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Abstract 

The initial management stages of a suspected spinal cord injury are crucial. Currently 

there is a void in the literature with regards to the proper timing of neck realignment for prone 

patient transfer methods. The purpose of this study was to determine if the timing of neck 

realignment and/or the size of the victim will have an influence the amount of cervical spine 

motion during the prone log roll technique. A team of five Athletic Therapists performed 18 log 

rolls (9 on two trained "victims"), randomly correcting neck realignment AFTER and DURING 

the roll as well as the timing of their choice, for both supine and prone conditions. Motion of the 

cervical spine was collected using accelerometers and electromyography (EMG) was used to 

collect muscle activity of neck stabilizers. Comparisons were made for range, additional motion, 

theoretical minimal required motion and maximum EMG values. There were no significant 

differences found for the timing of neck realignment for motion and muscle activation, but there 

were significant differences found between male and female victims for both motion and muscle 

activation. These findings will help enhance knowledge of transfer techniques as well as help 

develop proper training techniques for primary stage management personnel. 
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1. Scope of Thesis 

Catastrophic spinal cord injury (SCI) is not common, but up to 25% of secondary 

complications occur during the initial management stages (Conrad et al., 2012; Del Rossi 

et al., 2004) .. It is defined as "a structural distortion of the cervical spinal column 

associated with actual or potential damage to the spinal cord" (Banerjee et al., 2004, p. 

1007). SCI has devastating outcomes, including irreversible neurological deficits and 

premature morbidity, as well as staggering associated medical costs (more than $68 

000/year for paraplegic individuals) (Dryden et al., 2004). Great care must be taken 

during the initial management stage of a suspected SCI because improper care can 

increase symptoms and worsen the injury (Banerjee et al., 2005). According to Cusick 

and Yoganandan (2002), although the initial injury occurs within milliseconds, any 

changes to alignment of the spine after the initial injury (i.e. during transfer onto a long 

spine board) may result in detrimental changes to the initial injury state of the spine. This 

makes SCI injury management a very important area of research (Blackham et al., 2009; 

Swartz et al, 2009). The initial man~gement stage involves transferring the victim onto a 

long board while maintaining manual in-line stabilization of the cervical spine to 

eliminate potential exacerbation of the injury and secondary complications (Del Rossi et 

al., 2004). The definition and effectiveness of placing the spine in "neutral position" 

prior to immobilization remains unclear amongst researchers (Blackham et al., 2009; 

DeLorenzo et al., 1996), despite being arguably the most crucial stage in the transfer 

protocol. 

Currently, there is excellent research describing the process of acute injury 

management before and after the transfer onto the board. There is a void however, 
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regarding whether a neck that is not found in neutral alignment should be realigned 

during or after the transfer process for those found prone or supine. These studies do not 

provide an accurate representation of how a live subject would react to a suspected SCI 

and they also tend to focus on the whole spine, examining head movement relative to the 

torso, rather than on movement specifically at the neck (Conrad et al., 2012). The 

success of the transfer is dependent on the skill of those involved and there is a chance 

that the individual responsible for maintaining manual stabilization may not be able to 

ascertain contraindications for realignment (i.e., spasm, crepitus, and increased 

neurological symptoms) safely and effectively during the transfer process despite 

advanced training. 

This study will use health care professionals, specifically Certified Athletic 

Therapists, performing a prone patient transfer technique on live, healthy models to 

quantify the amount of cervical spine movement, specifically axial rotation and lateral 

translation that occurs at the neck during this transfer. The target audience for this study 

will be those professions who primarily deal with sports related injuries. 

1.1 Research Questions 

The purpose of this thesis project was to quantify and assess the amount of 

angular motion and muscle activation in the cervical region during a prone log roll 

transfer onto a spine board. 

The following questions will be addressed through this study: 
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1. Does the timing of neck realignment, either DURING or AFTER positioning 

on a long spine board, modify the amount of cervical spine motion and muscle 

activation during prone boarding? 

2. Do the weight and size of the patient play a role in the amount of cervical 

spine motion? 

1.2 Hypotheses 

This study will capture three-dimensional (3D) motion occurring at the cervical 

spine during a prone log roll relative to the trunk during movement onto a spine board as 

well as muscle activity in three major neck stabilizers. 

With these measures, the following hypotheses will be tested: 

1. The timing of neck realignment does modify the amount of cervical spine 

motion and muscle activation during boarding. Specifically, alignment of the 

neck DURING the transfer will cause less motion and muscle activation as 

those stabilizing the head will not be able to maintain stabilization in the 

position found for the duration of the roll. 

2. The weight and size of the patient does not play a role in the amount of 

cervical spine motion during transfer onto a spine board. 
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2. Review of Literature 

The following section reviews relevant literature providing necessary background 

information to help set a solid knowledge foundation regarding cervical spine injury. 

More specifically, anatomy of the cervical spine, mechanisms of cervical spine injury, 

classification of cervical spine injury and current methods in patient transfer will be 

discussed. An outline of general methodology will be introduced including information 

on the use of accelerometers and electromyography (EMO). Methodology specific to this 

study will be discussed further in Section 3 (p.32). 

2.1 Anatomy 

2.1.1 Vertebral Column 

The spinal column consists of 26 vertebrae and is divided into five regions: 

cervical (containing seven vertebrae), thoracic (containing 12 vertebrae) and lumbar 

(containing five vertebrae) and also includes the sacrum and the coccyx (McKinley & 

O'Loughlin, 2012). Except for the atlas and axis, each vertebra consists of common 

structures (Figure 1 ). Each has a body in the anterior region that is osseous and acts as a 

weight bearing structure (McKinley & O'Loughlin, 2012). The vertebral foramen sits 

posterior to the body and acts as an opening to house the spinal cord (McKinley & 

O'Loughlin, 2012). The rim of the vertebral foramen is known as the vertebral arch and 

is made up of two laminae, which form the posterior rim of the arch, and two pedicles, 

which make up the anterior rim of the arch (Gray, 2008; McKinley & O'Loughlin, 2012). 

The spinous process projects posteriorly from the laminae and two transverse processes 

project laterally from the sides of the vertebral arch (Gray, 2008; McKinley & 
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O'Loughlin, 2012). Each vertebra also has superior and inferior articulating surfaces as 

well as facets (smooth articulating surfaces) that change in orientation depending on the 

region of the vertebral column they are in (McKinley & O'Loughlin, 2012). Each 

vertebra (except C 1 and C2) has a fibrocartilaginous disc between them that mainly acts 

to resist compression and varies in thickness by region of the spine (Banerjee et al., 2004; 

Goel et al., 1984; Gray, 2008; McKinley & O'Loughlin, 2012) . 

.Anterior tubercle of 
tm'Mtltr8t proce88 

Ji'orameil. 
tmrnn;ersariu1J~ 

Posterior tubercle oJ­
tran.sverse prouu 

Superior a-rt.icula.r 
process 

Inferior articular 
'P'~ 

Figure 2.1.1.1 Typical characteristics of a cervical vertebra (From Gray, H. 
(2008). Anatomy descriptive and surgical. (Second ed., p. 8). London, England: 
Arcturus). Adapted with permission from Arcturus: [Anatomy Descriptive and 
surgical] (See Appendix 8), copyright (2008). 

For the purpose of this study, a more in depth description on the specific anatomy 

of the cervical spine (Cl to C7) will now be discussed. The cervical spine is divided into 

two sections: the upper cervical spine (C 1 and C2) and the lower (C3 to C7) (Gray, 2008). 

Although this study will not directly be measuring and monitoring motion at the C 1 and 

C2 levels, it is necessary to be aware that injuries to these structures can be related to SCI 

due to the intimate connection of the spinal column (see Section 2.2, p. 12). It is however, 

important to discuss C3 to C7 level and their surrounding structures in more detail as 
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direct measures at these levels will be taken throughout this study. The C3 to C7 

vertebrae are similar in shape, articulation and orientation. The C7 vertebra has the most 

distinct characteristics as is marks the transition from the cervical to the thoracic spine. 

The most distinguishing feature is the long slender spinous process (Gray, 2008). 

Motions that occur in the lower cervical spine include neck tlexion, extension, lateral 

tlexion and rotation and the contribution of a specific spinal segment to that motion 

varies by level (Banerjee et al., 2004; Goel et al., 1984). Flexion begins in the lower 

cervical spine, then motion occurs from the level of the occiput down the spine to C4 

followed by a brief period of extension at C6 and C7 (Swartz et al., 2005). The vertebrae 

are connected and motion is controlled primarily by the soft tissue of the cervical spine 

which consists of ligaments, capsules, discs and muscles (Goel et al, 1984). Knowledge 

of the bony features of the cervical spine are directly related to this study as the majority 

of injuries that lead to catastrophic spinal injuries involve not only the vertebrae as a 

complete structure, but its separate features as well. Injuries related to the osseous 

anatomy of the cervical spine will be discussed further in Section 2.2 (p.12). 

2.1. 2 Soft Tissue of the Cervical Spine 

Motion in the cervical spine occurs as a result of the surrounding musculature 

acting on it, but this motion is governed by the ligaments (Goel et al., 1984). Although 

the soft tissue acts together to produce movement, it also limits it and at times play a 

crucial role in maintaining the integrity of the cervical spine (Yoganandan, N., 

Kumaresan, S. & Pintar, F ., 2001 ). Ligaments, composed of collagen and elastin, vary in 

structure and attachment based on the level of cervical vertebrae (Y oganandan et al., 
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2001 ). These unique characteristics have a direct influence on each of the ligament's 

specific structure and function (Siegmund et al., 2009). They connect the vertebra and 

act to resist shearing and distractive forces depending on the external load applied to 

them (Yoganandan et al., 2001 ). The internal response that they exhibit is then based on 

the mechanical properties and anatomical structure of the ligaments themselves 

(Yoganandan et al., 2001 ). They have been shown to absorb energy during high speed 

impact as well as provide passive stability to the neck (Siegmund et al., 2009). The 

ligamentum nuchae is a cord-like band that runs from the greater occipital protuberance 

to the C7 vertebra attaching the tips of the spinous processes (Goel et al., 1984). The 

supraspinous ligament originates at the ligamentum nuchae and continues along the tips 

of the spinous processes to the sacrum (Goel et al., 1984; McKinley & O'Loughlin, 

2012). The interspinous ligaments run from the root to the apex of the spinous processes 

and connect adjacent processes (Goel et al., 1984; Gray, 2008; McKinley & O'Loughlin, 

2012). Both the supraspinous and interspinous ligaments resist tlexion in the cervical 

spine. The ligamentum tlavum are broad ligaments that connect the posterior superior 

rim of the laminae below to the posterior inferior laminae of the vertebrae above (Goel et 

al., 1984; Gray, 2008; McKinley & O'Loughlin, 2012). Intertransverse ligaments connect 

adjacent transverse processes and acts to resist lateral tlexion (Gray, 2008). There are 

also capsular ligaments that surround each of the facet joints (Goel et al., 1984). The 

anterior longitudinal ligament connects the anterior surfaces of the bodies of vertebrae 

from axis to the sacrum and resists extension in the cervical spine (Gray, 2008). The 

posterior longitudinal ligament connects the posterior surfaces of the bodies and also runs 

from the axis to the sacrum (Gray, 2008; Figure 2). It acts to resist tlexion. Ligaments in 
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the cervical spine region are designed to resist tensile or distractive forces. Ligamentous 

disruption during injury can result in an unstable spine which is defined as more than 

3.5mm displacement of one vertebra on another in a horizontal direction (Swartz et al., 

2005). Swartz et al. (2005) note that when faced with a potential SCI, first responders 

must approach and treat the victim as the worst case scenario, being that of an unstable 

spine, because measuring instability in an emergency scenario is not possible nor 

practical. It is important to understand the function of the ligamentous system in the 

cervical spine for this study as the ligaments have a direct influence on the severity of the 

injury as well as the boarding process. This is because the ligaments will be involved in 

additional stabilization of the neck during patient transfer. 

Figure 2.1.2.2 Lateral view of ligaments of the cervical spine up to C3 (From 
Gray, H. (2008). Anatomy descriptive and surgical. (Second ed., p. 126). London, 
England: Arcturus). Adapted with permission from Arcturus: [Anatomy 
Descriptive and surgical] (See Appendix 8), copyright (2008). 

Muscles play a role in movement as well as stabilization of the spine (Cusick & 

Yoganandan, 2002). In terms of size, the majority of volume of a neck is composed of 
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the musculature because over 20 muscles surround the cervical spine in an intricate 

pattern (Siegmund et al., 2009). There are both superficial muscles, such as the 

sternocleidomastoid (SCM), that attach to the occiput, shoulder girdle and ligamentum 

nuchae, but do not directly attach to the cervical vertebrae themselves (Siegmund et al., 

2009). They still have an effect on cervical motion because they influence movement at 

the head which results in simultaneous motion transferred down the neck. The deep 

layers of muscles, such as the interspinalis and multifidus, have several attachment sites 

directly on the vertebrae (Falla, et al., 2002; Siegmund et al., 2009; Sommerich et al, 

2000). These deep muscles are responsible for directly controlling vertebral position 

(Cusick & Yoganandan, 2002; Falla, et al., 2002; Siegmund et al., 2009; Sommerich et 

al., 2000). SCM, trapezius, splenius capitus and semispinalis muscles are important for 

maintaining head stabilization against externally applied loads (Falla et al., 2002; 

Sommerich et al., 2000). The majority of muscles throughout the neck have vertically 

oriented fibres causing increased axial compression to the spine when activated 

(Siegmund et al., 2009). Their structure is composed of high density muscle spindles 

(Siegmund et al., 2009) and although they are elastic in nature, they will resist motion 

even when not active. Muscle activation is thought to play a role in the exacerbation of 

certain injuries including indirect strain on other anatomical structures in the neck 

(Cusick & Yoganandan, 2002; Siegmund et al., 2009). Neck muscle activation results in 

a change in head and neck kinematics, thus thresholds related to injury and load may be 

exceeded (Siegmund et al., 2009). Knowledge of the soft tissue of the spine is necessary 

for this study. It plays an integral role not only in failing to aid in protecting against 

catastrophic injury, but it can also affect the boarding process itself either through 
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instability, caused by primarily by ligament damage or muscle spasm shifting unstable 

structures and leading to exacerbation of injury. Likewise, the muscle activity from 

SCM, upper trapezius and the upper erector spinae muscles will be monitored and 

recorded during the collection process. This is discussed further throughout Section 3 (p. 

29). 

Figure 2.1.2.3 Musculature of the cervical spine (lateral view) (From Gray, H. 
(2008). Anatomy descriptive and surgical. (Second ed., p.180). London, England: 
Arcturus). Adapted with permission from Arcturus: [Anatomy Descriptive and 
surgical] (See Appendix 8), copyright (2008). 

2.1. 3 Spinal Canal and Spinal Cord 

The spinal cord travels inferiorly from the foramen magnum, through the 

vertebral foramen to the L1/L2 disc level (Gray, 2008). It is protected by the ligamentous 

elements that line this foramen (Banerjee et al., 2004). The spinal cord occupies 

approximately 50% of the spinal canal at the level of Cl and 75% of the area in this canal 
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in the lower cervical spine (Banerjee et al., 2004; Cusick & Yoganandan, 2002). The 

cervical spine is lengthened in flexion and shortened in extension resulting in a 

corresponding change in the spinal canal dimensions (Cusick & Yoganandan, 2002). 

The spinal cord itself also lengthens in flexion and shortens in extension (Cusick & 

Yoganandan, 2002). Ideally, there is a 1: 1 spinal canal-vertebral body relationship (Chao 

et al., 2010). There have been reports that a canal-body relationship smaller than 1: 1 

makes individuals more susceptible to not only spinal cord injury in general, but should 

injury occur, the severity of the injury will be increased (Chao et al., 2010). During 

extension, infolding of the ligamentum flavum along with laminar movement will cause a 

significant reduction in the cross sectional diameter of the canal (Cusick & Yoganandan, 

2002). The spinal cord itself undergoes distortions with functional positioning and 

although effects are primarily seen at the site of deformation, because it is a continuous 

structure, effects may also be seen more distally along the tract (Cusick & Yoganandan, 

2002). In flexion, the cord lengthens and compresses in the anterior-posterior diameter 

and reverses during extension (Cusick & Yoganandan, 2002). The spinal cord and the 

canal are two of the most significant structures related to the study. One of the goals of 

the study is to help improve the management of SCI therefore, knowledge of the structure 

and function of the spinal cord and canal themselves is important. 

