Web Service Composition
as a Planning Task

Experiments Using
Knowledge-Based Planning

Erick Martinez & Yves Lespérance

Department of Computer Science
York University
Toronto, Canada

I Motivation
* Next generation Web Services
I - Semantic Web
- Reasoning / Planning
- Automation

* Agent-oriented toolkit for advanced MAS /
WSC and provisioning

* Previous results (knowledge-based
planning)

I Automated Web Service
I Composition as Planning

I e WSC Problem: given a set of Web services and some

user defined task or goal to be achieved, automatically

find a composition of the available services to accom-
plish the task.

e WSC as a Planning Problem:

- Predefined available services as the building blocks of a plan

- Many WS actions involve sensing

- Large search space, incomplete information in the initial
state

e Planner that can generate conditional plans &
supports sensing actions

|
I (Petrick & Bacchus, 2003)

I * (Generalization of STRIPS [Fikes & Nilsson, 1971]
- Four Dbs: K_, K ,K K,

— Actions:

Action Precondition Effects

checkFlightSpace(n,d) K(existsFlight(n,d)) add(Kw, availFlight(n,d))

- DSURs: K(existsFlight(n,d)) 0 add(Kv, flightNum(n,d))
- Goal
- Planning problem:< I, A, U, G >

I * PKS primitive actions correspond to WS
- Knowledge-producing actions ~ information

gathering WS
- Physical actions world-altering WS

* New WS becomes available — add new
primitive action to domain specification

I WS Representation in PKS

I e For each action Ai :

- encode user preferences / customization constraints
using desAi fluent [Mecliraith & Son, 2002]

- encode domain specific search control constraints us-
ing indA, fluent

* Generic domain specification
- action specification (WS)

* Problem specification
- goal + DSURs (addresses PKS limited expressiveness)

PKS Spec. Example

(Ailr Travel Domailin)

Action Precondition Effects

findRFlight(x) K(airCo(x)) add(Kw, flightFExists(x))
K(indFindRFlight(x)) add(Kf,-indFindRFlight(x))
K(desFindRFlight(x))

bookFlight(x) K(airCo(x)) add(Kf, bookedF'light(x))
K(availFlight(x)) del(Kf, availFlight(x))
K(indBookFlight(x)) add(Kf,-indBookFlight(x))
K(desBookFlight(x))

Domain specific update rules (DSUR)

K(airCo(x)) N -Kvuv(flichtNum(x)) N K(flightExists(x)) —
add(Kv, flightNum/(x))

1 explicit parameter: company

PKS Goal Example
(Prob. BMxF)

* Goal: book a flight with a price not
greater than the user's maximum price

/* book company within budget */
3.(x) [K(airCo(x)) A K(bookedFlight(x)) n

K(-priceGtMax(x))] |
/* no flight booked */
KnowNoBudgetFlight |
KnowNoAvailFlight |
KnowNoFlightExists

User Pref. / Customization
Constraints Example (Prob. BMxF)

* DSUR 1:
K(airCo(x)) A =Kw(priceGtMax(x)) A
Kv(userMaxPrice) A Ku(flightCost(x))
= add(Kw, priceGtMax(x))

* DSUR 2:
K(airCo(x)) A K(-priceGtMax(x)) A
-Kw(desBookFlight(x))
= add(Kf, desBookFlight(x))

I Experiments - Problem Set

- hard constraints
e BPF: book preferred company, otherwise book any
flight
e BMxF': book any flight within budget
e BPMxF': book flight within budget, favour

preferred company

I * Set of 5 problems (air travel domain):

- optimization constraints
e BBF: book cheapest flight
e BBPF: book preferred company, otherwise book

cheapest flight
10

11

Experimental Results with 1
I param. using DFS (in Secs.) ...

#Co. BPF BM,F BPM,F BBF | BPBF

2 0.00 0.00 0.00 0.02 0.10
3 0.00 0.01 0.01 0.35 1.58
4 0.00 0.01 0.01 53.99 259.39
5 0.01 0.02 0.02 > thax > tmax

10 0.01 0.04 0.04 > tha > tmax

20 0.04 0.05 0.06 >t > tmax

50 0.31 0.51 0.60 > thax > tmax

100 2.47 3.15 3.43 > tmax > tmax

Results with 1 explicit parameter: company
PKS v0.6-alpha-2 (Linux)

(tmax

= 300secs.)

I . . . Experimental Results with
I 5 param. using DFS (in secs.)

12

Results with 5 explicit parameters:
company, origin, destination, departure date, and arrival date
PKS v0.6-alpha-2 (Linux)

(tmax

= 300secs.)

I #Co. BPF BM,F BPM,F BBF BPBF
2 0.17 0.21 0.37 1.27 8.42
3 0.58 0.72 1.20 24.02 109.33

4 1.45 2.20 3.71 > tnax > tmax

5 3.76 4.33 4.65 >t > tmax

10 80.60 96.45 105.49 > t, > tmax

I Advantages of
I Our Approach

I * Modularity and re-usability

 Can handle cases that previous approaches can-
not (e.g., physical actions having direct effect on

sensing actions) [Mcllraith & Son, 2002]

* No need for pre-specified generic plans

13

14

Open Problems and
Future Work

Customizing domain theory based on problem
- DSURSs generation (desc. goal + user pref.)

Large search space, off-line

Optimization constraints problems do not scale up well
Representation of atomic services

Translation of OWL, DAML-S, etc. into PKS/Golog

specifications

IG-JADE-PKSIib toolkit

Experiments + case studies to validate performance and
scalability of integrated framework

Plan execution and contingency recovery

Thank You!

	Web Service Composition as a Planning Task
	Motivation
	Automated Web Service Composition as Planning
	PKS
	WSC in PKS
	WS Representation in PKS
	PKS Spec. Example
	PKS Goal Example
	User Customization Constraints Example
	Experiments - Problem Set
	Experimental Results (1 param.)
	Experimental Results (5 param.)
	Advantages of Our Approach
	Open Problems and Future Work

		2004-07-25T18:13:59-0500
	Erick Martinez

