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Abstract

Internal gravity waves are ubiquitous in the atmosphere. Our understanding of

gravity wave emission from atmospheric jet-front systems, such as the baroclinic

vortices, has considerably improved over the past decade. Interestingly, even un-

stable barotropic jets are known to emit gravity waves. However, the wave genera-

tion mechanism in barotropic vortices is thought to be different than in baroclinic

vortices. Yet, our current understanding of the wave generation mechanism fails

to draw a clear distinction between the emission mechanisms in barotropic and

baroclinic vortices; indicating that a deeper understanding of the wave generation

is required than which is currently known.

The present study focuses on gaining a better understanding of gravity

wave generation mechanism from unstable barotropic jets. A more detailed study

of the wave emission mechanism is performed compared to the earlier studies.

New details about the wave forcing mechanism from unstable barotropic jets are

identified, which provides a much clear picture of the wave emission mechanism

from barotropic jets.

The role of planetary vorticity in inhibiting gravity wave emission and its

representation in the Ford-Lighthill formulation is elucidated. Gravity wave emis-

sion associated with vortex merging is also investigated. This study also provides

important insight on the source and significance of divergence in fluid motions.
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Chapter 1

Introduction

1.1 Introduction

Internal gravity waves are ubiquitous in our atmosphere. They are generated by

various physical processes. Considerable progress has been made in our under-

standing of gravity waves induced by topography. However, there have also been

numerous studies of gravity wave activity associated with meteorological motions

other than the ones induced by topography. Observations and models have re-

vealed a broad range of internal gravity waves ranging from high-frequency gravity

waves associated with frontal motions to near-inertial low-frequency gravity waves

associated with evolution of upper level jet streams (see e.g., Fritts and Alexander

2003; Plougonven and Zhang 2014). Deep moist convection is also another source

of internal gravity waves. The present study will focus on non-convective and

non-orographic sources.

In spite of the numerous observations and modelling studies, our under-

standing of gravity wave emission from synoptic scale jets and vortices is still

incomplete. One of the primary difficulties that has hindered progress can be un-
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derstood as follows. Our large-scale atmosphere is characterized by flows which

evolve very slowly at time-scales of the order of few days. These slow motions

tend to remain mostly balanced as they evolve, i.e., pressure gradient forces are

nearly balanced by the Coriolis force in the horizontal and gravitational forces in

the vertical (see e.g., Holton 2004; Vanneste 2013 ). Since the large-scale flows

evolve very slowly at time-scale of the order of few days and tend to remain mostly

near a state of balance, they are not expected to force short-scale high-frequency

gravity waves. A measure of this weak coupling is estimated by smallness in the

Rossby number Ro, which is a dimensionless number, and is defined as

Ro =
U

fL
, (1.1)

where U and L are characteristic velocity and length scales, respectively, and

f is the Coriolis parameter, which is defined as f = 2Ω sinφ, where Ω is the

angular velocity of rotation of the Earth, and φ is the latitude. Since f is the

low-frequency limit of inertia-gravity waves and L/U indicates the time-scale of

evolution of the slow balanced motion, the smallness of Ro then indicates the

separation in time-scale. The gravity wave emission associated with the evolution

of a predominantly balanced motion is referred to as spontaneous emission or

adjustment to distinguish it from geostrophic adjustment (see e.g., Plougonven

and Zhang 2014; Vanneste 2013).

Since observations have indicated upper level jet-front systems as active

sites for gravity waves activity, several researchers have used numerical simulation

to study the evolution of an idealized baroclinic1 (e.g., O’Sullivan and Dunkerton

1995; Zhang 2004; Plougonven and Snyder 2006; Wang and Zhang 2007; see also

Plougonven and Zhang 2014 and references therein). Their aim was to seek an

1A fluid in which density depends on both temperature T and pressure p, ρ = ρ(T, p), is
referred to as a baroclinic fluid. In such a fluid, surfaces of constant density are not parallel to
surfaces of constant pressure (see also fig. (1.1)).

2



understanding of how a predominantly large-scale, slow, nearly balanced motion

leads to the excitation of shorter scale inertia-gravity waves having somewhat

shorter time scales.

The notion of balanced flow exciting gravity waves is not just restricted to

low Rossby number large-scale balanced flows, but has also been demonstrated

in the case of Rossby number order one flows, such as small-scale shallow-water

barotropic2 vortices. These vortices are known to adjust by emission of shallow-

water gravity waves. For example, Ford (1994a) demonstrated through numerical

simulation that even small-scale (small compared to Rossby radius of deforma-

tion3Rd) shallow-water vortices with Rossby number order one magnitude emit

shallow-water gravity waves during their evolution. The characteristics of emit-

ted gravity waves suggests that these waves are generated by a mechanism which

is analogous to Lighthill’s (1952) theory of aerodynamic sound generation from

small-scale turbulence. Consequently, the gravity wave emission associated with

shallow-water vortices have been referred as Lighthill emission.

In addition, unstable axisymmetric small-scale shallow-water vortices with

Rossby number order one are known to emit gravity waves (Ford 1994b; Schecter

and Montgomery 2006). These gravity waves are also known to have been emitted

by the Lighthill mechanism, because the emitted waves have wavelengths long

compared the size of the vortices.

Over the last decade, significant progress has been made in our understand-

ing of the gravity wave generation from upper-level jet-front system, mainly from

numerical simulations of idealized baroclinic waves (Zhang 2004; Plougonven and

2A barotropic fluid is one in which density ρ depends only on pressure p, ρ = ρ(p), so that
surfaces of constant density are also surfaces of constant pressure. In the case of shallow-water
flows, the density is constant, so the fluid is barotropic (see also fig. (1.1)).

3Rossby radius of deformation Rd is defined as the horizontal scale at which rotation effects
become as important as stratification effects (Gill 1982).
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Figure 1.1: A schematic illustrating the situation in barotropic and baroclinic fluids.
Solid lines represent lines of constant pressure p, dashed lines represent
lines of constant density ρ, and the indices indicate different layers. In
case of a barotropic fluid, the lines of constant density are parallel to lines
of constant pressure, so (∇ρ×∇p) = 0, where ∇ is the gradient operator,
and in the case of a baroclinic fluid, the lines are not parallel, so (∇ρ×∇p)
̸= 0.
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Snyder 2006; Wei and Zhang 2014). The gravity wave generation mechanism as-

sociated with the evolution of a baroclinic wave is thought to be different from

the Lighthill mechanism. The argument that has often been invoked is that, in

the case of Lighthill’s emission, the emitted waves propagate exactly horizontally

away from the source region, and have wavelengths very long compared to the

spatial scale of the flow generating the wave. In contrast, gravity waves forced by

large-scale flows, such as baroclinic vortices, tend to have horizontal spatial scale

very short compared to the size of the baroclinic vortices (see e.g., Plougonven and

Zhang 2014 and references therein), and they propagate predominantly vertically.

Although it has been constantly argued that the Lighthill mechanism is

different from the wave generation mechanisms from baroclinic vortices, none of

the studies have questioned why the Lighthill mechanism is absent in the case of

baroclinic vortices. In both the mechanisms, the nonlinear advection terms play

a crucial role in producing wave forcing. So then, how does one kind of forcing

result in long waves and the other in short waves ?

Significant insight into this problem can be obtained from the work carried

out by Harada and Ishioka (2011). Harada and Ishioka (2011) using a constant

f -plane two-layer shallow-water model were able to simulate the gravity wave

emission associated with the evolution of both barotropic and baroclinic instabil-

ity. Their study showed that as the Rossby number is decreased there occurs a

transition from barotropic to baroclinic instability regime, and also observed is

a transition in the characteristics of the emitted waves. So could it be that, in

the case of baroclinic vortices, the Lighthill mechanism is suppressed due to the

increased effect of background rotation as the Rossby number is decreased ? And

that the wave generation mechanism in baroclinic vortices is such that it is not

affected by this increased background rotation ?
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A lot of past research has focused on understanding the wave emission

associated with baroclinic vortices, but relatively few have focused on wave emis-

sion from unstable parallel barotropic flows. Past research on wave emission from

barotropically unstable parallel flows, such as Ford (1994a) and Sugimoto et al.

(2008), have focused on comparing the simulated wave with that predicted by

Ford’s modified version of Lighthill’s (1952) theory. Consequently, our knowledge

of the process of wave emission mechanism have come primarily from the insights

obtained using Lighthill-like formulation. Yet, our current understanding of the

wave generation mechanism fails to draw a clear distinction between the emission

mechanisms in barotropic and baroclinic vortices. This suggests that a deeper

understanding of the wave forcing mechanism is required than that is currently

known.

The present study therefore revisits the problem of shallow-water gravity

wave emission from rotating shallow-water barotropic vortices. Our aim is gain

a better understanding of the wave-forcing mechanism associated with shallow-

water barotropic vortices with Rossby number order one. Our approach is to

use numerical simulations to perform a more detailed investigation of the wave

emission mechanism compared to the earlier studies. This study will help in

identifying some new characteristics or some new details associated with the wave

forcing mechanism, which will be useful in drawing some distinction between the

mechanisms observed in barotropic and baroclinic cases. We hope that our study

will serve as a step towards a better understanding of this problem.
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1.2 Outline of the thesis

The outline of the thesis is as follows. In the remainder of chapter 1, the fun-

damental concepts that are essential to the understanding of atmospheric fluid

dynamics are introduced. The shallow-water equations and the assumptions in-

herent in these equations are discussed. The significance of using shallow-water

equations to study atmospheric motions and the important properties which the

shallow-water equations share with atmospheric flows are addressed. The limita-

tions of shallow-water equations in studying atmospheric motions are also high-

lighted. This introductory survey will serve to provide the necessary foundations

for understanding more advanced topics to be considered in the later chapters.

In Chapter 2, the shallow-water analogue of Lighthill’s (1952) theory of

aerodynamic sound generation is discussed. Our aim is to highlight the key as-

pects of Lighthill’s formulation of the aerodynamic wave generation problem. The

shallow-water analogue of Lighthill’s (1952) theory of aerodynamic sound gener-

ation is presented. Then Ford’s (1994a) extension of the shallow-water analogue

of Lighthill’s theory to rotating fluid is reviewed, and the fundamental differences

that arise as a consequence of the effect of background rotation are highlighted

and discussed.

In Chapter 3, we perform simulations showing shallow-water gravity wave

emission from an initially parallel unstable jet in a constant f -plane shallow-water

model. Earlier studies focused more on comparison of the simulated field with the

predictions based on Ford’s (1994a) extension of Lighthill’s (1952) theory of aero-

dynamic sound generation. Consequently, our understanding of the wave emission

mechanism from shallow-water barotropic vortices comes primarily from the in-

sight obtained using the Lighthill’s formulation. Our approach, in chapter 3, is to

conduct a more detailed and thorough analysis of the numerical simulation results,
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compared to earlier studies (Ford 1994a; Sugimoto et al. 2008), to gain additional

insight to the wave emission mechanism. We also investigate the numerical er-

rors that arise during the nonlinear advection of the potential vorticity anomaly

as a consequence of insufficient resolution. The results from the simulation are

also compared with some of Ford’s (1994a) simulation results. The sensitivity of

model resolution and dissipation to the process of gravity wave generation are also

investigated.

In Chapter 4, we carefully review the details of the Green’s function solution

of the Ford-Lighthill equation with the aim of identifying some limitations of

using Lighthill formulation to study wave emission mechanisms. The solution

thus obtained is compared with the simulated wave field. Some remarks are made

based on this result. We also investigate the contribution of the individual forcing

terms in the Ford-Lighthill equation to the simulated wave with the aim of gaining

some insight into the wave forcing terms. Of particular interest is the contribution

of the additional Coriolis term that arises in Ford’s formulation.

In Chapter 5, the process of wave emission associated with the process

of vortex merging is investigated using the rotating (constant f) shallow-water

model. Differences with the single vortex case are highlighted. Specifically, it is

known that merging of vortices results in increasing the size and amplitude of

the vortices. The significance of these changes to the gravity wave emission are

investigated.

Finally, in chapter 6 we summarize the work that was undertaken, make

some concluding remarks, and suggest some potential topics for further research.
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1.3 Shallow-water equations and geophysical fluid

dynamics

1.3.1 Non-rotating fluids

The shallow-water equations, as their name suggests, are ideal for describing the

motion of a shallow-layer of incompressible fluid with free surface, such as oceans,

lakes, rivers, etc. However, the shallow-water equations are also often used for

studying atmospheric flows. One reason for this is that they form the simplest

set of equations that can be used to describe the horizontal structure of the at-

mosphere, in comparison to the full Navier-Stokes equations. More importantly,

despite their simplicity, the shallow-water equations possess important proper-

ties which they share with atmospheric and oceanic flows, namely the ability to

represent both rotating quasi-geostrophic and wave motions.

The inviscid shallow-water equations for a non-rotating fluid comprises the

horizontal momentum equations (see e.g., Holton 2004; Gill 1982; Kundu 1990),

∂tu+ u ·∇u = −g∇h, (1.2)

and the continuity equation,

∂th+∇ · (hu) = 0, (1.3)

where u is the horizontal velocity vector, ∇ is the horizontal gradient operator,

and h is the height of the free surface of the fluid, and g is the acceleration due to

gravity.

The shallow-water equations are typically used to describe atmospheric
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flows for which the following assumptions can be considered to be valid. Density

variations can be ignored, i.e., parcels can’t be compressed. The vertical depth

scale is small compared to the horizontal scale such that the flow can be approxi-

mated to be in hydrostatic balance. Furthermore, the depth of the fluid is shallow

enough that the vertical shear of the horizontal wind can be considered negligible.

Lastly, the shallow-water continuity equation can be derived on the basis that the

fluid horizontal divergence is independent of depth (see e.g., Holton 2004; Gill

1982; Kundu 1990).

1.3.2 Rotating shallow-water equations

Since our Earth is constantly rotating on its axis and we are also rotating with it, it

is simpler to study large-scale atmospheric motions from a rotating or non-inertial

frame of reference, as opposed to some fixed or inertial frame of reference.

The inviscid shallow-water equations in a rotating frame (e.g. Gill (1982))

reads as

∂tu+ u ·∇u+ fk× u = −g∇h, (1.4)

and

∂th+∇ · (hu) = 0, (1.5)

where u, now, represents the horizontal velocity vector relative to the rotating

frame, k̂ is the unit vector along the local vertical, and f is the Coriolis param-

eter. The details of the transformation from fixed to rotating frame will not be

provided here, and can be found in most of the standard textbooks on atmospheric

science (see e.g., Holton 2004; Cushman-Roisin and Beckers 2010). Except for the

additional term (fk×u) in the momentum equations, the rotating shallow-water

equations are identical to the non-rotating equations. This new term is known as
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the Coriolis force. The Coriolis force deflect parcels at a right angle to the hori-

zontal flow. The direction of the Coriolis force is such that a moving fluid particle

is deflected towards the right in the Northern hemisphere and towards the left in

the Southern hemisphere (see e.g., Holton 2004). In this study we will assume f

is a constant for simplicity. This assumption is consistent with the scale of the

vortices to be considered.

1.3.3 Planetary vorticity, Rossby number and its signifi-

cance

Consider a circular ring of fluid undergoing solid body rotation along a specific

latitude with angular velocity equal to the rotation of Earth (Ω). Let R be the

distance of the ring from the the axis of rotation of the earth and R the position

vector of an element of fluid of the ring. Then the velocity of the fluid Ue = Ω

× R, where direction of Ω is the along the axis of rotation. Such a fluid ring

possesses vorticity equal to ∇ × Ue. Now by vector identity (Holton 2004)

∇×Ue = ∇× (Ω×R) = Ω∇ ·R = 2Ω (1.6)

The component of 2Ω along the local vertical, i.e., 2Ω sin φ, is the vorticity corre-

sponding to a parcel at rest relative to the surface of the earth, and is referred to

as planetary vorticity. Since φ varies across the globe, planetary vorticity is not a

constant but varies with latitude (φ). Planetary vorticity has a value of zero along

the equator. At a latitude of 45◦ the value of planetary vorticity is approximately

1×10−4 s−1. Notice that the expression for the planetary vorticity is identical to

the expression for the Coriolis parameter f . Consequently, planetary vorticity is

also referred to by the symbol f . The fact that these expressions are identical has

consequences.
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As a consequence of observing motion in a rotating frame, the vorticity as-

sociated with fluid motions can always be expressed as a sum of planetary vorticity

f and the vorticity measured relative to the rotating frame, which is referred to

as relative vorticity. When the magnitude of relative vorticity is very small com-

pared to the planetary vorticity, we can expect the fluid motions to be strongly

influenced by the presence of the background planetary vorticity f . If U and L

represents the velocity and the spatial scale associated with the flow, then the

relative vorticity scales as U/L. Then the ratio of the relative vorticity scale to

planetary vorticity f gives a estimate of Rossby number (Ro), which indicates

the effect of rotation of the earth on the fluid motions. Large scale (spatial scale

greater than 1000 km) atmospheric motions in mid-latitudes tend to have Ro ≪

1, and are thus strongly influenced by the Earth’s rotation (Holton, 2004). On

the other hand, small scale flows tend to have large relative vorticity compared to

the planetary vorticity f , and have Rossby number large compared to one. There-

fore, when considering small scale fluid motions the effect of planetary vorticity is

sometimes ignored.

1.3.4 Potential vorticity

A concept that has proven useful for our understanding of the dynamics of the

large-scale atmospheric fluid motions is potential vorticity η. Potential vorticity

is a conserved scalar quantity under certain conditions. Our atmosphere on the

large-scale behaves as a shallow layer of nearly inviscid, adiabatic fluid with vertical

motions in hydrostatic balance. This gives rise to a scalar invariant following the

motion of the fluid known as quasi-geostrophic potential vorticity (see e.g., Holton

2004). The prefix quasi-geostrophic is added because the horizontal motions also

tend to remain in a state close to geostrophic balance.
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A more general form of potential vorticity η applicable to the atmosphere

takes the form (Holton 2004)

η = (ζθ + f)

(

−g
δθ

δp

)

where ζθ is the vertical component of relative vorticity evaluated on a isentropic

surface with potential temperature θ, g is the acceleration due to gravity, and δp

represents the pressure difference between layers of potential temperature θ and

(θ + δθ).

Since shallow-water equations also permit both vortical and divergent fluid

motions, an analogous scalar quantity arises which remains materially conserved

following the fluid motions. It is referred to as the Rossby potential vorticity η

(e.g. Gill 1982; Holton 2004)

η =
ζ + f

h

where

ζ = k̂ ·∇× u

is the vertical component of relative vorticity.

1.3.5 Shallow-water gravity waves

The shallow-water equations permit divergent waves which are known as shallow-

water gravity waves. In order to see that these waves are divergent, we linearize

the shallow-water equations (1.4) - (1.5) about a basic state at rest. The linearized
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equations are

∂tu
′ − fv′ + g∂xh

′ = 0 (1.7)

∂tv
′ + fu′ + g∂yh

′ = 0 (1.8)

∂th
′ + hr(∂xu

′ + ∂yv
′) = 0 (1.9)

where the primes indicate the small amplitude disturbances imposed on the mo-

tionless basic state, and hr is the height of the fluid at rest. Using the linearized

equations we first derive the divergence and vorticity equations. Taking the x-

derivative of (1.7) and y-derivative of (1.8) and adding the resulting equations we

get the linearized divergence equation,

∂tδ
′ − fζ ′ = −g∇2h′, (1.10)

where

δ′ = (∂xu
′ + ∂yv

′) ,

is the divergence δ′ associated with the perturbations, and

ζ ′ = (∂xv
′ − ∂yu

′) ,

is the relative vorticity ζ ′ of the perturbations. Taking x-derivative of (1.8) and y-

derivative of (1.7) and subtracting the latter from the former we get the linearized

vorticity equation,

∂tζ
′ = −fδ′ (1.11)

Taking the time derivative of the divergence equation, and making use of the lin-

earized continuity equation (1.9) and the linearized vorticity equations, we obtain
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a second order equation for δ′,

(

∂2tt + f 2
)

δ′ − (ghr)∇2δ′ = 0, (1.12)

where ∇2 (= ∂2xx + ∂2yy ) is the horizontal Laplacian operator.

Setting f = 0 ( i.e., the non-rotating case ) in the last equation reduces it

to the familiar second-order wave equation for δ′

∂2ttδ
′ − c2∇2δ′ = 0, (1.13)

where c (=
√
ghr) is speed with which a non-rotating shallow-water gravity wave

propagates in a fluid at rest. Thus the non-rotating shallow-water gravity waves

are divergent and non-dispersive waves.

The inclusion of the effect of rotation (i.e., f ̸= 0) renders the shallow-water

waves dispersive. The dispersion relation for the rotating shallow-water gravity

wave can be obtained by seeking normal mode solutions of the form

δ′ = δ̂ei(kx+ly−ωt) = δ̂ei(k.x−ωt)

in (1.12), whence we obtain

ω2 = f 2 + ghr|k|2 (1.14)

where ω is the angular frequency, and k is the horizontal wavenumber vector.

Expression (1.14) also indicates that, contrary to the non-rotating case, the rotat-

ing shallow-water gravity waves have a low-frequency limit equal to f , which is

referred to as the inertial frequency .

Dividing (1.14) by |k|, we get the expression for the phase speed of the
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rotating shallow-water gravity wave,

c2R = ω2/|k|2 = ghr + f 2/|k|2. (1.15)

The last expression indicates that, unlike the non-rotating case, the rotating

shallow-water phase speed cR increases as |k| approaches 0, and for short waves

(i.e., |k| ≫ 1), the cR approaches the non-rotating phase speed c. Thus the effect

of rotation renders the wave dispersive, and this effect becomes more important

as the waves get longer.

The expression for the group velocity cg is

cg =
∂ω

∂kH
=

ghr

cR
(1.16)
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where kH = |k|. Fig. (1.2) shows the dispersion relation for rotating shallow-water

gravity waves. Also shown are the phase speed cR and group velocity cg.

1.3.6 Geostrophic balance

Observations indicate that in the case of the large-scale flow outside the tropics and

above the boundary layer, the Coriolis force is of the same order of magnitude as

the pressure gradient force. This state of approximate balance between the Coriolis

force and the pressure gradient force is known as geostrophic balance. Geostrophic

balance indicates that at these scales the horizontal motions are strongly influenced

by rotation of the earth.

Since the Coriolis parameter f (= 2Ω sinφ) varies with latitude (φ), the

Coriolis force (f k̂ × v) also varies with it. Consequently, the length-scale over

which the flow is in geostrophic balance also varies with latitude.

1.3.7 Rotating shallow-water gravity waves and Rossby ra-

dius of deformation Rd

It is evident from (1.15) that when the length scale |k|−1 of a disturbance becomes

equal to
√
ghr/f , both the terms on the right hand side (rhs) of (1.15) make

equal contributions to the rotating shallow-water phase speed cR. As will be

demonstrated below, the first term (ghr) in the rhs of (1.15) can be used to

represent the effect of stratification in stratified fluids. The second term in (1.15)

captures the effect of rotation. Therefore, this natural length scale
√
ghr/f at

which the effect of rotation becomes equally important as the effect of stratification

can be defined as the Rossby radius of deformation (Rd) for the rotating shallow-
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water equations (Gill 1982; Holton 2004), i.e.,

Rd =

√
ghr

f
. (1.17)

Consequently, Rd can also be interpreted as the distance that the shallow-water

gravity wave propagates in inertial time scale. In what follows, we will be demon-

strated how the first term in (1.15), i.e., (ghr), can be used to indicate the effect

of stratification.

