Web Service Composition as a Planning Task

Experiments Using Knowledge-Based Planning

Erick Martínez & Yves Lespérance

Department of Computer Science York University Toronto, Canada

Motivation

- Next generation Web Services
 - Semantic Web
 - Reasoning / Planning
 - Automation
- Agent-oriented toolkit for advanced MAS / WSC and provisioning
- Previous results (knowledge-based planning)

Automated Web Service Composition as Planning

- **WSC Problem:** given a set of Web services and some user defined task or goal to be achieved, automatically find a composition of the available services to accomplish the task.
- WSC as a Planning Problem:
 - Predefined available services as the building blocks of a plan
 - Many WS actions involve sensing
 - Large search space, incomplete information in the initial state
- Planner that can generate conditional plans & supports sensing actions

PKS

(Petrick & Bacchus, 2003)

Generalization of STRIPS [Fikes & Nilsson, 1971]

- Four Dbs: K_{F} , K_{W} , K_{V} , K_{X}
- Actions:

Action	Precondition	Effects	
checkFlightSpace(n,d)	K(existsFlight(n,d))	add(Kw, availFlight(n,d))	

- DSURs: $K(existsFlight(n,d)) \Rightarrow add(Kv, flightNum(n,d))$
- Goal
- Planning problem: $\langle I, A, U, G \rangle$

WSC in PKS

- PKS primitive actions correspond to WS
 - Knowledge-producing actions ↔ information gathering WS
 - Physical actions ↔ world-altering WS
- New WS becomes available → add new primitive action to domain specification

WS Representation in PKS

- For each action A_i :
 - encode user preferences / customization constraints
 using desA_i fluent [McIlraith & Son, 2002]
 - encode domain specific search control constraints using *indA*, fluent
- Generic domain specification
 - action specification (WS)
- Problem specification
 - goal + DSURs (addresses PKS limited expressiveness)

PKS Spec. Example (Air Travel Domain)

Action	Precondition	Effects
findRFlight(x)	K(airCo(x))	add(Kw, flightExists(x))
	K(indFindRFlight(x))	$add(Kf, \neg indFindRFlight(x))$
	K(desFindRFlight(x))	
bookFlight(x)	K(airCo(x))	add(Kf, bookedFlight(x))
	K(availFlight(x))	del(Kf, availFlight(x))
	K(indBookFlight(x))	$add(Kf, \neg indBookFlight(x))$
	K(desBookFlight(x))	

Domain specific update rules (DSUR)

 $K(airCo(x)) \land \neg Kv(flightNum(x)) \land K(flightExists(x)) \Rightarrow$ add(Kv, flightNum(x))

1 explicit parameter: *company*

PKS Goal Example (Prob. BMxF)

• Goal: book a flight with a price not greater than the user's maximum price

```
/* book company within budget */
\exists_{K}(x) \left[K(airCo(x)) \land K(bookedFlight(x)) \land K(\neg priceGtMax(x))\right] \mid
/* no flight booked */
KnowNoBudgetFlight \mid
KnowNoAvailFlight \mid
KnowNoFlightExists
```

User Pref. / Customization Constraints Example (Prob. BMxF)

• DSUR 1:

```
K(airCo(x)) \land \neg Kw(priceGtMax(x)) \land Kv(userMaxPrice) \land Kv(flightCost(x))
\Rightarrow add(Kw, priceGtMax(x))
```

• DSUR 2:

```
K(airCo(x)) \land K(\neg priceGtMax(x)) \land \neg Kw(desBookFlight(x))
\Rightarrow add(Kf, desBookFlight(x))
```

WSC / Knowledge-Based Planning

Experiments - Problem Set

- Set of 5 problems (air travel domain):
 - hard constraints
 - **BPF**: book preferred company, otherwise book any flight
 - BMxF: book any flight within budget
 - **BPMxF**: book flight within budget, favour preferred company
 - optimization constraints
 - **BBF**: book cheapest flight
 - **BBPF**: book preferred company, otherwise book cheapest flight

Experimental Results with 1 param. using DFS (in Secs.) ...

#Co.	BPF	$\mathbf{BM}_{\mathbf{x}}\mathbf{F}$	BPM _x F	BBF	BPBF
2	0.00	0.00	0.00	0.02	0.10
3	0.00	0.01	0.01	0.35	1.58
4	0.00	0.01	0.01	53.99	259.39
5	0.01	0.02	0.02	$>$ t_{max}	$>$ t_{max}
10	0.01	0.04	0.04	$>$ t_{max}	$>$ t_{max}
20	0.04	0.05	0.06	$>$ t_{max}	$>$ t_{max}
50	0.31	0.51	0.60	$>$ t_{max}	$>$ t_{max}
100	2.47	3.15	3.43	$>$ t_{max}	$>$ t_{max}

Results with 1 explicit parameter: company PKS v0.6-alpha-2 (Linux) $(t_{max} = 300 secs.)$

... Experimental Results with 5 param. using DFS (in Secs.)

#Co.	BPF	$\mathbf{BM}_{\mathbf{x}}\mathbf{F}$	BPM _x F	BBF	BPBF
2	0.17	0.21	0.37	1.27	8.42
3	0.58	0.72	1.20	24.02	109.33
4	1.45	2.20	3.71	$>$ t_{max}	$>$ t_{max}
5	3.76	4.33	4.65	$>$ t_{max}	$>$ t_{max}
10	80.60	96.45	105.49	$>$ t_{max}	$>$ t_{max}

Results with 5 explicit parameters:

company, origin, destination, departure date, and arrival date

PKS v0.6-alpha-2 (Linux)

 $(t_{\text{max}} = 300 \text{secs.})$

Advantages of Our Approach

- Modularity and re-usability
- Can handle cases that previous approaches cannot (e.g., physical actions having direct effect on sensing actions) [McIlraith & Son, 2002]
- No need for pre-specified generic plans

Open Problems and Future Work

- Customizing domain theory based on problem
 - DSURs generation (desc. goal + user pref.)
- Large search space, off-line
- Optimization constraints problems do not scale up well
- Representation of atomic services
- Translation of OWL, DAML-S, etc. into PKS/Golog specifications
- *IG-JADE-PKSlib* toolkit
- Experiments + case studies to validate performance and scalability of integrated framework
- Plan execution and contingency recovery

Thank You!