2.1. 4 Anatomy Summary 

The anatomy of the cervical spine is intricate and complex making it a unique 

functioning unit. The bones are oriented and articulate in a manner that allow for various 

movements which are driven by muscle activation and external forces. SCM and 

11 



trapezius muscles are two superficial muscles that are important in stabilizing the head 

and neck. As the vertebrae go through various ranges of motion, the amount of available 

space there is for the spinal cord to travel through the canal changes. The spinal cord 

itself will undergo changes in cross sectional area during neck movement. Based on its 

location within the body the neck and its surrounding structures are prone to injury. The 

following section describes the main mechanisms related to spinal injury. 

2.2 Mechanisms of Cervical Spine Injury 

There are several factors that decrease space in the spinal canal or decrease load 

tolerance and therefore render individuals at risk for SCI (Chao et al., 201 O; Cusick & 

Yoganandan, 2002). These include variables such as age, sex, degenerative diseases and 

congenital anomalies (Cusick & Yoganandan, 2002). Participation in contact sports is 

also a major risk factor for sustaining a SCI. Sports participation ranks fourth among the 

list of causes of SCI (behind motor vehicle accidents, violence and falls) and in the first 

three decades of life, it ranks second overall (Banerjee et al., 2004). The highest injury 

rates occur in men's football, women's gymnastics and men's hockey (Banerjee et al., 

2004). 

There has been much debate over the classification of injury related to the spine 

due to the many factors contributing to its definition (Cusick & Yoganandan, 2002; 

Taylor & Taylor, 1996). These factors mostly include interrelationships between 

biomechanical influences (i.e. magnitude, rate and direction of force applied) (Cusick & 

Yoganandan, 2002; Taylor & Taylor, 1996). In order to classify the threat of neurologic 
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involvement, the degree of instability as well biomechanical factors must be noted 

(Cusick & Y oganandan, 2002; Taylor & Taylor, 1996). Bone, intervetebral discs and 

ligaments undergo increased stiffness with increased rate of loading, but this effect is 

more substantial on bone (Cusick & Yoganandan, 2002). This study is directly related to 

the biomechanical factors related to injury, the skill of the first responder and how both of 

these affect the boarding process. 

The anatomy of the cervical region is designed so that forces are absorbed and 

dissipated through musculature and discs in the spine's natural resting position in which 

the cervical spine is placed slightly in extension (Banerjee et al., 2004; Chao et al., 2010). 

When the spine is at 30° of tlexion however, it acts as a rigid column and when axial 

compressive loads are encountered, the forces are sent directly to the vertebrae. Thus, 

this force causes the spine to buckle, resulting in injury including fracture, dislocation or 

subluxation (Banerjee et al., 2004; Chao et al., 2010). The effect of axial compressive 

loading on the spine column is illustrated in Figure 2.2.4. 
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A B c D E 

Figure 2.2.4 The buckling effect of the spine. A) The spine acts as a solid column 
at 30° of flexion. B) and C) As axial compressive loads are applied the spine 
begins to buckle resulting in injury (D and E) (From Chao, S., Pacella, M. J., & 
Torg, J. S. (2010). Sports Medicine), 40(1), 59-75, p. 61, Fig. 1). Adapted with 
permission from Springer : [Sports Medicine] (See Appendix C), copyright 
(2010). 

Between 1971 and 1976, it was widely accepted that axial loading caused the 

most significant injuries in football with 85% resulting in paraplegia (Chao et al., 2010). 

Banerjee et al. (2004) noted that fracture/dislocations (that occur as a result of this axial 

loading on the spine) accounted for up to 80% of catastrophic spinal cord injuries in 

football from 1977 to 2001. The introduction of the no spearing tackling rule by the 

National Collegiate Athletic Association (NCAA) implemented in 1976 reduced the 

incidence of 34 catastrophic injuries in 1975, to eight reported cases in 2007 (Chao et al., 

2010), a reduction of 425%. Chao et al. (2010) report that up unti 1 1988 axial loading 

was the primary mechanism of injuries occurring at the C3-C4 level (which are rare and 

often unreported). These include injuries such as bilateral facet dislocation, acute disc 
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herniation and C4 vertebral fracture (Chao et al., 2000). This renders the spine unstable 

and with an axial load, irreversible SCI with permanent quadriplegia typically results 

(Chao et al., 20 I 0). 

2. 2.1 Axial Loading Injuries 

Axial loading causes two types of fractures most commonly associated with SCI 

(Banerjee et al., 2004). The first type are known as burst fractures and result in shattered 

vertebrae where fragments disperse in all directions, including towards the spinal cord 

(Banerjee et al., 2004). These fractures have the most potential for spinal canal 

compromise (Banerjee et al., 2004; Cusick & Yoganandan, 2002). The second fracture 

type occurs with flexion combined with compression and i~ known as a teardrop fracture. 

It is characterized by a shortened anterior column (as the vertebral body fails under 

compression) and a failure of the spinal ligaments with a lengthened posterior column 

(Banerjee et al., 2004). Most fractures occur in the lower cervical region due to the 

increased lever effect of the upper cervical spine (Banerjee et al., 2004; Cusick & 

Yoganandan, 2002). In a study examining I 09 postmordem spines exposed to blunt force 

trauma, the second most common fracture site (after the C2 level) was the C6 level. 

Although SCI to the upper cervical spine is rare, it does not usually result in significant 

neurologic impairment because of the large amount of space available for the spinal cord, 

as compared to the lower cervical spine (Banerjee et al., 2004; Cusick & Yoganandan, 

2002). In fact, injuries such as the Hangman fracture (traumatic spondylolisthesis of the 

axis) and Jefferson fracture (a burst fracture of the atlas) actually expand the spinal canal 

(Banerjee et al., 2004). Those injuries that cause instability of the atlantoaxial complex, 
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such as odontoid fracture and transverse ligament rupture, will result in neurologic 

defects and may include diaphragmatic paralysis and respiratory distress (Banerjee et al., 

2004). 

Along with fractures, bilateral facet dislocation is seen with an axial loading 

mechanism (Ivancic et al., 2007). This results in complete spinal cord lesion and 

quadriplegia in up to 85% of reported cases (Chao et al., 201 O; Ivancic et al., 2007). 

During bilateral facet dislocation, inferior articular facets of the upper vertebrae shift 

anteriorly and rotate with respect to the superior articulating facets of the vertebrae 

below, causing damage to the interspinous ligament, facet capsules, the intervertebral 

disc and ligamentum flavum (Ivancic et al., 2007; Vacarro et al., 2001 ). There are also 

reports of the posterior longitudinal ligament being damaged as a result of this injury 

(Vaccaro et al., 2001 ). 

2.2.2 Hyperflexion and Hyperextension Injuries 

Hyperflexion and hyperextension more recently have been documented as 

mechanisms of injury that cause the most severe cervical spine injuries and are also 

primary contributors to injuries resulting in cord deformation, contrary to axial loading 

(Chao et al., 2010). The spine tends to be more prone to extension type injuries because 

the mass of the posterior neck musculature outweighs that of the anterior (Taylor & 

Taylor, 1996). When the cervical spine is exposed to flexion combined with axial 

compression, the spine bends such that the anterior column is shortened while the 

posterior column is lengthened. The spinal cord may get pinched in between the 

vertebral bodies (Banerjee et al., 2004; Cusick & Yoganandan, 2002; Chao et al., 2010). 
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Extension or flexion combined with compression can also lead to fractures such as 

unstable "flexion teardrop fracture" that is often associated with SCI (Banerjee et al., 

2004; Cusick & Y oganandan, 2002; Chao et al., 2010). The odontoid process may also 

fracture with flexion or extension (Cusick & Yoganandan, 2002). These types of 

fractures account for one quarter of all fractures that occur in the cervical spine though 

they are not often associated with neurologic deficit (Cusick & Yoganandan, 2002). 

Hyperflexion and hyperextension forces also have a tendency to cause ligamentous 

disruption (Chao et al., 201 O; Cusick & Yoganandan, 2002). 

2. 2. 3 Lateral Flexion and Rotation Injuries 

Lateral flexion and/or rotation injuries to the cervical spine do not generally result 

in catastrophic SCI. Conditions such as "burners" or "stingers" are caused by forced 

neck extension combined with rotation away from the affected side and result in 

unilateral, transient neurologic symptoms (Banerjee et al., 2005). Similarly, if the 

shoulder is forced into depression and the head is forced into lateral flexion away from 

the depressed shoulder, tensile forces involved can cause temporary neurologic 

symptoms (Banerjee et al., 2005). Symptoms associated with these injuries include 

unilateral paresthesia, radiating pain and weakness on the affected side (Banerjee et al., 

2005). These symptoms typically resolve within 24 to 48 hours (Banerjee et al., 2005). 

Along with these neurologic symptoms, the athlete will present with pain free neck range 

of motion and no midline tenderness. These types of injuries are fairly common in 

collision type sports, but it is necessary to be aware of the mechanism and symptoms 
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associated with lateral flexion/rotation injuries in order to rule out catastrophic SCI and 

manage them appropriately. 

2. 2. 4 Mechanisms of Cervical Spine Injury Summary 

There are several mechanisms leading to cervical spine injury ranging from 

predisposing congenital anomalies to traumatic directional forces. Of these, forced 

hyperflexion is the leading cause of catastrophic cervical spine injury during sporting 

activities involving contact (Chao et al, 2010). Congenital spinal anomalies, unstable 

fracture/dislocation and acute central disc herniation result in catastrophic SCI and are 

associated with neurologic involvement. It is necessary to be aware of the mechanisms 

related SCI in order to provide effective management of these injuries. 

2.3 Current Patient Transfer Methods 

Currently, health care practitioners involved in the initial management stages of 

SCI, use similar criteria to determine if there is a catastrophic cervical spine injury 

requiring further radiologic evaluation. Athletic therapists use the following criteria: 

altered level of consciousness, bilateral or unilateral neurologic findings, and/or 

significant midline spine pain with or without palpation and/or spine deformity (Swartz & 

Del Rossi, 2009). Canadian paramedics and nurses use the Canadian C-Spine Rule 

which involves the use of three high-risk criteria, five low-risk criteria and the ability of 

patients to laterally rotate their neck to determine if the injured individual requires more 

in-depth evaluation (Vaillancourt et al., 2009). Regardless of the criteria used to evaluate 
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the severity of the SCI, immediately following the injury, the spine must be handled as if 

it is unstable until further evaluation (radiologic) can be performed (Conrad et al., 2012). 

On field, if a serious cervical spine injury is suspected, the patient is immobilized 

and prepared for transport to the hospital. This includes aligning the spine to a neutral 

position, applying a cervical collar and securing the patient onto a long spine board. 

Some authors suggest splinting the head and neck in the position found while others 

favour moving the neck into "neutral position" to minimize movement which reduces 

spinal cord morbidity and facilitates airway management (Delorenzo et al, 1996, Swartz 

et al, 2009). However, there is no clear definition as to what "neutral" position is, 

whether or not this is actually the most optimal position for the unstable injured spine or 

when to do this alignment (DeLorenzo et al, 1996). Contraindications to neck 

realignment include creptitus, spasm, increased pain or neurological symptoms (Swartz, 

2009). Provided the airway is not compromised in any way, the patient is supine lying 

and the neck is in "neutral" position, a cervical collar is applied to the patient's neck to 

help maintain stabilization prior to transfer onto a long spine board. Recently evidence 

has suggested that applying a cervical collar may also invoke too much motion. 

However, for the purpose of this study, collar application will not be addressed. 

After collar application, the next step is to place the athlete onto a spine board. 

Special consideration must be taken into account for those athletes wearing protective 

equipment. The need for equipment removal is dependent on a number of factors 

including the vital sign stability of the athlete. For the purpose of this study, equipment 

removal will not be included or addressed, but is suggested for future investigation (see 

Section 8, p. 68). 
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There are two main methods for moving a supine individual onto a spine board: 

the log roll and the lift-and-slide technique. The log roll technique (Figure 2.3.5, p. 19) 

involves five individuals: one providing manual head-neck stabilization; three individuals 

assisting in rolling the torso (at shoulder), upper and lower extremities (at hip and legs); 

and one individual controlling the spine board (Conrad et al., 2012; Del Rossi et al., 

2004). The individuals performing the roll kneel on the board that is placed lengthwise 

against the injured athlete on the side opposite to the direction the head is facing. The 

individuals then roll the body towards them onto the long spine board into a supine 

position. 
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Figure 2.3.5 The log roll manoeuver from a prone starting position. Top Starting 
position for log roll. Middle Transition roll onto the spine board. Bottom Final 
supine position. 
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The second transfer method is the lift-and-slide technique (Figure 2.3.6). There 

are several configurations of first responders involved in this technique. For example, 

one person is responsible for maintaining inline manual stabilization of the head-neck 

while four people (two at the upper extremities kneeling and two at the lower extremities 

straddling the injured) lift the victim onto a spine board that is placed under the body by a 

sixth individual (Conrad et al., 2012; Del Rossi et al., 2004). 

Figure 2.3.6 The lift-and-slide technique (From Del Rossi, G., Horodyski, M., 
Heffernan, T. P., Powers, M. E., Siders, R., and Brunt, D. (2004). Spine, 29(7), E 
134-8, E 135, Fig. 2). Adapted with permission from Lippincott Williams and 
Wilkins/Wolters Kluwer Health: [Spine] (See Appendix D), copyright (2004). 

The National Athletic Trainers Association position statement suggests that when 

an athlete is lying supine the lift-and-slide technique should be used and when the athlete 

is prone the log roll is the appropriate method (Swartz, 2009). Various studies have 

suggested that the lift and slide technique is a superior method to the log roll because it 
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causes less axial rotation, lateral flex ion and lateral translation of the spine (Swartz, 

2009). The most recent research strongly advises against the use of the log roll technique 

for supine cases (Conrad et al., 2012). However, the log roll remains the preferred 

method of transfer because there are less people needed to perform this technique 

effectively as compared to the other transfer methods (Del Rossi et al., 2009). Conrad et 

al. (2012) suggest several reasons for why the log roll technique is preferred such as 

complacency (causing a false sense of assurance in the technique) and poor risk 

assessment as secondary neurologic injury is difficult to assess without a proper baseline. 

Even though some movement is inevitable, it is currently unknown how much movement 

is acceptable without causing harm using either technique (Conrad et al., 2012; Swartz et 

al., 2009). Therefore, regardless of the technique chosen, the goal is to minimize as much 

motion as possible. Once the athlete is safely placed on the spine board and secured to it, 

transport to the hospital for further evaluation is arranged. 

2. 3.1 Patient Transfer Methods Summary 

Health practitioners use a variety of on field classification systems to determine 

whether an injured individual has a suspected spinal cord injury and requires further 

evaluation. During the immobilization process of a supine patient, the spine is aligned to 

neutral position, a collar is applied and the injured is moved onto a spine board. 

Literature has shown that the log roll technique causes more motion than other transfer 

technique and is strongly advised against. However, at the present time it is the only 

technique used during prone patient transfer because it allows for quick access to the 

airway and will therefore be used during this study. 
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2.4 Methodology Literature 

2. 4.1 Kinematics 

2.4.1.1 Optoelectronic Motion Analysis Systems 

Movement of the cervical spine can be difficult to measure because of the 

complex structure and movements located in this region of the body. The method by 

which a researcher chooses to measure this motion is therefore based on the specific 

goals of his or her study. This study captured 30 movements occurring at the cervical 

spine using accelerometers (described in Section 2.4.1.2, p.25). To capture motion 

occurring in 30 space an inertial reference system is used to relate a body's position and 

its orientation in space as defined by bony landmarks (Cappozzo et al., 1995; Cappozzo 

et al., 1997; Giasanti et al., 2003). Passive based motion analysis systems use infrared 

reflective markers placed on the bony landmarks on the participant to define a segment. 

