schemes to map a given ontology
into a PKS domain specification. The PKS-wrapper agent
has two default behaviours, i.e., a problem solver behaviour
which encapsulates all the knowledge-based planning func-
tionality, and a request-responder behaviour which corre-
sponds to the responder role in the FIPA-Request interac-
tion protocol.

To incorporate PKS-based capabilities into any multi-agent
application deployed using the IG-JADE-PKSlib toolkit, the
implementer should create an instance of the PKS-wrapper
agent. This agent will automatically register its capabilities
with the JADE Directory Facilitator (DF). In particular, it
will register the content language (i.e, FIPA SL) and on-
tology (i.e., pks-ontology) that it can understand, as well
as the interaction protocols (i.e., FIPA-Request) that it is
able to participate in. The agent finishes up the initializa-
tion stage by starting up its request-responder behaviour
and then it is ready to process any valid incoming request.

To communicate and interact with the PKS agent, any re-
quester agent must use a matching content language, on-

tology, and protocol. We provide the pks-ontology which
defines the basic vocabulary and structure (schema) of con-
cepts, actions and predicates relevant to the PKS planning
system domain. Some relevant terms of the pks-ontology

are presented in Table 2. For example, the Search con-
cept describes the details of the type of search used by the
PKS agent to find a solution. This concept is defined by
two slots: (i) search-type, i.e., the search type can be one
of depth-first search, breadth-first search or iterating deep-
ening search; and (ii) seach-cutoff-depth, i.e., the cut-
off depth value for terminating the search. On the other
hand, action Solve describes the PKS agent action of solv-
ing a given problem under certain conditions. This action
is defined by four slots: (i) solve-problem, i.e., the prob-
lem to be solved; (ii) solve-search, i.e., the search type
details; (iii) solve-output, i.e., the output details; and (iv)
solve-wait-at-most, i.e., the maximum amount of time (in
milliseconds) the agent should spend trying to find a solu-
tion. Note that some terms have optional slots. All the
mandatory slots are marked with an asterisk. Also note
that, the input problem must be specified in a file using
PKS-compliant XML syntax.

Term Type Slots

Search concept search-type∗: {“dfs”,“bds”,“ids”}
seach-cutoff-depth: � number �

Output concept output-format∗: {“tree”,“prolog”}
File concept file-path

∗: � string �
Problem concept prob-input-file∗: � File �

prob-name: � string �
Solve action solve-problem∗: � Problem �

solve-search: � Search �
solve-output: � Output �
solve-wait-at-most∗: �millisecs�

Table 2: PKS Ontology.

In the future, it would also be interesting to interface the
PKS planning system directly to the IndiGolog interpreter,
to provide extended capabilities for planning with incom-
plete knowledge and sensing actions. There are two ways
this can be achieved. The first way is to have the interpreter
pass planning calls to PKS, and wait for it to find solutions.
This approach is efficient but not very flexible. The un-
derlying Prolog implementation is platform-dependent, and
there is no standard handling of low level communications.
The second way is to extend the IndiGolog interpreter by
incorporating a Prolog-based re-implementation of the PKS
planning system. Although this approach is more flexible, it
is also less efficient. In both cases, IndiGolog agents would
benefit from having built-in knowledge-based planning ca-
pabilities. Also, the representation would be more compact
as we only deal with standard action theories to specify our
agents.

8. A WS TRAVEL DOMAIN EXAMPLE
We have seen in the previous section how one may want to
perform WSC to solve problems like booking a flight be-
tween two cities that satisfy the constraints of a particular
user. In this section we describe a system that is being im-
plemented using the IG-JADE-PKSlib toolkit that performs
WSC. A high-level view of an implementation of the system



PKS Wrapper Agent

PKS

Orchestrator
Agent (OA)

Executor
Agent (EA)

Air Co. #1 Air Co. #2

GUI

JADE Agent

IndiGolog Agent

JADE Agent (PKS)

