

AEROSOL TRANSMISSION OF COVID-19 AND OTHER AIRBORNE

DISEASES IN OFFICE ENVIRONMENTS USING COMPUTATIONAL FLUID

DYNAMIC MODELING AND MACHINE LEARNING

BY

KISHON WEBB

A THESIS SUBMITTED TO

THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF MASTER OF APPLIED SCIENCE

GRADUATE PROGRAM IN THE DEPARTMENT OF MECHANICAL

ENGINEERING

YORK UNIVERSITY

TORONTO, ONTARIO

August 2023

© Kishon Webb 2023

ii

Abstract

The COVID-19 pandemic has shown the world how quickly airborne diseases can spread and the

lasting impact they can have. Computational fluid dynamic (CFD) models and simulations and

machine learning (ML) are powerful tools that allow engineers to create models to predict and

advance tools to fight these airborne diseases. The research in this thesis studied the effects of

heating, air conditioning and ventilation (HVAC) strategies in small office spaces. A novel

methodology was developed to utilize ML, CFD and parallel computing by utilizing the user

defined function (UDF) tool of ANSYS Fluent. It was shown that the resulting risk models were

quick and effective at predicting high risk areas using spatial data or predicting regions of high

risk over time. Future research will refine this method by creating higher fidelity ML models and

investigating a wider range of input and output parameters.

iii

Acknowledgements

I would like to thank my supervisor Prof. Marina Freire-Gormaly, for giving me this unique

opportunity and introducing me to the world of Academia. I never thought I would do my

master’s and many times I was very close to giving up and not finishing. She has encouraged me

and been patient, understanding and has vouched for me many times and for that I am grateful.

I also want to thank all the people from the MFG lab, both past and present, who helped make

the MFG lab the place it is and will continue to be. Specifically, I would like to thank my brother

and RAY student Keandre Webb and my friend and colleague Harman Nagra for their help and

support during my research. Additionally, I’d like to thank, Brandon Truong, Liam Horrigan,

Belen Barrios, Abu Raihan Ibna Ali, Thipphathong Piluk, and Amanda Capacchione for their

companionship during my master’s journey.

A special thanks to Arma Khan, which without whose guidance would make this thesis not

possible. She was always there to help provide resources and explain concepts relating to CFD

and aerosol transmission. Her knowledge was fundamental to the writing of this thesis.

The financial support from the Natural Sciences and Engineering Research Council (NSERC) of

Canada for the NSERC CGS-M Scholarship was invaluable.

Of course, I want to thank the ones who raised me, my loving parents and siblings who instilled

the love of God and hard work as principles that I live by today.

Thank you all!

iv

Table of Contents

Abstract ... ii

Acknowledgements .. iii

Table of Contents ... iv

Table of Figures ... viii

Table of Tables ... x

List of Parameters .. xi

List of Abbreviations .. xii

Chapter 1. Introduction ... 1

1.1. Background .. 1

1.2. Motivation .. 3

1.3. Research Objectives ... 4

1.4. Thesis Outline .. 4

Chapter 2. Literature Review .. 5

2.1. Transmission of COVID-19 ... 5

2.2. HVAC and CFD ... 7

2.2.1. CFD Study by Khan .. 8

2.3. Machine Learning .. 10

2.3.1. Introduction to ML .. 10

2.3.2. ML and Neural Networks .. 10

2.3.3. Running and Evaluating ML Models .. 17

2.4. Machine Learning and Computational Fluid Dynamics .. 18

2.4.1. Study by Mirzaei et al. ... 18

2.4.2. Study by Mesgarpour et al. .. 21

2.4.3. Summary .. 23

v

Chapter 3. Further Utilization of CFD to Investigate Effects of Ventilation Strategies on Spread of

Airborne Diseases in Small Office Spaces ... 24

3.1. Introduction .. 24

3.2. Methodology .. 25

3.2.1. Model Geometry .. 25

3.2.2. Meshing Design ... 26

3.3. Numerical Model.. 32

3.3.1. Numerical Solver ... 32

3.3.2. Boundary and Initial Conditions .. 33

3.3.3. Injection Conditions .. 33

3.3.4. Performance Indicators .. 34

3.4. Sensitivity Studies .. 36

3.4.1. Mesh Sensitivity Study .. 37

3.4.2. Numerical Study .. 38

3.5. Results .. 41

3.5.1. Mixing - Velocity and Temperature .. 41

3.5.2. Particle Dispersion ... 48

3.5.3. Performance Metrics .. 50

3.6. Discussion .. 51

3.6.1. Particle Dispersion ... 51

3.6.2. Performance Indicators .. 53

3.7. Conclusions .. 54

3.7.1. Summary .. 54

3.7.2. Final Thoughts ... 55

3.8. Future Work ... 56

vi

Chapter 4. Development of Novel Method to Aid in Particle Dispersion Analysis using Parallel

Processing and HPC .. 57

4.1. Introduction .. 57

4.2. Architecture Methodology ... 58

4.3. Getting Started with Parallel Computing ... 59

4.4. Setup ... 60

4.4.1. HPC Initialization and Utilization ... 60

4.4.2. Loading ANSYS and UDF .. 61

4.5. Data Processing .. 62

4.5.1. Initialization ... 63

4.5.2. Data Input/Output .. 63

4.5.3. Node Data Transfer ... 63

4.5.4. File Saving ... 64

4.5.5. Data Storage .. 65

4.6. Results and Discussion ... 66

4.7. Conclusions .. 69

4.7.1. Summary .. 69

4.7.2. Future Work ... 70

Chapter 5. Development of Novel Methods for Predicting Temporal-Spatial Particle Dispersion

using CFD and ML ... 71

5.1. Introduction .. 71

5.2. Methodology .. 72

5.2.1. Data Extraction .. 72

5.2.2. Data Processing ... 74

5.2.3. Risk Models ... 76

5.3. Results and Discussion ... 79

vii

5.3.1. Spatial-Temporal Risk Model ... 79

5.3.2. Regional-Temporal Risk Model .. 82

5.3.3. Summary of the ML Results .. 84

5.4. Conclusions .. 85

5.4.1. Summary .. 85

5.4.2. Future Work ... 85

Chapter 6. Conclusions ... 87

6.1. Summary .. 87

6.2. Contributions .. 87

6.2.1. Comparative Study of Ventilation Strategies .. 87

6.2.2. Advanced Combined Use of UDF,CFD and ML for Airborne Transmission 87

6.2.3. Resources for Researchers to use HPC and CFD .. 88

6.2.4. Development of Risk and Predictive Models .. 88

6.3. Recommendations for Future Work ... 89

6.3.1. Comparative Study of Ventilation Strategies .. 89

6.3.2. Advanced use of UDF and CFD .. 89

6.3.3. Resources for Researchers to use HPC and CFD .. 89

6.3.4. Expanding Input and Parameters of ML.. 90

References ... 91

Appendix A – Bash code to open Fluent Cas File .. 105

Appendix B – Bash Code to Open Workbench Project File ... 107

Appendix C – UDF Code .. 108

viii

Table of Figures

Figure 2-1: Comparison of Viral Sedimentation for 60% and 40% RH [62] 6

Figure 2-2: ML Pipelines for Application in Engineering [83,84] ..11

Figure 2-3: Machine Learning Techniques [83] ..11

Figure 2-4: General Flow Diagram for Neuron in a Neural Network [86] 12

Figure 2-5: Process of Creating a Reduced Order Model [86] ... 12

Figure 2-6: 2D Concentration plots over time for Mirzaei et al. Study [99] 19

Figure 2-7: Graphic of Methodology for Mirzaei et al. Study [99] .. 19

Figure 2-8: Dimensions Results from Mirzaei et al.’s study [99] ... 20

Figure 2-9: ANN Vertical Test Results from Mirzaei et al.’s study [99] 20

Figure 2-10: ANN Validation Results for Mirzaei et al. Study [99] ... 21

Figure 2-11: Bus Geometry from Mesgarpour et al.’s study [67] ... 22

Figure 3-1: Previous Airborne Disease CFD Study by Khan [11] .. 25

Figure 3-2: Domain and Boundaries of Berg Office Model ... 25

Figure 3-3: Element Quality for Original Mesh– Human Model ... 28

Figure 3-4: Cell Orthogonal Quality for Original Meshing .. 29

Figure 3-5: Mesh with Refinement Features Replaced Face Sizing ... 30

Figure 3-6: Location of Temperature Probes .. 37

Figure 3-7: Steady State Temperature vs Total Cell Number for Temperature Probes 38

Figure 3-8: Plot of Residual Values for Fine Mesh (400,000 cells) .. 39

Figure 3-9: Plot of Temperature Probes for First Order Turbulent Term Approximations 39

Figure 3-10: : Plot of Velocity Probes for Second Order Turbulent Term Approximations 40

Figure 3-11: Mixing – Right-side View .. 42

Figure 3-12: Mixing - Isometric View .. 42

Figure 3-13: Mixing – Top View .. 43

Figure 3-14: Mixing – Temperature Right view ... 43

Figure 3-15: Displacement Ventilation – Right View ... 44

Figure 3-16: Displacement Ventilation – Top View .. 45

Figure 3-17: Displacement Ventilation – Isometric View ... 45

Figure 3-18: Displacement Ventilation – Temperature Profile ... 46

Figure 3-19: Stratum, Isometric View... 46

ix

Figure 3-20: Stratum – Top View.. 47

Figure 3-21: Stratum Ventilation Strategy, Right View .. 47

Figure 3-22: Stratum – Temperature Profile ... 48

Figure 3-23: Displacement Ventilation - Particle Advancement over 10s particle time 49

Figure 3-24: Stratum - Displacement - Particle Advancement over 10 s particle time 50

Figure 4-1: CBPT Overall Process Diagram .. 59

Figure 4-2: Node Architecture for ANSYS Parallel Computations [104] 60

Figure 4-3: Setup - Flow Diagram .. 62

Figure 4-4: Partitioned Mesh Distributed Between Two Compute Nodes [104] 63

Figure 4-5: 2D to 1D Array Encoding .. 64

Figure 4-6: GRAHAM Cluster Showcase – Folder Overview ... 66

Figure 4-7: GRAHAM Cluster Showcase – UDM DATA Folder .. 66

Figure 4-8: GRAHAM Cluster Showcase – DATA Files ... 67

Figure 4-9: Progression of Domain WPC at Particle Time at: a) 1 second, b) 2 seconds, c)

3 seconds, d) 5 seconds, e) 8 seconds, f) 10 seconds. ... 67

Figure 4-10: Spatial-Temporal Risk Model for Particle Time at: a) 0.1s, b) 0.2s, c) 0.5s d) 1s ... 68

Figure 4-11: Spatial-Temporal Risk Model for Particle Time at: a) 2s, b) 3, c) 5s d) 10s e) 15s . 69

Figure 5-1: ML Model Development Overview ... 71

Figure 5-2: RAM Model Development Overview .. 72

Figure 5-3: Cells with no particles .. 73

Figure 5-4: Particles reach cell elements and get counted. ... 73

Figure 5-5: Particle Diameter Weighting Function ... 74

Figure 5-6: Particle Risk Factor as a function of time-summed particle concentrations 75

Figure 5-7: The results of the DNN model’s XZ Risk Gradient at y=0.95 m and 0.5 s 80

Figure 5-8: The results of the DNN model’s XZ Risk Gradient at y=0.95m and 2.5s 81

Figure 5-9: XZ Risk Gradient at y=0.95m and 5.0s ... 81

Figure 5-10: Example of the bounding box Created by Regional Risk Model 84

x

Table of Tables

Table 2-1: Summary on Common Machine Learning Architectures 13

Table 2-2: Results from Mesgarpour et al.’s study [67] 22

Table 3-1: Domain Dimensions for Bergeron Office Space 26

Table 3-2: Original Values for Office Space Mesh Element Sizing 27

Table 3-3: New Values for Office Space Mesh Element Sizing 30

Table 3-4: Mesh Metric Comparison (Initial vs New Mesh) 31

Table 3-5: Boundary Conditions for Office Space CFD Simulation 33

Table 3-6: DPM Conditions for Office Space Simulation 34

Table 3-7: Injection Conditions for Office Space Simulation 34

Table 3-8: Results of Numerical Sensitivity Analysis for Turbulence 41

Table 3-9: Noted System Values for Ventilation Strategies after 80 s Flow Time 50

Table 3-10: Performance Indicators for each Ventilation Strategy after 80s Flow Time 51

Table 3-11: Quantities of Particles of different after 10s Particle Time 51

Table 5-1: Validation Results of STR Machine Learning Models 80

Table 5-2: Validation ML Results for Regional-Temporal Model 83

xi

List of Parameters

Subscript k corresponding parameters of turbulent kinetic energy

Subscript 𝜖 corresponding parameters of turbulent dissipation rate

Subscript eff corresponding to effective quantity

Subscript p corresponding parameters of particles

k Turbulent Kinetic Energy, m2/s2

𝜖 Turbulent Dissipation Rate, m2/s3

ρ Continuous Phase Density of Fluid, kg/m3

𝛼 Inverse Prandtl Number

𝜇 Molecular Viscosity

Gk
 Generated Turbulent Kinetic Energy, m2/s2

Gb Generated Turbulent Dissipation Rate, m2/s3

C Turbulent Dissipation Constants

𝑌𝑀 Turbulent Transport Term

Sk Turbulent Inertial Term

𝑆𝜖 Turbulent Skewness Term

R Turbulent Response Term

FD Drag Force, kg∙m/s2

g Force of Gravity,

𝑢 Velocity, m/s

d Diameter, m

𝐶𝑐 Cunningham Correction Factor

𝜆 Molecular Mean-Free Path, m

Te
 Exhaust/Outlet Temperature, K

Ts Supply/Inlet Temperature, K

V Fluid Inlet Velocity, m/s

Pv Particle Value

Pd Particle Diameter Weighting

Pw Cell Weighted Particle Value

xii

List of Abbreviations

ADPI Air Diffusion Performance Index

AI Artificial Intelligence

ANN Artificial Neural Network

API Application Program Interface

BC Boundary Condition

CBPT Cell Based Particle Tracker

CFD Computational Fluid Dynamics

CRE Contaminant Removal Efficiency

DNN Deep Neural Network

DPM Discrete Phase Model

GPU Graphics Processing Unit

GUI Graphical User Interface

HPC High Performance Computing

HRE Heat Removal Efficiency

HVAC Heating, Ventilation, and Air Conditioning

IAJS Intermittent Air Jet Strategy

IC Initial Condition

IOM Index of Mixing

LTS Local Thermal Sensation

MAE Mean Average Error

MIMO Multiple-Input Multiple-Output

ML Machine Learning

MPI Message Passing Interface

MSE Mean Squared Error

MV/DV/SV Mixing, Displacement and Stratum Ventilation

OS Operating System

OTS Overall Thermal Sensation

PAE Percentage Average Error

PC Personal Computer

xiii

PCV Particle Count Value

PDW Particle Diameter Weighting

PI Performance Indicator

PRESTO! Parallel Reynolds-Averaged Navier-Stokes Toolkit for Optimization

PRF Particle Risk Factor

RAM Risk Assessment Model

RANS Reynolds-Averaged Navier-Stokes

RBF Radial Basis Function

ReLU Rectified Linear Unit

RH Relative Humidity, %

RMSE Root Mean Squared Error

RNG Re-Normalisation Group

ROM Reduced Order Model

RTR Regional-Temporal Risk

SSH Secure Shell

STR Spatial-Temporal Risk

SVR Support Vector Regression

TUI Text User Interface

UDF User Defined Function

UDM User Defined Memory

VNC Virtual Network Computing

WB Work Bench

WPC Weighted Particle Count

Chapter 1. Introduction

1.1. Background

The last five years have seen a myriad of historical events and innovations that has forever

shaped the way our world operates. One such event, is the devastation of the Covid-19 pandemic

and subsequent lockdowns. SARS-CoV-2, commonly referred to as Covid-19, was first discovered

in December of 2019 in Wuhan China [1,2] with the first case reported on the 31st with symptoms

typical of pneumonia. Action prompted by the Chinese Center for Disease Control and Prevention

(China CDC), World Health Organization (WHO) and other governmental bodies in China

occurred to try and mitigate the spread in January 2020 [1]. However, the virus had already become

international; in mid-January 2020, the first case outside of China was confirmed in Thailand [3].

By the end of January, cases had been confirmed in Japan, the Republic of Korea and in the USA,

among other countries. As the months continued to go on, global cases and deaths related to the

virus continued to rise rapidly. By July of 2021, total cases and number of deaths had reached 200

million and 2 million respectively [1,3]. Currently, these numbers are predicted to be over 700

million and 6 million [4]. As an airborne virus, COVID-19 was highly infectious having multiple

modes of transmission. Generally, the virus can spread through three modes: direct contact,

airborne or fomite (indirect) [5]. Many infected persons can be infected but asymptomatic,

meaning they could spread the virus without knowing they are sick and evading detection [6,7].

With how devastating the effects of the pandemic were, global collaborative efforts began.

The general scientific community as well as private and public organizations, began to utilize

various modeling techniques to aid in predicting the spread of infection, in hopes of finding best

practices or other preventive measures. Besides more broad methods utilized during the Covid-19

pandemic, (limiting indoor capacities, lockdowns, etc.) investigations into more long-term

solutions involved investigating the role of ventilation in the spread of airborne diseases [8–12].

Generally, it has been found that ventilation plays a significant role in movement of airborne

diseases [8,9,11,13]. However, it is not practical to extract generalized recommendations from

purely experimental studies. This is where various mathematical models can, and have been,

utilized [14]. Of these models, two are more widely well known: disease (or epidemiological)

modeling, which is a type of statistical modeling, and computational fluid dynamics (CFD)

simulations. CFD is a type of numerical modeling that can incorporate temporal-spatial aspects

2

that many mathematical models lack. Many well-known studies [8,15–22] utilized CFD to extract

information on experimental results or to simulate alterative implementations without losing

fidelity to experimental results.

In the same vein of mathematical modeling, Machine Learning (ML) is another significant

tool that has wide reaching applications in many fields. Machine Learning incapsulates groups of

algorithms that can automate the processes of extracting information from data [23]. ML can

quickly and efficiently apply algorithms previously used manually by humans (optimization,

regression) to large data sets to create models [24]. ML is quickly gaining in popularity across

many fields such as manufacturing, finance, 3D printing and more [25–28]. Because of these

unique properties, it is an invaluable tool that is readily available for use in CFD, since it often

deals with large data sets. Various applications such as optimizing airplane wings for optimal lift

to drag or estimating flow fields from limited properties are all possible. While these things have

and will continue to be done by humans, ML can aid immensely in the design [29,30] and

optimization [31,32] process.

Finally, high performance computing (HPC) is becoming more available when combined

with cloud computing service. HPC enables research access to accelerated computation resources,

which often use computers with high amounts of memory, central processing units (CPUs) and

graphics processing units (GPUs), all of which are useful in running high speed computations.

Many researchers are already using this in a variety of domains to accelerate simulation speeds

[33,34]. In addition, many utilize parallel processing (MPI, OpenMP) that can further enhance

speeds by allowing the use of multiple computers (nodes), CPUs and GPUs in parallel [34].

Splitting processes in this way vastly increases speeds by allowing multiple processing units (PUs)

to operate in tandem. ML models, optimization algorithms and other numerical/mathematical

models also benefit from these computational resources, which can be readily available online in

many cases.

CFD as a model building tool is already an invaluable resource. However, it is limited in

computation time among other factors [35]. Trying to reduce the resources required to run high

fidelity simulations will often significantly reduce the reliability of simulation results [35]. By

utilizing ML and HPC as tools, novel methods and workflows can be developed to help current

future researchers perform high fidelity simulations quickly. These technologies can be further

enhanced with customized scripts to help take advantage of the benefits of all of them.

3

1.2. Motivation

The damage caused by the pandemic and subsequent lockdowns are astronomical in both

economically and regarding the loss of human life and well-being. Since the start of the global

COVID-19 (SARS-CoV-2) pandemic, significant strides have been made into researching aspects

surrounding the virus. The SARS-CoV-2 virus is known to spread through four primary routes:

direct contact, indirect contact, droplet transmission and through airborne routes [5]. Airborne

transmission occurs when the virus spreads as an aerosol, allowing it to stay suspended in air for

long periods of time [36]. A considerable amount of research has focused on creating numerical

models to predict the spread of the virus in indoor locations [37–39]. CFD simulations are widely

used globally and can simulate the airflow patterns within a room considering the Heating,

Ventilation and Air Conditioning (HVAC) systems. However, there lacks a clear linkage between

the mathematical models and the CFD models. Recently, CFD has begun to utilize discrete risk

assessment methodology (RAM) to bridge this gap. Given the large datasets that CFD produces,

incorporation of newer technologies like machine learning to further evaluate airborne

transmission routes is far behind due to the computational cost of running large amounts of CFD

simulations. This is where machine learning can be used to enhance the abilities of conventional

computational dynamics research [24,40–42].

Many researchers have begun utilizing ML in a variety of fields on this trend is likely to

continue to grow, especially with advent of natural language processing (NLP) which is becoming

mainstream in the form of chatbots like OpenAI’s ChatGPT [43–45]. Previous work done by

colleagues in the Freire-Gormaly Lab [11,13] show indications that CFD can become even more

useful if supplemented with techniques from other domains such as statistical modeling, disease

modeling mathematical modeling. This thesis aims to aid in the growing number of novel

developments that use AI to develop more efficient tools for better utilization of CFD. Many fields

already use, and are beginning to use ML, in the field of fluid dynamics and solid mechanics[46],

including many mainstream industries such as: aerospace [47], medicine [48], manufacturing [49],

mining [50], microscopy [51,52], climatology [53] and others [25,27,34,41,42,54,55].

4

1.3. Research Objectives

 The main objective of this research is to further investigate the role ventilation plays

in spread of airborne diseases using CFD and develop predictive models to accomplish the same.

To aid in this endeavour, a useful methodology to utilize ML, CFD and HPC to predict how these

diseases spread in indoor environments will also be developed. By combining ML and HPC with

the long-standing field of CFD, future research will progress much more rapidly. This also provides

an easy to access resource for future researchers to aid in the development processes of new CFD

simulation methodologies, with less limitations than previous generations of researchers. Thus, the

specific goals of this research are:

➢ Continue previous research to use CFD to analysis the effects of ventilation of the spread

airborne diseases.

➢ Develop a novel process to utilize HPC in enhancing CFD simulations.

➢ Develop a RAM to transform particle data into a spatial-temporal risk mapping.

➢ Create a novel methodology to predict the spread of airborne diseases using risk assessment

modeling and machine learning.

➢ Analyze the effectiveness of various ML models and archetypes for use in predicting

particle dispersion.

1.4. Thesis Outline

This thesis is organized into six chapters. Chapter one deals with introduction to the

research, including background, motivation, and research objective. Chapter two provides a

literature review on current CFD practices and usage as it relates to Covid-19 and performs a

background and literature review on ML and modern applications to CFD. Chapter three details

the investigation into varying ventilation strategies in small office spaces. Chapter four describes

the development of a tool to enhance the extraction of particle data, specifically for use with CFD

software. Chapter five outlines a novel method to integrate CFD and machine learning to predict

temporal-spatial particle spread using a parallelized risk assessment model. Chapter six

summarizes the conclusions of the three major studies and outlines avenues for future work.

5

Chapter 2. Literature Review

2.1. Transmission of COVID-19

The spread COVID-19 has caused significant damage with its rapid ability to infect large

swaths of people. This, along with the many vectors of travel make it difficult to predict infection

rates. Currently, epidemiology uses mathematical and statistical methods to create models.