The markers emit a signal frequency which is picked up by cameras and represented by a 

tWo-dimensional image. The bony axes that are outlined by the reflective markers are 

then related to a global coordinate system to convert this into 30 data (Cappozzo et al., 

1997). There must be at least two cameras present to capture each marker and calculate 

the segment's coordinate in space (Baker, 1997). The systems that use video cameras 

capture motion at a high sampling rate so are ideal for recording 30 movement (Wong et 

al., 2007). There are several types of 3 D motion capture analysis systems, such as 

Optotrak® Certus™ and (Northern Digital Inc., Waterloo, Ontario, Canada) and Vicon 

MX (Vicon Motion Systems, Colorado, USA) that are popular in both research and 

clinical laboratories and produce both reliable and reproducible methods (Wong et al., 

2007). These motion capture systems tend to represent the gold standard for 30 motion. 
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However, they are expensive, can be time-consuming to set up and are typically restricted 

to confined laboratory settings (Giasanti et al., 2003; Wong et al., 2007). Also, their 

reliability depends on positioning of cameras in order to capture the reflective markers as 

these markers can become easily hidden resulting in incomplete data (Giasanti et al., 

2003). An increasingly popular alternative to these 30 motion capture systems is the use 

of inertial measurement units. 

2. 4.1. 2 Inertial Measurement Units 

Accelerometers are inexpensive small force transducers used to measure tilt, 30 

angles, acceleration, and angular velocity (Winter, 2005; Wong & Wong, 2008; XSens 

Technologies B. V. ©, 2008). Based on these measures, information on position and 

orientation in space can be obtained regardless of the position of the accelerometer itself 

(Wong & Wong, 2008; Wong et al., 2007). A single accelerometer will measure linear 

accelerations. However, in order to obtain 30 information, three linear accelerometers 

are mounted at right angles to each other within the same unit (Winter, 2005). This is 

known as a tri-axial accelerometer. The use of a single or biaxial accelerometer can 

produce error based on limb position in arbitrary directions and are limited to low 

frequency ranges, making tri-axial accelerometers ideal for dynamic situations (Hanssen 

et al., 2006). 

Gyroscopes are units that contain vibrating parts used to measure angular 

velocities (Woodman, 2007). There are many varieties of gyroscopes including 

mechanical and optical. In micro-electro-mechanical systems (MEMS), which are used 

extensively in research today, gyroscopes measure the Coriolis effect. This effect 
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involves force developing from a rotating reference frame (Wong et al., 2007). A mass 

sends a vibration down an axis and when the gyroscope is rotated, a secondary vibration 

is sent down a perpendicular axis based on the Coriolis effect and as a result the angular 

velocity can be calculated (Woodman, 2007). 

An inertial measurement unit has three orthogonal rate gyroscopes combined with 

a tri-axial accelerometer (Woodman, 2007). Some of these units (including those being 

used in this study) also contain a magnetometer, which provides a stable reference as it 

measures gravity and the earth's magnetic north. The additional information provided 

from magnetometers helps to eliminate drift caused by gyroscopes (Wong et al., 2007). 

These devices have the capability to monitor the absolute orientation of an object as well 

as the motion of an object in 30 (Woodman, 2007; Jasiewicz et al., 2007). These units 

use the integrated signal of the gyroscope (which creates the known orientation) to 

determine the global coordinates and track position of the accelerometer signals 

(Woodman, 2007). Also, acceleration, velocity and displacement measures can be 

obtained as the transducers collect data individually (Jasiewicz et al., 2007). Several 

studies have suggested that these units are comparable in terms of accuracy to the gold 

standard motion capture systems (Giasanti et al., 2003; Jasiewicz et al., 2007). They 

have the distinct advantage of being lightweight, portable, inexpensive and they allow 

participants to move without hindrance of cabling (Giasanti et al., 2003; Jasiewicz et al., 

2007). MEMS also have the advantage of data integrity as the effectiveness of motion 

capture systems relies on camera placement and data is lost with marker obstruction. 

These units can also be used in conjunction with other systems such as electromyography 

without experiencing interference (Jasiewicz et al., 2007). 
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2. 4.1. 3 Kinematics Summary 

Accelerometers and gyroscopes are transducers used to measure variables such as 

30 angles, acceleration, displacement and angular velocity. When combined with 

magnetometers, they are known as inertial measurement units and can provide valuable 

information regarding a segment's location in 30 space. Although the gold standard for 

30 motion research tends to be captured by optoelectronic equipment, there are 

disadvantages to their use such as cost and loss of data due to poor camera: sensor 

relativity. MEMs on the other hand, are small, portable, and easy to use, making them an 

ideal alternative to optoelectronic motion capture systems. A seven camera Vicon 

optoelectronic system was available, but due to the number of participants and the nature 

of this study, data would have been severely incomplete and unusable. Therefore, XSens 

was the most ideal choice for maintaining integrity of data (see Section 4.4.2, p.37). 

2. 4. 2 Electromyography 

EMG is a technique used to record and analyze electrical signals from active 

motor units within a muscle, known as motor unit action potentials (MUAPs). The 

resting membrane potential of a muscle is -70m V. During a change in the muscle fiber 

membrane's permeability, the fiber becomes activated and the membrane depolarizes to 

approximately +20mV. This wave, known as an action potential, is controlled by motor 

neurons. The action potential travels to the motor unit endplates. Electrochemical 

changes then occur at the endplate resulting in a stimulus being sent down the transverse 

tubules in a muscle fiber. This, in turn, causes a release of calcium ions (Ca2+) into the 

sarcoplasmic reticulum (Winter, 2005). This depolarization waveform then propagates 

27 



along the muscle towards the tendons from a site in the muscle known as the innervation 

zone (Merlo & Campanini, 2010). This causes a field of electrical voltage to be 

generated which is detectable at the skin (Merlo & Campanini, 2010). EMG is a 

representation of this change in voltage (depolarization and repolarization) as the 

electrodes record a summation of all active MUAPs in a muscle fiber within the detection 

area of the electrodes (Winter, 2005). 

There are many factors that influence the muscle activation signal including 

velocity of muscle shortening or lengthening, reflex activity, muscle temperature, 

changes in length of a muscle during dynamic contraction, etc. (Winter, 2005). These 

affect the amplitude of the signal as well as the number of active motor units, the muscle 

fiber diameter, the depth and location of the innervation zone with respect to the 

electrode detection surfaces and conduction velocity of the action potentials (De Luca, 

1997; Merlo & Campanini, 2010). Tissue impedance or the impedance of the 

transmission of the electrical activity at the muscle level depends on the type and amount 

of tissue between the detection surface and the muscle fiber can alter the signal itself 

because it has an effect on the conduction velocity (DeLuca, 1997). 

By analyzing the raw and processed waves, valuable information can be gained 

from the use of EMG. Raw signals can provide information on coarse amplitude and 

initiation of muscle activity, but are not useful for comparing different muscles across 

different trials. Interpreting EMG signals involves critically investigating the following: 

levels of muscle activity (by looking at the magnitude of amplitude as well as timing of 

activation), activation characteristics (i.e., asymmetries in amplitude and changes in co­

activation), and various kinematic and postural changes for gait analysis and 
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rehabilitation purposes. Signals that are processed provide valuable information on 

signal amplitude and frequency. For example, obtaining the linear envelope of the signal, 

through full wave rectification and then applying .a low pass filter, gives an indication of 

the amount of activity within a muscle as well as the onset of muscle activity (Robertson 

et al., 2004). Integrated EMO sums the amount of activity over a period of time and is 

useful in quantifying EMO relationships (Roberson et al., 2004). It is also used an 

indicator of muscular effort. Another way to analyze EMG data is to look at frequency 

content of the signal (Robertson et al., 2004). This includes determining the mean and 

median frequency as indicators of changes in muscle conduction velocity as well the 

onset of fatigue (Robertson et al., 2004 ). 

EMO is also affected by the type electrodes. There are two types of EMO 

techniques: surface EMO (sEMO) and indwelling or needle EMO (nEMO). sEMO uses 

electrodes placed superficially to give a gross representation of electrophysiological 

muscle activity (Soderberg & Cook, 1984; Haig et al., 1996) as it is capable of recording 

from numerous active motor units as it has a larger detection area. sEMO has a narrow 

frequency (20 to 500Hz) and low-signal resolution (Pullman et al., 2000). Alternatively, 

nEMO uses a fine wire embedded in the muscle to evaluate neuromuscular diseases and 

gait disorders (Pullman et al, 2000) and has a larger frequency band (20-1 OOOHz) 

(Winter, 2005) . nEMO detects activity of single motor unit in deep muscles, but there 

are still no definitive guidelines for their placement within a muscle belly (Soderberg & 

Cook, 1984; Haig et al., 1996). Although nEMO serves a distinct purpose, it is invasive, 

there is risk of wire fracture, and its sample area may not be indicative of the activity 

within the whole muscle (Soderberg & Cook, 1984). It is necessary for the 
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researchers/evaluators to have a clear understanding of variables being measured in order 

to ensure the best EMG technique is applied. This study will use surface 

electromyography (sEMG) in particular because it provides a non-invasive method for 

analysing muscle activity and gross movement (Falla et al., 2002). Therefore, the 

remaining EMG discussion will focus on sEMG. 

The placement, orientation and size of surface electrodes have an effect on the 

signal characteristics. sEMG electrode placement is usually described based on location 

over the muscle belly, away from the neural end point muscle, and parallel to the muscle 

fibres because these affect the frequency and amplitude characteristics of the signal 

(DeLuca, 1997; Falla et al., 2002; Zipp, 1982). In· a study by Fall~ et al. (2002) it was 

shown that in order to increase accuracy and reliability of sEMG, electrodes must be 

placed over the lower portion of each muscle because the midpoint or upper portion of 

muscles showed inconsistencies in sEMG values. The size of the electrode itself will 

capture motor unit activity within its direct vicinity (DeLuca, 1997). Therefore, a larger 

detection area will increase the amplitude of the signal as more motor unit activity will be 

detected, but the frequency content of the signal is decreased (De Luca, 1997). With 

regards to the distance between electrodes and the size of electrodes themselves, Zipp 

(1982) advises the use of large electrodes with large interelectrode spacing on large 

muscles and small electrodes with narrow interelectrode spacing to reduce cross-talk 

signals from adjacent muscles. This spacing determines the bandwidth of the signal 

(DeLuca, 1997). As the spacing increases, so does the detection area, however there is a 

decrease in the detection depth. The typical interelectrode distance is 4-5cm for large 

electrodes and 2 to 2.5cm for small (Zipp, 1982). 
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For the purpose of this study, bilateral sEMG was used to monitor and assess the 

presence of muscle activity in the SCM, trapezius and cervical erector spinae. It has been 

shown that these muscles are involved in stabilization of the neck and are most easily 

accessible by sEMG (Sommerich et al., 2000). 

2. 4. 2.1 Electromyography Summary 

EMG is m~thod of recording myoelectric activity and is used in the assessment of 

muscular fatigue, state of activation (on/off) and overall muscle activation level. The 

EMG signals represent the changes in voltage that occur during muscle activation. 

Accuracy and reliability of sEMG are highly influenced by electrode location, position 

and size of the electrode. It is recommended that electrodes be placed parallel to the 

muscle fibers and approximately 2 to 2.5cm apart to maintain the fidelity of the signal. 
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3. Introduction 

The purpose of this study was to collect and analyse cervical spine movement during 

prone patient transfers onto a spine board using the log roll technique in order to determine the 

correct timing of neck realignment that invokes the least amount of movement during 

realignment to neutral position. This study also aimed to expand knowledge on safe extrication 

procedures during spinal injury, specifically the log roll technique for prone victims, in order to 

reduce overall movement of the neck thus preventing further injury. Current methods of 

diagnosis and management of cervical spine injuries differ slightly across health care 

professions. This study focussed specifically on the realignment phase of the head that occurs 

during the initial management stage of SCI for a prone victim, measuring kinematics and EMG 

in the neck region. Kinematic measures include changes in angles occurring at the forehead, and 

the C4, C7 and T4 levels of the spine during several transfer conditions onto a long board. 

Bilateral EMG of SCM, upper trapezius and cervical erector spinae muscles were also taken to 

ensure minimal neck muscle activation during the transfer process because this may have an 

influence on the amount of overall neck motion. These measures were also used to determine 

the possibility of reflexive neck muscle activity at any part of the log-roll procedure. 

Primary response health care practitioners, such as paramedics and Certified Athletic 

Therapists, perform the primary survey in the same manner. Level of consciousness, airway, 

breathing and circulation are evaluated. The head and neck are manually stabilized by a 

healthcare provider until the severity of cervical spine injury can be further evaluated (Blackham 

& Senger, 2009, Swartz & Del Rossi, 2009). Although there is a variety of research on the 

initial injury management stage, there is a void with regard to quantifying the amount of cervical 

spine movement that occurs during prone patient transfer onto a spine board using the log roll 
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technique with respect the timing of head and neck realignment to a neutral position. The 

following section will discuss the methodology of the study including participant inclusion 

criteria, data processing and experimental setup. 

33 



4. Methodology 

4.1 Participants 

For this study the following participants were involved: two trained models who acted as 

victims, 13 Certified Athletic Therapists and 10 student Athletic Therapists. During each data 

collection, one Certified Athletic Therapist worked with a team of four Athletic Therapists 

(either students or other Certified Athletic Therapists) and performed log rolls on two different 

models (one male and one female). The main party of interest was the Certified Athletic 

Therapist at the head position. A total of 21 sets of data were collected: 8 with the male model 

and 13 with the female model. Toward the end of the collection period, the male model 

unexpectedly became sporadically available and another male of similar stature could not be 

obtained. Four complete sets of data were deemed unusable due to equipment failure. More 

specifically, within the kinematic trials, data from one sensor during one trial was not usable and 

in the EMG, the left erector spinae data from seven trials and left and right upper trapezius data 

from three trials were deemed unusable. Although some data was lost, it is estimated that this 

will not have a significant effect on the outcome of this study. In order to reduce the number of 

factors affecting the overall outcome of this study, only female Certified Athletic Therapists 

were used. Also, during the 13 month recruitment period of this study, no male Certified Athletic 

Therapists were available, or were not willing to participate. 

The models: one male 133.8 kg and one female 56.3 kg, were recruited from the York 

University undergraduate student population and were used as trained "victims" or suspected 

spinal cord injury patient models. The Certified Atheltic Therapists and student Athletic 

Therapists were all current members of the Canadian Athletic Therapists Assocation and all 

therapists held a valid and current First Responder Health Care Practitioner certification at the 

34 



time of data collection. Copies of credentials of all participants were retained. Out of the eleven 

Certified Athletic Therapists, eight therapists had been certified for three or more years and the 

remaining three had been certified for less than three years (two having been newly certified 

within the same year as the collection period). 

In order to ensure accuracy and safety during the data collection, both the models and the 

Athletic Therapists (both Certified and students) were free from any neck, back and shoulder 

pain and for at least 12 months leading up to the collection, and did not seek out medical 

attention for or had taken days off from work or school due to back, neck or shoulder pain. In 

addition, the models did not have a history of major injury to the neck, upper back,and shoulder 

region (e.g. fracture, laceration, etc.). They were also free of any other impairments that wou Id 

have hindered them from moving normally and comfortably for the length of the collection 

period. 

A description of the study was verbalized to potential participants prior to the study itself. 

At this time verbal and written consent was obtained from all participants. The protocols and 

consent forms were approved by York University's Office of Research Ethics Human 

Participants Review Sub-Committee (Certificate #2011-357, amendment approved 03/29/12). 