Figure 3: Air travel demo high-level view

is depicted in Figure 3. In this deployment scenario, there
is an IndiGolog orchestrator agent (OA) capable of making
air travel arrangements. For simplicity, we assume that this
agent knows the set of air companies one can choose from.
Each air company is represented by a JADE agent, which
exposes all the different WSs available for that company
(e.g., find a flight, check seat availability on the flight, check
flight cost, and book the flight). When the user requests
travel arrangements, the OA requests from the air company
agents a functional description of the available atomic WSs,
in terms of pre-conditions and effects. We assume they are
represented using some given service ontology. We discuss
this in the conclusion. Then, it generates an appropriate
PKS domain specification in the form of an XML file and
sends it as a request to a JADE PKS-wrapper agent. If the
PKS-wrapper agent responds to the request and is able to
generate a plan to make travel arrangements, then the OA
passes it over as a request to an IndiGolog executor agent.
Finally, if the executor honours the request and is able to
complete the task successfully, the OA marks the task as
completed and informs the user’s GUI agent of the results.
Note that the OA can at any time abort the task if cannot be
completed, and will also inform the GUI agent about this.

Also note that the kind of protocol described in Section 6
(e.g., Contract Net) would also come handy if one wanted
to script an agent that performs other tasks such as booking
a rent-car or a hotel room. These are available in IndiGolog
as well as JADE.

9. CONCLUSION AND FUTURE WORK
In this paper we described ongoing work on an agent-based
infrastructure and toolkit, for developing inter-operable, in-
telligent MASs. We presented a high-level approach to adding
AIP roles to IndiGolog agents, as well as supporting the
FIPA ACL communication language. We also showed that
adding PKS capabilities to our infrastructure provides a
powerful planning mechanism for applications involving in-
formation gathering actions such as WSs. Our toolkit has
been designed to accommodate arbitrary MASs, but we claim
that it is particularly well suited for developing advanced
WS applications. Our approach so far has been pragmatic,
focusing on what functionalities are most convenient and
useful for an application designer.

One important issue that arises from this work is the ques-
tion of how to provide mechanisms to translate standard on-

tology description languages used in WS applications (e.g.,
OWL, DAML-S, etc.) into the type of action theories and
process specifications that IndiGolog and PKS use. Clearly,
more work is required to understand all the requirements
which should be supported by the library. We also intend
to perform some experiments and case studies and validate
the performance and scalability of the integrated framework.
The first release of the IG-JADE-PKSlib library will be soon
available at http://www.cs.yorku.ca/˜erickm/ig-jade-pks/.

ACKNOWLEDGEMENTS
Ksenia Choubina and Stan Zhiyan Li have made significant
contributions to the IndiGolog-JADE interface. We thank
the anonymous reviewers for their useful comments.

10. REFERENCES
[1] F. Bacchus and R. Petrick. Modeling an agent’s

incomplete knowledge during planning and execution.
In Proceedings of the Sixth International Conference
on Principles of Knowledge Representation and
Reasoning (KR-1998), pages 432–443, San Francisco,
CA, June 1998. Morgan Kaufmann Publishers.

[2] F. Bellifemine, A. Poggi, and G. Rimassa. Jade: A
FIPA-compliant agent framework. In Proceedings of
PAAM-1999, pages 97–108, April 1999.

[3] P. Bertoli, A. Cimatti, M. Roveri, and P. Traverso.
Planning in non-deterministic domains under partial
observability via symbolic model checking. In
Proceedings of the International Joint Conference on
Artificial Intelligence (IJCAI-2001), pages 473–478,
2001.

[4] M. Carman, L. Serafini, and P. Traverso. Web service
composition as planning. In Proceedings of the
ICAPS-2003 Workshop on Planning for Web Services,
Trento, Italy, June 2003. Università di Trento.

[5] K. Choubina. Interfacing IndiGolog and Jade -
contract net protocol implementation. Unpublished
manuscript, Department of Computer Science, York
University, Apr. 2003.