Mathematical models use mechanistic understanding of the problems to develop models, whilst

statistical models are mainly data driven [56–58]. Both these approaches are useful for modeling

the general progression of the virus at large time scales and with large numbers of samples. On the

other end of the spectrum, physical models and numerical models are much more suited for

situations involving much fewer individuals, where time and distance scales are much smaller.

This use of experimentation and numerical modeling is a useful way to look at more specific cases

of the propagation of airborne diseases.

COVID-19 is a respiratory infectious disease caused by the family of coronavirus

[4,22,59]. Transmission of the viral load occurs directly or indirectly by way of contact

transmission, airborne transmission, or fomite transmission [5]. Airborne transmission occurs via

fluid particles [60,61], namely droplets and aerosols. These particles are heavily affected by

complex flow physics and can be difficult to characterize. One method, proposed by Rosti et al.

[62], delineates the transmission in terms of three modes. Ballistic, inertial and tracer

transmissions. Ballistic transmissions are short range and occur in larger and heavier droplets

where the forces due to drag and gravity are large. Inertial transmissions are short medium ranged

and dominated by the initial particle velocities as well as the ambient conditions. Finally, tracers

are long range that are dominated by external air flow. Figure 2-1 below outlines these three

transmission modes.

6

Figure 2-1: Comparison of Viral Sedimentation for 60% and 40% RH [62]

This study will focus on inertial and ballistic transmission, pertaining to short to medium

range transmission. This is because larger droplets are much more dangerous and pose a higher

risk of infection [63]. As a viral cloud expands it also thins, reducing risk of infection at further

distances. Only specific indoor conditions will be considered since they have consistent ambient

factors, include dynamic of HVAC and transmissions typically happen at small distance and time

scales.

Airborne transmission occurs via a mixture of different sized droplets and aerosols, which

in turn affect how they will travel. While the exact delineation between what constitutes one versus

the other is not defined clearly in literature, many sources have made attempts to classify the two

[64,65]. After a biological injection (cough, sneeze, etc.), a mixture of aerosols and droplets are

released. Smaller droplets can quickly evaporate and turn into further aerosols. Droplets tend to

drop quickly while aerosols, being much smaller and lighter, tend to linger in the air for longer

periods [66,67]. An experimental study by Duguid [68] investigated droplets carrying

bacteria/nuclei for droplet diameters from 0.25 μm to 2000 μm. They found that droplets in the

100-2000 μm range fell quickly to the ground while 1-100 μm would become airborne.

7

Airborne transmission is heavily affected by the airflow. Thus, many factors can contribute

to its spread. Many sources find that relative humidity (RH) and ambient temperature contribute

significantly to higher risk of transmission [69,70]. Warmer and wet climates are found

conclusively in literature to be areas with higher risk of infection [69]. The following

environmental conditions all contribute to the physical flow phenomena including, but not limited

to gravity, inertia, buoyancy, drag/lift, evaporation and condensation and others. However, when

looking at indoor environments, another more dominant factor takes focus: ventilation.

2.2. HVAC and CFD

HVAC stands for heating, ventilation, and air cooling. It refers to the industry that deals

with heating, cooling, and otherwise ventilating indoor spaces. There are various possible

ventilation configurations, however the common general configurations can be classified into

ventilation strategies [9,12]. Due to the broad implementation of ventilation no single experimental

or mathematical study can have much agreement on what ventilation is preferred. Typically, the

most common two investigated are displacement ventilation (DV) and mixing ventilation (MV).

Additional ventilation systems commonly explored are stratum and underfloor ventilation. As

outlined by Khan in her literature review on ventilation systems, literature has found that any one

ventilation system can have various benefits over others [11]. Things like thermal comfort, energy

efficiency, ease of implementation, air dilution and others make it difficult to select any one

strategy over the other.

This does not mean that careful consideration of ventilation is not important.

Ventilation is one of the most important factors that can affect the dispersion of airborne diseases

[8,66,70]. To that end, CFD is a valuable tool to predict spread without costly experimental studies.

Many studies have investigated the effects of ventilation on airborne transmission using CFD, but

there is no consensus on the settings to use across all simulations. Notable studies include those

by Shao et al. [6], Yang et al. [71], Talaat et al. [21] and Liu et al [20]. Although an older study, an

airplane cabin study by Yan et al. is also notable [72]. A previous literature review by Khan [11]

summarized the main results from their simulations and compiled a CFD methodology that

extracted the major settings of each CFD simulation. It was found that although the earlier

simulation studies [20,21,71,73] had various methods used, there were a series of common or

reoccurring settings that provided accurate and high-fidelity simulations. Khan [11] also concluded

8

that the location of various ventilation elements (inlets, outlets etc.) can have dramatic impacts on

the spatial and temporal distribution of airborne diseases.

2.2.1. CFD Study by Khan

The methodology used by Khan [11] for her CFD simulations were taken as a good

example of high-fidelity study since the experimental study by Yin et al. [8] was used as the basis

for a validation study. Khan [11] found her CFD settings provided sufficient convergence with

experimental data from Yin et al. [8] at selected locations in the domain to validate the fidelity of

her CFD simulation.

Khan’s study [11] utilized a Reynolds Averaged Navier-Stokes (RANS) model with a

pressure-based solver. Her software of choice was ANSYS 2020 R2. Turbulence was modeled with

an RNG k – 𝜀 model with standard wall functions. This model is useful for modeling indoor

environments since it can simulate both high and low Reynolds numbers [11]. The kinetic energy

and dissipation terms are outlined in Equations [2-1] and [2-2] below as outlined in [74]:

Kinetic energy, k:

𝜕

𝜕𝑡
(𝜌𝑘) +

𝜕

𝜕𝑥𝑖
(𝜌𝑘𝑢𝑖) =

𝜕

𝜕𝑥𝑗
(𝛼𝑘𝜇𝑒𝑓𝑓

𝜕𝑘

𝜕𝑥𝑗
) + 𝐺𝑘 + 𝐺𝑏 − 𝜌𝜖 − 𝑌𝑀 + 𝑆𝑘 [2-1]

Dissipation rate, 𝜖

𝜕

𝜕𝑡
(𝜌𝜖) +

𝜕

𝜕𝑥𝑖
(𝜌𝜖𝑢𝑖) =

𝜕

𝜕𝑥𝑗
(𝛼𝜖𝜇𝑒𝑓𝑓

𝜕𝜖

𝜕𝑥𝑗
) + 𝐶1𝜖

𝜖

𝑘
(𝐺𝑘 + 𝐶3𝜖𝐺𝑏) − 𝐶2𝜖𝜌

𝜖2

𝑘
− 𝑅𝜖 + 𝑆𝜖 [2-2]

In addition, the energy function was activated to simulate the thermal effects on the

flow. Buoyancy was modeled using the Boussinesq approximation model with the appropriate

density and thermal expansion terms. Pressure-velocity coupling was solved with the coupling

method and the pressure was solved with the PRESTO! Pressure interpolation method. Least

squares cell based gradient discretization was used and other parameters used second order

upwind. Particle injections were solved using a couple Eulerian-Lagrangian Discrete Phase Model

(DPM). Flow was modeled using a steady state flow while particles coupled with the flow, used

unsteady (transient) particle tracking. Relevant ANSYS Fluent equations for Lagrangian reference

frames are shown below:

9

Particle Velocity, up

𝑑𝑢𝑝

𝑑𝑡
= 𝐹𝐷(𝑢 − 𝑢𝑝) +

𝑔(𝜌𝑝−𝜌)

𝜌𝑝
+ 𝐹𝑎 [2-3]

Drag Force, 𝐹𝐷

𝐹𝐷 =
18𝜇

𝜌𝑝𝑑𝑝
2𝐶𝑐

 [2-4]

Cunningham correction, 𝐶𝑐

𝐶𝑐 = 1 +
2𝜆

𝑑𝑝
(1.257 + 0.4𝑒

−(
1.1𝑑𝑝

2𝜆
)
) [2-5]

The Thermophoretic force and the Saffman lift force were included in the DPM model,

to simulate forces due to temperature gradients and near wall shear forces. The particle used were

modeled using the Rosin-Rammler diameter distribution with droplet diameters based on Duguid’s

experimental results [68]. Khan used the Rosin-Rammler/Weibull to fit the particle data to a

distribution. From that, a probability density function (PDF) and cumulative density function were

made, the specifics of which are explained in Khan's thesis [11].

Khan [11] performed CFD simulations on a small office space, based off an office in

York University [75]. She analyzed three cases: layout with no outlets, a layout with a far-off outlet

and one with an overhead outlet. Her goal was to study if ventilation configuration played a

significant role in airborne transmissions in small spaces. She found that adding new exhausts did

not significantly change the risk of particle exposure, and in fact showed that it can lead to worse

situations due to pressure-based mixing within the domain. She suggested that a change in

ventilation design might be a possible solution to this issue. She specifically suggested that

displacement would likely perform the best given its configuration to move air upward. In other

studies, with a larger domain (lecture hall), Khan utilized mathematical disease modeling to

enhance her simulations and extract more meaningful data.

Khan’s study [11] and others [20,21,71–73], showed that ventilation is important. She

also showed that CFD can be effectively utilized to predict dispersion of airborne particulates and

validated her methodology to experimental results. She utilized mathematical modeling to enhance

her CFD model and create a risk assessment model (RAM) based on temporal-spatial data. This

study will attempt to do something similar, but instead of using disease modeling techniques,

machine learning will be used.

10

2.3. Machine Learning

2.3.1. Introduction to ML

Machine learning (ML) is a new and emerging field that at is essence, is building on

the many years of knowledge in optimization [76–78], computer science [79,80] and statistics

[81,82]. ML is a branch of Artificial Intelligence (AI) that refers to the process of creating or

training algorithms to learn from data to make decisions or predictions [23]. ML has become

explosively more popular due to the emergence of Artificial Neural Networks (ANN), algorithms

that have become extremely common, and the advancement of computational capabilities. ML

mainly operates on a black box. This means that the understating of why the model works, how it

makes decisions, and sometimes how or what it makes certain correlations with, are hidden from

observation. While this means that ML cannot be used to deepen the understanding of fundamental

theatrical knowledge about the physical world [83]. Instead, it can be used in combination with

classical mechanistic engineering models. Mackay and Nowell dub these meshing of approaches

as ML “gray box” models [83]. These models are physics-guided using ML as a mediator between

real world quantities as inputs and outputs. ML can be configured to reflect the physical constraints

(ex. differential relations), probabilistic relations or simulation results. With some understanding

of the underlying physical mechanisms, ML can be used more confidently to make models around

real-world phenomena.

2.3.2. ML and Neural Networks

On basic principle, ML can be thought of as simple black box models where inputs

and outputs are fed and used to create a comprehensive algorithm that accurately models the

physical process in question (in the context of engineering problems). Figure 2-2 outlines the

general process for creating ML models in engineering applications.

11

Figure 2-2: ML Pipelines for Application in Engineering [83,84]

Input data is used to train the model which can then be used to predict outputs for other

data sets. Machine learning models come in many forms, but they can generally be classified into

three major classes: Reinforcement Learning (RL), Semi-Supervised Learning (SSL), and

Supervised Learning (SL) [85]. RL works by optimizing an algorithm in a live environment. The

ML model will use reward or penalty functions (like loss and fitness functions referenced in

optimization spaces), to train the model to encourage optimal behaviour. SL is the opposite. It

works in a closed system environment. All the required data is given to the model in a “supervised”

context, meaning that the user training the model will tell the model what is or isn’t ok to take in

as data. In the middle of these, SSL works by running a pre-built model in an open environment

where it can still take in information and change. It operates by using both principles of SL and

RL [24,83]. An overview of these learning techniques is shown in Figure 2-3, below.

Figure 2-3: Machine Learning Techniques [83]

12

An Artificial Neural Network (referred to as ANN) is a type of model based on the

biological nervous system, where an individual neuron can send and receive signals from other

neurons. A neuron makes decisions by summing the weighted signals of inputs into the neuron.

The neuron has a bias applied in conjunction with the sum of the weighted sum of signals. This

value is then sent to an Activation function, which calculates the value of the neuron [83,85]. The

figure below shows this process in graphical form.

Figure 2-4: General Flow Diagram for Neuron in a Neural Network [86]

Neural Networks are useful for doing what is commonly referred to as model

reduction. They can take in input data and find a lower dimensional manifold representation of

that data, commonly referred to as a Reduced Order Model (ROM). They can then use that

manifold to then predict other parameters [86]. An example of this processes was outlined by

Brunton et. al. [86] and it is shown in Figure 2-5, below.

Figure 2-5: Process of Creating a Reduced Order Model [86]

13

The function 𝑦 = 𝑓(𝑥; 𝜃) represents the architecture of the ML model. There are

various ML architectures that can be used, and associated parameters, hyper parameters, activation

functions and other such associated values that go into building any such model. For brevity, the

common ML models and related info is displayed in the table below. Table 2-1 provides a brief

description of the ML models, pros and cons, the topology (algorithmic structure).

Table 2-1: Summary on Common Machine Learning Architectures

ML Model /

Architecture

Description

Linear

Regression

(LR) [87]

Simple Statistical method involving finding the linear relationship between two variables. Simplicity

and ease of use make it very popular.

Multiple Multiple Inputs into a LR model. Can also have MIMO (multiple outputs) LR models.

Decision Tree [88] A non-parametric learning algorithm used for regression and classification activities. Its

structure includes branches, leaf nodes, internal nodes, and root nodes.

Random Forests [89] An algorithm that combines the result of multiple decision trees to find a single output. It can

handle both classification and regression problems.

Support Vector

Machines (SVM)

[90,91]

Known to be a robust classification and regression technique which maximizes prediction

accuracy without overfitting issues. Commonly used to analyze large data values of predictor

fields. Applications include CRM for businesses, facial recognition, text mining concept

extraction, etc.

Deep Neural Network

(DNN) [92,93]

Essentially, this is a neural network with at least 2 layers (enable learning of intricate

patterns), used to process data in complex ways by implementing math modelling. This

allows them to be powerful for image and text analysis tasks.

Convolutional Neural

Network [94]

A type of DNN that is designed for processing grid data such as images. Its layers are

specialized to lean and extract relevant features from input data, effective for image

recognition tasks.

Recurrent Neural

Network [95,96]

A type of neural network designed for processing sequences of data, such as time series or

natural language. It has loops that allow information to be passed from one step of the

sequence to the next, enabling it to capture temporal dependencies and patterns in the data.

Long Short-Term

Memory (LSTM) [96]

A type of recurrent neural network (RNN) architecture designed to overcome the vanishing

gradient problem and capture long-range dependencies in sequential data. LSTMs utilize

memory cells and gating mechanisms to efficiently learn and store information over extended

sequences.

14

Generative

Adversarial Networks

(GAN) [97]

A type of deep learning framework consisting of two neural networks, a generator and a

discriminator, that work in tandem. The generator creates synthetic data samples, aiming to

replicate real data, while the discriminator tries to distinguish between real and generated

samples, leading to a competitive learning process that results in the generation of

increasingly realistic data.

Feedforward Neural

Network (FFNN)

An artificial neural network where information flows in one direction, from input nodes

through hidden layers to output nodes. It's mainly used for tasks like classification and

regression, but lacks memory of previous inputs, making it less suited for sequential data.

ML Model /

Architecture

Pros Cons

Linear Regression

(LR)

Easy to use and good starting point for

regression tasks. The model’s coefficients

provide insights into relationships between

input and target variables. It is a

computationally efficient way to work with

large datasets.

Assumes a linear relationship between

variables if that assumption is violated then

inaccurateness can occur. Need

regularization to avoid overfitting or

underfitting. Sensitive to outliers, can affect

performance and coefficient estimates.

Violations of assumptions like normality of

errors or constant variance can lead to

unreliable predictions and skewed results

Decision Tree [88] Easy to consume and understand due to

hierarchical nature. There is flexibility

because decision tree’s do not require data

preparation. They can be leveraged for

classification and regression tasks. It can

handle many data types that are otherwise

obstacles for other classifiers like Naïve

Bayes.

Not good at generalizing to new data,

effectively it is prone to overfitting. Known

to have high variance estimators; small

variations in data can lead to a different

decision tree and reducing variance is

limited. It can be expensive to train this

approach compared to other algorithms.

Random Forests [89] The problem of overfitting is overcome

because of the nature of random forests. This

is a collection of decision trees, so the

average of uncorrelated trees reduces the

resulting variance and error. They also allow

an individual to determine variable

importance to the model (MDI & MDA)

using Mean Decrease in Impurity and Mean

Decrease Accuracy.

Although they can handle large data sets,

this can lead to slow data processing due to

each decision tree that needs to come

computed. More resources are required to

store and process data as a result.

15

Support Vector

Machines (SVM)

[90,91]

Uses subset of training points in the decision

function resulting in high memory efficiency.

Known to be effective in high dimensional

spaces, even when dimensions are greater

than the number of samples.

They excel in classification tasks, but they

exhibit certain limitations. They are sensitive

to feature scaling discrepancies and outliers,

impacting their effectiveness. SVMs

computational complexity and memory

demands can be challenging for large

datasets, and their hyperparameters

necessitate careful tuning for optimal

performance.

Deep Neural Network

(DNN) [92,93]

Effective for learning complex features from

raw data and capturing patterns. Can

understand hierarchical relationships in data.

They can adapt to various data types and data

modalities.

Can be computationally intensive (time and

hardware utility wise). Usually need large

amounts of labeled data for effective

training. Can be susceptible to overfitting.

Configuration and tuning of parameters can

be time consuming.

Convolutional Neural

Network [94]

They can learn hierarchical features from

images. Object detection and image

classification are effectively performed. The

convolutional layers in CNNs use parameter

sharing, reducing the number of learnable

parameters, and making them efficient for

handling large image datasets. They exhibit

translation invariance, meaning they can

recognize patterns regardless of their position

in the image.

Can be computationally intensive. Large

data requirement for training. They lack

human understandable interpretations of

learned features and decisions. Therefore,

explaining reasoning can be troublesome.

Can struggle with overfitting and

generalizing unseen data.

Recurrent Neural

Network [95,96]

They can handle sequential and time-

dependent data, great for speech recognition.

They can model context and relationship that

span across multiple time steps. Built-in

memory to retain information allow for easy

learning and remembering patterns from the

earlier time steps.

Often experience problems maintaining

information over long sequences.

Computationally can be intensive and

require large datasets for deep architectures.

Lack of parallelism. Need careful

initialization otherwise are prone to training

instability.

16

Long Short-Term

Memory (LSTM) [96]

Great for understanding context over

extended time intervals because it can

capture long range dependencies in

sequential data. Common issues for RNN’s

including vanishing gradient are mitigated in

a LSTM. They also have memory cells that

allow for important context to be maintained

across time steps. Its gating mechanism also

allows for reduced overfitting.

Can be computationally demanding. They

have a complex architecture difficult to

understand. Training time can be longer due

to complex structure. Needs to tune

hyperparameters of the network for number

of layers, units per layer and learning rate.

Generative

Adversarial Networks

(GAN) [97]

Can create high quality realistic data samples

(images, text, image synthesis, style transfer,

data augmentation). Can learn from

unlabeled data. Great for a variety of tasks

such as creative apps (art, music, etc.)

Training can be challenging due to

hyperparameter tuning. Can be susceptible

to mode collapse (limited output variety

undermines diversity of resulting samples).

Ethical concerns are to be aware of,

including generation of deepfakes. For these

large and complex models, it can be resource

intensive.

Feedforward Neural

Network (FFNN)

Can approximate complicated functions and

mappings for modelling relationships within

data. Parallel processing is an important

feature to note. By using activation

functions, FFNN’s can capture non-linear

patterns in data. They can also lean

hierarchical features for manual feature

engineering.

They lack memory of prior inputs, not great

for sequential data tasks. Requires large

amount of labeled data for overfitting.

Selecting parameters for tuning can be

challenging, a lot of manual experimentation

and tuning needed. For high-dimensional

data, feedforward networks might suffer

from the curse of dimensionality, where the

network's performance deteriorates due to

data sparsity.

ML Model /

Architecture

Applications

Linear Regression

(LR)

Sales prediction, treatment impact studies, age and income correlations, stock market prices

and indicators, estimating patient outcomes based on medical parameters.

Decision Tree [88] Identifying disease based on patient symptoms, medical history, etc. Credit score and

worthiness of people by analyzing financial information for loan approval. Image

classification. Manufacturing quality control of products by analyzing defects and sensor

data in processes.

Random Forests [89] Anomaly detection for fraud related crimes and network security. Assessing object

recognition and image segmentation for medical diagnosis.

17

Support Vector

Machines (SVM)

[90,91]

Classify emails as legitimate or spam based on various features. Medical diagnosis using

conditions and disease prediction. Image classification in applications like vehicle and

surveillance systems. SVM’s can also be used for fraud transaction identification from online

payment systems and banking data.

Deep Neural Network

(DNN) [92,93]

Object recognition tasks and classifying within images such as satellite imagery analyzation.

Crucial in NLP (natural language processing) tasks where machines can understand human

language effectively. Autonomous driving where processing sensor data and detecting

objects in order to make decisions is critical.

Convolutional Neural

Network [94]

Identifying objects, animals, scenes within images, powering image search engines, tagging

systems. Robotic development where object detection is necessary. Analyzing medical

images such as X-rays, CT scans, MRIs for organ segmentation or identification.

Recurrent Neural

Network [95,96]

Speech recognition where voice assistant applications or transcription services are needed.

Time series analysis were predicting and modelling data over time for sequences is

important. Great for stock market trend modelling and weather forecasts.

Long Short-Term

Memory (LSTM) [96]

Used extensively in machine learning tasks where it is needed to capture long range

dependencies and nuances in language. Speech recognition applications related to audio

sequences and improving language to text features. Great for time series forecasting such as

energy consumption predicting, weather patterns.

Generative

Adversarial Networks

(GAN) [97]

Widely used for image generation of artwork, realistic faces, landscapes, and content

creation. Can also generate training data to improve robustness and generalization of

machine learning models.

Feedforward Neural

Network (FFNN)

Used for image recognition, speech, and character recognition as well to identify patterns in

data. Can also be employed to predict numerical values in regression tasks such as sales

forecasts and stock market trends. Interest rate determination and credit score analyzing is

also an application of FFNN’s using financial and personal factors.

2.3.3. Running and Evaluating ML Models

ML models are simple to create and utilize. The challenges come in refining

parameters and hyperparameters to find the optimal configuration. This is due to the black box

(gray box) model of ML models in that the internal workings are not visible. Nor is there a way to

develop a strong understanding of the correlation between the input and output quantities. Thus,

designing of ML models have an aspect of trial and error. ML models need data that is segmented

into Training (to make the model), Testing (to test against to see if the model is good) and validation

(a second set of testing data used to evaluate the final accuracy of the model, but that is typically

18

not included in training/testing. After a model is made, new data can be sent, and it can be used to

predict new data for the future [24,83,86,98].

 Evaluation of MLs is typically done with two main criteria, Mean Average Error

(MAE) and Mean Squared Error (MSE). These criteria are particularly useful for regression tasks.

MAE is the average of the absolute differences between predicted an actual value. It measures

average errors without considering the direction. Its formula is shown in the equation below.

𝑀𝐴𝐸 =
1

𝑛
𝛴𝑖=1

𝑛 = |𝑦𝑖 − �̂�| [2-6]

MSE computes the average of the squared differences between predicted and weighted averages,

where it gives higher weight to large values, as it is an exponential function.

𝑀𝑆𝐸 =
1

𝑛
𝛴𝑖=1

𝑛 (𝑦𝑖 − �̂�𝑖)
2 [2-7]

Lower values of MSE and MAE indicates a better fit for both metrics. MAE is more commonly

used as it can resist against the effects of outliers, since it does not see direction of errors and does

not magnify larger ones (as opposed to MSE).

