
 

 

AEROSOL TRANSMISSION OF COVID-19 AND OTHER AIRBORNE 

DISEASES IN OFFICE ENVIRONMENTS USING COMPUTATIONAL FLUID 

DYNAMIC MODELING AND MACHINE LEARNING 

 

BY 

KISHON WEBB 

 

A THESIS SUBMITTED TO 

THE FACULTY OF GRADUATE STUDIES 

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS 

FOR THE DEGREE OF MASTER OF APPLIED SCIENCE 

 

GRADUATE PROGRAM IN THE DEPARTMENT OF MECHANICAL 

ENGINEERING 

 

YORK UNIVERSITY 

TORONTO, ONTARIO 

 

August 2023 

 

© Kishon Webb 2023 



ii 

 

Abstract 

The COVID-19 pandemic has shown the world how quickly airborne diseases can spread and the 

lasting impact they can have. Computational fluid dynamic (CFD) models and simulations and 

machine learning (ML) are powerful tools that allow engineers to create models to predict and 

advance tools to fight these airborne diseases. The research in this thesis studied the effects of 

heating, air conditioning and ventilation (HVAC) strategies in small office spaces. A novel 

methodology was developed to utilize ML, CFD and parallel computing by utilizing the user 

defined function (UDF) tool of ANSYS Fluent. It was shown that the resulting risk models were 

quick and effective at predicting high risk areas using spatial data or predicting regions of high 

risk over time. Future research will refine this method by creating higher fidelity ML models and 

investigating a wider range of input and output parameters. 

  



iii 

 

Acknowledgements 

 

I would like to thank my supervisor Prof. Marina Freire-Gormaly, for giving me this unique 

opportunity and introducing me to the world of Academia. I never thought I would do my 

master’s and many times I was very close to giving up and not finishing. She has encouraged me 

and been patient, understanding and has vouched for me many times and for that I am grateful. 

 

I also want to thank all the people from the MFG lab, both past and present, who helped make 

the MFG lab the place it is and will continue to be. Specifically, I would like to thank my brother 

and RAY student Keandre Webb and my friend and colleague Harman Nagra for their help and 

support during my research. Additionally, I’d like to thank, Brandon Truong, Liam Horrigan, 

Belen Barrios, Abu Raihan Ibna Ali, Thipphathong Piluk, and Amanda Capacchione for their 

companionship during my master’s journey. 

 

A special thanks to Arma Khan, which without whose guidance would make this thesis not 

possible. She was always there to help provide resources and explain concepts relating to CFD 

and aerosol transmission. Her knowledge was fundamental to the writing of this thesis. 

 

The financial support from the Natural Sciences and Engineering Research Council (NSERC) of 

Canada for the NSERC CGS-M Scholarship was invaluable. 

 

Of course, I want to thank the ones who raised me, my loving parents and siblings who instilled 

the love of God and hard work as principles that I live by today. 

 

Thank you all! 

  



iv 

 

Table of Contents 

Abstract ........................................................................................................................................... ii 

Acknowledgements ........................................................................................................................ iii 

Table of Contents ........................................................................................................................... iv 

Table of Figures ........................................................................................................................... viii 

Table of Tables ............................................................................................................................... x 

List of Parameters .......................................................................................................................... xi 

List of Abbreviations .................................................................................................................... xii 

Chapter 1. Introduction ................................................................................................................... 1 

1.1. Background .......................................................................................................................... 1 

1.2. Motivation ............................................................................................................................ 3 

1.3. Research Objectives ............................................................................................................. 4 

1.4. Thesis Outline ...................................................................................................................... 4 

Chapter 2. Literature Review .......................................................................................................... 5 

2.1. Transmission of COVID-19 ................................................................................................. 5 

2.2. HVAC and CFD ................................................................................................................... 7 

2.2.1. CFD Study by Khan ...................................................................................................... 8 

2.3. Machine Learning .............................................................................................................. 10 

2.3.1. Introduction to ML ...................................................................................................... 10 

2.3.2. ML and Neural Networks ............................................................................................ 10 

2.3.3. Running and Evaluating ML Models .......................................................................... 17 

2.4. Machine Learning and Computational Fluid Dynamics .................................................... 18 

2.4.1. Study by Mirzaei et al. ................................................................................................. 18 

2.4.2. Study by Mesgarpour et al. .......................................................................................... 21 

2.4.3. Summary ...................................................................................................................... 23 



v 

 

Chapter 3. Further Utilization of CFD to Investigate Effects of Ventilation Strategies on Spread of 

Airborne Diseases in Small Office Spaces ................................................................................... 24 

3.1. Introduction ........................................................................................................................ 24 

3.2. Methodology ...................................................................................................................... 25 

3.2.1. Model Geometry .......................................................................................................... 25 

3.2.2. Meshing Design ........................................................................................................... 26 

3.3. Numerical Model................................................................................................................ 32 

3.3.1. Numerical Solver ......................................................................................................... 32 

3.3.2. Boundary and Initial Conditions .................................................................................. 33 

3.3.3. Injection Conditions .................................................................................................... 33 

3.3.4. Performance Indicators ................................................................................................ 34 

3.4. Sensitivity Studies .............................................................................................................. 36 

3.4.1. Mesh Sensitivity Study ................................................................................................ 37 

3.4.2. Numerical Study .......................................................................................................... 38 

3.5. Results ................................................................................................................................ 41 

3.5.1. Mixing - Velocity and Temperature ............................................................................ 41 

3.5.2. Particle Dispersion ....................................................................................................... 48 

3.5.3. Performance Metrics .................................................................................................... 50 

3.6. Discussion .......................................................................................................................... 51 

3.6.1. Particle Dispersion ....................................................................................................... 51 

3.6.2. Performance Indicators ................................................................................................ 53 

3.7. Conclusions ........................................................................................................................ 54 

3.7.1. Summary ...................................................................................................................... 54 

3.7.2. Final Thoughts ............................................................................................................. 55 

3.8. Future Work ....................................................................................................................... 56 



vi 

 

Chapter 4. Development of Novel Method to Aid in Particle Dispersion Analysis using Parallel 

Processing and HPC ...................................................................................................................... 57 

4.1. Introduction ........................................................................................................................ 57 

4.2. Architecture Methodology ................................................................................................. 58 

4.3. Getting Started with Parallel Computing ........................................................................... 59 

4.4. Setup ................................................................................................................................... 60 

4.4.1. HPC Initialization and Utilization ............................................................................... 60 

4.4.2. Loading ANSYS and UDF .......................................................................................... 61 

4.5. Data Processing .................................................................................................................. 62 

4.5.1. Initialization ................................................................................................................. 63 

4.5.2. Data Input/Output ........................................................................................................ 63 

4.5.3. Node Data Transfer ..................................................................................................... 63 

4.5.4. File Saving ................................................................................................................... 64 

4.5.5. Data Storage ................................................................................................................ 65 

4.6. Results and Discussion ....................................................................................................... 66 

4.7. Conclusions ........................................................................................................................ 69 

4.7.1. Summary ...................................................................................................................... 69 

4.7.2. Future Work ................................................................................................................. 70 

Chapter 5. Development of Novel Methods for Predicting Temporal-Spatial Particle Dispersion 

using CFD and ML ....................................................................................................................... 71 

5.1. Introduction ........................................................................................................................ 71 

5.2. Methodology ...................................................................................................................... 72 

5.2.1. Data Extraction ............................................................................................................ 72 

5.2.2. Data Processing ........................................................................................................... 74 

5.2.3. Risk Models ................................................................................................................. 76 

5.3. Results and Discussion ....................................................................................................... 79 



vii 

 

5.3.1. Spatial-Temporal Risk Model ..................................................................................... 79 

5.3.2. Regional-Temporal Risk Model .................................................................................. 82 

5.3.3. Summary of the ML Results ........................................................................................ 84 

5.4. Conclusions ........................................................................................................................ 85 

5.4.1. Summary ...................................................................................................................... 85 

5.4.2. Future Work ................................................................................................................. 85 

Chapter 6. Conclusions ................................................................................................................. 87 

6.1. Summary ............................................................................................................................ 87 

6.2. Contributions ...................................................................................................................... 87 

6.2.1. Comparative Study of Ventilation Strategies .............................................................. 87 

6.2.2. Advanced Combined Use of UDF,CFD and ML for Airborne Transmission ............. 87 

6.2.3. Resources for Researchers to use HPC and CFD ........................................................ 88 

6.2.4. Development of Risk and Predictive Models .............................................................. 88 

6.3. Recommendations for Future Work ................................................................................... 89 

6.3.1. Comparative Study of Ventilation Strategies .............................................................. 89 

6.3.2. Advanced use of UDF and CFD .................................................................................. 89 

6.3.3. Resources for Researchers to use HPC and CFD ........................................................ 89 

6.3.4. Expanding Input and Parameters of ML...................................................................... 90 

References ..................................................................................................................................... 91 

Appendix A – Bash code to open Fluent Cas File ...................................................................... 105 

Appendix B – Bash Code to Open Workbench Project File ....................................................... 107 

Appendix C – UDF Code ............................................................................................................ 108 

 

  



viii 

 

Table of Figures 

Figure 2-1: Comparison of Viral Sedimentation for 60% and 40% RH [62] ................................. 6 

Figure 2-2: ML Pipelines for Application in Engineering [83,84] ................................................11 

Figure 2-3: Machine Learning Techniques [83] ............................................................................11 

Figure 2-4: General Flow Diagram for Neuron in a Neural Network [86] ................................... 12 

Figure 2-5: Process of Creating a Reduced Order Model [86] ..................................................... 12 

Figure 2-6: 2D Concentration plots over time for Mirzaei et al. Study [99] ................................ 19 

Figure 2-7: Graphic of Methodology for Mirzaei et al. Study [99] .............................................. 19 

Figure 2-8: Dimensions Results from Mirzaei et al.’s study [99] ................................................. 20 

Figure 2-9: ANN Vertical Test Results from Mirzaei et al.’s study [99] ...................................... 20 

Figure 2-10: ANN Validation Results for Mirzaei et al. Study [99] ............................................. 21 

Figure 2-11: Bus Geometry from Mesgarpour et al.’s study [67] ................................................. 22 

Figure 3-1: Previous Airborne Disease CFD Study by Khan [11] ................................................ 25 

Figure 3-2: Domain and Boundaries of Berg Office Model ......................................................... 25 

Figure 3-3: Element Quality for Original Mesh– Human Model ................................................. 28 

Figure 3-4: Cell Orthogonal Quality for Original Meshing .......................................................... 29 

Figure 3-5: Mesh with Refinement Features Replaced Face Sizing ............................................. 30 

Figure 3-6: Location of Temperature Probes ................................................................................ 37 

Figure 3-7: Steady State Temperature vs Total Cell Number for Temperature Probes ................. 38 

Figure 3-8: Plot of Residual Values for Fine Mesh (400,000 cells) .............................................. 39 

Figure 3-9: Plot of Temperature Probes for First Order Turbulent Term Approximations ........... 39 

Figure 3-10: : Plot of Velocity Probes for Second Order Turbulent Term Approximations ......... 40 

Figure 3-11: Mixing – Right-side View ........................................................................................ 42 

Figure 3-12: Mixing - Isometric View .......................................................................................... 42 

Figure 3-13: Mixing – Top View .................................................................................................. 43 

Figure 3-14: Mixing – Temperature Right view ........................................................................... 43 

Figure 3-15: Displacement Ventilation – Right View ................................................................... 44 

Figure 3-16: Displacement Ventilation – Top View ...................................................................... 45 

Figure 3-17: Displacement Ventilation – Isometric View ............................................................. 45 

Figure 3-18: Displacement Ventilation – Temperature Profile ..................................................... 46 

Figure 3-19: Stratum, Isometric View........................................................................................... 46 



ix 

 

Figure 3-20: Stratum – Top View.................................................................................................. 47 

Figure 3-21: Stratum Ventilation Strategy, Right View ................................................................ 47 

Figure 3-22: Stratum – Temperature Profile ................................................................................. 48 

Figure 3-23: Displacement Ventilation - Particle Advancement over 10s particle time ............... 49 

Figure 3-24: Stratum - Displacement - Particle Advancement over 10 s particle time ................ 50 

Figure 4-1: CBPT Overall Process Diagram ................................................................................ 59 

Figure 4-2: Node Architecture for ANSYS Parallel Computations [104] .................................... 60 

Figure 4-3: Setup - Flow Diagram ................................................................................................ 62 

Figure 4-4: Partitioned Mesh Distributed Between Two Compute Nodes [104] .......................... 63 

Figure 4-5: 2D to 1D Array Encoding .......................................................................................... 64 

Figure 4-6: GRAHAM Cluster Showcase – Folder Overview ..................................................... 66 

Figure 4-7: GRAHAM Cluster Showcase – UDM DATA Folder ................................................ 66 

Figure 4-8: GRAHAM Cluster Showcase – DATA Files ............................................................. 67 

Figure 4-9: Progression of Domain WPC at Particle Time at: a) 1 second, b) 2 seconds, c) 

3 seconds, d) 5 seconds, e) 8 seconds, f) 10 seconds. ................................................................... 67 

Figure 4-10: Spatial-Temporal Risk Model for Particle Time at: a) 0.1s, b) 0.2s, c) 0.5s d) 1s ... 68 

Figure 4-11: Spatial-Temporal Risk Model for Particle Time at: a) 2s, b) 3, c) 5s d) 10s e) 15s . 69 

Figure 5-1: ML Model Development Overview ........................................................................... 71 

Figure 5-2: RAM Model Development Overview ........................................................................ 72 

Figure 5-3: Cells with no particles ................................................................................................ 73 

Figure 5-4: Particles reach cell elements and get counted. ........................................................... 73 

Figure 5-5: Particle Diameter Weighting Function ....................................................................... 74 

Figure 5-6: Particle Risk Factor as a function of time-summed particle concentrations .............. 75 

Figure 5-7: The results of the DNN model’s XZ Risk Gradient at y=0.95 m and 0.5 s ............... 80 

Figure 5-8: The results of the DNN model’s XZ Risk Gradient at y=0.95m and 2.5s ................. 81 

Figure 5-9: XZ Risk Gradient at y=0.95m and 5.0s ..................................................................... 81 

Figure 5-10: Example of the bounding box Created by Regional Risk Model ............................ 84 

 

 

 

 



x 

 

Table of Tables 

Table 2-1: Summary on Common Machine Learning Architectures 13 

Table 2-2: Results from Mesgarpour et al.’s study [67] 22 

Table 3-1: Domain Dimensions for Bergeron Office Space 26 

Table 3-2: Original Values for Office Space Mesh Element Sizing 27 

Table 3-3: New Values for Office Space Mesh Element Sizing 30 

Table 3-4: Mesh Metric Comparison (Initial vs New Mesh) 31 

Table 3-5: Boundary Conditions for Office Space CFD Simulation 33 

Table 3-6: DPM Conditions for Office Space Simulation 34 

Table 3-7: Injection Conditions for Office Space Simulation 34 

Table 3-8: Results of Numerical Sensitivity Analysis for Turbulence 41 

Table 3-9: Noted System Values for Ventilation Strategies after 80 s Flow Time 50 

Table 3-10: Performance Indicators for each Ventilation Strategy after 80s Flow Time 51 

Table 3-11: Quantities of Particles of different after 10s Particle Time 51 

Table 5-1: Validation Results of STR Machine Learning Models 80 

Table 5-2: Validation ML Results for Regional-Temporal Model 83 

 

  



xi 

 

List of Parameters 

Subscript k corresponding parameters of turbulent kinetic energy 

Subscript 𝜖 corresponding parameters of turbulent dissipation rate 

Subscript eff corresponding to effective quantity 

Subscript p corresponding parameters of particles 

k Turbulent Kinetic Energy, m2/s2 

𝜖 Turbulent Dissipation Rate, m2/s3 

ρ Continuous Phase Density of Fluid, kg/m3 

𝛼 Inverse Prandtl Number 

𝜇 Molecular Viscosity 

Gk
 Generated Turbulent Kinetic Energy, m2/s2 

Gb Generated Turbulent Dissipation Rate, m2/s3 

C Turbulent Dissipation Constants 

𝑌𝑀 Turbulent Transport Term 

Sk Turbulent Inertial Term 

𝑆𝜖 Turbulent Skewness Term 

R Turbulent Response Term 

FD Drag Force, kg∙m/s2 

g Force of Gravity,  

𝑢 Velocity, m/s 

d Diameter, m 

𝐶𝑐 Cunningham Correction Factor 

𝜆 Molecular Mean-Free Path, m 

Te
 Exhaust/Outlet Temperature, K 

Ts Supply/Inlet Temperature, K 

V Fluid Inlet Velocity, m/s 

Pv Particle Value 

Pd Particle Diameter Weighting  

Pw Cell Weighted Particle Value 

 

 

  



xii 

 

List of Abbreviations 

ADPI Air Diffusion Performance Index 

AI Artificial Intelligence 

ANN Artificial Neural Network 

API Application Program Interface 

BC Boundary Condition 

CBPT Cell Based Particle Tracker 

CFD Computational Fluid Dynamics 

CRE Contaminant Removal Efficiency 

DNN Deep Neural Network 

DPM Discrete Phase Model 

GPU Graphics Processing Unit 

GUI Graphical User Interface 

HPC High Performance Computing 

HRE Heat Removal Efficiency 

HVAC Heating, Ventilation, and Air Conditioning 

IAJS Intermittent Air Jet Strategy 

IC Initial Condition 

IOM Index of Mixing 

LTS Local Thermal Sensation 

MAE Mean Average Error 

MIMO Multiple-Input Multiple-Output 

ML Machine Learning 

MPI Message Passing Interface 

MSE Mean Squared Error 

MV/DV/SV Mixing, Displacement and Stratum Ventilation 

OS Operating System 

OTS Overall Thermal Sensation 

PAE Percentage Average Error 

PC Personal Computer 



xiii 

 

PCV Particle Count Value 

PDW Particle Diameter Weighting 

PI Performance Indicator 

PRESTO! Parallel Reynolds-Averaged Navier-Stokes Toolkit for Optimization 

PRF Particle Risk Factor 

RAM Risk Assessment Model 

RANS Reynolds-Averaged Navier-Stokes 

RBF Radial Basis Function 

ReLU Rectified Linear Unit 

RH Relative Humidity, % 

RMSE Root Mean Squared Error 

RNG Re-Normalisation Group 

ROM Reduced Order Model 

RTR Regional-Temporal Risk 

SSH Secure Shell 

STR Spatial-Temporal Risk 

SVR Support Vector Regression 

TUI Text User Interface 

UDF User Defined Function 

UDM User Defined Memory 

VNC Virtual Network Computing 

WB Work Bench 

WPC Weighted Particle Count 

 

 



 

 

Chapter 1. Introduction 

1.1. Background 

The last five years have seen a myriad of historical events and innovations that has forever 

shaped the way our world operates. One such event, is the devastation of the Covid-19 pandemic 

and subsequent lockdowns. SARS-CoV-2, commonly referred to as Covid-19, was first discovered 

in December of 2019 in Wuhan China [1,2] with the first case reported on the 31st with symptoms 

typical of pneumonia. Action prompted by the Chinese Center for Disease Control and Prevention 

(China CDC), World Health Organization (WHO) and other governmental bodies in China 

occurred to try and mitigate the spread in January 2020 [1]. However, the virus had already become 

international; in mid-January 2020, the first case outside of China was confirmed in Thailand [3]. 

By the end of January, cases had been confirmed in Japan, the Republic of Korea and in the USA, 

among other countries. As the months continued to go on, global cases and deaths related to the 

virus continued to rise rapidly. By July of 2021, total cases and number of deaths had reached 200 

million and 2 million respectively [1,3]. Currently, these numbers are predicted to be over 700 

million and 6 million [4]. As an airborne virus, COVID-19 was highly infectious having multiple 

modes of transmission. Generally, the virus can spread through three modes: direct contact, 

airborne or fomite (indirect) [5]. Many infected persons can be infected but asymptomatic, 

meaning they could spread the virus without knowing they are sick and evading detection [6,7].  

With how devastating the effects of the pandemic were, global collaborative efforts began. 

The general scientific community as well as private and public organizations, began to utilize 

various modeling techniques to aid in predicting the spread of infection, in hopes of finding best 

practices or other preventive measures. Besides more broad methods utilized during the Covid-19 

pandemic, (limiting indoor capacities, lockdowns, etc.) investigations into more long-term 

solutions involved investigating the role of ventilation in the spread of airborne diseases [8–12]. 