We now estimate the value Rd that is of relevance in our atmosphere. Our

atmosphere is a continuously stratified fluid, but expression (1.17) is valid only for

a homogeneous layer of fluid with a free surface. If we assume that the troposphere

behaves as a homogeneous fluid and the tropopause behaves like an interfacial

surface, then the value Rd for such an atmosphere can be readily calculated. The

typical value of f in the mid-latitudes is 10−4 s−1, then assuming that height of

the tropopause hr is 10 km and taking g = 9.81 ms−2, we get phase speed
√
ghr

≈ 300 m/s, and Rd ≈ 3000 km. Although observations indicate that length scales

of approximately 3000 km are commonly associated with mid-latitude synoptic

scale weather systems (Holton, 2004), however, a phase speed of 300 m/s is still

too close to the speed of sound, and therefore overestimates the phase speed

of internal gravity waves that are of mesoscale meteorological significance in a

stratified atmosphere.

We now estimate the value of the Rossby radius of deformation in the case

of a continuously stratified atmosphere. This is achieved by first defining a homo-

geneous or shallow-water equivalent for the continuously stratified atmosphere (see

e.g., Gill 1982). In the case of our atmosphere, the Brunt-Vaisala or stratification

18



frequency N is defined by

N2 =
g

θ

∂θ

∂z
(1.18)

where θ is the potential temperature, and z indicates the vertical coordinate.

To a first order approximation, we can write N2 ≈ (g∆θ/θ∆z), where ∆θ now

indicates a difference in potential temperature across a height ∆z. Then one can

define reduced gravity g′ = g∆θ/θ, and letting ∆z = hr, we get

√

g′hr ≈ Nhr. (1.19)

The term on the left hand side
√
g′hr can be identified as the phase speed of a

non-rotating shallow-water gravity wave, but with g now replaced by g′. Rela-

tion (1.19) indicates that increasing N , i.e., increasing stratification, is equivalent

to increasing the phase speed of the equivalent shallow-water wave, and, conse-

quently, the Rd. It is also now clear that the term
√
ghr in (1.15) is analogous to

a buoyancy effect.

The typical value of N in troposphere is 10−2 s−1, and using hr = 10 km,

we get
√
g′hr = 100 m/s, and Rd (=

√
g′hr/f) = 1,000 km. Using hr = 3 km

reduces
√
g′hr to 30 m/s and Rd to 300 km. These values of phase speed and

Rossby radius are smaller compared to the earlier estimates, which neglected the

effects of stratification. This indicates that using g = 9.8 m/s overestimates the

effect of stratification, and that g should be replaced by g′. Using reduced gravity

slows the shallow water speeds into the same range as internal gravity waves.
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1.3.8 Shallow-water vortical waves

Interestingly, the shallow-water equations permit not just gravity waves but also

vortical waves. Among the vortical waves, the shallow-water equations also permit

the shallow-water analogue of the atmospheric Rossby wave. These waves are

different from shallow-water gravity waves in that they arise as a consequence

of conservation of absolute vorticity, where absolute vorticity is defined as sum

of planetary vorticity (f) and relative vorticity (ζ). And the same is true for

atmospheric Rossby waves. In the case of the atmospheric Rossby waves, the

factor that is responsible for the propagation of the wave is the meridional gradient

of the planetary vorticity f . The intrinsic phase speed of the atmospheric Rossby

wave is

cRossby = −β/k2,

where β is the meridional gradient of planetary vorticity f , and k is the zonal

wavenumber of the wave (Holton 2004). Consequently, unlike the shallow-water

gravity waves, the phase speed of Rossby wave is independent of depth of the fluid.

We note that Rossby waves are also dispersive waves whose phase speed increases

with the wavelength of the disturbance. An estimation of the Rossby wave speed

can be made by using the typical mid-latitude value of β equal to 10−11 m−1s−1.

Then zonal wavelengths of 1000 - 10,000 km results in phase speed in the range

0.25 - 25 ms−1. For the purposes of our study f is assumed constant, and since

Rossby waves depend on the meridional gradient of f for propagation, these waves

are filtered out and will not be considered in the rest of this thesis.
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1.3.9 Limitations of shallow-water equations

One of the main limitations of the shallow-water equations is its lack of stratifi-

cation. Since our atmosphere and oceans are continuously stratified fluids, under

statically stable or stably stratified conditions, it permits the propagation of what

are known as internal gravity or buoyancy waves. These waves are generated

when a vertically displaced air parcel under statically stable conditions under-

goes purely vertical oscillations about its equilibrium level with frequency equal

to the Brunt-Vaisala or buoyancy frequency N , and if the parcel oscillations are

slantwise then frequency is less that N. The value of N is a measure of the static

stability of the environment. In the atmosphere N is determined by the expression

(1.18). Positive values of N2 indicates statically stable condition, negative values

indicates statically unstable condition, and zero indicates neutral conditions. The

average value of N in the troposphere is 1.2 × 10−2 s−1, so the period of buoyancy

oscillation (2π/N) is about 8 min.

The dispersion relation for a nonhydrostatic internal gravity wave (see e.g.

Holton 2004) is

ω = ±Nk/|k| = ±N cos β (1.20)

where k = (k,m) is the wavenumber vector with k and m being the horizontal

and vertical wavenumber, respectively, and β is the angle between the horizontal

and the wavevector k. Internal gravity waves that are affected by rotation of the

Earth have frequency close to inertial frequency f are known as inertia-gravity

waves. The dispersion relation of a hydrostatic inertia-gravity wave is (see e.g.

Holton 2004)

ω2 = f 2 +N2(k2 + l2)/m2 (1.21)
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Since the above expression is derived under the assumption that waves are in

hydrostatic balance, we have (k2 + l2)/m2 ≪ 1, which implies that

|f | ≤ |ω| ≪ N.

Internal gravity waves under suitable conditions can propagate vertically

into the atmosphere. These waves are thus very different from shallow-water

gravity waves. Shallow-water waves are interfacial waves and consequently, prop-

agate only horizontally. Dispersion relations (1.20) and (1.21) highlight an impor-

tant characteristic which distinguishes internal gravity waves from a shallow-water

gravity waves, i.e., the normalized frequency ω/N of an internal gravity wave de-

pends only on the angle β between the wavenumber vector k and the horizontal.

1.3.10 Comparison of shallow and internal gravity waves

Even though shallow-water waves are very different from internal gravity waves in

their propagation characteristics, the similarities in their dispersion relation opens

up the possibility of defining a shallow-water equivalent of an inertia-gravity wave.

To see this, we express the dispersion relations in dimensionless form. The

dispersion relation (1.21) of hydrostatic inertia-gravity wave expressed in a dimen-

sionless form is

(
ω

f

)2

= 1 +

(
Nm−1

f

)2

k2
H (1.22)

where kH =
√
k2 + l2. The dispersion relation of rotating shallow-water gravity
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wave (1.14) written in dimensionless form is

(
ω

f

)2

= 1 +

(√
ghr

f

)2

|k|2 (1.23)

The similarities indicated by (1.22) and (1.23) implies that it may be possible to

define a rotating shallow-water equivalent of a hydrostatic inertia-gravity wave.

One such possibility is that the equivalent shallow-water gravity wave could

have the same frequency and horizontal wave number as the inertia-gravity wave

provided
√

ghr = N/m. (1.24)

Condition (1.24) also implies that their horizontal phase speed becomes identical.

The expression for the horizontal phase speeds are

c2H =
ω2

k2
H

=
N2

m2
+

f 2

k2
H

and

c2R = ghr +
f 2

k2
H

,

respectively. Furthermore, their horizontal group velocities also become identical.

The horizontal group velocity cgH of the hydrostatic inertia-gravity waves is (Gill,

1982)

cgH ≈
N2α

m
√

(f 2 +N2α2)
=

(

N2

m2

)

√

(f 2/k2
H +N2/m2)

where α = kH/m (≪ 1), which is a ratio of vertical to horizontal scale is the aspect
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ratio, and the horizontal group velocity cg of rotating shallow-water gravity is

cg =
∂ν

∂kH
=

ghr
√

(f 2/k2
H + (ghr))

(1.25)

Shallow-water waves, unlike inertia-gravity waves, do not propagate ver-

tically. However, some justifications to the use of shallow-water equations can

be made, when one considers the vertical propagation characteristics of inertia-

gravity waves. The vertical group velocity of the hydrostatic inertia-gravity wave

cgz is given approximately by (Gill, 1982)

cgz ≈
−N2k2

H

m2
√

(f 2m2 +N2k2
H)

=
−N2α2

m
√

(f 2 +N2α2)

So, for example, if N is 10−2 s−1 and k−1
H is 30 km, the waves with vertical scale

m−1 = 1 km would have group velocity of 0.3 m s−1 (26 km per day), whereas

waves with m−1 = 100 m would have a frequency only about 5% above inertial

and a vertical group velocity of only 1 mm s−1 (86 m per day). Therefore, as long

as the aspect ratio for inertia-gravity wave α ≪ 1, an equivalent shallow-water

wave can be useful in representing hydrostatic inertia-gravity waves.

In conclusion, it must be stated that regardless of the resemblance in the

dispersion relations indicated by expressions (1.22) and (1.23), shallow-water grav-

ity waves are completely different from inertia-gravity waves. Shallow-water waves

are interfacial waves, and only under special circumstances, such as when there

exists a jump in stratification or density, one can expect shallow-water like waves

to be of significance.

24



1.3.11 Froude number, Richardson number and stratifi-

cation

Generally, in studies of fluid mechanics, the Froude number F is defined as the

ratio of inertia force to pressure gradient force. Froude number then determines

whether the subsequent motion will be dominated either by inertia or pressure gra-

dient force. In the case of shallow incompressible fluid flows with a free surface,

the Froude number can also be expressed as ratio of flow velocity to shallow-water

gravity wave speed. Defined in this sense, the Froude number is the incompress-

ible analogue of the Mach number for compressible flows, which is defined as ratio

of velocity of air to speed of sound. Analogous to compressible fluids, flows with

Froude number less than one are known as sub-critical and greater than one is

known as super-critical. This implies that shallow-water equations permit the

formation of shock waves which are known as hydraulic jumps. Consequently,

shallow-water equations are also frequently used as a prototype model for demon-

strating the hydraulic effects associated with wind flows over topography (see e.g.,

Baines 1998).

In the case of our atmosphere, the Froude number is often used as a mea-

sure of stratification. In what follows, we will now demonstrate the significance

of the Froude number to stratification. First, consider the case of an air parcel

moving horizontally with speed U in an unstratified environment. The parcel,

upon approaching a ridge begins to move uphill. So the parcel does work against

gravity, and will begin to lose its kinetic energy (ρU2/2, where ρ is the density

of parcel) as it gains height. If the compressibility effects following the motion of

the air parcel can be ignored, then conservation of mass implies that the ascent

of the parcel must be accompanied by descent of an equal amount of fluid from

above. Such an exchange of fluid renders the potential energy of the environment
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unaltered. Now consider an identical case, but when the environment is stably

stratified. Just as in the unstratified case, the ascending parcel gains potential en-

ergy at the expense of its kinetic energy, and the descending parcel loses potential

energy. However, this time, the exchange of fluid has resulted in an increase of

potential energy of the environment because of the change in density with height.

and this increase in potential energy must have come at the expense of the initial

kinetic energy of the parcel. (see e.g., Cushman-Roisin and Beckers 2010)

If ρ is the density of the parcel, then its initial kinetic energy is ρU2/2. The

gain in potential energy by the environment is ∆ρgH , where ∆ρ is the scale of the

density variation across height H . Then the ratio of available kinetic energy to the

gain in potential energy is ρU2/2∆ρgH . This ratio determines whether the kinetic

energy carried by the parcel is sufficient to overcome the effect of stratification and

disturb the equilibrium of the environment. The ratio can equivalently be written

as U2/g′H , where we have replaced g with reduced gravity g′ = (∆ρg/ρ) and

neglected the factor of one-half. This ratio can be identified as a square of the

Froude number F , i.e.,

F 2 =

(
U√
g′H

)2

, (1.26)

where g′ (= ∆ρg/ρ) is now the reduced-gravity, and
√
g′H can be identified as

the phase speed of non-rotating shallow-water gravity wave propagating in a fluid

of depth H with acceleration due to gravity equal to g′. We showed earlier in

(1.3.7) that the shallow-water equivalent phase speed of a stratified fluid can be

determined by the expression,
√
g′H = NH .

Then (1.26) becomes

F =
U

NH
, (1.27)

which indicates that Froude number can also be used as a measure of stratification.

Therefore the stronger the stratification (i.e, larger the value of N), the smaller

26



the Froude number. Using typical value of N = .01 s−1 and H = 10 km as the

typical depth of troposphere gives NH (=
√
g′H) = 100 m/s. For mid-latitude

synoptic scale disturbances U ≈ 10 m/s, and we get F = 0.1.

Another non-dimensional parameter which is commonly used instead of

Froude number is known as Richardson number Ri (see e.g., Kundu 1990). It is

defined as

Ri =
N2

(∂u/∂z)2
(1.28)

where ∂u/∂z is the vertical wind shear . If U is the scale of the wind speed

variation across height H , then we get

Ri =

(

NH

U

)2

=
1

F 2
(1.29)

In the remainder of the thesis, since Ri and F 2 are equivalent, we will use the

Froude number instead of the Richardson number for purposes of discussion.

1.3.12 Summary

This chapter introduced some fundamental concepts that are important in study-

ing geophysical fluid dynamics. This was mainly done with the use of the shallow-

water equations, because they are the simplest sets of equations that can be used

to study atmospheric flows. In addition to their simplicity, these equations pos-

sesses important properties, such as their ability to represent both vortical and

divergent fluid motions, both of which are present in the atmosphere.

Large-scale atmospheric motions are dominated by the action of the Cori-

olis force, and vertical fluid motions are closely approximated by hydrostatic
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balance. The fact that shallow-water equations include both height gradients

and Coriolis forces, and are derived under the assumption of hydrostatic balance

makes them particularly useful for studying synoptic scale motions. Furthermore,

shallow-water equations conserve potential vorticity, which can be considered as

the shallow-water analogue of the atmospheric potential vorticity.

One of the limitations of shallow-water equations in studying atmospheric

and oceanic fluid motions is its lack of stratification. A continuously stratified

fluid such as our atmosphere permits the propagation of internal gravity waves,

whereas shallow-water gravity waves are interfacial waves. Nevertheless, for the

purpose of this thesis, the important properties that the shallow-water equations

share with our atmosphere makes them a valuable tool for studying the wave

emission mechanism associated with vortical motions.

This chapter has thus provided a brief introduction to geophysical fluid

dynamics, and also provided the necessary foundations for understanding the more

advanced topics to be dealt in the remainder the thesis.
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Chapter 2

Lighthill’s (1952) theory and

Ford’s (1994) extension

2.1 Introduction

In an effort to extend Lighthill’s (1952) formulation of the aerodynamic sound

generation problem to meteorologically significant fluid motions, Norton (see page

117 of Ford 1994a; Ford et al. 2000) used the rotating shallow-water equations to

derive the following equation:

(

∂2tt + f 2 − c2∇2
)

∂th = ∂2ijTij (2.1)

where

Tij = ∂t(huiuj) +
1

2
f(ϵikhujuk + ϵjkhuiuk) +

1

2
g∂t(h− hr)

2δij , (2.2)

c (=
√
ghr) is the non-rotating shallow-water gravity wave speed in an undisturbed

medium with height hr, g is the acceleration due to gravity, and ϵij is the two-
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dimensional anti-symmetric tensor of rank two and unit determinant, such that, ϵ11

= ϵ22 = 0, ϵ12 = −ϵ21 = 1. In equation (2.1) terms on the left hand side represent

a linear rotating shallow-water gravity wave equation and therefore describe the

propagation of a wave through an undisturbed medium, and the terms on the

right hand side are regarded as wave forcing terms.

Lighthill’s (1952) ideas were originally developed using the compressible gas

equations, but for purposes of application to atmospheric and oceanic flows, we

will follow Ford (1994a) by discussing Lighthill’s (1952) ideas using the shallow-

water equations. The non-rotating shallow-water equations are equivalent to the

two-dimensional adiabatic gas equations. Just as acoustic waves are compressible

waves, so are shallow-water gravity waves. Furthermore, shallow-water equations

are the simplest set of equations that can be used to study both the vortical and

gravity wave aspect of atmospheric fluid motions. Although, acoustic waves are

permitted in our atmosphere, their amplitudes are generally considered unimpor-

tant relative to meteorologically significant motions.

In this chapter, we revisit Lighthill’s (1952) formulation of the problem of

aerodynamic sound generation using the shallow-water equations. The purpose

is to highlight the idea behind Lighthill’s (1952) formulation. The shallow-water

equations, unlike the compressible gas equations, materially conserve nonlinear

potential vorticity. However, as we shall see, this does not fundamentally af-

fect Lighthill’s formulation, because 1) in common with sound waves, the motion

of small-amplitude non-rotating shallow-water gravity waves is also governed by

conservation of vorticity, and not linear potential vorticity, and 2) the forcing

functions are of the same nature.

We then discuss the extension of Lighthill’s (1952) formulation to rotating

shallow-water flows, i.e., we discuss in detail the derivation of the wave equation
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(2.1). The details of the derivation have not been provided by Ford (1994a), and

have only been sketched in a few lines by Ford et al. (2000).

It is our aim to highlight that the presence of background or planetary

vorticity introduces important differences when Lighthill’s formulation is extended

to rotating shallow-water flows, and they require justification.

Lastly, Ford (1994a), based on his study, concluded that the effect of plan-

etary vorticity introduces a cutoff frequency that severely inhibits gravity wave

emission even for vortices of order one Rossby number (see page 99-101, Ford

1994a). These Rossby number order one vortices had size very small compared to

the Rossby radius. Further investigation into the effects of rotation are warranted

and will be carried out in this chapter as well as chapter 4.

The remainder of this chapter is organised as follows: In section (2.2), the

basis of Lighthill’s formulation of wave emission problem is reviewed. Lighthill’s

formulation is presented using the non-rotating shallow-water equations. This is

followed by discussion of extension of Lighthill’s (1952) ideas to rotating shallow-

water fluid system or, equivalently, Ford’s (1994) formulation in section (2.3).

Finally in section (2.4) we summarize and make some concluding remarks.

2.2 Lighthill (1952)’s formulation adapted to non-

rotating shallow-water equations

The central idea in Lighthill’s (1952) theory of aerodynamic sound generation is to

formulate the problem of wave emission associated with fluctuating fluid motions in

a manner analogous to studies in linear acoustics. In studies of linear acoustics, the

focus is on determining the properties of linear acoustic waves propagating through
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an undisturbed acoustic medium forced by some prescribed external source field.

The problem of aerodynamic sound generation then reduces to identifying

a suitable wave forcing function which can be associated with the actual fluctu-

ations in fluid motion. Once this is done, it can used to study the response of

an undisturbed fluid to this hypothetical forcing function (see section 2, Lighthill

1952).

We now discuss the shallow-water analogue of Lighthill’s (1952) theory of

aerodynamic sound generation. Lighthill’s (1952) ideas can be readily extended to

the non-rotating shallow-water equations. The first step in Lighthill’s formulation

is to express the momentum equations in flux form.

The non-rotating shallow-water equations (1.2) - (1.3), which govern the

motion of a shallow layer of an incompressible fluid with a free surface, when

written in tensor notation, read as

∂tui + uj∂jui + ∂i(gh) = 0 (2.3)

∂th+ ∂j(huj) = 0 (2.4)

where Einstein summation convention has been used, i.e., a summation over the

repeated index is implied, although the summation sign is not explicitly written.

The subscripts i and j take on values 1 and 2, where 1 and 2 corresponds to

coordinates x and y, respectively. Equations (2.3) are the horizontal momentum

equations in Cartesian coordinates, and equation (2.4) is the continuity equation.

Multiplying the momentum equations (2.3) by h, and expressing the ad-

vective term uj∂jui in flux form, we get

h∂tui + ∂j(huiuj)− ui∂j(huj) + h∂i(gh) = 0. (2.5)
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Then multiplying the continuity equation (2.4) by ui, and adding to the last

equation we get

∂t(hui)
︸ ︷︷ ︸

Rate of change of ith

component of momentum of a column
of fluid per unit area

= −∂j
(

huiuj +
gh2

2
δij

)

︸ ︷︷ ︸

Divergence of ith component of momentum flux
of fluid column of unit area

(2.6)

where δij is the Kronecker delta (= 1 for i = j, and 0 for i ̸= j). This equation

represents the shallow-water analogue of the flux form of the compressible gas

equations. Equation (2.6) governs the motion of a column of fluid of unit area

of height h, whereas the flux form of the compressible gas equations describe the

motion of a unit volume of fluid. These differences arise because fluid convergence

produces change in density in the case of compressible fluid, and in the case of

shallow-water motion, horizontal convergence produces change in the local height

which appear as ripples on the surface, as density is assumed constant. Never-

theless, the last equation can be interpreted in a manner analogous to the one

provided by Lighthill (1952) (see also Lighthill 1978) for the compressible gas.

Equation (2.6) expresses that idea that the rate of change of ith component

of momentum of a column of fluid of unit area changes due to the combined effect

of

1. divergence of ith component of momentum flux (huiuj), which arises as a

consequence of fluctuations in Reynolds stresses.

2. divergence of ith-momentum flux (gh2/2δij), which arises as a consequence

of fluctuations in hydrostatic pressure or normal stresses. Viscous stresses

make no contribution because viscosity has been neglected in our study.

Since the pressure fluctuations associated with the passage of a linear

shallow-water wave arise due to gradients in the hydrostatic pressure field gh,
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Lighthill’s method suggests that the stress field Fij responsible for forcing wave

motion in a uniform medium at rest must be equal to the stress field in (2.6) minus

the stress associated with the linear wave, i.e.,

Fij =
(

huiuj + gh2/2δij − c2hδij
)

. (2.7)

Then the non-rotating shallow-water analogue of Lighthill’s (1952) acoustic

analogy is equivalent to stating that the momentum equation governing the fluid

motions under the influence of an externally imposed hypothetical stress field Fij

can be written as

∂t(hui) + c2∂ih = −∂j
(

huiuj +
gh2

2
δij − c2hδij

)

(2.8)

= −∂jFij (2.9)

Then the forced wave equation can be derived by taking ∂i of (2.9) to get

∂t(∂ihui) + c2∇2h = −∂2ijFij (2.10)

and then using the continuity equation (2.4) to substitute (∂ihui) by −(∂th) in

(2.10) to get

∂2tth− c2∇2h = ∂2ijFij

≡ q[x, t] (2.11)

This is the shallow-water analogue of Lighthill’s (1952) forced wave equation. The

terms on right hand side of equation (2.11) describe the wave forcing terms and

the terms on left hand side of (2.11) describes the propagation of the forced wave

through an undisturbed medium.
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2.2.1 Solution of Lighthill’s equation

Since (2.11) represents a non-homogeneous equation, the Green’s function tech-

nique can be applied to obtain the solution. The general expression for a Green’s

function solution of the (2.11) takes the form

h[x, t] =

∫

space

∫

time

q[x′, t′]G[x− x′, t− t′]dx′dt′, (2.12)

where G[x, t] represents a suitable Green’s function.

