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Abstract

In the classic option pricing theory, the market is assumed to be competitive. The relax-
ation of the competitive market assumption introduces two features: liquidity cost and
feedback effect. In our study, investors in non-competitive markets are divided into two
categories: small investors and large investors. Small investors encounter liquidity cost
while large investors face both liquidity cost and feedback effect. For small investors, lig-
uidity cost could be modelled by a supply curve function. For large investors, liquidity cost
could be modelled via trading speed and a trading action is assumed to have a feedback
effect on underlying asset price. Chapter 2 and chapter 3 are dedicated to investigate the
option pricing for small investors. In chapter 2, how to perfectly hedge options (including
vanilla options and exotic options) under the supply curve model in a geometric Brownian
motion model was studied. In Chapter 3,local risk minimization method was used to price
European options with liquidity cost in a jump-diffusion model. In chapter 4, the utility

indifference pricing method was applied to price European options for large investors.
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1 Introduction

1.1 Dissertation Objective

The objective of this dissertation is to study how to price options in non-competitive mar-
kets. Based on new features of non-competitive markets, liquidity cost and feedback ef-
fects, market participants are divided into two categories: small investors and large in-

vestors. Different pricing models are proposed for both small and large investors.

1.2 Background

As financial markets grow, derivatives have become more and more important for specu-
lating and hedging purposes. Derivatives are financial contracts whose value depends on
underlying variables. Futures, options, swaps, and forwards are the main categories of
derivatives. The valuation of derivatives poses one of the most important challenges in
mathematical finance. The Black-Scholes option pricing model proved a breakthrough in

pricing derivatives. Its main insight is that options can be replicated by two primary assets:
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the underlying stock and the bank account. The option’s price is simply the value of the
portfolio consisting of the underlying asset and the bank account.

It is well known, however, that the Black-Scholes option pricing model was built on ex-
cessively restrictive assumptions on market conditions and asset processes. The following

assumptions provide an ideal world for deriving the Black-Scholes equation:

1. There are no transaction costs (including taxes) and no restrictions on trading (e.g.

short sale constraints). These two conditions contribute to a frictionless market.

2. An investor can buy or sell unlimited quantities of the stock without changing the

stock price. This assumption contributes to a competitive market.

3. The interest rate is constant, and the stock price follows a geometric Brownian mo-

tion with constant drift and volatility. These conditions forms a complete market.

A market satisfying both assumptions (1) and (2) is considered to be a perfect market. It
is important to distinguish complete market from perfect market. Note that a market could
be complete but imperfect. If there are transaction costs in the market, but the interest
rate is constant and the stock price follows a geometric Brownian motion, the market is
imperfect but complete. A market could also be incomplete but perfect, for instance, a
jump-diffusion model without transaction cost. In a Black-Scholes world, it satisfies all

the three assumptions above, so the market is both perfect and complete. The options



become redundant securities and can be replicated by the stock and the bank account

(Merton (1976)). Therefore, the replication cost is the unique option price.

1.3 Option pricing in a perfect market

In a perfect market, when the stock price follows a geometric Brownian motion and the
interest rate is constant, the market is complete and the Black-Scholes price is the unique
arbitrage-free price for options. However, when the stock price follows other processes,
such as a jump-diffusion model, replicating the option’s payoff with a stock and bank ac-
count becomes impossible, and the Black-Scholes theory is no longer applicable. Harrison
and Kreps (1979), Harrison and Pliska (1981), and Harrison and Pliska (1983) developed
the risk neutral pricing theory, which provides a framework to pricing options for general

stock price processes. They also introduces two fundamental theorems of asset pricing.

Theorem 1.3.1. (The First Fundamental Theorem of Asset Pricing) If (S, B) models the
stock and bank account on a probability space (2, F, P), then the market is arbitrage free
if and only if there exists a risk neutral measure that makes the discounted asset process a

martingale.

Theorem 1.3.2. (The Second Fundamental Theorem of Asset Pricing) The market is

complete if and only if there exists a unique risk neutral measure for the asset price process

(S, B).



Risk neutral pricing is a general pricing method and can be used to price options in
general asset price models. Let V(¢,S,) denote the option price at time ¢ with the stock
price S, and the payoff of the option (S — K)* at the time of maturity 7. In a perfect and
arbitrage free market, the value of a European option is the discounted expectation of its

payoff under a risk neutral measure Q:
V(t,5,) = EZ[e7 (St - K)Y]

where r is the constant interest rate. If the stock price S, follows a geometric Brownian
motion model with constant volatility, the risk neutral measure is unique. However, in
more general cases, such as a jump-diffusion model (Kou (2002)) or a stochastic volatility
model (Heston (1993)), more than one risk neutral measure exists. A particular risk neutral

measure is chosen to price options in general asset price models.

1.4 Option pricing in non-competitive markets

When the market is perfect, risk neutral valuation provides a general approach to value op-
tions. Pricing options is simplified to the calculation of expectations of discounted options
payoff under the risk neutral measure. The market, however, is imperfect; more precisely,
it is neither frictionless nor fully competitive. Risk neutral valuation collapses when the
market is imperfect. Much research has been devoted to extending the option pricing the-

ory to imperfect markets, including markets with friction (transaction costs or short sell
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constraints) and non-competitive markets (markets with liquidity risk or feedback effects).

When the frictionless market assumption was relaxed, transaction costs were intro-
duced and option pricing with transaction costs was extensively studied. Leland (1985)
proposed a Black-Scholes type equation with modified volatility to characterize the op-
tion price, which shows that transaction costs add extra cost to the option writer, resulting
in higher prices for options. Boyle and Vorst (1992) investigated the option pricing with
transaction costs in a binomial model, and a simple Black-Scholes approximation formula
was derived for the option prices. Unlike the perfect continuous delta hedging with fi-
nite initial cost in the Black-Scholes model, replication of options with transaction costs
in continuous time will incur infinite transaction costs. By replacing the perfect hedging
with a super hedging strategy, Edirisinghe et al. (1993) and Bensaid et al. (1992) showed
that it is cheaper to dominate a contingent claim than to replicate it. Later, Soner et al.
(1995)proved that the minimal cost to hedge a European call option with transactions cost-
s 1s just trivial hedging. Also, there is considerable literature focusing on options pricing
with short sell constraints. Related results can be found in Cvitani¢ and Karatzas (1993),
Jouini and Kallal (1995), and Pham (2000).

Compared to markets with friction, there has been much less attention paid to inves-
tigating options pricing in non-competitive markets. The relaxation of the competitive

market assumption has a twofold impact on the market. First, it brings liquidity risk to the



market. Liquidity risk is the risk that due to the timing and size of a trade, a given security
or asset cannot be traded quickly enough to meet the short term financial demands of the
holder. The source of liquidity risk is demand pressure. Demand pressure arises because
not all investors are present in the market at the same time, meaning that if an investor
needs to sell a security quickly, then bid limit orders will be consumed by the investor’s
sell market order, forcing the price the investor receives to be less than the market price.
In order words, liquidity risk leads quick selling at a price less than the market price and
quick buying at a price higher than the market price. Liquidity risk is considered to be the
most significant risk in addition to market risk and credit risk. In a market with liquidi-
ty risk, investors cannot buy or sell large quantities of security at the given market price.
As the market for a security becomes less liquid, investors are more likely to take losses
because of the bigger Bid-Ask spread. Liquidity risk results an extra cost associated with
buying or selling a given security. We regard this newly incurred cost as liquidity cost. The
average liquidity cost is dependent upon both the securities market price and the trading
volume or trading speed.