4.2 Instrumentation 

4.2.1 Kinematics 

The MTx™ sensors (XSen®, XSens Technologies B.V. ©, Enchede, The Netherlands), 

seen in Figure 7, contain one 30 gyroscope (to measure the rate of tum), a 30 accelerometer 

(measuring gravitational acceleration) and a 30 magnetometer (providing earth's magnetic field 

data as a compass). These sensors were used to provide three degrees of freedom inertial 
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orientation measurements (MTi and MTx User Manual, 2008). The sensors were 38mm +/- 0.2 

by 21 mm by 53mm +/- 0.2 in size and weigh 0.03kg (MTi and MTx User Manual, 2008). 

Combined with the XBus® master system, the sensors communicated with a personal computer 

via Bluetooth technology. Five sensors were secured to the model in the following locations: 

one on the forehead, one centered over the spinous process of vertebra C4, one centered over the 

spinous process of vertebra C7, one on the spinous process of vertebra T4 and one on the 

sternum. 

XBus Master Receiver 

Figure 4.2.1.7 XSens® System including the XBus Master (bottom left) and MTx™ 
motion sensors (top). 

Prior to their application, the skin was cleansed with alcohol swabs (Adams et al., 1986). 

The sensors were adhered to the skin with Leukotape®. In instances such as the forehead and 

sensors down the back of the neck, Powerflex® tape was also used to secure the sensors to the 
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model. In order to ensure accuracy and consistency, a measurement from the tip of the nose to 

the glabella was used to landmark the inferior border of the accelerometer placed on the 

forehead. For the sternum, the superior edge of the sensor was placed at the sternal notch and 

due to the size of the sensors, the center of the back side of sensors were placed over the spinous 

processes of C4, C7 and T4 during each trial. The XBus® system was mounted on the model's 

left hip in order to ensure it did not interfere with the log roll. Data was sampled at 50Hz. The 

sensor's orientations were based on Figure 4.2.1.8 below. For this study, rotation (or roll) 

occurred around the x axis, tlexion and extension (pitch) occurred around they axis and lateral 

bend (yaw) occurred around the z axis. 

Figure 4.2.1.8 Sensor coordinate system for MTx™ sensors (Mti and Mtx User Manual 
(2008), p. 8, Fig. 1 ). 

4. 2. 2 Electromyography 

Prior to electrode placement, the skin was cleansed with alcohol swabs and shaved in 

order to maximize sensor adherence to the skin as well as reduce skin impedence (Zipp, 1982). 

Following skin preparation, integral electrodes with a fixed interelectrode spacing of 2cm and an 
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input impedence of greater than 10150 (Sensor SX230, Biometrics LTD, Cwmfelinfach, Gwent, 

UK) were placed bilaterally on SCM, upper trapezius and upper erector spinae muscles. For 

SCM muscles, electrodes were placed at 1 /3 the length of the muscle from the mastoid process to 

the suprastemal notch (Cram, 2011; Falla et al., 2002; Sommerich et al., 2000; Zipp, 1982). For 

the trapezius muscles, the electrodes were placed bilaterally midway between the acromion 

process and spinous process of vertebra C7 (Cram, 2011; Zipp, 1982). For the cervical erector 

spinae muscles, electrodes were placed bilaterally at the C3 level (Shudlt & Harms-Ringdahl, 

1988). The electrodes were adhered to the skin with die cut, medical grade, double-sided 

adhesive tape, which ensures high quality signals. A ground electrode was placed on the left 

olecranon process. EMG was sampled at 1000 Hz using a portable Biometrics DataLOG© 

system. A 4th order, dual-pass band-pass Butterworth filter was applied to the data in Microsoft 

Excel 2010 (Microsoft Corporation, California, USA). 

4.3 Calibration 

4. 3.1 Kinematics 

In order to calibrate the XSens® system prior to application, the MTx™ sensors were 

arranged on a in a straight line on a flat surface in the order they were placed on the body (i.e., 

forehead,, sternum, C4, C7 and T4 respectively) and a 10 second sample was taken. Five minute 

quiet trials with each model lying both prone and supine on a flat surface were sampled 

simultaneously with Biometrics to provide a baseline measure (Drake & Callaghan, 2006). 

Reference postures consisting of 45° of neck flexion, 45° of bilateral bend to the left and right, 

45° of bilateral rotation to the left and right, a combined 45° of lateral rotation and 45° side 

flexion to the left and right, as well as a shoulder shrug and a trial where the model spoke, 
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laughed and coughed were also taken. These reference postures were taken as a contextual 

comparison for the kinematic data that was collected, specifically comparing the motion in these 

trials to the motion of interest (i.e., movement of the head into neutral position). 

4.3.2 Electromyography 

Prior to data collection, the Biometrics system was also calibrated and a series of 

maximum (100%) voluntary isometric contractions (MVCs) were taken for normalization 

purposes. The 5 minute supine and prone quiet trials were visually examined for the 

contamination of heart muscle electrical activity as those muscles in the trunk and neck in close 

proximity to the heart have shown to exhibit electrocardiographic artifact (Drake & Callaghan, 

2004; Netto & Burnett, 2006). Three, ten second MVC trials for bilateral SCM muscles, 

bilateral trapezius muscles and bilateral erector spinae muscles were performed with two minutes 

of rest between each trial to minimize the effect of fatigue (Netto & Burnett, 2006). For each 

SCM muscle, the researcher provided manual resistance to the forehead as each model forward 

flexed and laterally rotated the neck. To collect MVCs for the trapezius muscles, the subject 

performed shoulder elevation against resistance provided by the researcher. For the upper 

erector spinae muscles, manual resistance was provided against the occiput as the models 

extended the necks (Shudlt & Harms-Ringdahl, 1988). The EMG trial data was normalized to 

the peak of the MVC values. 
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4.4 Data Collection Procedures 

4. 4.1 Pre-collection 

Instrumentation and calibration of XSens® (see Sections 4.2.1, p.32 and 4.3.1, p.35) were 

completed first, followed by instrumentation and calibration of electromyography (see Sections 

4.2.2, p.34 and 4.3.2, p.36). 

4. 4. 2 Trials 

The log roll is the most commonly used technique for prone patient transfer onto a spine 

board. Therefore, for the purpose of this study one Certified Athletic Therapist provided manual 

head-neck stabilization. During this time, three Athletic Therapists assisted in rolling the torso 

(at shoulder), upper and lower extremities (at hip and legs) onto a long spine board with the 

placement controlled by a fourth therapist. This is the typical assignment of personnel. Thirteen 

Certified Athletic Therapists each acted as manual stabilizers, while the other therapists involved 

in the roll did not change positions for the duration of that particular trial. 

MTx™ sensors were placed on the models at the level of the C4 vertebra, the C7 

vertebra, the T4 vertebra and the sternum to capture 3D head, and mid- low neck motion relative 

to the trunk as described in Section 4.2.1 (p.35). EMG of the trapezius muscle, the upper erector 

spinae muscles, and SCM muscles were collected bilaterally throughout the trials in order to 

measure muscle activation, as well as maximal efforts and responses in control postures to 

enable normalization. 

The model's start position was held constant and was prone with the neck laterally rotated 

to the left. Each Certified Athletic Therapist was instructed randomly to correct neck alignment 

either without any specific instruction (CHOICE), DURING the log roll or AFTER the log roll 
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for each model. Each condition was repeated three times for a total of 18 rolls. Neck motion and 

muscle activation was recorded throughout and the data compared for the 18 trials (3 techniques, 

2 models). For this thesis, only the prone data were analyzed. 

4. 5 Data Processing 

4. 5.1 Kinematics 

Angles from the level of C4 to C7 and from the level of C7 to T4 were collected and the 

signals were sent wirelessly through a Bluetooth connection from the XBus system to the 

computer. Using XAnalyzer™ software, the data was displayed in three planes (frontal, 

transverse and sagittal) in real time. This information was then exported and processed in 

Microsoft Excel 2010 (Microsoft Corporation, California, USA). The MTx™ sensors have a 

built in Kalman filter which provides an output of estimated drift-free 30 orientation (MTi and 

MTx User Manual, 2008). It takes the gravitational measurements from the 30 accelerometers as 

well as the magnetometer data (Earth's magnetic north) to offset any error caused by the angular 

velocity calculations from the gyroscope (MTi and MTx User Manual, 2008). 

4.5.2 Electromyography 

EMG data were collected with an eight channel Biometrics© portable data logger 

(Biometrics Ltd, Gwent, UK). The signal was sent wirelessly via Bluetooth to the laptop and 

was viewed in the Biometrics OataLog© program. It was then exported in ASCII format into 

Microsoft Excel 2010 (Microsoft Corporation, California, USA). The raw data were then 

converted from ASCII values to muscle signal values (mV) using the formula (x/4000)*3mV, 
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where xis the ASCII value, 4000 represents the ASCII scale (DataLOG© Operating Manual, 

2004). The EMG data were high pass filtered with a dual-pass, 4th order Butterworth filter with a 

cutoff frequency of 30Hz (Drake & Callaghan, 2006) to remove heart rate contamination. The 

signals were then full wave rectified and low pass filtered with a dual-pass, 4th order Butterworth 

filter with a cutoff frequency of 1 Hz, determined by residual analysis (Winter, 2005). From the 

MVC trials, the maximum amplitude was used to normalize the data from the subsequent trials 

so the EMG signals were expressed as a percentage of MVC (%MVC). 

EMG sensor 

Ground electrode 

.(·."' ..... .. : . 
. ., 

Figure 4.5.2.9 Photograph of the Biometrics Ltd. Datalog© system, including EMG 
sensors and ground electrode. 

4. 5. 3 Statistical Analyses 

4.5.3.1 Kinematics 

After the data were processed, statistical analysis was performed in SAS 9.3 (SAS 

Institute Inc., Cary, NC, USA). A three-way analysis of variance (ANO VA) was run comparing 

the alignment correction methods (task), the two models (body size) and the amount of motion 
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each Certified Athletic Therapist generated on the models (subject). The level of significance 

was set at p=0.050. Averages of three trials across a condition (DURING, AFTER and 

CHOICE) were calculated and compared for the following: range between the start and end 

angles (to estimate the minimum amount of required motion to correct realignment), range 

between the maximum and minimum angles (to determine the greatest amount of motion during 

the trial), and the amount of motion beyond the minimal required amount to correct alignment. 

Tukey's post hoc tests were performed to further analyze significant findings. 

4.5.3.2 Electromyography 

Statistical analyses for the EMG data were also performed using SAS 9.3 (SAS Institute 

Inc., Cary, NC, USA). A four-way ANOV A was run to compare muscle activity elicited due to 

the performance of the Certified Athletic Therapists (subject), the condition (task), the size of the 

model (body size) and the outputs from sensors on the left and right side of the body (side). The 

level of significance was set at p=0.050. Averages of the peak values were compared in order to 

monitor muscle activation across conditions. Tukey's post hoc tests were performed when 

significance was found in order to identify differences among combinations of variables. 
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5. Results 

5.1 General Results 

The average overall length of the trials was 24.66s (SD=2.55) for the males and 23.77s 

(SD=l .34) for the females. When comparing task, AFTER trials were 23.94s (SD=5.15) in 

length on average compared to 21.94s ( 4.19) for DURING trials and 24.25s (SD=9.17) for 

CHOICE. The average start angle across planes and sensors for females was -13.0° (SD=47.8) 

and for males was -11.64° (SD=37.0). 

5. 2 Specific Results 

5. 2.1 Kinematics 

A three-way ANOVA was run comparing subject, task and body size of the model for 

theoretical minimal required motion (TMRM), additional motion beyond TMRM and range 

(between the maximum and minimum angles achieved). Average additional motion, TMRM, 

range and the maximum values achieved across tasks are shown in Table I (female model; f) and 

Table 2 (male model; m). Currently a gold standard indicating the ideal path of motion of the 

head during a log roll does not exist. Therefore, the theoretical minimal required motion was 

calculated by taking the difference between the start angle and end angle values. This was then 

compared between subjects, models and across tasks. A significant three-way interaction was 

not found for the comparison subject*task*body size (F 1o, 6oo=0.870, p=0.564), nor a two-way 

interaction between task*body size (F2,600=0.IOO,p=0.903) or subject*task (F20, 600=1.070, 

p=0.372). There was however a significant interaction between subject*body size (Fs, 

600=11.600, 0.050> p <0.001 ). Out of the 11 subjects, three consistently had a higher TMRM 
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average (63.7°, SD=32.3) than a group of seven subjects (36.8°, SD=27.4) and one subject was 

considerably lower than this group across body size (19.9°, SD=20.5). 

When body size was addressed in the post hoc analysis, it was discovered that the female 

model had more significant interactions than the male. The average overall TMRM for the 

female model, 44.8° (SD=28.8), was higher than the male model average, TMRM of 37.4° 

(SD=34.3). Finally, it was found that there was no significant main effect of task (F2, 600=0.640, 

p=0.639). Therefore, the least amount of motion required to get from the start position to the end 

position was not influenced by the timing of neck realignment. The average TMRM for AFTER 

was 42.9° (SD=3 l. l ), for DURING was 40.5° (SD=29.8), and was 43.2° (SD=32.1) for 

CHOICE. 

Once TMRM was calculated, any additional motion beyond this was analyzed. A three­

way interaction was found for additional motion (F w, 60o=2.750, 0.0491 > p <0.0048) and for 

range (F w, 600=2.15, 0.048>p<0.003). Post hoc analysis revealed that the additional motion for 

one out of the eleven subjects had, on average, more motion (42.4°, SD=43.2) than the rest of the 

group (23.3°, SD=l6.6) with the exception of the CHOICE, male and DURING, female trials. 

This subject was also found to have higher TMRM on average (63.6°, SD=36.8). Two other 

subjects had, on average, less motion than the rest of the group across all trials and both models 

(10.7°, SD=2.96). Using the model's CHOICE trial as the gold standard for additional motion, 

the percent difference was calculated. It was found that the percent difference was not 

significant (F1,22=0.470, p=0.500) across trials indicating that the difference in performance 

between subjects was not influenced by task. 

When analyzing the interaction across tasks for additional motion, it was found that more 

motion on average was elicited during the AFTER and DURING trials as opposed to the 
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CHOICE trials across subjects and body size. The average amount of motion for AFTER trials 

was 25.7° (SD=23.9), for DURING trials was 23.5° (SD=22.8) and for CHOICE was 20.9° 

(SD= 16.5). Of the subjects who had the most amount of significant interactions, two of the 

eleven caused more motion, on average for AFTER trials (52.1°, SD=45.8). Yet only one of 

these particular subjects had higher average TMRM as well (62.5°, SD=29.4) and the start 

position of the models was the same. Of those interactions where the average amount of 

additional motion was lower than the rest of the group of subjects, the averages were equally 

distributed across tasks (11.93°, SD=9.53 AFTER, 10.83°, SD=6.71 DURING and 9.4°, 

SD=5.23 CHOICE). 

When looking at the body size factor in the three-way interaction, the subjects caused an 

almost equal amount of motion for the female and male model across task. The average amount 

of additional motion overall created in the female model trials was 21.8° (SD=19.0) and 27.2° 

(SD=25.0) for the male model trials. This suggests that the size of the model does not have a 

major influence on the differences between subjects across tasks. 

There was also a three-way interaction (F 10, 597=2. l 5, 0.048>p<0.003) when using 

comparing the ranges between the maximum and minimum values as the dependent variable 

across tasks and body sizes of the models. During the post hoc analysis, it was found that two 

subjects out of the eleven consistently had a higher range than the rest of the group, while one 

subject was consistently lower, both across tasks and body sizes of the models. These subjects 

are the same ones who had higher and lower TMRM on average as well as higher and lower 

additional motion on average. The average ranges of motion were as follows: 90.1° (SD=30.8) 

for the two subjects with the largest range, 38.8° (SD=l 7.7) for the subject with the smallest 

range and 61.8° (SD=29.5) for the rest of the group (n=8). When using CHOICE as the gold 
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standard to calculate the percent difference between AFTER and DURING for range, no 

significance was found (F 1, 22=0.420, p=0.526). Similar to additional motion, this finding 

suggests that the differences between how the subjects performed head realignment were 

consistent regardless of the task. 