In order to determine the wave field, the first step is to determine the

Green’s function G. Then one also has to know how the forcing function q[x, t]

varies both spatially and temporally. Note that q[x, t] depends on both velocity

v[x, t] and height field h[x, t], which implies that the flow field generating the

forcing has to be known before the wave field can be computed. This constraint,

as will be investigated and discussed further in later chapters, has consequences

with respect to investigating the details of the wave forcing mechanism when using

a Lighthill-like formulation.

2.3 Extension of Lighthill’s ideas to rotating flu-

ids: Ford’s formulation

Lighthill (1952) formulated the problem of aerodynamic sound emission in a non-

rotating or inertial frame of reference, since the effects of planetary vorticity may

be neglected for sound waves, and sound waves tend to have short wavelengths

and high frequencies. Extending Lighthill’s (1952) ideas to rotating fluid implies

that
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1. the governing equations have to be reconsidered with respect to a rotating

or non-inertial frame of reference,

2. the effect of background rotation or planetary vorticity have to be taken into

consideration.

We now review Ford’s (1994) extension of Lighthill’s (1952) theory to ro-

tating flows. The details of the formulation have only been briefly sketched by

Ford et al. (2000), hence we will discuss the detail of the steps that led to the

derivation of equation (2.1).

Reconsidering the problem of wave emission from a non-inertial frame of

reference does not affect the formulation, but the presence of background or plan-

etary vorticity does introduce new effects, which were not considered by Lighthill

(1952).

It it important to remember that the Coriolis force is an apparent force

that arises as a consequence of using the non-inertial frame of reference. The

expression for Coriolis force is

f k̂× v, (2.13)

where f (= 2Ω sinφ) is known as a Coriolis parameter, because it determines

the rate of rotation of the frame of reference about its local vertical. But, f is

also equal to the planetary vorticity. Note that both the planetary vorticity and

Coriolis parameter vary with latitude. Along the equator, f = 0, so planetary

vorticity there is zero and the non-inertial frame of reference does not rotate

about its local vertical, but only translates along the equator.

So we are interested in knowing to what extent Lighthill’s formulation is

affected by the presence of background or planetary vorticity, and more impor-
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tantly, does it affect the process of wave emission. Ford (1994a), based on his

study, concluded that the effect of planetary vorticity is to inhibit gravity wave

emission due to the cutoff frequency f below which waves can’t propagate. In

what follows, we will carry out a more thorough investigation of the effects of

rotation on wave emission.

When viewed from a non-inertial or rotating frame of reference the shallow-

water equations take the form

∂tui + uj∂jui + fϵi3juj + ∂i(gh) = 0 (2.14)

∂th+ ∂j(huj) = 0 (2.15)

where f (= 2Ω sinφ) is known as Coriolis parameter (assumed to be constant in

this study), Ω is the angular velocity of rotation of the earth, φ is latitude, and

ϵijk is the permutation symbol or alternating tensor 1.

As in the non-rotating case, first we express the conservation of momentum

in flux form. Multiplying the momentum equations (2.14) by h, and then making

use of the continuity equation (2.15), we get the momentum equations in flux form

∂t(hui)
︸ ︷︷ ︸

Rate of change of ith

component of momentum of a column
of fluid per unit area

+ fϵi3jhuj
︸ ︷︷ ︸

Coriolis force

= −∂j
(

huiuj + g
h2

2
δij

)

︸ ︷︷ ︸

Divergence of ith component of momentum flux
of fluid column of unit area

(2.17)

The terms on the right hand side of this equation can be interpreted in the same

fashion as we did in the non-rotating case, but this time there arises an additional

term, the Coriolis force fϵi3jhuj, as a consequence of the non-inertial frame of

1The permutation symbol or alternating tensor is defined as

ϵijk =

⎧

⎪
⎨

⎪⎩

1 if ijk = 123, 231, or 312 (cyclic order),

0 if any two indices are equal,

−1 if ijk = 321, 213, or 132 (anticyclic order)

(2.16)
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reference.

Then, we continue as in the non-rotating case, i.e., apply Lighthill’s acoustic

analogy, which is equivalent to rewriting (2.17) as

∂t(hui) + fϵi3jhuj + c2∂ih = −∂j
(

huiuj + g
h2

2
δij − c2hδij

)

. (2.18)

This expression can be interpreted as in the non-rotating case with the inclusion

of the Coriolis force.

Then in order to derive the forced wave equation, we take the divergence

of (2.18), and then use the continuity equation to replace ∂j(huj) by −(∂th), to

get

∂2tth− fϵi3j∂ihuj − c2∇2h = ∂ij
(

huiuj + gh2/2δij − c2hδij
)

(2.19)

Unlike the non-rotating case, the left hand side of the last equation does not

represent a linear wave operator because of the presence of the term fϵi3j∂ihuj .

Since −ϵi3j = ϵ3ij , the term fϵi3j∂ihuj can be identified as the vertical component

of the curl of the fluid momentum huj times the factor f .

The term containing vorticity arises in the wave equation for h because

when f ̸= 0 small-amplitude height fluctuations associated with small-amplitude

gravity waves induce vorticity fluctuations through vortex stretching2 This cou-

2Note that vortex stretching occurs in the nonlinear shallow-water equations whether rotation
is present or not, i.e.,

d

dt
(ζ + f) = −(ζ + f)∇ · v (2.20)

Linearizing this equation yields

∂ζ′

∂t
= −f∇ · v′, (2.21)

where the primed variable indicate small amplitude fluctuations. So vortex stretching cannot
occur for linear shallow-water waves when f = 0.
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pling arises due to the presence of the background or planetary vorticity f , and is

indicated by the conservation of a scalar quantity known as the linear potential

vorticity.

The coupling becomes more evident when we consider the linearized version

of the forced equation, i.e., when we consider the case of a propagation of small-

amplitude wave through an undisturbed medium far from the source region. The

linearized equation is

∂2tth
′ + hrfζ

′ − ghr∇2h′ = 0 (2.22)

where ζ ′ (= ϵ3ij∂iu′
j) is the relative vertical vorticity. The relation between the

vorticity fluctuation ζ ′ and height fluctuation h′ is provided by conservation of

linear potential vorticity η′, which can be expressed as

∂tη
′ = 0 (2.23)

where η′ = (ζ ′ − fh′/hr), where primed variables indicate the deviation from the

undisturbed basic state at time t.

If the medium is initially undisturbed, then both vorticity fluctuation ζ ′ and

height fluctuation h′ are zero, initially. Then, the relative vorticity fluctuation ζ ′

at a later time t can be computed from (2.23) and η′(t=0) = 0, yielding

ζ ′ = fh′/hr. (2.24)

Substituting for ζ ′ in (2.22) we get

∂2tth
′ + f 2h′ − ghr∇2h′ = 0, (2.25)
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where we have used ∂thr = 0 and ∇2hr = 0. We note here that equation (2.25)

represents a linear rotating shallow-water wave equation for h′, but not for h (=

hr + h′). This problem arises because, unlike the linear non-rotating shallow-

water equations, the linear rotating shallow-water equations contain three modes:

two propagating shallow-water gravity waves (ω =±
√

f 2 + ghrk2) and one steady

geostrophic mode (ω = 0).

Now returning back to (2.19), in order to express vorticity fluctuations in

terms of the height fluctuations, we take the time derivative of (2.19) to obtain

∂2tt(∂th) + f∂t(ϵ3ij∂ihuj)

−ghr∇2(∂th) = ∂2ij∂t
(

huiuj + gh2/2δij − c2hδij
)

(2.26)

The expression for local fluctuation of vorticity of a fluid column ∂t(ϵ3ij∂ihuj) can

obtained by taking the vertical component of the curl of (2.17), which is

∂t(ϵ3ij∂ihuj) = − ∂i(fhui)
︸ ︷︷ ︸

A

− ϵ3ki∂k(∂jhuiuj)
︸ ︷︷ ︸

B

(2.27)

where term A indicates the rate of change of vorticity produced by stretching of

the planetary vorticity f , and term B indicates the rate of production of vorticity

associated with nonlinear interactions, such as the fluctuations in the vorticity

field associated with velocity field ui produced by convergence of ith-momentum

flux ∂j(huiuj).

Since the continuity equation can be used to replace ∂i(hui) by −(∂th) in

(2.27), we obtain

∂t(ϵ3ij∂ihuj) = f(∂th)
︸ ︷︷ ︸

A

− ϵ3ki∂k(∂jhuiuj)
︸ ︷︷ ︸

B

, (2.28)
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which assures that the fluid motions conserve linear potential vorticity in regions

where the nonlinear interaction (term B) can be neglected. In regions where

nonlinear interactions cannot be neglected, both the terms A and B contribute to

the production of vorticity, and the flow is determined by conservation of nonlinear

potential vorticity. It is yet to be determined how significant is the contribution

of term A when the flow considered has Rossby number order one, for it would

imply planetary vorticity has a significant effect even when nonlinear interactions

become important.

Substituting for ∂t(ϵ3ij∂ihuj) in (2.26), we get

∂2tt(∂th) + f

⎡

⎣f(∂th)
︸ ︷︷ ︸

A

− ϵ3jk∂j(∂lhukul)
︸ ︷︷ ︸

B

⎤

⎦− ghr∇2(∂th)

= ∂2ij∂t

(

huiuj + g
h2

2
δij − c2hδij

)

(2.29)

Ford (1994a) (see also Ford et al. 2000), now transfer term B which is quadratic

in ui to the rhs, while term A, which is linear in ui, is retained on the lhs to obtain

(

∂2tt + f 2 − ghr∇2
)

∂th = ∂2ij∂t

(

huiuj + g
h2

2
δij − c2hδij

)

+fϵ3jk∂j(∂lhukul),

= ∂2ij

(

∂t(huiuj) +
g

2
∂t(h− hr)

2δij
)

+∂2jl(fϵ3jkhukul) (2.30)

where we have used ∂thr = 0. Furthermore, since it can be shown that both

the terms: ∂2jl(fϵ3jkhukul) in equation (2.30) and ∂2ijf(ϵikhujuk + ϵjkhuiuk)/2 in

equations (2.1) and (2.2), reduce to the same expression,

f
(

∂211(hu1u2)− ∂222(hu1u2) + ∂212(hu2u2)− ∂212(hu1u1)
)

, (2.31)
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proves that the non-homogeneous wave equation (2.30) is equivalent to the Ford-

Lighthill equation (2.1).

The effects of rotation have been split into a familiar term that affects wave

propagation and an unfamiliar term that affects wave forcing. Those authors did

not consider whether the term fϵ3jk∂j(∂lhukul) adds to forcing provided by other

non-linear terms: ∂2ij∂t(huiuj) and ∂2ijgh
2/2δij, or whether it acts in opposition to

them. A determination of the effect of this term of this will be provided in chapter

(4), when we investigate the contribution of this term to wave forcing.

2.4 Summary and concluding remarks

In this chapter, the basis of Lighthill’s (1952) formulation of the problem of aero-

dynamic sound generation was discussed using the shallow-water equations. The

interpretation of the problem of wave generation as Lighthill’s acoustic analogy

was reviewed. No fundamental differences arise when the formulation is repeated

using the non-rotating shallow-water equations, because both the small-amplitude

non-rotating shallow-water gravity waves and sound waves are governed by con-

servation of vorticity, and the nature of the wave forcing remains the same.

We then reviewed the details of the Ford’s (1994) extension of Lighthill’s

formulation to rotating shallow-water flows, since important details of the deriva-

tion have not been provided in the literature. Important differences arise in the

formulation due to the presence of background or planetary vorticity, which makes

the formulation less straight forward than in the non-rotating case.

Contrary to the non-rotating case, linear rotating shallow-water gravity

waves conserve linear potential vorticity due the presence of background vorticity.

Consequently, even small-amplitude height fluctuations disturb the background
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vorticity. Our study also showed that since the linear rotating shallow-water equa-

tions consist of three modes: two gravity wave modes and one steady geostrophic

mode, the formulation is not as straight forward as in the non-rotating case.

Our study also highlighted some of the issues in interpreting the new terms

that arise during the formulation, and will investigate these issues further in Chap-

ter 4.
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Chapter 3

Simulation of gravity wave

emission from vortical flows

3.1 Introduction

In the past decade or so, there has been a lot of interest shown in understanding

the gravity wave emission mechanism associated with atmospheric jets. Conse-

quently, we now have a much clearer picture of wave emission associated with

atmospheric jets. However, studies on wave emission from barotropic vortices

have been relatively few. In this chapter, we revisit the problem of gravity wave

emission from rotating shallow-water barotropic vortices for the purpose of gaining

a deeper understanding of the mechanism of gravity wave generation.

One of the difficulties related to the understanding of the gravity emission

from vortices can be understood as follows: Physically divergence and vorticity

are independent properties (see e.g., Aris 1989; Kundu 1990; Holton 2004). So the

question arises, how are shallow-water gravity waves (which are divergent waves)
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forced during the evolution of the vortices. The purpose of the chapter is to shed

light on the physical mechanism through which a vortex may generate a wave-like

divergence field.

Specifically, we revisit the problem considered by Ford (1994a). He per-

formed simulations showing an unstable parallel flow rolling up into vortices and,

in the process, emitting gravity waves in a constant f -plane shallow-water model.

He also showed that the characteristics of these simulated waves agree well with

that predicted by Ford’s (1994a) modified version of Lighthill’s (1952) theory of

aerodynamic sound generation. Sugimoto et al. (2008) also studied shallow-water

barotropic vortices using a constant f -plane shallow-water model. Harada and Ish-

ioka (2011) used a two-layer constant f -plane shallow-water model to study the

evolution of an unstable Bickley jet and the subsequent evolution of the shallow-

water gravity waves.

The studies conducted by Ford (1994a) and Sugimoto et al. (2008) focused

mainly on comparison of simulated wave with the Ford’s (1994a) modified version

of Lighthill’s theory. But none of these past studies have sought a detailed answer

to the question that has been raised above.

In addition to the above mentioned factors, our interest to revisit the prob-

lem considered by Ford (1994a) concerns the numerical errors and it’s effect on

the wave emission mechanism. Our study with resolution comparable to that used

by Ford (1994a), to be discussed in section (3.4), will show that during the sim-

ulations oscillations develop on the leading edge of the advecting PV-front and

extend to the trailing side. These oscillations arise as a consequence of nonlin-

ear advection which compresses gradients and leads to insufficient resolution. We

wish to investigate whether these oscillations can be reduced by varying model

resolution and dissipation, and, more importantly, we are interested in knowing
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whether the wave generation mechanism is sensitive to these errors. Also of in-

terest are the characteristics of the emitted gravity waves associated with such a

forcing. These and the above mentioned reasons strongly suggests that the wave

generation mechanism from barotropic vortices needs to be reviewed in detail.

The remainder of this chapter is organized as follows: We start by per-

forming simulations of gravity wave emission from an initially parallel, unstable

flow using a constant f -plane shallow-water model. The details of the constant

f -plane shallow-water model are provided in section (3.2). The details of the sim-

ulation are provided in section (3.3) and the results discussed in section (3.4). The

sensitivity of the simulation results in regard to resolution and dissipation, and

it’s implications to the wave generation mechanism are discussed in section (3.5).

Finally, in section (3.6) we make some concluding remarks.

3.2 Shallow-water Model

3.2.1 Introduction

The inviscid constant f -plane shallow-water equations in Cartesian co-ordinates

are

∂tu+ u∂xu+ v∂yu− fv + g∂xh = 0 (3.1)

∂tv + u∂xv + v∂yv + fu+ g∂xh = 0 (3.2)

∂th+ ∂x(uh) + ∂y(vh) = 0 (3.3)

where x and y are horizontal Cartesian co-ordinates, u and v are the horizontal

velocities in the x and y-direction, respectively, h is the height of the free surface,

g is the acceleration due to gravity, f ( = 2Ω sinφ ) is the Coriolis parameter,

46



where Ω is the angular velocity of rotation of the earth and φ is the latitude.

The numerical scheme used to discretize the above shallow-water equations

is the well-known potential-enstrophy conserving scheme of Sadourny (1975) ( see

also Washington and Parkinson 1986). This is a second-order finite-difference

scheme. Before this scheme is implemented, the governing equations are trans-

formed to a suitable form. The steps taken to derive this form are as follows:

Adding ((∂xv− ∂yu− ζ)v) to (3.1) and subtracting (∂xv − ∂yu− ζ)u to (3.2), we

get

∂tu+ u∂xu+ v∂yu+ (∂xv − ∂yu)v − (ζ + f)v + g∂xh = 0, (3.4)

∂tv + u∂xv + v∂yv − (∂xv − ∂yu)u+ (ζ + f)u+ g∂xh = 0. (3.5)

where ζ = (∂xv − ∂yu) is the relative vorticity. Rearranging the terms we get

∂tu− (ζ + f)v + ∂x

(
u2 + v2

2
+ gh

)

= 0, (3.6)

∂tv + (ζ + f)u+ ∂y

(
u2 + v2

2
+ gh

)

= 0. (3.7)

We now express the second terms in (3.6) and (3.7) in terms of potential vorticity

(η) by dividing and multiplying the second terms by h. The resulting equations

become

∂tu− ηV + ∂xB = 0, (3.8)

∂tv + ηU + ∂yB = 0, (3.9)

and the continuity equation (3.3) can be written as

∂th + ∂xU + ∂yV = 0, (3.10)
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where

η =
(ζ + f)

h
(3.11)

is the potential vorticity,

U = hu and V = hv (3.12)

are the mass fluxes, and

B =
(u2 + v2)

2
+ gh (3.13)

is the Bernoulli function. The shallow-water equations (3.8 - 3.10) expressed in

this form are now suitable for discretization using Sadourny’s scheme.

3.2.2 Sadourny (1975)’s scheme

The Sadourny’s potential-enstrophy conserving scheme when applied to the shallow-

water equations (3.8 - 3.10) reads as

∂tu− ηyV
xy

+ δxB = 0 (3.14)

∂tv + ηxU
xy

+ δyB = 0 (3.15)

∂th + δxU + δyV = 0 (3.16)

where the overbars represent second-order spatial averaging operator, and δ rep-

resents the second-order finite-difference operator, where subscripts x and y rep-

resents the direction of the derivatives. The averaging and the finite-difference
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Figure 3.1: Figure shows the spatial disposition of the variables u, v, and h when using
the Arakawa C-grid staggering, where the subscripts i and j represent grid-
indices. Also shown is the location of the variable η.

operator are defined as follows:

axi =
1

2

(

a[xi +
∆xi

2
] + a[xi −

∆xi

2
]

)

(3.17)

δxi
a =

(

a[xi +
∆xi

2
]− a[x−

∆xi

2
]

)

∆xi
(3.18)

where xi represents either x or y for i = 1 or 2, respectively, a[xi] represents an

arbitrary variable a at a location xi. The Arakawa C-grid is utilized for the spatial

disposition of the variables u, v, and h (see fig. 3.1). The mass fluxes U and V
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are evaluated at points where u and v are located, i.e.,

U = h
x
u, (3.19)

V = h
y
v. (3.20)

B is defined at points where h is located such that

B = gh+
1

2
(u2

x
+ v2

y
). (3.21)

Potential vorticity η is evaluated at the mesh centers as

η =
δxv − δyu

h
yx

. (3.22)

The model invariants are the total energy E, defined as

E =
∑ 1

2
(gh2 + hu2

x
+ hv2

y
), (3.23)

and absolute potential enstrophy Z, which is defined as

Z =
∑ 1

2
η2h

yx
, (3.24)

where the summation is carried over the entire domain, and

∑

a ≡
∑

ij

aij .

3.2.3 Time differencing

The time integration is Leap-frog with Robert-Asselin (Robert 1966; Asselin 1972)

filtering to damp the computational mode associated with Leap-frog scheme. The
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Robert-Asselin filter is implemented as follows: The Leap-frog time discretization

when applied to the differential equation

ds

dt
= F [s(t)], (3.25)

where F [s] is a some function of variable s, reads as

s[t +∆t] = s(t−∆t) + (2∆t)F [s(t)] (3.26)

where s[t−∆t], s[t], and s[t+∆t] indicates the value of s at time (t−∆t), t and

(t +∆t), respectively. Then the filtering step is applied by updating the value of

s[t] before the next integration step as

s(t) = s(t) + α [s(t−∆t)− 2s(t) + s(t +∆t)] , (3.27)

where α is the Robert-Asselin filtering coefficient. Note that setting α = 1/2 re-

duces (3.27) to the mid-point averaging scheme. A filter parameter of α = 0.06

is typically used in global atmospheric models. Values of α = 0.2 are common in

convective cloud models. For certain advection– diffusion problems, the recom-

mended value is in the range 0.25–0.3. (see e.g., Durran 2010)

3.2.4 Model domain, boundary conditions, and Rayleigh

damping layer

The model domain is rectangular in shape. The x-direction domain extends from

x = 0 to x = Lx, where Lx = (M−1)∆x, M is the number of grid-points in the x-

direction, and ∆x is the grid spacing. Boundary conditions along the x-coordinate

direction are periodic. In the y-direction, the domain extends from y = −Ly to
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y = Ly, where Ly = 0.5(N − 1)∆y, N is the total number of grid points in the

y-direction, and ∆y is the grid spacing. Fixed boundaries are implemented in the

y-direction.

Two Rayleigh damping layers are implemented to prevent reflection of grav-

ity waves from the fixed boundaries. The width of each damping layer is D (=

Nd∆y, where Nd is the indical width of the damping layer). One layer extends

from y = -Ly to y = (−Ly +D), and the other layer extends from y = (Ly −D)

to y = Ly.

The Rayleigh damping term takes the form τR(s − s0), where τR is the

damping coefficient, s represents the variable that is being damped, and s0 rep-

resents the value of the variable s at the edge of the domain (see e.g., Durran

2010 and references therein). The damping coefficient τR takes the value zero

when it first encounters the disturbance and then gradually increases and attains

a maximum value at the edge of the domain. The maximum value of the damp-

ing coefficient is chosen such that max(τR)∆t ≤ 1 (see e.g., Durran 2010). Since

the effectiveness of damping increases with the thickness of the damping layer,

then by choosing sufficient number of grid points, layers of sufficient thickness

can be utilized to effectively damp the disturbances even over a wide spectrum.

The time integration of the damping term is performed using an implicit scheme

for stability purposes. Since the time integration of the non-diffusive terms are

performed using Leap-frog scheme, the backward time differencing when applied

to the Rayleigh damping term reads as

sn[t+∆t]− sn[t−∆t]

2∆t
= −τR(sn[t+∆t]− s0) (3.28)

where n indicates the grid point index.

52



3.2.5 Model dissipation

Explicit sixth-order hyper-diffusion (∇6) has been applied to remove grid-scale

noise, where

∇6 =
∂6

∂x6
+

∂6

∂y6
. (3.29)

The sixth-order spatial derivative when approximated using the second-order finite

difference scheme takes the form

1

(∆xi)6
(sn+3 − 6sn+2 + 15sn+1 − 20sn + 15sn−1 − 6sn−2 + sn−3) , (3.30)

where s represents the variables u, v or h, and ∆xi represents ∆x for i = 1 and

∆y for i = 2, and n indicates the grid point index. The hyperdiffusion term is

integrated forward in time.

Again, since the time integration of the non-diffusive terms are performed

using Leap-frog scheme, the forward time integration when applied to the hyper-

diffusion term (3.30) reads as

sn[t+∆t]− sn[t−∆t]

2∆t
=

ν

(∆xi)6
(sn+3[t−∆t]

−6sn+2[t−∆t] + 15sn+1[t−∆t]

−20sn[t−∆t] + 15sn−1[t−∆t]

−6sn−2[t−∆t] + sn−3[t−∆t]) (3.31)

where ν is the diffusivity.