Liquidity risk is a critical consideration in derivative pricing. When the market is lig-
uid for a derivative, the trader has no difficulty in doing the daily hedging to maintain the
delta neutrality. However, for some securities, the market is not liquid, which means the

liquidity risk needs to be considered when pricing and hedging derivatives on this under-



lying security. One approach, proposed by Cetin et al. (2004), is to introduce a supply
curve to model the security price as a function of market price and trading volume. This
supply curve function is a non-decreasing function of trading volume: buying more shares
of stock means paying higher price per share, which is natural. In Cetin et al. (2004), the
option price under the supply curve function is the same as the Black-Scholes price, which
means that there is no liquidity premium. On the other hand, the option pricing model
with liquidity cost in Cetin and Rogers (2007) produces a nonzero liquidity premium for
options when considered in discrete time. Motivated by the lack of liquidity premium
in the continuous time model, a super hedging European option under the supply curve
function in continuous time was studied by Cetin et al. (2010). They studied the super
replication problem under the supply curve function with the additional constraint on the
boundedness of the quadratic variation and the absolute continuous parts of the portfolio
processes. A dynamic programming equation is used to characterize the minimal hedging
cost of European options with liquidity risk. The equations shows that a nonzero liquidity
premium in continuous-time for a set of appropriately defined admissible strategies could
be generated. Gokay and Soner (2012) considered the super hedging of European options
in a binomial model, and it led the same liquidity premium as the continuous time lim-
it mentioned in Cetin et al. (2010). Also, Ku et al. (2012) derived a partial differential

equation that provided discrete time delta hedging strategies, concluding that the expect-



ed hedging errors approach zero almost surely as the length of the revision interval goes
to zero. All these approaches provided us with new insights on European option pricing
with liquidity risk, but it is difficult to apply them to pricing American options and exotic
options. A general method for pricing different options with liquidity risk is still lacking.
In addition, the relaxation of the competitive market assumption raises another prob-
lem: feedback effects. In non-competitive markets, feedback effects refer to the price
effects that trading actions by investors place on the security’s future price evolution. A
security’s future price becomes dependent on an investor’s trading action. Some investors
could take advantage of making a profit by choosing an optimal trading strategy to influ-
ence a security’s future price. Investors whose trading has a feedback effect on a security’s
price evolution are considered to be large investors. Regarding large investors’ hedging
strategies in asset pricing, Frey and Stremme (1997) , Platen and Schweizer (1998), and
Schied and Schoneborn (2009) followed a microeconomic equilibrium approach to study
the feedback effects from such hedging strategies. Frey and Stremme (1997) investigated
the impact of dynamic hedging on the price process in a general discrete time economy
with the equilibrium model. Ronnie Sircar and Papanicolaou (1998) analysed the increas-
es in market volatility of asset prices. Following an equilibrium analysis, they derived
a nonlinear partial differential equation for the derivative price and the hedging strategy.

They observed that the increase in volatility can be attributed to the feedback effect of



Liquidity cost No liquidity cost

Feedback effects Large investor model Not investigated

No feedback effects | Small investor model | Black-Scholes model

Table 1.1: Different models with respect to liquidity cost and feedback effects

Black-Scholes hedging strategies.

Another approach to investigating the feedback effects is to study the coefficients of the
price process relying exogenously on the large trader’s trading strategy. Kraft and Kiihn
(2011) modelled the permanent price impact by making the expected returns dependent
on the stock position of a large investor. Jarrow (1994) studied option pricing when large
investors are manipulating the market through their trading strategies. Cvitani¢ and Ma
(1996) and Cuoco and Cvitani¢ (1998) assumed that the large trader has a price impact
on the expected return through the investor’s stock holdings. Almgren (2003), Schied and
Schoneborn (2009) and Forsyth (2011) modelled the permanent price impact of the stock
price from the size of the transaction and the speed of change of the position in the stock.
However, how to price and hedge the option for large investors considering both liquidity
cost and feedback effects is still not answered.

In this dissertation, I addressed the option pricing problem with liquidity cost and feed-
back effects in a unified framework. In non-competitive markets, the new features—Iliquidity
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cost and feedback effects—violate the perfect market assumption. When considering the
market participants in a non-competitive market, the market participants are divided into
two categories: small investors and large investors. Small investors are associated with
liquidity cost while large investors in a market are associated with both liquidity cost and
feedback effects. The criteria for characterizing an investor are not only determined by the
investor’s wealthy but also on the security the investor is trading. A specific investor who
owns 10,000 shares in Apple might not be able to influence Apple’s stock price. Some
small companies, trading 10,000 shares, however, might influence and even manipulate
the small company’s stock price. Therefore, for big companies, this investor is a relatively
small investor, while for small companies, this investor becomes a large investor. Table
1.1 provides a big picture of different models for pricing and hedging options in different
market assumptions. In this study, I propose different pricing methods for two types of
investors.

Small investors do not have the market power to change the security’s future price. But
liquidity cost is unavoidable, and it will add extra cost to hedging options. In Cetin et al.
(2010) and Ku et al. (2012), investors are assumed to be small investors, and their hedging
strategy does not affect the price evolution. Only liquidity cost needs to be considered
when studying option pricing for small investors, and feedback effects are not taken into

consideration. As for large investors, their market power to influence security price evolu-
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tion could be a great advantage to the large investors and cannot be ignored. Both liquidity

cost and feedback effects need to be considered when pricing options for large investors.

1.5 Chapter Breakdown

Chapter 2 and Chapter 3 are devoted to the study of options pricing for small investors.
Small investors in non-competitive markets face a liquidity cost, which is modelled by a
supply curve function. Chapter 2 will show the existence of a perfect hedging of options
for small investors when the stock price follows a geometric Brownian motion. There
are perfect hedging strategies for the party writing the options and the party buying the
options. Partial differential equations used to characterize the perfect hedging cost for
vanilla and exotic options are presented. The chapter will also show that the hedging cost
for the party writing the options forms an upper bound for the option price and the hedging
cost for the party buying the options forms a lower bound.

Chapter 3 will show how to apply local risk minimization to price European options
in a jump-diffusion model for small investors. The jump-diffusion model is approximated
by discrete time models, and local risk minimization is used to price and hedge European
options in the discrete time model. When the time interval in the discrete time model goes
to zero, the option price obtained from the discrete time model converges to the option

price in a jump-diffusion model.
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Chapter 4 will study option pricing for European options for large investors. Large
investors face both liquidity cost and feedback effects in the non-competitive market. In
this chapter, the utility indifference price method will be applied to price options for large
investors in a non-competitive market, since the utility indifference pricing approach has
been proven to be a good pricing methodology to price options for large investors. HIB
equations to characterize the value function will be derived. The existence and uniqueness

of viscosity solution of HIB equations will also be proved.
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2 Options Pricing and Hedging for Small Investors

2.1 Introduction

In a perfect market, risk neutral valuation provides a general framework for pricing op-
tions. Liquidity risk and feedback effects exist in a non-competitive market, causing the
market to be imperfect, and risk neutral valuation is no longer applicable. This dissertation
will attempt to develop new methods for pricing and hedging options in a non-competitive
market. Generally, the market participants could be divided into two categories: small
investors and large investors. Small investors are defined as investors who do not have
the market power to change a security’s future price; feedback effects are not taken into
consideration when pricing and hedging options for small investors. Liquidity risk is un-
avoidable for small investors, however, adding a liquidity cost for hedging options. The
question is how to price and hedge options for small investors with liquidity cost. The
first step toward an answer involves modelling liquidity risk and characterizing the lig-

uidity cost. Cetin et al. (2004) introduced a supply curve to model the security price as

13



a function of market price and trading volume. Based on the supply curve model, Cetin
et al. (2010) studied a super hedging European option in continuous time. Gokay and
Soner (2012) considered the super hedging problem in a binomial model. Ku et al. (2012)
derived a partial differential equation that provided discrete time delta hedging strategies
whose expected hedging errors approach zero almost as surely as the length of the revision
interval goes to zero. All these approaches are limited to pricing European options with
liquidity risk, but it seems quite difficult to generalize them to pricing American options
and exotic options.