2.4. Machine Learning and Computational Fluid Dynamics

2.4.1. Study by Mirzaei et al.

A study by Mirzaei et al. [99] demonstrated a method to utilize ML in conjunction with

CFD to produce airborne concentration data. Later, they show the methodology for combining a

simple Risk Assessment Model (RAM) and artificial neural networks (ANN) to develop a

prediction model using only CFD results. They created a methodology to fit spatial-temporal risk

data from CFD results to an ANN model to predict the risk cloud expansion as a function of time.

They first used CFD to perform a simple simulation in an empty domain where they freely injected

particles.

19

Figure 2-6: 2D Concentration plots over time for Mirzaei et al. Study [99]

Mirzaei et al. Study [99] then recorded the particle count in each location of a secondary mesh,

which is overlayed in the domain. The secondary mesh records the number of particles passing

through each cell. The result is the total particle count per cell.

Figure 2-7: Graphic of Methodology for Mirzaei et al. Study [99]

Mirzaei et al. [99] then created an ANN with feed-forwards multi-later perception

architecture. They used a back-propagation learning paradigm to build the model. They used a

sigmoid function with a smooth gradient. They plotted the results for varies neural network (NN)

architecture, but all the cases performed with relatively high values for percentage error. Their

testing data performed better, but their validation data performed worse when compared against

the training performance.

20

Figure 2-8: Dimensions Results from Mirzaei et al.’s study [99]

Figure 2-9: ANN Vertical Test Results from Mirzaei et al.’s study [99]

21

Figure 2-10: ANN Validation Results for Mirzaei et al. Study [99]

2.4.2. Study by Mesgarpour et al.

A similar study was performed by Mesgarpour et al. [67]. Their study constituted

multiple parts but only the elements dealing the ML model will be discussed. In a previous section

of their paper, they discuss a methodology to gather spatial concentration data at various discrete

planes. They want to create a MIMO (multi-input multi-output) model to predict concentration and

velocity at different locations over time. The experiment consisted of around 1240 input samples.

For prediction purposes, a Deep Neural Network (DNN) regression was constructed with varying

input, hidden, and output layers. Sequential models in this study were built using the Sequential

functions from the Keras library in Python. Keras is an open-source deep learning application

programming interface (API) written in Python. Five layers were introduced using the Dense

function. The initial layer acted as the input layer, acquiring attribute values like time, location,

pressure, temperature, and density. The model employed three hidden layers with 30, 20, and 15

neurons respectively, with settings determined through experimentation. The Rectified Linear Unit

(ReLU) activation function was applied to hidden layer neurons since it is widely used. The output

layer, responsible for predicting concentration and velocity, used the Sigmoid activation function

due to its adaptability for a range of values. The Adam optimizer was utilized to compute adaptive

learning rates for each parameter, primarily to update hidden layer neuron weights. The model

compilation was carried out using the Adam optimizer, while epoch and batch size values were

determined. Following this, concentration and velocity predictions were made using the model.

22

Figure 2-11: Bus Geometry from Mesgarpour et al.’s study [67]

Performance evaluation involved tenfold cross-validation, where samples were

divided into 10 categories. Nine categories were utilized for training in each iteration, while one

was reserved for testing. Epoch and batch size values were set at 200 and 5 respectively. Model

accuracy was evaluated through Mean Square Error (MSE) and Mean Absolute Error (MAE)

criteria calculations. The results of their study are shown in the table below. It shows that ML can

make accurate models that predict physical quantifies, acting as a “gray box” model, as shown in

the previous study.

Table 2-2: Results from Mesgarpour et al.’s study [67]

23

2.4.3. Summary

Both the Mirzaei et al. study [99] and the Mesgarpour et al. [67] studies demonstrate

the practicality of using CFD data to predict dispersion quantities using ML. The Mirzaei et al.

study [99] had a low percentage error for their training data, but the results of their testing showed

large increases in percentage error in comparison to their training results. They also only

considered a single ML model (DNN) and only had 35 cases. They did not have the presence of

validation data set(s) to help generalize their ML model. In contrast, the Mesgarpour et al. study

[67] used temporal and spatial data to have more input data (1200 samples) but were limited to

only a few cases. This study aims to use the multiple case method, having different initial and

boundary conditions, as well as the temporal and spatial approach, taking values at certain

locations over time.

24

Chapter 3. Further Utilization of CFD to Investigate Effects of

Ventilation Strategies on Spread of Airborne Diseases in Small Office

Spaces

3.1. Introduction

Indoor spaces are one of the fastest ways for the transfer of infections to occur. As outlined

previously, because of the high transmissibility of the coronavirus, specifically COVID-19 and its

variants, small random interactions can be sparks that start rapid infection events [56,64]. The

choice of investigating small office spaces reflects this concern for indoor environments. Smaller

spaces also make the creation of the simulation domain easier and quicker, and reduces

computational time, as they take less time to compute. Many such spaces have been investigated

previously in literature [6,20,71,73]. One such example was done previously by Khan [11]. They

modeled an office space on York University Campus, in the facility offices of the Bergeron

building (Office 437C). They analyzed three cases: no outlet, a singular overhead outlet and one

far off outlet as shown in Figure 3-1.

This study seeks to continue to use CFD to investigate the effects of design variations on

office spaces, but instead to focus on the ventilation strategy used. In industry, mixing and

displacement ventilation strategies are most common [8,11]. While not new, the pandemic renewed

interest in less common strategies. This study will thus contain three cases: Mixing, Displacement

and Stratum Ventilation strategies. The rooms general outline includes an inlet, an exhaust door

slip, and a human model among other fixtures for all three cases.

This study will contribute to literature that investigates both particle dispersion and

performance indicators. An analysis will be done on a small portion of performance indicators (PI)

as another metric to compare ventilation strategies. Namely, the heat removal efficiency, overall

thermal sensation, and modified index of mixing. These indicators were chosen based on studies

done by Zhang et al. [9] and Kabanshi et al. [100].

25

Figure 3-1: Previous Airborne Disease CFD Study by Khan [11]

3.2. Methodology

The creation of the simulation required a room geometry/domain, a mesh, and

simulation parameters. The design methodologies for each case were virtually identical, with

differences being in the refinement area(s) and the inlet velocity. This is due to the different

locations of the inlet and size/number of the inlet slots.

3.2.1. Model Geometry

Figure 3-2: Domain and Boundaries of Berg Office Model

26

The office space model was based primarily on the model by Khan [11]. Slight

variations to geometry importation and face placement were made, but no other significant changes

were made. The model includes additional faces for the displacement ventilation (DV) and stratum

ventilation strategies (SV). Slight changes were made to inlet velocities. The inlet slots have five

separated slots with equal widths. Air only exits two of the five slots. The lengths of the inlets vary

depending on the ventilation strategy used. The value for the domain is shown in Table 3-1. Other

faces, such as the door slip, human model and PC were not changed.

Table 3-1: Domain Dimensions for Bergeron Office Space

Model Specifications Value(s)

Room Size (L*W*H) 3.54 m x 3.31 m x 1.97 m

Inlet Slot Width 0.03 m (5 per inlet)

Inlet Slot Length

Mixing 1.17 m

Stratum 0.97 m

Displacement 1.35 m

Door Slip (L*W) 1.02 m x 0.02 m

Outlet (L*W) 0.3 m x 0.3 m

PC (L*W*H) 0.5 m x 0.18 m x 0.5 m

Seated Human Model (approx.) 0.6 m x 0.4 m x 1.08 m

3.2.2. Meshing Design

The mesh design of the office space used a uniform mesh distribution with mesh refinement

near faces with associated BC. Because of the small domain and general configuration that allows

for rapid particle escape or deposition, a highly refined mesh was not required, nor generally

desirable as it could exponentially increase simulation time. The impact of fine mesh size on

computational time would be compounded when including particle injections for DPM. Due to

concerns about long simulation run times, a mesh refinement was done to find ways of reducing

element number while maintaining mesh quality.

3.2.2.1. Original Meshing

The original meshing was a fine mesh with a total count of 891,338 elements. The meshing

comprised only of body sizing with face sizing refinement around all major BC (inlets, outlets,

PC, heat flux from human and PC models, injection location, walls). The meshing values for the

domain are shown in

27

Table 3-2.

Table 3-2: Original Values for Office Space Mesh Element Sizing

Model Area Element Size (m)

General Area 0.065

Inlet 0.00933

Outlet -

Door Slip 0.01

PC 0.03

Person Model 0.025

There was an overshoot in refinement of elements on multiple faces based on the large

mesh value, which could be targeted for further improvement. This overshoot was also observed

in the tightly packed faces. To analyze the original mesh, parameters including element quality,

orthogonal quality, skewness, and aspect ratio were taken into consideration for further

improvement. These metrics are known to be the fundamentals of element quality analysis. In

general, tetrahedral elements were used as they can offer good quality cells for this application

where no complex geometries are present within the dynamic region. Computational time was also

reduced with this decision and therefore an iterative mesh optimization approach was taken using

the quality mesh metrics discussed below. Different mesh features were implemented to determine

if it was viable to replace face sizing without losing noticeable cell shape and quality.

When analyzing element quality, a fine mesh with an average quality of 0.848 is

typically desirable, but not optimal if running a large set of simulations for data collection, where

shorter core-hours are more practical. When considering that the geometry of the environment is

particularly simple, open areas in the domain will not require tightly packed cells. The office space

in general is comprised of a person (where particle injection begins from), computer PC (heat

source), desk, velocity inlet and pressure outlet sources. Despite the simple nature of the room and

its components, there was an emphasis placed on the body element sizing which increased

simulation run times. There were also a handful of elements that were critically low in quality

where geometry issues were present, namely near the injection point (head), which were seen in

the form of sharp angles and small edges. Clusters of elements that changed in size dramatically

within a small distance, where gradual smoothening may have provided fewer element quality

issues. This is a potential area of future refinement and was not investigated further in the scope

of this study.

28

Figure 3-3: Element Quality for Original Mesh– Human Model

Skewness evaluates the extent an edge and angle of a created mesh deviates from the

desired or ideal state. To prevent degenerative cells and a good shape of the tetrahedral elements,

an excellent skewness range is known to be 0 – 0.25. The original mesh had roughly 200,000

elements with a skewness range of 0.35 – 0.95 concentrated around the human body specifically.

This rose a concern with the mesh and geometry of the environment features as well. A large aspect

ratio is acceptable where little to no strong transverse gradient (i.e., boundary layer) is present,

preference was still given to create as many of the mesh elements in an ideal shape. The average

aspect ratio of the original mesh was found to be 1.8, meaning that average cell was stretched

(elongated) along one direction compared to its other dimensions. A high aspect ratio among

elements in a CFD setup can lead to inaccurate simulation results and cause numerical errors, fail

to capture dynamics near boundary layer areas and affect the visualization of the overall result

(due to distorted cells and flow patterns).

Orthogonal quality measures how well mesh facing are perpendicular to the flow direction

at a given location. Effectively, its value quantifies the deviation of an element from a square shape,

a metric where close to one is a common benchmark. This meaning that there will not be any

numerical errors where strong gradients or flow direction changes, as well as instabilities in

divergence. The original mesh had well over 10,000 elements with an orthogonal quality below

0.5, concerning because they were located at the inlet regions most of all.

29

Figure 3-4: Cell Orthogonal Quality for Original Meshing

The skewness and quality of the individual elements did not have major areas for

improvement. The orthogonal quality was average except for one of the occupant faces (which is

to be expected, due to complex geometry).

3.2.2.2. Meshing Improvements

The overarching goal of this mesh refinement was to reduce the overall element count

while retaining the quality of cells. More specifically, the goal was to optimize the meshing further

using an approach different than simply assigning a very small element size for critical faces. The

total element and node count in general regions while trying to maintain the high element count in

important regions (i.e., BCs) would be reduced while trying to reduce the change to meshing

quality. The reason for this was to reduce the run time of simulations, as was required for the study

performed in Chapter 5. The heavy use of face sizing was eliminated in this new mesh iteration,

because of other mesh features that allowed for similar quality traits and a lower computational

time. The updated element sizing is shown in Table 3-3.

30

Table 3-3: New Values for Office Space Mesh Element Sizing

Model Area Element Size (m) Refinement Value Edge Sizing

General Area 0.07 - -

Inlet - 3 25 divisions/length

Outlet 0.065 - -

Door Slip - 3 -

PC - 1 -

Person Model - 2 -

As opposed to redefining the element size for each face and attempting to reduce

element count in the general mesh area (outside critical components), the mesh refinement feature

for boundary conditions, native to ANSYS was used. Refinement features can specify controls for

faces, edges, and vertices on a simpler scale of 1-3 which indicates the factor that the local mesh

area is multiplied by for each level. Essentially, this is an exponential increase in refinement that

can produce high quality mesh regions, especially since this feature can consider curvature of

nearby geometries including boundaries. Therefore, a general body sizing feature controlled the

mesh element sizes until each important geometry was assigned a refinement level or edge sizing.

Figure 3-5: Mesh with Refinement Features Replaced Face Sizing

31

The new mesh prioritized the use of tetrahedral elements since sweeps and multizone

meshing were not the most optimal for the room geometry. The lack of complex geometry

confirmed that more nodes on each element would not benefit the overall simulation but would

greatly increase the computational time. Tetrahedral elements allow for flexibility to handle

irregular shapes more easily than hexahedral elements, in this case sharp corners and intricate

features such as the various inlet/outlet geometries would be well suited to the tetrahedral element

type.

Table 3-4: Mesh Metric Comparison (Initial vs New Mesh)

Mesh Element Count Orthogonal

Quality

Skewness Aspect Ratio Element Quality

Original 891338 0.787 0.211 1.81 0.848

New 622361 0.734 0.262 1.66 0.811

The orthogonal quality of faces was improved to develop more accurate results near the

boundary layer areas of the mesh where velocity and temperature values are to be recorded. Since

the inlet and outlets are near corners/walls, the mesh needs to be developed particularly well to

observe accurate metrics at these locations. The local mesh refinement was efficient at resolving

mesh tangling and areas where gradients were observed (near pressure outlet and adjacent walls).

Mesh smoothing also increased orthogonal quality issues once the element count had been

reduced, sufficiently producing an average element value to that of the original simulation mesh.

To maintain an excellent average skewness value for elements in the mesh, a target value was

selected and prioritized in the mesh settings. Making sure that the mesh inserts (i.e., sizing,

refinement, etc.) had to follow smoothing and adaptive meshing strategies to specifically hold a

skewness value of 0.25 automatically generated sufficient faces and edges as a result.

The average element quality of the initial mesh was not an issue to resolve or specifically

target, instead retaining critical areas of high quality was important. Velocity inlet, pressure outlets,

and other boundary conditions were targeted with high refinement whereas other areas of the body

were set with a higher cell size and growth rate. This still allowed for a uniform grid among

majority of the simple areas of the mesh, meanwhile high-resolution refinement mesh inserts were

placed on the inlet & outlet faces. In addition, edge sizing was added to the inlet velocity areas

specifically (set to a division of the length by 25) to emphasize the surrounding mesh area. As a

32

result, the critical areas retained a high element quality with the general element, and an element

quality over 0.8 was achieved.

3.3. Numerical Model

For the numerical analysis, ANSYS Fluent © versions 2021 R1 and 2022 R2 were used

interchangeably (2021 compatible with 2022, not vice versa). While there were no known major

differences between simulations that were run with either version, no in-depth comparison of

simulation speed for the different ANSYS versions was conducted. It is noted that simulations run

in ANSYS 2021 ran considerably faster, and generally generated better results, especially

considering residuals and other values used for convergence. As such, very few simulations were

made in 2022 and it was mainly used for plot and graphic generation. The model used in this thesis

follows closely with the model used by Khan [11]. A general outline is still provided below with

major changes outlined explicitly.

For this study, the flow was analyzed in steady state and converged after 5000 iterations

(very slight change in residuals). The real flow time was around 0.1 seconds per 100 iterations.

The unsteady particle tracking was done every 10 flow iterations (0.01s) and occurred at 0.001s

per particle advancement for 100-time steps, for a total of 0.1s particle time per 0.01s of flow time.

Due to this counterbalance of time advancements, the injections were started after significant

convergence of the steady flow field. For the purposes of clarity, the difference in time scales will

be noted when referenced for values associated with the particle time domain. For steady state

flow quantities, the time will be referred to as flow time and for unsteady DPM quantities as

particle time.

3.3.1. Numerical Solver

The model used a Eulerian-Lagrangian to model the fluid flow and particle interaction. The

numerical solver was pressure based with RANS. Turbulence was modelled with standard

RNG k – 𝜀 with standard wall functions. The RNG k – 𝜀 model is useful for analyzing turbulent

flows with rotating or recirculatory flows. It is generally used when modeling indoor air

simulations. Pressure-velocity coupling was solved using the PRESTO! pressure interpolation

scheme. The fluid flow was solved with steady state initialization and was deemed completed by

tracking residuals, mass flow rate and temperature probes. The particles were then injected with

transient decoupled particle tracking using the ANSYS DPM functionality. The energy equation

33

was also used to model thermal effects from the PC and human models. Buoyancy was modeled

with the Boussinesq model with standard density and thermal values.

3.3.2. Boundary and Initial Conditions

The model injects air through the inlets at a specified temperature. Air is released from the

domain via two pressure outlets, the door slip, to model air flow under a doorway, and the exhaust.

The human and PC models emit a constant heat flux throughout the room. The air diffuser acts as

inlets for air into the domain. The volumetric flow rate for all three cases is similar at 57 L/s (0.057

m3/s). The area for each inlet is different, however, to account for the room geometry and to allow

for better airflow. The walls act as a no slip adiabatic boundary condition. For this simulation all

walls besides the human and PC model reflect particles and do not allow for deposition. The PC

and human wall boundary trap injected particles, simulating deposition on the surface. The values

for each boundary condition are outlined in Table 3-5. Values are truncated for ease of reading.

Table 3-5: Boundary Conditions for Office Space CFD Simulation

Boundary Condition Value

Ambient temperature (°C) 23

Inlet air temperature (°C) 18

Occupant heat flux (W/m2) 64.6

PC heat flux (W/m2) 71.4

Diffuser Inlet (m/s)

[57 L/s]

MV 0.45

SV 0.98

DV 0.58

Door slip Pressure-outlet, escape

Exhaust (outlet) Pressure-outlet, escape

Walls (all non-inlets/outlets) Adiabatic, no slip, reflect/trap

3.3.3. Injection Conditions

Particle injection was modeled to simulate low velocity biological injection of particles

(such as a cough or sneeze). The particles interacted with the fluid in continuous phase in an

unsteady Eulerian- Lagrangian model. The model also included the Thermophoretic force and

Saffman [101] lift forces to simulate particle lift effects near walls and due to temperature

gradients. While this study does not go further into varying particle injection velocity, this is

explored more in Chapter 6. The DPM and injection conditions are outlined in Table 3-5 and Table

3-6, below.

34

Table 3-6: DPM Conditions for Office Space Simulation

Injection Condition Value

DPM Iteration Interval 10

Particle Time Step Size 0.001 s

Physical Models Thermophoretic

Force

Saffman Lift Force

Parallel Processing Method Hybrid

Table 3-7: Injection Conditions for Office Space Simulation

Injection Condition Value

Injection Velocity [mag] (m/s) 6

Injection Position (m) [2.12, 0.95, 2.17]

Temperature (K) 310

Relative Start and Stop Times (flow time) [0, 0.4]

Azimuthal start and stop Angle (deg) [0, 360.0000521392]

Max and Min Diameter (μm) [50, 1]

Mean diameter (μm) 10

Spread Parameter 3.5

Number of Diameters 10

Number of Streams 2

3.3.4. Performance Indicators

The numerical study done by Zhang et al. [9] used Performance Indicators (PI) to develop

decision making strategies in selecting different ventilation strategies in different scenarios. The

study evaluates mixing (MV), displacement (DV and stratum (SV) ventilation under various office

spaces. The study utilized various performance indicators (or metrics) and utilized them in a Z-

Score for standardization and ranking. The indicators used include: HRE (heat removal efficiency),

CRE (contaminant removal efficiency), ADPI (air diffusion performance index), and a modified

index of mixing (IOM*). The study found that for HRE and IOM*, displacement performed the

best in independent work whereas SV performed the best for discussion and meetings. When all

four indicators were factored, SV performed the best in meetings while MV performed the best in

all other scenarios.

HRE is an indicator for ventilation systems that quantifies its capacity for heat removal in

an isolated system(s). It is the ratio of temperature change between the exhaust and supply to the

35

temperature difference of the room and supply air. HRE starts at one, and greater values indicate

higher removal ability. IOM is representative of the energy loss of the ventilation system. The

original equation was designed for use in evaluating heat removal in data processing equipment.

The equation measures the effect of mixing by using max and minimum temperatures in local

zones. The effect of mixing will usually mean that the room is heating due to the distributed

thermal energy. This implies an energy loss as the ventilation is not carrying warm air away from

the Cooling zone. The modified equation is used in this study, which uses.

An experimental study by Kabanshi et al. [100] attempts to quantify an occupant’s thermal

perception. The study states that: “the participants estimated overall thermal sensation (OTS), local

thermal sensation (LTS), thermal comfort, thermal preference and acceptability as a function of

velocity and room air temperature”. The framework of the study was with the use of a newly

developed intermittent air jet strategy (IAJS) in spaces with high occupancy (like classrooms).

Of the equations used in both studies, the ones chosen were the HRE, OTS and IOM. The

three factors cover a wide range of qualitative as well as quantitative metrics useful in evaluating

a HVAC system’s performance. These equations will be utilized in all three cases, with differences

being in temperature point and surface creation. Due to the open-ended nature of the location

selection for these indicators, the exact locations are not outlined here. The equations are outlined

below in Equations [3-1], [3-2] and [3-3].

𝐻𝑅𝐸 =
𝑇𝑒−𝑇𝑠

𝑇𝑟−𝑇𝑠
 [3-1]

Where, Te is the exhaust air temp, Ts is the supply air temp, and Tr is the occupied zone air. This

equation has a theoretical minimum value of 1, where the exhaust temperature is equal to the

occupied zone air, implying immediate removal of warm air from the zone. This is a positive

indicator, which means that higher values are a good sign. It implies that the exhaust air is

absorbing much of the heat (Te > Ts) in comparison to the energy difference between the zone and

the supply (Ts > Tr). If the supply air is as warm or warmer than the zone, it is adding heat to the

system (poor performance). In contrast, if it is blasting really cold air into the system, but the

system exhaust temperature is still low in comparison to the zone, it means the system is not

removing warm air effectively.

36

𝐼𝑂𝑀 =
𝑇𝑟−𝑇𝑖𝑛

𝑇𝑜𝑢𝑡−𝑇𝑖𝑛
 [3-2]

Where, Tr is the occupied room temp, Tin is supplying air temp, and Tout is the exhaust air. This

indicator starts centred with a theoretical value of 0. It is the ratio difference in room and supply

temperature to the difference in exhaust and supply temperature. If this value is high, it implies

that the change in room temperature is small relative to how much energy is being inserted into

the system. Note that room temperature, implies the average room temperature as opposed to

zone/occupied temperature used for HRE. For cooling applications, one would expect this value

to be negative as the inlet air will be colder than the output air. The higher the absolute value of

IOM is, the better mixing (and thus ventilation) is being performed. IOM and HRE measure

different but similar quantities. HRE measure the local heat removal while IOM measure the

average heat removal. In some contexts, IOM is a quantity to minimize, if optimizing

heating/cooling for example, without wasting energy. In other contexts, it is a good indicator,

especially for certain ventilation modes (i.e., Mixing). Equation [3-3] shows the OTS relation.