Using task as the main focus in the interaction, with differences across subjects and body 

size, the AFTER trials had a slightly higher overall averages than CHOICE and DURING. The 

overall average for AFTER range was 69.0° (SD=33.1 ), for DURING range was 60.6° 

(SD=30.2) and for CHOICE range was 62.0° (SD=29.3). For three subjects who consistently had 

significant interactions, AFTER range (102.5°, SD=30.1) was higher than DURING and 

CHOICE range for the rest of the group (59.9°, SD=28.5). 

In analyzing body size in the three-way interaction, when the female model was moved, 

the CA Ts generated an average range of 66.2° (SD=29.6), while on average, when the male 

model was moved, range of 59.2° (SD=33.2) was generated. Of those subjects who had 

consistently significant interactions, the female model range (92.3°, SD=32.0) was lower than 

male model range (98.5°, SD=34.6). The values are higher than the averages for the rest of the 

subjects which were 61.3° (SD=28. l) for the female model and 51.1° (SD=26.0) for the male 

model. 

The maximum angles achieved, shown in Tables 5.2.1.4 and 5.2.1.8, occurred on average 

at 53.5% (SD=l 5.84) of the length of the AFTER trials, at 53.3% (SD=20.5) of the length of the 

DURING trials and at 47.9% (SD=21.69) of the length of the CHOICE trials for the male and at 

51.1% (SD=l9.4), 50.9%, (SD=21.2) and 51.1% (SD=20.5) respectively forthe female model. 

The minimum values occurred at 69.6% (SD=6.67) for male AFTER, 73.2% (SD=5.9) for male 

DURING and 65.6% (SD=l 0.5) for male CHOICE. Whereas, the female minimum values 
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occurred at 52.0% (SD=7.5) for the AFTER trials, 54.6% (SD=8.5) for DURING trials, and 

51.7% (SD=l0.2) for CHOICE trials. Figures 5.2.1.10, 5.2.1.11and5.2.1.12 show sample 

traces of kinematic motion for the female model and the forehead sensor for the different timing 

conditions. Although some variability between the starting positions was evident, it was not 

significant. 
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Figure 5.2.1.10 Example of kinematic motion (0
) of the forehead over the trial 

length (s) for the AFTER condition, female model. 
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Figure 5.2.1.11 Example of kinematic motion (0
) of the forehead over the trial 

length (s) for the DURING condition, female model. 
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Figure 5.2.1.12 Example of kinematic motion (0
) of the forehead over the trial 

length (s) for the CHOICE condition, female model. 
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This example demonstrates the trend of timing of motion and shows that two separate conditions 

were actually elicited from the Certified Athletic Therapists. In the three graphs above, one can 

clearly see the different conditions (correct AFTER and correct DURING). The realignment 

phase happens earlier in the DURING trial (at roughly 52% versus 62% for the AFTER trial). 
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Table 5.2.1.1 Female model kinematic averages additional motion shown in degrees 

AFTER DURING CHOICE 
x y z x y z x y z 

FH 18.3, SD=l2.8 21.6 SD=16.0 16.0, SD=9.16 19.0. SD=25.2 15.6, SD=l 1.5 9.8, SD=5.4 17.9, SD=l4. 7 13.2, SD=l0.4 9.9, SD=7.4 
C4 31.6, SD=16.3 18.7, SD=l 7.2 26.4, SD=22.3 29.2. SD=20.6 14.9, SD=l4. 7 17.8. SD=16.3 23.3, SD=12.3 18.2, SD=l4.6 16.3, SD=l4.3 
C7 35.5, SD=22.2 13.6, SD=9.4 22.5, SD=l 7.6 32.8, SD=16.8 14.5, SD=l2.9 19.4, SD=15.8 26.9, SD=l4.8 14.5, SD=14.4 20.8, SD=17.2 
T4 33.5, SD=13.9 16.4, SD=9.0 21.4, SD=l6.6 32.6, SD=l 5. 1 14.3. SD=l2.2 19.3, SD=13.8 31.3, SD=l4.5 17.6. SD=22.3 24.7, SD=25.9 

Table 5.2.1.2 Female model kinematic average TMRM shown in degrees 

AFTER DURING CHOICE 
x y z x y z x y z 

FH 19. 7, SD=l0.1 23.8, SD=26.8 47.5, SD=21.2 20.23, SD=l0.7 21.1, SD=22.7 47.8, SD=20.4 23.6, SD=13.3 31.5, SD=30.8 48.9, SD=l 8.0 
C4 23.5, SD=13. l 62. 0, SD=29. I 47.6, SD=22.4 25. 7, SD=14.4 53.4, SD=27.8 45.5, SD=26.7 24. 7, SD=l 7.1 61.8, SD=l9.5 50.8, SD=24.8 
C7 29.4, SD=l6.3 68.2, SD=23.9 62.1, SD=29.6 30.9, SD=2 l .5 57. 7, SD=27.3 58.8, SD=27.2 41.1, SD=25.5 70.3, SD=2l.7 64.7, SD=29.7 
T4 24.2, SD=21.0 59.0, SD=33. 7 73.3, SD=27.6 24.4, SD=24. 7 56.3, SD=3 l .3 67.6, SD=25.8 31.2, SD=30.2 66.8, SD=30.81 76.93, SD=21.6 

Table 5.2.1.3 Female model kinematic range averages shown in degrees 

AFTER DURING CHOICE 
x y z x y z x y z 

FH 37.9, SD=l0.4 45.4, SD=27.5 60.8, SD=22. l 40.7, SD=24.6 39.1, SD=35.3 57.5, SD=31.2 40.1. SD=13.7 42.3, SD=31.2 58.9, SD=20.5 
C4 55.1, SD=20.9 80.6, SD=30.9 71.9, SD=30.9 54. 7, SD=25.4 70.3, SD=26.3 64.1, SD=23.7 48.2. SD=l8.1 70.8, SD=26.3 60. I SD=28.3 
C7 65.0, SD=25.1 77.0, SD=l 8.6 84.6, SD=32.0 63.9, SD=26.0 75.6, SD=25. 7 77.3, SD=32.0 66.0, SD=29.7 72.8, SD=21.8 77.0, SD=32.6 
T4 57.7, SD=26.l 75.4, SD=29.8 94.8, SD=32.0 56.6, SD=25.5 73.9, SD=32.6 85.9, SD=26.1 56.5, SD=27. l 66.0, SD=34. l 85.5, SD=29.8 

Table 5.2.1.4 Female model kinematic maximtnn angle averages shown in degrees 

AFTER DURING CHOICE 
x y z x y z x y z 

FH 28.1, SD=26.0 23.4, SD=14.3 40.2, SD=33.8 28.6, SD=24.6 20.1, SD=20.3 37.6, SD=30.5 30.0, SD=26.0 23.2, SD=l5.3 38.0, SD=31.6 
C4 9.0, SD=l 7.8 48.7, SD=l7.8 52.2, SD=24.3 13. 9, SD=24.6 44.0, SD=22.8 44.7, SD=24.0 9.2, SD=20. 7 43.2, SD=23.3 41.4, SD=l2.7 
C7 4.2, SD=8.7 29.7, SD=l4.9 46.8, SD=21.4 5.8, SD=l 1.3 32.4, SD=20.4 44.3, SD=27.0 6.5, SD=l2. 7 30.0, SD=l 9.2 44.3, SD=27.2 
T4 7.3, SD=12.4 30.6, SD=12.4 59.8, SD=l6.3 7.8, SD=14. 7 29.3, SD=l 7.6 52.8, SD=25.2 9.9, SD=15.3 27.5. SD=13.3 59.0, SD=l 9.1 
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Table 5.2.1.5 Male model kinematic additional motion averages shown in degrees 
ADDITIONAL MOTION ( 0

) ', 

AFTER DURING CHOICE 
x y z x y z x 'I / 

FH 28.2, SD=7.1 32.1, SD=22.0 15.0, SD=8.5 26.7. SD=7.8 18.0, SD=14.5 22.3. SD=7.3 23.5. SI )--7.o 1 tJ.(). SIJ I h....J. I..+. I. SD 8. I 

C4 34.3, SD=13.9 22.4, SD=9.7 20.8, SD=14.6 31.9. SD=9.1 19.3, SD=7.7 17.6. SD=l 1.5 28.3. SD-!Cl.3 13.8. SD fr l 13.8. SD ~8.-t 

C7 28.6, SD=5.1 19.1, SD=lO. l 26.4, SD=l2. l 31.1. SD=7. l 21.4, SD=l0.4 24.3, SD=l4.8 2-..J..3. SI) 8.8 IX.-..J... SD 11.5 19.8. SD- I 1.8 

T4 37. 72 SD=13.8 20.2, SD=5.5 26.9, SD=12.2 33.5, SD=7.5 1 21.8, SD=7.8 26. 7, SD=l4.0 ""·"· S[) l)_(l ::'J_()_ SI) 12.() 20. 1. SJ) tJ.; 

Table 5.2.1.6 Male model kinematic TMRM averages shown in degrees 
TMRM ( 0

) ' , 

AFTER DURING CHOICE 
x y z x y z x y z 

FH 45.2, SD=48.9 13.6, SD=7.5 63.5, SD=31.2 39.0, SD=38.2 17.5, SD=l0.1 58.1, SD=35. l 37. 7, SD=50.3 14.8, SD=9.8 53.0, SD=19.3 
C4 28.2, SD=32.8 36.0, SD=35.2 47.5, SD=39.3 24.7, SD=33.3 32.1, SD=29.7 44.8, SD=36.2 18.6, SD=18.6 38.5, SD=36.0 45.8, SD=41.23 
C7 30. 8, SD=34.4 46.4, SD=35.6 50.8, SD=38.0 28.6, SD=33.3 44.1, SD=30.9 49.5, SD=40.6 30.3, SD=35.0 44.0, SD=38.6 46.4, SD=35.9 
T4 19.8, SD=27.3 44.1, SD=26.4 54.3, SD=44.2 21.0, SD=33. 7 38.2, SD=21.6 52.5, SD=46.4 17.2, SD=20.7 41.0, SD=29.7 40.5, SD=37.7 

Table 5.2. 1. 7 Male kinematic range averages shown in degrees 
RANGE ( 0

) ', 

AFTER DURING CHOICE 
x y z x y z x y z 

FH 19.8, SD=27.3 44. 1, SD=26.4 54.3, SD=44.2 21.0, SD=33.7 38.2, SD=21.6 52. 5, SD=46.4 · 17.2, SD=20.7 4LO, SD=29.7 40.5, SD=37. 7 
C4 62. 5, SD=46. 7 58.5, SD=32.5 68.3, SD=41.7 56.6, SD=41.3 51.6, SD=30.6 62.5, SD=43.0 46.9. SD=25.2 52.3, SD=3l.5 · 59.6, SD=39.3 

~ . - ~ 

C7 59.5, SD=38. l 65.5, SD=31.0 77.2, SD=44.7 59. 7, SD=39.5 65.6, SD=36.3 73.8, SD=49.2 , 54.6, SD=3 l .8 1 62.4, SD=35. l 66.3, SD=38.8 
T4 57.5, SD=29.4 64.38 SD=23.8 81.2, SD=49.0 54.4, SD=34.0 60.1, SD=27.5 79.2, SD=51.9 46.:;, SD=R9.3 'I 57.9, SD=30.2 I 67.4, SD=39.2 

Table 5.2.1.8 Male model kinematic maximum angle averages shown in degrees 
MAXIMUM ANGLE ( 0

) 

AFTER DURING CHOICE 
x y z x y z x y z 

FH 40.2, SD=22.8 25.8, SD=28.6 38.2, SD=38.6 50.2, SD=40.3 24.3, SD=20.2 41.0, SD=33.8 ' 55.0, §JD==62. 7 24. L SD=I9.2 l! 33A3. §0=36.8 
C4 5.4, SD=l 1.5 35.1, SD=23.6 49. 9, SD=32.3 0.6, SD=0.8 28.4, SD=24.2 39.8, 30.0 0.5. SlD=L2 30.2,§[)=23.6 40. 1, SD=27.9 
C7 -36.2, SD=37.6 16.2 ,SD=24.0 44.5, SD=32.4 19.9, SD=48.7 19.4, 27.6 38.3, SD=29.8 -37.6. §[)=10.0 HU. SD=23.4 36.2, SD=30.8 
T4 5.6, SD=8.2 18.0, SD=22.1 0.8, SD=30.4 2.9, SD=5.l 17.5, SD=25. l 47.8, SD=29.6 U,SD=L6 ] 6.8, SD=24.6 45.4, SD=29.0 
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5. 2. 2 Electromyography 

A four-way ANOV A was run comparing the peak amplitudes of EMG (%MVC) across 

subjects, tasks, body size of the models and between the outputs of the sensors located on the left 

versus the right hand side of the body. Tables 5.2.2.9 to 5.2.2.11 show the average peak muscle 

activation (%MVC) by side as well as the average timing of peak muscle activation (%of the 

total trial length) for female and male models across tasks. There was no significant four-way 

interaction found between subject*task*body size* side (F 15, 262=0.280, p=0.996). There were no 

significant three-way interactions found for subject*task*body size (F 10, 262=0.560, p=0.84 7), 

task*body size*side (F 3, 262=0.110, p=0.953), nor for subject*task*side (F20, 262=0.180, 

p=0.9525). There were not significant two-way interactions between task*side (F2,262=0.050, 

p=0.948), task*body size (F2,262=0.028,p=0.758), subject*task (F20,262=0.054,p=0.942) or 

subject*side (F 10, 262=0. 730, p=0.699). There was however a significant two-way interaction 

between subject and body size (F 5, 262=4.070, 0.043>p<0.032). Post hoc analysis revealed that 

one subject elicited significantly more muscle activity as a %MVC for the female model (45.7 

%MVC, SD=30.49) than the rest of the group (11.08 %MVC, SD=l 5.97). Please note, this 

difference is suspected to be due to the subject not the MVC protocol of the model because two 

additional subjects were collected in the same day and did not elicit the same trend (25.4%MVC, 

SD=26.3). The female model had higher peak muscle activation (%MVC) overall (17.01 

%MVC, SD=20.35) compared to the male subject (3.78 %MVC, SD=4.62). This suggests that 

the male model did a better job at staying completely relaxed during the trials. Figure 5.2.2.13 

shows the distribution of peak EMG amplitude across sensors for both models. The greatest 

maximum amplitude was for RES female (32.61 %MVC, SD=29.02 %MVC) and the smallest 

maximum amplitude was for sensor RUT, male (0.64 %MVC, SD=l .84 %MVC). 
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Figure 5.2.2.13 Comparison of peak EMG amplitude (%MVC) across left and 
right stemocleidomastoid, erector spinae and upper trapezius 
sensors of both male and female model. 

Peak muscle activation was not significant by task (F 2, 262=0.940, p=0.392) or when 

comparing sides of the body (F1,262=0.560,p=0.456). The average peak muscle activation was 

20.17 %MVC (SD=l 8.9) for AFTER, 10.96 %MVC (SD=l 7.3) for DURING, and 11.78 %MVC 

(SD=l 6.92) for CHOICE. Muscle activation was almost the same for left (11.60 %MVC, 

SD=l 6.15) and right sides (12.88%MVC, SD=l 8.91) of the body. The average EMG activation 

across trials were 2.73%MVC (SD=2.3.4) for AFTER, 2.16 %MVC (SD=l .42) for DURING 

and 2.03 %MVC (SD=l .38) for CHOICE. 

As a point of interest, overall male peak muscle activation occurred at 52% (SD=l 5.4) of 

the trial length versus the female whose peak muscle activation occurred at 23.4% (SD=4.8). 
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The average Figure 5.2.2.14 shows the overall average of the time to peak amplitude(% of total 

trial length) for male (left and right) and female (left and right). 