The dissipation e-folding time τe in the case of an explicit mth-order deriva-
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tive is

τ−1
e =

ν

(∆xi)m
2m/2 (1− cos k∆xi)

m/2 (3.32)

where k is the wave number, m is the order of derivative (Durran 2010). In case

of the grid-level noise, i.e., the 2∆xi-wave, we have k = π/∆xi, so then (3.32)

becomes

τ−1
e = γ2m (3.33)

where γ = ν/(∆xi)m.

The typical value of γ used in our simulations is 0.25×10−4. Then grid-

spacing (∆xi) of 0.675 km, implies τe = 10.4 min. The typical time-step (∆t)

used in the simulations ranges from 5.6 s to 2 s. In order to facilitate comparison

with Ford (1994a)’s results, nonuniform dissipation is applied only along the x

and the y-direction. The dissipation coefficients along x and y-directions will then

be referred to as νx and νy, respectively.

The inviscid shallow-water model with the addition of hyper-diffusion and

the damping layer reads as

∂tu+ δxB − ηyV
xy

= −τR(u− u0) + ν∇6u (3.34)

∂tv + δyB + ηxU
xy

= −τRv + ν∇6v (3.35)

∂th+ δxU + δyV = −τR(h− h0) + ν∇6h (3.36)

where ν is the diffusivity, and u0 and h0 indicates the basic state velocity and

height of the fluid.
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3.3 Simulation Details

3.3.1 Introduction

It was realized long ago that one of the problems associated with studying mete-

orological phenomena with numerical models is that any imbalance in the initial

wind and pressure fields will begin to undergo oscillations, which results in the

emission of inertia-gravity waves (Rossby 1938; Cahn 1945; Blumen 1972). Such

waves generated during model initialization are referred to as meteorological noise

because the source of such waves, depending on the strength of the imbalance,

is often of an artificial or unphysical nature, primarily due to an insufficiently

accurate knowledge of the initial state.

Since our aim is to study the gravity wave generation mechanism associated

with the instability in a rotating fluid system, it is important to distinguish the

waves associated with initialization procedures, i.e., the noise, from the ones that

are of interest to our study. In the simulations considered, since the initial wind is

assumed to be a parallel flow, we are able to set the wind field to be in geostrophic

balance with the pressure field.

In the case of rotating shallow-water flows, the two dimensionless parame-

ters of significance are the Rossby number Ro and the Froude number F , where Ro

determines the effect of background rotation, and F indicates the effect of strati-

fication (see section (1.3.11)). Below, on the basis of scaling arguments, we show

how these non-dimensional parameters can be related to background rotation and

stratification in the case of the rotating shallow-water equations.
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The rotating shallow-water momentum equations in vector form reads as

∂v

∂t
+ v ·∇v − fk× v = −g∇h. (3.37)

Let U indicate the velocity scale, i.e., |v| ∼ U and L indicate the length scale such

that |∇v| ∼ U/L. Let ∆h indicates the order of magnitude of height fluctuation

across the distance L. Furthermore, we let the time scale T equal to the advective

time scale L/U . Then equation (3.37), when scaled using U , L and (L/U) becomes

(
U2

L

)
∂ṽ

∂t̃
+

(
U2

L

)

ṽ ·∇ṽ − (fU) k× ṽ = −
(
g∆h

L

)

∇h̃, (3.38)

where the terms in the brackets indicate the order of magnitude of each terms,

and tilde indicate the dimensionless variables. If the last equation is multiplied

by (L/U2) we get

∂ṽ

∂t̃
+ ṽ ·∇ṽ−

(
1

Ro

)

k× ṽ = −
(

∆h

F 2hr

)

∇h̃ (3.39)

where F = U/
√
ghr is the Froude number, hr is the height of fluid at rest, and Ro

= U/fL is the Rossby number.

Since the local acceleration term and the nonlinear advective term are of

the same order of magnitude in (3.39), it is evident in (3.39) that Ro determines

the significance of the nonlinear advective term to the Coriolis term. In the limit

of small Ro, i.e., Ro ≪ 1, the nonlinear terms are not important, and the pressure

gradient force is balanced by the Coriolis force and the resulting balance is known

as the geostrophic balance. When Ro ∼ 1, both the nonlinear advective terms

and the Coriolis force are equally important, and in the case of circular flow in

the absence of a mean wind the resulting balance is known as the gradient wind

balance. For Ro ≫ 1, the Coriolis force is negligible, and the nonlinear terms are
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balanced by the pressure gradient force, and again for circular flow in the absence

of a mean zonal wind the resulting balance is known as cyclostrophic balance.

Therefore, Ro can also be used as a nonlinearity parameter.

It is also evident from (3.39) that the Froude number F determines the

amplitude of the height fluctuations ∆h. For example, in the case of high Rossby

number flows, i.e., Ro ≫ 1, the Coriolis term is negligible in (3.39), and we get

∆h ∼ F 2hr (3.40)

Since small Froude number F corresponds to small ∆h, it implies that vertical

motion is strongly inhibited, which further implies that horizontal fluid motions

are strongly non-divergent. Therefore, the fluid behaves more like a non-divergent

fluid when Froude number is small. Defined in this sense, the Froude number

behaves analogous to the Mach number for compressible flows.

In the case of small Rossby number flows, Ro ≪ 1, e.g., for flows in

geostrophic balance, equating the order of magnitude of the pressure gradient

term and Coriolis force in (3.39), we get

∆h ∼
F 2

Ro
hr (3.41)

This expression opens up the possibility for three flow regimes depending on the

values of Ro and F : Flows for which 1) F ≫ Ro; 2) F ∼ Ro; and 3) F ≪

Ro. When F exceeds Ro, rotation effects seem to dominate. When Ro exceeds

F , stratification effects tend to dominate. And when Ro ∼ F , both the effects

becomes equally important.

Additional insight is obtained when the two dimensionless parameters can

be combined to form an additional parameter, which can be expressed in terms of
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ratio of length scales. For example, the ratio

F

Ro
=

U√
ghr

fL

U
=

L√
ghr/f

=
L

Rd
, (3.42)

which is a another dimensionless number that is a ratio of the length scale L and

the Rossby radius of deformation Rd. Although this new dimensionless number

provides no new information than that provided by Ro and F , its use is sometimes

preferred. For example, in (3.42), when L < Rd, we get F < Ro, which implies

that flows with length scale smaller than Rd will be dominated by stratification

effects. On the other hand, when L > Rd, we get Ro < F . For such flows the

rotation effects will be stronger than stratification effects. Finally, when length

scale L ∼ Rd, we get Ro ∼ F , which indicates that the flow will be dominated

by both stratification and rotation effects. Therefore, specification of any two out

of the three dimensionless parameters Ro, F , and L/Rd serves to determine the

characteristics of the flow.

In the next subsection, we discuss details of the basic state.

3.3.2 Description of the Basic state

The basic state used in our simulations is determined by its potential vorticity

(PV)-distribution. Our approach closely follows the one used by Ford (1994a),

but it is not identical. Since our aim is to study waves generated as a consequence

of flow instability, the basic state is rendered unstable by specification of a PV-

anomaly over the region of interest. Since basic flows for which the PV-gradient

changes sign within the flow satisfies the necessary condition for barotropic insta-

bility (Ripa 1983), the basic state is comprised of a thin strip of PV-anomaly, say

ηanomaly , embedded over an extensive region of undisturbed fluid. We will refer to
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PV of the undisturbed fluid as the background PV, and its amplitude

ηb =
f

hr
, (3.43)

where hr is the height of undisturbed fluid and f is the Coriolis parameter (as-

sumed to be a constant).

Then the PV of the basic state, η0, can be written as

η0 = ηb + ηanomaly (3.44)

= ηb

(

1 +
ηanomaly

ηb

)

(3.45)

The shape of the PV-anomaly is similar to that used by Ford (1994a). It

comprises of a thin region of uniform PV-anomaly. Fig. (3.2) illustrates the typical

distribution of the PV-anomaly used in the simulations. The expression used to

determine the PV-anomaly is

ηanomaly

ηb
=

⎧

⎪
⎪⎪
⎨

⎪
⎪⎪
⎩

A

2

(

1− tanh

[
y − y0
∆

])

for y > 0

A

2

(

1 + tanh

[
y + y0
∆

])

for y < 0

(3.46)

where the dimensionless constant A determines the maximum amplitude of the

anomaly, 2y0 is approximately equal to width of the region with constant PV-

anomaly, and ∆ provides a measure of the distance over which the PV-anomaly

is adjusted to the background value. In contrast to Ford (1994a), who used a

linear function to adjust the PV-anomaly to the background value over 5 grid

intervals (see pg. 93, Ford 1994a), we use a hyperbolic tangent function to adjust

the PV-anomaly to the background value ηb.

The basic state was determined by the PV-distribution, which, based on
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Figure 3.2: Figure shows the distribution of the PV-anomaly ηanomaly obtained using
expression (3.46). A = 5 and y0 = 0.014625Rd , and ∆ = .00225Rd. Rd

(=
√
ghr/f) is the Rossby radius of deformation.

(3.46), is dependent on two parameters: the amplitude of the anomaly A and the

half-width y0. It is, however, not obvious how these parameter values are related

to the more familiar basic state flow parameters, such as the Rossby number and

the Froude number. Therefore, in the following paragraph, we discuss how the

parameters Ro and F can be determined for a given A and y0. First, the basic

state wind and height field is determined based on the PV-distribution, and then

we use the obtained wind and the height profiles to estimate the corresponding

Rossby and Froude numbers.

The basic state height h0 can be obtained by combining the expression for

shallow-water PV, i.e.,

η0 =
(ζ0 + f)

h0
, (3.47)
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Figure 3.3: Figure shows that basic state profiles: A = 5, y0 = 0.014625Rd , and ∆
= .00225Rd ( Ro = 4.5 and F = .066 ); (a) Normalized PV of the basic
state η0/ηb. (b) Normalized basic state velocity u0/c, where c =

√
ghr;(c)

Normalized basic state height h0/hr. Dashed lines indicate the width 2y0
of the PV-anomaly.
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with the geostrophic balance relation,

fu0 = −g∂yh0. (3.48)

Combining the last two equations we get

∂2yyh0 − (fη0/g)h0 + f 2/g = 0, (3.49)

where we have substituted ζ0 = −∂yu0. Then (3.49) is solved numerically subject

to the following boundary condition,

h0 → hr as y → ±∞. (3.50)

Then, the basic state velocity u0 is determined using (3.48).

Once the height and the velocity profiles are determined, the Rossby num-

ber Ro and the Froude number F can be readily evaluated using the expressions

Ro =
U

fL
, (3.51)

and

F =
U

c
, (3.52)

where U is the velocity scale, L is the length scale, and c =
√
ghr is the non-

rotating shallow-water gravity wave phase speed at rest. We choose U equal to

the maximum wind speed in ms−1 and L equal to half-width of PV-anomaly y0 in

meters.

Fig. (3.3) (b) shows the typical shape of the basic height h0 obtained using
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(3.49). The height field takes a minimum value along the y-axis, and gradually

increases and approaches the height of fluid at rest hr as we move away from the

low pressure center. The basic state wind u0, obtained from (3.48), comprises a

thin region of strong shear associated with the PV-anomaly (see fig. 3.3 (c)). In

the region outside the PV-anomaly, the wind shear is weak and the wind speed

gradually relaxes as the distance from the y-axis increases. The e-folding distance

outside the anomaly is the Rossby radius of deformation Rd (see section (1.3.7)

for discussion on the concept of Rd).

In case of the basic state profile shown in the fig. (3.3), which corresponds

to A = 5 and y0 = .014625Rd, we get F = 0.06681, and Ro = 4.568. Furthermore,

we also observe that varying the amplitude of the PV-anomaly A, while the width

y0 is held constant, produces almost linear variation in both Rossby number Ro

and Froude number F ( as can be seen in fig. 3.4). On the other hand, if the

amplitude of the PV-anomaly A is kept constant and the width y0 is varied, F

changes almost linearly with y0, but Ro varies very slowly (see fig. 3.5).

3.3.3 Model Initialization

As our first case, we consider the simulation of a basic state for which the effect of

background rotation and the effect of divergence can be expected to be small. The

basic state shown in fig. (3.3) has Ro = 4.568 and F = .0668. The evolution of this

profile will be used to study the mechanism of gravity wave emission associated

with the instability of barotropic parallel flows. The Rossby number value of

order one magnitude implies that the effect of rotation on the PV-anomaly can

be expected to be small, at least, during the initial stages of the simulation, and

the small Froude number indicates that the effect of divergence will remain small.

Hereafter this simulation will be referred to as S1.
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Figure 3.4: Same as fig.(3.3), but showing the effect of varying A when y0 = .014625Rd.
Solid line is for A = 5 (F = .067 and Ro = 4.56). Dashed line is for A =
6, (F = .079 and Ro = 5.4). Long-dashed line for A = 7 (F = .091 and
Ro = 6.23).
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Figure 3.5: Same as fig. (3.3), but showing the effect of varying y0 when A = 5. Solid
line y0 = .014625Rd (F = .067 and Ro = 4.56). Dashed line is for y0 =
.023625Rd (F = 0.1 and Ro = 4.35). Long-dashed line for y0 = 0.032625
(F = .135 and Ro = 4.15).
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Furthermore, since the properties of this particular basic state profile are

very similar to Ford’s (1994a) simulations Ai and Aii, the simulation results will

also be compared with Ford’s (1994a). Ford’s (1994a) simulations Ai and Aii

correspond to A = 5, and 2y0 = .018Rd and .035Rd, respectively. Firstly, this

should serve to verify that our simulation results are consistent with Ford’s findings

and that our model is behaving properly. Secondly, since we intend to perform a

more detailed analysis of the process of wave emission, this will help to highlight

the new insights revealed by our analysis.

The main difference between the model used by Ford (1994a) and ours is

that he used a pseudo-spectral scheme to evaluate the derivatives in the streamwise

(x) direction. He used a second-order centered-difference scheme to evaluate the

cross-stream derivatives. Ford also used variable cross-stream resolution to resolve

the long gravity waves propagating away from the vortical region, which was

resolved using a uniform grid spacing.

Furthermore, he used dissipation only along the x-direction. Ford argued

that since the flow field evolves into a rotating flow, the application of dissipation

along one direction should be sufficient for purposes of maintaining numerical

stability. Ford’s choice is certainly arguable since, as is shown later, the flow

evolves structures that are thin in the cross-stream (y) direction. However, as a

part of our study, we will consider the effects of using both isotropic and anisotropic

dissipation on the simulation results.

In all the simulations considered, the positive x-direction is taken as the

east-west or zonal (streamwise) direction and the positive y-axis the south-north

or meridional (cross-stream) direction. The wind direction is from east to west in

positive y-region, decreases to zero at y = 0, and blows from west to east in the

negative y-region (see fig. (3.3) (b)). The basic state flow is uniform in the zonal
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direction.

Such wind flow patterns are often found near 10◦-15◦ North and South of

the equator, usually associated with the Intertropical Convergence zone (ITCZ).

In the Northern hemisphere these strong shear layers usually have wind differences

in the range 5 - 15 ms−1 over a few degrees of latitude between the easterlies to

the north and westerlies to its south (see e.g., Lipps (1970), Nieto Ferreira and

Schubert (1997), Mishra et al. (2007), Yokota et al. (2015)).

Finally, the simulations were initialized by addition of small-amplitude si-

nusoidal perturbations to the basic state. The wavelength of the disturbance is

set equal to the wavelength of the fastest growing mode. The fastest growing

mode was determined using matrix method similar to that used by Ford (1994a).

The details of the stability analysis are provided in the Appendix. The form of

disturbance height field h′[x, y] added to perturb the basic state height is

h′[x, y] = exp

[

−
|y|
ly

]

sin [kxx+ β] , (3.53)

where kx is the wave number of the fastest growing mode, β indicates the phase,

and ly is the meridional e-folding length of the height perturbations. Thus the

total height of the fluid

h[x, y, t = 0] = h0[y] + h′[x, y] (3.54)

The use of shallow-water equations to study atmospheric processes is lim-

ited by the fact that for most part our atmosphere is continuously stratified.

Continuous stratification implies that disturbances tends to propagate more effi-

ciently as internal gravity waves as opposed to external or shallow-water gravity

waves. Internal gravity waves can propagate in the vertical direction and have
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small horizontal phase speeds compared to shallow-water gravity waves. Shallow-

water theory can be adopted to explain the nonlinear effects associated with the

flow over topography, such as the downslope wind storms. The shallow-water ap-

proximation is usually applied to a shallow layer of atmosphere in the troposphere

which is capped by an inversion, and the acceleration due to gravity g is replaced

by reduced acceleration due to gravity g′ (see e.g., Jiang 2014, and references

therein), and in tropical region due to barotropic nature.

Lastly, since our aim is to investigate the nature of the wave forcing mech-

anism, and not to accurately predict the characteristics of the observed gravity

waves in the atmosphere, we choose the depth of the fluid at rest hr equal to 3 km

and use reduced acceleration due to gravity g′ equal to 0.3 m s−2. These choices

result in non-rotating gravity wave phase speed c equal to 30 ms−1. Disturbances

with phase speeds in this range are generally considered significant as far as me-

teorological motions are concerned. We also choose the Coriolis parameter f =

10−4 s−1, which corresponds to the typical value for mid-latitudes, as barotropic

vortices have also been observed in the mid-latitudes (see e.g., Weinand 2000;

Maejima et al. 2006) (Note that the value of f at the previously mentioned lati-

tude 15◦ is 3.8 × 10−5, which is sufficiently close to the adopted value of 10−4).

Table (3.1) lists the initialization parameter values used in simulation S1. The

details of the numerical discretization, dissipation and damping parameters used

in this simulation are provided in table (3.2). In the next section, results from

simulation S1 will be discussed.
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Initialization
parameters

Values

Simulation S1

Height of fluid at rest hr 3 km
Reduced gravity g′ 0.3 m s−2

Coriolis parameter f 10−4 s−1

Gravity wave phase speed c (=
√
ghr) 30 m s−1

Rossby radius Rd (= c/f) 300 km
Half-width of PV-anomaly y0 .014625Rd

Amplitude of PV-anomaly A 5
Rossby number Ro 4.568
Froude number F .06681
Wave number of fastest growing mode kx 27.94/Rd

Perturbation e-folding distance ly 0.9Rd

Table 3.1: Table lists the initialization parameter values used in simulations. The
expression used to calculate the Rossby number Ro = U/fL and the Froude
number F = U/c, where U is the maximum wind speed, and L is equal to
y0.

3.4 Results and discussion

3.4.1 Near-field fluctuations

Fig. (3.6) shows the evolution of the potential vorticity field η after time t = 11

from the start of the simulation, where time is in units of (1/f). Small amplitude

sinusoidal perturbations (ĥ/hr = 10−4) were used to disturb the basic state; con-

sequently, it takes some time for perturbations to become large enough to disturb

the initially parallel PV-field. Wave-like disturbances on the PV-field are clearly

visible in frame (a) of fig. (3.6). Subsequent frames show that the initially parallel

strip begins to roll-up. This further results in stretching, and formation of thin

regions of steep PV-gradient known as “braids”. Fig. (3.6) also shows the evolu-

tion of the wind field vector, which shows that the roll-up of the strip is associated
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Numerical
discretization
parameters

Simulation

S1

Meridional grid spacing ∆y 0.00225Rd

Zonal grid spacing ∆x 2∆y
Total grid points in x-direction M 51
Total grid points in y-direction N 10001
Zonal domain length Lx 0.225Rd

Meridional domain length 2Ly 22.5Rd

Time step ∆t 5.625 s
Robert-Asselin filter α .02
Width of damping layer D 2.25Rd

Courant number Cn 0.25
Zonal dissipation parameter γx 0.25 ×10−4

Meridional dissipation parameter γy 0

Table 3.2: Table lists the spatial and temporal discretization, and dissipation param-
eters values used in simulation. Courant number Cn = c(∆t/∆y) and
c =

√
ghr is the non-rotating gravity wave phase speed at rest. γx =

νx/∆x6, and γy = νy/∆y6, where νx and νy are the diffusivity along x
and y-directions, respectively. The value of Rayleigh damping coefficient
τR increases gradually from 0 to 1 at the boundary.

with the development of cyclonic wind circulation. As the disturbance continues

to grow, the vortex appears to rotate and the braids on either side of the cyclonic

vortex are stretched further ( see frames (c) and (d) of fig. (3.6)).

Figs. (3.7) shows the evolution of the meridional cross-section of PV along

lines x = .08, 0.1, 0.13 and 0.15, respectively, corresponding to the vertical lines

in fig. (3.6)(a) and (b). Plots are shown for times t = 10.125, 11.25, 12.375. Unit

of time is 1/f . Clearly the initial roll-up of the PV-strip is accompanied by advec-

tion of the PV-front, and a subsequent increase in the width of the PV-anomaly.

We also observe that as the PV-front is meridionally advected, the gradients in

the deformation zone steepen with time due to differential advection across the
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Figure 3.6: Figure showing the evolution of the potential vorticity field η/ηb, where ηb
= hr/f . Wind field vector v has been overlaid on it. The magnitude of
longest wind vector is ≈ 3.0 ms−1. X and Y indicate the downstream and
cross-stream distances in units of Rd. Time is in units of 1/f . The vertical
lines for t = 11.2 and 12.4 corresponds to the x/Rd locations plotted in
fig. (3.7).
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Figure 3.7: Cross-section along the lines shown in fig. 3.6 (a) and (b) showing evolution
of the (η/ηb) (See fig. (3.6) for the corresponding x/Rd). The lines are
located along x/Rd = .08, 0.1, .13, and 0.15, respectively. Plots times are
t =10.125 ( Solid-line ), 11.25 ( Long dash line ), and 12.375 ( Dot-dashed
line ).
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Figure 3.8: Same as fig. 3.6, but showing relative vorticity ζ/f .

gradient. After some time, model has trouble resolving this steep gradient and

gives rise to numerical errors. Consequently, as it is compressed, the leading edge

of the front develops an over-shoot and produces Gibbs-like oscillations, which

extend to the trailing edge in some instances (see e.g., Mendez-Nunez and Carrol

(1993) for discussion of development of such oscillations ).

The resolution used in the meridional direction in simulation S1 is the

same as that used by Ford (1994a) for his simulations Ai and double compared

to his simulation Aii. Since the PV-anomaly in simulation S1 has the same

form and amplitude as Ford’s simulations Ai and Aii, it is quite likely that these
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Figure 3.9: Figure shows the evolution of the normalized height field h/hr, where hr
is the fluid rest height, associated with the growth of the perturbations.
The wind field vector v has been overlaid on it.

overshoots and oscillations also developed in the simulations conducted by Ford

(1994a). Details of whether such oscillations arose have not been discussed by

Ford, though his published figures are detailed enough to reveal them (e.g., see

his fig. 3(d)). The consequence of these numerical errors on the mechanism of

generation the gravity waves have not been discussed in the past and, consequently,

will be investigated later in Section (3.5). For now we continue with our analysis

of the results from simulation S1.