𝑂𝑇𝑆 = 0.31 ∗ 𝑇 – 1.72 ∗ 𝑉 – 7.15 [3-3]

Where, T is the supply air temperature and V is the air flow speed 1.1 m from the ground. This

OTS indicator is a linear equation that indicates the discomfort felt by occupants in a ventilated

zone. It centres at 0, with 0 means the occupant will be completely comfortable (no discomfort of

any kind is felt by the occupant). The OTS value will become positive or negative depending on if

the occupant feels cold or hot, respectively.

3.4. Sensitivity Studies

This section of the thesis outlines a brief sensitivity analysis to investigate the influence of

mesh resolution and numerical schema on the accuracy and convergence behavior of the CFD

simulations. This was done to have a better understanding of solution accuracy and model fidelity.

The meshing used for this study employed basic body and face refinement techniques. The

numerical solver utilized a Pressure-Velocity coupling scheme. The Spatial Discretization used

least squares cell based gradient and PRESTO! for pressure. For both momentum and energy,

second order upwind scheme was used. For turbulence, the kinetic energy and dissipation rates

37

were both calculated using a first order upwind scheme. The simulation was steady state, and thus

used a global time step method for temporal discretization (meaning the time step was varied and

was software controlled).

3.4.1. Mesh Sensitivity Study

A mesh sensitivity study was conducted by varying the general body element sizing as well

as the face element sizing for faces related to boundary and initial conditions (i.e., inlets, outlets,

human model, computer model). Four meshes (rough, course, fine and very fine) were generated

with cells numbers ranging from around 60,000 cells to 600,000 cells. Four probes were setup to

evaluate the average room temperature, the occupied zone temperature, the exhaust temperature,

and the door slip temperature. The four temperatures probes were monitored at the end of the

simulation when convergence was reached, which was typically after 1000-2000 iterations. The

reason for the relatively short convergence time was due to the small number of complex

geometries and small domain, which reduced the number of Core-Hours needed for simulation

completion. While typically time-averaged values are plotted for steady state simulations with

complex geometries or turbulent flows, instantaneous values are plotted here to observe and

identify areas that may have transient elements or that may need further mesh refinement. The

locations of the probes are shown in Figure 3-6.

Figure 3-6: Location of Temperature Probes

The results of the refinement study are shown below (Figure 3-7). The results show that

the occupied room temperature starts converging very quickly at around 200,000 cells. This was

38

because this region was very close to the heat flux emitted from the person model and not near any

high turbulence regions, meaning there was little effect of turbulence fluctuations. The optimal

number of cells was above 400,000 cells for the other three indicators, which were near high

velocity regions. These regions had not converged completely, but the discretization error was not

significantly decreasing past this point. Further studies may benefit from a larger number of probes,

probing differing quantities or using line probes instead of point probes. For the purposes of this

study, meshes with 400,000 cells or more was deemed acceptable.

Figure 3-7: Steady State Temperature vs Total Cell Number for Temperature Probes

3.4.2. Numerical Study

The ventilation strategies inject high velocity air into the domain. At high Reynolds

numbers the effects of turbulence effects are significant. To investigate this, four different

simulations were run to analyze the discretization effects of the kinetic energy and dissipation rate

terms when using first order or second order upwind schema. The terms are obtained from the

RNG k-𝜀 turbulence model. The convergence plots of the residuals of the fine mesh are shown in

Figure 3-8 and Figure 3-9 for the base case of first order upwind schema for kinetic energy and

dissipation rate. The figures show that there was likely a combination of transient flow effects in

39

addition to turbulence mixing, which resulted in larger numerical fluctuations. The effectiveness

of a transient flow simulation was not investigated in this thesis.

Figure 3-8: Plot of Residual Values for Fine Mesh (400,000 cells)

Figure 3-9: Plot of Temperature Probes for First Order Turbulent Term Approximations

In contrast, the results of velocity probes for the enhanced case, where second order upwind

was used for the turbulent terms, is shown in Figure 3-10. Higher order approximation of these

40

terms produced more accurate numerical approximations (reduction in truncation error) and helped

to converge the simulation results.

Figure 3-10: : Plot of Velocity Probes for Second Order Turbulent Term Approximations

This numerical sensitivity study compared four simulations, the results of which are

presented in Table 3-8 below. The last simulation (Simulation 4), which used numerical schemes

with second order upwind for both turbulence schemes, served as the numerical benchmark.

Simulation 4 was assumed to be the ideal computational value for comparison and can be used to

estimate the change in simulation fidelity due to discretization of the partial differential equations

(PDEs).

The error percentage is the absolute percentage difference between the ideal and actual

values calculated, where actual refers to the results of the benchmark simulation. The velocity

magnitudes are taken from the point probes near the exhaust and the door slip, and the simulation

was run for 3000 iterations or until convergence was achieved. The values shown, are time

averaged based on values 500 iterations after the simulation has converged. With this analysis, an

estimation on the truncation error done due to the reduced order scheme can be approximated.

41

Table 3-8: Results of Numerical Sensitivity Analysis for Turbulence

Simulation

Number

Numerical Scheme Results

Kinetic

Energy (k)

Dissipation

Rate (𝜺)

Exhaust Velocity Door Slip Velocity

Value (m/s) Error (%) Value (m/s) Error (%)

1 First Order First Order 0.3109 9.74 0.4161 2.51

2 First Order Second Order 0.3005 6.07 0.4366 2.30

3 Second Order First Order 0.2784 1.73 0.4274 0.14

4 Second Order Second Order 0.2833 – 0.4268 –

The results show that the two turbulent terms contribute to the discretization error.

Particularly, it is observed that the dissipation rate had a much stronger effect on thermal effects,

like temperature, while kinetic energy had larger effects on viscous and velocity effects. This was

because the kinetic energy term refers to the portion of chaotic kinetic energy associated with

turbulent flows. These flows are heavily influenced by large velocities. Thus, areas with lower

velocities will see these effects reduced. The dissipation rate deals with the transformation of

turbulent kinetic energy into internal energy (heat). This means this term is associated with thermal

effects as well as with the dissipation of turbulence. If temperature gradients are not heavily

present, this term reflects mainly viscous dissipation.

Because of the relatively low temperature gradients observed in this problem, it is expected

that the changes to the kinetic energy term, as opposed to the dissipation rate, reduced the

(approximated) discretization error of the simulation. Based on these results, the configuration of

the third simulation, with second order upwind kinetic energy and first order upwind dissipation

rate, was used for the remainder of this study.

3.5. Results

3.5.1. Mixing - Velocity and Temperature

The right-side view of the room and the velocity vectors can be seen in Figure 3-11. The

effect of mixing can be through large but slow-moving rotational vortices, mixing the incoming

upper cool air and the warmer air. The exhaust can be seen drawing air away from the room into

the HVAC duct located at the back of the room.

42

Figure 3-11: Mixing – Right-side View

Figure 3-12: Mixing - Isometric View

 In Figure 3-13, situated in the midpoint of the room, the rotational vortices are not

limited to the longitudinal planes of the room. Transversal vortices can be seen further enhancing

the effects of mixing. The high velocity air can also be seen as it enters from above.

43

Figure 3-13: Mixing – Top View

 As expected, the temperature contour of the room (Figure 3-14) shows a thorough

mixing, with warm air plumes moving upward. The upper portion of the room is slightly warmer,

than the lower portion of the room, but mixing does a good job of merging the stratified layers of

cool and warmer air.

Figure 3-14: Mixing – Temperature Right view

In contrast to mixing (Figure 3-11), the displacement ventilation configuration (Figure

3-15) shows a steadier stream of air moving towards the back to the front of the room. The cool

44

air, immediately moves upwards, likely due to the combined effects of the low inlet velocity and

the effects of buoyancy due to the cooler air. There are some small vortices seen in the back of the

room, but the velocities are low. The fast-moving air moves in the upper portion of the room and

makes its way to the exhaust. However, there is a small recirculation effect that is due to stagnant

slow and warm air around the PC and human model (above the table). This air is then passed by

faster, cooler air moving towards the exhaust. The effects of buoyancy and the low pressure of the

moving air creates a pressure differential that forces air towards the room centre. There is a small

region of large velocities around the room centre, in front of the room. The magnitude of the forces

is unexpected, but it is a combination of the incoming air and the warm air plumes generated by

the human model. The warmer air wants to move upwards, and this creates a relatively intense

recirculation region. This is the result of the meshing quality due to the complex geometry of the

region. The mesh may need further refinement to create a better boundary layer and simulate a

more realistic airflow.

Figure 3-15: Displacement Ventilation – Right View

 In Figure 3-16, the top view of the room is shown. It mirrors the previous view

(Figure 3-15), with an artifact of large velocity magnitudes near the centre of the room. However,

it also shows that the air is moving from the back of the room to front around the room walls,

and that the air slows as it nears the front of the room.

45

Figure 3-16: Displacement Ventilation – Top View

Figure 3-17: Displacement Ventilation – Isometric View

The results of displacement ventilation (Figure 3-15 to Figure 3-18) can be seen in full

effect, as it effectively pushes warmer air to the upper and front portions of the room. Regions

around the person model, seen in Figure 3-18, are surrounded by cooler air (darker means colder

in this context), which will result in good cooling effects, as will be discussed in further detail in

a later section.

46

Figure 3-18: Displacement Ventilation – Temperature Profile

Figure 3-19: Stratum, Isometric View

The Top view of the stratum ventilation configuration, seen in Figure 3-20, shows

extremely fast-moving air towards the person model. The air streams are disrupted by the PC and

human models, and splits as it warms and slows down rapidly. This split causes the generation of

one large recirculation vortices that is likely further induced by the location of the exhaust. Smaller

47

vortices can be seen along the room corners. The left wall is moving towards the back along the

recirculation region while a smaller long form velocity stream, along the right wall, brings air back.

Figure 3-20: Stratum – Top View

The Stratum Ventilation Right View, seen in Figure 3-21, shows two large counter flowing

eddies, above the inlet, caused by the high velocity air, which is inducing turbulence in the flow.

The air in front of the human model (facing the room centre) is moving downward. This flow

removes warm air and pushes it towards the floor and back of the room where a large recirculation

region moves it upwards towards the exhaust.

Figure 3-21: Stratum Ventilation Strategy, Right View

48

The temperature contour of stratum ventilation, seen in Figure 3-22, shows that the warm

air is indeed being pushed towards the room centre due to the air flow. However, unlike the other

ventilation strategies (configurations), it does not provide uniform cooling across the human

model. However, it does a much better job of pushing cooler air forward and warmer air away. The

magnitude of which, however, is hard to compare with these graphics alone.

Figure 3-22: Stratum – Temperature Profile

3.5.2. Particle Dispersion

The time lapse isometric view of the displacment ventilation can be seen in Figure 3-23.

Mixing ventilation studies of an office room were previously conducted by A. Khan [11], a

previous Master’s student in the Freire-Gormaly lab, and the displacment ventilation configuration

was not found to be particularly effective for removing particles. The results in this study of the

displacment ventilation configuration (Figure 3-18), in comparison, does a much better job of

removing particles from the breathing zone. The particles were forced upwards, due to high

velocity air moving from the bottom of the room. Thermophoresis effects caused the lighter

particles to rise while heavier particles fell as they rapidly cooled. However, most of the light

particles were immediately sucked into the exhaust and floated in the upper strata of the room,

away from the breathing zone. These results are in agreement with Khan’s results [11], in that the

presence of ventilation doesn’t significantly affect the quanity of particles removed

(escaped/trapped in her case). However, the ventilatoin configuration does effect the movement

49

and groupings of particles short term. This means ventilation plays an even more important role

when looking at short term dispersion events (less than 10s).

Figure 3-23: Displacement Ventilation - Particle Advancement over 10s particle time

The dispersion of SV is shown in Figure 3-24. While the particles did rise initially, due

to that high velocity recirculation zone, the particles encountered the two large counter flow eddies

that are in the front of the room. If the particles had moved more towards the centre, they could

have entered the large, low velocity flow stream near the ground. Instead, the particles entered

these zones and were flung towards the room front before moving higher up. As the effects of

diffusion occurred, the particles entered this region and the smaller lower velocity region near the

exhaust. Some particles were ejected at this time. However, more particles were spread towards

different areas of the room. The velocities in these regions near the exhaust were slow, taking

longer to remove the particles.

50

Figure 3-24: Stratum - Displacement - Particle Advancement over 10 s particle time

3.5.3. Performance Metrics

The results in Table 3-9 show some values that add more context for the simulation results.

Of note, MV and SV had the lowest average temperature and occupied zone (around the human

model) than DV. This is likely a result of the very low velocities input by DV, which is also

reflected in its exhaust velocity.

Table 3-9: Noted System Values for Ventilation Strategies after 80 s Flow Time

Ventilation

Strategy

Average

Room

Temp.

(oC)

Average

Occupied

Zone

Temp. (oC)

Average

Occupied

Zone Velocity

(m/s)

Average

Exhaust

Temperature

(oC)

Average

Exhaust

Velocity

(m/s)

Mixing 19.16 19.18 0.0789 19.34 0.4330

Displacement 28.07 27.17 0.1053 29.88 0.0317

Stratum 19.78 19.49 0.1403 20.26 0.5657

51

The results of the performance indicators are shown in Table 3-10. SV and DV performed

well for HRE, DM performed the best for the IOM and the results varied for the OTS, but

occupants would be the least uncomfortable in SV compared to the other ventilation strategies. It

is interesting to note that while DV performed well for HRE, meaning it removed heat efficiently,

as shown by the steady state average values, it did not keep the room very cool, in comparison to

the other configurations.

Table 3-10: Performance Indicators for each Ventilation Strategy after 80 s Flow Time

Ventilation Strategy HRE IOM OTS

General Meaning Above 1, positive

indicator

Above 0, Negative

indicator

Neutral indicator, 0 is

perfect.
Changes based on discomfort type

Mixing 0.82327993 -9.8556746 -1.2523673

Displacement 1.290746 -0.51113092 1.22505267

Stratum 1.1854424 -2.4548295 -1.036891

Table 3-11, seen below, displays the injected, escaped, and trapped number of particles

after ten seconds of simulation time. This study ignored tracking deposition effects (trapped

particles) to focus investigations on the number of escaped particles. To this end, the PC and person

model DPM wall interactions were changed to reflect. It was found that mixing and displacement

performed reasonably well.

Table 3-11: Quantities of Particles of different after 10s Particle Time

Ventilation Strategy Injected Escaped Remaining

Mixing

4844

2682 2543

Displacement 2424 2420

Stratum 1688 3156

3.6. Discussion

3.6.1. Particle Dispersion

When it came to the movement of particles, SV performed the best early in the simulation.

However, after the initial escape of particles, Stratum began to rapidly spread and fling the particles

away from the room. In contrast, both mixing ventilation and displacement ventilation performed

well in removing particles, both removed almost half of the particles, gradually throughout the

course of the simulation. The possible reasons for this are varied, but two likely candidate

52

explanations are the room geometry and the nature of the stratum inlet velocity stream in contrast

to mixing and displacement. On average, stratum removed less than 800 particles when compared

to the other strategies.

 The room geometry, as noted early, is unique since the exhaust for all three cases were

located at the top later (ceiling) of the domain. This was done to stay faithful to the present

construction and design limitations that the simulation domain and geometry is based on. The issue

is that stratum usually sees exhaust in the same layer or lower than the inlet stream. In other words,

both faces were parallel with one another, inducing a flow stream in the breathing zone. This will

cause particles to flow along the breathing zone away from occupants and into the exhaust before

reaching the upper or lower strata, where it can hang for mins to hours afterwards [5,19,56,70] or

be deposited on surfaces [5]. In this case, the faces of the exhaust and inlet were perpendicular. As

shown in the contour/vector plots in the results section, this combined with the high velocities,

incurred horizontal vortices flinging the airborne particulates (heavy particles still dropped) before

many could escape into the exhaust. The inlet and exhaust were near each other, meaning flow

streams in other parts of the room were minimal and caused the particles to lack the ability to enter

flow streams near the exhaust.

 Stratum ventilation works only by injecting air from the midstream (typically) of the

room. This means that for small and medium rooms, that have low roofs, that the flows tend to

split and cause twin opposing recirculation vortices. This works to effectively mix particles in the

room. In mixing ventilation, the inlets blast cool air vertically. However, it also has an exhaust at

the ceiling. This flow instead creates areas of vertical vortices, that can cause air to move upwards

towards the exhaust. Thermal buoyancy effects help to raise both the air and the particles upward,

as the warmer air rises. Displacement does this to a higher degree, have cool air blasted on the

floor which will create flow streams upwards, which helps to explain the lower particle

concentration. The air is blown upwards at a constant but low velocity. This reduces turbulent

mixing effects and keeps the particle suspended generally on the upper strata of the room for a

considerable time before diffusion effects start to spread the particles further.

 An additional note is that this study only analyzed particles after ~10 s of particle time

(which can be taken as real time for the purposed of this study). This means that it is possible that

further simulation run time would see different results if it was run on the scale of minutes rather

than seconds.

53

3.6.2. Performance Indicators

When analyzing HRE only, DV performed the best. Displacement ventilation works with

buoyancy forces with forced convection to move warm air upwards while injecting cool air in the

lower portions of the room. This, in turn, induced a constant stream of cool air in the lower region

moving upwards. This air is then removed from the room, making DV an efficient tool for targeted

cooling in this case. SV was a close second, so it is hard to say if the results are due to simulation

residuals. SV performed well due to presence of turbulent rotational velocities around the occupant

due to high velocity inlet air, that quickly take warm air away from the occupant. Warmer air will

then flow towards the exhaust. Velocity views from the XZ plane (Top view) confirm this, with

minimal rotational vortices, at least at the midpoint of the breathing zone. There are still vortices

in the corners of the room, but that is to be expected for all cases. The major difference is the

location of the inlet and the inlet velocities. Stratum injects high velocity air in the breathing zone

while displacement injects low to medium velocity air at the lower portion of the room. This

phenomenon of air stratification is useful for cooling as well as removing air contaminants, as was

found in the previous section. Since it aids in air movement, it is useful for increasing energy

efficiency of HVAC systems. Mixing ventilation had the worst performance as high velocity air is

injected downwards. By relying on turbulence and diffusion effects, cool air is mixed with the

warm air. However, uniform mixing is not energy efficient since the goal is typically to cool

occupants directly. However, it should be noted that mixing does not deviate significantly in

performance regarding thermal energy removal. This study only analyzed specific exhaust

placements on the room ceiling. Mixing HRE would perform better if placed on the lower strata

of the room, where the flow velocities and induced negative pressures (not visible due to steady

state condition) could quickly remove the incoming air.

When looking at the IOM, MV performed the worst. As a reminder, the IOM (index of

mixing) is a measure of how well a ventilation system reduces the amount of (thermal) mixing, as

the goal is to cool the room and mixing will store thermal energy into the overall room, raising its

average temperature. Because of this, lower scores are worse. As implied by its name, mixing

ventilation encourages thermal mixing, since it is mainly used in larger rooms, or where occupants

are spaced widely. Stratum performed poorly but not to the same extent. This is likely because the

inlet was in the center strata of the of room, encouraging some mixing effects. It can be noted that

while IOM and HRE and closely linked, they don’t measure the same effects. Heat removal

54

measures the difference in the injected air and exhaust air temperatures to the supply and supply

zone temperature, making an inference on the efficiency of thermal energy being removed from a

specific zone. In contrast, IOM looks at mixing effects in the entire room, not just the occupied

zone. Displacement performed the best, likely due to reasons discussed for its HRE performance.

Forced convection, buoyancy forces, and lower velocities (which limit mixing due to turbulence

effects) contribute to the efficient removal of warmer air and an overall lower room temperature.

OTS stratum performs notably better, and still has good HRE ratings. The reason for this,

especially the OTS, is due to the position of the inlet vent in the room. However, this caused much

of the air to miss the exhaust and raise the room temperature (lowering its HRE value). It is

interesting that the IOM is higher considering that it is usually higher in MV. This is likely just a

result of the specific room orientation.

One thing to note is that this specific iteration of SV, is more akin to a raised DV design.

This raises some concerns on classification of the design as stratum, although as a loose definition

it just requires the inlet in the breathing zone of the occupant(s). This makes it difficult to assess if

the good results are due to aspects of stratification due to DV or SV (or both). Another thing to

note is that it is difficult to compare the relative values of the indicators themselves without some

reference. A very small decrease in HRE for example could constitute a large deviation in when

compared to more nominal cases. Most of literature agrees that mixing performs the best generally

when considering many factors (including implementation, use in heating applications, use in

larger rooms, etc.) and that displacement and stratum generally perform well for niche cases. This

is also the case for rooms with small amounts of occupants [11,12].

3.7. Conclusions

3.7.1. Summary

This study found that regarding HRE that SV performed the best, with a value of 1.19 and

MV performed the least with a value of 0.82. This stems from high velocity air blowing directly

in front of the occupied zone which combined with buoyancy effects, helps stratify air. This brings

warm air to the top layers where is expelled from the room. In contrast, MV is lower due to

turbulent vortices which helps to mix thermal layers to achieve a uniform thermal distribution. MV

did however have the best IOM with a value of -9.86. Displacement performed the worst with a

value of -0.51. As stated previously, turbulent mixing of thermal layers made MV very efficient in

55

this regard. Displacement on the other hand, relies more on low velocities. As such natural

convection due to buoyancy forces help more gentler (sometimes) laminar flows upwards in the

room. The experimental factor OTS had MV and SV produce cold discomfort with values of -1.25

and -1.03 respectively and DV a warm discomfort with a value of 1.23. Because DV relies mainly

on more on natural convection than forced convection, it has both low velocities and low average

room temperatures, leading to an occupant likely to feel warmer (for cooling cases). In contrast,

SV relies on high velocity air directly in the breathing zone and MV relies on through mixing of

the cooling domain, resulting in lower average temperatures in both cases, which contributed to

the cold discomfort. SV performed the best with the value closest to 0 (ideal case).

When looking at the strategies in the presence of airborne droplets, it was found that stratum

performed poorly when compared to mixing and displacement when looking at overall qualitative

flows, and in the ability to remove airborne particulates. Of a total of 4844 particles, MV, DV and

SV removed a total of 2682, 2424 and 1688 respectively. This is likely due to the injection position

as well as the positioning of the inlet relative to the exhaust. Implementation of stratum ventilation

must pay careful attention to the configuration of these to ensure proper removal of particles, which

may limit its practical application in the wider HVAC industry. Stratum ventilation requires

positioning in the breathing zone, which can limit its practical use in larger rooms or rooms with

complex geometries. Analysis of a more limited time window (simulation start and end times) will

play a role in the specific results obtained.

3.7.2. Final Thoughts

Ventilation strategies can have variation and cross over in design and this study demonstrates

the importance of good design when considering more experimental design orientations. However,

real situations often include more complex elements such as heating and cooling,

adjustment/monitoring systems, grill design/shape and others. This study has found that stratum

can be an acceptable strategy when compared to more commonly used strategies of mixing and

displacement, but that its effects are minimal and require careful considerations of geometric

positioning. Performance analysis (relating to comfort) is highly sensitive and contextual and often

equations like the OTS and similar can be difficult to use or compare with more strict indicators

like the HRE. However, they are useful to distinguish how occupants in a room will ‘experience’

the HVAC system that is present. Regardless of these limitations, stratum does show promising

56

signs of having good, and sometimes better performance when compared to conventional

ventilation strategies. However, it is limited due to the precedent in HVAC companies design

process, practical limitations, and a lack of experimental testing in countries with colder climates

(like Canada) where heating is more practical.