This chapter proposes a general method for pricing different options with liquidity
risk. Adapting the Black-Scholes’ replication idea, this chapter will show the existence of
perfect replication for European options with liquidity risk, and will derive a partial differ-
ential equation to characterize the replication cost. Perfect replication of American options
and exotic options (Barrier options and Asian options) will then be presented and the cor-
responding partial differential equations to characterize the replication cost will be derived.
My approach could be applied to pricing other exotic options and early exercise option-
s,e.g2. Lookback options and Bermudan options. For simplicity, this chapter will limit its
coverage to European options, American options, Barrier options, and Asian options. For
each kind of option, there exists a buyer’s replication cost and a seller’s replication cost.

The buyer’s and the seller’s replication costs can then be considered the lower bound and

14



the upper bound, respectively, for the option price for small investors in a non-competitive

market.

2.2 The supply curve model

Let us consider a financial market that consists of a risk-free bank account and a risky

stock. The interest rate is r and the bank account B, is given by:

dB, =rBdt, tel0, T]. 2.1

The stock price is defined on a probability space (2, F, P) with the filtration {F, : t > 0}
generated by a one-dimensional Brownian motion W,. The stock price S, follows the

stochastic differential equation:

dS, = puSdt+ oS, dW, tel0, T] (2.2)

where p is the drift rate and o is the volatility.

An investor who writes an option needs to construct a portfolio consisting of the un-
derlying stock and the bank account to hedge the option. During the hedging process, the
hedging portfolio needs to be adjusted frequently to reflect the change of the value of the
options. In a non-competitive market, the market is not fully liquid and liquidity risk ex-
ists. Investors cannot buy or sell a large volume of stock at the given quoted price. Cetin

et al. (2004) introduced a supply curve function to model the liquidity risk. A supply curve
15



function S ,(x) represents the stock price per share that the investor pays for an order size
of x when the stock price is S, at time ¢. A positive x represents a buying of stock and a
negative x represents a selling of stock. The supply curve function is determined by the
market structure. A single investor’s past actions, wealth, and risk attitude therefore have
no impact on the supply curve. It is believed that the supply curve satisfies the following
assumptions:

(1): S,(x) is ¥, measurable and non-negative.

(2): §,(x) is non-decreasing in x.

(3): S:(x) is continuous for all x.

1005 Traded Stock Price under Supply Curve Model
- T T T T

100.4 n

100.3 -

100.2 1

100.1 — n

100 - 1

5,

99.9 1

99.8 - -

99.6 1

99.5 | | | | | | | |
-5 -4 -3 -2 -1 0

trading volume k
(in thousands)

i
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IS
(4]

Figure 2.1: Traded stock price under supply curve model

Due to the liquidity risk, investors face the fact of selling at a lower price than the
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market quoted price and buying at a higher price than the market quoted price; liquidity
risk therefore adds extra cost for trading. An example could be found in Figure 2.1. In
respect to the general form of a supply curve function, Ku et al. (2012) applied a separable

form of supply curve function, which is given by:

Si(x) = f(X)S4, 2.3)

where f(-) is a twice differential non-decreasing function with f(0) = 1. This chapter will
use the above separable form of supply curve function.
A trading strategy is defined by a pair of (B,, P;), where B, denotes the wealth in the

bank account and P; is the number of stock at time ¢. We restrict P, to the form:

! t
P, =Py + f a.ds + f BsdWy, 2.4)
0 0

where a; and B are two progressively ¥, measurable processes and both E [ fot Iaslds] and
E [ fot B?ds] are finite for every ¢ € [0,T]. P, is a continuous process, which has finite

quadratic variation and infinite variation. The differential form of P, will be
dP, = a,dt + 3,dW,. (2.5)
The quadratic term of P, is
(dP,)* = Bdt. (2.6)

In a fully liquid market, there is no liquidity risk, and the cost to change the stock position

from P; to P4 during [t,t + dt] is dP; X S,. When liquidity risk exists and the traded
17



price of the stock is given by a supply curve function S,(x) = f(x)S,, the cost becomes
dP,x S ,(dP,). The liquidity cost incurred from [z, t + dt] is the extra cost introduced by the

supply curve function. It is defined as:

dP, x S (dP,) —dP, x S, 2.7)

From (2.7) and the Taylor expansion of f(P,), it follows that:

dP, x S,(dP;)—dP, xS, =dP,(f(dP,) - 1)S,

144 0
= dP, ( £ (0)dP, + f 2( )dP,z) P (2.8)
Substituting (dP;)* = B*dt into (2.8), we obtain the result
dP; x S (dP,) —dP,; x S, = f'(0)B>S dt. (2.9)

The portfolio’s value is defined by
A, =P.S; + B,
Under the supply curve model, a trading strategy (P, B;) is self-financing when

! ! !
P.S,+ B, = PySo + By + f J f rB.du — f F(0)B2S ,du, (2.10)
0 0 0

where PyS( + By is the value of the initial portfolio, j(;t P,dS , is the capital gain from
the stock, fot rB,du is the gain from bank account and fot f(0)B2S ,du is the accumulated

liquidity cost. Under self-financing condition, the differential form of A, is

dA, = P,dS, — f(0)S Bidt + rBdt. (2.11)

18



Compared with the self-financing condition in the Black-Scholes model, the self-financing
condition with liquidity cost has an extra term f”(0)S ,87dt to account for the liquidity cost

incurred during the trading.

2.3 European options

An investor who writes one call option (S 7 — K)* needs to set a hedging portfolio to hedge
the option. It is assumed that the option is covered, which means the option writer already
owns P position of the stock. Therefore, there is no liquidity cost for constructing the
initial hedging portfolio (Py, By). The investor continuously adjust the hedging position P,
during the hedging, and under the supply curve model, the value of the hedging portfolio

at time 7T is

T ! T
PrSt + Br = PySo + By + f P.dS, + f rB,du — f f(0)B2S . du.
0 0 0

In this study, replicating the option means the market value of the option writer’s hedging
portfolio at maturity 7" equals the option’s payoff. In other words, this study does not
consider the liquidity cost of delivering the option’s payoff at maturity. The option could

then be replicated by a self-financing portfolio:

(St —K)" =PrSt + Br,

19



and the replication cost for the option seller is PySo + By. Symmetrically, there exists a
replication strategy from the option buyer. When an investor buys one option, the investor
shorts a portfolio to hedge the option. Assuming the short portfolio is (—Py, —By) and the

option buyer can replicate the option at time 7', we have the following equations:
A . A A o r T A
~(S7—K)" = -PrSt—Br = -PySo— By + f (—=P,)dS, - f rB.du - f F(0)B2S udu
0 0 0
and

T ! T
(S —K) = PrSy+ Br = PySo + By + f PdsS, + f rB,du + f F(0)B32S ,du.
0 0 0

The replication cost for option buyer is £,S o+ By. The replication cost for the option seller
and buyer will be different. This chapter shall show that the seller’s replication cost will

be greater than buyer’ replication cost.

Theorem 2.3.1. (European Options) Under the supply curve model, option sellers can
construct a portfolio replicating the option’s payoff. The replication cost C(x,t) satisfies

the following equation:

d aC 1, &C\?
0—? + rxa—i + Eo-zxzﬁ_xf + f(0)x (O‘Xa—xf) =rC (2.12)

with the terminal condition

C(x,T)=(x—-K)". (2.13)

20



Proof. Let Y, be the value of the option at time ¢. Y, is a function of S, and ¢, and could be
written as ¥, = C(S,,1),t < T. Assume C(S,,t) is twice differentiable on (0, o) x [0, T).