Generally, it has been found that ventilation plays a significant role in movement of airborne 

diseases [8,9,11,13]. However, it is not practical to extract generalized recommendations from 

purely experimental studies. This is where various mathematical models can, and have been, 

utilized [14]. Of these models, two are more widely well known: disease (or epidemiological) 

modeling, which is a type of statistical modeling, and computational fluid dynamics (CFD) 

simulations. CFD is a type of numerical modeling that can incorporate temporal-spatial aspects 
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that many mathematical models lack. Many well-known studies [8,15–22] utilized CFD to extract 

information on experimental results or to simulate alterative implementations without losing 

fidelity to experimental results.  

In the same vein of mathematical modeling, Machine Learning (ML) is another significant 

tool that has wide reaching applications in many fields. Machine Learning incapsulates groups of 

algorithms that can automate the processes of extracting information from data [23]. ML can 

quickly and efficiently apply algorithms previously used manually by humans (optimization, 

regression) to large data sets to create models [24]. ML is quickly gaining in popularity across 

many fields such as manufacturing, finance, 3D printing and more [25–28]. Because of these 

unique properties, it is an invaluable tool that is readily available for use in CFD, since it often 

deals with large data sets. Various applications such as optimizing airplane wings for optimal lift 

to drag or estimating flow fields from limited properties are all possible. While these things have 

and will continue to be done by humans, ML can aid immensely in the design [29,30] and 

optimization [31,32] process.  

Finally, high performance computing (HPC) is becoming more available when combined 

with cloud computing service. HPC enables research access to accelerated computation resources, 

which often use computers with high amounts of memory, central processing units (CPUs) and 

graphics processing units (GPUs), all of which are useful in running high speed computations. 

Many researchers are already using this in a variety of domains to accelerate simulation speeds 

[33,34]. In addition, many utilize parallel processing (MPI, OpenMP) that can further enhance 

speeds by allowing the use of multiple computers (nodes), CPUs and GPUs in parallel [34]. 

Splitting processes in this way vastly increases speeds by allowing multiple processing units (PUs) 

to operate in tandem. ML models, optimization algorithms and other numerical/mathematical 

models also benefit from these computational resources, which can be readily available online in 

many cases.  

CFD as a model building tool is already an invaluable resource. However, it is limited in 

computation time among other factors [35]. Trying to reduce the resources required to run high 

fidelity simulations will often significantly reduce the reliability of simulation results [35]. By 

utilizing ML and HPC as tools, novel methods and workflows can be developed to help current 

future researchers perform high fidelity simulations quickly. These technologies can be further 

enhanced with customized scripts to help take advantage of the benefits of all of them. 
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1.2. Motivation  

The damage caused by the pandemic and subsequent lockdowns are astronomical in both 

economically and regarding the loss of human life and well-being. Since the start of the global 

COVID-19 (SARS-CoV-2) pandemic, significant strides have been made into researching aspects 

surrounding the virus. The SARS-CoV-2 virus is known to spread through four primary routes: 

direct contact, indirect contact, droplet transmission and through airborne routes [5]. Airborne 

transmission occurs when the virus spreads as an aerosol, allowing it to stay suspended in air for 

long periods of time [36]. A considerable amount of research has focused on creating numerical 

models to predict the spread of the virus in indoor locations [37–39]. CFD simulations are widely 

used globally and can simulate the airflow patterns within a room considering the Heating, 

Ventilation and Air Conditioning (HVAC) systems. However, there lacks a clear linkage between 

the mathematical models and the CFD models. Recently, CFD has begun to utilize discrete risk 

assessment methodology (RAM) to bridge this gap. Given the large datasets that CFD produces, 

incorporation of newer technologies like machine learning to further evaluate airborne 

transmission routes is far behind due to the computational cost of running large amounts of CFD 

simulations. This is where machine learning can be used to enhance the abilities of conventional 

computational dynamics research [24,40–42]. 

Many researchers have begun utilizing ML in a variety of fields on this trend is likely to 

continue to grow, especially with advent of natural language processing (NLP) which is becoming 

mainstream in the form of chatbots like OpenAI’s ChatGPT [43–45]. Previous work done by 

colleagues in the Freire-Gormaly Lab [11,13] show indications that CFD can become even more 

useful if supplemented with techniques from other domains such as statistical modeling, disease 

modeling mathematical modeling. This thesis aims to aid in the growing number of novel 

developments that use AI to develop more efficient tools for better utilization of CFD. Many fields 

already use, and are beginning to use ML, in the field of fluid dynamics and solid mechanics[46], 

including many mainstream industries such as: aerospace [47], medicine [48], manufacturing [49], 

mining [50], microscopy [51,52], climatology [53]  and others [25,27,34,41,42,54,55]. 
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1.3. Research Objectives 

 The main objective of this research is to further investigate the role ventilation plays 

in spread of airborne diseases using CFD and develop predictive models to accomplish the same. 

To aid in this endeavour, a useful methodology to utilize ML, CFD and HPC to predict how these 

diseases spread in indoor environments will also be developed. By combining ML and HPC with 

the long-standing field of CFD, future research will progress much more rapidly. This also provides 

an easy to access resource for future researchers to aid in the development processes of new CFD 

simulation methodologies, with less limitations than previous generations of researchers. Thus, the 

specific goals of this research are: 

➢ Continue previous research to use CFD to analysis the effects of ventilation of the spread 

airborne diseases. 

➢ Develop a novel process to utilize HPC in enhancing CFD simulations. 

➢ Develop a RAM to transform particle data into a spatial-temporal risk mapping. 

➢ Create a novel methodology to predict the spread of airborne diseases using risk assessment 

modeling and machine learning. 

➢ Analyze the effectiveness of various ML models and archetypes for use in predicting 

particle dispersion. 

1.4. Thesis Outline 

This thesis is organized into six chapters. Chapter one deals with introduction to the 

research, including background, motivation, and research objective. Chapter two provides a 

literature review on current CFD practices and usage as it relates to Covid-19 and performs a 

background and literature review on ML and modern applications to CFD. Chapter three details 

the investigation into varying ventilation strategies in small office spaces. Chapter four describes 

the development of a tool to enhance the extraction of particle data, specifically for use with CFD 

software. Chapter five outlines a novel method to integrate CFD and machine learning to predict 

temporal-spatial particle spread using a parallelized risk assessment model. Chapter six 

summarizes the conclusions of the three major studies and outlines avenues for future work.  
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Chapter 2. Literature Review 

2.1. Transmission of COVID-19 

The spread COVID-19 has caused significant damage with its rapid ability to infect large 

swaths of people. This, along with the many vectors of travel make it difficult to predict infection 

rates. Currently, epidemiology uses mathematical and statistical methods to create models. 

Mathematical models use mechanistic understanding of the problems to develop models, whilst 

statistical models are mainly data driven [56–58]. Both these approaches are useful for modeling 

the general progression of the virus at large time scales and with large numbers of samples. On the 

other end of the spectrum, physical models and numerical models are much more suited for 

situations involving much fewer individuals, where time and distance scales are much smaller. 

This use of experimentation and numerical modeling is a useful way to look at more specific cases 

of the propagation of airborne diseases. 

COVID-19 is a respiratory infectious disease caused by the family of coronavirus 

[4,22,59]. Transmission of the viral load occurs directly or indirectly by way of contact 

transmission, airborne transmission, or fomite transmission [5]. Airborne transmission occurs via 

fluid particles [60,61], namely droplets and aerosols. These particles are heavily affected by 

complex flow physics and can be difficult to characterize. One method, proposed by Rosti et al. 

[62], delineates the transmission in terms of three modes. Ballistic, inertial and tracer 

transmissions. Ballistic transmissions are short range and occur in larger and heavier droplets 

where the forces due to drag and gravity are large. Inertial transmissions are short medium ranged 

and dominated by the initial particle velocities as well as the ambient conditions. Finally, tracers 

are long range that are dominated by external air flow. Figure 2-1 below outlines these three 

transmission modes. 
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Figure 2-1: Comparison of Viral Sedimentation for 60% and 40% RH [62] 

This study will focus on inertial and ballistic transmission, pertaining to short to medium 

range transmission. This is because larger droplets are much more dangerous and pose a higher 

risk of infection [63]. As a viral cloud expands it also thins, reducing risk of infection at further 

distances. Only specific indoor conditions will be considered since they have consistent ambient 

factors, include dynamic of HVAC and transmissions typically happen at small distance and time 

scales.  

Airborne transmission occurs via a mixture of different sized droplets and aerosols, which 

in turn affect how they will travel. While the exact delineation between what constitutes one versus 

the other is not defined clearly in literature, many sources have made attempts to classify the two 

[64,65]. After a biological injection (cough, sneeze, etc.), a mixture of aerosols and droplets are 

released. Smaller droplets can quickly evaporate and turn into further aerosols. Droplets tend to 

drop quickly while aerosols, being much smaller and lighter, tend to linger in the air for longer 

periods [66,67]. An experimental study by Duguid [68] investigated droplets carrying 

bacteria/nuclei for droplet diameters from 0.25 μm to 2000 μm. They found that droplets in the 

100-2000 μm range fell quickly to the ground while 1-100 μm would become airborne. 
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Airborne transmission is heavily affected by the airflow. Thus, many factors can contribute 

to its spread. Many sources find that relative humidity (RH) and ambient temperature contribute 

significantly to higher risk of transmission [69,70]. Warmer and wet climates are found 

conclusively in literature to be areas with higher risk of infection [69]. The following 

environmental conditions all contribute to the physical flow phenomena including, but not limited 

to gravity, inertia, buoyancy, drag/lift, evaporation and condensation and others. However, when 

looking at indoor environments, another more dominant factor takes focus: ventilation.  

2.2. HVAC and CFD 

HVAC stands for heating, ventilation, and air cooling. It refers to the industry that deals 

with heating, cooling, and otherwise ventilating indoor spaces. There are various possible 

ventilation configurations, however the common general configurations can be classified into 

ventilation strategies [9,12]. Due to the broad implementation of ventilation no single experimental 

or mathematical study can have much agreement on what ventilation is preferred. Typically, the 

most common two investigated are displacement ventilation (DV) and mixing ventilation (MV). 

Additional ventilation systems commonly explored are stratum and underfloor ventilation. As 

outlined by Khan in her literature review on ventilation systems, literature has found that any one 

ventilation system can have various benefits over others [11]. Things like thermal comfort, energy 

efficiency, ease of implementation, air dilution and others make it difficult to select any one 

strategy over the other. 

This does not mean that careful consideration of ventilation is not important. 

Ventilation is one of the most important factors that can affect the dispersion of airborne diseases 

[8,66,70]. To that end, CFD is a valuable tool to predict spread without costly experimental studies. 

Many studies have investigated the effects of ventilation on airborne transmission using CFD, but 

there is no consensus on the settings to use across all simulations. Notable studies include those 

by Shao et al. [6], Yang et al. [71], Talaat et al. [21] and Liu et al [20]. Although an older study, an 

airplane cabin study by Yan et al. is also notable [72]. A previous literature review by Khan [11] 

summarized the main results from their simulations and compiled a CFD methodology that 

extracted the major settings of each CFD simulation. It was found that although the earlier 

simulation studies [20,21,71,73] had various methods used, there were a series of common or 

reoccurring settings that provided accurate and high-fidelity simulations. Khan [11] also concluded 
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that the location of various ventilation elements (inlets, outlets etc.) can have dramatic impacts on 

the spatial and temporal distribution of airborne diseases. 

2.2.1. CFD Study by Khan 

The methodology used by Khan [11] for her CFD simulations were taken as a good 

example of high-fidelity study since the experimental study by Yin et al. [8] was used as the basis 

for a validation study. Khan [11] found her CFD settings provided sufficient convergence with 

experimental data from Yin et al. [8] at selected locations in the domain to validate the fidelity of 

her CFD simulation. 

Khan’s study [11] utilized a Reynolds Averaged Navier-Stokes (RANS) model with a 

pressure-based solver. Her software of choice was ANSYS 2020 R2. Turbulence was modeled with 

an RNG k – 𝜀 model with standard wall functions. This model is useful for modeling indoor 

environments since it can simulate both high and low Reynolds numbers [11]. The kinetic energy 

and dissipation terms are outlined in Equations [2-1] and [2-2] below as outlined in [74]: 

Kinetic energy, k: 

𝜕

𝜕𝑡
(𝜌𝑘) +

𝜕

𝜕𝑥𝑖
(𝜌𝑘𝑢𝑖) =

𝜕

𝜕𝑥𝑗
(𝛼𝑘𝜇𝑒𝑓𝑓

𝜕𝑘

𝜕𝑥𝑗
) + 𝐺𝑘 + 𝐺𝑏 − 𝜌𝜖 − 𝑌𝑀 + 𝑆𝑘                [2-1] 

Dissipation rate, 𝜖 

𝜕

𝜕𝑡
(𝜌𝜖) +

𝜕

𝜕𝑥𝑖
(𝜌𝜖𝑢𝑖) =

𝜕

𝜕𝑥𝑗
(𝛼𝜖𝜇𝑒𝑓𝑓

𝜕𝜖

𝜕𝑥𝑗
) + 𝐶1𝜖

𝜖

𝑘
(𝐺𝑘 + 𝐶3𝜖𝐺𝑏) − 𝐶2𝜖𝜌

𝜖2

𝑘
− 𝑅𝜖 + 𝑆𝜖       [2-2] 

In addition, the energy function was activated to simulate the thermal effects on the 

flow. Buoyancy was modeled using the Boussinesq approximation model with the appropriate 

density and thermal expansion terms. Pressure-velocity coupling was solved with the coupling 

method and the pressure was solved with the PRESTO! Pressure interpolation method. Least 

squares cell based gradient discretization was used and other parameters used second order 

upwind. Particle injections were solved using a couple Eulerian-Lagrangian Discrete Phase Model 

(DPM). Flow was modeled using a steady state flow while particles coupled with the flow, used 

unsteady (transient) particle tracking. Relevant ANSYS Fluent equations for Lagrangian reference 

frames are shown below: 
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Particle Velocity, up        

𝑑𝑢𝑝

𝑑𝑡
= 𝐹𝐷(𝑢 − 𝑢𝑝) +

𝑔(𝜌𝑝−𝜌)

𝜌𝑝
+ 𝐹𝑎          [2-3] 

Drag Force, 𝐹𝐷 

𝐹𝐷 =
18𝜇

𝜌𝑝𝑑𝑝
2𝐶𝑐

          [2-4] 

Cunningham correction, 𝐶𝑐 

𝐶𝑐 = 1 +
2𝜆

𝑑𝑝
(1.257 + 0.4𝑒

−(
1.1𝑑𝑝

2𝜆
)
)         [2-5]  

 

The Thermophoretic force and the Saffman lift force were included in the DPM model, 

to simulate forces due to temperature gradients and near wall shear forces. The particle used were 

modeled using the Rosin-Rammler diameter distribution with droplet diameters based on Duguid’s 

experimental results [68]. Khan used the Rosin-Rammler/Weibull to fit the particle data to a 

distribution. From that, a probability density function (PDF) and cumulative density function were 

made, the specifics of which are explained in Khan's thesis [11]. 

Khan [11] performed CFD simulations on a small office space, based off an office in 

York University [75]. She analyzed three cases: layout with no outlets, a layout with a far-off outlet 

and one with an overhead outlet. Her goal was to study if ventilation configuration played a 

significant role in airborne transmissions in small spaces. She found that adding new exhausts did 

not significantly change the risk of particle exposure, and in fact showed that it can lead to worse 

situations due to pressure-based mixing within the domain. She suggested that a change in 

ventilation design might be a possible solution to this issue. She specifically suggested that 

displacement would likely perform the best given its configuration to move air upward. In other 

studies, with a larger domain (lecture hall), Khan utilized mathematical disease modeling to 

enhance her simulations and extract more meaningful data. 

Khan’s study [11] and others [20,21,71–73], showed that ventilation is important. She 

also showed that CFD can be effectively utilized to predict dispersion of airborne particulates and 

validated her methodology to experimental results. She utilized mathematical modeling to enhance 

her CFD model and create a risk assessment model (RAM) based on temporal-spatial data. This 

study will attempt to do something similar, but instead of using disease modeling techniques, 

machine learning will be used. 
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2.3. Machine Learning 

2.3.1. Introduction to ML 

Machine learning (ML) is a new and emerging field that at is essence, is building on 

the many years of knowledge in optimization [76–78], computer science [79,80] and statistics 

[81,82]. ML is a branch of Artificial Intelligence (AI) that refers to the process of creating or 

training algorithms to learn from data to make decisions or predictions [23]. ML has become 

explosively more popular due to the emergence of Artificial Neural Networks (ANN), algorithms 

that have become extremely common, and the advancement of computational capabilities. ML 

mainly operates on a black box. This means that the understating of why the model works, how it 

makes decisions, and sometimes how or what it makes certain correlations with, are hidden from 

observation. While this means that ML cannot be used to deepen the understanding of fundamental 

theatrical knowledge about the physical world [83]. Instead, it can be used in combination with 

classical mechanistic engineering models. Mackay and Nowell dub these meshing of approaches 

as ML “gray box” models [83]. These models are physics-guided using ML as a mediator between 

real world quantities as inputs and outputs. ML can be configured to reflect the physical constraints 

(ex. differential relations), probabilistic relations or simulation results. With some understanding 

of the underlying physical mechanisms, ML can be used more confidently to make models around 

real-world phenomena. 

2.3.2. ML and Neural Networks 

On basic principle, ML can be thought of as simple black box models where inputs 

and outputs are fed and used to create a comprehensive algorithm that accurately models the 

physical process in question (in the context of engineering problems). Figure 2-2 outlines the 

general process for creating ML models in engineering applications. 
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Figure 2-2: ML Pipelines for Application in Engineering [83,84] 

Input data is used to train the model which can then be used to predict outputs for other 

data sets. Machine learning models come in many forms, but they can generally be classified into 

three major classes: Reinforcement Learning (RL), Semi-Supervised Learning (SSL), and 

Supervised Learning (SL) [85]. RL works by optimizing an algorithm in a live environment. The 

ML model will use reward or penalty functions (like loss and fitness functions referenced in 

optimization spaces), to train the model to encourage optimal behaviour. SL is the opposite. It 

works in a closed system environment. All the required data is given to the model in a “supervised” 

context, meaning that the user training the model will tell the model what is or isn’t ok to take in 

as data. In the middle of these, SSL works by running a pre-built model in an open environment 

where it can still take in information and change. It operates by using both principles of SL and 

RL [24,83]. An overview of these learning techniques is shown in Figure 2-3, below.  

 

Figure 2-3: Machine Learning Techniques [83] 
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An Artificial Neural Network (referred to as ANN) is a type of model based on the 

biological nervous system, where an individual neuron can send and receive signals from other 

neurons. A neuron makes decisions by summing the weighted signals of inputs into the neuron. 

The neuron has a bias applied in conjunction with the sum of the weighted sum of signals. This 

value is then sent to an Activation function, which calculates the value of the neuron [83,85]. The 

figure below shows this process in graphical form. 

 

Figure 2-4: General Flow Diagram for Neuron in a Neural Network [86] 

 

Neural Networks are useful for doing what is commonly referred to as model 

reduction. They can take in input data and find a lower dimensional manifold representation of 

that data, commonly referred to as a Reduced Order Model (ROM). They can then use that 

manifold to then predict other parameters [86]. An example of this processes was outlined by 

Brunton et. al. [86] and it is shown in Figure 2-5, below. 

 

Figure 2-5: Process of Creating a Reduced Order Model [86] 
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The function 𝑦 = 𝑓(𝑥; 𝜃) represents the architecture of the ML model. There are 

various ML architectures that can be used, and associated parameters, hyper parameters, activation 

functions and other such associated values that go into building any such model. For brevity, the 

common ML models and related info is displayed in the table below. Table 2-1 provides a brief 

description of the ML models, pros and cons, the topology (algorithmic structure). 

 

Table 2-1: Summary on Common Machine Learning Architectures  

ML Model / 

Architecture 

Description 

Linear 

Regression 

(LR) [87] 

Simple  Statistical method involving finding the linear relationship between two variables. Simplicity 

and ease of use make it very popular. 

Multiple  Multiple Inputs into a LR model. Can also have MIMO (multiple outputs) LR models. 

Decision Tree [88] A non-parametric learning algorithm used for regression and classification activities. Its 

structure includes branches, leaf nodes, internal nodes, and root nodes. 