80 

70 

..= 60 
t't> 
= ~ so 
'; 

E 4o 
'; 
~ 

g 30 ..... 
Q 

'#. 20 

10 

0 

o Male left 

o Male right 

~h o Female left 

-1 o Female right 

x 

y scm es ut 

Sensor 

Figure 5.2.2.14 Time to peak amplitude between male and female models by side 
(%of total trial length). 
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Table 5.2.2.9 Average peak amplitude {%MVC) and time to peak amplitude(%) for left and right SCM 

TASK AFTER DURING CHOICE AFTER DURING CHOICE 

SENSOR LOCATION LSCM LSCM LSCM RSCM RSCM RSCM 

FEMALE MAX VALUE 26.5, SD=18.6 17.3, SD=14.0 23.3, SD=19.3 18.4, SD=16.8 8.9, SD=3.8 15. 7, SD=14.4 

MAX TIME% 66.8, SD=17.7 63.0, SD=13.6 52.0, SD=27.8 54.6, SD=17.4 50.9, SD=14.7 59.0, SD=24.3 

MALE MAX VALUE 2.9, SD=l.6 5.1, SD=4.1 2.8, SD=l.6 3.8, SD=l.4 5.1, SD=4.9 3.1, SD=0.9 

MAX TIME% 60.6, SD=18.7 63.2, SD=20.9 54.7, SD=21.7 66.2, SD=l0.7 57.4, SD=23.3 56.1, SD=ll.8 

Table 5.2 .. 2.10 Average peak amplitude (%MVC) and time to peak amplitude(%) for left and right ES 

TASK AFTER DURING CHOICE AFTER DURING CHOICE 

SENSOR LOCATION LES LES LES RES RES RES 

FEMALE MAX VALUE 10.6, SD=23.9 12.8, SD=27.2 2.2, SD=3.2 34.2, 5D=28.7 33.6, SD=30.5 32.5, SD=29.2 

MAX TIME% 24.3, 5D=31.1 14.6, SD=18.9 21. 7, SD=29.4 58.0, SD=20.3 44.3, SD=19.3 48.2, SD=16.1 

MALE MAX VALUE 0.7, SD=l.8 1.6, SD=3.8 0.82, SD=l.91 0.1, SD=l.3 5.3, SD=0.3 4.9, SD=l.9 

MAX TIME% 22.5, SD=38.7 25.9, SD=40.1 26.4, SD=41.0 39.1, SD=28.5 63.6, SD=12.5 44.5, SD=18.3 

Table 5.2.2.11 Average peak amplitude {%MVC) and time to peak amplitude(%) for left and right UT 

TASK AFTER DURING CHOICE AFTER DURING CHOICE 

SENSOR LOCATION LUT LUT LUT RUT RUT RUT 

FEMALE MAX VALUE 7.5, SD=7.2 3.7, SD=4.1 5.9, SD=7.7 7.2, SD=7.2 4.9, SD=4.4 6.8, SD=7.4 

MAX TIME% 48. 2, 5D=30.1 42.4, SD=26.9 51. 7, SD=31.3 41.8, SD=30.6 35.5, SD=25.3 39.5, SD=24.9 

MALE MAX VALUE 4.5, SD=9.0 4.5, 5D=9.2 4.13, 5D=9.19 0.1, SD=0.1 0.2, SD=0.1 0.1, SD=0.1 

MAX TIME% 58.5, SD=30. 7 53.8, SD=28.1 48.6, SD=29.2 61.3, SD=13.4 71.6, SD=l0.8 76.9, SD=7.3 
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5. 3 Reference Postures 

The reference postures were also processed and compared. The average length of time to 

complete the 9 reference postures was 11.77s (SD=l.38) for females and 9.53 s. (SD=l.14 s). 

The reference postures, maximum angle achieved and the greatest difference from the start angle 

to the maximum angle are seen below in Table 5.3.12. 

{Al 
Female 

Reference 
Posture 

2 

3 

4 

5 

6 

7 

8 
9 

Table 5.3.12 Summary of average maximum angles achieved during reference 
postures for the female model (A) and the male model (8). 

N eek Movement 
Maximum angle, Ra!nge (st9rt value to 

sensor, plane maximttJm angle) 

Forward flexion 45° 
32.8° (SD=47.9), FH, 

35.7°, FH, x 
x 

Lateral rotation left 
48.76° (SD=l 6.11 ), 

48.6°, FH, z 
FH,z 

Lateral rotation right 
26.1 7° (SD= 19 .45), 

26.7°, T4, x 
C4, z 

Left side bend 
25.78° (SD=8.08), FH, 

35.3°, C7, x 
z 

Right side bend 31.5°(SD=7.59), C4, z 29.7°, C4, x 
Combination lateral rotation, 20.85° (SD=7.06), C4, 

13.5°, C4, y 
side bend left z 

Combination lateral rotation, 39.26° (SD=l 8.4), C7, 
20.6°, FH, z 

side bend right x 
29.44° (SD=l 6.25), 

Shoulder shrug C7, x 10.8°, FH, x 
Cough, swallow, speech 30.56° (SD=l 7.01 ), 9.78°, C7, y 

C4,x 
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(B) 

Male 
Maximum angle, 

R~nge. (start value to 
Reference N eek Movement »m~illl angle), 

Posture 
sensor, plane 

: . : sen:s·mr, plane 

Forward flexion 45° 
-36.25°(SD=25.48°), 

33.6°, FH, x 
C7, x 

2 Lateral rotation left 
-49.87°(SD=11.07°), 

41.4°, FH, z 
C7, x 

3 Lateral rotation right 
-55.72° (SD=l .57°), 

35.6°, FH, z 
C7, x 

4 Left side bend 
-58.2° (SD=4.68°), C7, 

38.5°, FH, x 
x 

5 Right side bend 
-56.37 (SD=3.54), C7, 

28.3°, FH, z 
x 

6 
Combo lateral rotation, side -46.26(SD=5.24), T4, 

16.3°, FH, z 
bend left x 

7 
Combo lateral rotation, side -53.4(SD=13.73), C7, 

15.4°, C4, z 
bend right x 

8 Shoulder shrug 
-49.97(SD=8.01), C7, 

16.5°, FH, z 
9 Cough, swallow, speech 

x 
11.75, FH, z 

-53.6(SD=0.71), C7, x 

Four EMG maximum voluntary contraction trials were completed during the pretrial 

sessions and the average MVCs are shown in Table 5.3.13 below. 

Table 5.3.13 Maximum voluntary contractions achieved during pretrial collection (m V) 

SENSOR FEMALE MALE 
LSCM 0.696, SD=0.488 0.468, SD=0.094 
RSCM 0.548, SD=0.307 0.369, SD=0.088 
LES 0.320, SD=0.314 0.777, SD=0.615 
RES 0.144, SD=0.056 0.245, SD=0.079 
LUT 0.801, SD=0.457 1.136, SD=0.991 
RUT 0. 790, SD=0.483 2.371, SD=0.106 
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The reference postures were examined for muscle activity. The average amount of 

overall muscle activation ranged from 0.4%MVC (SD=0.6) for RUT, reference posture 3 to 

28. 7%MVC (SD=38.0) for RES, reference posture 3 for the male model and 0.2%MVC 

(SD=0.05) for LUT, reference posture 4 and RUT, reference posture 5 to 35.5%MVC (SD=36.4) 

for RES, reference posture 2 for the female. 

In terms of kinematics, the average maximum angles during the reference postures are 

shown in Table 5.3.15. The average maximum angle was 30.64° (SD=27.92) for the female 

model and 25.72° (SD=30.45°) for the male model during the trials. This indicates that the 

motion created during a log roll is unlike simple rotation to the left and then back to neutral. 

Table 5.3.14 Reference posture average maximum angles (0
) for female and male model 

REFERENCE POSTURE 
- - - - -~-

1 
2 
3 
4 
5 
6 
7 
8 
9 

l\1AXI!\'1Ul\'.lf\N G1'~{°), F 
7.45, SD=l 6.07 
6.42, SD=23.89 
10.7, SD=7.16 

11.45, SD=8.67 
3.10, SD=l 7.49 
1.42, SD=l 7.38 
0.65, SD=l 8.68 
2.04, SD=l 8.36 
-0.77, SD=l 8.18 

MJ\XIMPMA~GLE _(0
),_ M 

-3.51, SD=l 7.31 
0.34, SD=30.29 
-4.39, SD=26.62 
-3.86, SD=25.98 
-7.10, SD=26.12 
-3.59, SD=24.78 
-6.01, SD=24.87 
-7.48, SD=25.26 

-10.07, SD=30.35 

Figure 5.3.14 shows an example of kinematic motion during reference posture 2 (left 

lateral rotation) for the forehead sensor, female model. If we revisit Figures 5.2.1.10 through 

5.2.1.12 and compare them to Figure 5.3.14, there we can confirm that there are not any 

similarities. 
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Figure 5.3.15 Example of kinematic motion (0
) of the forehead sensor, female 

model over time (s) for reference posture 2 (left lateral rotation). 
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6. Discussion 

This purpose of this study, was to investigate the amount of cervical spine motion that 

takes place during the alignment of the head and neck occurring during the initial management 

stages of an acute cervical spine injury. Proper management of the acute SCI is necessary to 

reduce the risk of secondary injury to the spinal cord (Banerjee et al., 2005). It is the primary 

responsibility of first responders to maintain spinal stabilization until an appropriate evaluation 

can be performed. This study will impact all those professions providing acute emergency care 

of those individuals with a suspected SCI. It will help enhance knowledge of transfer techniques 

on those with spinal injuries as well as helping to develop proper training techniques for those 

involved in the primary management stages of a victim with a suspected spinal cord injury. 

Current research suggests the avoidance of the log roll technique altogether as it causes increased 

motion compared to other techniques (Conrad et al., 2012). However, there have not been any 

alternative transfer methods recommended and with appropriate research for the prone victim. 

This study was unique in that it analyzed motion at the cervical spine during prone patient 

transfer onto a long spine board using the log roll technique. Currently, there is a gap in the 

literature with regard to this specific portion of the initial management stages of a suspected SCI. 

6.1 Hypotheses Revisited 

The first hypothesis was that the timing of neck realignment does modify the amount of 

cervical spine motion and muscle activation during boarding. Specifically, alignment of the neck 

during the transfer will cause less motion and muscle activation as those stabilizing the head will 

not be able to maintain stabilization in the position found for the duration of the roll. Although a 

three-way interaction for subject*task*body size was found for both range and additional 
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motion, percent differences were compared between DURING and AFTER trials and were not 

found to be significantly different. Peak muscle activity was also analyzed and no significant 

differences were found across tasks. We can therefore accept the null hypothesis that the timing 

of neck realignment does not play a role in the amount of cervical spine motion during the 

patient transfer process. 

The second hypothesis was that the weight and size of the patient does not play a role in 

the amount of cervical spine motion and muscle activation during patient transfer onto a spine 

board. TMRM, additional motion and range were analyzed. Significant three-way interactions 

for subject*task*body size were found for both additional motion and range and a significant 

two-way interaction was found for TMRM between subject and body size. Upon further 

analysis, it was found that overall the average amount of additional motion, range and TMRM 

generated when female model was rolled was consistently higher than that of the male victim. In 

terms of EMG, the male model had a lower overall average %MVC across sensors. Therefore, 

the null hypothesis, that the weight and size of the victim have an influence on the amount of 

cervical spine motion generated during the log roll, can be accepted. Though this is an interesting 

finding, it should not necessarily affect the boarding process itself as the goal is still and always 

will be to create the least amount of motion possible. In order to determine if body size truly has 

an effect on the amount of motion during the log roll, data needs to be collected using more 

models of similar weights and sizes to the models used in this study as well as individuals whose 

weight and size fall between them (which are considered to be at end ranges of the spectrum). 
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6.2 Kinematics 

Figures 5.2.1.10, 5.2.1.11and5.2.1.12 showed sample traces of kinematic motion at the 

forehead for the different timing conditions for the female model. From these examples, it is 

evident that there are three distinct phases that are common across tasks for both the male and 

female models. First, there is an initial plateau across planes as the Certified Athletic Therapist 

stabilizes the head preparing for the log roll. The next phase shows when the realignment is 

happening and finally there is a levelling off again when the head is placed in neutral. Although 

the timing of realignment is clearly evident in those figures, there were no significant differences 

in overall TMRM, range and additional motion across the three different conditions. 

The major goal of this study was for the Certified Athletic Therapist to get the model's 

head from the start position (prone with the head laterally rotated) to the end position (supine, 

head in neutral position) with the least amount of movement possible. Therefore, theoretical 

minimal required motion, TMRM, was calculated and used as a baseline and to represent the 

gold standard since none currently exists. This was done by subtracting the start angle from the 

end angle. The average least amount of motion required to get from the start position to the end 

position was 42.22° (SD=3 l .02) across all sensors and planes. TMRM was compared across 

tasks as a starting point to move forward and analyze any additional motion beyond this 

theoretical "straight line motion". The specific values for each plane and task for the female and 

male models are seen in Tables 5 .2.1.2 and 5 .2.1.6 respectively. It was found that there was no 

significant difference in TMRM across tasks (p=0.639). The average TMRM for AFTER was 

42.9° (SD=31.l), for during was 40.5° (SD=29.8), and was 43.2° (SD=32.1) for choice. This 

finding makes sense because the models started and ended in the same positions, regardless of 

the timing of realignment. Calculation of TMRM was a necessary preliminary step in order to 
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address the hypothesis that the timing of neck realignment (DURING or AFTER the log roll) 

will modify the amount of cervical spine motion. 

Another important preliminary finding is the range between the maximum and minimum 

angles achieved across trials. The average ranges elicited on the female and male model are 

seen in Tables 5.2.1.3 and 5.2.1.7. A significant three-way interaction was found between 

subject, body size of the model and range. Out of the 11 subjects, two consistently had higher 

ranges (90.l 0 , SD=30.8) than the rest of the group which had an average overall range of 38.8° 

(SD=l 7.7), with the exception of one subject who had the smallest range of motion (61.8°, 

SD=29 .5) across body size and task. In order to focus on the differences across tasks, the 

CHOICE trial was used as the gold standard and the percent differences were calculated for 

DURING and AFTER. It was again found that there were no significant differences between the 

tasks. The overall averages were found to be 69.0° (SD=33.l) for AFTER, 60.6° (SD=30.2) for 

DURING and 62.0° (SD=29.3). These ranges between maximum and minimum are very 

similar. Therefore, we can conclude that task does not have an influence on the differences 

between the average ranges of motion. Once TMRM and range were calculated and analyzed, 

they were used to calculate the total amount of motion that actually occurred during the trials. 

In order to quantify the amount of motion that occurred during this study additional motion was 

calculated by taking the difference between the TMRM and range of the maximum and 

minimum values. When comparing this additional motion across subjects, task and model size, a 

significant three-way interaction was found. One subject had more motion on average than the 

group (42.4°, SD=43.2 compared to 23.3°, SD=l6.6). Also, two subjects had less motion (10.7°, 

SD=2.96). This means that the Certified Athletic Therapists did not perform the exactly the 

same, which was to be expected because, although they all had the same amount of technical 
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emergency care training, they had all been certified for different lengths of time (see Section 4 .1, 

p. 31 ). In fact, it is interesting to note that the subject who generated the least amount of 

additional motion and smallest range was the least experienced therapist in the group. Also 

interesting, this finding is more than likely due to systematic differences rather than functional. 

Therefore, the focus was turned to determining whether the difference between tasks influenced 

the amount of motion. In order to do this, the CHOICE trial was used as the gold standard and 

the percent difference between the AFTER and DURING trials were calculated and compared 

across subjects. In doing so, it was determined that there were no differences across tasks. In 

looking strictly at the averages of additional motion by task, they were very similar (see Tables 1 

and 4 for male and female averages). The average amount of motion for AFTER trials was 25.7° 

(SD=23.9), for DURING trials was 23.5° (SD=22.8) and for choice was 20.9° (SD=l6.5). 