From Ito’s Formula, it is obvious that

16°C

aC oC aC
dy, = (g(s,, HuS, + E(St, 1)+ EW(S,,I)UZSIZ dt + g(S,, NoS.dw,.  (2.14)

The option seller who writes an option needs to construct a self-financing portfolio
(B;, P,) to hedge the option. The option seller’s portfolio then consists of —1 option, B,
bank account and P, stock. The dynamic hedging position P; has finite quadratic variation

and infinite variation. It can be written in the following form

t t
P, =Py+ f agds + f BsdW, (2.15)
0 0

where @, and S, are two progressively ¥, measurable processes. The value of the portfolio
is

Ht:PtSt+Bf_Yt:At_Yf' (2.16)
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(2.11), (2.14) and (2.16) imply that

dll, =P,dS, + rB,dt — f'(0)S ,82dt — dY,

16°C

aC ac
=P, (uS dt + oS ,dW,) + rB.dt — (5(5” HuS, + E(S,, 1+ Em(St, t)a'zS,Z) dt

oC
- g(S,, oS dW, — f/(0)S Brdt

= (PtO'St - Z—E(St, t)O'S,) dw,

10*C

oC oC
+ (P,uSt - E(S” HuS +rB; — E(S” f) — 5353

S+ t)O'ZStZ - f,(o)ﬁtzst) dt.
2.17)

In order to perfectly hedge the option, the option writer needs to make dI1, = 0. The unique

decomposition property of the Ito process implies that the only way to make dII, = 0 is to

make both the dW, and df term in (2.17) zero. The first step is to make the dW, term O:
oC
PoS,— —(S:;, oS, =0. (2.18)
oS
The result is:

t t aC
P,=Py+ f ayds + f BsdW, = —=(S,,1). (2.19)
0 0 as

Applying Ito Lemma to both sides of (2.19) , gives the result:

o*C

=S, —
ﬁl O-lasz

S40). (2.20)

We also know:

oC
B, =C(S;,0) =8P =C(S,1) - Si55SnD.
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Then, we make the df term of (2.17) to be O:

PSS - g(sf’ HuS; + rB, — E(St,l) - 50‘25,

aSZ(St’t) fOsp=0. (221

SubStitUtingﬂt - O-StaSZ(Sta t) Bt - C(Sh t) Sl‘ (Sh t) and Pt - (Stat) intO (221)’

we obtain

oc 1
St S, — + =
(t )+rt65,+2

t

2020°C ) 2_
MRPTE S\ 55 z(Snl) =rC(S,0). (222

Replacing S, with dummy variable x, the replication cost of European options satisfies the

following equation
ZC 2
— +rx—+ =0 x — + f'(O)x (O‘X—) =rC, (2.23)
X X
with the terminal condition:

C(x,T)=(x—-K)". (2.24)

Similarly, we can characterize the replication cost for option buyers.

Theorem 2.3.2. Under the supply curve model, option buyers can construct a portfolio

replicating the option’s payoff. The replication cost C(x, t) satisfies the following equation:

3 aC 1 62 8*C\’
9C L 2 1220 C i)y O'x—C —rC (2.25)
ot ox 2
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with the terminal condition:
Cx,T)=(x-K)". (2.26)

From the fundamental theorem of asset pricing, we can perfectly hedge derivatives
when the market is perfect and complete. In a market with transaction costs or short
selling constraints, perfect hedging does not exist in a continuous time model. People tend
to agree that perfect hedging is impossible in an imperfect market in a continuous time
model. Surprisingly, we achieve continuous perfect hedging in a market with liquidity risk.
In other words, we have found an example where continuous perfect hedging exists in an
imperfect market. What’s the difference between our liquidity risk model and a transaction
costs model? Why is perfect hedging possible in our model when it is impossible in a
transaction costs model?

In both the proportional transaction costs model and our liquidity cost model, we need
to adopt a dynamic hedging strategy to hedge the option to replicate the option’s payoff.
When the stock price follows a geometric Brownian motion, the dynamic hedging position

P, usually has the following form:

t f
P, =Py+ f a,du + f B.dW,, (2.27)
0 0

which has finite quadratic variation and infinite variation. The incurred proportional trans-
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action costs during [0, T7] is

T T
f kS, |dP,| = f kS, lv,dt + BidW|,
0 0

where k is the parameter of transaction costs proportion. When g, is not 0,

T
f kS, \audt + BidW|
0

will be infinite because of the infinite variation of the Brownian motion. This means that
under a continuous hedging strategy, the incurred transaction costs will go to infinity if
we adopt a continuous time hedging strategy. This is the reason we cannot replicate an
option’s payoff with finite initial cost in the transaction costs model.

In the liquidity cost model, however, the liquidity cost is:

T
f £(0)S B2dt.
0

The fundamental difference between the transaction costs model and our liquidity cost
model is that under a continuous hedging strategy, the transaction costs will go to infinity
while the liquidity cost will be finite, which is why we can replicate options in the liquidity

cost model.
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2.4 Upper bound and lower bound of option prices

We denote the option seller’s replication cost by C*(x, f). From the option seller’s side, the
replication cost C*(x, t) is determined by

+ + 2 2+ 2
6; (x, t)+rxac + lazxza —(x,1) + f(O)x(O'xa ¢ (x, r)) =rC*(x,1) (2.28)

ox 2

with C*(x,T) = (x — K)*, C*(0,1) = 0, and lim C(x,f) = +oco. The Black-Scholes price
X—+00

C(x, 1) satisfies

aC aC 1 ,,0°C
= (6D + rxo— 4 So o (1) = rC(x, ) (2.29)

with C(x,T) = (x — K)*, C(0,7) = 0, and lim C(x,1) =

X—+00
Theorem 2.4.1. When f'(0) > 0, suppose C*(x, 1) is a classical solution to

8C+( H4 oc+ N 1, 282 Cct
X, rx —0°x
ot ox 2

2+ 2
(x 1)+ f'(0)x ((J'xa ¢ (x, t)) =rC*'(x,1) (2.30)

and C(x, 1) is a classical solution to

oC aC 1 ,,0°C
=7 (oD + rxom 4 S0 o (1) = rC(x, 1) (2.31)

on (0, +00) X [0, T). If we have C*(x,T) = C(x,T), C*(0,1t) = C(0,¢t) and lim C*(x,t) =
X—+00

lim C(x, 1), then C*(x,t) > C(x,t) on (0, +c0) X [0, T].

X—+00

Proof. Denote D(x,t) = C*(x,t) — C(x, 1), then we have

D(x,T)=0,D(0,t) =0and lim D(x,7) =0
X—+00
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Differentiating D(x,t) = C*(x,t) —

oD
E(-xa t) - (91‘

ac*

('x’ t) -

oD (1) = 6C+
R x’ )
0x
and
1 ,6*D 1 o2 ,0°CY
2T A = 3 G
Subtracting (2.31) from (2.30), we obtain
oc™* 0 *
F(X, ) — —(x, f)+rx— o (x,1) — rx

——O'x (x t)+f(0)x(

2 M+

C(x,t) w.rttand x, we have:

oC
—(x,t
Pl

(5~ C(x, B
x

) — 50‘ X s (x,0)
0+ 300 T
X, 20- X,

2
(x, t)O'x) =rC*(x,t) — rC(x,1).

Substituting (2.33) and (2.34) into (2.35), we obtain

Z—I;(x, 1) + ran(x 1) + 10' X’ (x 1) —rD(x,1) = —f’(O)x(

We denote

F(x,t) = —f’(O)x(a(9

so we have F(x,t) < 0 and

(x t)+rx—

Ox

(x, 1)+ 0'

2

2

+

2+

2

2
C
5 (x, t)O'x) ,
X

X a—D(x t)—rD(x,t) = F(x,1).
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2
C
pp (x, t)O'x) .