Random Forests [89] An algorithm that combines the result of multiple decision trees to find a single output. It can 

handle both classification and regression problems. 

Support Vector 

Machines (SVM) 

[90,91] 

Known to be a robust classification and regression technique which maximizes prediction 

accuracy without overfitting issues. Commonly used to analyze large data values of predictor 

fields. Applications include CRM for businesses, facial recognition, text mining concept 

extraction, etc. 

Deep Neural Network 

(DNN) [92,93] 

Essentially, this is a neural network with at least 2 layers (enable learning of intricate 

patterns), used to process data in complex ways by implementing math modelling. This 

allows them to be powerful for image and text analysis tasks. 

Convolutional Neural 

Network [94] 

A type of DNN that is designed for processing grid data such as images. Its layers are 

specialized to lean and extract relevant features from input data, effective for image 

recognition tasks. 

Recurrent Neural 

Network [95,96] 

A type of neural network designed for processing sequences of data, such as time series or 

natural language. It has loops that allow information to be passed from one step of the 

sequence to the next, enabling it to capture temporal dependencies and patterns in the data. 

Long Short-Term 

Memory (LSTM) [96] 

A type of recurrent neural network (RNN) architecture designed to overcome the vanishing 

gradient problem and capture long-range dependencies in sequential data. LSTMs utilize 

memory cells and gating mechanisms to efficiently learn and store information over extended 

sequences. 
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Generative 

Adversarial Networks 

(GAN) [97] 

A type of deep learning framework consisting of two neural networks, a generator and a 

discriminator, that work in tandem. The generator creates synthetic data samples, aiming to 

replicate real data, while the discriminator tries to distinguish between real and generated 

samples, leading to a competitive learning process that results in the generation of 

increasingly realistic data. 

Feedforward Neural 

Network (FFNN) 

An artificial neural network where information flows in one direction, from input nodes 

through hidden layers to output nodes. It's mainly used for tasks like classification and 

regression, but lacks memory of previous inputs, making it less suited for sequential data. 

ML Model / 

Architecture 

Pros Cons 

Linear Regression 

(LR) 

Easy to use and good starting point for 

regression tasks. The model’s coefficients 

provide insights into relationships between 

input and target variables. It is a 

computationally efficient way to work with 

large datasets.  

Assumes a linear relationship between 

variables if that assumption is violated then 

inaccurateness can occur. Need 

regularization to avoid overfitting or 

underfitting. Sensitive to outliers, can affect 

performance and coefficient estimates. 

Violations of assumptions like normality of 

errors or constant variance can lead to 

unreliable predictions and skewed results 

Decision Tree [88] Easy to consume and understand due to 

hierarchical nature. There is flexibility 

because decision tree’s do not require data 

preparation. They can be leveraged for 

classification and regression tasks. It can 

handle many data types that are otherwise 

obstacles for other classifiers like Naïve 

Bayes.  

Not good at generalizing to new data, 

effectively it is prone to overfitting. Known 

to have high variance estimators; small 

variations in data can lead to a different 

decision tree and reducing variance is 

limited. It can be expensive to train this 

approach compared to other algorithms. 

Random Forests [89] The problem of overfitting is overcome 

because of the nature of random forests. This 

is a collection of decision trees, so the 

average of uncorrelated trees reduces the 

resulting variance and error. They also allow 

an individual to determine variable 

importance to the model (MDI & MDA) 

using Mean Decrease in Impurity and Mean 

Decrease Accuracy. 

Although they can handle large data sets, 

this can lead to slow data processing due to 

each decision tree that needs to come 

computed. More resources are required to 

store and process data as a result.  



15 

 

Support Vector 

Machines (SVM) 

[90,91] 

Uses subset of training points in the decision 

function resulting in high memory efficiency. 

Known to be effective in high dimensional 

spaces, even when dimensions are greater 

than the number of samples. 

They excel in classification tasks, but they 

exhibit certain limitations. They are sensitive 

to feature scaling discrepancies and outliers, 

impacting their effectiveness. SVMs 

computational complexity and memory 

demands can be challenging for large 

datasets, and their hyperparameters 

necessitate careful tuning for optimal 

performance. 

Deep Neural Network 

(DNN) [92,93] 

Effective for learning complex features from 

raw data and capturing patterns. Can 

understand hierarchical relationships in data. 

They can adapt to various data types and data 

modalities. 

Can be computationally intensive (time and 

hardware utility wise). Usually need large 

amounts of labeled data for effective 

training. Can be susceptible to overfitting. 

Configuration and tuning of parameters can 

be time consuming. 

Convolutional Neural 

Network [94] 

They can learn hierarchical features from 

images. Object detection and image 

classification are effectively performed. The 

convolutional layers in CNNs use parameter 

sharing, reducing the number of learnable 

parameters, and making them efficient for 

handling large image datasets. They exhibit 

translation invariance, meaning they can 

recognize patterns regardless of their position 

in the image. 

Can be computationally intensive. Large 

data requirement for training. They lack 

human understandable interpretations of 

learned features and decisions. Therefore, 

explaining reasoning can be troublesome. 

Can struggle with overfitting and 

generalizing unseen data.  

Recurrent Neural 

Network [95,96] 

They can handle sequential and time-

dependent data, great for speech recognition. 

They can model context and relationship that 

span across multiple time steps. Built-in 

memory to retain information allow for easy 

learning and remembering patterns from the 

earlier time steps. 

Often experience problems maintaining 

information over long sequences. 

Computationally can be intensive and 

require large datasets for deep architectures. 

Lack of parallelism. Need careful 

initialization otherwise are prone to training 

instability. 
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Long Short-Term 

Memory (LSTM) [96] 

Great for understanding context over 

extended time intervals because it can 

capture long range dependencies in 

sequential data. Common issues for RNN’s 

including vanishing gradient are mitigated in 

a LSTM. They also have memory cells that 

allow for important context to be maintained 

across time steps. Its gating mechanism also 

allows for reduced overfitting. 

Can be computationally demanding. They 

have a complex architecture difficult to 

understand. Training time can be longer due 

to complex structure. Needs to tune 

hyperparameters of the network for number 

of layers, units per layer and learning rate. 

Generative 

Adversarial Networks 

(GAN) [97] 

Can create high quality realistic data samples 

(images, text, image synthesis, style transfer, 

data augmentation). Can learn from 

unlabeled data. Great for a variety of tasks 

such as creative apps (art, music, etc.) 

Training can be challenging due to 

hyperparameter tuning. Can be susceptible 

to mode collapse (limited output variety 

undermines diversity of resulting samples). 

Ethical concerns are to be aware of, 

including generation of deepfakes. For these 

large and complex models, it can be resource 

intensive.  

Feedforward Neural 

Network (FFNN) 

Can approximate complicated functions and 

mappings for modelling relationships within 

data. Parallel processing is an important 

feature to note. By using activation 

functions, FFNN’s can capture non-linear 

patterns in data. They can also lean 

hierarchical features for manual feature 

engineering. 

They lack memory of prior inputs, not great 

for sequential data tasks. Requires large 

amount of labeled data for overfitting. 

Selecting parameters for tuning can be 

challenging, a lot of manual experimentation 

and tuning needed.  For high-dimensional 

data, feedforward networks might suffer 

from the curse of dimensionality, where the 

network's performance deteriorates due to 

data sparsity. 

ML Model / 

Architecture 

Applications 

Linear Regression 

(LR) 

Sales prediction, treatment impact studies, age and income correlations, stock market prices 

and indicators, estimating patient outcomes based on medical parameters. 

Decision Tree [88] Identifying disease based on patient symptoms, medical history, etc. Credit score and 

worthiness of people by analyzing financial information for loan approval. Image 

classification. Manufacturing quality control of products by analyzing defects and sensor 

data in processes. 

Random Forests [89] Anomaly detection for fraud related crimes and network security. Assessing object 

recognition and image segmentation for medical diagnosis.  
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Support Vector 

Machines (SVM) 

[90,91] 

Classify emails as legitimate or spam based on various features. Medical diagnosis using 

conditions and disease prediction. Image classification in applications like vehicle and 

surveillance systems. SVM’s can also be used for fraud transaction identification from online 

payment systems and banking data. 

Deep Neural Network 

(DNN) [92,93] 

Object recognition tasks and classifying within images such as satellite imagery analyzation. 

Crucial in NLP (natural language processing) tasks where machines can understand human 

language effectively. Autonomous driving where processing sensor data and detecting 

objects in order to make decisions is critical. 

Convolutional Neural 

Network [94] 

Identifying objects, animals, scenes within images, powering image search engines, tagging 

systems. Robotic development where object detection is necessary. Analyzing medical 

images such as X-rays, CT scans, MRIs for organ segmentation or identification. 

Recurrent Neural 

Network [95,96] 

Speech recognition where voice assistant applications or transcription services are needed. 

Time series analysis were predicting and modelling data over time for sequences is 

important. Great for stock market trend modelling and weather forecasts. 

Long Short-Term 

Memory (LSTM) [96] 

Used extensively in machine learning tasks where it is needed to capture long range 

dependencies and nuances in language. Speech recognition applications related to audio 

sequences and improving language to text features. Great for time series forecasting such as 

energy consumption predicting, weather patterns. 

Generative 

Adversarial Networks 

(GAN) [97] 

Widely used for image generation of artwork, realistic faces, landscapes, and content 

creation. Can also generate training data to improve robustness and generalization of 

machine learning models.  

Feedforward Neural 

Network (FFNN) 

Used for image recognition, speech, and character recognition as well to identify patterns in 

data. Can also be employed to predict numerical values in regression tasks such as sales 

forecasts and stock market trends. Interest rate determination and credit score analyzing is 

also an application of FFNN’s using financial and personal factors.  

 

2.3.3. Running and Evaluating ML Models 

ML models are simple to create and utilize. The challenges come in refining 

parameters and hyperparameters to find the optimal configuration. This is due to the black box 

(gray box) model of ML models in that the internal workings are not visible. Nor is there a way to 

develop a strong understanding of the correlation between the input and output quantities. Thus, 

designing of ML models have an aspect of trial and error. ML models need data that is segmented 

into Training (to make the model), Testing (to test against to see if the model is good) and validation 

(a second set of testing data used to evaluate the final accuracy of the model, but that is typically 
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not included in training/testing. After a model is made, new data can be sent, and it can be used to 

predict new data for the future [24,83,86,98]. 

 Evaluation of MLs is typically done with two main criteria, Mean Average Error 

(MAE) and Mean Squared Error (MSE). These criteria are particularly useful for regression tasks. 

MAE is the average of the absolute differences between predicted an actual value. It measures 

average errors without considering the direction. Its formula is shown in the equation below. 

 

𝑀𝐴𝐸 =  
1

𝑛
𝛴𝑖=1

𝑛 = |𝑦𝑖 − �̂�|   [2-6] 

 

MSE computes the average of the squared differences between predicted and weighted averages, 

where it gives higher weight to large values, as it is an exponential function.  

 

𝑀𝑆𝐸 =  
1

𝑛
𝛴𝑖=1

𝑛 (𝑦𝑖 − �̂�𝑖)
2   [2-7] 

 

Lower values of MSE and MAE indicates a better fit for both metrics. MAE is more commonly 

used as it can resist against the effects of outliers, since it does not see direction of errors and does 

not magnify larger ones (as opposed to MSE). 

 

2.4. Machine Learning and Computational Fluid Dynamics 

2.4.1. Study by Mirzaei et al. 

A study by Mirzaei et al. [99] demonstrated a method to utilize ML in conjunction with 

CFD to produce airborne concentration data. Later, they show the methodology for combining a 

simple Risk Assessment Model (RAM) and artificial neural networks (ANN) to develop a 

prediction model using only CFD results. They created a methodology to fit spatial-temporal risk 

data from CFD results to an ANN model to predict the risk cloud expansion as a function of time. 

They first used CFD to perform a simple simulation in an empty domain where they freely injected 

particles.  



19 

 

 

Figure 2-6: 2D Concentration plots over time for Mirzaei et al. Study [99] 

Mirzaei et al. Study [99] then recorded the particle count in each location of a secondary mesh, 

which is overlayed in the domain. The secondary mesh records the number of particles passing 

through each cell. The result is the total particle count per cell. 

 

Figure 2-7: Graphic of Methodology for Mirzaei et al. Study [99] 

Mirzaei et al. [99] then created an ANN with feed-forwards multi-later perception 

architecture. They used a back-propagation learning paradigm to build the model. They used a 

sigmoid function with a smooth gradient. They plotted the results for varies neural network (NN) 

architecture, but all the cases performed with relatively high values for percentage error. Their 

testing data performed better, but their validation data performed worse when compared against 

the training performance. 
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Figure 2-8: Dimensions Results from Mirzaei et al.’s study [99] 

 

 

Figure 2-9: ANN Vertical Test Results from Mirzaei et al.’s study [99] 
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Figure 2-10: ANN Validation Results for Mirzaei et al. Study [99] 

2.4.2. Study by Mesgarpour et al. 

A similar study was performed by Mesgarpour et al. [67]. Their study constituted 

multiple parts but only the elements dealing the ML model will be discussed. In a previous section 

of their paper, they discuss a methodology to gather spatial concentration data at various discrete 

planes. They want to create a MIMO (multi-input multi-output) model to predict concentration and 

velocity at different locations over time. The experiment consisted of around 1240 input samples. 

For prediction purposes, a Deep Neural Network (DNN) regression was constructed with varying 

input, hidden, and output layers. Sequential models in this study were built using the Sequential 

functions from the Keras library in Python. Keras is an open-source deep learning application 

programming interface (API) written in Python. Five layers were introduced using the Dense 

function. The initial layer acted as the input layer, acquiring attribute values like time, location, 

pressure, temperature, and density. The model employed three hidden layers with 30, 20, and 15 

neurons respectively, with settings determined through experimentation. The Rectified Linear Unit 

(ReLU) activation function was applied to hidden layer neurons since it is widely used. The output 

layer, responsible for predicting concentration and velocity, used the Sigmoid activation function 

due to its adaptability for a range of values. The Adam optimizer was utilized to compute adaptive 

learning rates for each parameter, primarily to update hidden layer neuron weights. The model 

compilation was carried out using the Adam optimizer, while epoch and batch size values were 

determined. Following this, concentration and velocity predictions were made using the model. 
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Figure 2-11: Bus Geometry from Mesgarpour et al.’s study [67] 

Performance evaluation involved tenfold cross-validation, where samples were 

divided into 10 categories. Nine categories were utilized for training in each iteration, while one 

was reserved for testing. Epoch and batch size values were set at 200 and 5 respectively. Model 

accuracy was evaluated through Mean Square Error (MSE) and Mean Absolute Error (MAE) 

criteria calculations. The results of their study are shown in the table below. It shows that ML can 

make accurate models that predict physical quantifies, acting as a “gray box” model, as shown in 

the previous study. 

Table 2-2: Results from Mesgarpour et al.’s study [67] 
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2.4.3. Summary 

Both the Mirzaei et al. study [99] and the Mesgarpour et al. [67] studies demonstrate 

the practicality of using CFD data to predict dispersion quantities using ML. The Mirzaei et al. 

study [99] had a low percentage error for their training data, but the results of their testing showed 

large increases in percentage error in comparison to their training results. They also only 

considered a single ML model (DNN) and only had 35 cases. They did not have the presence of 

validation data set(s) to help generalize their ML model. In contrast, the Mesgarpour et al. study 

[67] used temporal and spatial data to have more input data (1200 samples) but were limited to 

only a few cases. This study aims to use the multiple case method, having different initial and 

boundary conditions, as well as the temporal and spatial approach, taking values at certain 

locations over time.  
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Chapter 3. Further Utilization of CFD to Investigate Effects of 

Ventilation Strategies on Spread of Airborne Diseases in Small Office 

Spaces 

3.1. Introduction 

Indoor spaces are one of the fastest ways for the transfer of infections to occur. As outlined 

previously, because of the high transmissibility of the coronavirus, specifically COVID-19 and its 

variants, small random interactions can be sparks that start rapid infection events [56,64]. The 

choice of investigating small office spaces reflects this concern for indoor environments. Smaller 

spaces also make the creation of the simulation domain easier and quicker, and reduces 

computational time, as they take less time to compute. Many such spaces have been investigated 

previously in literature [6,20,71,73]. One such example was done previously by Khan [11]. They 

modeled an office space on York University Campus, in the facility offices of the Bergeron 

building (Office 437C). They analyzed three cases: no outlet, a singular overhead outlet and one 

far off outlet as shown in Figure 3-1. 

This study seeks to continue to use CFD to investigate the effects of design variations on 

office spaces, but instead to focus on the ventilation strategy used. In industry, mixing and 

displacement ventilation strategies are most common [8,11]. While not new, the pandemic renewed 

interest in less common strategies. This study will thus contain three cases: Mixing, Displacement 

and Stratum Ventilation strategies. The rooms general outline includes an inlet, an exhaust door 

slip, and a human model among other fixtures for all three cases.  

This study will contribute to literature that investigates both particle dispersion and 

performance indicators. An analysis will be done on a small portion of performance indicators (PI) 

as another metric to compare ventilation strategies. Namely, the heat removal efficiency, overall 

thermal sensation, and modified index of mixing. These indicators were chosen based on studies 

done by Zhang et al. [9] and Kabanshi et al. [100].  
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Figure 3-1: Previous Airborne Disease CFD Study by Khan [11] 

3.2. Methodology 

The creation of the simulation required a room geometry/domain, a mesh, and 

simulation parameters. The design methodologies for each case were virtually identical, with 

differences being in the refinement area(s) and the inlet velocity. This is due to the different 

locations of the inlet and size/number of the inlet slots. 

3.2.1. Model Geometry 

 

Figure 3-2: Domain and Boundaries of Berg Office Model 
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The office space model was based primarily on the model by Khan [11]. Slight 

variations to geometry importation and face placement were made, but no other significant changes 

were made. The model includes additional faces for the displacement ventilation (DV) and stratum 

ventilation strategies (SV). Slight changes were made to inlet velocities. The inlet slots have five 

separated slots with equal widths. Air only exits two of the five slots. The lengths of the inlets vary 

depending on the ventilation strategy used. The value for the domain is shown in Table 3-1. Other 

faces, such as the door slip, human model and PC were not changed. 

Table 3-1: Domain Dimensions for Bergeron Office Space 

Model Specifications Value(s) 

Room Size (L*W*H) 3.54 m x 3.31 m x 1.97 m 

Inlet Slot Width 0.03 m (5 per inlet) 

 

Inlet Slot Length 

Mixing 1.17 m 

Stratum 0.97 m 

Displacement 1.35 m 

Door Slip (L*W) 1.02 m x 0.02 m 

Outlet (L*W) 0.3 m x 0.3 m 

PC (L*W*H) 0.5 m x 0.18 m x 0.5 m 

Seated Human Model (approx.) 0.6 m x 0.4 m x 1.08 m 

 

3.2.2. Meshing Design 

The mesh design of the office space used a uniform mesh distribution with mesh refinement 

near faces with associated BC. Because of the small domain and general configuration that allows 

for rapid particle escape or deposition, a highly refined mesh was not required, nor generally 

desirable as it could exponentially increase simulation time. The impact of fine mesh size on 

computational time would be compounded when including particle injections for DPM. Due to 

concerns about long simulation run times, a mesh refinement was done to find ways of reducing 

element number while maintaining mesh quality.  

3.2.2.1. Original Meshing 

The original meshing was a fine mesh with a total count of 891,338 elements. The meshing 

comprised only of body sizing with face sizing refinement around all major BC (inlets, outlets, 

PC, heat flux from human and PC models, injection location, walls). The meshing values for the 

domain are shown in  
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Table 3-2. 

Table 3-2: Original Values for Office Space Mesh Element Sizing 

Model Area Element Size (m) 

General Area 0.065 

Inlet 0.00933 

Outlet - 

Door Slip 0.01 

PC 0.03 

Person Model 0.025 

 

There was an overshoot in refinement of elements on multiple faces based on the large 

mesh value, which could be targeted for further improvement. This overshoot was also observed 

in the tightly packed faces. To analyze the original mesh, parameters including element quality, 

orthogonal quality, skewness, and aspect ratio were taken into consideration for further 

improvement. These metrics are known to be the fundamentals of element quality analysis. In 

general, tetrahedral elements were used as they can offer good quality cells for this application 

where no complex geometries are present within the dynamic region. Computational time was also 

reduced with this decision and therefore an iterative mesh optimization approach was taken using 

the quality mesh metrics discussed below. Different mesh features were implemented to determine 

if it was viable to replace face sizing without losing noticeable cell shape and quality. 