Fig. (3.8) shows the evolution of the vorticity field ζ after time t = 11 from
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Figure 3.10: Figure showing the evolution of divergence δ-field (Unit is s−1) associated
with the intensification of the disturbance. Wind field v is overlaid on
the divergence plot.

the start of the simulation. The vorticity plots are very similar to the PV-plots,

and differ only in magnitude. This indicates that the evolution of PV is dominated

by the evolution of the vorticity field. The figure also indicates that the roll-up

of the vorticity strip, which is primarily comprised of positive vorticity, results is

development of thin regions of negative vorticity, as indicated by the faint, thin red

regions. Positive vorticity is associated with cyclonic wind circulation and negative

vorticity with anticyclonic wind circulation. These anticyclonic circulations are too

weak to be visible even in the wind vector plots. However, they become clearly
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Figure 3.11: Figure showing the (∂u/∂x)-field (Unit is s−1).

visible when the mean zonal flow is subtracted from the flow field. The significance

and discussions on these anticyclonic circulations will be provided later when we

discuss fig. (3.25).

Fig. (3.9) shows the evolution of the height field h during the roll-up of

the vortex. Clearly evident is the deepening of the pressure associated with the

intensification of the cyclonic circulation.

Fig. (3.10) shows the evolution of the near-field horizontal divergence δ (=

(∂xu + ∂yv)). The divergence field shows a quadrupolar or four-cell pattern which

undergoes slow change in intensity along with the evolution of the vorticity field.
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Figure 3.12: Figure showing evolution of (∂v/∂y)-field (Unit is s−1).

Such four-cell pattern is typically associated with a balanced jet-streak or a dipole

vortex (see e.g., Houghton et al. 1981; Vantuyl and Young 1982; Cunningham and

Keyser 2000; Snyder et al. 2007). A dipole vortex is considered as an idealization

of the atmospheric jet streak. It is characterized by a localized jet between two

counter rotating constituent vortices (see e.g., Snyder et al. 2007, 2009). Although,

the vorticity field of fig. (3.8) failed to show a localized jet between two counter

rotating vortices, however, as shown later, they become visible when the zonal

mean flow is subtracted from the total field. Of particular interest even to our

study is the forcing associated by jet between the counter-rotating vortices.
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Figure 3.13: Figure showing the evolution of divergence δ-field (Unit is s−1) associated
with the intensification of the disturbance. Also show is the divergent

wind field vχ. Amplitude of the maximum wind is ≈ 0.002 m/s.

Frames (a) and (b) of fig. (3.10) show that the divergence field during the

vortex roll-up phase is initially weak and begins to intensify as the perturbation

grows (grey regions indicate positive divergence, and pinkish-red regions show

negative divergence or convergence). Frame (b) shows that the major axis of the

cyclonic vortex is associated with strong positive divergence. However, 2 units of

time later (see frame (d)), the vortex has rotated and the major axis is now a

region of strong convergence. Interestingly, throughout the flow, we observe that

the divergence remains oriented along a SW to NE axis, while the convergence is
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Figure 3.14: Same as figure (3.10) (i.e., showing divergence (δ) field), but in the in-
termediate domain.
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Figure 3.15: Same as figure (3.14) (i.e., showing divergence (δ) field), but only show
divergence contours in the range (-7, 7)×10−9 s−1. Therefore, the diver-
gence (δ) contours with values exceeding this range have been assigned
the extreme values of the new contour range.
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Figure 3.16: Same as fig. (3.15), but showing (∂v/∂y) (Unit is s−1).

oriented along a SE to NE axis.

Since the horizontal divergence δ (= ∂xu + ∂yv) arises as a consequence

of contribution from two terms, namely, the zonal term ∂xu and the meridional

term ∂yv, we look at the evolution of each fields to gain some insight. Figs.

(3.11) and (3.12) show the evolution of ∂xu and ∂yv, respectively. Fig. (3.12)

shows that the vorticity fronts (visible in the first and the third quadrant) are

regions of fluid convergence associated with the meridional motion. However, fig.

(3.11) shows that these are also regions of strong positive divergence associated

with zonal motion, and this divergence is stronger in magnitude compared to the
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Figure 3.17: Same as fig. (3.15), but showing (∂u/∂x) (Unit is s−1).

convergence associated with meridional motion. Consequently, the resultant δ-field

of fig. (3.10) shows that vorticity front as a regions of strong positive divergence

(dark grey contour).

The subsequent divergence field ( see fig. (3.10) (c) ) shows that the δ-

field has weakened. We also observe that although both ∂xu and ∂yv fields have

intensified ( see figs. (3.11) (c) and (3.12) (c) ), this time there occurs a strong

cancellation between the fields, which accounts for the decrease in the δ-field.

The next frame, i.e., fig. (3.10) (d), shows that the δ-field has intensified

again. Although this time, in comparison to divergence pattern in frame (b), the
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Figure 3.18: Same as fig. (3.16), but showing the far-field ∂yv.

center of the cyclonic vortex is a region of fluid convergence. Again, we observe

that the δ-field is dominated by the contribution from the zonal term (∂xu) (see

figs. (3.11) (d) and (3.12) (d)).

In summary, we observed that the near-field δ in simulated barotropic vor-

tex undergoes oscillation in the intensity as the vortex continues to evolve. The

near-field divergence δ field arises as a consequence of imbalance between the am-

plitude of meridional term ∂yv and zonal term ∂xu. These terms have opposite

sign, but the magnitude of ∂xu is always slightly greater than ∂yv, thus resulting

in the near-field δ to be non-zero. Later when we analyze the intermediate region
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Figure 3.19: Same as fig. (3.17), but showing the far-field ∂xu.

δ-field it will be shown that the roles have reversed, i.e., the amplitude of ∂yv

dominates in the intermediate region, thus compensating for the excess ∂xu in

the near-field. This is important because it assures the mass remains conserved.

Our results also showed that more axisymmetric the flow, weaker the divergence

δ field.

In order to gain some insight into the source of imbalance between ∂xu and

∂yv in the near-field, we look at the divergent wind field vχ associated with the

near-field divergence δ. Fig. (3.13) shows the divergence field with the divergent

wind field vχ overlaid on it, where vχ is defined as vχ = ∇χ, such that ∇2χ = δ,

and χ is the velocity potential . Evident is the direction of wind vectors starting
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Figure 3.20: Same as figure (3.15), but now shown over a much wider meridional
domain to show wave progress at later times.
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Figure 3.21: Figure showing the meridional cross-section of δ-wave along lines x =
.058, .114, and .17, respectively, in fig. 3.20 (d).

from regions of positive divergence, which can be indentified as sources, and ending

in regions of negative divergence or convergence, which can be identified as sinks.

Therefore, in each frame one can identify two pairs of source and sink, therefore,

constituting a quadrupole source (see e.g., Lighthill, 1978). Furthermore, we ob-

serve that frames (a) to (c) show that wind diverging from the source region is

stronger compared to the winds converging into the sinks, suggesting that mass

is being expelled by the divergent wind to regions beyond the near-field region.

Frame (d), in contrast, shows stronger wind vectors converging to the sink and

86



Figure 3.22: Figure showing the zonal cross-section of δ-wave along lines y/Rd = 1, 3,
and 5, respectively, in fig. 3.20 (d).

the wind vectors diverging from the sources are relatively weaker.

An important characteristic of a quadrupole source is that it must conserve

both mass and momentum (see e.g., Lighthill, 1952, 1978). The simulated vortex

satisfies both this characteristics, because there is no source of external mass, nor

is there an external force driving the oscillations. Now a static quadrupole source

and the wind field associated with it cannot radiate. So, it is important that

the strength or intensity of the sources and sinks fluctuate so that the wind field

associated with them also fluctuates, making it possible for the quadrupole source
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Figure 3.23: Figure showing the propagation of the δ-wave along line x = .1125 in
fig. 3.20. The letters y0, y1, y2, and y3 indicate the position of the crest
during propagation of the wave. y0 = -2.259Rd, y1 = -3.4515Rd, y2 =
-4.64176Rd , y3 = -5.83875Rd .

to radiate.

Insight into whether the oscillations in the quadrupole source is the driving

force responsible for producing the shallow-water gravity waves, or whether these

oscillations in the divergence field arise as a consequence of some other forcing

mechanism, will be obtained after we have performed a detailed investigation of

the fluctuations in the perturbation field in section (3.4.3).

Importantly, in order to verify that the simulated δ-field is an integral fea-

ture associated with the evolution of an unstable PV-strip and not a consequence
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Figure 3.24: Figure shows the evolution of the perturbation wind field v′. The mag-
nitude longest wind vector shown is ≈ 2.18 m/s.

of numerical errors, its sensitivity with respect to model resolution and dissipation

is investigated in section (3.5).

3.4.2 Intermediate and far-field fluctuations

So far we have only looked at near-field features associated with the evolution of

the vortices, which span distances well within the Rossby radius of deformation.

We now look at features in the intermediate and far-field region, which dominate

the region beyond the scale of the vortices. By intermediate region we are referring

to distance within the Rossby radius, but outside the vortical region. Distances
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Figure 3.25: Figure showing the evolution of perturbation vorticity ζ ′ field, where ζ ′

= ζ - ζ̄. ζ ′ is in unit of f . The perturbation wind vector v′ is overlaid
on it.

beyond the Rossby radius will be referred to as the far-field region. Our reason

for separating the region beyond the vortical region into intermediate and far-field

region will soon become evident.

Fig. (3.14) shows the divergence in the intermediate-region at the same

time as in fig. (3.10). We observe that the strong divergence field with magnitude

on the order of 10−7 s−1 is confined to the near-field. However, when the contour

value range is reduced by almost two orders of magnitude in fig. (3.15), we find

in the intermediate region small amplitude shallow-water gravity waves with long
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Figure 3.26: Plot showing the evolution of the mean zonal wind ū. Mean flows at
times t = 11.2 (Solid line), t = 12.4 (Dotted line), t = 13.5 (Dashed line),
and t = 14.6 (Dotted-dashed line ) are shown. The maximum ū/c =
.0661.

meridional wavelengths propagating away from the vortices in the near-field. (Note

that in this figure divergence field with values outside this range have been assigned

the extreme values of the new contour range.)

We also observe that the propagating waves tend to have relatively weak

zonal variations, even though the near-field divergence showed strong zonal varia-

tions. In order to understand this, we again look at the contributions of ∂xu and

∂yv fields to the resulting δ field. Figs. (3.16) and (3.17) show the ∂yv and ∂xu

fields, respectively, in the intermediate region. We observe that both ∂yv and ∂xu

show strong zonal variations (though, smaller compared to the near-field) even

in the intermediate region. The zonal variations associated with these field are
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Figure 3.27: Figure showing the height fluctuation h′/hr, where h′ = h[x, y, t] - h̄[y, t].
Also shown is the perturbation wind field v′.

such that they cancel each other, which explains the lack of zonal variation in the

intermediate δ-field.

Importantly, contrary to the near-field, the contribution to the δ in the

intermediate region comes primarily from ∂yv. This implies that the divergent

field is responsible for transport of mass beyond the near-field or the vortical

region, but does so in a conservative manner.

Next we look at the far-field features. Figs. (3.18) and (3.19) show the ∂yv

and ∂xu, respectively in the far-field. Interestingly, we observe that fluctuations
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Figure 3.28: Same as fig. (3.27), but shown is the perturbation rotational wind v′
ψ

is shown (see expression (3.58) for definition of v′
ψ). The wind speed

maximum is ≈ 2.18 m/s.

in the ∂xu-field remain confined to the intermediate region, and does not extend

any further. Even with the ∂yv-field, we observe that zonally varying components

remain confined to the intermediate region, and it’s only the zonally independent

component of ∂yv which contributes to the propagating shallow-water waves. This

a very important result, because it implies that gravity waves originate as a conse-

quence of forcing in the meridional direction. This inference is further supported,

as will be shown later, by results in section (3.4.3).

Fig. (3.20) shows the meridional propagation of these waves at later times.

Figs. (3.21) and (3.22) show the meridional and zonal cross-section, respectively,
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Figure 3.29: Same as fig. (3.27), but shown is the perturbation divergent v′
χ wind (see

expression (3.58) for definition of v′
χ). The wind speed maximum is ≈

.002 m/s.

of the waves shown in fig. (3.20) (d).

We observe some distinct features associated with these waves. These waves

have long meridional wavelengths compared to the spatial scale of the vortical

region. The meridional wavelength of the emitted wave is at least twice the Rossby

radius Rd. In fig. (3.21) the distance between the vertical solid lines is equal

to 3.18Rd, which can be used to make an estimation of the wavelength. The

zonal wavelength of the wave is equal to the length of the zonal domain, and the

amplitude of the zonal variation is smaller by almost a factor of 102 in comparison
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Figure 3.30: Plot showing the evolution of the meridional cross section of the normal-
ized mean zonal height h̄/hr. Mean height at times t = 11.2 (Solid line),
t = 12.4 ( Dashed line), and t = 13.5 (Dot-dashed line) are shown.

to the meridional wave amplitude.

One can also make an estimate of the phase speed. Fig. (3.23), which

tracks the location of the crest of the leading wave was used to make an estimate

of the phase speed. The crest propagates with a speed of about 31.8 m/s, which

compares well with the non-rotating shallow-water gravity wave phase speed
√
ghr

= 30 m/s for an undisturbed fluid.
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Figure 3.31: Same as fig. (3.30), but at later times showing the increase in the vortical
region. Mean height at times t = 14.6 (Solid line), t = 15.8 (Dashed line),
and t = 17.0 (Dot-dashed line) are shown.

3.4.3 Evolution of the perturbation fields and the wave

forcing mechanism

So far our investigation into the mechanism of gravity wave generation have indi-

cated oscillation in the near-field divergence as a possible source for driving gravity

waves. However, it is not yet clear what drives these oscillations. In order to gain

some insight, we now focus our attention towards understanding fluctuations in

the vorticity field.

Fig. (3.8) showed the evolution of the ζ-field during the growth of the per-

turbations. The total vorticity field is comprised mainly of positive vorticity, but
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Figure 3.32: Plot showing the evolution of the difference in normalized mean zonal
height ∆h̄[t]/hr (= h̄[t]/hr - h̄[t = 11.2]/hr). ∆h̄ at times t = 12.4 (Solid
line), t = 13.5 (Dashed line), and t = 14.6 (Dot-dashed line ) are shown.

also showed thin regions with negative vorticity (visible as faint brown lines on

either side of the braids in frames (b), (c), and (d)). Positive vorticity is associ-

ated with cyclonic wind circulation and negative vorticity with anticyclonic wind

circulation. The anticyclonic circulations associated with this negative vorticity

were not evident in the wind field. However, they become visible when the zonal

mean flow (ū) is subtracted from the wind field v. Fig. (3.24) shows evolution of

the perturbation wind field vector v′, where

v′[x, y, t] = (u[x, y, t]− ū[y, t], v[x, y, t])) . (3.55)

The perturbation wind field is comprised of a cyclonic circulation at the center
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and anticyclonic circulations on the sides. These circulations are initially weak

(see frames (a) and (b) of fig. 3.24), but intensify with time during the roll-up

of the vorticity strip. This indicates that significant features associated with the

evolution of the flow field were masked by the mean zonal flow. This motivates us

to discuss features associated with the evolution of the perturbation flow field.

Fig. (3.25) shows the evolution of the perturbation vorticity field ζ ′, where

ζ ′[x, y, t] = ζ [x, y, t]− ζ̄[y, t] (3.56)

The perturbation wind field v′ has been overlaid on the ζ ′-plots. Frame (a) shows

that initially the perturbation vorticity is concentrated along thin regions on either

side of the y = 0 axis. Definition (3.56) implies that the zonally-averaged ζ ′ is

zero, which further implies that integral of ζ ′ over the entire domain is also zero.

This implies that the circulation C ′ associated with the perturbation wind field v′

is zero, where C ′ =
∮

v′ · dx, and x indicates the position vector.

The next frame, i.e., fig. (3.25) frame (b), shows that both the cyclonic

and anticyclonic circulations have intensified, and so has the perturbation wind

field v′. Since C ′ is again zero, it implies that the intensification of the cyclonic

perturbation circulation must be accompanied by intensification of equal amount

of anticyclonic perturbation circulation. This indicates that the evolution of the

C ′ follows Kelvin’s circulation theorem. Kelvin’s circulation theorem states that

in a barotropic fluid, i.e., fluids in which density is a function of pressure alone,

the circulation is conserved, in the absence of viscosity (see e.g., Holton 2004).

The increase in intensity of the perturbation wind field v′ implies that the

perturbations have gained kinetic energy. Fig. (3.26) shows the evolution of the

zonal mean wind ū. The zonal mean wind ū decreases during the intensification of

the circulations, indicating that the perturbations are intensifying at the expense
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of the zonal mean kinetic energy.

Now the intensification of the cyclonic circulation must be accompanied by

expulsion of mass and deepening of the low-pressure center, and the anticyclonic

circulations by accumulation of mass. Fig. (3.27) shows the evolution of the

perturbation height field h′, where

h′[x, y, t] = h[x, y, t]− h̄[y, t], (3.57)

and h̄ is the zonal averaged height field. Figure shows that the intensification of

cyclonic circulation is indeed accompanied by deepening of the low-pressure center,

and the anticyclonic circulations are accompanied by accumulation of mass.

The subsequent evolution of the perturbation height field h′ can be un-

derstood as follows. In frames (a) and (b) of fig. (3.27), the perturbation wind

can be seen spiraling out of the deepening low-pressure center, and then blow-

ing across contours of constant h′, and feeding into the intensifying high-pressure

regions. After the initial intensification phase of the vortices, the perturbation

wind pattern continues to evolve, as is evident in the transition from frame (b)

to (c). Frame (c) shows that the perturbation wind is flowing more closely along

the lines of constant h′-contours, indicating that the vortices have reached their

mature stage and no further intensification of h′ can occur.

Importantly, during this phase we also observe that the meridional wind

v′ is now blowing right across lines of mean zonal height h̄ (not visible in Fig.

(3.27)). Such cross-isobaric flow must result in some transfer of mass and produce

fluctuations in mean zonal height in the near-field region. As will be demonstrated

shortly, this indeed results in significant meridional transfer of mean zonal mass.

Since the perturbation wind field (v′) shown in figure (3.27) comprises both
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Figure 3.33: Temporal variations of the (a) K̄−K̄(t = 0), (b) P ′, (c) K ′, (d) P̄−P̄ (t =
0). Letters t1, t2, t3, and t4 indicate the times t = 11.2, 12.4, 13.5, 14.6,
respectively.

the vortical and divergent wind component, the fluctuation in the perturbation

height (h′) must arise as a consequence of both the vortical and divergent fluid

motions. Figs. (3.28) and (3.29) show the evolution of the h′-field with the wind

fields v′
ψ and v′

χ overlaid on it, respectively, where

v′ = v′
ψ + v′

χ, (3.58)

v′
ψ = (k̂ × ∇ψ) and v′

χ = ∇χ, ψ is a stream function for the rotational part of

v′ and χ is a velocity potential for the divergent part of v′, so that ∇2ψ and ∇2χ

are vorticity (ζ) and divergence (δ), respectively.

It is evident from figs. (3.27) and (3.28) that the wind fields v′ and v′
ψ are

100



almost identical. This is because |v′
χ| is smaller by a factor of almost 103 compared

to |v′
ψ|, indicating that almost all of the adjustment in the near-field mass/pressure

field is produced by rotational fluid motions, and the divergent component of the

wind v′
χ aids in small but further adjustment of the mass field. Also evident is

that the wind field v′
ψ is more confined to the center of the domain, and weakens

considerably in the meridional direction. In contrast, v′
χ, which is very small in

magnitude compared to v′
ψ, doesn’t show signs of weakening in the meridional

direction.

However, the subsequent frame of fig. (3.27), i.e., frame (d) at t = 14.6,

shows that the perturbation height field continues to evolve. Furthermore, since

there is no boundary to obstruct the meridional transport of mass, it can be

expected that a small portion of the fluid propagates deeper into the meridional

direction, beyond the meridional domain shown in fig. (3.27).

When the perturbation wind pattern in fig. (3.27), frame (b) is compared

with the wind pattern in frame (d), we observe that the direction of mass transfer

has reversed. In the latter case, wind (i.e., v′
ψ) can be seen spiraling out of the

high-pressure region and feeding into the low-pressure center, indicating that this

is a decaying phase for the vortices.

Next we investigate the fluctuations in the near and intermediate field mean

zonal height h̄ produced by the cross-isobaric flows.

Since the zonal domain is periodic, if mass transfer occurred only along

the zonal direction, then this would imply that mean zonal height h̄ will remain

unchanged during this process. Fig. (3.30) shows the evolution of the meridional

cross-section of the mean zonal height h̄. The plot shows that h̄ decreases during

the intensification phase of the vortices, which implies that the domain shown in

fig. (3.27) is losing mass.
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The change in local h̄ is caused by the meridional transport of mass by the

rotational component of the wind and is too small to be visible in the h̄-plot. In

order to view the transport of mass in the meridional direction, the change in the

zonal mean height ∆h̄ is plotted. Fig. (3.32) shows the meridional cross-section

of change in mean zonal height ∆h̄, where

∆h̄(t) = h̄(t)− h̄(t = 11.2). (3.59)

Figure shows that from time t = 11.2 to 12.4 mass is being expelled from the

vortical region. This is evident from the positive value of ∆h̄ in the region im-

mediately outside the vortical region. Earlier, our analysis of the rotational and

divergent winds showed that the rotational wind remain confined to the near-field,

whereas divergent wind propagates deep into the intermediate region. Therefore,

the near-field fluctuation in the mean height h̄ must have been produced by the

cross-isobaric flow of the rotational wind, and the meridional transport in the

intermediate region must have been caused by the divergent wind.

The subsequent evolution of ∆h̄, i.e., at t ≈ 13.5 (indicated by dashed

line), shows that more mass is expelled from the vortical region, which is evident

from the further increase in ∆h̄ in the region around the vortices. Figure also

shows that although bulk of the expelled mass is confined to the region around

the vortices, the leading edge has spread over a distance of almost 3Rd (indicated

by the dashed-line).

The ∆h̄-plot at a later time, i.e., at t = 14.6, indicates that the expulsion of

mass from the vortical region has ceased. This is evident from the observed drop

in ∆h̄ in the region immediately outside the vortices ( indicated by the transition

from dashed line to dot-dashed line ). Furthermore, since fig. (3.31) shows that

after time t = 13.5 the zonal mean height h̄ is increasing in the vortical region,
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this implies that the mass that was expelled is now receding back to the vortices.

Since ∆h̄ indicates the change in the value of h̄ relative to value of h̄ at t = 11.2,

then the fact that the value of ∆h̄ remains negative in the vortical region in fig.

(3.32) implies that the lost mass fails to completely recover. As is shown later,

this interpretation is further supported by the potential energy plots.

Note that the vortical region is confined to a narrow region around the line

y = 0 and spans a distance of less than 0.2Rd relative to the scale of the y-axis

range of fig. (3.32) which spans of distance of 8Rd.

As the mass recedes back to the vortices following the reversal of the di-

vergence field, the disturbance continues to propagate towards the meridional

boundaries as shallow-water gravity waves, as is evident from the subsequent evo-

lution of ∆h̄ in fig. (3.32). The positive ∆h̄ bump visible in the dot-dashed line of

fig. (3.32) nicely captures the propagation of the leading edge of the wave front.

Therefore the fluid system is losing energy in the form of gravity waves, while total

mass remains conserved.

In the following subsection, we look at the energetics associated with the

evolution of the simulated vortex.