(2.32)

(2.33)

(2.34)

(2.35)

(2.36)

(2.37)

(2.38)



Suppose D(x, t) has a negative local minimum at some point (x*, #*) in (0, c0) X (0, T'] , then
we have

D(x*,t") < 0. (2.39)

The necessary condition for local minimum implies

oD oD
—(x*, 1) = —(x", 1) = 0. 2.4
at(x,t) ax(x,t) 0 (2.40)

The scale function i(x) = D(x, t*) has its minimum at x*, thus

2
h'(x") = g—lz)(x*, ) > 0. (2.41)
X

From (2.38), we know

oD oD 1 8°D 2c* ?
E(x*, )+ rx*a(x*, )+ EO'QX*ZW(X*, ) —rD(x*,t") = —f(0)x" ( Fp (x", t*)a'x*)
(2.42)
From (2.40), we have
2(9x2x’ o°x rD(x*, 1) = X Fpo X, ox .
which implies
rD(x*,t) > 0 (2.44)

Because r > 0, (2.44) is contrast to

D(x*,t") < 0.
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By now, we can conclude

D(x,1) =0

and

C*(x,1) > C(x,1), when (¢, x) € [0, +c0) X [0, T].

We denote the option buyer’s replication cost by C~(x, ). From the option buyer’s side,

the replication cost C™(x, 1) is determined by

oc~  aCc 1, ,C o
P +rx PP + 20’ X Fp f (O)x(O'x ) = rC (2.45)

with C~(x,T) = (x — K)*, C(0,t) = 0, and lim C™(x,f) = +oo. Applying the same

X—+00

argument, we can prove

C (x,1) < C(x,1), when (t,x) € [0,+c0) X [0,T].
So, we can conclude that

C (x,1) < C*(x,0).

Under the supply curve model, any price above C*(x, t) will lead to arbitrage for the option
seller and below C~(x,t) will lead to arbitrage for the option buyer. We can consider
C*(x,t) as the upper bound for option price, and C~(x, t) as lower bound. So the quoted
option price C” in the market with liquidity risk should satisfy

C (x,) <CP <C*(x,0).
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The price of the option satisfies the differential equation

ac  aCc 1 ,,0*Cc ., (*C Y\
o + rxa + 50‘ X e + f (O)X(Wcrx =rC (2.46)

Since ® = L, A= T = ‘ZZT? it follows that

1
O+ rxA + 5a2x2r + f(0)o*x°T* = rC (2.47)

Hedging options with a large absolute value of I will lead to a large liquidity cost, which
is reflected in the term f7(0)o>x’I". Intuitively, a large I means frequent trading of stocks,
and frequent trading leads to a large liquidity cost. Imagine that if one option has I' = 0,
which means there is no need to change the stock position in the hedging portfolio, then
the liquidity risk will be zero. The option price in the market with liquidity risk will be the

Black-Scholes price. The option price is also reflected in the equation (2.47).

2.4.1 Asymptotic Expansion

In this section, we analyze the solution of equation (2.46) with an asymptotic expansion
method, the idea that can be tracked to Ku et al. (2012). In this section, we present an
approximation formula for equation (2.46).

When f7(0) is sufficiently small, the solution can be approximated by the form
C(x,1) = Co(x, 1) + f(0)Ci(x, 1) + O(f'(0)*).
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The Cy(x,t) term is determined by the Black-Scholes equation:

aC, aCy 1 , ,0°Cy
X

o e T2 o

= rC, (2.48)

with Boundary condition Cy(x,7T) = (x — K)*. In the order of O(f’(0)), we have C;(x, 1)

determined by

aC,  OC, 1 , ,0*C, , 4[(PCy ., PCY

?'FFXE'FEO'XW'F(TX W+f(0) O =rC, (2.49)
with C(x,T) = 0.

The explicit solution is the Black-Scholes formula
Co(x,1) = xN(d,) — Ke”""N(d,) (2.50)
where
In(x/k) + (r + o /2)(T — ¢
d, = n(x/k) + (r + 07 /2) ), dy=d,—oNT —1.
oNT —t
For the European call option, the gamma, % is given by
»’Cy 1 I @

= e
Ox? xo VT —t \/ﬂ

Substituting the formula of % into equation (2.49) and simplifying it, we obtain

8C1 6C1 1 2 282C1 X

—d?
%1 - rC 251
or Y ox T2 92 Toma=n¢ T 25D

Please note that the f’(O)% in equation(2.49) is ignored in deriving equation(2.51) be-

cause it is in the order term of O(f’(0)). In order to derive the explicit solution of equation
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(2.51), we make the following variables transformations to transform equation (2.51) into

a standard boundary value problem for the heat equation:

x=e,t=T - g
2 _
Ci(x,0) = v(y,T) = v (ln(x), %ﬂ)

The partial derivative of C;(x, t) with respect to x and ¢ expressed in terms of partial deriva-

tives of v in terms of y and 7 are:

oC o2 Oy

i (2.52)
ocC 10v

% =35 2.53)
2 2

0C _ _1ov 10% (2.54)

Ox? 2dy K29y

Substituting (2.52), (2.53) and (2.54) into equation (2.51), we obtain:

0'26v+ 16v+l 2,2 16v+182v)+ X &
——— X+ X (S —+ S5 5)F——— T =71V
2 Ot xdy 2 x2dy x?0y*" 2n(T —1)
After we rearrange the equation of v(y, 7) and simplify it, we get:
o v (2 ov  2r 2
Eza—yz'F(OTz—l)a—y——zV'F—zg(y,T) (255)
where
) 2 n (e +r+ﬁ 2T
g(y’ T) = —e_d% = e} e_d% = 0-_ y_(l o (21 : )”2)
2n(T — 1) 271(% 4t

For further reference, we denote

a =

o2 =2r b= 0'2+2r2
202 7 '



We set v(y, 7) = e?P"w(y, 7). Computing the partials of v in terms of y and 7, we have

dv — beay+b‘rw + eay+b‘r8_w
or or
@ — aeay+b‘rw + euy+b‘r_
dy dy
0% ow
— aZea) +bTW + zaeay+b7' + eay+b‘r_2 )
ay dy dy

Substituting them into equation (2.55) and simplifying it, we obtain

2
b+ 20 = 2a 00 (2-1)(aw+5—w)—3w+ 2 5.1, (256)

T ay ay 0-2 0-2 0-2 eay+b‘r

We denote

a =

o2 =2r b= 0'2+2r2
202 7 T 202

and simplifying equation (2.56) by substituting a, b and g(y, 7), we have:

(]_2 T 2
O _ P L e s] (2.57)
or  0y* 2nt '

The initial condition for (2.57) is w(y,0) = 0. The solution w(y, ) is solved using

Duhamel’s principle:

é-aé—b o )zu) 1 -2
7) = a5 dedu, 2.58
W, T) = f f e e dedu. 259)
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Equation (2.58) is a double integration with respect to £ and u.

2 2

| _(1"(@;/ KHHUT)%) 1 _0-&?

—eé: ag—bu 2u —p 4w dg
2mu 2vn(t —u)

(47'!4*4142)(0'2 (ueruzf'ru)Jrr(Zu2 72714)+ln(K)u'2 (217214))2 )’2 N 2 lnz(K)

K% +1 e 4(r4(2r—u)(2m—2uz)2

u—21
47 NT — uu /m

;E;E:)f o? (uy +u? - Tu) +r (2u2 — 2Tu) +1In(K)o? (2t - 2u)

erf >
o? (2tu — 2u?) —MLZ;E:)
where
xe—\;Z
erf (x) = dv
(x) v
When & — +o0,
U2t g 2 ( 2 2 2 _
S o7 \uy +u Tu) +r (2u ZTu) +1In (K)o 2t - 2u)
erf 7 - - 1.
02 2tu - 2u?) —;E;f:)
and when ¢ — —oo,
u=2t 2 2 2 2
M(M_T)f o (uy +u - Tu) +r (2u - 21'14) +In (K)o Q27 — 2u)
erf 7 - — —1.
02 2tu — 2u?) u‘z;f:)

Therefore, the integration with respect to & could be written in an explicit form:

o2\
00 1 (ln (e‘f/K)Jr(rJr ) )0_2) 1 @75)2
_ef_ag_b”_# — W Co=) déf
oo 27U 2\n(t —u)