3.8. Future Work

Future work will consider more complex scenarios: including various inlet and outlet

locations, varying initial conditions, longer simulation time durations, shorter time steps or

multiple vents’ slits (i.e., MV case). In addition, a wider range of performance indicators can be

used to establish a wide range of performance metrics. These indicators can be categorized together

for better classifications between the ventilation’s strategies. The strategies themselves can also be

compared with different configurations, allowing for a single optimal configuration, or for

different optimal modes, depending on the required criteria.

57

Chapter 4. Development of Novel Method to Aid in Particle Dispersion

Analysis using Parallel Processing and HPC

4.1. Introduction

 When using tools like CFD tools like ANSYS, it is often difficult to extract or format

data in the way that is useful or not repetitive. Additionally, it often becomes harder to tweak

models in ways that simplify or add complexity without thorough knowledge of theoretical or

mathematical models in addition to the specific numerical models used or available in ANSYS

(Fluent). However, the software comes with many tools that allow users to enhance the usability

of their simulation. Some of these, specific to ANSYS, include things like Journals or SCHEME.

Which are systematic commands used to perform scripting or other specific tasks. Additionally, it

also contains a text user interface (TUI) in addition to its GUI that can also be used by its scripting

commands. However, these generally are used for high level simulation tasks, such as saving files,

looping iterative processes etc. To interact directly with model values, cells or even insert custom

models, a UDF (User Defined Function) is required. An UDF is a dynamically loaded function (s)

that enhance standard features of ANSYS code. They can compile in C/C++ (generally) and

include custom defined Macros. Other tools that ANSYS provides, which is more common when

running larger sized or number of numerical models, is parallel processing. It allows multiple

CPUs, GPUs or even computers to solve simulations simultaneously locally or over a network.

This study combines elements of UDFs and parallel processing in addition to other techniques.

The goal is to help aid in efficient gathering of dispersion data that cannot normally be obtained

via the conventional use of ANSYS Fluent. For the purposes of this study, the process or tool will

be referred to as the Cell Based Particle Tracker (or CBPT). In addition to being compatible with

ANSYS, this tool is also functionally able to run using the online computational resources on the

Advanced Research Computing platform (a service provided by the Digital Research Alliance of

Canada) [102,103]. This study will detail the development and implementation of this tool to

gather unique CFD data relating to particle dispersion. While it will include some elements of

cluster and UDF utilization, it is not intended as instructional material for using UDF, ANSYS or

HPC cluster nodes.

58

The major goal for this study is to create a tool or workflow that utilizes CFD, UDF, parallel

computing and HPCs. This tool will used in further studies and can also serve as a guide or starting

point for other researchers. The subgoals are:

➢ Create a UDF that can extract particle data from CFD simulations.

➢ Have the UDF be compatible with parallel processing modes in ANSYS Fluent

➢ Create a process flow to run CFDs that contain UDFs on a cluster that utilizes HPC.

4.2. Architecture Methodology

 The CBPT comprises of three processes: Setup, Data-Processing and Data-Storage.

The Setup involves two minor processes required to use the UDF: ANSYS Loading (including

Compilation) and HPC-Utilization. The Loading stage, which is operating system and compiler

specific, transforms the UDF by first compiling it into code that is readable by ANSYS Fluent and

its relevant systems. Then it loads the UDF into the relevant ANSYS (in this case Fluent) Models

or events (called hooks). This allows for the customized ability to change various system and

model parameters, like properties, time steps, boundary or initial conditions or even meshing

conditions. This is done by hooking the UDF into the models in question or by assigning an

intermediate variable for ANSYS/Model to communicate with the UDF. This is further explained

in Section 4.5. HPC-Utilization (High-Performance Computing) refers to the process of using

specialized computing systems for data-intensive problems. In this case and many other

applications, it involves the use of parallel processing to accelerate computational performance.

Compute Canada, and its related organizations, have clusters of HPCs available to Canadian

researchers. Such cluster(s) were utilized to enhance the process, although the UDF can also be

run without the use of parallel processing, as will be discussed.

Data-Processing occurs in the UDF and involves the gathering of Fluent variables,

calculation and transformation of required output data and sending of this data (if required) back

to ANSYS or to other sections of code for Data Storage. Data-Storage is simply the process of

saving the data locally on the node (or core) that is running it. This typically can be done by either

ANSYS or by the UDF. This section outlines the development and implementation of the

processes surrounding the CBPT. It will not go over the specific processes done in the UDF portion

of the CBPT, although it will be referenced. The entire process architecture is outlined below.

59

Figure 4-1: CBPT Overall Process Diagram

4.3. Getting Started with Parallel Computing

When utilizing parallel computing, knowledge of the structure of ANSYS node architecture is

paramount. ANSYS node architecture consists of a Host node, node-zero, and the support nodes

(or compute nodes). The host-node, known as cortex, communicates only with node-zero. It does

not see (hold or have access to) most computational data. The host-node is responsible for data

writing and passing high level commands to node-zero who in turn will relay it to the other nodes.

Node-zero can communicate with all nodes and can also see data stored. It also does computations

and has its own mesh partition. The other nodes are strictly computational nodes, and they typically

don’t write to files. When passing commands to ANSYS in parallel, these commands can all be

seen by all nodes. This means the commands must be filtered so only the required nodes can see

them. Each node has access to unique memory and information. To accesses them, the memory (or

memory addresses) need to be passed to node-zero who will in turn, pass it to the host-node for

general computation. This is completely case dependant and there are cases where no data needs

to be passed. Figure 4-2 shows a graphical representation of the node architecture.

To utilize CBPT, a basic understanding of how serial processes run as compared to parallel

processes is required, since logic and ideas that would typically work in serial processing, will not

necessarily run in parallel processing, or vice versa. To help with this, ANSYS has custom state

variables that can be used to determine the state of the system. These statements are conditional,

meaning code can be written that will only execute for a computational node, or only for cortex

(host-node).

60

Figure 4-2: Node Architecture for ANSYS Parallel Computations [104]

4.4. Setup

4.4.1. HPC Initialization and Utilization

The CBPT is designed to operate on the Compute Canada GRAHAM cluster. To submit a

job, simply use sbatch, for batch jobs, srun, for a single run, or salloc, to allocate memory and

cores and run jobs using a VNC or srun. A special script file is needed in most cases for running

batch jobs. Jobs can also be specified directly in the command prompt, similarly to how salloc

allocates memories for jobs. The user can simply submit the memory, number of CPUS or GPUS,

number of tasks (if using more nodes) and number of nodes, time of the allocation, and more

options outlined in the technical documentation of the Digital Research Alliance of Canada [105].

The module needed to run the job must also be specified. Module refers to the program that the

user wishes to run. Once a job or memory is requested, the user must wait for that memory to be

allocated. The wait time depends on several factors, with the most important factors being the

length of time and number of resources requested [105].

 When the requested memory becomes available, the job is run, hence, the job will

begin, or the user can simply start ANSYS Fluent, and the job will commence. If a job runs out

61

before it is finished, or the file is not saved in any way, the files will be deleted, unless autosave in

ANSYS was enabled. When submitting an ANSYS Workbench file, a shell file and a journal file

is needed. The journal file outlines to ANSYS what tasks to perform and what to save, amongst

other tasks. A basic journal file is included that can be easily changed to meet various needs. Any

errors in the journal, WB file, shell file need to be resolved prior to submitting it to ANSYS or it

will likely result in a server disconnect (kicking from terminal or node).

4.4.2. Loading ANSYS and UDF

If the submission process has no errors, either in the shell file, journal file or WB/Dat file

(such as different versions), then ANSYS will load and follow the instructions outlined in the

journal file and UDF. In terms of ANSYS, this means that the simulation will now be loaded, either

through the ANSYS Workbench or directly through ANSYS Fluent, depending on how the shell

file was configured. The CBPT has shell (bash) files for both options.

Compiling the UDF should be seamless, but it may not always be. Compiling fails for

a myriad of reasons. If using a version of ANSYS 2021 or later, the issue is likely due to the code

itself (syntax, logic errors, segmentation faults etc.) or directly related to the environment (the

compiler, OS). If compiling via journal commands proves an issue, it is recommended to compile

using Virtual Network Computing (VNC). Using the ANSYS GUI allows for easy compilation as

it comes with a built-in compiler. Simply save the compile library and copy to directories where

there are instances that require the UDF. It is important to note that, a .cas or WB file cannot be

saved with a UDF loaded as it will try to reference a library on the computer in which it was loaded.

62

Figure 4-3: Setup - Flow Diagram

4.5. Data Processing

When the setup is completed and the job has been queued (or being prepared to start), the

data processing stage of the workflow will begin. Data processing is almost entirely an automated

process by ANSYS or by the loaded UDF. Regarding the CBPT, the data processing occurs in three

stages: Data input, data output and file saving. When the CBPT was ran, the journal file or shell

file specified if it was to run in parallel or serial (meaning that cores don’t run in parallel). In series,

ANSYS compiles and utilizes the UDF normally, meaning there is no need for special

consideration for how to run the code. This changes if the code is run in parallel, but only for

ANSYS side. The user of the CBPT will still receive the same performance from the UDF.

When operating in parallel, ANSYS divides the mesh into partitions that are assigned to

each node. This means that each node can only see the partition it is assigned to as illustrated in

Figure 4-4. While the mesh is divided, the domain and threads are mirrored in each compute node,

allowing all nodes to access them, as if the program was run in serial.

To communicate via ANSYS and UDF, ANSYS has unique define macros which act as

event handlers for the simulation. Event handlers are functions that run after a certain event occurs.

63

For example, the execute_on_demand macro runs whenever the relevant function is called in the

ANSYS GUI or TUI. In the case of the CBPT, it uses a myriad of different macros but has three

main ones: execute_on_end (executed at end of an iteration), DPM_Scalar_Update (runs after

every particle update) and define_on_demand, (runs when called).

Figure 4-4: Partitioned Mesh Distributed Between Two Compute Nodes [104]

4.5.1. Initialization

When first loaded, the CBPT will initialize any variables used in calculations. It will

instantiate two user defined memory (UDM) locations that are used in calculations. These values

are set to 0 for future use. UDM contains values that can only be changed by a UDF (at least

directly).

4.5.2. Data Input/Output

Data input in this context, refers to reading data in serial mode. The CBPT gathers data

about the UDM values and performs computations on them. In parallel, each node will perform

computations by using DPM_Scalar_Update. Each time a particle updates it will use code to

update a UDM value. Since cells are stored in each node, the node with the particle will be

responsible for loading the particle data and saving the new UDM value to the required thread and

cell. To this end, the nodes do not need to communicate.

4.5.3. Node Data Transfer

In serial, a single 2D array stores the values of all the output parameters specified. At

the end of a specified time iteration, or when called directly, the UDF will save a file with a custom

name based on the time step and save interval defined. A Boolean condition, called autosave, can

64

be triggered in ANSYS to turn this feature on and off. In parallel, the code logic works similarly,

however, due to MACRO limitations, nodes can only share 1D arrays. A specific coding technique

called encoding, or flattening, is used to ‘compress’ the 2D array into a one-dimensional (1D) array.

The UDF takes out memory and creates a new array of pointers. These pointers point to new

locations in memory based on the size of the 2D array. A simple linear equation can be used to

store the row values for the pointers based on the size of the data type and the number of columns.

The pointer simply stores the location of the first element in the array and can access the rest with

the linear equation and the size of the columns. This is demonstrated in Figure 4-5.

Figure 4-5: 2D to 1D Array Encoding

This 1D encoded array is then used to pass data to the other nodes and or host. The reverse

processes can be done, known as decoding, where the memory locations are referenced using the

1D and a new 2D array is built.

4.5.4. File Saving

 To move data around to prepare to save it, the host node and follower nodes must all

communicate and compile the data in a central location. This occurs in 4 stages: 1) Initialization,

2) Variable Storage, 3) Node to Node Data Transfer, .

4.5.4.1. Stage 1 – Initialization

 In Stage 1, various variables are initialized for use in storing variables. The number of

variables being transferred, and containers for those variables (data) are initialized based on the

65

size of the data and datatypes. Initial memory allocation may also be done at this stage, although

it isn’t necessary. The follower nodes and host node each have different variables as they will need

to store different things.

4.5.4.2. Stage 2 – Variable Storage

In Stage 2, the computational (follower or compute) nodes begin to gather the data

requested from their storage. In the case of the CBPT (the specific code used in this thesis), it has

two UDM values. These UDM values store the total particle count and the weighted particle count

in each cell location. For this specific use case, the stored data is filtered, and the filtered data set

is then stored. This filtering occurs by each node looping through all the cells in their partition.

The compute nodes then store the values and position of cells with values greater than zero. This

indicates a particle has, at one point, passed through the cell. After lopping through all the cells,

each compute node stores this value in a temporary array which is then encoded as described in

Section 4.5.3.

4.5.4.3. Stage 3 – Node to Node Data Transfer

As described in Section 4.5.3, the follower nodes will begin to send their data to node

0 and node-zero will begin to accept their data and store it in a temporary location. In ANSYS

giving and receiving data must be stated explicitly, and both nodes must have a copy of the

container of the variable being sent. Immediately after receiving a value, node-zero will send the

data to the host-node (cortex). After sending the data of all the other nodes, node-zero will send its

own data to the host-node.

4.5.4.4. Stage 4 – Node-Zero to Host Node Data Transfer

In Stage 4, the host-node will read the data from each node in chunks. Since it cannot

hold all the data (size of data and datatype is unknown) each node sends the size of its data before

sending the data itself. The host-node then creates a container for the data and then saves this data

to a file buffer. When all the data is read the host-node deletes all the stored data, and the other

nodes follow suit to restore allocated memory.

4.5.5. Data Storage

When running on a local computer, file storage is very trivial. However, on a cluster,

where the moving of files can be a long process, proper storage formatting is paramount. The

66

CBPT stores files in similar ways for both serial and parallel computing. The host-node writes file

names to a folder. It saves based on the save interval value defined at the beginning of the code.

The file names use a prefix followed by “t_X” where X is the time interval number (this can be

changed). A header is used so that other scripts (shell, journal, other UDFS) can change the value

and thus create new files and file folders. The data is also saved in a folder relative to the location

of the UDF so it will work in any location.

4.6. Results and Discussion

Figure 4-6, Figure 4-7, Figure 4-8 showcase a SSH (Secure Shell) terminal instance

that is connected to the compute Canada GRAHAM cluster. Inside, it shows the organization of

files as well as the presence of the organized and labeled data files. The code for the UDF is

available in Appendix C of this thesis.

Figure 4-6: GRAHAM Cluster Showcase – Folder Overview

Figure 4-7: GRAHAM Cluster Showcase – UDM DATA Folder

67

Figure 4-8: GRAHAM Cluster Showcase – DATA Files

An example of the UDM data from the perspective of ANSYS is shown in Figure 4-9.

The particle dispersion cloud is shown as a representation of the cell dispersion “risk cloud.” The

colored gradient is a visual representation of a low threshold manifold as shown in Figure 4-9 and

Figure 4-10 at various time steps. The UDM value will be explained further in Chapter 6. It can

be thought of as a summed WPC as is explained in more detail in Chapter 6 when discussing the

Weighted Particle Count in Chapter 5 (Section 5.2).

Figure 4-9: Progression of Domain WPC at Particle Time at: a) 1 second, b) 2 seconds, c)

3 seconds, d) 5 seconds, e) 8 seconds, f) 10 seconds.

68

The Spatial RAM model is shown in Figure 4-10. These images were generated in

MATLAB and represent graphical representations of the UDM propagation over time. These

images go past 10 s particle time until around 15 seconds. This was done to investigate the presence

of significant dispersion artifacts once the particles have started dispersing along the room’s outer

edges. No such artifacts were noted for the investigated cases. The risk factor, calculated using the

UDF, is shown at various cell locations in Figure 4-10 and 4-11.

Figure 4-10: Spatial-Temporal Risk Model for Particle Time at: a) 0.1s, b) 0.2s, c) 0.5s d) 1s

69

Figure 4-11: Spatial-Temporal Risk Model for Particle Time at: a) 2s, b) 3, c) 5s d) 10s e) 15s

4.7. Conclusions

4.7.1. Summary

A UDF was created to work in ANSYS Fluent that successfully extracts and transforms

particle dispersion data. This means that future UDFs can fine tune more elements of the simulation

by adding in other aspects, such as empirical models or simulating the effects of natively built-in

ANSYS models. By using this UDF in ANSYS Fluent complex computations can be performed

more easily by saving data space and reducing data processing times. This UDF was also converted

successfully to be compatible with both serial and parallel processing modes and it can also write

output files in both serial and parallel processing modes. Finally, the UDF works in parallel on the

HPC cluster nodes, specifically those of Compute Canada. This is a huge step because it means

that large amounts of data with high fidelity can be run at accelerated speeds, and the data can be

70

stored on the HPC cluster, with its massive storage allocation. Future simulations will not suffer

from limiting computational or storage-based resources and can therefore focus on advancing

computational dynamics in all fields, especially CFD.

4.7.2. Future Work

Future versions of the CBPT will expand its ease of use for those unfamiliar with

programming, scripting, or using virtual HPC resources. The use of this CBPT tool can also aid in

rapid data gathering for use in other advanced optimization algorithms, like machine learning. The

UDF itself can incorporate experimental data [46,53,106–108], for example, including empirical

evaporation data into the dispersion model. By comparing particle values to experimental data

related to particles like settling time, and evaporation time, experimental based pseudo-evaporation

models can be developed. Similar things can be done for other types of models [109–111] as well,

not just for aerosols and droplets. It can also be done for different fluids, solids and has reaches in

other ANSYS software or computational software as well, such as, ABAQUS [49,112,113],

COMSOL, STAR CCM+ [47,48,114], or other custom software [50,52,115,116]. The use of

parallel processing can also be expanded by using C functions and scripting. More recent versions

of ANSYS, such as ANSYS 2023, allow for compiling UDFs in C++ which can be used to further

enhance the computational capabilities of the CPBT tool developed in this thesis.

71

Chapter 5. Development of Novel Methods for Predicting Temporal-

Spatial Particle Dispersion using CFD and ML

5.1. Introduction

This chapter outlines the use of the CFD and the CBPT tool previously developed in

Chapter 3 and Chapter 4 to run high fidelity simulations for use in a Machine Learning (ML) model

to predict the particle Risk Factor. Previous studies have done much work in refining the process

of creating and running CFD simulations [15,19,93,101]. This study will supplement the use of

CFD by creating ML models, like those done in literature [67,99], to predict the spatial spread

(dispersion) of airborne particulates.

The computational power and parallel capability of Compute Canada accessed via

MobaXTerm [117] was harnessed to run extensive simulations. Bash scripting was employed to

specify the resources used, allowing for precise control over the simulation environment. This

setup facilitated the execution of complex simulations, optimizing resource allocation. It was used

to run a system of 4 simulations of the mixing ventilation configuration design case. Each case had

a different ambient temperature. The results were then processed using a variety of data processing

techniques to extract the core dispersion features and calculate the risk factors throughout the

domain. This data was then transformed into regional data by finding the high concentration

volumetric region, represented as a bounding box, and the location of the centre of that box. These

two models, called the Spatial-Temporal model and the Regional-Temporal model were used to

train ML models of various archetypes. The general ML Development framework is shown in

Figure 5-1, and the final RAM model development process overview is shown in Figure 5-1 and

Figure 5-2.

Figure 5-1: ML Model Development Overview

72

Figure 5-2: RAM Model Development Overview

5.2. Methodology

5.2.1. Data Extraction

Utilizing ANSYS Fluent, simulations were run for 10,000 iterations and detailed data was

generated in a spatial-temporal format, inclusive of concentration data and stored in text files. The

process was done using the Cell Based Particle Tracker (CBPT), as described in Chapter 4. The

CBPT was used to extract the Total Particle Count per cell (TPC). This data was saved in an array

and then saved to a file algorithmically over the course of the simulation. This data was

subsequently processed through Python scripting, transforming it into a structured CSV format.

Additional attributes, such as simulation ID, time step, and temperature, were incorporated to

enrich the dataset.

Four simulations were run with temperatures ranging from 17 oC to 25 oC. Convergence of

the flow field was achieved before the simulation proceeded with particle injection (cough or

sneeze). At certain time steps, as set by setting the save interval in the CBPT, the file saves the

UDM data (TPC) at all the cells that are nonzero. In other words, it will save the values of cells

that aren’t zero. An example of how this cell works is shown in Figures 5-3 and 5-4. Particles

move across the boundary and after every time step, the mesh records the number of particles in

each cell across the domain.

73

Figure 5-3: Cells with no particles

Figure 5-4: Particles reach cell elements and get counted.

The particles are counted using a combination of a Particle Count Value (PCV) which is

set to a value of 0.1. This is the base worth value of any one particle and is added to allow for more

fine tuning of particle worths in future versions of the code (i.e., having multiple particle variants

with different risk or worth values). Particle diameters are sent into a weighting function to obtain

a Particle Diameter Weighting (PDW). This is analogous to the mass of the particle. It weights the

value of the particle based on its normalized diameter. This normalized diameter is based on

minimum and maximum particle diameters of 1-100 μm [11,59]. The function used is shown in

Equation [5-1] and plotted in the Figure 5-5. In this case, x is the normalized particle diameter.

74

𝑃𝐷𝑊(𝑥) =
1+0.1

0.85+𝑒−6(𝑥−0.6) [5-1]

Figure 5-5: Particle Diameter Weighting Function

The Particle Diameter Weighting Function is based on the mathematical distribution made

by Khan [11]. A transformed sigmoid function distribution was fitted to the values [11]. The

weighted data is referred to as the Weighted Particle Count (WPC). It is calculated by the

summation of the product of the PCV and PDW each time step. The WPC data is sent to MATLAB

and Python for imaging and processing. The equation for the WPC is shown in Equation [5-2]

where Pw is the cell particle weighted value, Pv is the particle value, and Pd is the particle diameter

weighting.

𝑃𝑤 = 𝛴𝑖=𝑙
𝑛 (𝑃𝑣,𝑖 ⋅ 𝑃𝑑,𝑖) [5-2]

5.2.2. Data Processing

The raw data was first converted to a CSV file using a custom script. Then the data was

processed in two stages. The first stage converted the Weighted Particle Count (WPC) into the

Particle Risk Factor (PRF). The second stage filtered this data to obtain the cell locations with

relatively high-risk, as well as to reduce the total number of data points.

75

5.2.2.1. Stage One – Conversion of WPC to PRF

The WPC has a wide range of values, due to the large number of time steps, as well as the

large number of particles. The original data sets had sample values from 10-1 to 105 orders of

magnitude. To evaluate the risk, a Risk function was used to turn the weighted particle count

(WPC) into the Particle Risk Factor (PRF). The PRF factor is made using a logarithmic

transformation function to normalize the data, into values of 100 to 102 orders of magnitude. The

functions are shown in Figure 5-6 and Equation [5-3] below. The values of C and B are based on

trial on error, to limit the function output (and thus the risk factor range) from 0 to 100. The value

A is used to raise the value in the natural log functions, so it is always more than 1. Values of A

that are lower than one would result in a negative risk factor, which was not desired for this study.

For this study, A was set to a value of one for simplicity. In this case, x is the WPC as discussed in

section 5.2.1.

 𝑃𝑅𝐹(𝑥) = 𝐶3 ⋅ 𝑙𝑛(𝑥 + 𝐴) + 𝐵 [5-3]

Figure 5-6: Particle Risk Factor as a function of time-summed particle concentrations

With this risk factor, temporal regions can be compared in terms of relative risk. The data

can now be qualitatively and quantitatively analyzed over time. This data can then be used to build

machine learning models to predict temporal and spatial risk factors.