3.4.4 Energetics

The expression for the energy per unit area (E) of the shallow-water equations is

E =
1

2
h(u2 + v2) +

1

2
gh2, (3.60)

where the first term represents kinetic energy (K) and the second term represents

potential energy (P ). The field variables and the energies may be separated into
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zonally-averaged and perturbation parts. Then substituting u = ū[y, t]+u′[x, y, t],

v = v′[x, y, t], and h = h̄[y, t] + h′[x, y, t], in the expression in (3.60), we get

E =
1

2
(h̄+ h′)

(

(ū+ u′)2 + v′2
)

+
1

2
g(h̄+ h′)2

=
1

2
h̄ū2 + h̄ūu′ +

1

2
h̄(u′2 + v′2) +

1

2
h′ū2 + h′ūu′ +

1

2
h′(u′2 + v′2)

1

2
gh̄2 + gh̄h′ +

1

2
gh′2 (3.61)

where overbar indicate zonal averaging and prime indicate deviation from the

zonal mean. Upon domain averaging, the terms h̄ūu′, h′ū2/2, and gh̄h′ disappear

because they are linear in perturbation variables. In what follows the domain

averaged terms will be denoted by angle brackets ⟨...⟩. Therefore the domain

averaged mean kinetic energy (K̄) is

K̄[t] =

〈
1

2
h̄ū2

〉

, (3.62)

perturbation kinetic energy (K ′),

K ′[t] =

〈
1

2
h̄(u′2 + v′2)

〉

+

〈
1

2
h′(u′2 + v′2)

〉

+ ⟨ūh′u′⟩ , (3.63)

mean potential energy (P̄ ),

P̄ [t] =

〈
1

2
gh̄2

〉

, (3.64)

and perturbation potential energy (P ′) is

P ′[t] =

〈
1

2
gh

′2

〉

, (3.65)
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where the averaging operators ⟨ ⟩ and is defined as

⟨ ⟩ =
1

2LxLy

∫ Lx

0

∫ Ly

−Ly

( )dydx (3.66)

where Lx is the length of zonal domain and 2Ly is meridional extent of the domain.

Fig. (3.33) shows the evolution of K̄, K ′, P̄ , and P ′ for simulation S1.

Plot (3.33) (a) shows that K̄ remains undisturbed initially for a certain period of

time and then begins to decrease in amplitude. This decrease in K̄ occurs due

to decrease in both ū and h̄ in the near-field or vortical region. In the far-field

region, ū remains unchanged, but h̄ shows a slight increase, indicating that the

contribution to the loss in K̄ comes entirely from the near-field or the vortical

region. The decrease in K̄ is accompanied by simultaneous increase in K ′, P ′, and

P̄ , which indicates that K̄ is the primary source of energy. A significant portion

of the mean kinetic energy K̄ is transferred to the perturbation kinetic energy K ′,

a small portion of which is utilized in increasing the mean potential energy P̄ and

perturbation potential energy P ′.

We saw earlier that the mean zonal mass that is lost by the vortical region,

as indicated by decrease in h̄, is transported by meridional wind perturbation v′

to the far-field region. As the mass spreads in the meridional direction, it is also

gaining height because the basic state height h0 is increasing in the meridional

direction. Consequently, the fluid is gaining potential energy as it propagates

further in the meridional direction. Although P̄ is lost by the near-field region,

as indicated by the near-field h̄-plot (see fig. 3.30), the domain averaged mean

potential energy P̄ still increases, which indicates that mean potential energy must

be gained at the expense of the kinetic energy.

After the perturbation energies K ′ and P ′ have reached their first maxi-

mum, they begin to transfer energy back to the mean flow, as indicated by increase
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in K̄. This phase is accompanied by, as was seen in fig. (3.27) (d), decrease in

meridional perturbation wind v′ and the perturbation wind v′ spiraling out of the

high-pressure centers and feeding into the low-pressure region, and thus resulting

in the weakening of the vortices. This explains the decrease in P ′ after its has

attained its first maximum. This phase is also accompanied by transfer of initially

expelled mass back to the vortices, as indicated by the loss in h̄ in the region out-

side the vortices, and a gain in h̄ by the vortices, which explains the decrease in P̄ .

During this process, not all of the mass that was expelled recedes back to the vor-

tical region. Consequently, not all of perturbation kinetic energy K ′ is transferred

back to the zonal mean flow. The fluid system has thus been transferred into a

state which possess less kinetic energy and more potential energy in comparison

to its initial state. This new state is not steady, but is quasi-periodic, i.e., the

near-field begins to undergo slow oscillations in which energy is transferred back

and forth between the mean flow and the perturbations.

In summary, we observe that zonal mean kinetic is the primary source of

energy which drives the circulations associated with the vortices. The initially

parallel unstable flow undergoes an adjustment during which the mean kinetic

energy is transferred to perturbation kinetic energy and potential energy. It is

during this adjustment that a small fraction of the energy leaks as gravity waves.

The final state of the fluid is a quasi-periodic state. This quasi-periodic state

contains less kinetic energy and more potential energy compared to its initial

state. In this respect the instability is very similar to a non-divergent barotropic

instability.
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3.5 Sensitivity of simulation S1 to resolution and

dissipation

In this section we compare the effect of varying numerical discretization parameters

on the evolution of the near-field and far-field features. Specifically, we consider

the effect of varying resolution and dissipation.

In section (3.4.1), while discussing the near-field features of simulation S1,

we saw that the nonlinear advection led to development of over-shoots along the

leading edge of PV-front. These over-shoots are numerical errors which arises as

a consequence of insufficient resolution and lack of meridional dissipation.

Fig. (3.34) shows the evolution of the meridional cross-section of the PV-

front associated with the growth of the perturbations for simulation S1-R4. Sim-

ulation S1-R4 is identical to simulation S1, except for the numerical discretization

parameter values, as can be seen in Table (3.3). Simulation S1-R4 illustrates the ef-

fect of increasing the resolution, i.e., grid spacing along both the x and y-directions

is reduced by half compared to simulation S1, and also adding dissipation along

the y-direction. Fig. (3.34) should be compared with fig. (3.7) of simulation S1 to

see the significant reduction in the numerical errors as a consequence of increased

resolution in the meridional (y) direction and also the effect of adding dissipation

in the y-direction.

We perform two more simulations: S1-R6 and S1-R7. Simulation S1-R6

is same as S1-R4, but considers the effect of increasing dissipation. Simulation

S1-R7 considers the effect of using uniform resolution and dissipation along the x

and y-directions.

Fig. (3.35) compares the meridional evolution of PV-anomaly for simu-
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lation S1, S1-R4, S1-R6, and S1-R7 along the line x = .08Rd at approximately

around the same time of the evolution. The figure shows that the amplitude of

the over-shoots and oscillations visible in S1 have considerably reduced in S1-R4.

S1-R6 shows that there is further improvement. S1-R7, which is expected to show

the best result because of the use of higher resolution and uniform grid-spacing

and dissipation properties, shows that a significant improvement in the reducing

the oscillation along the trailing edge, when compared to S1, S1-R4, and S1-R6.

However, we do observe that the amplitude of the spike in the leading edge has

increased when compared to S1-R4 and S1-R6, but has decreased when compared

to S1.

Fig. (3.36) compares the PV-field for simulations S1, S1-R4, S1-R6, and

S1-R7 at time t = 10.125. Which helps to draw a better comparison between S1-

R7 and the rest. Although we observe that R1-S7 is remarkably similar to S1-R4,

we think the result in S1-R7 is still superior because the width of the spike in

PV-anomaly along the leading edge (indicated by the dark blue strip) is thinnest

in S1-R7.

Fig. (3.37) compares the near-field divergence field for simulations S1, S1-

R4, S1-R6, and S1-R7 at time t = 10.125. The figure shows that the near-field

divergence field is almost insensitive to the changes in resolution and dissipation.

These results indicate that the observed near-field divergence are robust features

associated with the intensification of vortices.

Finally, and importantly, we look at the effect of changes in resolution and

dissipation on the emitted gravity waves. Fig. (3.38) compares the meridional

cross-section of the gravity wave field emitted in simulations S1, S1-R4, S1-R6,

and S1-R7 at time t = 19.12 along the line x = 0.058Rd. The figure shows that

the oscillations observed in fig. (3.35) have negligible effect on emitted waves.

108



Numerical
discretization
parameters

Simulation

S1 S1-R4 S1-R6 S1-R7

∆y 675 m 337.5 m 337.5 m 337.5 m

∆x 2∆y 2∆y 2∆y ∆y

M 51 101 101 201

N 10001 20001 20001 17777

Lx 0.225Rd 0.225Rd 0.225Rd 0.225Rd

2Ly 22.5Rd 22.5Rd 22.5Rd 19.9Rd

∆t 5.625 s 4 s 2 s 2 s

α .02 .02 .02 .02

D 2.25Rd 2.25Rd 2.25Rd 2.25Rd

Cn 0.25 0.36 0.18 0.18

γx 0.25 ×10−4 0.022 ×10−4 .0625× 10−4 0.25 × 10−4

γy 0 0.044 × 10−4 0.25 × 10−4 0.25 × 10−4

Table 3.3: Table compares the numerical discretization parameter values used in sim-
ulation S1 and S1-R4, S1-R6, S1-R7

This indicates that the gravity waves observed in the numerical simulations are

an integral feature associated with the instability of an unstable parallel flow in a

barotropic divergent fluid, and not a consequence of numerical errors.

3.6 Summary and concluding remarks

Simulations demonstrating the emission of shallow-water gravity waves associ-

ated with the instability of an initially parallel jet were performed in a rotating

(constant f -plane) shallow-water model to investigate the gravity wave genera-

tion mechanism. This chapter aimed at shedding light on the physical mechanism

through which rotational wind associated with vortices result in generate wave-like
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disturbances in the divergence field.

The current study revisited the problem investigated by Ford (1994a). Our

aim was to perform a more detailed investigation of gravity wave emission. Conse-

quently, important new details have been revealed, which have provided valuable

new insights about the evolution of a barotropic vortex, and the process of gravity

wave generation associated with an evolution of the barotropic vortex.

Specifically, our study showed that the transport of mass associated with

the intensification of the vorticity field after the onset of instability is almost

entirely produced by the rotational wind field. The rotational wind field remains

confined to the near-field or vortical region, and therefore is responsible only for

fluctuation in the pressure/mass field and the corresponding fluctuations in the

vorticity field associated with the evolution of the vortex. More importantly, for

the purpose of understanding of the source of wave forcing, this study showed that

the meridional component of the rotational wind associated with the evolution of

the vorticity field flows cross-isobaric to the zonal mean height or pressure lines.

It is this cross-isobaric flow which is responsible for producing forcing for the

generation of the gravity wave. This cross-isobaric flow produces fluctuation in

the zonal mean height h̄, which subsequently results in transfer of mass from

the near-field region into the intermediate region. The fluctuations in this mass

transfer subsequently results in generation of shallow-water gravity waves.

Our study also showed that this redistribution of mass (specifically pro-

duced by the rotational wind) occurs at the expense of the kinetic energy and

results in the increase of both perturbation and mean potential energy. The fluc-

tuation in the perturbation potential energy is associated with the intensification

and relaxation of the cyclonic and anti-cyclonic circulations. But the fluctuation

in the mean potential energy is produced by rotational winds which flow cross-
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isobaric to the zonal mean height or pressure lines. This transports mass to the

intermediate region. Therefore increasing the mean potential energy.

Our study also showed the near-field divergence field resembles a quadrupole

source, i.e., it comprises of two pairs of source and sink. The study also showed

that the location of these sources and sinks do not coincide with the low and

high-pressure centers associated with the centers of the cyclonic and anti-cyclonic

circulations, respectively, which indicates that the low and high pressure centers

are not sources and sinks, and are not formed as a consequence of the intensifica-

tion of the cyclonic and anticyclonic circulations and the mass transfer associated

with it. Furthermore, the intensity of these sources and sinks are not stationary,

but oscillate with time, and these oscillations coincide with the evolution of the

vorticity field.

Our study also showed that the divergent wind field aids with further re-

distribution of the mass field, though the transport is not in the direction of the

rotational wind. The direction of the divergent wind field is such that it transports

mass from source to sink. In contrast to the rotational wind field which remains

confined to the near-field region, the divergent wind is responsible for transport

of mass not just in the near-field region, but also in the intermediate region.

Furthermore, our investigation into the properties of the emitted gravity

wave indicated that

1. the wave showed negligible variation in the zonal direction

2. the divergence field of the propagating waves was comprised only of ∂yv-field.

The fact the divergence field of the wave was comprised only of the ∂yv term further

confirms that the cross-isobaric flow produced by the meridional component of

the rotational wind is the main mechanism responsible for generating the gravity
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wave. However, this study also showed that the wave forcing associated with cross-

isobaric rotational flow is not uniformly distributed along the zonal direction, yet

we observe that the propagating shallow-water gravity waves show negligible zonal

variation.

The lack of zonal variation in the emitted shallow-water gravity wave can

to some extent be understood as follows: The cross-isobaric wave forcing occurs

in both the meridional directions; two oppositely directed jets could be identified

between the counter-rotating vortices. The cross-isobaric flow transfers mass and

produces fluctuations in the divergence fields. It is quite likely that the region

where this mass got accumulated becomes a source and the region which has lost

mass in the process acts as sink. Since in the case of the simulated vortex, such

cross-isobaric flows are occurring on either side of the cyclonic vortex, though in

opposite directions, has resulted in formation of two pairs of source and sinks.

Once these pairs are formed, mass can also get transferred from source of one

pair to the sink of the other pair. This would mean that the excess mass gets

distributed evenly in the zonal direction, and therefore, reduces the effect of zonal

variation in the wave forcing function. Such a reasoning is also supported by the

observation that in the intermediate region both the ∂xu and ∂yv showed strong

zonal variations, but the combined field, i.e., δ, showed negligible zonal variation.

Such an inference also implies that the wind field associated with the formation

of source and sinks, i.e., the quadrupole source, tends to diffuse the effect of the

wave forcing in one particular direction.

Our study showed that the zonal term ∂xu dominates the meridional term

∂yv in the near-field region. The amplitude of zonal term ∂xu was found to be

opposite in sign, but slightly greater than the meridional component ∂yv. This

excess of ∂xu in the near-field divergence was compensated by excess ∂yv in the

intermediate field. This compensation is important, because it assures that mass
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remains conserved.

Furthermore, the present study also investigated the effect of numerical

errors, which arise as a consequence of nonlinear advection, on the wave emission

mechanism. Such tests were not performed in earlier studies. The present study

compared the simulation results with simulations Ai and Aii of Ford (1994a),

which have the closest initial state parameters to our simulation S1. Our study

showed that during the growth of the disturbance, the PV-anomaly is subject to

nonlinear advection, and during this advection the slope of the anomaly steepens.

This steepening is not resolved properly by the meridional grid resolution, and,

consequently, leads to development of over-shoots and oscillations which extend

to the trailing side of the advecting front. These over-shoots and oscillations are

numerical errors.

The sensitivity of the gravity wave generation mechanism to these numerical

errors was also investigated. The characteristics of the emitted waves were found

to be insensitive to the increased resolution and dissipation, which indicates that

errors in the evolution of the near-field potential vorticity are not important to

the wave generation mechanism. This is another important finding based on our

study which provides an additional insight into the wave generation mechanism

observed in barotropic vortices. This insensitivity is in contrast to the gravity

waves emitted by baroclinic vortices, which were found to be highly sensitive to

resolution and dissipation (see e.g., Plougonven and Snyder 2005, 2006).
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Figure 3.34: Plot showing evolution of the meridional cross-section of PV (η/ηb) for
simulation S1-R4 along lines x = 0.08, 0.1, 0.13, and 0.15, respectively.
Plots times are t =10.8 ( Solid-line ), 11.6 ( Long dash line ), 12.4 (
Dot-dash line ).
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Figure 3.35: Plot comparing the evolution of the meridional cross-stream PV (η/ηb)
for simulation S1, S1-R4, S1-R6, and S1-R7 along lines x = .08. (a)
Plots times are t =10.125 ( Solid-line ), 11.25 ( Long dash line ), 12.375 (
Dot-dash line ); (b), (c), and (d) Show plots at times t =10.8 ( Solid-line
), 11.6 ( Long dash line ), 12.4 ( Dot-dash line )
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Figure 3.36: Plot comparing the normalized potential vorticity η/ηb for simulation S1,
S1-R4, S1-R6, and S1-R7 at time t = 10.125.

116



Figure 3.37: Plot comparing the divergence field δ for simulation S1, S1-R4, S1-R6,
and S1-R7 at time t = 10.125.
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Figure 3.38: Plot comparing the meridional cross-section of simulated divergence field
for simulation S1, S1-R4, S1-R6, and S1-R7 at time t = 19.12 along lines
x = .058Rd.
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Chapter 4

Comparison of simulated results

with theory

4.1 Introduction

Ford (1994a) extended Lighthill’s (1952) theory to rotating shallow-water flows.

The gravity wave field predicted using the theory matched with the simulated grav-

ity wave field. So it was concluded that the problem of wave emission in rotating

flows can also be described within the framework of Lighthill’s (1952) theory. Fur-

thermore, his study showed that the effect of planetary vorticity severely inhibits

shallow-water gravity wave emission from vortices with Rossby number of order

one.

Ford explained the damping mechanism as follows: The effect of planetary

vorticity ensures that gravity waves with frequency lower than the inertial fre-

quency f are cannot propagate. Therefore, if more of the forcing spectrum shifts

to frequencies below f , the effect of low-frequency cutoff is increased, thereby de-
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creasing the amplitude of the emitted waves. This explanation was also supported

by Sugimoto et al.’s (2008) study. They looked at the spectrum of the forcing

terms in the Ford-Lighthill equation, and found that when a significant portion of

the spectrum fell below the inertial frequency f , the wave amplitude decreased.

The equation governing the motion of a linear rotating shallow-water grav-

ity wave is

(

∂2tt + f 2 − c2∇2
)

∂th = 0, (4.1)

and the dispersion relation is

ω2 = f 2 + c2k2. (4.2)

The effect of planetary vorticity f has rendered linear shallow-water gravity waves

dispersive, and this effect has been introduced specifically by the presence of the

term f 2(∂th) in (4.1). The dispersion relation also tells us that gravity waves with

frequency lower than the inertial frequency f cannot propagate away from the

source region. Therefore, Ford’s (1994a) explanation of rotation inhibiting wave

emission by means of low-frequency cut-off appears reasonable.

However, it is the aim of this chapter to show that Ford’s (1994a) expla-

nation of the inhibiting effect of rotation, and therefore, our understanding of the

action of planetary vorticity on fluid motions is incomplete, because his expla-

nation only considers the effect of the inertial cut-ff on wave emission. We will

demonstrate that there are other rotational effects that directly inhibit gravity

wave emission.

In chapter (2), we reviewed in detail the basis of Lighthill’s (1952) formu-

lation, and Ford’s (1994a) extension to rotating shallow-water flows. We high-
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lighted that Ford’s formulation of the wave emission problem introduced a new

term fϵ3ki∂k(∂jhuiuj), which was included in the wave forcing or non-homogeneous

side of the wave equation. The significance of this term for the wave forcing mech-

anism is not clear and has not been investigated in the past. It is also our aim

to gain insight into this term and its significance for the wave forcing mechanism.

Specifically, since this term contains f as one of its factors, it clearly represents

a direct effect of planetary vorticity f on the wave forcing terms. This chapter

aims to seek answer to these question: What is the role of this term in the wave

generation mechanism ?

The rest of the chapter is organised as follows: First we demonstrate the ef-

fectiveness of Ford-Lighthill equation in the description of the shallow-water grav-

ity wave field in a rotating fluid: In subsection (4.2.1), the technique that is used

to calculate the gravity wave field from the Ford-Lighthill non-homogeneous wave

equation is reviewed. Lighthill’s compact source approximation and its usefulness

in evaluating the integral is discussed in subsection (4.2.2). The solution of the

Ford-Lighthill equation is compared with the numerically simulated gravity wave

field in subsection (4.2.3). The consequences of the compact source approximation

for the description of the gravity wave field is then investigated. The inhibiting ef-

fect of the term fϵ3jk∂j(∂lhukul) is demonstrated in subsection (4.3.1). The effect

of dispersion on wave characteristics is investigated in subsection (4.3.2). In sub-

section (4.3.3), the inhibiting mechanism represented by the term fϵ3ki∂k∂j(huiuj)

is investigated. Finally, we make some concluding remarks in section (4.4).
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4.2 Solution of Ford-Lighthill equation (2.1)

4.2.1 Green’s function solution

Since the simulation results showed that the emitted waves had relatively small

zonal variations (i.e., x-dependent features) compared to the meridional variations,

the non-homogeneous wave equation (2.1) is x-averaged before it is solved to assist

comparison with simulated waves. The x-averaged equation (2.1) reads as

(

∂2tt + f 2 − c2∂2yy
)

∂th
x
= ∂2yyT22

x
(4.3)

where

T22
x

= ∂t(hv2)
x
− f(huv

x
) +

1

2
g∂t(h− h0)2

x
(4.4)

The Green’s function G[(y − y′), (t− t′)] solution of (4.3) is

∂h

∂t

x

[y, t] =

∫ ∞

−∞

∫ tr

t0

∂2T22
x

∂y′2
[y′, t′]G[(y − y′), (t− t′)]dt′dy′ (4.5)

where tr = t− |y− y′|/c, and variable y′ indicates the position of the wave source,

variable y indicates the position of the observer, t is the observation time, and

t′ indicates the time at which wave is emitted from the position y′. The Green’s

function G[y, t] is obtained as a solution to the following non-homogeneous wave

equation
(
∂2

∂t2
+ f 2 − c2

∂2

∂y2

)

G = δ[y]δ[t] (4.6)
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where δ is the Dirac’s delta function. The expression for G[(y − y′), (t − t′)] is

(Ford, 1994a)

G[(y − y′), (t− t′)] =
1

2c
J0

[

f
√

(t− t′)2 − (y − y′)2/c2
]

, (4.7)

where J0 is the zero-order Bessel function. Then substituting for G[y, t] in (4.5),

we get

∂h

∂t

x

[y, t] =
1

2c

∫ ∞

−∞

∫ tr

t0

∂2T22
x

∂y′2
[y′, t′]J0

[

f

√

(t− t′)2 −
(y − y′)2

c2

]

dt′dy′ (4.8)

The integration of (4.8) can be performed in a straight forward manner provided

the forcing function ∂2yyT22
x
[y, t] is known. However, in the next section, we review

Lighthill’s (1952) compact source approximation, which is often used to reduce

(4.8) into a form which is more suited to making an order of magnitude estimation

of the emitted wave, and is also intended to provide some insight about the wave

forcing terms.

4.2.2 Lighthill’s compact source approximation

The first step in Lighthill’s approach is to transform the spatial derivatives with

respect to the source coordinate y′ to the observation coordinate y. This can be

done by making use of the identity,

∂2T22[y′]

∂y′2
G[y − y′] =

∂2

∂y2
(T22[y

′]G[y − y′]) . (4.9)
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Proof of this identity can be found in Crighton (1975) (see page 91, expressions

(A-7) to (A-8)). Using this identity, (4.5) can be written as

∂h

∂t

x

[y, t] =
1

2c

d2

dy2

∫ +∞

−∞

∫ tr

t0

T22[y
′, t′]G[(y − y′), (t− t′)]dt′dy′ (4.10)

Substituting for G[(y − y′, (t− t′)] in the last expression, we get

∂h

∂t

x

[y, t] =
1

2c

d2

dy2

∫ +∞

−∞

∫ tr

t0

T22[y
′, t′]J0

[

f
√

(t− t′)2 − (y − y′)2/c2
]

dt′dy′(4.11)

Both (4.8) and (4.11) give identical results, but the advantage (4.11) has over (4.8)

is that it provides a better order of magnitude estimate, when the compact source1

approximation is made.