(4‘ru—4u2)((r2 (z¢y+uz —‘ru)+r(2u2—2‘ru)+ln(K)<r2(21—2u))2 },2 o Pu o m

K%"’l e 4(r4(2‘rfu)(2‘ru72u2)
27 NT — uu /u’;;—f:)
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Then w(y, T) could be written as:

(4114—4142)(0'2 (u)'+uz—nl)+r(2uz—2nl)+ln(K)u'2(21—2u))2 y2 2 1n27(K)

T K%‘F 1 e 4(r4(2‘r—u)(2m—2u2)2
w(y,T) = du.
0 2 NT — uu uLEu 2:)

We know

Ci(x,1) =v(y, 1) = e w(y, 1) (2.60)

Substituting

= In(x), 7 = —(T - 1)
2
into equation (2.60), we have

2
a“=2r o'+2r12 _
C](Xl)_ezzln()( )20'(Tt)><

(20’2(T—t)u—4u2)(0'2 (u]n(x)+u2—(%o’2(T—t))u)+t‘(2u2—(r2(T—t)u)+]n(K)0'2 (0—2 (T—t)—Zu))z . 209 5 &)

fz(TZ(T l) K 2+1 4(r4((TZ(T—I)—u)(rrz(T—l)u—2u2)2 41‘_202(T_t) A 2u
0

1 2/ o _ u-o*(T-1)
27U |502(T = 1) —u -T2 T-0)

The solution C(x, t) is approximated by
C(x, 1) = Co(x, 1) + f(O)Ci(x, 1). (2.61)
Therefore, the European call option price with liquidity cost could be approximated by

C(x,t) = xN(d,) — Ke”""N(d») + f'(0)e S - (” +2') 2T

(20‘2(T—t)u—4u2 ) (02 (u I+ (4 o2 (T—t))u)+r(2u2 —UZ(T—I)14)+ln(K)02 (0'2 (T—t)—Zu))z . 20 Puu 02K

féol(T_[) K%"'le 40'4(u'z(T—t)—u)((rz(T—t)u—2u2)2 du-202(T-1) o2 ot 4 2u
0

1.2 N u—o2(T—-1)
27u \|502(T = 1) — u L2 T-n)
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where

2 —
4o In(x/K) + (r + o /2)(T — 1) dy=d —oNT —1.

b

oNT -t
The liquidity premium is
a2-2r 1n(x)_(02+2r )2LO-Z(T_Z)
f’(o)e 202 202 2 X
(2().2(7-,[)“,4”2)(0.2 (uln(x)ﬂtzf(%rr2(Tfr))u)+r(2u27(7'2(T7[)u)+1n(K)n'2 (KTZ(T*I)*ZM))Z lnz(x) o Puou lnz(K)
+ X) U ru_u_
%O'Z(T—t) K%+le 4(7'4(0‘2(7-*[)*”)(O'Z(T*T)M*ZIAZ)2 4“_2"-2(T_I) o2 4 2u
f du.
0

[Lo2(T =y =y [—=Z T
2nu /50T — 1) —u W 1o2T-0)

The liquidity premium is positive and is a linear function of liquidity parameter f”(0).
When the liquidity parameter f’(0) is sufficiently small, the liquidity premium increases
linearly with respect to f”(0). In the next section, we will present the numerical results of

option prices with the approximation formula.

2.4.2 Numerical results of European options

In this section, we present some numerical results of European options. There are two
ways to calculate the option prices: using the finite difference method to solve the PDE
numerically and by using the approximation formula. We will present and compare the
option prices using the two methods. Also, numerical simulation of the hedging strategy
and hedging error will be shown to illustrate the perfect hedging of the option with liquidity
cost.

Compared to the Black-Scholes equation, the PDE of the option price with liquidity
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risk

oC  aC 1, ,C o*c\’
= T+ S0 o f1(0)x (O'x—) =rC, (2.62)
has a nonlinear term & 652 £(S, )%, which makes the PDE fully nonlinear.

The numerical results of the fully nonlinear partial differential equation are presented

in Table 2.2; parameter values are Sy = 100, o = 0.2, T = 1, r = 0 with strike K and

liquidity parameter f’(0) varying as shown in the table. Table 2.3 shows the option prices

f(0)=0.000 | f(0)=0.0005 | f’(0)=0.001 f'(0) = 0.002 f'(0) = 0.005
K BS Price Seller Buyer | Seller Buyer | Seller Buyer | Seller Buyer

90 13.587 13.596 13.577 | 13.606 13.566 | 13.625 13.542 | 13.676 13.518
95 10.516 10.528 10.504 | 10.539 10.492 | 10.561 10.463 | 10.625 10.424
100 7.9616 7.9741 7.9487 | 7.9864 7.9352 | 8.0102 7.9030 | 8.0784 7.8563
105 5.9019 59143 5.8891 | 5.9265 5.8756 | 5.9501 5.8424 | 6.0179 5.7941
110 4.2891 43006 4.2772 | 43118 4.2646 | 4.3337 4.2321 | 43965 4.1877

Table 2.1: Seller’s and Buyer’s replication costs with different Strikes and liquidity

parameters when 7' = 1.

when parameter values are Sy = 100, o = 0.2, T = 0.5, r = 0 with strike K and liquidity
parameter f’(0) varying as shown in the table.

The first column gives the Black-Scholes values for the corresponding European call
option. The Black-Scholes price is a special case in our model when f’(0) = 0. When

in the case of f"(0) = 0, the buyer’s price equals the seller’s price, and the Black-Scholes
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f(0)=0.000 | f(0) = 0.0005 f’(0) =0.001 f'(0) = 0.002 f/(0) = 0.005
K BS Price Seller Buyer Seller Buyer Seller Buyer Seller Buyer
90 11.7704 11.7787 11.7617 | 11.7868 11.7526 | 11.8024 11.7309 | 11.8466 11.7243
95 8.3486 8.3599 83369 | 8.3708 8.3245 | 8.3918 8.2944 | 8.4513  8.2700
100 5.6316 5.6442 56185 | 5.6564 5.6044 | 5.6801 5.5693 | 5.7466  5.5346
105 3.6132 3.6252  3.6006 | 3.6369 3.5871 | 3.6595 3.5517 | 3.7232  3.5165
110 2.2085 22186  2.1980 | 2.2283  2.1867 | 2.2470  2.1548 | 2.3002  2.1268

Table 2.2: Buyer’s and Seller’s replication costs with different Strikes and liquidity

Option Prices

parameters when 7" = 0.5.
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Figure 2.2: Buyer’s and seller’s prices with varying Strikes
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Figure 2.3: Buyer’s and seller’s prices with varying £’(0)

price is the unique price for the option. The column of f/(0) = 0.0005 gives the buyer’s
and seller’s prices when the liquidity parameter f’(0) = 0.0005. In this case, liquidity
cost is non-zero, and the seller’s price is larger than the buyer’s price (Figure 2.3). We
can regard the seller’s price as an ask price and the buyer’s price as a bid price. Because
any price that is higher than the seller’s price or lower than the buyer’s price will lead
to arbitrage, the quoted option price in a market with liquidity risk should lie between
the seller’s price and the buyer’s price. Next, we give the buyer’s and seller’s prices for

different liquidity parameters. With the increase of f’(0), the seller’s prices increase and
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a=0 | «=0.0005 | @ =0.001 | @ =0.002 | & =0.005

Approximation | 8.9260 8.9378 8.9497 8.9734 9.0445

PDE method | 8.9240 8.9360 8.9478 8.9707 9.0373

Table 2.3: Option seller’ prices comparison of PDE method and approximation formula

buyer’s prices decrease. Correspondingly, the difference between the seller’s and buyer’s
prices increases (Figure 2.3). We can conclude that if the liquidity depth increases the

bid-ask spread increases.