When analyzing element quality, a fine mesh with an average quality of 0.848 is 

typically desirable, but not optimal if running a large set of simulations for data collection, where 

shorter core-hours are more practical. When considering that the geometry of the environment is 

particularly simple, open areas in the domain will not require tightly packed cells. The office space 

in general is comprised of a person (where particle injection begins from), computer PC (heat 

source), desk, velocity inlet and pressure outlet sources. Despite the simple nature of the room and 

its components, there was an emphasis placed on the body element sizing which increased 

simulation run times. There were also a handful of elements that were critically low in quality 

where geometry issues were present, namely near the injection point (head), which were seen in 

the form of sharp angles and small edges. Clusters of elements that changed in size dramatically 

within a small distance, where gradual smoothening may have provided fewer element quality 

issues. This is a potential area of future refinement and was not investigated further in the scope 

of this study. 
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Figure 3-3: Element Quality for Original Mesh– Human Model 

Skewness evaluates the extent an edge and angle of a created mesh deviates from the 

desired or ideal state. To prevent degenerative cells and a good shape of the tetrahedral elements, 

an excellent skewness range is known to be 0 – 0.25. The original mesh had roughly 200,000 

elements with a skewness range of 0.35 – 0.95 concentrated around the human body specifically. 

This rose a concern with the mesh and geometry of the environment features as well. A large aspect 

ratio is acceptable where little to no strong transverse gradient (i.e., boundary layer) is present, 

preference was still given to create as many of the mesh elements in an ideal shape. The average 

aspect ratio of the original mesh was found to be 1.8, meaning that average cell was stretched 

(elongated) along one direction compared to its other dimensions. A high aspect ratio among 

elements in a CFD setup can lead to inaccurate simulation results and cause numerical errors, fail 

to capture dynamics near boundary layer areas and affect the visualization of the overall result 

(due to distorted cells and flow patterns). 

Orthogonal quality measures how well mesh facing are perpendicular to the flow direction 

at a given location. Effectively, its value quantifies the deviation of an element from a square shape, 

a metric where close to one is a common benchmark. This meaning that there will not be any 

numerical errors where strong gradients or flow direction changes, as well as instabilities in 

divergence. The original mesh had well over 10,000 elements with an orthogonal quality below 

0.5, concerning because they were located at the inlet regions most of all. 
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Figure 3-4: Cell Orthogonal Quality for Original Meshing 

The skewness and quality of the individual elements did not have major areas for 

improvement. The orthogonal quality was average except for one of the occupant faces (which is 

to be expected, due to complex geometry). 

3.2.2.2. Meshing Improvements 

The overarching goal of this mesh refinement was to reduce the overall element count 

while retaining the quality of cells. More specifically, the goal was to optimize the meshing further 

using an approach different than simply assigning a very small element size for critical faces. The 

total element and node count in general regions while trying to maintain the high element count in 

important regions (i.e., BCs) would be reduced while trying to reduce the change to meshing 

quality. The reason for this was to reduce the run time of simulations, as was required for the study 

performed in Chapter 5. The heavy use of face sizing was eliminated in this new mesh iteration, 

because of other mesh features that allowed for similar quality traits and a lower computational 

time. The updated element sizing is shown in Table 3-3. 
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Table 3-3: New Values for Office Space Mesh Element Sizing 

Model Area Element Size (m) Refinement Value Edge Sizing 

General Area 0.07 - - 

Inlet - 3 25 divisions/length 

Outlet 0.065 - - 

Door Slip - 3 - 

PC - 1 - 

Person Model - 2 - 

 

As opposed to redefining the element size for each face and attempting to reduce 

element count in the general mesh area (outside critical components), the mesh refinement feature 

for boundary conditions, native to ANSYS was used. Refinement features can specify controls for 

faces, edges, and vertices on a simpler scale of 1-3 which indicates the factor that the local mesh 

area is multiplied by for each level. Essentially, this is an exponential increase in refinement that 

can produce high quality mesh regions, especially since this feature can consider curvature of 

nearby geometries including boundaries. Therefore, a general body sizing feature controlled the 

mesh element sizes until each important geometry was assigned a refinement level or edge sizing. 

 

Figure 3-5: Mesh with Refinement Features Replaced Face Sizing 
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The new mesh prioritized the use of tetrahedral elements since sweeps and multizone 

meshing were not the most optimal for the room geometry. The lack of complex geometry 

confirmed that more nodes on each element would not benefit the overall simulation but would 

greatly increase the computational time. Tetrahedral elements allow for flexibility to handle 

irregular shapes more easily than hexahedral elements, in this case sharp corners and intricate 

features such as the various inlet/outlet geometries would be well suited to the tetrahedral element 

type. 

Table 3-4: Mesh Metric Comparison (Initial vs New Mesh) 

Mesh Element Count Orthogonal 

Quality 

Skewness Aspect Ratio Element Quality 

Original 891338 0.787 0.211 1.81 0.848 

New 622361 0.734 0.262 1.66 0.811 

 

The orthogonal quality of faces was improved to develop more accurate results near the 

boundary layer areas of the mesh where velocity and temperature values are to be recorded. Since 

the inlet and outlets are near corners/walls, the mesh needs to be developed particularly well to 

observe accurate metrics at these locations. The local mesh refinement was efficient at  resolving 

mesh tangling and areas where gradients were observed (near pressure outlet and adjacent walls). 

Mesh smoothing also increased orthogonal quality issues once the element count had been 

reduced, sufficiently producing an average element value to that of the original simulation mesh. 

To maintain an excellent average skewness value for elements in the mesh, a target value was 

selected and prioritized in the mesh settings. Making sure that the mesh inserts (i.e., sizing, 

refinement, etc.) had to follow smoothing and adaptive meshing strategies to specifically hold a 

skewness value of 0.25 automatically generated sufficient faces and edges as a result.  

The average element quality of the initial mesh was not an issue to resolve or specifically 

target, instead retaining critical areas of high quality was important. Velocity inlet, pressure outlets, 

and other boundary conditions were targeted with high refinement whereas other areas of the body 

were set with a higher cell size and growth rate. This still allowed for a uniform grid among 

majority of the simple areas of the mesh, meanwhile high-resolution refinement mesh inserts were 

placed on the inlet & outlet faces. In addition, edge sizing was added to the inlet velocity areas 

specifically (set to a division of the length by 25) to emphasize the surrounding mesh area. As a 
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result, the critical areas retained a high element quality with the general element, and an element 

quality over 0.8 was achieved. 

3.3. Numerical Model 

For the numerical analysis, ANSYS Fluent © versions 2021 R1 and 2022 R2 were used  

interchangeably (2021 compatible with 2022, not vice versa). While there were no known major 

differences between simulations that were run with either version, no in-depth comparison of 

simulation speed for the different ANSYS versions was conducted. It is noted that simulations run 

in ANSYS 2021 ran considerably faster, and generally generated better results, especially 

considering residuals and other values used for convergence. As such, very few simulations were 

made in 2022 and it was mainly used for plot and graphic generation. The model used in this thesis 

follows closely with the model used by Khan [11]. A general outline is still provided below with 

major changes outlined explicitly.  

For this study, the flow was analyzed in steady state and converged after 5000 iterations 

(very slight change in residuals). The real flow time was around 0.1 seconds per 100 iterations. 

The unsteady particle tracking was done every 10 flow iterations (0.01s) and occurred at 0.001s 

per particle advancement for 100-time steps, for a total of 0.1s particle time per 0.01s of flow time. 

Due to this counterbalance of time advancements, the injections were started after significant 

convergence of the steady flow field. For the purposes of clarity, the difference in time scales will 

be noted when referenced for values associated with the particle time domain. For steady state 

flow quantities, the time will be referred to as flow time and for unsteady DPM quantities as 

particle time. 

3.3.1. Numerical Solver 

The model used a Eulerian-Lagrangian to model the fluid flow and particle interaction. The 

numerical solver was pressure based with RANS. Turbulence was modelled with standard 

RNG k – 𝜀 with standard wall functions. The RNG k – 𝜀 model is useful for analyzing turbulent 

flows with rotating or recirculatory flows. It is generally used when modeling indoor air 

simulations. Pressure-velocity coupling was solved using the PRESTO! pressure interpolation 

scheme. The fluid flow was solved with steady state initialization and was deemed completed by 

tracking residuals, mass flow rate and temperature probes. The particles were then injected with 

transient decoupled particle tracking using the ANSYS DPM functionality. The energy equation 
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was also used to model thermal effects from the PC and human models. Buoyancy was modeled 

with the Boussinesq model with standard density and thermal values. 

3.3.2. Boundary and Initial Conditions 

The model injects air through the inlets at a specified temperature. Air is released from the 

domain via two pressure outlets, the door slip, to model air flow under a doorway, and the exhaust. 

The human and PC models emit a constant heat flux throughout the room. The air diffuser acts as 

inlets for air into the domain. The volumetric flow rate for all three cases is similar at 57 L/s (0.057 

m3/s). The area for each inlet is different, however, to account for the room geometry and to allow 

for better airflow. The walls act as a no slip adiabatic boundary condition. For this simulation all 

walls besides the human and PC model reflect particles and do not allow for deposition. The PC 

and human wall boundary trap injected particles, simulating deposition on the surface. The values 

for each boundary condition are outlined in Table 3-5. Values are truncated for ease of reading. 

Table 3-5: Boundary Conditions for Office Space CFD Simulation 

Boundary Condition Value 

Ambient temperature (°C)  23 

Inlet air temperature (°C)  18 

Occupant heat flux (W/m2) 64.6 

PC heat flux (W/m2) 71.4 

 

Diffuser Inlet (m/s) 

[57 L/s] 

MV 0.45 

SV 0.98 

DV 0.58 

Door slip  Pressure-outlet, escape 

Exhaust (outlet) Pressure-outlet, escape 

Walls (all non-inlets/outlets) Adiabatic, no slip, reflect/trap 

 

3.3.3. Injection Conditions 

Particle injection was modeled to simulate low velocity biological injection of particles 

(such as a cough or sneeze). The particles interacted with the fluid in continuous phase in an 

unsteady Eulerian- Lagrangian model. The model also included the Thermophoretic force and 

Saffman [101] lift forces to simulate particle lift effects near walls and due to temperature 

gradients. While this study does not go further into varying particle injection velocity, this is 

explored more in Chapter 6. The DPM and injection conditions are outlined in Table 3-5 and Table 

3-6, below. 
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Table 3-6: DPM Conditions for Office Space Simulation 

Injection Condition Value 

DPM Iteration Interval 10 

Particle Time Step Size 0.001 s 

Physical Models Thermophoretic 

Force 

Saffman Lift Force 

Parallel Processing Method Hybrid 

 

Table 3-7: Injection Conditions for Office Space Simulation 

Injection Condition Value 

Injection Velocity [mag] (m/s) 6 

Injection Position (m) [2.12, 0.95, 2.17] 

Temperature (K) 310 

Relative Start and Stop Times (flow time) [0, 0.4] 

Azimuthal start and stop Angle (deg) [0, 360.0000521392] 

Max and Min Diameter (μm) [50, 1] 

Mean diameter (μm) 10 

Spread Parameter 3.5 

Number of Diameters 10 

Number of Streams 2 

 

3.3.4. Performance Indicators 

The numerical study done by Zhang et al. [9] used Performance Indicators (PI) to develop 

decision making strategies in selecting different ventilation strategies in different scenarios. The 

study evaluates mixing (MV), displacement (DV and stratum (SV) ventilation under various office 

spaces. The study utilized various performance indicators (or metrics) and utilized them in a Z-

Score for standardization and ranking. The indicators used include: HRE (heat removal efficiency), 

CRE (contaminant removal efficiency), ADPI (air diffusion performance index), and a modified 

index of mixing (IOM*). The study found that for HRE and IOM*, displacement performed the 

best in independent work whereas SV performed the best for discussion and meetings. When all 

four indicators were factored, SV performed the best in meetings while MV performed the best in 

all other scenarios. 

HRE is an indicator for ventilation systems that quantifies its capacity for heat removal in 

an isolated system(s). It is the ratio of temperature change between the exhaust and supply to the 
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temperature difference of the room and supply air. HRE starts at one, and greater values indicate 

higher removal ability. IOM is representative of the energy loss of the ventilation system. The 

original equation was designed for use in evaluating heat removal in data processing equipment. 

The equation measures the effect of mixing by using max and minimum temperatures in local 

zones. The effect of mixing will usually mean that the room is heating due to the distributed 

thermal energy. This implies an energy loss as the ventilation is not carrying warm air away from 

the Cooling zone. The modified equation is used in this study, which uses. 

An experimental study by Kabanshi et al. [100] attempts to quantify an occupant’s thermal 

perception. The study states that: “the participants estimated overall thermal sensation (OTS), local 

thermal sensation (LTS), thermal comfort, thermal preference and acceptability as a function of 

velocity and room air temperature”. The framework of the study was with the use of a newly 

developed intermittent air jet strategy (IAJS) in spaces with high occupancy (like classrooms). 

Of the equations used in both studies, the ones chosen were the HRE, OTS and IOM. The 

three factors cover a wide range of qualitative as well as quantitative metrics useful in evaluating 

a HVAC system’s performance. These equations will be utilized in all three cases, with differences 

being in temperature point and surface creation. Due to the open-ended nature of the location 

selection for these indicators, the exact locations are not outlined here. The equations are outlined 

below in Equations [3-1], [3-2] and [3-3]. 

 

𝐻𝑅𝐸 =
𝑇𝑒−𝑇𝑠

𝑇𝑟−𝑇𝑠
          [3-1] 

 

Where, Te is the exhaust air temp, Ts is the supply air temp, and Tr is the occupied zone air. This 

equation has a theoretical minimum value of 1, where the exhaust temperature is equal to the 

occupied zone air, implying immediate removal of warm air from the zone. This is a positive 

indicator, which means that higher values are a good sign. It implies that the exhaust air is 

absorbing much of the heat (Te > Ts) in comparison to the energy difference between the zone and 

the supply (Ts > Tr). If the supply air is as warm or warmer than the zone, it is adding heat to the 

system (poor performance). In contrast, if it is blasting really cold air into the system, but the 

system exhaust temperature is still low in comparison to the zone, it means the system is not 

removing warm air effectively. 
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𝐼𝑂𝑀 =
𝑇𝑟−𝑇𝑖𝑛

𝑇𝑜𝑢𝑡−𝑇𝑖𝑛
             [3-2] 

Where, Tr is the occupied room temp, Tin is supplying air temp, and Tout is the exhaust air. This 

indicator starts centred with a theoretical value of 0. It is the ratio difference in room and supply 

temperature to the difference in exhaust and supply temperature. If this value is high, it implies 

that the change in room temperature is small relative to how much energy is being inserted into 

the system. Note that room temperature, implies the average room temperature as opposed to 

zone/occupied temperature used for HRE. For cooling applications, one would expect this value 

to be negative as the inlet air will be colder than the output air. The higher the absolute value of 

IOM is, the better mixing (and thus ventilation) is being performed. IOM and HRE measure 

different but similar quantities. HRE measure the local heat removal while IOM measure the 

average heat removal. In some contexts, IOM is a quantity to minimize, if optimizing 

heating/cooling for example, without wasting energy. In other contexts, it is a good indicator, 

especially for certain ventilation modes (i.e., Mixing). Equation [3-3] shows the OTS relation. 

 

𝑂𝑇𝑆 =  0.31 ∗ 𝑇 –  1.72 ∗ 𝑉 –  7.15                            [3-3] 

 

Where, T is the supply air temperature and V is the air flow speed 1.1 m from the ground. This 

OTS indicator is a linear equation that indicates the discomfort felt by occupants in a ventilated 

zone. It centres at 0, with 0 means the occupant will be completely comfortable (no discomfort of 

any kind is felt by the occupant). The OTS value will become positive or negative depending on if 

the occupant feels cold or hot, respectively. 

3.4. Sensitivity Studies 

This section of the thesis outlines a brief sensitivity analysis to investigate the influence of 

mesh resolution and numerical schema on the accuracy and convergence behavior of the CFD 

simulations. This was done to have a better understanding of solution accuracy and model fidelity. 

The meshing used for this study employed basic body and face refinement techniques. The 

numerical solver utilized a Pressure-Velocity coupling scheme. The Spatial Discretization used 

least squares cell based gradient and PRESTO! for pressure. For both momentum and energy, 

second order upwind scheme was used. For turbulence, the kinetic energy and dissipation rates 
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were both calculated using a first order upwind scheme. The simulation was steady state, and thus 

used a global time step method for temporal discretization (meaning the time step was varied and 

was software controlled). 

3.4.1. Mesh Sensitivity Study 

A mesh sensitivity study was conducted by varying the general body element sizing as well 

as the face element sizing for faces related to boundary and initial conditions (i.e., inlets, outlets, 

human model, computer model). Four meshes (rough, course, fine and very fine) were generated 

with cells numbers ranging from around 60,000 cells to 600,000 cells. Four probes were setup to 

evaluate the average room temperature, the occupied zone temperature, the exhaust temperature, 

and the door slip temperature. The four temperatures probes were monitored at the end of the 

simulation when convergence was reached, which was typically after 1000-2000 iterations. The 

reason for the relatively short convergence time was due to the small number of complex 

geometries and small domain, which reduced the number of Core-Hours needed for simulation 

completion. While typically time-averaged values are plotted for steady state simulations with 

complex geometries or turbulent flows, instantaneous values are plotted here to observe and 

identify areas that may have transient elements or that may need further mesh refinement. The 

locations of the probes are shown in Figure 3-6. 

 

Figure 3-6: Location of Temperature Probes 

The results of the refinement study are shown below (Figure 3-7). The results show that 

the occupied room temperature starts converging very quickly at around 200,000 cells. This was 
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because this region was very close to the heat flux emitted from the person model and not near any 

high turbulence regions, meaning there was little effect of turbulence fluctuations. The optimal 

number of cells was above 400,000 cells for the other three indicators, which were near high 

velocity regions. These regions had not converged completely, but the discretization error was not 

significantly decreasing past this point. Further studies may benefit from a larger number of probes, 

probing differing quantities or using line probes instead of point probes. For the purposes of this 

study, meshes with 400,000 cells or more was deemed acceptable. 

 

 

Figure 3-7: Steady State Temperature vs Total Cell Number for Temperature Probes 

3.4.2. Numerical Study 

The ventilation strategies inject high velocity air into the domain. At high Reynolds 

numbers the effects of turbulence effects are significant. To investigate this, four different 

simulations were run to analyze the discretization effects of the kinetic energy and dissipation rate 

terms when using first order or second order upwind schema. The terms are obtained from the 

RNG k-𝜀 turbulence model. The convergence plots of the residuals of the fine mesh are shown in 

Figure 3-8 and Figure 3-9 for the base case of first order upwind schema for kinetic energy and 

dissipation rate. The figures show that there was likely a combination of transient flow effects in 
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addition to turbulence mixing, which resulted in larger numerical fluctuations. The effectiveness 

of a transient flow simulation was not investigated in this thesis. 

 

Figure 3-8: Plot of Residual Values for Fine Mesh (400,000 cells) 

 

Figure 3-9: Plot of Temperature Probes for First Order Turbulent Term Approximations 

In contrast, the results of velocity probes for the enhanced case, where second order upwind 

was used for the turbulent terms, is shown in Figure 3-10. Higher order approximation of these 
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terms produced more accurate numerical approximations (reduction in truncation error) and helped 

to converge the simulation results. 

 

 

Figure 3-10: : Plot of Velocity Probes for Second Order Turbulent Term Approximations 

This numerical sensitivity study compared four simulations, the results of which are 

presented in Table 3-8 below. The last simulation (Simulation 4), which used numerical schemes 

with second order upwind for both turbulence schemes, served as the numerical benchmark. 

Simulation 4 was assumed to be the ideal computational value for comparison and can be used to 

estimate the change in simulation fidelity due to discretization of the partial differential equations 

(PDEs).  