Controversy exists in current practice for the timing of prone victim transfer onto a spine 

board. Common practice includes correcting misalignment of the neck using the method that is 

most comfortable for the therapist responsible for realigning the head. During this study, when 

given the choice to correct DURING or AFTER, 81 % of the trials overall were corrected 

DURING the roll. Eighty-nine percent of the trials with the male model were corrected 

DURING, while only 77% of the female model trials were correct DURING. This suggests that 

the preferred method of timing, especially when there is a considerable weight difference 

between the models, is to correct DURING the roll. As this study has shown, there is no 

difference in the amount of motion that occurs based on the timing of realignment. Therefore, the 

head Athletic Therapist can naturally perform the log roll using the timing of his or her choice 

and focus on additional factors that may influence the outcome of the roll. Such factors include 

assessment and direction of the team of the other individuals involved in the boarding process. 
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The second hypothesis was that the weight and size of the victim does not play a role in 

the amount of cervical spine motion during the transfer process. In order to address this 

hypothesis, the amount of theoretical minimal required motion, range and additional motion were 

analyzed. With regard to TMRM, there was a significant interaction found between subject and 

body size. TMRM was consistently higher for three of the subjects across body size of the 

model (63.7°, SD=32.3) and one subject had considerably lower average TMRM (19.9°, 

SD=20.5) between the body sizes of the models. In addressing a specific example between the 

highest TMRM subject (with an average TMRM of 71.7°, SD=33.2) and the lowest (with an 

average TMRM of 19.86°, SD=20.46), it is interesting to note that although there was a 

significant difference between the average TMRM (p<0.0001), when additional motion was 

considered along with TMRM, the subject with the consistently high average TMRM was 

actually fairly efficient at maintaining stabilization as the additional motion constituted only 

27.7% of overall motion. The subject who had a consistently low TMRM had 55% of the overall 

motion accounted for by the additional motion. 

In terms of body size differences in the interaction, the female model consistently had a 

higher average TMRM (44.8°, SD=28.8) across sensors and planes than the male (37.4°, 

SD=34.3). On examining the start values for the forehead sensor, for example we see that the 

female had an average start position of -1.38° (SD=29.57), 4.85° (SD=22.71), 7.11° (SD=57.75) 

(sagittal, frontal, transverse) whereas the male had an average start position of -3.14° 

(SD=31.56), 16.2° (SD=25.62), 2.29° (SD=60.75) (sagittal, frontal, transverse). These start 

positions help to put the TMRM values into context as the female model had a slightly larger 

distance to travel to reach the end position. 
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On examining body size differences for the range between the maximum and minimum 

values, there was a three-way interaction between subject, task and body size. The female model 

had a larger overall average range 66.2° (SD=29.6) than the male model 59.2° (SD=33.2). These 

findings were interesting considering the difference in size between the models. The male model 

was almost double the weight and height of the female model as well as the therapists involved 

in the study. Verbal feedback was that it was very difficult as a team to perform the log roll on 

the male model. Therefore, the head Athletic Therapist may have put more focus into stabilizing 

the head, knowing that their team was having a difficult time controlling the body. This may 

have also influenced muscle activation and may not truly be reflective of a real life SCI scenario. 

6.3 Electromyography 

We hypothesized that the amount of muscle activation was influenced by the timing of 

neck realignment. Specifically, that the alignment of the neck DURING the log roll will cause 

less muscle activation than alignment AFTER the roll is done. The maximum muscle activation 

was not significant by task. It is interesting to note though that although not significant, the 

DURING trails had the least average peak muscle activation (10.96 %MVC, SD=l 7.35) and 

AFTER had the highest average maximum muscle activation (20.17 %MVC, SD= 18.9 %MVC). 

When a spinal cord injury occurs, muscle activation has been known to play a role in injury 

exacerbation (Cusick & Yoganandan, 2002; Siegmund et al., 2009). From this study, we can 

infer that correcting alignment of the head during or after the roll does not cause any reflexive 

activation of some of the stabilizing muscles around the head and neck. The Certified Athletic 

Therapist can choose whichever method of timing that he or she is most comfortable with, 
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knowing that this will not contribute to the exacerbation of the injury and secondary 

complications. 

It was also hypothesized that the muscle activation will not be different based on the 

weight and size of the model. With respect to body size differences between models, peak 

muscle activation, there was a significant two-way interaction between subject and body size. It 

is possible that the head Athletic Therapist had an influence on this muscle activation for various 

reasons. One possible reason is that the model may not have felt completely comfortable with 

the hand position. For example, verbal feedback from the female model for one of the head 

Athletic Therapists was that in an effort to stabilize the head, the therapist was actually squeezing 

in on the model's ears and throat in an uncomfortable manner. However, this type of feedback in 

the field is not of consequence given the severity of suspected SCis as well as additional factors, 

such as adrenaline and sense of urgency, that are encountered during these real life scenarios and 

the method in which these injuries are managed. 

The male model had a lower average peak muscle activation (3.78 %MVC, SD=4.62) 

than the female (17.01 %MVC, SD=20.35). Although this is an interesting finding, EMG was 

primarily used as a tool to confirm that the subjects were acting as closely as possible to 

someone with a suspected severe spinal cord injury. In looking strictly at body size differences, 

the male did a better job staying completely relaxed than the female. 

6. 4 Reference Postures 

EMG from the reference postures were processed and used both for calibration as well as 

to add context to EMG collected during the trials. These measures were mainly used to evaluate 

the role of model as a still model and to confirm that they did, in fact, act as if they had sustained 
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an SCI. When we compare the values from the reference postures to the maximum values of the 

trials, we see that the on average maximum amplitudes do not exceed those of the reference 

postures. Also, the time that the peak amplitude occurred (as a percentage of the total time) was· 

not affected by when the neck realignment took place (p=0.453). 
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7. Limitations 

A necessary limitation to this study was the use of surface mounted equipment for data 

collection. Skin movement may have resulted in error and an inaccurate representation of bony 

movement (Adams et al., 1986). All necessary steps to reduce this error were completed such as 

proper skin preparation and adhesion, as well as additional taping to help minimize relative 

movement between the equipment and the models. Also, all of the sensors were consistently 

placed on the body in the exact same order and by the same person every collection. Other 

methods of collection such as a bone pin based marker systems or motion capture systems using 

optoelectronic technology (infra-red emitting or reflective markers) would not have been 

applicable and appropriate for this study. These types of motion capture systems would be ideal 

for this type of study since the markers are lightweight and very small in size (less than 1 cm). 

However, the markers would be blocked by the Certified and student Athletic Therapists 

throughout most of the task, rendering the scraps of information collected useless (Boissey et al., 

2011). 

Despite proper skin preparation and consistent sensor placement, data were still lost. It is 

speculated with confidence that the addition of the lost data and/or more data collected with 

current methods would still yield the same results. 

Another possible limitation to this study was the size of the MTx™ sensors. They were 

located over the spinous processes of vertebrae C4, C7, and T4, thus giving an overall motion of 

groupings of vertebrae rather than capturing movement directly at that spinal level. It is also 

possible that the instrumentation may have had an influence on the Certified Athletic Therapist's 

hand placement. Anecdotally, there were no reports of the influence of the instrumentation on the 

Certified Athletic Therapist's selected hand position and movement. 
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Special consideration was taken into account while collecting sEMG of the neck region 

because signals may have been susceptible to factors such as hard swallowing, breathing, ECG 

and sniffling (Sommerich et al., 2000). These factors were accounted for during the calibration 

process as we recorded and quantified trials of various functions that may have affected the 

signal to see how much (if any) muscle activity was evoked. Heartbeat contamination was 

removed with the use of filter which also removed a small portion of the desired signal. This was 

a worthwhile trade-off as the ECG dominated the bulk of the expected low l~vels ofEMG 

This study took place in a laboratory setting, which has ideal environmental conditions. 

During a live boarding scenario, injured victims may be outdoors in the rain and/or may have 

perspiration on their heads which will influence how the Certified Athletic Therapist holds the 

head (Boissey et al., 2011 ). Other factors also come in to play during a live boarding scenario 

such as adrenaline, fear, and noise from the crowd, which can have an influence on performance. 

The models being used are healthy therefore extrapolation to those with other afflictions, such as 

paralysis, may be difficult (Boissey et al., 2011 ). By monitoring and analyzing muscle activity 

with the use of sEMG, any muscle activation was accounted for and was negligible, and so did 

mimic a paralysis scenario. 
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8. Knowledge Generated and Future Directions 

The outcome of this study affects any individuals involved in the critical initial 

management stages of a potential SCI and can directly be translated into current practice. 

Conflicting schools of thought and practice are evident in the field today, yet there has been (up 

to this point) minimal (if any) published evidence to suggest which timing is better. The results 

of this study clearly show that the timing of realignment of the head/neck complex is 

inconsequential. Not negating the fact that each scenario is unique, this valuable piece of 

information will be communicated to the Athletic Therapy community through publications in 

athletic therapy and sports medicine journals, provincial/national newsletters and conference 

presentations. Knowledge can also be transferred to Athletic Therapists through documents 

and/or webpages that act as quick referral guidelines for transfer techniques. Appendix A 

reiterates the questions and answers (Study Q & As) addressed through this thesis as well as 

extending beyond that and discussing out other points of knowledge that can be derived from this 

study. 

All of the Certified Athletic Therapists used in this study were female. Another future 

direction should include a look at male Certified Athletic Therapists, comparing their 

performance to that of the females. Athletic Therapists must renew their first responder 

certification every third year. Therefore, these results can be incorporated into emergency care 

coursework. Based on the findings from this study (particularly that the subject with the least 

amount of experience performed the most efficiently overall) a suggestion is to ensure that first 

responder certification be renewed earlier than every three years or that the boarding process be 

integrated into regular Health Care Practitioner CPR training. By further comparing 

performance outcomes between groupings of Certified Athletic Therapists based on the length of 
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time they have been certified, more insight would be gained into possible restructuring of 

recertification curricullae as well as timing. 

Although this study used specifically Athletic Therapists, they are not the only profession 

that may be a first responder in a potential spinal cord injury scenario. These results from this 

study clearly have an impact on how suspected SCis should be managed. Therefore, future 

studies should aim to compare alignment methods across and including different first responders 

such as paramedics, fire fighters and police officers. It is imperative that as first responders there 

is consistency in the realignment phase of acute SCI management. 

The major focus of the study was to analyze motion from the ground onto the spine 

board. Other necessary future studies should include the analysis of different stages of the 

transfer process broken down. For example, current procedure involves sliding the athlete along 

the length of the board in order to center them on it. However, new techniques are emerging, 

such as a lateral push across the board, with no research to support this. Another example is 

seeing how much moving a limb that is abducted (which is a common scenario in the field) 

affects motion at the spine. Other future studies should include a more in depth look at hand 

placement during the transfer as well as equipment removal techniques. 

Currently, the log roll is the only method used for prone patient transfer in Canada. Until 

an appropriate alternative transfer technique is developed continued research is needed to help 

strengthen not only the different facets of the log roll, but also to help increase its effectiveness. 

Finally, and most importantly, future research should aim to quantify how much movement falls 

within a safe range to avoid exacerbation of SCI. This crucial piece of information would help to 

gain insight into how the overall transfer process of an acute SCI should be managed. 
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9. Conclusion 

The initial management stages of suspected SCis are crucial in order to reduce the risk of 

secondary injury to the spine. Currently, there is a void in the literature with regards to the timing 

of neck realignment during the boarding process. The purpose of this thesis was to assess the 

movement patterns of the cervical spine and muscle activity of neck stabilizers during a prone 

log roll transfer specifically focussing on the timing of neck realignment. An additional purpose 

was to examine if the weight and the size of a victim play a role in the amount of motion and 

muscle activation occurring at the cervical spine during patient transfer onto a spine board. This 

study has demonstrated that there is no significant difference in the amount of motion generated 

during a prone log roll based on the timing of the neck realignment. Therefore, the therapist 

responsible for controlling stabilization and realignment of the head during a suspected SCI 

scenario can choose to correct realignment of the head at any time during the roll, provided 

contraindications are still adhered to. It has also shown that the weight and size of the victim 

may play a role in movement at the cervical spine, perhaps as a direct result of the team of 

therapists involved in the boarding process. The findings from this study will help enhance the 

knowledge of transfer techniques and will have implications on proper training techniques for 

those involved in the primary stages of injury management. These results can be directly 

transferred and used in current practice and will be communicated to the Athletic Therapy 

community through publications, conference presentations and possibly through an information 

sheet on the Canadian Athletic Therapists Association website. 
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Appendix A: 

Study Q & As 

Take Home Message 

The initial management stages of a suspected SCI are crucial. Conflicting schools of 

thought and practice are evident in the field today, yet there has been (up to this point) 

minimal (if any) published evidence to prove what the correct timing for head realignment 

to neutral position is better (during or after the prone log roll). This study has shown that 

the timing of neck realignment during the prone log roll is inconsequential in terms of the 

amount of motion and muscle activity. Therefore, first responders are free to correct 

alignment of the neck using the timing of their choice without causing further damage to 

a suspected SCI. Please note, additional work should be conducted, ideally with smaller 

sensors, to confirm the findings of this study. It was also found that the size of the victim 

may impact the amount of motion occurring at the neck, yet the goal still remains to 

stabilize the head and minimize the amount of overall motion occurring at the spine 

during patient transfer because currently, no method has been successful in quantifying 

how much motion will cause detrimental effects on SCI. 

Kinematics 

1. Was there a difference in the amount of motion at the cervical spine by task? 

There were no significant differences found between the levels of C4, C7, and T4 

across the timing of neck realignment. However, further investigation using 
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smaller sensors is needed to gather more information on specific vertebral 

movement. 

2. Was there a difference in the amount of motion at the cervical spine by weight 

and size of the victim? Yes. The weight and size of the victim may play a role in 

the amount of motion occurring at the cervical spine during patient transfer, 

though more research focussing specifically on this factor is needed. 

3. Was there a difference in the amount of motion at the cervical spine by Certified 

Athletic Therapist? Yes. The Certified Athletic Therapists did not perform the 

same despite the fact that all of them have the same academic background as well 

as Health Care Practitioner First Responder certification. The amount of years 

of certification as an Athletic Therapist may play a role in the performance of the 

therapist as a first responder, but more research is needed comparing not only 

levels of experience, but sexes of therapists. 

4. When did the least amount of motion happen? The least amount of motion 

occurred during the initial stabilization phase immediately prior to realignment of 

the head. 

5. When did the maximum and minimum amount of motion occur timewise? The 

maximum angles occurred on average midway through the trials. The minimum 

values occurred almost immediately following the maximum angles. 

1. Were the models able to perform the same across Certified Athletic Therapists? 

No. One Certified Athletic Therapist in particular caused increased muscle 
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activity in the female model. Verbal feedback from the model was that the hand 

placement of the therapist was uncomfortable, making it difficult for the model to 

relax. This suggests the need for future research on hand placement during 

stabilization so as not to invoke muscle activity which has been known to 

exacerbate injury. 

2. Were the models able to perform the same regardless of the task? Yes. The models 

had the same amount of muscle activity (which was minimal) regardless of the 

timing of neck realignment. 

3. Was there any reflexive EMG? No reflexive EMG was discovered, meaning the 

first responder can perform the prone log roll without worry of muscle activity 

worsening the suspected SCI 

4. What were the overall average activation (%MVC) and the average peak 

amplitude (%MVC) achieved? The overall average activation across the trials 

was 2.3 %MVC and the average peak amplitude was 14.3 %MVC. 

5. When did the maximum occur timewise? Peak muscle activation occurred at 52% 

of the trial length for the male and 23.4% of the trial length for the female. 

Other 

1. Were two distinct tasks elicited? Yes. Motion began, on average at 52% of the 

trial length for DURING and at 62%/or the AFTER trials. 