5.2.2.2. Stage Two – Data Filtering

76

To identify the high-risk regions and to reduce the number of data points, a data processing

technique was used to filter the data based on a minimum threshold. This algorithm had a global

risk minimum threshold that started at 10. The algorithm goes through the data and keeps every

PRF datapoint at each time step (text/csv file) to a maximum of 500 points. If the algorithm notices

that the file goes over 500, it increases the global risk minimum threshold and then rescans the file,

removing points that do not meet the minimum threshold. After this data filtering process, each

file will have a maximum of 500 lines of text, dataset consistency helps when training the ML

models.

5.2.3. Risk Models

5.2.3.1. Spatial-Temporal Risk Model

The Spatial Temporal Model represents a detailed view of particles in a 3D space, capturing

concentration, temperature, and temporal aspects. While providing a rich dataset of information,

this model is computationally demanding, making it a significant consideration in the overall

analysis. The complexity of the Spatial Temporal Model offers a nuanced understanding of the

simulation but comes at the cost of computational efficiency. The model offers a 3D gradient of

the risk in 3D space based on time and Temperature as an input parameter. The model then can

predict the risk factor at a location when given the relevant parameters. It is possible this model

may not be able to create a correlative model with a low percentage error for large complex spatial

distributions. This is due to factors such as spatial dependence, data resolution and complex

relations (i.e., turbulence). Because the data gathered by the CBPT is Time-dependant at specific

Cell locations, having many data points is not an issue.

5.2.3.2. Regional-Temporal Risk Model

The Regional-Temporal Spatial model predicts the risk factor (analogous to the summed

concentration over time) of the particles in space over time. However, it would be difficult for the

ML to predict such a model, especially if larger domains are used. In contrast, the Regional-

Temporal Model simplifies the representation by grouping particles into bounding boxes in 3D

space, each with a centroid and concentration at specific time points. This model reduces

computational overhead while retaining essential spatial and temporal information. The difference

between the Spatial Temporal Model and the Regional-Temporal Model is the trade-off between

computational efficiency and the granularity of information.

77

5.2.3.3. Generation of Machine Learning Models

When utilizing ML models, it is common practice to separate the data sets. Usually, this is

done with three groups: training, testing and validation. Training is used to build the initial model

and testing uses the loss function to temper the ML first iterations. After the ML determines it

cannot generate a better model, the new model is validated with the loss function (or other metrics)

at the end with the validation test set. The validation tests can also be repeated for further

enhancement of the model. Besides the three general groups (training, testing, validation) for

building the ML models, there are two distinct data sets that were used to create two distinct risk

models: the spatial model and the regional model. The two datasets were made via eight

simulations, four for the spatial model and the other for the regional model. The various ML models

were trained on the first simulation using 100 epochs and a batch size of 10 or 100 for the regional

and temporal models respectively. The choice of batch size was done manually. The regional model

had one order of magnitude less data than the spatial data. Thus, ten was chosen for its batch size.

The model was tested using batch sizes ranging from 5-20 and no major difference in performance

was found, for sizes lower than ten. Batch sizes higher than ten, performed similarly but not as

well. Similarly, the temporal model used batch sizes ranging from 50-200. It was found that

performance started to fall off after 100, where the model began to fail to find meaningful

correlations in the data. Batch size values less than 100 did not find any meaningful difference in

performance. All models had a two distinct data sets using spatial and regional data. Each data set

had 260,000 datapoints and 1,000 input samples, respectively.

The input features consisted of 'timestep' and 'temperature' for both RAMs (Risk

Assessment Models). Three machine learning models were employed: Deep Neural Network

(DNN), Support Vector Regression (SVR), and Radial Basis Function (RBF). The models were

evaluated using Mean Squared Error (MSE) and Mean Absolute Error (MAE) in conjunction with

the percentage average error (PAE), which will be referred to as just percentage error. The

percentage error expresses the average difference between the MAE of the model. The equation is

shown in Equation [5-4] below:

𝑃𝐴𝐸 =
1

𝑛
∑ |

𝑦𝑖−�̂�𝑖

𝑦𝑖
|

𝑛

𝑖=1
× 100 [5-4]

The choice of models and error choice was done for comparison between the models

themselves and as a comparison with the results found by Mirzaei et al. [99] and Mesgarpour et

78

al. [67]. Both studies utilized these errors in their results. Mirzaei et al. [99] used a Deep artificial

neural network (DNN) with back propagation and used the sigmoid function with smooth gradient.

They tested various architectures and found the 10 x 10 DNN (10 layers with 10 neurons) delivered

the best results. They used a data set with 2,100 training input samples. Mesgarpour et al. [67]

utilized varying ML models to create a MIMO model for their study with 1,240 input samples.

They also used a DNN as well as MLP, SVR, and RBF. To mirror both studies, a Deep Neural

Network (DNN), Support Vector Machine (SVR) and Radial Basis Function (RBF) will be utilized.

This study found that the methodology used by Mesgarpour et al. [67] produced much more

consistent results for the architecture of the neural network (5 layers, two for input, two for output

and three hidden layers), with some changes, as will be discussed.

The SVR model was implemented using Scikit-learn's MultiOutputRegressor wrapper.

The kernel used was ‘linear.’ The RBF model was implemented similarly to the SVR model but

with the kernel specified as ‘rbf.’ The input features and target variables were the same as in the

SVR model. The RBF model regularization factor (C) was set to 2 and the kernel coefficient (γ)

was set to 0.01. These values were found using a small random search for parameter optimization.

The DNN model was implemented using Keras and TensorFlow, as was done in

previous studies [67,99]. The DNN model architecture consisted of a Sequential model with three

hidden layers containing 5, 15, and 30 neurons, respectively. Testing found that progressive

stacking of the neurons produced consistently good models. The input layer had n neurons with n

input dimensions, and the output layer had m neurons. The values of n and m were the number of

input and output parameters, respectively. The activation function for all layers was the rectified

linear unit (ReLU). This activation function is widely used in DNN regression models for nonlinear

models as it does not become saturated with large numbers of inputs, and it is advantageous

because errors are back propagated [67]. Unlike the Mesgarpour et al. study [67], the output layer

did not use the sigmoid function, as the output values were normalized and none of the values were

negative. The model was compiled using the Adam optimizer with Mean Square Error (MSE) loss

and Mean Absolute Error (MAE) metrics. The Adam optimizer is popular and widely used due to

its ability to adjust the learning rate adaptively and automatically. The values of the parameters of

the Adam optimizer were left as default. The use of MSE as the loss function and MAE as metrics

is common for regression models. The Loss function is used for training and testing, while metrics

are used for validation cases. MSE emphasises the difference between values by giving weight to

79

larger errors making it very sensitive to differences in data sets. The MAE, in contrast, calculates

the absolute difference, hence, it is not as sensitive and better for evaluating the general

performance of ML models. To that end, MSE is better for loss as it can effectively shape the ML

model during training and testing, while MAE can give a more general view of the model and

avoid overfitting the ML model to the validation test case. The MAE provides a means to evaluate

the general performance of the ML model.

5.3. Results and Discussion

The results of the ML models for both the Spatial-Temporal Risk (STR) and Regional-

Temporal Risk (RTR) models are shown in Sections 5.3.1 and 5.3.2, below. The models were

evaluated using Mean Squared Error (MSE), Mean Average Error (MAE) and Percentage Average

Error (PAE). The validation results of the various ML models were used for each evaluation

parameter (MSE, MAE and PAE). The validation results were chosen since they give less biased

interpretation of performance of ML models, as opposed to training and testing datasets.

5.3.1. Spatial-Temporal Risk Model

The results for the Spatial Temporal Risk (STR) Model are shown in Figures 5-9 to 5-11

and in Table 5-1. The DNN and RBF produced the best results with SVR (a linear model)

performing notably worse. These results mirror the results of Mesgarpour et al. [67]. The reason

for the DNN and RBF models performing better than the SVR is likely due to the stark similarities

between the two models, both are nonlinear. The models only had to predict a single output

parameter, making the prediction task easier. The ML Model in this study also has an abundance

of raw data in which to train and test against, on the order of 106 datapoints. If the ML model were

to perform poorly, the effects of the filtering can be relaxed (reduce threshold increment) or the

cap on the number of points per file (simulation iterations) increased. The table below, Table 5-1,

shows the maximum MSE, RMSE (root of the MSE), MAE and the PAE validation results from

this study.

80

Table 5-1: Validation Results of STR Machine Learning Models

Model Output

Variables

MSE RMSE MAE PAE (%)

DNN PRF 10.01 3.16 2.65 12.36

SVR PRF 58.16 7.62 6.60 27.93

RBF PRF 14.38 3.79 5.12 18.12

The results of the DNN are shown in gradient slices at a set height in example figures (see

Figures 5-9 to 5-11). They are 2D visualizations of a portion of the 3D risk map generated by the

ML model. For reference, the injection location is at (2.12 m, 0.95 m, 2.17 m), the approximate

height of the nose and mouth of a person seated at a desk, which is typically in the middle of the

XZ plane. The time value referenced is an internal time used for the ML model. One unit

corresponds to 0.5 s of real particle dispersion time.

Figure 5-7: The results of the DNN model’s XZ Risk Gradient at y=0.95 m and 0.5 s

81

Figure 5-8: The results of the DNN model’s XZ Risk Gradient at y=0.95m and 2.5s

Figure 5-9: XZ Risk Gradient at y=0.95m and 5.0s

A gradual progression of the particles through elements of the domain for a mixing

ventilation configuration can be seen in Figures 5-9 to 5-11. Initially, the risk is clustered at regions

82

very close to the injection. For this first 2D slice (Figure 5-9), the gradient is concentrated in the

bottom right quadrant. This is likely due to a combination of the particles moving in the Y direction

as well as the ML model not having much data in this region, so it is extrapolation information

based on the data it does have. This same pattern is also observed in the other two 2D risk maps

(Figure 5-10, and 5-11). In Figure 5-9, a heavy concentration in the left side of the room can be

seen. This is due to particles being injected in a linear stream, but they are heavily favored to the

left side of the room due to the fluid flow in the room. As investigated previously (Figure 3-6 and

3-8), Mixing tends the push the particles upwards and towards the left and right of the room. Due

to the position of the exhaust, most of the particles were sucked upwards towards the left (into the

exhaust). In Figure 5-11, the particle concentration is clustered in the top right corner, as the

particles are now clustered at the back region of the room. The risk map is the ML’s mathematical

model based on the limited spatial data provided by the CBPT.

5.3.2. Regional-Temporal Risk Model

For the RTR Model, three different configurations were tested. The first configuration used

[L, W, H], which are the size of the high-risk region (bounding box). The second configuration

used [X, Y, Z], which is the location of the centre of the bounding box (so the geometric centre of

the high-risk region). The third configuration used all six input variables combined [L, W, H, X,

Y, Z]. It was anticipated that 6 variables would perform the worst, since it is generally harder to

predict as the number of inputs to output variables changes. However, the results show that the

first configuration, [L, W, H], prediction performed the worst in all three cases and the third

configuration, [L, W, H, X, Y, Z], prediction performed in between the other two. This means that

all models found prediction of the size of the bounding box the hardest, which is to be expected.

Like the previous ML risk model, SVR performed the worst and RBF and DNN performed the

best, with RBF having the best performance. This likely due to the benefits of the radial basis

function in predicting spatial based data due to their strength in local approximation, meaning they

can easily capture local patterns in spatial data.

83

Table 5-2: Validation ML Results for Regional-Temporal Model

Model Output Variables MSE RMSE MAE PAE (%)

DNN [X, Y, Z] 0.007 0.084 0.041 1.55

DNN [L, W, H] 0.130 0.361 0.337 13.32

DNN [X, Y, Z, L, W, H] 0.036 0.190 0.053 9.37

SVR [X, Y, Z] 0.144 0.379 0.344 13.43

SVR [L, W, H] 0.228 0.477 0.340 38.90

SVR [X, Y, Z, L, W, H] 0.186 0.431 0.342 26.16

RBF [X, Y, Z] 0.015 0.122 0.084 3.16

RBF [L, W, H] 0.014 0.118 0.105 6.50

RBF [X, Y, Z, L, W, H] 0.012 0.110 0.099 5.00

Figure 5-12 shows an example of the DNN predicting a bounding box at a given time

and temperature. The ML model tends to over predict the size of the region. This is because the

algorithm is predicting a single large cluster of particles with a simple geometry (rectangular

prism) as opposed to looking at multiple clusters or predicting the risk using more complex shape

geometries (spheres, ellipsoids, convex hulls). The algorithm used to generate the bounding box

data uses local maxima of the high-risk cell locations on each axis for each time step, further

simplifying the dimensionality of the region in question. Complexity would make the region

predictions more specific but require more information to build the model. A simpler region would

require less information to predict but loses the cloud shaped intricacies one would expect particle

dispersion to exhibit. The reason for the choice of a simple region is because a simpler model is

much more applicable for risk prediction models, especially when looking at larger temporal and

spatial domains. For example, if this model were scaled up to a larger room such as a lecture hall

or lunchroom, a more generalized model would become increasingly more desirable.

Approximating a dispersion area as a cubic risk cloud means individuals at risk of infection could

be easily included or excluded from consideration. In these cases, its better to over predict than

under predict.

84

Figure 5-10: Example of the bounding box Created by Regional Risk Model

5.3.3. Summary of the ML Results

Based on the results discussed above, the Regional Model (RTR) performed much better

than the Spatial model (STR) in almost all cases. This is because the Spatial model predicts risk

values across a large dimensional manifold, and it must predict risk values in both the spatial and

temporal domains. In contrast, the regional model utilizes dimensionality reduction, predicting the

size of the space over time, and not the gradient of the values in it. If the spatial data was utilized

in conjunction with the Regional Model, it could then pinpoint exact locations of high risk, but

this would require large amounts of generated data. In contrast, just the regional risk model

identifies a general area of high risk while requiring a relatively small amount of data samples at

the upper margins of the risk profile, at the cost of knowing the actual locations of the risk.

85

5.4. Conclusions

5.4.1. Summary

In this study, it was shown that utilizing various post-processing techniques allows the

conversion of particle count data into two distinct RAM models. The data was first generated by

running simulation data in ANSYS Fluent and recording the weighted particle count at cell

locations in the domain. These cell locations were locations that a particle had passed through, at

any time step. Afterwards, the data was converted to a Risk factor using a logarithmic function and

the data was filtered to keep all files to a maximum of 500, or less, data points or lines of data.

Using this data, the Spatial-Temporal Risk Model (STR) and the Regional-Temporal Risk (RTR)

Model were created. The STR was made using a ML model based on the spatial (x, y, z), temporal

(t) and ambient (T) variables as input parameters and the associated risk factor as the output

variable. The STR model performed well because it creates a continuous 3D risk space where the

risk at any location can be predicted. However, the percentage average error (PAE) of the model

was generally higher when compared to the Regional-Temporal Risk (RTR) model. The RTR

model was made using an algorithm to find the size of the high-risk bounding box (finding the

Length, Width and Height of filtered data) as well as the location of the box (X Y Z), represented

as its centroid, as output layers and time and temperature as input layers. The RTR model results

show that the PAE was lower overall compared to the STR model. However, the RTR model

performed well due in part, to the square geometry of the room. A drawback of the RTR model is

that it cannot provide what the actual high-risk region is, instead it simply provides an estimate

based on the relative high-risk elements that were prompted by the initial values. In other

simulations these ‘high-risk’ regions could be low, but the RTR model does not provide this

information. The user needs to determine this manually by checking the data. The benefit of the

RTR model is that it does not require as many data points as the STR Model.

5.4.2. Future Work

Future work will machine learning will incorporate a wider range and use of input and output

parameters into the ML models. For example, velocity, pressure, among others, could be included.

The start and end times of the simulation data that is used to build the ML model could also be

much smaller. The datasets at the end of the simulation time step, were cluttered with similar

values, often thousands. With that large amount of redundant data, it often leads to low variance,

86

thus extensive cross validation studies would be required for validation of data correlation. The

spatial and temporal range of the simulations analyzed could also be much smaller, since the

regional model has the bounding box values converge quickly as particles reach the bounds of the

room. Smaller time steps in the ANSYS simulations will allow for more accurate temporal

correlation between the input and output variables. In the same vein, looking at a more limited

time window, will also limit the spatial area that the particles travel in. This will allow for much

higher rates of variance in the data, and thus more accurate ML models. The general ANSYS

simulation can also be changed by expanding the geometry, evaluating multiple scenarios, and

investigating other indoor environments.

87

Chapter 6. Conclusions

6.1. Summary

This thesis studied the airborne transmission in indoor office environments using CFD

and ML. The effects of ventilation strategy particle dispersion were studied in addition to

comparing various performance indicators. A comparative study was conducted evaluating the

particle removal for stratum ventilation (SV), mixing ventilation (MV) and displacement

ventilation (DV). To facilitate these types of CFD analyses, a novel workflow was created, and

outlined in the thesis, that combined CFD and parallel processing to perform accelerated high-

fidelity simulations. This workflow was then used to create a novel method of combining ML and

CFD to create Risk Models to predict particle concentration-based risk for a Spatial-Temporal Risk

(STR) model and a Regional-Temporal Risk (RTR) model. This methodology was applied to the

Mixing Ventilation (MV) HVAC strategy. Both models (STR and RTR) showed a high degree of

accuracy in predicting the risk, with a minimum PAE of 12.36 and 5.00 for the DNN and RBF

models, respectively.

6.2. Contributions

6.2.1. Comparative Study of Ventilation Strategies

The first contribution of this thesis was the comparative study of three ventilation strategies

for indoor environments, stratum ventilation (SV), mixing ventilation (MV) and displacement

ventilation (DV). The research results showed that the stratum ventilation strategy performed the

worst regarding particle removal, removing, on average, 800 particles less than other strategies

from a total pool of 4,844 particles. For each of the three performance indicators Heating removal

index (HRE), index of mixing (IOM) and occupants’ thermal perception (OTS), it was found that

DV, MV and SV each performed the best in each category respectively.

6.2.2. Advanced Combined Use of UDF,CFD and ML for Airborne Transmission

The second major contribution from this thesis was the development of a combined CFD,

UDF, and ML approach for airborne transmission. Previous CFD and ML combined studies looked

only at particle dispersion or contaminants. Traditional CFD methods rely on extensive

computations, and it is difficult to combine experimental or empirical data into these CFD

88

simulations. The method developed in this work streamlined the process by combining CFD, UDF,

and ML.

Users of this new CBPT method, developed in this thesis, can directly incorporate

experimental data or experimental relations without having to start from scratch in ANSYS. Users

can work with the direct quantities of simulations and easily obtain the associated data. Users can

also more readily writing code if they have distinct areas to work with where they know they can

perform computations or do write data to files.

6.2.3. Resources for Researchers to use HPC and CFD

The third major contribution from this thesis was a step-by-step workflow and methodology

for doing parallel processing on high-computational clusters (HPC). Specifically, the HPC used

was ‘Compute Canada’ also known as the Digital Research Alliance of Canada. Users can easily

follow the general steps to run many computational dynamics simulations by utilizing HPC

clusters for things like CFD and MD. This study explains the basic concepts and techniques so that

users can utilize parallel processing effectively.

6.2.4. Development of Risk and Predictive Models

The last major contribution was the development of two distinct risk models and their use in

creating two predictive models with the aid of Machine Learning. The first model was the Spatial-

Temporal Risk (STR) model which uses risk factor values at respective cell locations over time to

predict a 3D risk gradient over the domain. To create this STR model, the location, ambient

temperature and time were used as input parameters and the particle risk factor was an output

parameter. The second model was the Temporal-Regional Risk (TRR) model which filters the risk

data for the highest relative risk values and determines the location and size of the region by

approximating a rectangular prism region, referred to as a bounding box. To create this TRR model,

the ambient temperature and time were used as input parameters and the particle risk factor,

location and size of the bounded region were the output parameters. Both models (STR and TRR)

were able to predict the relevant output parameters with reasonable percentage errors.

89

6.3. Recommendations for Future Work

6.3.1. Comparative Study of Ventilation Strategies

While this thesis investigated an office room with a single occupant, future studies can expand

to larger office rooms, classrooms, or scenarios with more occupants, and more complicated

geometries. The time range of the simulations analyzed could also be much smaller, since the

regional model develops low variance quickly as particles reach the bounds of the room. This is

because the values for the bounding box will converge, as they are physically constrained by the

size of the room domain. Smaller times would aid in more accurate temporal correlation between

the variables can be established in the ML model.

6.3.2. Advanced use of UDF and CFD

Many researchers have conducted experimental studies for various theoretical models that can

model complex flow phenomena relating to the flows [118–120]. Theoretical models to describe

complex processes, such as evaporation and condensation, are built- into CFD simulations are

useful and often very good, but they rarely match experimental results. Future UDFs can couple

experimental results using empirical models to other theoretical models describing processes, such

as evaporation or condensation, within the CFD simulation. These UDFs could add correction

factors based on empirical data to various elements of the CFD simulation, or the empirical data

could be used to simulate simplified lower fidelity models. Other uses for CFD can be to simulate

events, flow profiles, or other conditions. For example, the breathing velocities can be modeled

from experimental data, or breathing velocities of other occupants can be simulated and controlled,

allowing CFD simulations to simply simulate injection or breathing events of multiple participants

without having to utilize GUI based design. Velocity profiles at various locations in the model can

be manually added as boundary conditions. Injections can also be done at certain times or trigger

due to complex logic conditions. The specific particles from specific injection events can also be

tracked.

6.3.3. Resources for Researchers to use HPC and CFD

Many first-time users of HPC clusters face a myriad of issues when learning to use the

technology. Future work could focus on developing resources for a broad range of researchers, so

that they have an easy way to learn about the technology instead of having to comb through

90

disparate documentation to learn how to open a file or learn formatting for a specific cluster text

input. Easy to use scripts, macros or GUIs can be created so that first-time users can have an easier

time utilizing the HPC technology. Guides for creating parallel processing systems, using multiple

desktop computers, for local researchers who may not have access to larger organizations

computational resources could also be developed.

6.3.4. Expanding Input and Parameters of ML

The ML model used in this study was limited in the variables explored. Future work could

aim to incorporate a much wider range of input and output parameters in the ML model. For

example, velocity, pressure, humidity, ventilation location, index patient location, occupant

locations, among others.

91

References

[1] CDC Museum COVID-19 Timeline, (2023).

https://www.cdc.gov/museum/timeline/covid19.html (accessed July 23, 2023).

[2] Covid-19 Pandemic Timeline Fast Facts | CNN, (2021).

https://www.cnn.com/2021/08/09/health/covid-19-pandemic-timeline-fast-facts.

[3] SARS-CoV-2 and COVID-19 | BCM, (2023).

https://www.bcm.edu/departments/molecular-virology-and-microbiology/emerging-

infections-and-biodefense/specific-agents/sars-cov-2-and-covid-19 (accessed July

30, 2023).

[4] WHO Coronavirus (COVID-19) Dashboard | WHO Coronavirus (COVID-19)

Dashboard With Vaccination Data, (2023). https://covid19.who.int/ (accessed July

30, 2023).

[5] WHO, Transmission of SARS-CoV-2: Implications for Infection Prevention

Precautions. World Health Organization., MedRxiv. (2020) 1–21.

https://www.who.int/news-room/commentaries/detail/transmission-of-sars-cov-2-

implications-for-infection-prevention-precautions (accessed July 30, 2023).

[6] S. Shao, D. Zhou, R. He, J. Li, S. Zou, K. Mallery, S. Kumar, S. Yang, J. Hong,

Risk assessment of airborne transmission of COVID-19 by asymptomatic

individuals under different practical settings, J Aerosol Sci. 151 (2021) 105661.

https://doi.org/10.1016/j.jaerosci.2020.105661.