9.06 T
Price from Approximation formula

9.04 Price from nonlinear PDE

Option prices

0 0.5 1 15 2 25 3 35 4 4.5 5
Liquidity parameter o %1073

Figure 2.4: Option seller’ prices comparison of PDE method and approximation formula

In Table 2.3 and Figure 2.4, we compare the European call option prices obtained from
the PDE method and the approximation method. The Strike K is 98. The liquidity param-
eter f7(0) increases from 0.000 to 0.005, and the option prices increase with respect to the

liquidity parameter. From Figure 2.4, we can see that the difference of the option prices

40



from the two methods are extremely small. We can conclude that when liquidity parameter
f'(0) is sufficiently small, the asymptotic approximation method is quite accurate.

We analyse the hedging error of our model. The hedging error H7 is defined to be

Hr =(PrSt+Br)— (St - K)*".

In theory, we can perfectly hedge the option with a self-financing portfolio in continuous
time, which means the hedging error is zero almost surely. In practice, we can apply
discrete time hedging, so we can not perfectly replicate the option. When our hedging
period goes to zero, however, the hedging error will converge to zero. We did the Monte
Carlo simulation to compute the mean and variance of the hedging error. Table 2.4 presents
the Monte Carlo simulation results for the option seller with Strike K = 100 and varying
liquidity parameter f’(0). There are 10,000 paths used in the simulation, with 100 time
steps in each simulation. The mean row shows the mean hedging error. The mean and
variance of the hedging error do not vary too much with different liquidity parameter
f’(0). Moreover, the mean and variance of the hedging error with f’(0) > 0 are almost

the same as the mean and variance of the hedging error of the Black-Scholes case (when

f'(0) = 0).
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£(0)=0.000 | £/(0)=0.0005 | f'(0)=0.001 | f'(0)=0.002 | f'(0)=0.005

C*(S0,0) | 7.9616 7.9741 7.9864 8.0102 8.0784
E(Hr) -0.1093 -0.1106 -0.0905 -0.1025 -0.0921

Var(Hr) | 0.0072 0.0073 0.0074 0.0074 0.0074

Table 2.4: Monte Carlo simulation of hedging error.

2.5 American options

In this section, we consider finite expiration American put options. Our argument can be
easily extended to other kinds of early exercise options. The value of the American option
1sY; = C(S,,1). Foreacht € [0, T] we want to split the S axis into two subintervals. Doing
so will divide the cylinder into two subregions. The boundary between the regions will be
given by a function S (). Appropriate boundary conditions will hold on each of the subre-
gions and the boundary between them. Since the location of the boundary between the two
subregions is not known in advance, we have what is called a free boundary problem. As
it happens, this free boundary problem is interpreted as a differential inequality problem.
(1): First subregion: S ¢(f) < § < oo.

For these values of S , early exercise is not optimal, and the option holder should hold the
American option. The option seller constructs a portfolio consisting of —1 American put
options and a number P, of the underlying asset. The value of this portfolio is:

Ht:P[S[+Bt_Yt.
42
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From the self-financing condition (2.10) and Ito Lemma, the change of the value of the

portfolio is

dll, =P,dS, + dB, — dY, — dP,[S ,(dP,) — S ]

oC ocC 10°C
=P,uS dt + oS ,dW,) + rB,dt — (g(S,, HuS,; + E(S[’ 1+ =

5 W(S N t)O'ZS,Z) dt

ac ,
~ = (S 008 AW, — f(0)dPdP.S (1)

oC ocC oC
= (PIO'SI - g(st, I)O-St) th + }"B,dt + PtI/tSt - _(St’ I)MS - E(St, t)

19°C 202 iR 6
=5 7520 D0S T = FOBS, ) dt. (2.64)
Because stock price S, has not reached optimal exercise boundary S £, for the option hold-

er, it is optimal to continue holding the option. The option writer will make P, = g—g(S ).

Applying Ito Lemma to P, = 3(S, 1) gives us

2

o-C
B = O-StW(St,t) (2.65)

The change in the hedging portfolio will be dIl, = 0. Substituting P, = g—g(S ), B =

C(S,,t)— P,S,and (2.65) into (2.64), we have

2 2 2
Eo(Si D) + 718,50 + 5078 185(S 1) + f’(O)S,(aSta (S, t)) =rC(S,,1)

tos7 as?
C(S[,t) > K_St
(2): Second subregion: 0 < § < S 4(2).
For these values of S, early exercise is optimal. The option writer constructs a portfolio

consisting of —1 American put option and a number P, of the underlying asset and B, units
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of the bank account. Therefore, the value of the portfolio is
Hf:PfSI+Bl_Yf' (2.66)

From the self-financing condition equation (2.10) and Ito Lemma, the change of the value

of the portfolio is

dIl, =P,dS, + dB, — dY, — dP,[S (dP,) - S,]

19°C

5 aSz(S,, no’S

oC
IP,(MStdl‘ + O-Stth) + rB[dt - (ﬁ(st, t)’/tSt + (S[, t)
Ple ,

ocC ocC ocC
=(P,oS, - g(S,, oS )dW, + |PuS,+ rB, — ﬁ(St, HuS - E(S” 1)

18°C
20S?

T (S, 0028 2 f’((»ﬁ?St] dr. (2.67)
Because stock price S, has already entered the optimal exercise boundary S f, for the option
holder, it is optimal to exercise the option immediately. If the option holder did not exercise
the option, it would give the option writer an arbitrage opportunity. The option writer will
make P, = g—g(S,, 1), B, = C(S,t—PS,and B, = a'Stgg—g(S,, t). The hedging portfolio

will give the option writer a return of more than the risk-free rate return, i.e., dI1, > 0. So,

we have:
(S 1) + 1S 26 + 102S22E(S 1) + [0S, (astasz(s,,t)) <rC(S,,1)

CS,H=K-85;
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(3): On the free boundary: § = § (7).
The boundary conditions on S = § ((¢) are that C(S ((¢),1) = (K — S (#))" and its slope is

continuous. So, we have
. oC
C(Ss(@),1)=(K—-S¢1)" and ﬁ(Sf(t), fH=-—1. (2.68)

Theorem 2.5.1. (American Options) The replication cost for the option buyer and seller
is characterized by this free boundary problem:
(1): First subregion, S ¢(t) < x < oo:

oC oc 1 , 262 o*C
Clx,t)>K—x, 6t+rx8x+ —0°X az_f(O)x(

(2): Second subregion, 0 < x < S 4():

) oC 1 , ,0°C 0°C\’
C(x,t) = K—x, a—f + rxa—i + 50'2 72 + f'(0)x (O'x—C) < rC. (2.70)

(3): On the free boundary, x = § ((t):

C(x,t) =(K-x)" and Z—i(x, 1 =-1. (2.71)

2.5.1 Numerical results

The numerical results is obtained by solving the equation for American options by finite
difference method. The results are presented in Table 2.5; parameter values are Sy = 100,

o =0.2,T =1, r =0 with strike K and liquidity parameter f’(0) varying as shown in the
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table. The first column gives the Black-Scholes values for the corresponding American
options. When f’(0) = 0, the buyer’s price equals the seller’s price and the Black-Scholes
price is the unique price for the option. When f”(0) = 0.001 and K = 100, the upper bound
of American option price is 6.0972 and the lower bound is 6.0485. The quoted American

option price in market with the liquidity risk should be in the interval [6.0485 6.0972].

f(0)=0.000 | f’(0)=0.0005 f'(0) = 0.001 f'(0) =0.002 f'(0) = 0.005
K BS Price Seller  Buyer | Seller Buyer | Seller Buyer | Seller Buyer

95 3.9968 4.0073 3.9861 | 4.0178 3.9753 | 4.0384 3.9534 | 4.0984 3.8840
100 6.0731 6.0853 6.0609 | 6.0972 6.0485 | 6.1209 6.0234 | 6.1894 5.9435
105 8.7225 8.7350 8.7098 | 8.7474 8.6971 | 8.7719 8.6711 | 8.8430 8.5892

Table 2.5: American option’s replication costs with different Strikes and liquidity

parameters.