2. What condition did CHOICE most closely resemble and were the Certified 

Athletic Therapists consistent across these CHOICE trials? 81% of the CHOICE 
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trials were correct DURING suggesting that Certified Athletic Therapists have 

more of a natural tendency to correct head realignment during the prone log roll. 

6. Was there a difference in the length of trials across tasks? Yes. The CHOICE 

trials were the longest on average (24.25s),followed by AFTER (23.94s) and then 

DURING (21.94s). 
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7. 

Appendix B: 

Permission to Use Copyright Material from Arcturus Publishing 

Relevant figures: 

Figure 2.1.1.1: Typical characteristics of a cervical vertebra, p. 5. 

Figure 2.1.2.2: Lateral view ofligaments of the cervical spine up to C3, p. 8. 

Figure 2.1.2.3: Musculature of the cervical spine (lateral view), p. 10. 
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b) lateral view of the ligaments of the cervical spine 

c) musculature of the cervical spine 

From Gray, H. (2008). Anatomy descriptive and surgical. (Second ed., p. 126). London, 

England: Arcturus 

The material will be fully cited in my thesis. 

In the interest of facilitating research by others, my thesis will be available on the internet 

for reference, study and/or copy. The electronic version of my thesis will be accessible 

through the York University Libraries website and catalogue, and also through various 

web search engines. I will be granting Library and Archives Canada a non-exclusive 

license to reproduce, loan, distribute, or sell single copies of my thesis by any means and 

in any form or format. These rights wi11 in no way restrict republication of the material in 

any other form by you or by others authorized by you. 

Could you please confinn in writing or by email that these arrangements meet with your 

approval. If you do not solely control the copyright in the material, please let me know as 

soon as possible. I would also appreciate any information you can provide about others to 

whom I should write to request permission. 

If you would like to confirm permission in writing, you can do so by signing and 

completing the information below and returning this signed and completed letter in a self­

addressed stamped envelope as soon as possible to 54-5005 Pinedale Avenue, Burlington, 

ON L7L 5J6. 

If you would Jike to confirm permission by email, my email address is 

augustinlaurie@hotmail.com. 

Sincerely, 

Laurie Augustin 

lxxxvi 



Appendix C: 

Permission to Use Copyright Material from Springer 

Relevant figure: 

Figure 2.2.4: The buckling effect of the spine. A) The spine acts as a solid column at 30° 

of flexion. B) and C) As axial compressive loads are applied the spine begins to buckle 

resulting in injury (D and E), p. 14. 

lxxxvii 



Permission to Use Copyright Material from Springer 

SPRINGER LICENSE 
TERMS AND CONDITIONS 

Aug 27, 2013 

This is a License Agreement between Laurie Augustin ("You") and Springer ("Springer") 
provided by Copyright Clearance Center ("CCC"). The license consists of your order 
details, the terms and conditions provided by Wolters Kluwer Health, and the payment 
terms and conditions. 

All payments must be made in full to CCC. For payment instructions, please see 
information listed at the bottom of this form. 

License Number 3217110997974 

License date Aug 27, 2013 

Licensed content publisher Springer 

Licensed content publication Sports Medicine 

Licensed content title The Pathomechanics, Pathophysiology and Prevention of Cervical Spinal 
Cord and Brachia! Plexus Injuries in Athletics 

Licensed content author Simon Chao 

Licensed content date Jan 1, 2010 

Volume Number 40 

Issue Number 1 

Type of Use Dissertation/Thesis 

Portion Figures 
Author of this Springer No 
article 
Order reference None 
number 

Title of your thesis I dissertation Cervical Spine Motion During Patient Transfer onto a Long 
Spine Board 

Expected completion date Aug 2013 

lxxxviii 



Estimated size(pages) 80 

Total 0.00 CAD 

Terms and Conditions 

Terms and Conditions 

Introduction Th 

Media. By clicking "accept" in connection with completing this licensing transaction, you 

agree that the following terms and conditions apply to this transaction (along with the 

Billing and Payment terms and conditions established by Copyright Clearance Center, Inc. 

("CCC"), at the time that you opened your Rightslink account and that are available at 

any time at http://myaccount.copyright.com). 

Limited License With r 

which Springer Science and Business Media control the copyright, permission is granted, 

free of charge, for the use indicated in your enquiry. 

Licenses are for one-time use only with a maximum distribution equal to the number that 

you identified in the licensing process. 

This License includes use in an electronic form, provided its password protected or on the 

university's intranet or repository, including UMI (according to the definition at the 

Sherpa website: http://www.sherpa.ac.uk/romeo/). For any other electronic use, please 

contact Springer at (permissions.dordrecht@springer.com or 

permissions.heidelberg@springer.com). 

The material can only be used for the purpose of defending your thesis, and with a 

maximum of 100 extra copies in paper. 

Although Springer holds copyright to the material and is entitled to negotiate on rights, 

this license is only valid, subject to a courtesy information to the author (address is given 

with the article/chapter) and provided it concerns original material which does not carry 

references to other sources (if material in question appears with credit to another source, 

authorization from that source is required as well). 

Permission free of charge on this occasion docs not prejudice any rights we might have to 

charge for reproduction of our copyrighted material in the future. 

Altering/Modifying Material: Not Permitted 

lxxxix 



any manner. Abbreviations, additions, deletions and/or any other alterations shall be made 

only with prior written authorization of the author(s) and/or Springer Science+ Business 

Media. (Please contact Springer at (permissions.dordrecht@springer.com or 

permissions.hcidelberg@springer.com) 

Reservation of Rights Springer Sc 

specifically granted in the combination of (i) the license details provided by you and 

accepted in the course of this licensing transaction, (ii) these terms and conditions and (iii) 

CCC's Billing and Payment terms and conditions. 

Copyright Notice:Disclaimer You 

notice in connection with any reproduction of the licensed material: "Springer and the 

original publisher /journal title, volume, year of publication, page, chapter/article title, 

name(s) of author(s), figure number(s), original copyright notice) is given to the publication 

in which the material was originally published, by adding; with kind permission from 

Springer Science and Business Media" 

Warranties: None 

.Ex.ample l: Springer Science+ Business Media makes no re11resentations or warranties 

with respect to the licensed material. 

.Ex.ample 2: Springer Science+ Business Media makes no representations or warranties 

with respect to the licensed material and adopts on its own behalf the limitations and 

disclaimers established by CCC on its behalf in its Billing and Payment terms and 

conditions for this licensing transaction. 

Indemnity 

Media and CCC, and their respective officers, directors, employees and agents, from and 

against any and all claims arising out of your use of the licensed material other than as 

specifically authorized pursuant to this license. 

No Transfer of License This lice 

assigned, or transferred by you to any other person without Springer Science+ Business 

Media's written permission. 

No Amendment Except in Writing 

signed by both parties (or, in the case of Springer Science+ Business Media, by CCC on 

xc 

Thi 



Springer Science+ Business Media's behalf). 

Objection to Contrary Terms Spr 

terms contained in any purchase order, acknowledgment, check endorsement or other 

writing prepared by you, which terms are inconsistent with these terms and conditions or 

CCC's Billing and Payment terms and conditions. These terms and conditions, together 

with CCC's Billing and Payment terms and conditions (which are incorporated herein), 

comprise the entire agreement between you and Springer Science+ Business Media (and 

CCC) concerning this licensing transaction. In the event of any conflict between your 

obligations established by these terms and conditions and those established by CCC's 

Billing and Payment terms and conditions, these terms and conditions shall control. 

,Jurisdiction All d 

breach thereof, shall be settled exclusively by arbitration, to be held in The Netherlands, in 

accordance with Dutch law, and to be conducted under the Rules of the 'Netherlands 

Arbitrage Instituut' (Netherlands Institute of Arbitration).OR: 

All disputes that may arise in connection with this present License, or the breach thereof, 

shall be settled exclusively by arbitration, to be held in the ·Federal Republic of Germany, 

in accordance with German law. 

Other terms and conditions: 

vl.3 

xci 



Appendix D: 

'' 
I 

Permission to Use Copyright Material from Wolters Kluwer Health 

Relevant figure: 

Figure 2.3.6: The lift-and-slide technique, p. 22. 

xcii 



Permission to Use Copyright Material from Wolters Kluwer Health 

WOLTERS KLUWER HEAL TH LICENSE 
TERMS AND CONDITIONS 

Aug 25, 2013 

This is a License Agreement between Laurie Augustin ("You") and Wolters Kluwer 
Health ("Wolters Kluwer Health") provided by Copyright Clearance Center ("CCC"). 
The license consists of your order details, the terms and conditions provided by Wolters 
Kluwer Health, and the payment terms and conditions. 

All payments must be made in full to CCC. For payment instructions, please see 
information listed at the bottom of this form. 

License Number 3216021086878 

License date Aug 25, 2013 

Licensed content publisher Wolters Kluwer Health 

Licensed content publication Spine 

Licensed content title Spine-Board Transfer Techniques and the Unstable Cervical Spine. 

Licensed content author Del Rossi, Gianluca; Horodyski, MaryBeth; Heffernan, Timothy; 
Powers, Michael; Siders, Ronald; Brunt, Denis; Rechtine, Glenn 

Licensed content date Jan 1, 2004 

Volume Number 29 

Issue Number 7 

Type of Use Dissertation/Thesis 

Requestor type Individual 

Author of this Wolters Kluwer article No 

Title of your thesis I dissertation Cervical Spine Motion During Patient Transfer onto a Long 
Spine Board 

Expected completion date Aug 2013 

xciii 



Estimated size(pages) 80 

Billing Type Invoice 

Billing address 5005 Pinedale Avenue 

Burlington , ON L7L5J6 

Canada 

Total 0.00 USD 

Terms and Conditions 

Terms and Conditions 

1. A credit line will be prominently placed and include: for books - the author(s), 
title of book, editor, copyright holder, year of publication; For journals - the 
author(s), title of article, title of journal, volume number, issue number and 
inclusive pages. 

2. The requestor warrants that the material shall not be used in any manner which 
may be considered derogatory to the title, content, or authors of the material, or to 
Wolters Kluwer. 

3. Permission is granted for a one time use only within 12 months from the date of 
this invoice. Rights herein do not apply to future reproductions, editions, 
revisions, or other derivative works. Once the 12-month term has expired, 
permission to renew must be· submitted in writing. 

4. Permission granted is non-exclusive, and is valid throughout the world in the 
English language and the languages specified in your original request. 

5. Wolters Kluwer cannot supply the requestor with the original artwork or a "clean 
copy." 

6. The requestor agrees to secure written permission from the author (for book 
material only). 

7. Permission is valid ifthe borrowed material is original to a Wolters Kluwer 
imprint (Lippincott-Raven Publishers, Williams & Wilkins, Lea & Febiger, 
Harwal, lgaku-Shoin, Rapid Science, Little Brown & Company, Harper & Row 
Medical, American Journal of Nursing Co, and Urban & Schwarzenberg - English 
Language). 

8. If you opt not to use the material requested above, please notify Rights link within 
90 days of the original invoice date. 

9. Please note that articles in the ahead-of-print stage of publication can be cited and 
the content may be re-used by including the date of access and the unique DOI 
number. Any final changes in manuscripts will be made at the time of print 
publication and will be reflected in the final electronic version of the 
issue.?Disclaimer: Articles appearing in the Published Ahead-of-Print section 
have been peer-reviewed and accepted for publication in the relevant journal and 
posted online before print publication. Articles appearing as publish ahead-of­
print may contain statements, opinions, and information that have errors in facts, 

xciv 



-- ------I I 

figures, or interpretation. Accordingly, Lippincott Williams & Wilkins, the editors 
and authors and their respective employees are not responsible or liable for the 
use of any such inaccurate or misleading data, opinion or information contained in 
the articles in this section. 

10. 1 This permission does not apply to images that are credited to publications other 
than Wolters Kluwer journals. For images credited to non-Wolters Kluwer journal 
publications, you will need to obtain permission from the journal referenced in the 
figure or table legend or credit line before making any use of the image( s) or 
table(s). 

11. In case of Disease Colon Rectum, Plastic Reconstructive Surgery, The Green 
Journal, Critical Care Medicine, Pediatric Critical Care Medicine, the 
American Heart Publications, the American Academy of Neurology the 
following guideline applies: no drug brand/trade name or logo can be included in 
the same page as the material re-used 

12. When requesting a permission to translate a full text article, Wolters 
Kluwer/Lippincott Williams & Wilkins requests to receive the pdf of the 
translated document"Adaptations of single figures do not require Wolters 
Kluwer further approval ifthe permission has been granted previously. However, 
the adaptation should be credited as follows:? Adapted with permission from 
Lippincott Williams and Wilkins/Wolters Kluwer Health: [JOURNAL NAME] 
(reference citation), copyright (year of publication)" 

Please note that modification of text within figures or full-text articles is 
strictly forbidden. 

13. The following statement needs to be added when reprinting the material in Open 
Access journals only: 'promotional and commercial use of the material in print, 
digital or mobile device format is prohibited without the permission from the 
publisher Lippincott Williams & Wilkins. Please contact 
journalpermissions@lww.com for further information". 

14. Other Terms and Conditions: 

vl.8 

xcv 



Appendix E: 

Permission to Use Copyright Material from XSens 

Relevant figure: 

Figure 4.2.1.8: Sensor coordinate system for MTx™ sensors, p. 37. 

xcvi 



Permission to Use Copyright Material from XSens 

RE: copywright permission for use of image of MTX/MTI for 

thesis 

To see messages related to this one, group messages by conversation. 

From:Remco Sikkema (remco.sikkema@xsens.com) 
Sent: August-29-13 8:52:44 AM 

To: Danielle Berden (Danielle.Berden@xsens.com) 

Cc: augustinlaurie@hotmail.com (augustinlaurie@hotmail.com) 
1 attachment I Download all as zip (107.4 KB) 

MTx w connectorcoordinate system.jpg (107.4 KB) 

Be careful! This sender failed our fraud detection checks. 
Show content 

Hello Laurie, 

Sorry for the delay, I'm in the Netherlands, so there is a time difference. 

We approve the use of the images you stated, please refer to us as 'Xsens'. Attached is also the 
highres version. 

Good luck! 

Rem co 

From: Laurie Augustin <augustinlauri~@hotmail.com> 

Date: Thu, 11 Oct 2012 16:49:22 +0100 

To: Info <info@xsens.com> 

Subject: Request for Permission to Use Copyrighted Material in a Thesis/Dissertation 

To Whom it May Concern, 

xcvii 



I' 

I am a York University student preparing my thesis for submission as part of the 

requirements of my master's degree in Kinesiology. The title of my thesis is: Cervical 

spine motion during patient transfer onto a long spine board. 

The reason I am writing is to ask permission to include the following illustrations in my 

thesis: 

a) Sensor Coordinate System for Mti, Fig l, p. 8. 

From MTx and Mti User Manual and Technical Documentation (2008). 

The material will be ful1y cited in my thesis. 

In the interest of facilitating research by others, my thesis \Vill be available on the internet 

for reference, study and/or copy. The electronic version of my thesis will be accessible 

through the York University Libraries website and catalogue, and also through various 

web search engines. I will be granting Library and Archives Canada a non-exclusive 

license to reproduce, Joan, distribute, or se1l single copies of my thesis by any means and 

in any form or fonnat. These rights will in no way restrict republication of the material in 

any other form by you or by others authorized by you. 

Could you please confirm in writing or by email that these arrangements meet with your 

approval. If you do not solely control the copyright in the material, please let me know as 

soon as possible. I would also appreciate any information you can provide about others to 

whom I should write to request permission. 

l.f you would like to confirm pem1ission in writing, you can do so by signing and 

completing the information below and returning this signed and completed letter in a self­

addressed stamped envelope as soon as possible to 54-5005 Pinedale Avenue, Burlington, 

ON L7L 5J6. 

xcviii 



If you would like to confirm pe1111ission by email, my email address is 

augustin laurie@j,hotmai 1. corn. 

Sincerely, 

Laurie Augustin 

xcix 

' 