For instance, if the compact source approximation is made in (4.8), then

J0 in (4.8) can be approximated as

J0

[

f
√

(t− t′)2 − y2/c2
]

.

Using this approximation, (4.8) becomes

∂h

∂t

x

[y, t] =
1

2c

∫ t−|y|/c

t0

(∫ ∞

−∞

∂2T22

∂y′2
[y′, t′]dy′

)

J0

[

f
√

(t− t′)2 − y2/c2
]

dt′.(4.12)

Now if the divergence theorem is applied to the integral

∫ ∞

−∞

∂2

∂y′2
T22[y

′, t′]dy′, (4.13)

we get a null result, because T22 is extended over finite region in space.

1A source is said to be spatially compact if the phase difference between two interfering waves
from two different points in the source region can be neglected. This assumption is particularly
true when the period of waves are large compared to the phase difference arising due to spatial
distribution of these two points.
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On the other hand, (4.10) does not suffer from this error. After making the

compact source approximation (4.10) becomes

∂h

∂t

x

[y, t] =
1

2c

d2

dy2

∫ +∞

−∞

∫ t−|y|/c

t0

T22[y
′, t′]dy′J0

[

f

√

(t− t′)2 −
y2

c2

]

dt′ (4.14)

The last expression can be written as

∂h

∂t

x

[y, t] =
1

2c

d2

dy2

∫ t−|y|/c0

t0

S[t′]J0

[

f
√

(t− t′)2 − y2/c2
]

dt′ (4.15)

where

S[t′] =

∫ ∞

−∞

T22
x
[y′]dy′

=

∫ ∞

−∞

∂(hv2)
x

∂t
dy′ −

∫ ∞

−∞

f(huv
x
)dy′ +

∫ ∞

−∞

1

2
g
∂(h− hr)2

x

∂t
dy′

= SA[t
′] + SB[t

′] + SC [t
′] (4.16)

4.2.3 Comparison of the gravity wave field with the simu-

lated wave

Both expressions (4.8) and (4.15) can be used to evaluate the gravity wave field,

provided S is known. And in order to evaluate S[t], the values of field variables u, v

and h, which vary with both space and time, have to be known. Since the Lighthill-

Ford formulation does not predict the evolution of these field variables in the wave

forcing region, these values have to be supplied externally. For example, in the

earlier studies (e.g., Ford 1994a; Sugimoto et al. 2008), these value were obtained

from the numerical solution of the fully nonlinear shallow-water equations. Here

too we obtain these values based on the numerical solution of the nonlinear shallow-

water equations.
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Figure (4.1) compares the simulated wave with solution (4.15) of the Ford-

Lighthill equation. It can be observed that the solution (4.15) slightly underesti-

mates the simulated wave at the crests and troughs. Figure (4.2) shows the same

wave as fig. (4.1) in the near-field. Therefore, our results, in common with Ford

(1994a) and Sugimoto et al. (2008), show that solution (4.15) of the Ford-Lighthill

equation provides a very good description of the far-field gravity wave field. In

addition, however, our result also show that solution (4.15) is a bad approximation

to the simulated near-field. Next we show that these errors are a consequence of

making the compact source approximation in evaluating the integral (4.8). So-

lution (4.15) was derived by making Lighthill’s compact source approximation in

(4.8).

Figure (4.3) compares the simulated wave with the exact solution (4.8),

and figure (4.4) shows the same wave in the near-field. We now observe that

the agreement between the simulated wave and the solution (4.8) is very good in

both the near and far-field, and the errors that were visible in fig. (4.1) and (4.2)

have now disappeared. This is because (4.8) does not make the compact source

approximation.

4.3 Discussion

4.3.1 The nature of the term fϵ3ki∂k(∂jhuiuj)

Expression (4.16) shows that the wave forcing term S comprises of three terms: SA

(=
∫∞
−∞ ∂t(hv2)

x
dy′), SB (= −

∫∞
−∞ f(huv

x
)dy′), and SC (=

∫∞
−∞

1
2g∂t(h− hr)2

x
dy′).

In order to investigate the contribution of the term fϵ3ki∂k(∂jhuiuj) to wave forc-

ing, we compare the individual contribution of these terms to the forced gravity
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Figure 4.1: Figure compares the simulated gravity wave (solid line) with that predicted
by (4.15) (dotted line). The result is based on simulation S1.

wave field.

Fig. (4.5) (a) shows the contribution of these individual terms to (4.15).

The forcing due to SA alone (indicated by dashed line) dominates, followed by SB

(dot-dashed line). Term SC (long-dashed line) appears to have negligible contri-

bution; it is smaller by a factor of almost 10−2 compared to the other two term

(see fig. (4.5) (b), which shows the wave forcing due to term SC)

Notice that the forcing due to SA alone overestimates the simulated wave

amplitude (indicated by solid line). It is the cumulative effect of SA and SB which

provides a better approximation to the simulated wave. Furthermore, fig. (4.5)

(a) also shows that the term SB contributes by counter acting the effect due to

the dominant term SA.

Therefore, our study shows that term fϵ3ki∂k(∂jhuiuj) acts as a direct in-

hibiting term, and that this effect is significant, because its exclusion can introduce

significant errors in the predicted gravity wave field.

The investigation of the inhibiting mechanism due to fϵ3ki∂k(∂jhuiuj) will
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Figure 4.2: Same as fig. (4.1), but showing the near-field. The maximum value of
dh/dt predicted from solution of Ford-Lighthill equation is of the order of
10−2.

be continued in subsection (4.3.3). But first, in the next subsection, we investigate

the effect of dispersion on wave emission, so that it can be compared to the direct

inhibiting effect produced by the fϵ3ki∂k(∂jhuiuj) term.

4.3.2 Effect of dispersion on wave emission

In order to estimate the contribution of dispersion to damping, we will calculate

the wave forcing due to the term ∂2yyT22
x
in the Ford-Lighthill wave equation (2.1),

but with the effect of dispersion switched off. That is, we seek solution to the wave
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Figure 4.3: Same as fig. (4.1), but showing the Green’s function solution (4.8).

equation

(

∂2tt − c2∂2yy
)

∂th
x
= ∂2yyT22

x
(4.17)

where

T22
x
= ∂t(hv2)− f(huv

x
) +

1

2
g∂t(h− h0)2 (4.18)

The Green’s function solution of (4.17) is

∂h

∂t

x

[y, t] =

∫ ∞

−∞

∫ tr

t0

∂2T22
x

∂y′2
[y′, t′]G[(y − y′), (t− t′)]dt′dy′ (4.19)

where tr = (t− |y− y′|/c), and the Green’s function G[(y− y′), (t− t′)] now takes

the form (see e.g., Morse and Feshback, 1953)

G[(y − y′), (t− t′)] =
1

2c
H

[

c2(t− t′)2 − (y − y′)2
]

, (4.20)
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Figure 4.4: Same as fig. (4.3), but showing the near-field Green’s function solution
(4.8).

where H is the Heaviside function. Then, as in section (4.2.2), after making the

Lighthill’s compact source approximation, expression (4.19) reduces to

∂h

∂t

x

[y, t] =
1

2c

∂2

∂y2

∫ tr

t0

S[t′]H [c2(t− t′)− y2]dt′ (4.21)

where S[t′] =
∫ −∞

+∞ T22
x
(y′, t′)dy′. In the discussions to follow, we will refer to this

solution as the non-dispersive wave. The Lighthill’s compact source approximation

has been made to reduce the computation time.

Figure (4.6) compares the solution (4.21) with the x-averaged simulated

wave, which we shall refer to as the dispersive wave, at various times during the
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propagation. Figure clearly shows the effect of dispersion on the propagating wave,

and this effect becomes more evident as time progresses. Initially, the phase and

amplitude difference between the dispersive and the non-dispersive counterpart

is small, but as time progresses, differences become evident. The distortion of

the wave-packet due to dispersion occurs because the longer wave components

of the wave packet propagate at a faster speed compared to the shorter wave

components and their non-dispersive counterparts. The shorter components can

be seen making up the leading edge of the dispersive wave packet. The difference

between the amplitudes of the dispersive and non-dispersive packets is relatively

minor and can be explained on the basis of constructive/destructive interference

in the dispersive wave packet. The dominant wave number is kRd ≈ 0.54, yielding

ω ≈ 1.14f .

4.3.3 Investigation of inhibiting effect represented by the

term fϵ3ki∂k(∂jhuiuj)

In order to study the dependence of the term fϵ3ki∂k(∂jhuiuj) on the time-scale

of evolution in the wave forcing region, we conduct two more simulations: S2 and

S3. Our aim is to see how the contribution of the term fϵ3ki∂k(∂jhuiuj) varies

with the 1) time-scale and 2) amplitude of the wave forcing terms. The details of

simulations S1 to S3 are provided in Table (4.1).

Simulation S2 is conducted with the purpose of increasing the time-scale,

while keeping the scale of the vortex close to simulation S1. This is achieved by

decreasing the amplitude of the PV-anomaly by 40%, but keeping the width of

the anomaly of the basic state same as in simulation S1. This reduces both Ro

and F to 60% of their S1 values.
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Initialization
parameters

Simulation

S1 S2 S3

Height of fluid at rest hr 3 km 3 km 3 km
Reduced gravity g′ 0.3 0.3 m s−2 0.3 m s−2

Coriolis parameter f 10−4 s−1 10−4 s−1 10−4 s−1

Gravity wave phase speed c (=
√
ghr) 30 m s−1 30 m s−1 30 m s−1

Rossby radius Rd (= c/f) 300 km 300 km 300 km

Half-width of PV-anomaly y0 .014625Rd .014625Rd .075375Rd

Amplitude of PV-anomaly A 5 3 5
Rossby number Ro 4.568 2.817 3.402
Froude number F .066681 .0412 0.2564

Wave number of fastest kx 27.94/Rd 27.99/Rd 5.4357/Rd

growing mode

Table 4.1: Table lists the initialization parameter values used in simulations S1, S2,
and S3.

In simulation S3, we consider the effect of increasing both the timescale

and scale of the vortex. This is achieved by increasing the width of the anomaly,

but keeping the amplitude of the anomaly the same as in simulation S1. This

reduces Ro but increases F by almost a factor of 4.

Figure (4.7) compares the evolution of the forcing function S[t] for simu-

lations S1, S2, and S3. Figure (4.7) (b) shows the consequence of decreasing the

amplitude of the PV-anomaly by 40%. The amplitude of the forcing terms has

reduced by almost a factor of 100, and the time-scale of fluctuation has increased

compared to simulation S1. The decrease in vortex amplitude and background

shear would alone be expected to produce a modest (e.g., ∼ 40%) reduction in

the forcing terms. It is clear that the increase in vortex timescale is primarily

responsible for the drastic reduction in the efficiency of wave forcing.
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Numerical
discretization
parameters

Simulations

S1 S2 S3

Meridional grid spacing ∆y 0.00225Rd 0.00225Rd 0.00225Rd

Zonal grid spacing ∆x 2∆y 2∆y ∆y
Total grid points in x-direction M 51 51 515
Total grid points in y-direction N 10001 10001 10001
Zonal domain length Lx 0.225Rd 0.225Rd 1.1655Rd

Meridional domain length 2Ly 22.5Rd 22.5Rd 22.5Rd

Time step ∆t 5.625 s 5.625 s 5.625 s
Robert-Asselin filter α .02 .02 .02
Width of damping layer D 2.25Rd 2.25Rd 2.25Rd

Courant number Cn 0.25 0.25 0.25
Zonal dissipation parameter γx 0.25 ×10−4 0.25 ×10−4 1.0 × 10−4

Meridional dissipation parameter γy 0 0 0

Table 4.2: Table lists the spatial and temporal discretization, and dissipation param-
eters values used in simulation S1, S2, and S3. The Courant number Cn =
c(∆t/∆y) and c =

√
ghr is the non-rotating gravity wave phase speed at

rest. γx = νx/∆x6, and γy = νy/∆y6, where νx and νy are the diffusivity
along x and y-direction, respectively.

Figure (4.7) (c) shows the effect of increasing the width of the anomaly by

a factor of about 5. The amplitude of the forcing terms has increased compared

to simulations S1 and S2, and the time-scale has significantly increased when

compared with simulation S1, but only slightly when compared to S2. In this case

the stronger shear has more than compensated for the reduced efficiency in wave

forcing associated with the longer timescale.

Now, in order to measure how the damping effect varies with time-scale of

evolution of the forcing terms, we define a ratio rd as

rd =
|SB|

|SA + SC |
, (4.22)

133



ta tb tc

S1 27.1% 26.3% 24.7%

S2 46.3% 44.4% 41.9%

S3 49.9% 45.4% 46.6%

Table 4.3: The above matrix list the value of rd. Rows correspond values of rd for
simulations: S1, S2, S3, and columns corresponds to values of rd at times:
ta, tb and tc. The values of rd have been calculated at times when the
amplitude of the forcing SA reached its first maxima (i.e., time = ta), first
minima (time = tb), and second maxima (time = tc) in fig. (4.7). The
values of ta, tb and tc have been provided in the caption of fig. (4.7).

which gives an estimate of the damping relative to the amplitude of the forcing

terms. The values of rd for simulations S1, S2, and S3, have been listed in Table

(4.3). The increase in value of rd as we move from simulations S1 to S3, therefore

indicates that the damping due to term fϵ3ki∂k∂jhuiuj increases with time-scale

of the wave forcing terms.

Figure (4.8) compares the gravity wave field in simulations S1, S2, and S3.

The results are consistent with the strengths of the wave forcing terms shown in

fig. (4.7).

The above results thus indicate that the term fϵ3ki∂k∂jhuiuj opposes the

dominant forcing ∂2ij∂t(huiuj) and therefore the rotation of the Earth provides a

inhibiting effect on wave emission for the flow parameters considered here.

4.4 Summary and concluding remarks

In this chapter, the technique used to solve the Ford-Lighthill equation (2.1) was

reviewed. The solution of the Ford-Lighthill equation was then compared with

the simulated shallow-water gravity wave field. In common with Ford (1994a) and

134



Sugimoto et al. (2008), our study also demonstrated that Lighthill-like formula-

tion can be very effective at describing the far-field gravity wave. Furthermore,

our study highlighted the error that arises in the description of the gravity wave

field as a consequence of making the Lighthill’s compact source approximation.

Specifically, it was shown that huge errors arise in the description of the near-field

wave when the compact source approximation is made.

The significance of this term fϵ3ki∂k∂jhuiuj to the wave generation mecha-

nism, which arose as a consequence of Ford’s (1994a) extension of Lighthill’s (1952)

theory was investigated. Results showed that excluding this term introduced sig-

nificant error in the amplitude of the predicted gravity wave field. Results also

showed that this term contributes by opposing the dominant nonlinear forcing.

Therefore, it was concluded that this term is important in the formulation of the

wave generation problem.

It was also demonstrated that in the case of simulation S1, the effect of

dispersion produces significant distortion as the wave continues to propagate.

Lastly, the study focused on investigating the inhibiting mechanism repre-

sented by the term fϵ3ki∂k∂j(huiuj). For this purpose, two more simulations were

conducted. In the first case, the effect of decreasing the Rossby number compared

to simulation S1 was considered. In the second case, the effect of increasing the

Froude number was considered. These simulations showed that the damping rep-

resented by the fϵ3ki∂k∂j(huiuj) increases with the time-scale of the evolution of

the the wave forcing terms.

In conclusion, our study suggests that both the term: fϵ3ki∂k∂j(huiuj) and

f 2(∂th), contribute to the effect of rotation of Earth on fluid motions. The latter

contributes to dispersion only, while the former represents a direct inhibiting effect

of rotation of the Earth’s rotation on fluid motions and wave forcing.
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Figure 4.5: (a) Figure showing the contribution to (4.15) due to terms SA, SB, and
SC in expression (4.16). Solid line represents the simulated field. Dotted
line represents the response due to total forcing S, i.e, the solution (4.15).
Dashed line represents the response due to forcing SA alone. Dot-dashed
line is the response due to forcing SB alone, and dot-dot-dot-dash is the
response due to SC alone. Results are from simulation S1; (b) Same as in
frame (a), but highlights the contribution due to term SC , which appeared
to have negligible contribution in (a). The y-axis range has been reduced
by a factor of 102 in comparison to the y-axis range in (a).
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Figure 4.6: Figure illustrates the effect of dispersion on the propagating waves. Frames
(a)-(d) show evolution with time. Solid line is the simulated (dispersive)
gravity wave , and dashed line shows the propagation of the non-dispersive
counterpart, indicated by (4.21). Also shown in frame (d), for purposes of
comparison, is the solution (4.15) with the damping term fϵ3ki∂k(∂jhuiuj)
excluded from the forcing function (dotted-line).
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Figure 4.7: Figures compare the temporal variation of the forcing function S[t] (=
∫ +∞
−∞ T22

x
dy) for simulations: S1, S2 and S3. Solid line indicates S (= SA

+ SB + SC) , dashed line indicated SA, dot-dashed line shows SB, and
dot-dot-dashed line shows SC . Dotted lines indicate the location of the
maxima and minima. (a) ta = 12.9, tb = 14.3, tc = 16.1. (b) ta = 19.9,
tb = 22.2, tc = 25.2. (c) ta = 25.0, tb = 27.43, tc = 30.8.
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Figure 4.8: Figures compare the gravity wave field for simulations: S1, S2 and S3.
Solid line indicates simulated field, and dashed line indicates the solution
based on the Ford-Lighthill equation.
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Chapter 5

Wave emission due to vortex

merging

5.1 Introduction

In chapter 3, shallow-water gravity wave emission associated with the evolution of

a single vortex was investigated. In this chapter, we study the process of merging of

vortices and the gravity wave emission associated with this process in the context

of a rotating (constant f -plane) shallow-water model. It is known (e.g., Klaassen

and Peltier 1989) that the merging results in increase of the size and amplitude of

vortices. On that basis one might expect stronger wave emission. The mechanism

associated with the merging of vortices and how this affects the process of gravity

wave generation will be investigated.
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Initialization
parameters

Simulation

VM

Height of fluid at rest hr 3 km
Reduced gravity g′ 0.3 m s−2

Coriolis parameter f 10−4 s−1

Gravity wave phase speed c (=
√
ghr) 30 m s−1

Rossby radius Rd (= c/f) 300 km

Half-width of PV-anomaly y0 .014625Rd

Amplitude of PV-anomaly A 5
Rossby number Ro 4.568
Froude number F .06681

Wave number of fastest growing mode kx 27.94/Rd

Table 5.1: Table lists the initialization parameter values used in simulation VM.

5.2 Simulation details

The basic state used to simulate merging of vortices is the same as that used

in simulation S1: It comprises a thin region of PV-anomaly embedded over an

extensive region of uniform background potential vorticity. In order to allow vortex

merging, the stream-wise model domain length is doubled.

Table (5.1) lists the model initialization parameters used to simulate merg-

ing of shallow-water vortices, and Table (5.2) lists the numerical discretization

parameters used. Since the zonal domain length used is double of that used in

simulation S1, the instability generates a pair of vortices which can subsequently

undergo merging.

The simulation is initiated by disturbing the zonal basic state flow with

small amplitude sinusoidal disturbance in height field with wavelength equal to
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Numerical
discretization
parameters

Simulation

VM

∆y .00225Rd

∆x ∆y
M 201
N 10001
∆t 2 s
α .02
Nd 1000

c (∆t/∆y) 0.08
γx 0.25 × 10−4

γy 0.25 × 10−4

Table 5.2: Table lists the numerical discretization parameter values used in simulations
VM.

the fastest growing mode, as in simulation S1 (hereafter, this disturbance will be

referred to as the primary disturbance). The basic state is also disturbed with a

secondary disturbance with the wavelength equal to double that of the primary

disturbance. The primary disturbance assures that a pair of vortices are formed,

and the secondary disturbance, which grows at a much slower rate compared to

the primary disturbance, assists with the merging of the vortices, by displacing the

primary vortices in opposite cross-stream directions (the cross-stream direction y

is orthogonal to the streamwise direction x).

5.3 Results and discussion

As in simulation S1, the initial phase of the simulation is dominated by the evo-

lution of the primary disturbance, the details of which were discussed in Chapter

3. Therefore, in this chapter, our discussions will focus mainly on the evolution of

the secondary disturbance, and how its evolution results in merging of the primary

vortices.
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Fig. (5.1), illustrates the process of merging when viewed in the potential

vorticity field. Frame (a) shows an instant when the primary disturbance has

already rolled-up into a pair of vortices, and the amplitude of the secondary dis-

turbance has grown sufficiently large that it has started to disturb the location of

the primary vortices, the left upward and right downward. Frame (b) shows that

the vortices have been further displaced. The subsequent frames show the the two

vortices begin to orbit each other as they merge.

Fig. (5.2) shows the height or pressure fluctuations associated with the

merging of the vortices. Clearly seen are the two separate low pressure centers

associated with the vortex pair before the merging takes place. As the secondary

disturbance begins to grow, the vortex on the right in frame (b) is advected towards

the North (positive y-direction) and the one on the left is advected towards the

South (negative y-direction), i.e., the two vortices begin a cyclonic orbit. Frames

(b-c) show that the low-pressure centers have started to merge into single low-

pressure center. Therefore, the merging of vortices must be also be accompanied

by expulsion of the mass between the low-pressure centers, therefore increasing

the depth and area of the low-pressure region.

The wind field pattern also indicates that the initially separate cyclonic

circulations have merged into a single large cyclonic circulation. Once the low-

pressure centers have merged the cyclonic circulation continues to evolve, i.e., it

continues to rotate in an anti-clockwise fashion. After the vortices have merged,

the dynamics is similar to the evolution of a single vortex, which was considered in

detail as in Chapter 3. The only significant difference being the size of the vortex,

which now has a scale that is almost doubled. How this increase in size has an

effect on the process of gravity wave emission in rotating fluid will be discussed

later.
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Further insight into the process of merging can be obtained by analyzing

the perturbation height field (h′). Figure (5.3) shows the evolution of h′ associated

with the merging of the vortices. Clearly visible in frame (a) are the high-pressure

centers which were masked by the mean zonal pressure field in fig. (5.2). Two

high-pressure centers can be identified in frame (a): One in between the low-

pressure centers, and one-half on the right or East and other one-half on the left

or West of the central high-pressure center.

The direction of the perturbation wind v′ pattern indicates that the vortex

pair is in the middle of the intensification phase. Frames (a) and (b) show that the

perturbation wind is spiraling out of the low-pressure centers and feeding into the

high-pressure region on the sides, although not towards the central high-pressure

center. This indicates that the low-pressure centers are losing mass, and the high

pressure regions on the sides are gaining mass. In contrast, we observe that the

central high pressure region is also losing mass (see frames (a) and (b)). Frames

(a) and (b) also shows that the anti-cyclonic circulation over the high pressure

region is weakening. This effect must be a consequence of the presence of the

secondary long wave disturbance, as it is a new effect which was not observed in

the single vortex case.

Since the perturbation wind field (v′) shown in figure (5.3)) comprises both

the vortical and divergent wind component, then, as in the case with single vortex,

the fluctuation in the perturbation height (h′) must arise as a consequence of both

the vortical and divergent fluid motions. Figs. (5.4) and (5.5) show that the

evolution of the h′-field with the wind fields v′
ψ and v′

χ overlaid on it, respectively,

where

v′ = v′
ψ + v′

χ, (5.1)
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v′
ψ = (k̂ × ∇ψ) and v′

χ = ∇χ, ψ is a stream function for the rotational part of

v′ and χ is a velocity potential for the divergent part of v′, so that ∇2ψ and ∇2χ

are vorticity (ζ) and divergence (δ).