2.6 Exotic options

With a similar approach, we can generalize our pricing method to price Exotic options. We
will present our generalization of Barrier options and Asian options. Numerical results of
Barrier options and Asian options will be provided. It is easy to generalize our pricing
method to other exotic options, such as lookback options, roll-down options, and rainbow

options.
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2.6.1 Barrier options

In this section, we consider the case of a European style down and out call option, with
payoff (S — K)* at expiration, where K is the strike price, provided S never reaches barrier
B during the lifetime of the option. If § ever reaches B, the option becomes worthless.
Our analysis can be easily extended to other barrier options.

Suppose that we are above the barrier, i.e., § > B at time ¢. The next time step, being
infinitesimal, will not take us to the barrier. We can apply our continuous hedging analysis
in European options to show that the option seller’s replication cost of the option C(S, 1)

satisfies the equation

oC oC 1 ,.,8C , o°c .\’
E(S,l)'i‘l’Sg‘FEO'S W(S,t)+f(0)5 (O'SW(S,Z) :I’C(S,t) (272)

As usual, the final condition for (2.72) is

C(S,n=(S -K)". (2.73)

If S ever reaches B then the option becomes worthless; this condition translates into the

mathematical condition that on S = B the value of the option is zero:
C(B,t) = 0. (2.74)

The replication cost for the option buyer and seller can be summarized by the following

theorem:
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Theorem 2.6.1. (Barrier Call Options) Let C(x,t) denote the option replication cost at

time t under the assumption that S, = x, then C(S, t) satisfies the equation

9 1 2 20\2
e 1S o (ax%f) - rC. (2.75)

As usual, the final condition for (2.75) is
C(x,t) = (x— K)". (2.76)

If x ever reaches B, which is the lower barrier, then the option becomes worthless; on
x = B the value of the option is 0:

C(B,1) =0. (2.77)

The option price with different initial spot and liquidation parameters, i.e., f'(0), are
given in Table 2.6 below. Parameter values are S¢ = 100, S 4o, = 80, 0 = 0.2, r = 0,
T =1, K =100. When f"(0) = 0.001 and K = 100, the upper bound of the option price
i1s 7.8940 and the lower bound is 7.8474, and the option price should be in the interval

[7.8474 7.8940].

2.6.2 Asian options

In this section, we consider how to price continuous sampled average strike Asian options,

whose payoff includes a time average of the underlying asset price. Like the standard
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f(0)=0.000 | f’(0)=0.0005 f7(0) = 0.001 f'(0) =0.002 f/(0) = 0.005
K BS Price Seller  Buyer | Seller Buyer | Seller Buyer | Seller Buyer

90 13.243 13.250 13.237 | 13.256 13.230 | 13.268 13.214 | 13.302 13.201
95 10.338 10.348 10.329 | 10.357 10.318 | 10.375 10.294 | 10.427 10.267
100 7.8715 7.8829 7.8597 | 7.8940 7.8474 | 79156 7.8180 | 7.9773 1.7754
105 5.8569 5.8688 5.8447 | 5.8803 5.8318 | 5.9028 5.8001 | 5.9672 5.7539

110 4.2669 4.2782 4.2553 | 42801 4.2431 | 43104 4.2114 | 43715 4.1679

Table 2.6: Barrier option’s replication costs with different Strikes and liquidity

parameters.

argument, the stock price follows a geometric Brownian motion:
dS,=uS,dt+oS,dW,, 0<t<T. (2.78)

We define a new process as:
!
Z, = f S, du. (2.79)
0

The stochastic differential equation for Z(z) is
dz, = S,dt. (2.80)
The payoff of the Asian option at expiration is

1 (! i
(K—?foSudu) , (2.81)

where T is the expiration time, and K is the strike price. The value of the Asian option Y,

depends on §S,, Z; and t. Thus, we can denote Y, = C(S,,Z;,t). Applying Ito Lemma, we
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have

16°C

oC oC oC
de = ﬁ(st’ Zz, t)uS, + E(Snzz, t) + §W(SI’ZI’ t)O'ZStZ + a_Z(St’ Zz, t)St dt

ocC
+ 55 Crln oS dW,. (2.82)

Now, denote the stock position at time ¢ as P,, and P, = X(S;,Z;,t), where X(S,,Z;,1) is

twice continuously differentiable on (0, co0) X (0, c0) X [0, T']. By Ito’s formula,

0X 0X 10°X 0X
dP[ = (g(sh Zt’ t)MS[ + E(SI,ZI’ t) + EW(SI,ZI’ t)0-25t2 + a_Z(Sf’ZI’ I)St) dt
0X
+ g(sta Z;, )0 S  dW, (2.83)
) 2
(dPt)2 = (ﬁ('st’ Z, Z‘)O'S,) dt (2.84)
dP,)’ = 0. (2.85)

Based on the supply curve function S,(x) = f(x)S,, we have the liquidity cost term,

dPt [St(dpt) -8 = dPt(f(dPt) - I)St

)
2

=dP,| f(0)dP, + dP,)?]S,

= f’(O)(dPt)zS,. (2.86)

The option writer constructs a portfolio consisting of —1 option and a number P, of the

underlying asset and B, units of the bank account. The value of this portfolio is

Ht:P[S[+Bt_Yt. (2.87)
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The change of the value of the portfolio in the time 7 to ¢ + dt is

dH[ :P[dSt + Y‘Btdl - dY[ - dP[ [Sl(dPt) - S[]

10*C

oC oC
:PtdSt + V‘Btdl - (g(st, l)l/tS, + E(St, t) 2 052

—(S,, D08, )
oC
+ g(S,, oS, dW, + rB,dt — dP,[S (t,dP,) — S (t,0)]

oc
=P, (uS ,dt + oS ,dW,) — —(s,,z,, oS, dW, — ' (0)(dP,)*S (t,0)

16°C

oC
- (g(st,zt’ Hus + (SlaZt’ D+ = 2952

oC
—— 87, l)o'zstz + a_Z(St, Z:, 1S t) dt

ocC
= (PtO-S[ - g(st, Zt’ t)O-S [) dW[ + I‘Btdl +

oC oC
PusS, - ﬁ(sta Z,HusS ,; — E(Sta Z;,1)

18°C aC , )¢ 2
_Em(‘st’ Zh t)O-ZStZ - %(Sh Zta t)St - f (O)St (g(sf’ Zl’ t)o-St) ] dt. (288)

In order to fully hedge the option, the option writer needs to make dI1, = 0. By making
dB; and dt terms to 0, we have P; = g—g(S,, Z:, 1), B, =C(S:,Z;,t) — P:S, and g—?(&, Z:, 1) =
652 €(S.,Z,1). Substituting them into (2.88), we deduce from dII, = O that

oC oc  10°C oC
_(St’ Zt’ t) +r Sta_S, + E@SZ(SI’ Zta t)O'ZStZ + %(Sta Zt’ t)St (2~89)

2

+ 108, (555

2
0S2(SI,Z,, t)O'S,) =rC(S+,Z;,1). (2.90)

Replacing S, with dummy variable x, and Z, by the dummy variable y, we obtain

2

C oC oC
57 oW D)+ o=y, 1) + 525 (%, Ho?x* + a—y(x, v, 0)x

2

2
+ ' (0)x (O'xa C(x y, t)) =rC(x,y,t). (2.91)
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The boundary conditions for continuous average Asian put options are

Cx,KT,H)=0, 0<t<T, x>0,

CW%TﬁﬂK—%Y,szOSysKﬂ

aﬂ%0=(K—%Y,OStsT§0§ysKZ

Yy + (T - t)-xmax

maxs Y1) = K -
C(Xmaxs y> 1) = ( T

), 0<t<T,0<y<KT.

For other kind