The error percentage is the absolute percentage difference between the ideal and actual 

values calculated, where actual refers to the results of the benchmark simulation. The velocity 

magnitudes are taken from the point probes near the exhaust and the door slip, and the simulation 

was run for 3000 iterations or until convergence was achieved. The values shown, are time 

averaged based on values 500 iterations after the simulation has converged. With this analysis, an 

estimation on the truncation error done due to the reduced order scheme can be approximated.  
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Table 3-8: Results of Numerical Sensitivity Analysis for Turbulence 

Simulation 

Number 

Numerical Scheme Results 

Kinetic 

Energy (k) 

Dissipation 

Rate (𝜺) 

Exhaust Velocity Door Slip Velocity 

Value (m/s) Error (%) Value (m/s) Error (%) 

1 First Order First Order  0.3109 9.74 0.4161 2.51 

2 First Order  Second Order  0.3005 6.07 0.4366 2.30 

3 Second Order First Order  0.2784 1.73 0.4274 0.14 

4 Second Order Second Order  0.2833    – 0.4268    – 

 

The results show that the two turbulent terms contribute to the discretization error. 

Particularly, it is observed that the dissipation rate had a much stronger effect on thermal effects, 

like temperature, while kinetic energy had larger effects on viscous and velocity effects. This was 

because the kinetic energy term refers to the portion of chaotic kinetic energy associated with 

turbulent flows. These flows are heavily influenced by large velocities. Thus, areas with lower 

velocities will see these effects reduced. The dissipation rate deals with the transformation of 

turbulent kinetic energy into internal energy (heat). This means this term is associated with thermal 

effects as well as with the dissipation of turbulence. If temperature gradients are not heavily 

present, this term reflects mainly viscous dissipation. 

Because of the relatively low temperature gradients observed in this problem, it is expected 

that the changes to the kinetic energy term, as opposed to the dissipation rate, reduced the 

(approximated) discretization error of the simulation. Based on these results, the configuration of 

the third simulation, with second order upwind kinetic energy and first order upwind dissipation 

rate, was used for the remainder of this study. 

3.5. Results 

3.5.1. Mixing - Velocity and Temperature 

The right-side view of the room and the velocity vectors can be seen in Figure 3-11. The 

effect of mixing can be through large but slow-moving rotational vortices, mixing the incoming 

upper cool air and the warmer air. The exhaust can be seen  drawing air away from the room into 

the HVAC duct located at the back of the room.  
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Figure 3-11: Mixing – Right-side View 

 

 

Figure 3-12: Mixing - Isometric View 

 

 In Figure 3-13, situated in the midpoint of the room, the rotational vortices are not 

limited to the longitudinal planes of the room. Transversal vortices can be seen further enhancing 

the effects of mixing. The high velocity air can also be seen as it enters from above. 
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Figure 3-13: Mixing – Top View 

 As expected, the temperature contour of the room (Figure 3-14) shows a thorough 

mixing, with warm air plumes moving upward. The upper portion of the room is slightly warmer, 

than the lower portion of the room, but mixing does a good job of merging the stratified layers of 

cool and warmer air. 

 

Figure 3-14: Mixing – Temperature Right view 

 

In contrast to mixing (Figure 3-11), the displacement ventilation configuration (Figure 

3-15) shows a steadier stream of air moving towards the back to the front of the room. The cool 
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air, immediately moves upwards, likely due to the combined effects of the low inlet velocity and 

the effects of buoyancy due to the cooler air. There are some small vortices seen in the back of the 

room, but the velocities are low. The fast-moving air moves in the upper portion of the room and 

makes its way to the exhaust. However, there is a small recirculation effect that is due to stagnant 

slow and warm air around the PC and human model (above the table). This air is then passed by 

faster, cooler air moving towards the exhaust. The effects of buoyancy and the low pressure of the 

moving air creates a pressure differential that forces air towards the room centre. There is a small 

region of large velocities around the room centre, in front of the room. The magnitude of the forces 

is unexpected, but it is a combination of the incoming air and the warm air plumes generated by 

the human model. The warmer air wants to move upwards, and this creates a relatively intense 

recirculation region. This is the result of the meshing quality due to the complex geometry of the 

region. The mesh may need further refinement to create a better boundary layer and simulate a 

more realistic airflow. 

 

Figure 3-15: Displacement Ventilation – Right View 

 

 In Figure 3-16,  the top view of the room is shown. It mirrors the previous view 

(Figure 3-15), with an artifact of large velocity magnitudes near the centre of the room. However, 

it also shows that the air is moving from the back of the room to front around the room walls, 

and that the air slows as it nears the front of the room. 
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Figure 3-16: Displacement Ventilation – Top View 

 

 

Figure 3-17: Displacement Ventilation – Isometric View 

The results of displacement ventilation (Figure 3-15 to Figure 3-18) can be seen in full 

effect, as it effectively pushes warmer air to the upper and front portions of the room. Regions 

around the person model, seen in Figure 3-18, are surrounded by cooler air (darker means colder 

in this context), which will result in good cooling effects, as will be discussed in further detail in 

a later section. 
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Figure 3-18: Displacement Ventilation – Temperature Profile 

 

 

Figure 3-19: Stratum, Isometric View 

 

The Top view of the stratum ventilation configuration, seen in Figure 3-20, shows 

extremely fast-moving air towards the person model. The air streams are disrupted by the PC and 

human models, and splits as it warms and slows down rapidly. This split causes the generation of 

one large recirculation vortices that is likely further induced by the location of the exhaust. Smaller 
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vortices can be seen along the room corners. The left wall is moving towards the back along the 

recirculation region while a smaller long form velocity stream, along the right wall, brings air back. 

 

Figure 3-20: Stratum – Top View 

 

The Stratum Ventilation Right View, seen in Figure 3-21, shows two large counter flowing 

eddies, above the inlet, caused by the high velocity air, which is inducing turbulence in the flow. 

The air in front of the human model (facing the room centre) is moving downward. This flow 

removes warm air and pushes it towards the floor and back of the room where a large recirculation 

region moves it upwards towards the exhaust. 

 

Figure 3-21: Stratum Ventilation Strategy, Right View 
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The temperature contour of stratum ventilation, seen in Figure 3-22, shows that the warm 

air is indeed being pushed towards the room centre due to the air flow. However, unlike the other 

ventilation strategies (configurations), it does not provide uniform cooling across the human 

model. However, it does a much better job of pushing cooler air forward and warmer air away. The 

magnitude of which, however, is hard to compare with these graphics alone. 

 

Figure 3-22: Stratum – Temperature Profile 

3.5.2. Particle Dispersion  

The time lapse isometric view of the displacment ventilation can be seen in Figure 3-23. 

Mixing ventilation studies of an office room were previously conducted by A. Khan [11], a 

previous Master’s student in the Freire-Gormaly lab, and  the displacment ventilation configuration 

was not found to be particularly effective for removing particles. The results in this study of the 

displacment ventilation configuration (Figure 3-18), in comparison, does a much better job of 

removing particles from the breathing zone. The particles were forced upwards, due to high 

velocity air moving from the bottom of the room. Thermophoresis effects caused the lighter 

particles to rise while heavier particles fell as they rapidly cooled. However, most of the light 

particles were immediately sucked into the exhaust and floated in the upper strata of the room, 

away from the breathing zone. These results are in agreement with Khan’s results [11], in that the 

presence of ventilation doesn’t significantly affect the quanity of particles removed 

(escaped/trapped in her case). However, the ventilatoin configuration does effect the movement 
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and groupings of particles short term. This means ventilation plays an even more important role 

when looking at short term dispersion events (less than 10s). 

 

Figure 3-23: Displacement Ventilation - Particle Advancement over 10s particle time 

 

The dispersion of SV is shown in Figure 3-24. While the particles did rise initially, due 

to that high velocity recirculation zone, the particles encountered the two large counter flow eddies 

that are in the front of the room. If the particles had moved more towards the centre, they could 

have entered the large, low velocity flow stream near the ground. Instead, the particles entered 

these zones and were flung towards the room front before moving higher up. As the effects of 

diffusion occurred, the particles entered this region and the smaller lower velocity region near the 

exhaust. Some particles were ejected at this time. However, more particles were spread towards 

different areas of the room. The velocities in these regions near the exhaust were slow, taking 

longer to remove the particles. 
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Figure 3-24: Stratum - Displacement - Particle Advancement over 10 s particle time 

 

3.5.3. Performance Metrics 

The results in Table 3-9 show some values that add more context for the simulation results. 

Of note, MV and SV had the lowest average temperature and occupied zone (around the human 

model) than DV. This is likely a result of the very low velocities input by DV, which is also 

reflected in its exhaust velocity. 

Table 3-9: Noted System Values for Ventilation Strategies after 80 s Flow Time 

Ventilation 

Strategy 

Average 

Room 

Temp. 

(oC) 

Average 

Occupied 

Zone 

Temp. (oC) 

Average 

Occupied 

Zone Velocity 

(m/s) 

Average 

Exhaust 

Temperature 

(oC) 

Average 

Exhaust 

Velocity  

(m/s) 

Mixing 19.16 19.18 0.0789 19.34 0.4330 

Displacement 28.07 27.17 0.1053 29.88 0.0317 

Stratum 19.78 19.49 0.1403 20.26 0.5657 
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The results of the performance indicators are shown in Table 3-10. SV and DV performed 

well for HRE, DM performed the best for the IOM and the results varied for the OTS, but  

occupants would be the least  uncomfortable in SV compared to  the other ventilation strategies. It 

is interesting to note that while DV performed well for HRE, meaning it removed heat efficiently, 

as shown by the steady state average values, it did not keep the room very cool, in comparison to 

the other configurations. 

Table 3-10: Performance Indicators for each Ventilation Strategy after 80 s Flow Time 

Ventilation Strategy HRE IOM OTS 

General Meaning Above 1, positive 

indicator 

Above 0, Negative 

indicator 

Neutral indicator, 0 is 

perfect. 
Changes based on discomfort type 

Mixing 0.82327993 -9.8556746 -1.2523673 

Displacement 1.290746 -0.51113092  1.22505267 

Stratum 1.1854424 -2.4548295 -1.036891 

 

Table 3-11, seen below, displays the injected, escaped, and trapped number of particles 

after ten seconds of simulation time. This study ignored tracking deposition effects (trapped 

particles) to focus investigations on the number of escaped particles. To this end, the PC and person 

model DPM wall interactions were changed to reflect. It was found that mixing and displacement 

performed reasonably well. 

Table 3-11: Quantities of Particles of different after 10s Particle Time 

Ventilation Strategy Injected Escaped Remaining 

Mixing  

4844 

2682 2543 

Displacement 2424 2420 

Stratum 1688 3156 

 

3.6. Discussion 

3.6.1. Particle Dispersion 

When it came to the movement of particles, SV performed the best early in the simulation. 

However, after the initial escape of particles, Stratum began to rapidly spread and fling the particles 

away from the room. In contrast, both mixing ventilation and displacement ventilation performed 

well in removing particles, both removed almost half of the particles, gradually throughout the 

course of the simulation. The possible reasons for this are varied, but two likely candidate 
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explanations are the room geometry and the nature of the stratum inlet velocity stream in contrast 

to mixing and displacement. On average, stratum removed less than 800 particles when compared 

to the other strategies.  

 The room geometry, as noted early, is unique since the exhaust for all three cases were 

located at the top later (ceiling) of the domain. This was done to stay faithful to the present 

construction and design limitations that the simulation domain and geometry is based on. The issue 

is that stratum usually sees exhaust in the same layer or lower than the inlet stream. In other words, 

both faces were parallel with one another, inducing a flow stream in the breathing zone. This will 

cause particles to flow along the breathing zone away from occupants and into the exhaust before 

reaching the upper or lower strata, where it can hang for mins to hours afterwards [5,19,56,70] or 

be deposited on surfaces [5]. In this case, the faces of the exhaust and inlet were perpendicular. As 

shown in the contour/vector plots in the results section, this combined with the high velocities, 

incurred horizontal vortices flinging the airborne particulates (heavy particles still dropped) before 

many could escape into the exhaust. The inlet and exhaust were near each other, meaning flow 

streams in other parts of the room were minimal and caused the particles to lack the ability to enter 

flow streams near the exhaust. 

 Stratum ventilation works only by injecting air from the midstream (typically) of the 

room. This means that for small and medium rooms, that have low roofs, that the flows tend to 

split and cause twin opposing recirculation vortices. This works to effectively mix particles in the 

room. In mixing ventilation, the inlets blast cool air vertically. However, it also has an exhaust at 

the ceiling. This flow instead creates areas of vertical vortices, that can cause air to move upwards 

towards the exhaust. Thermal buoyancy effects help to raise both the air and the particles upward, 

as the warmer air rises. Displacement does this to a higher degree, have cool air blasted on the 

floor which will create flow streams upwards, which helps to explain the lower particle 

concentration. The air is blown upwards at a constant but low velocity. This reduces turbulent 

mixing effects and keeps the particle suspended generally on the upper strata of the room for a 

considerable time before diffusion effects start to spread the particles further.  

 An additional note is that this study only analyzed particles after ~10 s of particle time 

(which can be taken as real time for the purposed of this study). This means that it is possible that 

further simulation run time would see different results if it was run  on the scale of minutes rather 

than seconds.  
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3.6.2. Performance Indicators 

When analyzing HRE only, DV performed the best. Displacement ventilation works with 

buoyancy forces with forced convection to move warm air upwards while injecting cool air in the 

lower portions of the room. This, in turn, induced a constant stream of cool air in the lower region 

moving upwards. This air is then removed from the room, making DV an efficient tool for targeted 

cooling in this case. SV was a close second, so it is hard to say if the results are due to simulation 

residuals. SV performed well due to presence of turbulent rotational velocities around the occupant 

due to high velocity inlet air, that quickly take warm air away from the occupant. Warmer air will 

then flow towards the exhaust. Velocity views from the XZ plane (Top view) confirm this, with 

minimal rotational vortices, at least at the midpoint of the breathing zone. There are still vortices 

in the corners of the room, but that is to be expected for all cases. The major difference is the 

location of the inlet and the inlet velocities. Stratum injects high velocity air in the breathing zone 

while displacement injects low to medium velocity air at the lower portion of the room. This 

phenomenon of air stratification is useful for cooling as well as removing air contaminants, as was 

found in the previous section. Since it aids in air movement, it is useful for increasing energy 

efficiency of HVAC systems. Mixing ventilation had the worst performance as high velocity air is 

injected downwards. By relying on turbulence and diffusion effects, cool air is mixed with the 

warm air. However, uniform mixing is not energy efficient since the goal is typically to cool 

occupants directly. However, it should be noted that mixing does not deviate significantly in 

performance regarding thermal energy removal. This study only analyzed specific exhaust 

placements on the room ceiling. Mixing HRE would perform better if placed on the lower strata 

of the room, where the flow velocities and induced negative pressures (not visible due to steady 

state condition) could quickly remove the incoming air. 

When looking at the IOM, MV performed the worst. As a reminder, the IOM (index of 

mixing) is a measure of how well a ventilation system reduces the amount of (thermal) mixing, as 

the goal is to cool the room and mixing will store thermal energy into the overall room, raising its 

average temperature. Because of this, lower scores are worse. As implied by its name, mixing 

ventilation encourages thermal mixing, since it is mainly used in larger rooms, or where occupants 

are spaced widely. Stratum performed poorly but not to the same extent. This is likely because the 

inlet was in the center strata of the of room, encouraging some mixing effects. It can be noted that 

while IOM and HRE and closely linked, they don’t measure the same effects. Heat removal 
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measures the difference in the injected air and exhaust air temperatures to the supply and supply 

zone temperature, making an inference on the efficiency of thermal energy being removed from a 

specific zone. In contrast, IOM looks at mixing effects in the entire room, not just the occupied 

zone. Displacement performed the best, likely due to reasons discussed for its HRE performance. 

Forced convection, buoyancy forces, and lower velocities (which limit mixing due to turbulence 

effects) contribute to the efficient removal of warmer air and an overall lower room temperature. 

OTS stratum performs notably better, and still has good HRE ratings. The reason for this, 

especially the OTS, is due to the position of the inlet vent in the room. However, this caused much 

of the air to miss the exhaust and raise the room temperature (lowering its HRE value). It is 

interesting that the IOM is higher considering that it is usually higher in MV. This is likely just a 

result of the specific room orientation. 

One thing to note is that this specific iteration of SV, is more akin to a raised DV design. 

This raises some concerns on classification of the design as stratum, although as a loose definition 

it just requires the inlet in the breathing zone of the occupant(s). This makes it difficult to assess if 

the good results are due to aspects of stratification due to DV or SV (or both). Another thing to 

note is that it is difficult to compare the relative values of the indicators themselves without some 

reference. A very small decrease in HRE for example could constitute a large deviation in when 

compared to more nominal cases. Most of literature agrees that mixing performs the best generally 

when considering many factors (including implementation, use in heating applications, use in 

larger rooms, etc.) and that displacement and stratum generally perform well for niche cases. This 

is also the case for rooms with small amounts of occupants [11,12]. 

3.7. Conclusions 

3.7.1. Summary 

This study found that regarding HRE that SV performed the best, with a value of 1.19 and 

MV performed the least with a value of 0.82. This stems from high velocity air blowing directly 

in front of the occupied zone which combined with buoyancy effects, helps stratify air. This brings 

warm air to the top layers where is expelled from the room. In contrast, MV is lower due to 

turbulent vortices which helps to mix thermal layers to achieve a uniform thermal distribution. MV 

did however have the best IOM with a value of -9.86. Displacement performed the worst with a 

value of -0.51. As stated previously, turbulent mixing of thermal layers made MV very efficient in 
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this regard. Displacement on the other hand, relies more on low velocities. As such natural 

convection due to buoyancy forces help more gentler (sometimes) laminar flows upwards in the 

room. The experimental factor OTS had MV and SV produce cold discomfort with values of -1.25 

and -1.03 respectively and DV a warm discomfort with a value of 1.23. Because DV relies mainly 

on more on natural convection than forced convection, it has both low velocities and low average 

room temperatures, leading to an occupant likely to feel warmer (for cooling cases). In contrast, 

SV relies on high velocity air directly in the breathing zone and MV relies on through mixing of 

the cooling domain, resulting in lower average temperatures in both cases, which contributed to 

the cold discomfort. SV performed the best with the value closest to 0 (ideal case). 

When looking at the strategies in the presence of airborne droplets, it was found that stratum 

performed poorly when compared to mixing and displacement when looking at overall qualitative 

flows, and in the ability to remove airborne particulates. Of a total of 4844 particles, MV, DV and 

SV removed a total of 2682, 2424 and 1688 respectively. This is likely due to the injection position 

as well as the positioning of the inlet relative to the exhaust. Implementation of stratum ventilation 

must pay careful attention to the configuration of these to ensure proper removal of particles, which 

may limit its practical application in the wider HVAC industry. Stratum ventilation requires 

positioning in the breathing zone, which can limit its practical use in larger rooms or rooms with 

complex geometries. Analysis of a more limited time window (simulation start and end times) will 

play a role in the specific results obtained. 

3.7.2. Final Thoughts 

Ventilation strategies can have variation and cross over in design and this study demonstrates 

the importance of good design when considering more experimental design orientations. However, 

real situations often include more complex elements such as heating and cooling, 

adjustment/monitoring systems, grill design/shape and others. This study has found that stratum 

can be an acceptable strategy when compared to more commonly used strategies of mixing and 

displacement, but that its effects are minimal and require careful considerations of geometric 

positioning. Performance analysis (relating to comfort) is highly sensitive and contextual and often 

equations like the OTS and similar can be difficult to use or compare with more strict indicators 

like the HRE. However, they are useful to distinguish how occupants in a room will ‘experience’ 

the HVAC system that is present. Regardless of these limitations, stratum does show promising 
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signs of having good, and sometimes better performance when compared to conventional 

ventilation strategies. However, it is limited due to the precedent in HVAC companies design 

process, practical limitations, and a lack of experimental testing in countries with colder climates 

(like Canada) where heating is more practical. 

3.8. Future Work 

Future work will consider more complex scenarios: including various inlet and outlet 

locations, varying initial conditions, longer simulation time durations, shorter time steps or 

multiple vents’ slits (i.e., MV case).  In addition, a wider range of performance indicators can be 

used to establish a wide range of performance metrics. These indicators can be categorized together 

for better classifications between the ventilation’s strategies. The strategies themselves can also be 

compared with different configurations, allowing for a single optimal configuration, or for 

different optimal modes, depending on the required criteria. 
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Chapter 4. Development of Novel Method to Aid in Particle Dispersion 

Analysis using Parallel Processing and HPC 

4.1. Introduction 

 When using tools like CFD tools like ANSYS, it is often difficult to extract or format 

data in the way that is useful or not repetitive. Additionally, it often becomes harder to tweak 

models in ways that simplify or add complexity without thorough knowledge of theoretical or 

mathematical models in addition to the specific numerical models used or available in ANSYS 

(Fluent). However, the software comes with many tools that allow users to enhance the usability 

of their simulation. Some of these, specific to ANSYS, include things like Journals or SCHEME. 