[7] L. Zou, F. Ruan, M. Huang, L. Liang, H. Huang, Z. Hong, J. Yu, M. Kang, Y. Song,

J. Xia, Q. Guo, T. Song, J. He, H.-L. Yen, M. Peiris, J. Wu, SARS-CoV-2 Viral

Load in Upper Respiratory Specimens of Infected Patients, New England Journal of

Medicine. 382 (2020) 1177–1179.

https://doi.org/10.1056/NEJMC2001737/SUPPL_FILE/NEJMC2001737_DISCLO

SURES.PDF.

[8] Y. Yin, W. Xu, J.K. Gupta, A. Guity, P. Marmion, A. Manning, B. Gulick, X. Zhang,

Q. Chen, Experimental Study on Displacement and Mixing Ventilation Systems for

a Patient Ward, HVAC&R Res. 15 (2009) 1175–1191.

https://doi.org/10.1080/10789669.2009.10390885.

92

[9] W. Zhang, W. Zhang, K. Mizutani, H. Zhang, Decision-making analysis of

ventilation strategies under complex situations: A numerical study, Build Environ.

206 (2021). https://doi.org/10.1016/J.BUILDENV.2021.108217.

[10] Y. Choe, J. shup Shin, J. Park, E. Kim, N. Oh, K. Min, D. Kim, K. Sung, M. Cho,

W. Yang, Inadequacy of air purifier for indoor air quality improvement in

classrooms without external ventilation, Build Environ. 207 (2022) 108450.

https://doi.org/10.1016/J.BUILDENV.2021.108450.

[11] A. Khan, A NUMERICAL MODELLING APPROACH TO STUDY THE IMPACT

OF VENTILATION CONFIGURATIONS ON AIRBORNE TRANSMISSION IN

INDOOR ENVIRONMENTS, (2022).

[12] C. Huan, F.H. Wang, Z. Lin, X.Z. Wu, Z.J. Ma, Z.H. Wang, L.H. Zhang, An

experimental investigation into stratum ventilation for the cooling of an office with

asymmetrically distributed heat gains, Build Environ. 110 (2016) 76–88.

https://doi.org/10.1016/J.BUILDENV.2016.09.031.

[13] A. Khan, F.M. Mohee, M. Freire-Gormaly, Modeling droplet and aerosol spread for

minimizing airborne transmission of COVID-19 and other diseases in public

spaces, CSME Bulletin. Fall (2020) 11–12. http://csme-

scgm.ca/sites/default/files/BULLETIN-FALL-2020.pdf.

[14] A. Henriques, N. Mounet, L. Aleixo, P. Elson, J. Devine, G. Azzopardi, M.

Andreini, M. Rognlien, N. Tarocco, J. Tang, Modelling airborne transmission of

SARS-CoV-2 using CARA: risk assessment for enclosed spaces, (2022).

https://doi.org/10.1098/rsfs.2021.0076.

[15] P. Vidmar, S. Petelin, Application of CFD Method for Risk Assessment In Road

Tunnels, Engineering Applications of Computational Fluid Mechanics. 1 (2007)

273–287. https://doi.org/10.1080/19942060.2007.11015199.

[16] M.L. Hosain, R.B. Fdhila, Literature Review of Accelerated CFD Simulation

Methods towards Online Application, Energy Procedia. 75 (2015) 3307–3314.

https://doi.org/10.1016/j.egypro.2015.07.714.

[17] H.M. Zoka, M. Moshfeghi, H. Bordbar, P.A. Mirzaei, Y. Sheikhnejad, A cfd

approach for risk assessment based on airborne pathogen transmission, Atmosphere

(Basel). 12 (2021). https://doi.org/10.3390/atmos12080986.

93

[18] N. Morozova, F.X. Trias, R. Capdevila, C.D. Pérez-Segarra, A. Oliva, On the

feasibility of affordable high-fidelity CFD simulations for indoor environment

design and control, Build Environ. 184 (2020) 107144.

https://doi.org/10.1016/j.buildenv.2020.107144.

[19] O. Fawwaz Alrebi, B. Obeidat, I. Atef Abdallah, E.F. Darwish, A. Amhamed,

Airflow dynamics in an emergency department: A CFD simulation study to analyse

COVID-19 dispersion, Alexandria Engineering Journal. (2021).

https://doi.org/10.1016/j.aej.2021.08.062.

[20] H. Liu, S. He, L. Shen, J. Hong, Simulation-based study of COVID-19 outbreak

associated with air-conditioning in a restaurant, Physics of Fluids. 33 (2021) 23301.

https://doi.org/10.1063/5.0040188/1032688.

[21] K. Talaat, M. Abuhegazy, O.A. Mahfoze, O. Anderoglu, S. V. Poroseva, Simulation

of aerosol transmission on a Boeing 737 airplane with intervention measures for

COVID-19 mitigation, Physics of Fluids. 33 (2021) 33312.

https://doi.org/10.1063/5.0044720.

[22] V. Vuorinen, M. Aarnio, M. Alava, V. Alopaeus, N. Atanasova, M. Auvinen, N.

Balasubramanian, H. Bordbar, P. Erästö, R. Grande, N. Hayward, A. Hellsten, S.

Hostikka, J. Hokkanen, O. Kaario, A. Karvinen, I. Kivistö, M. Korhonen, R.

Kosonen, J. Kuusela, S. Lestinen, E. Laurila, H.J. Nieminen, P. Peltonen, J. Pokki,

A. Puisto, P. Råback, H. Salmenjoki, T. Sironen, M. Österberg, Modelling aerosol

transport and virus exposure with numerical simulations in relation to SARS-CoV-2

transmission by inhalation indoors, Saf Sci. 130 (2020) 104866.

https://doi.org/10.1016/j.ssci.2020.104866.

[23] S.L. Brunton, B.R. Noack, P. Koumoutsakos, Downloaded from

www.annualreviews.org Access provided by 70.30.77.64 on 08/13/23. For personal

use only, Annu. Rev. Fluid Mech. 2020. 52 (2019) 477–508.

https://doi.org/10.1146/annurev-fluid-010719.

[24] S.L. Brunton, Applying machine learning to study fluid mechanics, Acta Mechanica

Sinica. 37 (2021) 1718–1726. https://doi.org/10.1007/s10409-021-01143-6.

94

[25] R. Rai, M.K. Tiwari, D. Ivanov, A. Dolgui, Machine learning in manufacturing and

industry 4.0 applications, Int J Prod Res. 59 (2021) 4773–4778.

https://doi.org/10.1080/00207543.2021.1956675.

[26] N. Da Silva, M. Oliveira, D. Cordeiro, Impacts, Potentials, and Trends of Machine

Learning in Industry 4.0: An Overview, (2022).

https://doi.org/10.52591/LXAI202007136.

[27] Y. M. Banadaki, On the Use of Machine Learning for Additive Manufacturing

Technology in Industry 4.0, JOURNAL OF COMPUTER SCIENCE AND

INFORMATION TECHNOLOGY. 7 (2019).

https://doi.org/10.15640/JCSIT.V7N2A7.

[28] R. Rai, M.K. Tiwari, D. Ivanov, A. Dolgui, Machine learning in manufacturing and

industry 4.0 applications, Int J Prod Res. 59 (2021) 4773–4778.

https://doi.org/10.1080/00207543.2021.1956675.

[29] M. Freire-Gormaly, A.M. Bilton, Design of photovoltaic powered reverse osmosis

desalination systems considering membrane fouling caused by intermittent

operation, Renew Energy. 135 (2019) 108–121.

https://doi.org/10.1016/j.renene.2018.11.065.

[30] A.M. Gilau, M.J. Small, Designing cost-effective seawater reverse osmosis system

under optimal energy options, Renew Energy. 33 (2008) 617–630.

https://doi.org/10.1016/j.renene.2007.03.019.

[31] S. Lee, S. Myung, J. Hong, D. Har, Reverse osmosis desalination process optimized

for maximum permeate production with renewable energy, Desalination. 398

(2016) 133–143. https://doi.org/10.1016/j.desal.2016.07.018.

[32] M. Freire-Gormaly, Experimental Characterization of Membrane Fouling under

Intermittent Operation and Its Application to the Optimization of Solar Photovoltaic

Powered Reverse Osmosis Drinking Water Treatment Systems, PhD, University of

Toronto, 2018.

[33] D.R. Ferreira, J. Contributors, Using HPC infrastructures for deep learning

applications in fusion research, Plasma Physics and Controlled Fusion, (2021),

https://doi.org/10.1088/1361-6587/ac0a3b

95

[34] V. Jadhao, J. Kadupitiya, Integrating Machine Learning with HPC-driven

Simulations for Enhanced Student Learning, (2020), 2020 IEEE/ACM Workshop

on Education for High-Performance Computing (EduHPC),

https://doi.org/10.1109/EduHPC51895.2020.00009

[35] S.J. Lawson, M. Woodgate, R. Steijl, G.N. Barakos, High performance computing

for challenging problems in computational fluid dynamics, Progress in Aerospace

Sciences. 52 (2012) 19–29. https://doi.org/10.1016/J.PAEROSCI.2012.03.004.

[36] L. Morawska, D.K. Milton, It Is Time to Address Airborne Transmission of

Coronavirus Disease 2019 (COVID-19), Clinical Infectious Diseases. 71 (2020)

2311–2313. https://doi.org/10.1093/cid/ciaa939.

[37] Y. Yan, X. Li, Y. Shang, J. Tu, Evaluation of airborne disease infection risks in an

airliner cabin using the Lagrangian-based Wells-Riley approach, Build Environ.

121 (2017) 79–92. https://doi.org/10.1016/j.buildenv.2017.05.013.

[38] M. Konstantinov, D. Schmeling, C. Wagner, Numerical simulation of the aerosol

formation and spreading in an air-conditioned train compartment, J Aerosol Sci.

170 (2023) 106139. https://doi.org/10.1016/J.JAEROSCI.2023.106139.

[39] Y. Sheikhnejad, R. Aghamolaei, M. Fallahpour, H. Motamedi, M. Moshfeghi, P.A.

Mirzaei, H. Bordbar, Airborne and aerosol pathogen transmission modeling of

respiratory events in buildings: An overview of computational fluid dynamics,

Sustain Cities Soc. 79 (2022). https://doi.org/10.1016/j.scs.2022.103704.

[40] R. Vinuesa, S.L. Brunton, The Potential of Machine Learning to Enhance

Computational Fluid Dynamics, (2021) 1–13. http://arxiv.org/abs/2110.02085.

[41] K.E. Ringstad, K. Banasiak, Å. Ervik, A. Hafner, Machine learning and CFD for

mapping and optimization of CO2 ejectors, Appl Therm Eng. 199 (2021) 117604.

https://doi.org/10.1016/J.APPLTHERMALENG.2021.117604.

[42] M. Savarese, A. Cuoci, W. De Paepe, A. Parente, Machine learning clustering

algorithms for the automatic generation of chemical reactor networks from CFD

simulations, Fuel. 343 (2023) 127945.

https://doi.org/10.1016/J.FUEL.2023.127945.

96

[43] G. Gui, K.I. Roumeliotis, N.D. Tselikas, ChatGPT and Open-AI Models: A

Preliminary Review, Future Internet 2023, Vol. 15, Page 192. 15 (2023) 192.

https://doi.org/10.3390/FI15060192.

[44] M.-A. Sicilia, N. Bessis, M. Trovati, H. Hassani, E.S. Silva, The Role of ChatGPT

in Data Science: How AI-Assisted Conversational Interfaces Are Revolutionizing

the Field, Big Data and Cognitive Computing 2023, Vol. 7, Page 62. 7 (2023) 62.

https://doi.org/10.3390/BDCC7020062.

[45] M.J. Skibniewski, H. Liu, Y. Lei, S.A. Prieto, E.T. Mengiste, B. García De Soto,

Investigating the Use of ChatGPT for the Scheduling of Construction Projects,

Buildings 2023, Vol. 13, Page 857. 13 (2023) 857.

https://doi.org/10.3390/BUILDINGS13040857.

[46] F.M. Mohee, A. Al-Mayah, A. Plumtree, Anchors for CFRP plates: State-of-the-art

review and future potential, Compos B Eng. 90 (2016) 432–442.

https://doi.org/10.1016/j.compositesb.2016.01.011.

[47] Y. Zou, X. Zhao, Q. Chen, Comparison of STAR-CCM+ and ANSYS Fluent for

simulating indoor airflows, Build Simul. 11 (2018) 165–174.

https://doi.org/https://doi.org/10.1007/s12273-017-0378-8.

[48] I. Aramendia, U. Fernandez-Gamiz, A. Lopez-Arraiza, C. Rey-Santano, V. Mielgo,

F.J. Basterretxea, J. Sancho, M.A. Gomez-Solaetxe, Experimental and numerical

modeling of aerosol delivery for preterm infants, Int J Environ Res Public Health.

15 (2018). https://doi.org/10.3390/ijerph15030423.

[49] F.M. Mohee, A. Al-Mayah, Development of an innovative prestressing CFRP plate

anchor: Numerical modelling and parametric study, Compos Struct. 177 (2017) 1–

12. https://doi.org/10.1016/j.compstruct.2016.12.039.

[50] M. Freire-Gormaly, The Pore Structure of Indiana Limestone and Pink Dolomite for

the Modeling of Carbon Dioxide in Geologic Carbonate Rock Formations, MASc.,

University of Toronto, 2013. http://hdl.handle.net/1807/42840.

[51] P. Altschuh, Y.C. Yabansu, J. Hötzer, M. Selzer, B. Nestler, S.R. Kalidindi, Data

science approaches for microstructure quantification and feature identification in

porous membranes, J Memb Sci. 540 (2017) 88–97.

https://doi.org/10.1016/j.memsci.2017.06.020.

97

[52] M. Freire-Gormaly, J.S. Ellis, A. Bazylak, H.L. MacLean, Comparing thresholding

techniques for quantifying the dual porosity of Indiana Limestone and Pink

Dolomite, Microporous and Mesoporous Materials. 207 (2015) 84–89.

https://doi.org/10.1016/j.micromeso.2015.01.002.

[53] F.M. Mohee, C. Miller, Climatology of thunderstorms for North Dakota, 2002-06, J

Appl Meteorol Climatol. 49 (2010) 1881–1890.

https://doi.org/10.1175/2010JAMC2400.1.

[54] M. Leer, A. Kempf, Fast Flow Field Estimation for Various Applications with A

Universally Applicable Machine Learning Concept, Flow Turbul Combust. 107

(2021) 175–200. https://doi.org/10.1007/s10494-020-00234-x.

[55] F.M. Mohee, Development, Analysis and Testing of Innovative Mechanical

Prestressing Anchors for CFRP Plates for Structural Rehabilitation and Retrofitting,

University of Waterloo (UWSpace), 2017. http://hdl.handle.net/10012/11207.

[56] C.J. Noakes, C.B. Beggs, P.A. Sleigh, K.G. Kerr, Modelling the transmission of

airborne infections in enclosed spaces, Epidemiol Infect. 134 (2006) 1082–1091.

https://doi.org/10.1017/S0950268806005875.

[57] J.A. Sleigh, Applying the Wells-Riley equation to the risk of airborne infection in

hospital environments: The importance of stochastic and proximity effects, (2008).

https://eprints.whiterose.ac.uk/ (accessed August 13, 2023).

[58] A.J. Edwards, L. Benson, Z. Guo, M. López-García, C.J. Noakes, D. Peckham,

M.F. King, A mathematical model for assessing transient airborne infection risks in

a multi-zone hospital ward, Build Environ. 238 (2023) 110344.

https://doi.org/10.1016/J.BUILDENV.2023.110344.

[59] A. Karimipour, A. Amini, M. Nouri, A. D’Orazio, R. Sabetvand, M. Hekmatifar, A.

Marjani, Q. vu Bach, Molecular dynamics performance for coronavirus simulation

by C, N, O, and S atoms implementation dreiding force field: drug delivery atomic

interaction in contact with metallic Fe, Al, and steel, Comput Part Mech. 8 (2021)

737–749. https://doi.org/10.1007/s40571-020-00367-w.

[60] R. Mittal, R. Ni, J.-H. Seo, The flow physics of COVID-19, (2020).

https://doi.org/10.1017/jfm.2020.330.

98

[61] C.C. Wang, K.A. Prather, J. Sznitman, J.L. Jimenez, S.S. Lakdawala, Z. Tufekci,

L.C. Marr, Airborne transmission of respiratory viruses, Science (1979). 373

(2021). https://doi.org/10.1126/SCIENCE.ABD9149.

[62] M.E. Rosti, S. Olivieri, M. Cavaiola, A. Seminara, & A. Mazzino, Fluid dynamics

of COVID-19 airborne infection suggests urgent data for a scientific design of

social distancing, (2020). https://doi.org/10.1038/s41598-020-80078-7.

[63] S. Chaudhuri, S. Basu, A. Saha, Physics of Fluids ARTICLE

scitation.org/journal/phf Analyzing the dominant SARS-CoV-2 transmission routes

toward an ab initio disease spread model, Cite as: Phys. Fluids. 32 (2020) 123306.

https://doi.org/10.1063/5.0034032.

[64] R. Tellier, Y. Li, B.J. Cowling, J.W. Tang, Recognition of aerosol transmission of

infectious agents: A commentary, BMC Infect Dis. 19 (2019) 1–9.

https://doi.org/10.1186/S12879-019-3707-Y/FIGURES/1.

[65] WHO-convened global study of origins of SARS-CoV-2: China Part, (2021).

https://www.who.int/publications/i/item/who-convened-global-study-of-origins-of-

sars-cov-2-china-part (accessed August 12, 2023).

[66] A. Shadloo-Jahromi, O. Bavi, M. Hossein Heydari, M. Kharati-Koopaee, Z.

Avazzadeh, Dynamics of respiratory droplets carrying SARS-CoV-2 virus in closed

atmosphere, Results Phys. 19 (2020) 103482.

https://doi.org/10.1016/j.rinp.2020.103482.

[67] M. Mesgarpour, J. Mohebbi, N. Abad, R. Alizadeh, S. Wongwises, M.H.

Doranehgard, S. Ghaderi, N. Karimi, Prediction of the spread of Corona-virus

carrying droplets in a bus-A computational based artificial intelligence approach,

(2021). https://doi.org/10.1016/j.jhazmat.2021.125358.

[68] J.P. Duguid, The size and the duration of air-carriage of respiratory droplets and

droplet-nuclei, J Hyg (Lond). 44 (1946) 471.

https://doi.org/10.1017/S0022172400019288.

[69] P. Mecenas, R.T. da Rosa Moreira Bastos, A.C. Rosário Vallinoto, D. Normando,

Effects of temperature and humidity on the spread of COVID-19: A systematic

review, PLoS One. 15 (2020). https://doi.org/10.1371/JOURNAL.PONE.0238339.

99

[70] L. Morawska, Droplet fate in indoor environments, or can we prevent the spread of

infection?, Indoor Air. 16 (2006) 335–347. https://doi.org/10.1111/J.1600-

0668.2006.00432.X.

[71] X. Yang, C. Ou, H. Yang, L. Liu, T. Song, M. Kang, H. Lin, J. Hang, Transmission

of pathogen-laden expiratory droplets in a coach bus, J Hazard Mater. 397 (2020)

122609. https://doi.org/10.1016/J.JHAZMAT.2020.122609.

[72] Y. Yan, X. Li, Y. Shang, J. Tu, Evaluation of airborne disease infection risks in an

airliner cabin using the Lagrangian-based Wells-Riley approach, Build Environ.

121 (2017) 79–92. https://doi.org/10.1016/J.BUILDENV.2017.05.013.

[73] F. Cui, X. Geng, O. Zervaki, D.D. Dionysiou, J. Katz, S.-J. Haig, M. Boufadel,

Transport and Fate of Virus-Laden Particles in a Supermarket: Recommendations

for Risk Reduction of COVID-19 Spreading, Journal of Environmental

Engineering. 147 (2021). https://doi.org/10.1061/(ASCE)EE.1943-7870.0001870.

[74] A. W. Date, Introduction to Computational Fluid Dynamics Nomenclature

Symbols, 2012, https://doi.org/10.1017/CBO9780511808975

[75] York University | Right the Future, (2023), https://www.yorku.ca/ (accessed August

13, 2023).

[76] G. Taguchi, M.S. Phadke, Quality Engineering through Design Optimization, in:

Quality Control, Robust Design, and the Taguchi Method, Springer-Verlag, 1984:

pp. 77–96. http://link.springer.com/book/10.1007/978-1-4684-1472-1.

[77] H.-G. Beyer, B. Sendhoff, Robust optimization – A comprehensive survey, Comput

Methods Appl Mech Eng. 196 (2007) 3190–3218.

https://doi.org/10.1016/j.cma.2007.03.003.

[78] D.E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning,

1st ed., Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1989.

[79] D. Connolly, H. Lund, B.V. Mathiesen, M. Leahy, A review of computer tools for

analysing the integration of renewable energy into various energy systems, Appl

Energy. 87 (2010) 1059–1082. https://doi.org/10.1016/j.apenergy.2009.09.026.

[80] W. Cao, Q. Liu, Y. Wang, I.M. Mujtaba, Modeling and simulation of VMD

desalination process by ANN, Comput Chem Eng. 84 (2016) 96–103.

https://doi.org/10.1016/j.compchemeng.2015.08.019.

100

[81] L. Horrigan, M. Freire-Gormaly, Modelling the effects of ultrasonic sonification on

reverse osmosis feed channel temperature, Desalination. 521 (2022) 115332.

https://doi.org/10.1016/j.desal.2021.115332.

[82] M. Getu, S. Mahadzir, M. Lee, Profit optimization for chemical process plant based

on a probabilistic approach by incorporating material flow uncertainties, Comput

Chem Eng. 59 (2013) 186–196.

https://doi.org/10.1016/j.compchemeng.2013.05.026.

[83] C.T. Mackay, D. Nowell, Informed machine learning methods for application in

engineering: A review, Proc Inst Mech Eng C J Mech Eng Sci. (2023).

https://doi.org/10.1177/09544062231164575.

[84] A. Daw, R. Quinn Thomas, C.C. Carey, J.S. Read, A.P. Appling, A. Karpatne,

Physics-Guided Architecture (PGA) of Neural Networks for Quantifying

Uncertainty in Lake Temperature Modeling, (2020). https://epubs.siam.org/terms-

privacy (accessed August 13, 2023).

[85] R.H. Jhaveri, A. Revathi, K. Ramana, R. Raut, R.K. Dhanaraj, A Review on

Machine Learning Strategies for Real-World Engineering Applications, (2022).

https://doi.org/10.1155/2022/1833507.

[86] S.L. Brunton, Applying machine learning to study fluid mechanics, Acta Mechanica

Sinica/Lixue Xuebao. 37 (2021) 1718–1726. https://doi.org/10.1007/S10409-021-

01143-6/METRICS.

[87] IBM, About Linear Regression, (2023). https://www.ibm.com/topics/linear-

regression (accessed August 14, 2023).

[88] IBM, What is a Decision Tree, (2023). https://www.ibm.com/topics/decision-trees

(accessed August 14, 2023).

[89] IBM, What is Random Forest, (2023). https://www.ibm.com/topics/random-

forest#:~:text=Random%20forest%20is%20a%20commonly,both%20classification

%20and%20regression%20problems (accessed August 14, 2023).

[90] SciKit, Support Vector Machines — scikit-learn 1.3.0 documentation, (2023).

https://scikit-learn.org/stable/modules/svm.html (accessed August 14, 2023).

[91] IBM, About SVM, (2023). https://www.ibm.com/docs/en/spss-

modeler/saas?topic=models-about-svm (accessed August 14, 2023).

101

[92] BMC, What’s a Deep Neural Network? Deep Nets Explained, (2023).

https://www.bmc.com/blogs/deep-neural-network/ (Accessed August 14, 2023).