Again, as in the single vortex case, it is evident from figs. (5.4) and (5.5)

that the wind fields v′ and v′
ψ are almost identical, because |v′

χ| is smaller by a

factor of almost 103 compared to |v′
ψ|, indicating that almost all of the adjustment

in the mass needed for the low-pressure centers to merge is produced by rotational

wind, while the divergent wind v′
χ aids in further minor adjustment of the mass

field. Again, we observe that the centers of low and high pressure regions do not

coincide with location of sources and sinks. These sources and sinks are easier to

identify in divergence field plots.

Fig. (5.6) shows the evolution of the divergence (δ) field. The divergence

field in frame (a) is very similar to the one observed in the case of simulation S1

(see frame (b) of fig. (3.10)). Clearly visible are the pair of quadrupole sources in

frame (a). As the vortices begin to merge, the pair of quadrupole sources begin

to merge too into a single quadrupole source. Frame (d) clearly shows that the

merging of the sources is complete, as only a single quadrupole source is visible.

But the intermediate stage, as seen in frame (c), shows that this merging takes

place by formation of a combination of source and sinks which does not resemble

a quadrupole. Thereafter the divergence field resembles that of a single evolving

vortex. We again observe that frame (c), which shows the weakest divergence

field, is associated the most axisymmetric wind field.

Fig. (5.7) shows the divergence in the intermediate field. Figs. (5.8) and

(5.9) show the contribution of ∂v/∂y and ∂u/∂x,respectively, in the intermediate

region. Just as in the single vortex case, here too we observe that both the

∂u/∂x and ∂v/∂y-fields show strong zonal variations, and ∂v/∂y dominates in
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the intermediate region. In contrast to the single vortex case, we observe that

both the fields are stronger in intensity. Some effect of vortex merging can be

observed in the intermediate fields. We observe that the near-field high intensity

region extends deeper into the meridional direction, though not beyond the Rossby

radius (see the transition from frames (a) to (d)).

Figs. (5.10) and (5.11) show the corresponding fields in the far-field re-

gion. Interestingly, we observe that the mass transport does not extend beyond

the Rossby radius, indicating that Rossby radius puts a strong constraint on the

distance to which the mass gets transported by the divergent wind. Just as in

the single vortex case, clearly visible are propagating shallow-water gravity waves,

which are comprised entirely of ∂v/∂y-field. Also can be recognized is the lack of

zonal variation, outside the intermediate region.

Fig. (5.12), shows the gravity waves propagating further in the meridional

direction. Fig. (5.13) shows a meridional cross-section of the wave in fig. (5.12).

We observe that no significant change in the amplitude of shallow-water gravity

waves has occurred following the merging of the vortices when compared to the

wave amplitude observed in simulation S1. Even though we observe that merged

vortex is bigger and stronger compared to the vortex in S1 case, surprisingly there

isn’t much difference in the emitted gravity wave.

In order to understand why this has occurred, we compare the magnitude

of the near-field divergence δ in the single vortex case and after the merging of

vortices (compare the value of δ in figs. (3.10) and (5.6)). Results show the

maximum amplitude of δ during and after merging has barely changed compared

to the single vortex case; the amplitudes are still of the same order of magnitude.

In order to gain more insight into this problem, we look at the temporal

evolution of components of Lighthill’s forcing terms SA, SB, and SC (see expression
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(4.16) for definition of SA, SB, and SC) in Ford-Lighthill equation, which is shown

in fig. (5.14). The figure shows that although the amplitude of the forcing function

SA (indicated by dashed line) has increased following the merging, however, so has

the damping effect of rotation indicated by term SB (represented by dot-dashed

line). Fig. (5.14) also shows that the time-scale of fluctuations of Lighthill’s

forcing terms has increased after the merging of vortices, hence contributing to

the increased effect of rotation of Earth.

Figure (5.15) shows the exchange of energy associated with the merging of

vortices. It shows that initially the exchange of energy between the mean flow and

the perturbations is identical to the result of simulation S1 (see fig. (3.33)). This

phase is associated with the roll-up of the primary disturbance, and therefore, will

not be discussed further.

The development of the secondary disturbance, which is responsible for vor-

tex merging, is associated with further increase in the perturbation kinetic energy

K ′. The paired K ′ is stronger than in the case of simulation S1. A correspond-

ing fall in mean kinetic energy K, increase in perturbation potential energy P ′,

and mean potential energy P can also be observed. Here too, as in the case of

simulation S1, we observe that after the vortices have merged the system attains

a quasi-periodic state, after which it continues to undergo oscillation about this

new state.

5.4 Summary and concluding remarks

The process of merging of vortices was studied using a rotating (constant f -plane)

shallow-water model.

Our study showed how the adjustment of near-field mass takes place to
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accommodate the merging of vortices, and how the near-field mass fluctuations

differ from the case of a pair of non-merging vortices. It was observed that merging

of vortices results in the release of more mean kinetic energy from the background

zonal shear. However, after the vortices have merged, the subsequent evolution

strongly resembles that of a single vortex, which was considered in simulation S1.

As in the case with simulation S1, the system, after an initial adjustment,

attains a quasi-periodic state and continues to undergo oscillations about this new

state. It is during these oscillations that a small fraction of the energy leaks away

as shallow-water gravity waves. One would have expected the wave amplitudes and

wavelengths to increase since the merged vortex is larger and stronger. However,

it was observed that merging of vortices did not produce any discernible change

in the characteristics of the emitted gravity wave.

The lack of increase in the amplitude of the gravity waves following the

merging was attributed to lack of significant increase in maximum amplitude near-

field divergence δ. The study further showed that that the time-scale of fluctuation

of the wave forcing terms increased following the merging compared to the single

vortex case, hence increasing the inhibiting effect of rotation of Earth.
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Figure 5.1: Figure illustrating merging of vortices. The gray-scale indicates the poten-
tial vorticity field η/ηb, where ηb = hr/f . The horizontal and the vertical
axes represents the downstream distance (x) and the cross-stream (y) dis-
tances, respectively, in units of Rd. The x-domain range is (0, 0.45) and
y-domain range is (-0.2, 0.2). Frames (a), (b), (c), (d), (e), and (f) cor-
responds to times t = 19.2, 20.8, 22.4, 24.0, 25.6, and 27.2, respectively.
Time is in units of 1/f . Wind field vector v has been overlaid on it.
The magnitude of longest wind vector is ≈ 3.55 ms−1. Results are from
simulation VM.
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Figure 5.2: Same as fig.(5.1), but showing the fluctuation in the pressure field associ-
ated with merging of vortices.
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Figure 5.3: Same as fig. (5.1), but showing the fluctuation in the perturbation pressure
(h′). Also shown is the perturbation wind v′.
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Figure 5.4: Same as fig. (5.3), but shown is the perturbation rotational wind v′
ψ. The

wind speed maximum is ∼ 3.0 m/s, where v′
ψ = (k̂ × ∇ψ), and ∇2ψ = ζ.
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Figure 5.5: Same as fig. (5.3), but shown is the perturbation divergent wind v′
χ. The

wind speed maximum is .005 m/s, and wind amplitude |v′
χ| is of the order

of magnitude 10−3 smaller than |v′
ψ|, where v′

χ = ∇χ, and ∇2χ = δ.
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Figure 5.6: Same as fig. (5.1), but showing near-field divergence (δ). Unit of δ is s−1.
Also shown is v′

χ

.
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Figure 5.7: Figure showing the intermediate field divergence δ. Unit is s−1. Note that
the plot times of frames (a) – (d) corresponds to the plot times of frames
(a)–(d) of fig. (5.6).
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Figure 5.8: Same as (5.7), but showing (∂u/∂x).

156



Figure 5.9: Same as fig. (5.7), but showing (∂v/∂y).
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Figure 5.10: Same as fig. (5.8), but showing the far-field (∂u/∂x).
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Figure 5.11: Same as (5.10), but showing (∂v/∂y).
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Figure 5.12: Figure showing the propagation of the gravity in the divergence (δ) field.
Frames (a) - (d) corresponds to times t = 19.2, 20.8, 22.4, 24.0.
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Figure 5.13: Figure showing the meridional cross-section of wave observed in fig.
(5.12) along x = .05625Rd. Divergence is expressed in units 10−9 s−1.
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Figure 5.14: Temporal variation of the forcing function S[t] (=
∫ +∞
−∞ T22

x
dy) for sim-

ulation VM. Solid line indicates S (= SA + SB + SC) , dashed line
indicated SA, dot-dashed line shows SB , and dot-dot-dashed line shows
SC . See expression (4.16) for definition of SA, SB , and SC .
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Figure 5.15: Figure showing temporal variations of (a) K - K(t = 0), (b) P ′, (c) K ′,
(d) P - P (t = 0). The dotted lines which are labeled t5 - t10 correspond
to plot times of frames (a) - (f), respectively, in figure (5.1).
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Chapter 6

Summary, concluding remarks,

and future work

6.1 Introduction

Over the last decade or so, our understanding of internal gravity wave emission

from atmospheric jets and baroclinic vortices, specifically the so-called spontaneous

emission, has improved significantly. There have also been studies of gravity wave

emission from barotropic vortices. Our understanding of gravity wave emission

from barotropic vortices has come mainly from Lighthill’s (1952) theory of aero-

dynamic generation of sound, and our understanding of gravity wave emission from

barotropic vortices in a rotating fluid have come from Ford’s (1994a) extension of

Lighthill’s (1952) theory to rotating fluids. Yet, based on our current understand-

ing it is difficult to draw a clear distinction between wave emission mechanism in

barotropic and baroclinic vortices, which suggests a deeper understanding of the

wave emission is required than that which is currently known.
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The present thesis revisited the problem of shallow-water gravity wave emis-

sion from barotropic vortices in rotating fluids. Our aim was to seek a better

understanding of the process of shallow-water gravity wave emission from these

vortices.

Our approach, like the other studies in the past, used numerical simula-

tions to study gravity wave generation from vortices developing in an unstable

barotropic jet. Specifically, we chose to revisit the problem investigated by Ford

(1994a), and performed a more detailed investigation compared to the earlier stud-

ies, because 1) Ford’s (1994a) results could be used for purposes of bench-marking,

and 2) there were some important aspects associated with the wave emission mech-

anism which were not addressed by Ford (1994a).

Specifically, one important issue concerning the wave emission mechanism

that has not been discussed in the past can be understood as follows: The propa-

gating shallow-water gravity waves that were emitted during Ford’s (1994a) sim-

ulations showed minimal zonal or stream-wise variations. An explanation for this

lack of zonal variation has not been provided.

Secondly, Ford’s (1994a) extension of Lighthill’s (1952) theory to rotating

shallow-water flows led to the inclusion of a term on the wave forcing side of the

Ford-Lighthill equation. The details and significance of this term for the wave

emission mechanism has not been investigated in the past.

6.2 Summary of our main findings

Since the present study conducted a more detailed study of the process of shallow-

water gravity wave emission from an unstable barotropic jet, important new details

about the wave emission mechanism were revealed, which has provided a much
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clearer and more intuitive picture of the wave generation process. Below we briefly

summarize some of our new findings. These findings have been divided into three

categories.

6.2.1 Insight on the wave generation mechanism

Our study has revealed that the process of wave generation associated with the

instability of a parallel jet is more complex, and the picture is not as straight

forward as can be understood on the basis of Lighthill’s formulation, where the

whole process of wave emission is explained on the basis of a non-homogeneous

wave equation, with non-homogeneous terms regarded as wave forcing terms. Im-

portant fundamental details associated with the process of gravity wave generation

from oscillating vortices are sidestepped, which makes formulation and the wave

forcing terms difficult to interpret.

A much better insight into the problem of gravity wave emission from os-

cillating vortices, and a better physical interpretation of the wave forcing terms

can be obtained by treating process of wave emission as comprising of two phases.

Phase one is associated with the roll-up of the jet due to instability. During this

phase, as the instability develops it causes the jet to roll-up during which there oc-

curs a transfer of zonal mean kinetic energy to perturbation energy. This phase is

characterized by intensification of near-field fluid circulations, both cyclonic and

anticyclonic. This intensification of the circulations is accompanied by transfer

of mass by the rotational wind from the low to the high pressure centers, which

results in increase of perturbation potential energy.

Importantly, for the purpose of understanding the wave forcing terms, the

intensification phase is also accompanied by some cross-isobaric flow produced

by the rotational wind flowing across the zonal mean height field. Such cross-
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isobaric flows produce fluctuations in the local mean zonal height field. Since

the rotational wind has to do work in producing fluctuations in the zonal mean

height, it loses some of its rotational kinetic energy in doing so. Therefore, the

cross-isobaric rotational flow provides the necessary impetus required to force the

shallow-water gravity waves away from the vortical region. Shallow-water gravity

waves are essentially wave-like fluctuations in the divergence field. Therefore, they

carry energy associated with divergent fluid motion. However, the energy asso-

ciated with the rotational wind is not directly transferred to energy associated

with divergent fluid motion, i.e., the forcing does not result in direct emission of

gravity waves, instead it is accompanied by an intermediate process. This occurs

because divergence and vorticity are physically independent properties, and the

wind fields, which carry the energy, are also independent. The intermediate pro-

cess is accompanied by appearance of singularities in divergent wind field. These

singularities are the sources and sinks. In the case of simulated vortices, two such

pairs of source and sinks are visible, therefore, constituting a quadrupole source.

Importantly, the location of these sources and sinks do not coincide with the low

and high pressure centers associated with cyclonic and anti-cyclonic circulations,

indicating that the sources and sinks are not associated with the intensification of

the circulations.

Furthermore, the sources and sinks are accompanied by divergent wind

field, and the direction of the wind is from the sources to the sinks. Study showed

that the rotational wind field associated with the fluctuations in the vorticity field

remains confined to the near-field region. In contrast, the divergent wind field is

able to transport mass from the near to the intermediate field. The mass that

is transferred to the intermediate region by the divergent wind does not traverse

beyond the intermediate region and recedes back to the near-field region during the

relaxation phase, which is discussed in the next paragraph. Lastly, the divergence
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field also consists of wave-like fluctuations, which continues to propagate away

from the intermediate region as shallow-water gravity waves, even after the mass

from the intermediate field have receded. However, the energy carried by the

shallow-water waves is a tiny fraction of the total divergent energy.

The relaxation phase is characterized by the following observations. After

the near-field circulations have attained a maximum intensity, the vortices begin

to relax. This relaxation is associated with decrease of the perturbation kinetic

energy and increase of zonal mean kinetic energy. During this phase, the circu-

lations weaken, and this weakening is accompanied by transfer of mass from the

high to the low-pressure centers by the rotational wind. This phase is also ac-

companied by withdrawal of some but not all of the mass that was expelled to

the intermediate region during the intensification phase. This withdrawal assures

that the mass of the system remains conserved.

After the relaxation phase, the vortices do not attain a steady state, but

repeat the cycle of intensification and relaxation, and therefore provide the forcing

necessary for the continuous emission of shallow-water gravity waves, and in the

process the vortices lose a small fraction of their rotational energy as shallow-water

gravity waves.

Such an in-depth analysis has not been conducted by earlier studies (e.g.,

Ford 1994a; Sugimoto et al. 2008). Our study also helps to understand why the

wave forcing terms in Ford-Lighthill’s equation can be so difficult to interpret.
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6.2.2 Near-field numerical error and their insensitivity to

the gravity waves emitted

The present study also discussed the numerical errors that arises in the simula-

tion of near-field features as consequence of nonlinear evolution of the potential

vorticity anomaly. Specifically, the numerical errors arose as a consequence of the

model not being able to resolve the steepening of the PV-gradient. A sensitivity

study of these errors to the process of gravity wave generation was performed.

Interestingly, our results showed that the emitted waves are insensitive to these

errors. The characteristics of the emitted waves were also found to be insensitive

to varying numerical dissipation.

These results suggests that small-scale errors in the description of the

near-field features are not important to the wave emission mechanism in rotat-

ing shallow-water flow. This is another important finding based on our study

which provides additional insight on the wave forcing mechanism.

6.2.3 Effect of rotation of Earth on the gravity wave emis-

sion

Ford’s (1994a) extension of Lighthill’s (1952) theory to rotating shallow-water

flows led to introduction of a new Coriolis term, which was included on the wave

forcing side of the non-homogeneous wave equation. The nature of this term, and

its role in the wave generation mechanism had not been discussed in the past. The

present study investigated the nature of this term, and highlighted the significance

of this term to the gravity wave generation mechanism. This study showed that

this term captures the inhibiting effect of the planetary vorticity on fluid motions.
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6.2.4 Wave emission associated with merging of vortices

Simulations were conducted to study the wave emission mechanism associated with

merging of barotropic vortices using a rotating (constant f -plane) shallow-water

model. Our study showed that merging results in the release of more mean kinetic

energy to perturbation kinetic energy. The vortex formed as a consequence of

merging was bigger and stronger compared to the vortices studied in the simulation

S1. However, it was observed that merging did not produce significant change in

the amplitude of the emitted gravity wave, when compared with the gravity waves

observed in the single vortex case of simulation S1. The reason for this lack of

increase in the wave amplitude was investigated, and it was found that it is a

consequence of increased inhibiting effect of rotation of the Earth.

This study also showed that almost all of the adjustment in the mass or

pressure fluctuations associated with merging of vortices is produced by the rota-

tional component v′
ψ of the wind field. In contrast, the divergent component v′

χ

of the wind is responsible for producing only a tiny fraction of the total mass or

pressure adjustment. This tiny fraction is, however, very important for production

of gravity waves.

6.3 Concluding remarks

The present study has provided a much clearer picture of how shallow-water grav-

ity waves are emitted from oscillating barotropic vortices. Our investigation has

led us to a very interesting and important findings about how the energy transfer,

i.e,, from rotational to divergent energy, occurs between two independent fields.

Our study has also helped to provide a better insight and therefore, appreciation

of Ford-Lighthill forcing terms.
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Our study also showed that in common with dipole vortices, which are

considered as an idealization of the atmospheric jet streak, the wave forcing in

simulated barotropic vortices also occurred from the jet between the two counter-

rotating vortices in the perturbation fields. It is our hope these findings will also

help in understanding internal gravity wave emission from realistic atmosphere

jets and vortices, and serve towards drawing a better distinction between the

mechanisms observed in barotropic and baroclinic vortices.

6.4 Future work

As a future work, we recommend that the following topics warrant further inves-

tigation:

• Our study showed that only a tiny fraction of the divergent energy leaks as

gravity waves. However, it was not clear what factors determine how much

of the divergent energy should leak as gravity waves. More research and

deeper understanding is required before such questions can be answered.

• Our study highlighted some new effects which play a vital role in the genesis

of divergence in barotropic shallow-water fluid motions. It is only natural to

seek the consequences of these new effects in baroclinic flows.
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Appendix A

Stability Analysis

The inviscid rotating shallow-water equations are

(∂t + u∂x)u+ (∂yu− f) v + g∂xh = 0 (A.1)

(∂t + u∂x) v + v∂yv + fu+ g∂yh = 0 (A.2)

(∂t + u∂x + v∂y)h + h (∂xu+ ∂yv) = 0 (A.3)

We now rewrite the variables as comprised of basic state and small amplitude

perturbations, i.e.,

u(x, y, t) = u0(y) + u′(x, y, t) (A.4)

v(x, y, t) = v′(x, y, t) (A.5)

h(x, y, t) = h0(y) + h′(x, y, t) (A.6)

where the subscript 0 indicates the basic state variables. However, in what follows,

the subscript zero notation from the basic state variables will be replaced by capital
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letters, i.e.,

u = U(y) + u′; v = v′; and h = H(y) + h′.

Neglecting the product of the perturbation terms and using the expression for

geostrophic balance,

fU(y) = −g∂yH(y),

we get

(∂t + U∂x) u
′ + (∂yU − f) v′ + g∂xh

′ = 0 (A.7)

(∂t + U∂x) v
′ + fu′ + g∂yh

′ = 0 (A.8)

(∂t + U∂x)h
′ + v′∂yH +H (∂xu

′ + ∂yv
′) = 0 (A.9)

Rearranging we get

g∂xh
′ + (∂t + U∂x)u

′ + (∂yU − f) v′ = 0 (A.10)

g∂yh
′ + fu′ + (∂t + U∂x) v

′ = 0 (A.11)

(∂t + U∂x) h
′ +H∂xu

′ + (∂yH +H∂y) v
′ = 0 (A.12)

Seeking for normal-mode solutions of the form

φ′(x, y, t) = φ̂(y)eik(x−ct) (A.13)

we get

g(ik)ĥ+ (−c + U) (ik)û+ (∂yU − f) v̂ = 0 (A.14)

g∂yĥ+ fû+ (−c + U) (ik)v̂ = 0 (A.15)

(−c + U) (ik)ĥ+H(ik)û+ (∂yH +H∂y) v̂ = 0 (A.16)
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The problem at hand is to solve the linear system of homogeneous ordinary dif-

ferential equations (A.14–A.16), subject to the boundary condition

û(y) = ĥ(y) = v̂(y) = 0 as y → ±∞ (A.17)

Dividing (A.14) – (A.16) by (ik), and then dividing (A.15) by −k2, we get

gĥ+ Uû+ (∂yU − f) v∗ = cû (A.18)

g∗∂yĥ+ f ∗û+ Uv∗ = cv∗ (A.19)

Uĥ +Hû+ ∂yHv∗ +H∂yv
∗ = cĥ (A.20)

where v∗ = v̂/(ik), g∗ = -g/k2 and f ∗ = -f/k2.

Second-order finite difference approximation is used to discretize the above

systems of equations on a staggered C-grid, i.e., we define variables û and ĥ at half-

integer grid points and v∗ at the integer grid points. Second-order finite difference

discretization results in

ghj + Uj ûj + (δyU − f)
v∗j+1 + v∗j

2
= cûj (A.21)

g∗
ĥj+1 − ĥj

dy
+ f ∗ ûj+1 + ûj

2
+

Uj+1 + Uj

2
v∗j+1 = cv∗j+1 (A.22)

Uj ĥj +Hjûj + (δyH)j
v∗j+1 + v∗j

2
+Hj

v∗j+1 − v∗j
dy

= cĥj (A.23)

Equations (A.23) - (A.22) can be alternatively written in compact form as

gĥj + Uj ûj + lljv
∗
j + ljv

∗
j+1 = cûj (A.24)

aĥj + auĥj+1 + bûj + buûj+1 + pjv
∗
j+1 = cv̂j+1 (A.25)

Uj ĥj +Hj ûj + dljv
∗
j + djv

∗
j+1 = cĥj (A.26)
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where

a = −g∗/∆y; au = g∗/∆y; (A.27)

b = f ∗/2; bu = f ∗/2 (A.28)

pj =
Uj+1 + Uj

2
(A.29)

dlj =

[
(δyH)j

2
−

Hj

∆y

]

; and dj =

[
(δyH)j

2
+

Hj

∆y

]

(A.30)

llj =

[

(δyU)j − f

2

]

and lj =

[

(δyU)j − f

2

]

, (A.31)

The linear algebraic system of equations (A.24 - A.26) can be reduced to a matrix

eigenvalue problem of the form

QX = cX (A.32)

where c represents the eigenvalues to be determined, Q is a (3N − 4) by (3N − 4)

matrix, and

X = [h1, · · · , hN−1, u1, · · · , uN−1, v2, · · · , vN−1]
T (A.33)
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