Which are systematic commands used to perform scripting or other specific tasks. Additionally, it 

also contains a text user interface (TUI) in addition to its GUI that can also be used by its scripting 

commands. However, these generally are used for high level simulation tasks, such as saving files, 

looping iterative processes etc. To interact directly with model values, cells or even insert custom 

models, a UDF (User Defined Function) is required. An UDF is a dynamically loaded function (s) 

that enhance standard features of ANSYS code. They can compile in C/C++ (generally) and 

include custom defined Macros. Other tools that ANSYS provides, which is more common when 

running larger sized or number of numerical models, is parallel processing. It allows multiple 

CPUs, GPUs or even computers to solve simulations simultaneously locally or over a network.  

This study combines elements of UDFs and parallel processing in addition to other techniques. 

The goal is to help aid in efficient gathering of dispersion data that cannot normally be obtained 

via the conventional use of ANSYS Fluent. For the purposes of this study, the process or tool will 

be referred to as the Cell Based Particle Tracker (or CBPT). In addition to being compatible with 

ANSYS, this tool is also functionally able to run using the online computational resources on the 

Advanced Research Computing platform (a service provided by the Digital Research Alliance of 

Canada) [102,103]. This study will detail the development and implementation of this tool to 

gather unique CFD data relating to particle dispersion. While it will include some elements of 

cluster and UDF utilization, it is not intended as instructional material for using UDF, ANSYS or 

HPC cluster nodes. 
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The major goal for this study is to create a tool or workflow that utilizes CFD, UDF, parallel 

computing and HPCs. This tool will used in further studies and can also serve as a guide or starting 

point for other researchers. The subgoals are: 

➢ Create a UDF that can extract particle data from CFD simulations. 

➢ Have the UDF be compatible with parallel processing modes in ANSYS Fluent 

➢ Create a process flow to run CFDs that contain UDFs on a cluster that utilizes HPC. 

4.2. Architecture Methodology 

 The CBPT comprises of three processes: Setup, Data-Processing and Data-Storage. 

The Setup involves two minor processes required to use the UDF: ANSYS Loading (including 

Compilation) and HPC-Utilization. The Loading stage, which is operating system and compiler 

specific, transforms the UDF by first compiling it into code that is readable by ANSYS Fluent and 

its relevant systems. Then it loads the UDF into the relevant ANSYS (in this case Fluent) Models 

or events (called hooks). This allows for the customized ability to change various system and 

model parameters, like properties, time steps, boundary or initial conditions or even meshing 

conditions. This is done by hooking the UDF into the models in question or by assigning an 

intermediate variable for ANSYS/Model to communicate with the UDF. This is further explained 

in Section 4.5. HPC-Utilization (High-Performance Computing) refers to the process of using 

specialized computing systems for data-intensive problems. In this case and many other 

applications, it involves the use of parallel processing to accelerate computational performance. 

Compute Canada, and its related organizations, have clusters of HPCs available to Canadian 

researchers. Such cluster(s) were utilized to enhance the process, although the UDF can also be 

run without the use of parallel processing, as will be discussed. 

Data-Processing occurs in the UDF and involves the gathering of Fluent variables, 

calculation and transformation of required output data and sending of this data (if required) back 

to ANSYS or to other sections of code for Data Storage. Data-Storage is simply the process of 

saving the data locally on the node (or core) that is running it. This typically can be done by either 

ANSYS or by the UDF.  This section outlines the development and implementation of the 

processes surrounding the CBPT. It will not go over the specific processes done in the UDF portion 

of the CBPT, although it will be referenced. The entire process architecture is outlined  below. 
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Figure 4-1: CBPT Overall Process Diagram 

4.3. Getting Started with Parallel Computing 

When utilizing parallel computing, knowledge of the structure of ANSYS node architecture is 

paramount. ANSYS node architecture consists of a Host node, node-zero, and the support nodes 

(or compute nodes). The host-node, known as cortex, communicates only with node-zero. It does 

not see (hold or have access to) most computational data. The host-node is responsible for data 

writing and passing high level commands to node-zero who in turn will relay it to the other nodes. 

Node-zero can communicate with all nodes and can also see data stored. It also does computations 

and has its own mesh partition. The other nodes are strictly computational nodes, and they typically 

don’t write to files. When passing commands to ANSYS in parallel, these commands can all be 

seen by all nodes. This means the commands must be filtered so only the required nodes can see 

them. Each node has access to unique memory and information. To accesses them, the memory (or 

memory addresses) need to be passed to node-zero who will in turn, pass it to the host-node for 

general computation. This is completely case dependant and there are cases where no data needs 

to be passed. Figure 4-2 shows a graphical representation of the node architecture. 

To utilize CBPT, a basic understanding of how serial processes run as compared to parallel 

processes is required, since logic and ideas that would typically work in serial processing, will not 

necessarily run in parallel processing, or vice versa. To help with this, ANSYS has custom state 

variables that can be used to determine the state of the system. These statements are conditional, 

meaning code can be written that will only execute for a computational node, or only for cortex 

(host-node). 
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Figure 4-2: Node Architecture for ANSYS Parallel Computations [104] 

4.4. Setup 

4.4.1. HPC Initialization and Utilization 

The CBPT is designed to operate on the Compute Canada GRAHAM cluster. To submit a 

job, simply use sbatch, for batch jobs, srun, for a single run, or salloc, to allocate memory and 

cores and run jobs using a VNC or srun. A special script file is needed in most cases for running 

batch jobs. Jobs can also be specified directly in the command prompt, similarly to how salloc 

allocates memories for jobs. The user can simply submit the memory, number of CPUS or GPUS, 

number of tasks (if using more nodes) and number of nodes, time of the allocation, and more 

options outlined in the technical documentation of the Digital Research Alliance of Canada [105]. 

The module needed to run the job must also be specified. Module refers to the program that the 

user wishes to run. Once a job or memory is requested, the user must wait for that memory to be 

allocated. The wait time depends on several factors, with the most important factors being the 

length of time and number of resources requested [105].  

 When the requested memory becomes available, the job is run, hence, the job will 

begin, or the user can simply start ANSYS Fluent, and the job will commence. If a job runs out 
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before it is finished, or the file is not saved in any way, the files will be deleted, unless autosave in 

ANSYS was enabled. When submitting an ANSYS Workbench file, a shell file and a journal file 

is needed. The journal file outlines to ANSYS what tasks to perform and what to save, amongst 

other tasks. A basic journal file is included that can be easily changed to meet various needs. Any 

errors in the journal, WB file, shell file need to be resolved prior to submitting it to ANSYS or it 

will likely result in a server disconnect (kicking from terminal or node). 

4.4.2. Loading ANSYS and UDF 

If the submission process has no errors, either in the shell file, journal file or WB/Dat file 

(such as different versions), then ANSYS will load and follow the instructions outlined in the 

journal file and UDF. In terms of ANSYS, this means that the simulation will now be loaded, either 

through the ANSYS Workbench or directly through ANSYS Fluent, depending on how the shell 

file was configured. The CBPT has shell (bash) files for both options. 

Compiling the UDF should be seamless, but it may not always be. Compiling fails for 

a myriad of reasons. If using a version of ANSYS 2021 or later, the issue is likely due to the code 

itself (syntax, logic errors, segmentation faults etc.) or directly related to the environment (the 

compiler, OS). If compiling via journal commands proves an issue, it is recommended to compile 

using Virtual Network Computing (VNC). Using the ANSYS GUI allows for easy compilation as 

it comes with a built-in compiler. Simply save the compile library and copy to directories where 

there are instances that require the UDF. It is important to note that, a .cas or WB file cannot be 

saved with a UDF loaded as it will try to reference a library on the computer in which it was loaded. 
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Figure 4-3: Setup - Flow Diagram 

4.5. Data Processing 

When the setup is completed and the job has been queued (or being prepared to start), the 

data processing stage of the workflow will begin. Data processing is almost entirely an automated 

process by ANSYS or by the loaded UDF. Regarding the CBPT, the data processing occurs in three 

stages: Data input, data output and file saving. When the CBPT was ran, the journal file or shell 

file specified if it was to run in parallel or serial (meaning that cores don’t run in parallel). In series, 

ANSYS compiles and utilizes the UDF normally, meaning there is no need for special 

consideration for how to run the code. This changes if the code is run in parallel, but only for 

ANSYS side. The user of the CBPT will still receive the same performance from the UDF. 

When operating in parallel, ANSYS divides the mesh into partitions that are assigned to 

each node. This means that each node can only see the partition it is assigned to as illustrated in 

Figure 4-4. While the mesh is divided, the domain and threads are mirrored in each compute node, 

allowing all nodes to access them, as if the program was run in serial.  

To communicate via ANSYS and UDF, ANSYS has unique define macros which act as 

event handlers for the simulation. Event handlers are functions that run after a certain event occurs. 



63 

 

For example, the execute_on_demand macro runs whenever the relevant function is called in the 

ANSYS GUI or TUI. In the case of the CBPT, it uses a myriad of different macros but has three 

main ones: execute_on_end (executed at end of an iteration), DPM_Scalar_Update (runs after 

every particle update) and define_on_demand, (runs when called). 

 

Figure 4-4: Partitioned Mesh Distributed Between Two Compute Nodes [104] 

4.5.1. Initialization 

When first loaded, the CBPT will initialize any variables used in calculations. It will 

instantiate two user defined memory (UDM) locations that are used in calculations. These values 

are set to 0 for future use. UDM contains values that can only be changed by a UDF (at least 

directly). 

4.5.2. Data Input/Output 

Data input in this context, refers to reading data in serial mode. The CBPT gathers data 

about the UDM values and performs computations on them. In parallel, each node will perform 

computations by using DPM_Scalar_Update. Each time a particle updates it will use code to 

update a UDM value. Since cells are stored in each node, the node with the particle will be 

responsible for loading the particle data and saving the new UDM value to the required thread and 

cell. To this end, the nodes do not need to communicate. 

4.5.3. Node Data Transfer 

In serial, a single 2D array stores the values of all the output parameters specified. At 

the end of a specified time iteration, or when called directly, the UDF will save a file with a custom 

name based on the time step and save interval defined. A Boolean condition, called autosave, can 
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be triggered in ANSYS to turn this feature on and off. In parallel, the code logic works similarly, 

however, due to MACRO limitations, nodes can only share 1D arrays. A specific coding technique 

called encoding, or flattening, is used to ‘compress’ the 2D array into a one-dimensional (1D) array. 

The UDF takes out memory and creates a new array of pointers. These pointers point to new 

locations in memory based on the size of the 2D array. A simple linear equation can be used to 

store the row values for the pointers based on the size of the data type and the number of columns. 

The pointer simply stores the location of the first element in the array and can access the rest with 

the linear equation and the size of the columns. This is demonstrated in Figure 4-5.  

 

 

Figure 4-5: 2D to 1D Array Encoding 

This 1D encoded array is then used to pass data to the other nodes and or host. The reverse 

processes can be done, known as decoding, where the memory locations are referenced using the 

1D and a new 2D array is built.  

4.5.4. File Saving 

 To move data around to prepare to save it, the host node and follower nodes must all 

communicate and compile the data in a central location. This occurs in 4 stages: 1) Initialization, 

2) Variable Storage, 3) Node to Node Data Transfer, . 

4.5.4.1. Stage 1 – Initialization 

 In Stage 1, various variables are initialized for use in storing variables. The number of 

variables being transferred, and containers for those variables (data) are initialized based on the 
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size of the data and datatypes. Initial memory allocation may also be done at this stage, although 

it isn’t necessary. The follower nodes and host node each have different variables as they will need 

to store different things. 

4.5.4.2. Stage 2 – Variable Storage 

In Stage 2, the computational (follower or compute) nodes begin to gather the data 

requested from their storage. In the case of the CBPT (the specific code used in this thesis), it has 

two UDM values. These UDM values store the total particle count and the weighted particle count 

in each cell location. For this specific use case, the stored data is filtered, and the filtered data set 

is then stored. This filtering occurs by each node looping through all the cells in their partition. 

The compute nodes then store the values and position of cells with values greater than zero. This 

indicates a particle has, at one point, passed through the cell. After lopping through all the cells, 

each compute node stores this value in a temporary array which is then encoded as described in 

Section 4.5.3. 

4.5.4.3. Stage 3 – Node to Node Data Transfer 

As described in Section 4.5.3, the follower nodes will begin to send their data to node 

0 and node-zero will begin to accept their data and store it in a temporary location. In ANSYS 

giving and receiving data must be stated explicitly, and both nodes must have a copy of the 

container of the variable being sent. Immediately after receiving a value, node-zero will send the 

data to the host-node (cortex). After sending the data of all the other nodes, node-zero will send its 

own data to the host-node. 

4.5.4.4. Stage 4 – Node-Zero to Host Node Data Transfer 

In Stage 4,  the host-node will read the data from each node in chunks. Since it cannot 

hold all the data (size of data and datatype is unknown) each node sends the size of its data before 

sending the data itself. The host-node then creates a container for the data and then saves this data 

to a file buffer. When all the data is read the host-node deletes all the stored data, and the other 

nodes follow suit to restore allocated memory. 

4.5.5. Data Storage 

When running on a local computer, file storage is very trivial. However, on a cluster, 

where the moving of files can be a long process, proper storage formatting is paramount. The 
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CBPT stores files in similar ways for both serial and parallel computing. The host-node writes file 

names to a folder. It saves based on the save interval value defined at the beginning of the code. 

The file names use a prefix followed by “t_X” where X is the time interval number (this can be 

changed). A header is used so that other scripts (shell, journal, other UDFS) can change the value 

and thus create new files and file folders. The data is also saved in a folder relative to the location 

of the UDF so it will work in any location. 

4.6. Results and Discussion 

Figure 4-6, Figure 4-7, Figure 4-8 showcase a SSH (Secure Shell) terminal instance 

that is connected to the compute Canada GRAHAM cluster. Inside, it shows the organization of 

files as well as the presence of the organized and labeled data files. The code for the UDF is 

available in Appendix C of this thesis. 

 

Figure 4-6: GRAHAM Cluster Showcase – Folder Overview 

 

 

Figure 4-7: GRAHAM Cluster Showcase – UDM DATA Folder 
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Figure 4-8: GRAHAM Cluster Showcase – DATA Files 

An example of the UDM data from the perspective of ANSYS is shown in Figure 4-9. 

The particle dispersion cloud is shown as a representation of the cell dispersion “risk cloud.”  The 

colored gradient is a visual representation of a low threshold manifold as shown in Figure 4-9 and 

Figure 4-10 at various time steps. The UDM value will be explained further in Chapter 6. It can 

be thought of as a summed WPC as is explained in more detail in Chapter 6 when discussing the 

Weighted Particle Count in Chapter 5 (Section 5.2). 

 

 

Figure 4-9: Progression of Domain WPC at Particle Time at: a) 1 second, b) 2 seconds, c) 

3 seconds, d) 5 seconds, e) 8 seconds, f) 10 seconds. 
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The Spatial RAM model is shown in Figure 4-10. These images were generated in 

MATLAB and represent graphical representations of the UDM propagation over time. These 

images go past 10 s particle time until around 15 seconds. This was done to investigate the presence 

of significant dispersion artifacts once the particles have started dispersing along the room’s outer 

edges. No such artifacts were noted for the investigated cases. The risk factor, calculated using the 

UDF, is shown at various cell locations in Figure 4-10 and 4-11. 

 

 

Figure 4-10: Spatial-Temporal Risk Model for Particle Time at: a) 0.1s, b) 0.2s, c) 0.5s d) 1s 
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Figure 4-11: Spatial-Temporal Risk Model for Particle Time at: a) 2s, b) 3, c) 5s d) 10s e) 15s 

4.7. Conclusions 

4.7.1. Summary 

A UDF was created to work in ANSYS Fluent that successfully extracts and transforms 

particle dispersion data. This means that future UDFs can fine tune more elements of the simulation 

by adding in other aspects, such as  empirical models or simulating the effects of natively built-in 

ANSYS models. By using this UDF in ANSYS Fluent complex computations can be performed 

more easily by saving data space and reducing data processing times. This UDF was also converted 

successfully to be compatible with both serial and parallel processing modes and it can also write 

output files in both serial and parallel processing modes. Finally, the UDF works in parallel on the 

HPC cluster nodes, specifically those of Compute Canada. This is a huge step because it means 

that large amounts of data with high fidelity can be run at accelerated speeds, and the data can be 
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stored on the HPC cluster, with its massive storage allocation. Future simulations will not suffer 

from limiting computational or storage-based resources and can therefore focus on advancing 

computational dynamics in all fields, especially CFD. 

4.7.2. Future Work 

Future versions of the CBPT will expand its ease of use for those unfamiliar with 

programming, scripting, or using virtual HPC resources. The use of this CBPT tool can also aid in 

rapid data gathering for use in other advanced optimization algorithms, like machine learning. The 

UDF itself can incorporate experimental data [46,53,106–108], for example, including empirical 

evaporation data into the dispersion model. By comparing particle values to experimental data 

related to particles like settling time, and evaporation time, experimental based pseudo-evaporation 

models can be developed. Similar things can be done for other types of models [109–111] as well, 

not just for aerosols and droplets. It can also be done for different fluids, solids and has reaches in 

other ANSYS software or computational software as well, such as, ABAQUS [49,112,113], 

COMSOL, STAR CCM+ [47,48,114], or other custom software [50,52,115,116]. The use of 

parallel processing can also be expanded by using C functions and scripting. More recent versions 

of ANSYS, such as ANSYS 2023, allow for compiling UDFs in C++ which can be used to further 

enhance the computational capabilities of the CPBT tool developed in this thesis.   
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Chapter 5. Development of Novel Methods for Predicting Temporal-

Spatial Particle Dispersion using CFD and ML 

5.1. Introduction 

This chapter outlines the use of the CFD and the CBPT tool previously developed in 

Chapter 3 and Chapter 4 to run high fidelity simulations for use in a Machine Learning (ML) model 

to predict the particle Risk Factor.  Previous studies have done much work in refining the process 

of creating and running CFD simulations [15,19,93,101]. This study will supplement the use of 

CFD by creating ML models, like those done in literature [67,99], to predict the spatial spread 

(dispersion) of airborne particulates.  

The computational power and parallel capability of Compute Canada accessed via 

MobaXTerm [117] was harnessed to run extensive simulations. Bash scripting was employed to 

specify the resources used, allowing for precise control over the simulation environment. This 

setup facilitated the execution of complex simulations, optimizing resource allocation. It was used 

to run a system of 4 simulations of the mixing ventilation configuration design case. Each case had 

a different ambient temperature. The results were then processed using a variety of data processing 

techniques to extract the core dispersion features and calculate the risk factors throughout the 

domain. This data was then transformed into regional data by finding the high concentration 

volumetric region, represented as a bounding box, and the location of the centre of that box. These 

two models, called the Spatial-Temporal model and the Regional-Temporal model were used to 

train ML models of various archetypes. The general ML Development framework is shown in 

Figure 5-1, and the final RAM model development process overview is shown in Figure 5-1 and 

Figure 5-2. 

 

 

Figure 5-1: ML Model Development Overview 
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Figure 5-2: RAM Model Development Overview 

5.2. Methodology 

5.2.1. Data Extraction 

Utilizing ANSYS Fluent, simulations were run for 10,000 iterations and detailed data was 

generated in a spatial-temporal format, inclusive of concentration data and stored in text files. The 

process was done using the Cell Based Particle Tracker (CBPT), as described in Chapter 4. The 

CBPT was used to extract the Total Particle Count per cell (TPC). This data was saved in an array 

and then saved to a file algorithmically over the course of the simulation. This data was 

subsequently processed through Python scripting, transforming it into a structured CSV format. 

Additional attributes, such as simulation ID, time step, and temperature, were incorporated to 

enrich the dataset. 

Four simulations were run with temperatures ranging from 17 oC to 25 oC. Convergence of 

the flow field was achieved before the simulation proceeded with particle injection (cough or 

sneeze). At certain time steps, as set by setting the save interval in the CBPT, the file saves the 

UDM data (TPC) at all the cells that are nonzero. In other words, it will save the values of cells 

that aren’t zero. An example of how this cell works is shown in Figures 5-3 and 5-4. Particles  

move across the boundary and after every time step, the mesh records the number of particles in 

each cell across the domain. 
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Figure 5-3: Cells with no particles 

 

 

Figure 5-4: Particles reach cell elements and get counted. 