[6] G. De Giacomo, Y. Lespérance, and H. J. Levesque.
ConGolog, a concurrent programming language based
on the situation calculus. Artificial Intelligence,
121(1-2):109–169, 2000.

[7] G. De Giacomo, Y. Lespérance, H. J. Levesque, and
S. S. na. On the semantics of deliberation in
IndiGolog: From theory to implementation. In
Proceedings of the Eighth International Conference on
Knowledge Representation and Reasoning (KR-2002),
pages 603–614, April 2002.

[8] G. De Giacomo and H. J. Levesque. An incremental
interpreter for high-level programs with sensing. In
H. J. Levesque and F. Pirri, editors, Logical
Foundations for Cognitive Agents, pages 86–102.
Springer-Verlag, 1999.

[9] R. E. Fikes and N. J. Nilsson. STRIPS: A new
approach to the application of theorem proving to
problem solving. Artificial Intelligence, 2:189–208,
1971.



[10] E. Friedman-Hill. Jess, the expert system shell for the
java platform. Documentation manual, Sandia
National Laboratories,
http://herzberg.ca.sandia.gov/jess/docs/manual.pdf,
Mar. 2003.

[11] K. Gottschalk and IBM Team. Web services
architecture overview: The next stage of evolution for
e-business. Article, IBM, http://www-
106.ibm.com/developerworks/web/library/w-ovr/,
Sept. 2000.

[12] A. Lapouchnian and Y. Lespérance. Interfacing
IndiGolog and OAA: A toolkit for advanced
multiagent applications. Applied Artificial Intelligence,
16:813–829, 2002.

[13] D. L. Martin, A. J. Cheyer, and D. B. Moran. The
open agent architecture: A framework for building
distributed software systems. Applied Artificial
Intelligence, 13:91–128, 1999.

[14] E. Mart́ınez and Y. Lespérance. Web service
composition as a planning task: Experiments using
knowledge-based planning. In Proceedings of the
ICAPS-2004 Workshop on Planning and Scheduling
for Web and Grid Services, Whistler, BC, Canada,
June 2004. To appear.

[15] J. McCarthy and P. C. Hayes. Some philosophical
problems from the standpoint of artificial intelligence.
In B. Meltzer and D. Michie, editors, Machine
Intelligence, volume 4, pages 463–502. Edinburgh
University Press, 1979.

[16] S. McIlraith and T. C. Son. Adapting Golog for
composition of semantic web services. In Proceedings
of the Eighth International Conference on Knowledge
Representation and Reasoning (KR-2002), pages
482–493, Apr. 2002.

[17] R. P. A. Petrick and F. Bacchus. A knowledge-based
approach to planning with incomplete information and
sensing. In Proceedings of the Sixth International
Conference on Artificial Intelligence Planning and
Scheduling (AIPS-2002), pages 212–221, Menlo Park,
CA, Apr. 2002. AAAI Press.

[18] R. P. A. Petrick and F. Bacchus. Reasoning with
conditional plans in the presence of incomplete
knowledge. In Proceedings of the ICAPS-03 Workshop
on Planning under Uncertainty and Incomplete
Information, pages 96–102, Trento, Italy, June 2003.
Università di Trento.

[19] R. Reiter. Knowledge in Action: Logical Foundations
for Specifying and Implementing Dynamical Systems.
The MIT Press, 2001.

[20] Sun Microsystems. Java message service specification -
version 1.1. Documentation, Sun Microsystems,
http://java.sun.com/products/jms/docs.html, Mar.
2002.

[21] G. Weiss. Prologue. In G. Weiss, editor, Multiagent
Systems: A Modern Approach to Distributed Artificial
Intelligence, page 1. The MIT Press, 2001.

[22] M. Wooldridge. Intelligent agents. In G. Weiss, editor,
Multiagent Systems: A Modern Approach to
Distributed Artificial Intelligence, chapter 1, pages
27–77. The MIT Press, 2001.