[93] A. Marcato, G. Boccardo, D. Marchisio, A computational workflow to study

particle transport and filtration in porous media: Coupling CFD and deep learning,

Chemical Engineering Journal. 417 (2021) 128936.

https://doi.org/10.1016/J.CEJ.2021.128936.

[94] MATLAB, What Is a Convolutional Neural Network? | 3 things you need to know,

(2023). https://www.mathworks.com/discovery/convolutional-neural-network-

matlab.html (accessed August 14, 2023).

[95] IBM, What are Recurrent Neural Networks?, (2023),

https://www.ibm.com/topics/recurrent-neural-

networks#:~:text=A%20recurrent%20neural%20network%20(RNN,data%20or%20

time%20series%20data (accessed August 14, 2023).

[96] A. Vidhya, What is LSTM? Introduction to Long Short-Term Memory, (2021).

https://www.analyticsvidhya.com/blog/2021/03/introduction-to-long-short-term-

memory-lstm/ (accessed August 14, 2023).

[97] IBM, Generative adversarial networks explained, (2023),

https://developer.ibm.com/articles/generative-adversarial-networks-explained/

(accessed August 14, 2023).

[98] J. Brownlee, Machine Learning Mastery, (2023).

https://machinelearningmastery.com/ (accessed August 13, 2023).

[99] P.A. Mirzaei, M. Moshfeghi, H. Motamedi, Y. Sheikhnejad, H. Bordbar, A

simplified tempo-spatial model to predict airborne pathogen release risk in enclosed

spaces: An Eulerian-Lagrangian CFD approach, Build Environ. 207 (2022) 108428.

https://doi.org/10.1016/j.buildenv.2021.108428.

[100] A. Kabanshi, H. Wigö, R. Ljung, P. Sörqvist, Experimental evaluation of an

intermittent air supply system – Part 2: Occupant perception of thermal climate,

Build Environ. 108 (2016) 99–109.

https://doi.org/10.1016/J.BUILDENV.2016.08.025.

[101] P.G. Saffman, The lift on a small sphere in a slow shear flow, J Fluid Mech. 22

(1965) 385–400. https://doi.org/10.1017/S0022112065000824.

102

[102] CCDB, Documentation, (2023). https://ccdb.alliancecan.ca/ (accessed August 12,

2023).

[103] CCDB, Getting started Documentation, (2023).

https://docs.alliancecan.ca/wiki/Getting_started (accessed August 12, 2023).

[104] ANSYS, ANSYS FLUENT 12.0 UDF Manual - 7.1 Overview of Parallel ANSYS

FLUENT, (2021).

https://www.afs.enea.it/project/neptunius/docs/fluent/html/udf/node213.htm

(accessed August 13, 2023).

[105] CAN, Alliance Documentation, (2023),

https://docs.alliancecan.ca/wiki/Technical_documentation (accessed August 27,

2023).

[106] F. Mohee, A. Al-Mayah, A. Plumtree, Friction Characteristics of CFRP Plates in

Contact with Copper Plates under High Contact Pressure, Journal of Composites for

Construction. (2016) 4016022. https://doi.org/10.1061/(ASCE)CC.1943-

5614.0000673.

[107] F.M. Mohee, A. Al-Mayah, A. Plumtree, Friction Characteristics of CFRP Plates in

Contact with Copper Plates under High Contact Pressure, Journal of Composites for

Construction. 20 (2016) 1–10. https://doi.org/10.1061/(ASCE)CC.1943-

5614.0000673.

[108] F.M. Mohee, A. Al-Mayah, A. Plumtree, Development of a novel prestressing

anchor for CFRP plates: Experimental investigations, Compos Struct. 176 (2017)

20–32. https://doi.org/10.1016/j.compstruct.2017.05.011.

[109] M. Freire-Gormaly, A.M. Bilton, Impact of intermittent operation on reverse

osmosis membrane fouling for brackish groundwater desalination systems, J Memb

Sci. 583 (2019) 220–230. https://doi.org/10.1016/j.memsci.2019.04.010.

[110] M. Freire-Gormaly, A.M. Bilton, Experimental quantification of the effect of

intermittent operation on membrane performance of solar powered reverse osmosis

desalination systems, Desalination. (2017).

https://doi.org/http://www.sciencedirect.com/science/article/pii/S001191641731110

4.

103

[111] M. Freire-Gormaly, A.M. Bilton, An experimental system for characterization of

membrane fouling of solar photovoltaic reverse osmosis systems under intermittent

operation, Desalination Water Treat. 73 (2017) 54–63.

https://doi.org/10.5004/dwt.2017.20391.

[112] F.M. Mohee, A. Al-mayah, Effect of modulus of elasticity and thickness of the

CFRP plate on the performance of a novel anchor for structural retrofitting and

rehabilitation applications, Eng Struct. 153 (2017) 302–316.

https://doi.org/10.1016/j.engstruct.2017.09.057.

[113] F.M. Mohee, A. Al-Mayah, Effect of barrel, wedge material and thickness on

composite plate anchor performance through analytical, finite element,

experimental and 3D prototype investigations, Eng Struct. 175 (2018) 138–154.

[114] E. Trigell, CFD-simulations of urea-water spray in an after-treatment system using

Star-CCM+, 2018. http://www.diva-

portal.org/smash/get/diva2:1306981/FULLTEXT01.pdf (accessed August 28,

2023).

[115] M. Lisicki, W. Lubitz, G.W. Taylor, Optimal design and operation of Archimedes

screw turbines using Bayesian optimization, Appl Energy. 183 (2016) 1404–1417.

https://doi.org/10.1016/j.apenergy.2016.09.084.

[116] M. Freire-Gormaly, J.S. Ellis, H.L. MacLean, A. Bazylak, Pore Structure

Characterization of Indiana Limestone and Pink Dolomite from Pore Network

Reconstructions, Oil & Gas Science and Technology. 71 (2015) 33.

https://doi.org/10.2516/ogst/2015004.

[117] Windows, MobaXterm free Xserver and tabbed SSH client for Windows, (2023).

https://mobaxterm.mobatek.net/ (accessed August 27, 2023).

[118] M. Surendran, T.N.C. Anand, S. Bakshi, Experimental investigation of the

evaporation behavior of urea-water-solution droplets exposed to a hot air stream,

AIChE Journal. 66 (2020). https://doi.org/10.1002/AIC.16845.

[119] L. Liu, J. Wei, Y. Li, A. Ooi, Evaporation and dispersion of respiratory droplets

from coughing, Indoor Air. 27 (2017) 179–190. https://doi.org/10.1111/INA.12297.

104

[120] X. Xie, Y. Li, A.T.Y. Chwang, P.L. Ho, W.H. Seto, How far droplets can move in

indoor environments – revisiting the Wells evaporation–falling curve, Indoor Air.

17 (2007) 211–225. https://doi.org/10.1111/J.1600-0668.2007.00469.X.

105

Appendix A – Bash code to open Fluent Cas File

#!/bin/bash

#SBATCH --time=00-30:00 # Time (DD-HH:MM)

#SBATCH --mem=16G # Total Memory (set to 0 for all node memory)

#SBATCH --ntasks=4 # Number of cores

#SBATCH --nodes=1 # Do not change (multi-node not supported)

##SBATCH --exclusive # Uncomment for scaling testing

##SBATCH --constraint=broadwell # Applicable to graham or cedar

module load StdEnv/2020 ansys/2021R2 # OR newer Ansys modules

if ["$SLURM_NNODES" == 1]; then

 MEMPAR=0 # Set to 0 for SMP (shared memory parallel)

else

 MEMPAR=1 # Set to 1 for DMP (distributed memory parallel)

fi

rm -fv *_files/.lock

MWFILE=~/.mw/Application\ Data/Ansys/`basename $(find $EBROOTANSYS/v* -maxdepth 0

-type d)`/SolveHandlers.xml

sed -re "s/(.AnsysSolution>+)[a-zA-Z0-9]*(<\/Distribute.)/\1$MEMPAR\2/" -i "$MWFILE"

sed -re "s/(.Processors>+)[a-zA-Z0-9]*(<\/MaxNumber.)/\1$SLURM_NTASKS\2/" -i

"$MWFILE"

sed -i "s!UserConfigured=\"0\"!UserConfigured=\"1\"!g" "$MWFILE"

export KMP_AFFINITY=disabled

export I_MPI_HYDRA_BOOTSTRAP=ssh

Get the journal and .cas.h5 file from the command line arguments

JOURNAL_FILE=$1

106

CAS_H5_FILE=$2

fluent 3ddp -g -i $JOURNAL_FILE -t$SLURM_NTASKS -cnf=$SLURM_NODELIST -ssh <<

EOF

/file/read-case $CAS_H5_FILE

/solve/initialize/compute-defaults/flow

/solve/iterate 100

/file/write-data solution.dat

EOF

107

Appendix B – Bash Code to Open Workbench Project File

#!/bin/bash

#SBATCH --time=00-03:00 # Time (DD-HH:MM)

#SBATCH --mem=16G # Total Memory (set to 0 for all node memory)

#SBATCH --ntasks=4 # Number of cores

#SBATCH --nodes=1 # Do not change (multi-node not supported)

##SBATCH --exclusive # Uncomment for scaling testing

##SBATCH --constraint=broadwell # Applicable to graham or cedar

module load StdEnv/2020 ansys/2021R2 # OR newer Ansys modules

if ["$SLURM_NNODES" == 1]; then

 MEMPAR=0 # Set to 0 for SMP (shared memory parallel)

else

 MEMPAR=1 # Set to 1 for DMP (distributed memory parallel)

fi

rm -fv *_files/.lock

MWFILE=~/.mw/Application\ Data/Ansys/`basename $(find $EBROOTANSYS/v* -

maxdepth 0 -type d)`/SolveHandlers.xml

sed -re "s/(.AnsysSolution>+)[a-zA-Z0-9]*(<\/Distribute.)/\1$MEMPAR\2/" -i

"$MWFILE"

sed -re "s/(.Processors>+)[a-zA-Z0-9]*(<\/MaxNumber.)/\1$SLURM_NTASKS\2/" -i

"$MWFILE"

sed -i "s!UserConfigured=\"0\"!UserConfigured=\"1\"!g" "$MWFILE"

export KMP_AFFINITY=disabled

export I_MPI_HYDRA_BOOTSTRAP=ssh

runwb2 -B -E "Update();Save(Overwrite=True)" -F $1

108

Appendix C – UDF Code

#include "udf.h"

#include <stdio.h>

#include <math.h>

#include <stdlib.h>

#include <string.h>

#include <sys/stat.h>

#include <unistd.h>

#define PW 0.1 //Worth of a single particle

#define MAX_P_Diam (100*10^-6)

#define MIN_P_Diam (1*10^-6)

#define sig_A (0.1)

#define sig_B (0.85)

#define sig_K (0.6)

#define sig_centre (6)

char *fileNamePrefix = "UDM_DATA_A1_t";

char *folderName = "UDM_DATA_A1";

real save_interval = 1; //Interval between saves in seconds

static int file_num = 0; //current number of files saved

static int auto_save = 1; //Flag to toggle auto saving

int ZONE_ID = 14;

//Function Declarations

double scalingFactor(double particle_size, double max_size, double min_size);

void moveFileToFolder(char *fileName, char *folderName);

void encode_2d_to_1d(real **arr_2d, int rows, int cols, real *encoded);

void decode_1d_to_2d(real *encoded, int rows, int cols, real **decoded);

void free_2d_array(real **arr, int rows);

real** create_2d_array(int rows, int cols);

real** create_2d_array(int rows, int cols) {

 real **arr = (real **)malloc(rows * sizeof(real *));

 for (int i = 0; i < rows; i++) {

 arr[i] = (real *)malloc(cols * sizeof(real));

 }

 return arr;

}

// Function to encode a 2D array into a 1D array

void encode_2d_to_1d(real **arr_2d, int rows, int cols, real *encoded) {

109

 for (int i = 0; i < rows; i++) {

 for (int j = 0; j < cols; j++) {

 encoded[i * cols + j] = arr_2d[i][j];

 }

 }

}

// Function to decode a 1D array into a 2D array

void decode_1d_to_2d(real *encoded, int rows, int cols, real **decoded) {

 for (int i = 0; i < rows; i++) {

 for (int j = 0; j < cols; j++) {

 decoded[i][j] = encoded[i * cols + j];

 }

 }

}

void moveFileToFolder(char *fileName, char *folderName) {

 // Check if the folder exists, and create it if it doesn't

 struct stat st;

 if (stat(folderName, &st) == -1) {

 // Folder doesn't exist, create it

 if (mkdir(folderName, 0777) != 0) {

 fprintf(stderr, "Failed to create folder\n");

 return;

 }

 }

 // Build the new file path

 char newFilePath[256]; // Adjust the buffer size as needed

 snprintf(newFilePath, sizeof(newFilePath), "%s/%s", folderName, fileName);

 // Move the file

 if (rename(fileName, newFilePath) != 0) {

 perror("rename");

 exit(EXIT_FAILURE);

 }

}

double scalingFactor(double particle_size, double max_size, double min_size) {

 // Calculate the scaled particle size between 0 and 1

 double scaled_particle_size = (particle_size - min_size) / (max_size - min_size);

 // Calculate the scaling factor using the sigmoid function

 double scaling_factor = ((1.0 + sig_A) / (sig_B + exp(-sig_K * (scaled_particle_size - sig_centre))));

 return scaling_factor;

}

void free_2d_array(real **arr, int rows) {

110

 for (int i = 0; i < rows; i++) {

 free(arr[i]);

 }

 free(arr);

}

//HOOKS

DEFINE_EXECUTE_ON_LOADING(loading_func, libname)

{

 #if !RP_NODE

 /* either serial or host process is involved */

 Message("*************************************\n");

 Message("\n\n");

 if(!auto_save)

 {

 Message("Autosave is Disabled\n");

 }

 else

 {

 Message("Autosave is Enabled\n with an interval of %g s",save_interval);

 }

 Message("\n\n");

 Message("*************************************\n");

 #endif

}

DEFINE_INIT(my_init, domain)

{

 #if !RP_NODE

 file_num = 1;

 #endif

 #if !RP_HOST

 /* Initialize UDM values for all cells of each node */

 cell_t cell;

 Thread *thread;

 thread_loop_c(thread, domain)

 {

 begin_c_loop_all(cell,thread)

 {

 C_UDMI(cell, thread, 0) = 0.0; /* Initialize UDM value to zero */

 C_UDMI(cell, thread, 1) = 0.0;

 }

 end_c_loop_all(cell,thread)

111

 }

 Message("\nInitilazed all UDMs on node %i\n",myid);

 #endif

}

DEFINE_DPM_SCALAR_UPDATE(track_particles, cell, thread, initialize, particle)

{

 #if !RP_HOST

 real p_diam = 0;

 double SF = 0;

 p_diam = P_DIAM0(particle);

 SF = scalingFactor(p_diam, MAX_P_Diam, MIN_P_Diam);

 C_UDMI(cell, thread, 1) += PW; /* Increment UDM value by PW for each particle */

 C_UDMI(cell, thread, 0) += (PW * SF); /* Increment UDM value by PW*scaling factor for each particle */

 #endif

}

DEFINE_ON_DEMAND(toggle_autosave)

{

 #if !RP_NODE

 char toggle[10];

 auto_save = (auto_save==1) ? 0 : 1;

 switch (auto_save){

 case 0: Message("Autosave is now *Disabled*\n");

 break;

 case 1: Message("Autosave is now *Enabled*\n");

 break;

 }

 #endif

}

DEFINE_ON_DEMAND(print_udm_values)

{

 #if !RP_HOST

 Thread *thread;

 cell_t cell;

 real xc[ND_ND];

 Domain *domain; /* domain is declared as a variable */

 domain = Get_Domain(1); /* returns fluid domain pointer */

 //determine the number of useful cells for each node

 #endif

112

 //determine file name

 #if !RP_NODE

 char filename[100];

 snprintf(filename, sizeof(filename), "%s_%d.txt", fileNamePrefix, file_num);

 FILE *fp = NULL;

 #endif

 //Node Variables

 #if PARALLEL

 int size;

 int var_size = 5; //x, y, z, UDM_Value, PW Value

 real ** data;

 real *data_1D;

 int pe;

 #endif

 //Find thread for current node

 #if !RP_HOST

 thread = Lookup_Thread(domain,ZONE_ID);

 #endif

 //Open or create file on Host/Serial

 #if !RP_NODE

 if ((fp = fopen(filename, "w"))==NULL)

 {

 fprintf(fp, "*** t = %d ***\n",file_num);

 }

 else

 {

 }

 #endif

 //save the data

 #if RP_NODE

 size=THREAD_N_ELEMENTS_INT(thread);

 data = create_2d_array(size, var_size);

 data_1D = (real *)malloc(size * var_size * sizeof(real));

 //array = (real *)malloc(size * sizeof(real));

 begin_c_loop_int(cell,thread)

 {

 C_CENTROID(xc,cell,thread);

 //array[cell] = C_UDMI(cell, thread, 0);

113

 data[cell][0] = xc[0];

 data[cell][1] = xc[1];

 data[cell][2] = xc[2];

 data[cell][3] = C_UDMI(cell, thread, 0);

 data[cell][4] = C_UDMI(cell, thread, 1);

 }

 end_c_loop_int(cell,thread)

 encode_2d_to_1d(data,size,var_size,data_1D);

 /* Set pe to destination node */

 /* If on node_0 send data to host */

 /* Else send to node_0 because */

 /* compute nodes connect to node_0 & node_0 to host */

 pe = (I_AM_NODE_ZERO_P) ? node_host : node_zero;

 PRF_CSEND_INT(pe, &size, 1, myid);

 PRF_CSEND_REAL(pe, data_1D, size* var_size, myid);

 //free(data_1D);/* free array on nodes after data sent */

 //free_2d_array(data,size);

 if (I_AM_NODE_ZERO_P)

 compute_node_loop_not_zero (pe)

 {

 PRF_CRECV_INT(pe, &size, 1, pe);

 real *data_1D = (real *)malloc(size * var_size *sizeof(real));

 PRF_CRECV_REAL(pe, data_1D, size* var_size, pe);

 PRF_CSEND_INT(node_host, &size, 1, myid);

 PRF_CSEND_REAL(node_host, data_1D, size* var_size, myid);

 }

 #endif

 #if RP_HOST

 compute_node_loop (pe)

 {

 PRF_CRECV_INT(node_zero, &size, 1, node_zero);

 data_1D = (real *)malloc(size * var_size * sizeof(real));

 PRF_CRECV_REAL(node_zero, data_1D, size* var_size, node_zero);

 data = create_2d_array(size,var_size);

 decode_1d_to_2d(data_1D, size, var_size, data);

114

 for (int i=0; i<size; i++)

 {

 //fprintf(fp, "%g\n",array[i]);

 if (data[i][3] != 0)

 {

 fprintf(fp, "%g, %g, %g, %g, %g\n",data[i][0],data[i][1],data[i][2],data[i][3],data[i][4]);

 }

 }

 }

 #endif /* RP_HOST */

 free(data_1D);

 free_2d_array(data,size);

 #if !RP_NODE /* SERIAL or HOST */

 fclose(fp); /* Close the file that was only opened if on SERIAL or HOST */

 moveFileToFolder(filename, folderName);

 file_num++;

 Message("Done\n");

 #endif

}

DEFINE_EXECUTE_AT_END(fileSave)

{

 //every 10 flow iterations is 100dpm

 //every dpm iterations is 0.002s

 //thus, every 10 flow is 0.2s for flow

 const real dpm_secs_per_10_iterations = 0.2;

 const real flow_iterations = 10;

 static int iterations = 0;

 iterations++;

 int dpmTime = iterations * dpm_secs_per_10_iterations/flow_iterations;

 int dpmSaveFlag = dpmTime >= save_interval;

 if(dpmSaveFlag && auto_save)

 {

 iterations = 0;

 #if !RP_HOST

 Thread *thread;

 cell_t cell;

 real xc[ND_ND];

115

 Domain *domain; /* domain is declared as a variable */

 domain = Get_Domain(1); /* returns fluid domain pointer */

 //determine the number of useful cells for each node

 #endif

 //determine file name

 #if !RP_NODE

 char filename[100];

 snprintf(filename, sizeof(filename), "%s_%d.txt", fileNamePrefix, file_num);

 FILE *fp = NULL;

 #endif

 //Node Variables

 #if PARALLEL

 int size;

 int var_size = 5; //x, y, z, UDM_Value, PW Value

 real ** data;

 real *data_1D;

 int pe;

 #endif

 //Find thread for current node

 #if !RP_HOST

 thread = Lookup_Thread(domain,ZONE_ID);

 #endif

 //Open or create file on Host/Serial

 #if !RP_NODE

 if ((fp = fopen(filename, "w"))==NULL)

 {

 fprintf(fp, "*** t = %d ***\n",file_num);

 }

 else

 {

 }

 #endif

 //save the data

 #if RP_NODE

 size=THREAD_N_ELEMENTS_INT(thread);

 data = create_2d_array(size, var_size);

 data_1D = (real *)malloc(size * var_size * sizeof(real));

116

 //array = (real *)malloc(size * sizeof(real));

 begin_c_loop_int(cell,thread)

 {

 C_CENTROID(xc,cell,thread);

 //array[cell] = C_UDMI(cell, thread, 0);

 data[cell][0] = xc[0];

 data[cell][1] = xc[1];

 data[cell][2] = xc[2];

 data[cell][3] = C_UDMI(cell, thread, 0);

 data[cell][4] = C_UDMI(cell, thread, 1);

 }

 end_c_loop_int(cell,thread)

 encode_2d_to_1d(data,size,var_size,data_1D);

 /* Set pe to destination node */

 /* If on node_0 send data to host */

 /* Else send to node_0 because */

 /* compute nodes connect to node_0 & node_0 to host */

 pe = (I_AM_NODE_ZERO_P) ? node_host : node_zero;

 PRF_CSEND_INT(pe, &size, 1, myid);

 PRF_CSEND_REAL(pe, data_1D, size* var_size, myid);

 //free(data_1D);/* free array on nodes after data sent */

 //free_2d_array(data,size);

 if (I_AM_NODE_ZERO_P)

 compute_node_loop_not_zero (pe)

 {

 PRF_CRECV_INT(pe, &size, 1, pe);

 real *data_1D = (real *)malloc(size * var_size *sizeof(real));

 PRF_CRECV_REAL(pe, data_1D, size* var_size, pe);

 PRF_CSEND_INT(node_host, &size, 1, myid);

 PRF_CSEND_REAL(node_host, data_1D, size* var_size, myid);

 }

 #endif

 #if RP_HOST

 compute_node_loop (pe)

 {

117

 PRF_CRECV_INT(node_zero, &size, 1, node_zero);

 data_1D = (real *)malloc(size * var_size * sizeof(real));

 PRF_CRECV_REAL(node_zero, data_1D, size* var_size, node_zero);

 data = create_2d_array(size,var_size);

 decode_1d_to_2d(data_1D, size, var_size, data);

 for (int i=0; i<size; i++)

 {

 //fprintf(fp, "%g\n",array[i]);

 if (data[i][3] != 0)

 {

 fprintf(fp, "%g, %g, %g, %g, %g\n",data[i][0],data[i][1],data[i][2],data[i][3],data[i][4]);

 }

 }

 }

 #endif /* RP_HOST */

 free(data_1D);

 free_2d_array(data,size);

 #if !RP_NODE /* SERIAL or HOST */

 file_num++;

 fclose(fp); /* Close the file that was only opened if on SERIAL or HOST */

 moveFileToFolder(filename, folderName);

 Message("Done\n");

 #endif

 }

}