The particles are counted using a combination of a Particle Count Value (PCV) which is 

set to a value of 0.1. This is the base worth value of any one particle and is added to allow for more 

fine tuning of particle worths in future versions of the code (i.e., having multiple particle variants 

with different risk or worth values). Particle diameters are sent into a weighting function to obtain 

a Particle Diameter Weighting (PDW). This is analogous to the mass of the particle. It weights the 

value of the particle based on its normalized diameter. This normalized diameter is based on 

minimum and maximum particle diameters of 1-100 μm [11,59]. The function used is shown in 

Equation [5-1] and plotted in the Figure 5-5. In this case, x is the normalized particle diameter. 
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𝑃𝐷𝑊(𝑥) =  
1+0.1

0.85+𝑒−6(𝑥−0.6)           [5-1] 

 

 

Figure 5-5: Particle Diameter Weighting Function 

The Particle Diameter Weighting Function is based on the mathematical distribution made 

by Khan [11]. A transformed sigmoid function distribution was fitted to the values [11]. The 

weighted data is referred to as the Weighted Particle Count (WPC). It is calculated by the 

summation of the product of the PCV and PDW each time step. The WPC data is sent to MATLAB 

and Python for imaging and processing. The equation for the WPC is shown in Equation [5-2] 

where Pw is the cell particle weighted value, Pv is the particle value, and Pd is the particle diameter 

weighting.  

𝑃𝑤 = 𝛴𝑖=𝑙
𝑛  (𝑃𝑣,𝑖 ⋅ 𝑃𝑑,𝑖)                     [5-2] 

5.2.2. Data Processing 

The raw data was first converted to a CSV file using a custom script. Then the data was 

processed in two stages. The first stage converted the Weighted Particle Count (WPC) into the 

Particle Risk Factor (PRF). The second stage filtered this data to obtain the cell locations with 

relatively high-risk, as well as to reduce the total number of data points. 



75 

 

5.2.2.1. Stage One – Conversion of WPC to PRF 

The WPC has a wide range of values, due to the large number of time steps, as well as the 

large number of particles. The original data sets had sample values from 10-1 to 105 orders of 

magnitude. To evaluate the risk, a Risk function was used to turn the weighted particle count 

(WPC) into the Particle Risk Factor (PRF). The PRF factor is made using a logarithmic 

transformation function to normalize the data, into values of 100 to 102 orders of magnitude. The 

functions are shown in Figure 5-6 and Equation [5-3] below. The values of C and B are based on 

trial on error, to limit the function output (and thus the risk factor range) from 0 to 100. The value 

A is used to raise the value in the natural log functions, so it is always more than 1. Values of A 

that are lower than one would result in a negative risk factor, which was not desired for this study. 

For this study, A was set to a value of one for simplicity. In this case, x is the WPC as discussed in 

section 5.2.1. 

 

 𝑃𝑅𝐹(𝑥) = 𝐶3 ⋅ 𝑙𝑛(𝑥 + 𝐴) + 𝐵              [5-3] 

 

 

Figure 5-6: Particle Risk Factor as a function of time-summed particle concentrations 

With this risk factor, temporal regions can be compared in terms of relative risk. The data 

can now be  qualitatively and quantitatively analyzed over time. This data can then be used to build 

machine learning models to predict temporal and spatial risk factors. 

5.2.2.2. Stage Two – Data Filtering 
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To identify the high-risk regions and to reduce the number of data points, a data processing 

technique was used to filter the data based on a minimum threshold. This algorithm had a global 

risk minimum threshold that started at 10. The algorithm goes through the data and keeps every 

PRF datapoint at each time step (text/csv file) to a maximum of 500 points. If the algorithm notices 

that the file goes over 500, it increases the global risk minimum threshold and then rescans the file, 

removing points that do not meet the minimum threshold. After this data filtering process,  each 

file will have a maximum of 500 lines of text, dataset consistency helps when training the ML 

models. 

5.2.3.  Risk Models 

5.2.3.1. Spatial-Temporal Risk Model 

The Spatial Temporal Model represents a detailed view of particles in a 3D space, capturing 

concentration, temperature, and temporal aspects. While providing a rich dataset of information, 

this model is computationally demanding, making it a significant consideration in the overall 

analysis. The complexity of the Spatial Temporal Model offers a nuanced understanding of the 

simulation but comes at the cost of computational efficiency. The model offers a 3D gradient of 

the risk in 3D space based on time and Temperature as an input parameter. The model then can 

predict the risk factor at a location when given the relevant parameters. It is possible this model 

may not be able to create a correlative model with a low percentage error for large complex spatial 

distributions. This is due to factors such as spatial dependence, data resolution and complex 

relations (i.e., turbulence). Because the data gathered by the CBPT is Time-dependant at specific 

Cell locations, having many data points is not an issue. 

5.2.3.2. Regional-Temporal Risk Model 

The Regional-Temporal Spatial model predicts the risk factor (analogous to the summed 

concentration over time) of the particles in space over time. However, it would be difficult for the 

ML to predict such a model, especially if larger domains are used. In contrast, the Regional-

Temporal Model simplifies the representation by grouping particles into bounding boxes in 3D 

space, each with a centroid and concentration at specific time points. This model reduces 

computational overhead while retaining essential spatial and temporal information. The difference 

between the Spatial Temporal Model and the Regional-Temporal Model is the trade-off between 

computational efficiency and the granularity of information.  



77 

 

5.2.3.3. Generation of Machine Learning Models 

When utilizing ML models, it is common practice to separate the data sets. Usually, this is 

done with three groups: training, testing and validation. Training is used to build the initial model 

and testing uses the loss function to temper the ML first iterations. After the ML determines it 

cannot generate a better model, the new model is validated with the loss function (or other metrics) 

at the end with the validation test set. The validation tests can also be repeated for further 

enhancement of the model. Besides the three general groups (training, testing, validation) for 

building the ML models, there are two distinct data sets that were used to create two distinct risk 

models: the spatial model and the regional model. The two datasets were made via eight 

simulations, four for the spatial model and the other for the regional model. The various ML models 

were trained on the first simulation using 100 epochs and a batch size of 10 or 100 for the regional 

and temporal models respectively. The choice of batch size was done manually. The regional model 

had one order of magnitude less data than the spatial data. Thus, ten was chosen for its batch size. 

The model was tested using batch sizes ranging from 5-20 and no major difference in performance 

was found, for sizes lower than ten. Batch sizes higher than ten, performed similarly but not as 

well. Similarly, the temporal model used batch sizes ranging from 50-200. It was found that 

performance started to fall off after 100, where the model began to fail to find meaningful 

correlations in the data. Batch size values less than 100 did not find any meaningful difference in 

performance. All models had a two distinct data sets using spatial and regional data. Each data set 

had 260,000 datapoints and 1,000 input samples, respectively. 

The input features consisted of 'timestep' and 'temperature' for both RAMs (Risk 

Assessment Models). Three machine learning models were employed: Deep Neural Network 

(DNN), Support Vector Regression (SVR), and Radial Basis Function (RBF). The models were 

evaluated using Mean Squared Error (MSE) and Mean Absolute Error (MAE) in conjunction with 

the percentage average error (PAE), which will be referred to as just percentage error. The 

percentage error expresses the average difference between the MAE of the model. The equation is 

shown in Equation [5-4] below: 

𝑃𝐴𝐸 =
1

𝑛
∑ |

𝑦𝑖−�̂�𝑖

𝑦𝑖
|

𝑛

𝑖=1
× 100   [5-4] 

The choice of models and error choice was done for comparison between the models 

themselves and as a comparison with the results found by Mirzaei et al. [99] and Mesgarpour et 
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al. [67]. Both studies utilized these errors in their results. Mirzaei et al. [99] used a Deep artificial 

neural network (DNN) with back propagation and used the sigmoid function with smooth gradient. 

They tested various architectures and found the 10 x 10 DNN (10 layers with 10 neurons) delivered 

the best results. They used a data set with 2,100 training input samples. Mesgarpour et al. [67] 

utilized varying ML models to create a MIMO model for their study with 1,240 input samples. 

They also used a DNN as well as MLP, SVR, and RBF. To mirror both studies, a Deep Neural 

Network (DNN), Support Vector Machine (SVR) and Radial Basis Function (RBF) will be utilized. 

This study found that the methodology used by Mesgarpour et al. [67] produced much more 

consistent results for the architecture of the neural network (5 layers, two for input, two for output 

and three hidden layers), with some changes, as will be discussed. 

The SVR model was implemented using Scikit-learn's MultiOutputRegressor wrapper. 

The kernel used was ‘linear.’ The RBF model was implemented similarly to the SVR model but 

with the kernel specified as ‘rbf.’  The input features and target variables were the same as in the 

SVR model. The RBF model regularization factor (C) was set to 2 and the kernel coefficient (γ) 

was set to 0.01. These values were found using a small random search for parameter optimization.  

The DNN model was implemented using Keras and TensorFlow, as was done in 

previous studies [67,99]. The DNN model architecture consisted of a Sequential model with three 

hidden layers containing 5, 15, and 30 neurons, respectively. Testing found that progressive 

stacking of the neurons produced consistently good models. The input layer had n neurons with n 

input dimensions, and the output layer had m neurons. The values of n and m were the number of 

input and output parameters, respectively. The activation function for all layers was the rectified 

linear unit (ReLU). This activation function is widely used in DNN regression models for nonlinear 

models as it does not become saturated with large numbers of inputs, and it is advantageous 

because errors are back propagated [67]. Unlike the Mesgarpour et al. study [67], the output layer 

did not use the sigmoid function, as the output values were normalized and none of the values were 

negative. The model was compiled using the Adam optimizer with Mean Square Error (MSE) loss 

and Mean Absolute Error (MAE) metrics. The Adam optimizer is popular and widely used due to 

its ability to adjust the learning rate adaptively and automatically. The values of the parameters of 

the Adam optimizer were left as default. The use of MSE as the loss function and MAE as metrics 

is common for regression models. The Loss function is used for training and testing, while metrics 

are used for validation cases. MSE emphasises the difference between values by giving weight to 
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larger errors making it very sensitive to differences in data sets. The MAE, in contrast, calculates 

the absolute difference, hence, it is not as sensitive and better for evaluating the general 

performance of ML models. To that end, MSE is better for loss as it can effectively shape the ML 

model during training and testing, while MAE can give a more general view of the model and 

avoid overfitting the ML model to the validation test case. The MAE provides a means to evaluate 

the general performance of the ML model. 

5.3. Results and Discussion 

The results of the ML models for both the Spatial-Temporal Risk (STR) and Regional-

Temporal Risk (RTR) models are shown in Sections 5.3.1 and 5.3.2, below. The models were 

evaluated using Mean Squared Error (MSE), Mean Average Error (MAE) and Percentage Average 

Error (PAE). The validation results of the various ML models were used for each evaluation 

parameter (MSE, MAE and PAE). The validation results were chosen since they give less biased 

interpretation of performance of ML models, as opposed to training and testing datasets. 

5.3.1. Spatial-Temporal Risk Model 

The results for the Spatial Temporal Risk (STR) Model are shown in Figures 5-9 to 5-11 

and in Table 5-1. The DNN and RBF produced the best results with SVR (a linear model) 

performing notably worse. These results mirror the results of Mesgarpour et al. [67]. The reason 

for the DNN and RBF models performing better than the SVR is likely due to the stark similarities 

between the two models, both are nonlinear. The models only had to predict a single output 

parameter, making the prediction task easier. The ML Model in this study also has an abundance 

of raw data in which to train and test against, on the order of 106 datapoints. If the ML model were 

to perform poorly, the effects of the filtering can be relaxed (reduce threshold increment) or the 

cap on the number of points per file (simulation iterations) increased. The table below, Table 5-1, 

shows the maximum MSE, RMSE (root of the MSE), MAE and the PAE validation results from 

this study.  
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Table 5-1: Validation Results of STR Machine Learning Models 

Model Output 

Variables 

MSE RMSE MAE PAE (%) 

DNN PRF 10.01 3.16 2.65 12.36 

SVR PRF 58.16 7.62 6.60 27.93 

RBF PRF 14.38 3.79 5.12 18.12 

 

The results of the DNN are shown in gradient slices at a set height in example figures (see  

Figures 5-9 to 5-11).  They are 2D visualizations of a portion of the 3D risk map generated by the 

ML model.  For reference, the injection location is at (2.12 m, 0.95 m, 2.17 m), the approximate 

height of the nose and mouth of a person seated at a desk, which is typically in the middle of the 

XZ plane. The time value referenced is an internal time used for the ML model. One unit 

corresponds to 0.5 s of real particle dispersion time. 

 

 

Figure 5-7: The results of the DNN model’s XZ Risk Gradient at y=0.95 m and 0.5 s 
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Figure 5-8: The results of the DNN model’s XZ Risk Gradient at y=0.95m and 2.5s 

 

 

Figure 5-9: XZ Risk Gradient at y=0.95m and 5.0s 

A gradual progression of the particles through elements of the domain for a mixing 

ventilation configuration can be seen in Figures 5-9 to 5-11. Initially, the risk is clustered at regions 
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very close to the injection. For this first 2D slice (Figure 5-9), the gradient is concentrated in the 

bottom right quadrant. This is likely due to a combination of the particles moving in the Y direction 

as well as the ML model not having much data in this region, so it is extrapolation information 

based on the data it does have. This same pattern is also observed in the other two 2D risk maps 

(Figure 5-10, and 5-11). In Figure 5-9, a  heavy concentration in the left side of the room can be 

seen. This is due to particles being injected in a linear stream, but they are heavily favored to the 

left side of the room due to the fluid flow in the room. As investigated previously (Figure 3-6 and 

3-8), Mixing tends the push the particles upwards and towards the left and right of the room. Due 

to the position of the exhaust, most of the particles were sucked upwards towards the left (into the 

exhaust).  In Figure 5-11, the particle concentration is clustered  in the top right corner, as the 

particles are now clustered at the back region of the room. The risk map is the ML’s mathematical 

model based on the limited spatial data provided by the CBPT. 

5.3.2. Regional-Temporal Risk Model 

For the RTR Model, three different configurations were tested. The first configuration used 

[L, W, H], which are the size of the high-risk region (bounding box). The second configuration 

used [X, Y, Z], which is the location of the centre of the bounding box (so the geometric centre of 

the high-risk region). The third configuration used all six input variables combined [L, W, H, X, 

Y, Z]. It was anticipated that 6 variables would perform the worst, since it is generally harder to 

predict as the number of inputs to output variables changes. However, the results show that the 

first configuration, [L, W, H], prediction performed the worst in all three cases and the third 

configuration, [L, W, H, X, Y, Z], prediction performed in between the other two. This means that 

all models found prediction of the size of the bounding box the hardest, which is to be expected. 

Like the previous ML risk model, SVR performed the worst and RBF and DNN performed the 

best, with RBF having the best performance. This likely due to the benefits of the radial basis 

function in predicting spatial based data due to their strength in local approximation, meaning they 

can easily capture local patterns in spatial data. 
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Table 5-2: Validation ML Results for Regional-Temporal Model 

Model Output Variables MSE RMSE MAE PAE (%) 

DNN [X, Y, Z] 0.007 0.084 0.041 1.55 

DNN [L, W, H] 0.130 0.361 0.337 13.32 

DNN [X, Y, Z, L, W, H] 0.036 0.190 0.053 9.37 

SVR [X, Y, Z] 0.144 0.379 0.344 13.43 

SVR [L, W, H] 0.228 0.477 0.340 38.90 

SVR [X, Y, Z, L, W, H] 0.186 0.431 0.342 26.16 

RBF [X, Y, Z] 0.015 0.122 0.084 3.16 

RBF [L, W, H] 0.014 0.118 0.105 6.50 

RBF [X, Y, Z, L, W, H] 0.012 0.110 0.099 5.00 

 

Figure 5-12 shows an example of the DNN predicting a bounding box at a given time 

and temperature. The ML model tends to over predict the size of the region. This is because the 

algorithm is predicting a single large cluster of particles with a simple geometry (rectangular 

prism) as opposed to looking at multiple clusters or predicting the risk using more complex shape 

geometries (spheres, ellipsoids, convex hulls). The algorithm used to generate the bounding box 

data uses local maxima of the high-risk cell locations on each axis for each time step, further 

simplifying the dimensionality of the region in question. Complexity would make the region 

predictions more specific but require more information to build the model. A simpler region would 

require less information to predict but loses the cloud shaped intricacies one would expect particle 

dispersion to exhibit. The reason for the choice of a simple region is because a simpler model is 

much more applicable for risk prediction models, especially when looking at larger temporal and 

spatial domains. For example, if this model were scaled up to a larger room such as a lecture hall 

or lunchroom, a more generalized model would become increasingly more desirable. 

Approximating a dispersion area as a cubic risk cloud means individuals at risk of infection could 

be easily included or excluded from consideration. In these cases, its better to over predict than 

under predict. 
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Figure 5-10: Example of the bounding box Created by Regional Risk Model 

5.3.3. Summary of the ML Results 

Based on the results discussed above, the Regional Model (RTR) performed much better 

than the Spatial model (STR) in almost all cases. This is because the Spatial model predicts risk 

values across a large dimensional manifold, and it must predict risk values in both the spatial and 

temporal domains. In contrast, the regional model utilizes dimensionality reduction, predicting the 

size of the space over time, and not the gradient of the values in it. If the spatial data was utilized 

in conjunction with the Regional Model, it could then pinpoint exact locations of high risk, but 

this would require large amounts of generated data. In contrast, just the regional risk model 

identifies a general area of high risk while requiring a relatively small amount of data samples at 

the upper margins of the risk profile, at the cost of knowing the actual locations of the risk. 
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5.4. Conclusions 

5.4.1. Summary 

In this study, it was  shown that utilizing various post-processing techniques allows the 

conversion of particle count data into two distinct RAM models. The data was first generated by 

running simulation data in ANSYS Fluent and recording the weighted particle count at cell 

locations in the domain. These cell locations were locations that a particle had passed through, at 

any time step. Afterwards, the data was converted to a Risk factor using a logarithmic function and 

the data was filtered to keep all files to a maximum of 500, or less, data points or lines of data. 

Using this data, the Spatial-Temporal Risk Model (STR) and the Regional-Temporal Risk (RTR) 

Model were created. The STR was made using a ML model based on the spatial (x, y, z), temporal 

(t) and ambient (T) variables as input parameters and the associated risk factor as the output 

variable. The STR model performed well because it creates a continuous 3D risk space where the 

risk at any location can be predicted. However, the percentage average error (PAE) of the model 

was generally higher when compared to the Regional-Temporal Risk (RTR) model. The RTR 

model was made using an algorithm to find the size of the high-risk bounding box (finding the 

Length, Width and Height of filtered data) as well as the location of the box (X Y Z), represented 

as its centroid, as output layers and time and temperature as input layers. The RTR model results 

show that the PAE was lower overall compared to the STR model. However, the RTR model 

performed well due in part, to the  square geometry of the room. A drawback of the RTR model is 

that it cannot provide what the actual high-risk region is, instead it simply provides an estimate 

based on the relative high-risk elements that were prompted by the initial values. In other 

simulations these ‘high-risk’ regions could be low, but the RTR model does not provide this 

information. The user needs to determine this manually by checking the data. The benefit of the 

RTR model is that it does not require as many data points as the STR Model. 

5.4.2. Future Work  

Future work will machine learning will incorporate a wider range and use of input and output 

parameters into the ML models. For example, velocity, pressure, among others, could be included. 

The start and end times of the simulation data that is used to build the ML model could  also be 

much smaller. The datasets at the end of the simulation time step, were cluttered with similar 

values, often thousands. With that large amount of redundant data, it often leads to  low variance, 
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thus extensive cross validation studies would be required for validation of data correlation. The 

spatial and temporal range of the simulations analyzed could also be much smaller, since the 

regional model has the bounding box values converge quickly as particles reach the bounds of the 

room. Smaller time steps in the ANSYS simulations will allow for more accurate temporal 

correlation between the input and output variables. In the same vein, looking at a more limited 

time window, will also limit the spatial area that the particles travel in. This will allow for much 

higher rates of variance in the data, and thus more accurate ML models. The general ANSYS 

simulation can also be changed by expanding the geometry, evaluating multiple  scenarios, and 

investigating other indoor environments. 
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Chapter 6. Conclusions 

6.1. Summary 

This thesis studied the airborne transmission in indoor office environments using CFD 

and ML. The effects of ventilation strategy particle dispersion were studied in addition to 

comparing various performance indicators. A comparative study was conducted evaluating the 

particle removal for stratum ventilation (SV), mixing ventilation (MV) and displacement 

ventilation (DV). To facilitate these types of CFD analyses, a novel workflow was created, and 

outlined in the thesis, that combined CFD and parallel processing to perform accelerated high-

fidelity simulations. This workflow was then used to create a novel method of combining ML and 

CFD to create Risk Models to predict particle concentration-based risk for a Spatial-Temporal Risk 

(STR) model and a Regional-Temporal Risk (RTR) model. This methodology was applied to the 

Mixing Ventilation (MV) HVAC strategy. Both models (STR and RTR) showed a high degree of 

accuracy in predicting the risk, with a minimum PAE of 12.36 and 5.00 for the DNN and RBF 

models, respectively.  

6.2. Contributions 

6.2.1. Comparative Study of Ventilation Strategies 

The first contribution of this thesis was the comparative study of three ventilation strategies 

for indoor environments, stratum ventilation (SV), mixing ventilation (MV) and displacement 

ventilation (DV). The research results showed that the stratum ventilation strategy performed the 

worst regarding particle removal, removing, on average, 800 particles less than other strategies 

from a total pool of 4,844 particles. For each of the three performance indicators Heating removal 

index (HRE), index of mixing (IOM) and occupants’ thermal perception (OTS), it was found that 

DV, MV and SV each performed the best in each category respectively. 

6.2.2. Advanced Combined Use of UDF,CFD and ML for Airborne Transmission 

The second major contribution from this thesis was the development of a combined CFD, 

UDF, and ML approach for airborne transmission. Previous CFD and ML combined studies looked 

only at particle dispersion or contaminants. Traditional CFD methods rely on extensive 

computations, and it is difficult to combine experimental or empirical data into these CFD 
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simulations. The method developed in this work streamlined the process by combining CFD, UDF, 

and ML. 

Users of this new CBPT method, developed in this thesis, can directly incorporate 

experimental data or experimental relations without having to start from scratch in ANSYS. Users 

can work with the direct quantities of simulations and easily obtain the associated data. Users can 

also more readily writing code if they have distinct areas to work with where they know they can 

perform computations or do write data to files. 

6.2.3. Resources for Researchers to use HPC and CFD 

The third major contribution from this thesis was a step-by-step workflow and methodology 

for doing parallel processing on high-computational clusters (HPC). Specifically, the HPC used 

was ‘Compute Canada’ also known as the Digital Research Alliance of Canada. Users can easily 

follow the general steps to run many computational dynamics simulations by utilizing HPC 

clusters for things like CFD and MD. This study explains the basic concepts and techniques so that 

users can utilize parallel processing effectively. 

6.2.4. Development of Risk and Predictive Models 

The last major contribution was the development of two distinct risk models and their use in 

creating two predictive models with the aid of Machine Learning. The first model was the Spatial-

Temporal Risk (STR) model which uses risk factor values at respective cell locations over time to 

predict a 3D risk gradient over the domain. To create this STR model, the location, ambient 

temperature and time were used as input parameters and the particle risk factor was an output 

parameter. The second model was the Temporal-Regional Risk (TRR) model which filters the risk 

data for the highest relative risk values and determines the location and size of the region by 

approximating a rectangular prism region, referred to as a bounding box. To create this TRR model, 

the ambient temperature and time were used as input parameters and the particle risk factor, 

location and size of the bounded region were the output parameters. Both models (STR and TRR) 

were able to predict the relevant output parameters with reasonable percentage errors. 
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6.3.  Recommendations for Future Work 

6.3.1. Comparative Study of Ventilation Strategies  

While this thesis investigated an office room with a single occupant, future studies can expand 

to larger office rooms, classrooms, or scenarios with more occupants, and more complicated 

geometries. The time range of the simulations analyzed could also be much smaller, since the 

regional model develops low variance quickly as particles reach the bounds of the room. This is 

because the values for the bounding box will converge, as they are physically constrained by the 

size of the room domain. Smaller times would aid in more accurate temporal correlation between 

the variables can be established in the ML model. 

6.3.2. Advanced use of UDF and CFD 

Many researchers have conducted experimental studies for various theoretical models that can 

model complex flow phenomena relating to the flows [118–120]. Theoretical models to describe 

complex processes, such as evaporation and condensation, are built- into CFD simulations are 

useful and often very good, but they rarely match experimental results. Future UDFs can couple 

experimental results using empirical models to other theoretical models describing processes, such 

as evaporation or condensation, within the CFD simulation. These UDFs could add correction 

factors based on empirical data to various elements of the CFD simulation, or the empirical data 

could be used to simulate simplified lower fidelity models. Other uses for CFD can be to simulate 

events, flow profiles, or other conditions. For example, the breathing velocities can be modeled 

from experimental data, or breathing velocities of other occupants can be simulated and controlled, 

allowing CFD simulations to simply simulate injection or breathing events of multiple participants 

without having to utilize GUI based design. Velocity profiles at various locations in the model can 

be manually added as boundary conditions. Injections can also be done at certain times or trigger 

due to complex logic conditions. The specific particles from specific injection events can also be 

tracked. 

6.3.3. Resources for Researchers to use HPC and CFD 

Many first-time users of HPC clusters face a myriad of issues when learning to use the 

technology. Future work could focus on developing resources for a broad range of researchers, so 

that they have an easy way to learn about the technology instead of having to comb through 
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disparate documentation to learn how to open a file or learn formatting for a specific cluster text 

input. Easy to use scripts, macros or GUIs can be created so that first-time users can have an easier 

time utilizing the HPC technology. Guides for creating parallel processing systems, using multiple 

desktop computers, for local researchers who may not have access to larger organizations 

computational resources could also be developed. 

6.3.4. Expanding Input and Parameters of ML 

The ML model used in this study was limited in the variables explored. Future work could 

aim to incorporate a much wider range of input and output parameters in the ML model. For 

example, velocity, pressure, humidity, ventilation location, index patient location, occupant 

locations, among others. 
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Appendix A – Bash code to open Fluent Cas File 

#!/bin/bash 

 

#SBATCH --time=00-30:00                # Time (DD-HH:MM) 

#SBATCH --mem=16G                      # Total Memory (set to 0 for all node memory) 

#SBATCH --ntasks=4                     # Number of cores 

#SBATCH --nodes=1                      # Do not change (multi-node not supported) 

##SBATCH --exclusive                   # Uncomment for scaling testing 

##SBATCH --constraint=broadwell        # Applicable to graham or cedar 

 

module load StdEnv/2020 ansys/2021R2   # OR newer Ansys modules 

 

if [ "$SLURM_NNODES" == 1 ]; then 

  MEMPAR=0                               # Set to 0 for SMP (shared memory parallel) 

else 

  MEMPAR=1                               # Set to 1 for DMP (distributed memory parallel) 

fi 

 

rm -fv *_files/.lock 

MWFILE=~/.mw/Application\ Data/Ansys/`basename $(find $EBROOTANSYS/v* -maxdepth 0 

-type d)`/SolveHandlers.xml 

sed -re "s/(.AnsysSolution>+)[a-zA-Z0-9]*(<\/Distribute.)/\1$MEMPAR\2/" -i "$MWFILE" 

sed -re "s/(.Processors>+)[a-zA-Z0-9]*(<\/MaxNumber.)/\1$SLURM_NTASKS\2/" -i 

"$MWFILE" 

sed -i "s!UserConfigured=\"0\"!UserConfigured=\"1\"!g" "$MWFILE" 

 

export KMP_AFFINITY=disabled 

export I_MPI_HYDRA_BOOTSTRAP=ssh 

 

# Get the journal and .cas.h5 file from the command line arguments 

JOURNAL_FILE=$1 
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CAS_H5_FILE=$2 

 

fluent 3ddp -g -i $JOURNAL_FILE -t$SLURM_NTASKS -cnf=$SLURM_NODELIST -ssh << 

EOF 

/file/read-case $CAS_H5_FILE 

/solve/initialize/compute-defaults/flow 

/solve/iterate 100 

/file/write-data solution.dat 

EOF 
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Appendix B – Bash Code to Open Workbench Project File 

#!/bin/bash 

 

#SBATCH --time=00-03:00                # Time (DD-HH:MM) 

#SBATCH --mem=16G                      # Total Memory (set to 0 for all node memory) 

#SBATCH --ntasks=4                     # Number of cores 

#SBATCH --nodes=1                      # Do not change (multi-node not supported) 

##SBATCH --exclusive                   # Uncomment for scaling testing 

##SBATCH --constraint=broadwell        # Applicable to graham or cedar 

 

module load StdEnv/2020 ansys/2021R2   # OR newer Ansys modules 

 

if [ "$SLURM_NNODES" == 1 ]; then 

  MEMPAR=0                               # Set to 0 for SMP (shared memory parallel) 

else 

  MEMPAR=1                               # Set to 1 for DMP (distributed memory parallel) 

fi 

 

rm -fv *_files/.lock 

MWFILE=~/.mw/Application\ Data/Ansys/`basename $(find $EBROOTANSYS/v* -

maxdepth 0 -type d)`/SolveHandlers.xml 

sed -re "s/(.AnsysSolution>+)[a-zA-Z0-9]*(<\/Distribute.)/\1$MEMPAR\2/" -i 

"$MWFILE" 

sed -re "s/(.Processors>+)[a-zA-Z0-9]*(<\/MaxNumber.)/\1$SLURM_NTASKS\2/" -i 

"$MWFILE" 

sed -i "s!UserConfigured=\"0\"!UserConfigured=\"1\"!g" "$MWFILE" 

 

export KMP_AFFINITY=disabled 

export I_MPI_HYDRA_BOOTSTRAP=ssh 

 

runwb2 -B -E "Update();Save(Overwrite=True)" -F $1 
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Appendix C – UDF Code 

#include "udf.h" 

#include <stdio.h> 

#include <math.h> 

#include <stdlib.h> 

#include <string.h> 

#include <sys/stat.h> 

#include <unistd.h> 

 

#define PW 0.1 //Worth of a single particle 

#define MAX_P_Diam (100*10^-6) 

#define MIN_P_Diam (1*10^-6) 

 

#define sig_A (0.1) 

#define sig_B (0.85) 

#define sig_K (0.6) 

#define sig_centre (6) 

 

char *fileNamePrefix = "UDM_DATA_A1_t"; 

char *folderName = "UDM_DATA_A1"; 

 

real save_interval = 1; //Interval between saves in seconds 

 

static int file_num = 0; //current number of files saved 

static int auto_save = 1; //Flag to toggle auto saving 

int ZONE_ID = 14; 

 

//Function Declarations 

double scalingFactor(double particle_size, double max_size, double min_size); 

void moveFileToFolder(char *fileName, char *folderName); 

void encode_2d_to_1d(real **arr_2d, int rows, int cols, real *encoded); 

void decode_1d_to_2d(real *encoded, int rows, int cols, real **decoded); 

void free_2d_array(real **arr, int rows); 

real** create_2d_array(int rows, int cols); 

 

real** create_2d_array(int rows, int cols) { 

    real **arr = (real **)malloc(rows * sizeof(real *)); 

    for (int i = 0; i < rows; i++) { 

        arr[i] = (real *)malloc(cols * sizeof(real)); 

    } 

    return arr; 

} 

// Function to encode a 2D array into a 1D array 

void encode_2d_to_1d(real **arr_2d, int rows, int cols, real *encoded) { 
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    for (int i = 0; i < rows; i++) { 

        for (int j = 0; j < cols; j++) { 

            encoded[i * cols + j] = arr_2d[i][j]; 

        } 

    } 

} 

 

// Function to decode a 1D array into a 2D array 

void decode_1d_to_2d(real *encoded, int rows, int cols, real **decoded) { 

    for (int i = 0; i < rows; i++) { 

        for (int j = 0; j < cols; j++) { 

            decoded[i][j] = encoded[i * cols + j]; 

        } 

    } 

} 

void moveFileToFolder(char *fileName, char *folderName) { 

    // Check if the folder exists, and create it if it doesn't 

    struct stat st; 

    if (stat(folderName, &st) == -1) { 

        // Folder doesn't exist, create it 

        if (mkdir(folderName, 0777) != 0) { 

            fprintf(stderr, "Failed to create folder\n"); 

            return; 

        } 

    } 

    // Build the new file path 

    char newFilePath[256]; // Adjust the buffer size as needed 

    snprintf(newFilePath, sizeof(newFilePath), "%s/%s", folderName, fileName); 

 

    // Move the file 

    if (rename(fileName, newFilePath) != 0) { 

        perror("rename"); 

        exit(EXIT_FAILURE); 

    } 

} 

double scalingFactor(double particle_size, double max_size, double min_size) { 

    // Calculate the scaled particle size between 0 and 1 

    double scaled_particle_size = (particle_size - min_size) / (max_size - min_size); 

 

    // Calculate the scaling factor using the sigmoid function 

    double scaling_factor = ((1.0 + sig_A) / (sig_B + exp(-sig_K * (scaled_particle_size - sig_centre)))); 

 

    return scaling_factor; 

} 

void free_2d_array(real **arr, int rows) { 
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    for (int i = 0; i < rows; i++) { 

        free(arr[i]); 

    } 

    free(arr); 

} 

//HOOKS 

DEFINE_EXECUTE_ON_LOADING(loading_func, libname) 

{ 

    #if !RP_NODE 

    /* either serial or host process is involved */ 

    Message("*************************************\n"); 

    Message("\n\n"); 

 

    if(!auto_save) 

    { 

        Message("Autosave is Disabled\n"); 

    } 

    else 

    { 

        Message("Autosave is Enabled\n with an interval of %g s",save_interval); 

    } 

 

    Message("\n\n"); 

    Message("*************************************\n"); 

    #endif   

} 

DEFINE_INIT(my_init, domain) 

{    

    #if !RP_NODE 

    file_num = 1; 

    #endif 

 

    #if !RP_HOST 

    /* Initialize UDM values for all cells of each node */ 

    cell_t cell; 

    Thread *thread; 

     

    thread_loop_c(thread, domain) 

    { 

        begin_c_loop_all(cell,thread) 

            { 

                C_UDMI(cell, thread, 0) = 0.0; /* Initialize UDM value to zero */ 

                C_UDMI(cell, thread, 1) = 0.0; 

            } 

        end_c_loop_all(cell,thread) 
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    } 

    Message("\nInitilazed all UDMs on node %i\n",myid); 

    #endif 

} 

 

DEFINE_DPM_SCALAR_UPDATE(track_particles, cell, thread, initialize, particle) 

{ 

    #if !RP_HOST 

 

    real p_diam = 0; 

    double SF = 0; 

 

    p_diam = P_DIAM0(particle); 

    SF = scalingFactor(p_diam, MAX_P_Diam, MIN_P_Diam); 

     

    C_UDMI(cell, thread, 1) += PW; /* Increment UDM value by PW for each particle */ 

    C_UDMI(cell, thread, 0) += (PW * SF); /* Increment UDM value by PW*scaling factor for each particle */ 

    #endif 

} 

 

DEFINE_ON_DEMAND(toggle_autosave) 

{  

    #if !RP_NODE 

    char toggle[10]; 

    auto_save = (auto_save==1) ? 0 : 1; 

    switch (auto_save){ 

        case 0: Message("Autosave is now *Disabled*\n"); 

        break; 

        case 1: Message("Autosave is now *Enabled*\n"); 

        break; 

    } 

    #endif 

} 

DEFINE_ON_DEMAND(print_udm_values) 

{    

    #if !RP_HOST 

    Thread *thread; 

    cell_t cell; 

    real xc[ND_ND]; 

 

    Domain *domain;          /* domain is declared as a variable   */ 

    domain = Get_Domain(1);  /* returns fluid domain pointer       */ 

    //determine the number of useful cells for each node 

    #endif 
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    //determine file name 

    #if !RP_NODE 

    char filename[100]; 

    snprintf(filename, sizeof(filename), "%s_%d.txt", fileNamePrefix, file_num); 

    FILE *fp = NULL; 

    #endif 

 

    //Node Variables 

    #if PARALLEL 

    int size; 

    int var_size = 5; //x, y, z, UDM_Value, PW Value 

    real ** data; 

    real *data_1D; 

    int pe; 

    #endif 

 

    //Find thread for current node 

    #if !RP_HOST 

        thread = Lookup_Thread(domain,ZONE_ID); 

    #endif 

 

    //Open or create file on Host/Serial 

    #if !RP_NODE 

    if ((fp = fopen(filename, "w"))==NULL) 

    { 

        fprintf(fp, "*** t = %d ***\n",file_num); 

    } 

         

    else 

    { 

    } 

        

    #endif 

 

    //save the data 

    #if RP_NODE 

    size=THREAD_N_ELEMENTS_INT(thread); 

    data = create_2d_array(size, var_size); 

    data_1D = (real *)malloc(size * var_size * sizeof(real)); 

    //array = (real *)malloc(size * sizeof(real)); 

 

    begin_c_loop_int(cell,thread) 

    { 

        C_CENTROID(xc,cell,thread); 

        //array[cell] = C_UDMI(cell, thread, 0); 
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        data[cell][0] = xc[0]; 

        data[cell][1] = xc[1]; 

        data[cell][2] = xc[2]; 

        data[cell][3] = C_UDMI(cell, thread, 0); 

        data[cell][4] = C_UDMI(cell, thread, 1); 

    } 

    end_c_loop_int(cell,thread) 

         

    encode_2d_to_1d(data,size,var_size,data_1D); 

 

    /* Set pe to destination node */ 

    /* If on node_0 send data to host */ 

    /* Else send to node_0 because */ 

    /*   compute nodes connect to node_0 & node_0 to host */ 

 

    pe = (I_AM_NODE_ZERO_P) ? node_host : node_zero;  

 

    PRF_CSEND_INT(pe, &size, 1, myid); 

    PRF_CSEND_REAL(pe, data_1D, size* var_size, myid); 

 

    //free(data_1D);/* free array on nodes after data sent */ 

    //free_2d_array(data,size); 

 

    if (I_AM_NODE_ZERO_P)  

    compute_node_loop_not_zero (pe) 

    { 

        PRF_CRECV_INT(pe, &size, 1, pe); 

        real *data_1D = (real *)malloc(size * var_size *sizeof(real)); 

        PRF_CRECV_REAL(pe, data_1D, size* var_size, pe); 

             

        PRF_CSEND_INT(node_host, &size, 1, myid); 

        PRF_CSEND_REAL(node_host, data_1D, size* var_size, myid); 

    } 

    #endif 

 

    #if RP_HOST 

    compute_node_loop (pe) 

    { 

       

        PRF_CRECV_INT(node_zero, &size, 1, node_zero); 

        data_1D = (real *)malloc(size * var_size * sizeof(real)); 

        PRF_CRECV_REAL(node_zero, data_1D, size* var_size, node_zero); 

 

        data = create_2d_array(size,var_size); 

        decode_1d_to_2d(data_1D, size, var_size, data); 
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        for (int i=0; i<size; i++) 

        { 

            //fprintf(fp, "%g\n",array[i]);  

            if (data[i][3] != 0) 

            { 

                fprintf(fp, "%g, %g, %g, %g, %g\n",data[i][0],data[i][1],data[i][2],data[i][3],data[i][4]);  

            }   

        } 

    } 

    #endif /* RP_HOST */ 

 

    free(data_1D); 

    free_2d_array(data,size); 

 

    #if !RP_NODE /* SERIAL or HOST */ 

    fclose(fp); /* Close the file that was only opened if on SERIAL or HOST */ 

    moveFileToFolder(filename, folderName); 

    file_num++; 

    Message("Done\n"); 

    #endif 

 

} 

 

DEFINE_EXECUTE_AT_END(fileSave) 

{ 

    //every 10 flow iterations is 100dpm 

    //every dpm iterations is  0.002s 

    //thus, every 10 flow is 0.2s for flow 

    const real dpm_secs_per_10_iterations = 0.2; 

    const real flow_iterations = 10; 

    static int iterations = 0; 

    iterations++; 

 

    int dpmTime = iterations * dpm_secs_per_10_iterations/flow_iterations; 

    int dpmSaveFlag = dpmTime >= save_interval; 

 

    if(dpmSaveFlag && auto_save) 

    {    

       iterations = 0;  

 

        #if !RP_HOST 

        Thread *thread; 

        cell_t cell; 

        real xc[ND_ND]; 
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        Domain *domain;          /* domain is declared as a variable   */ 

        domain = Get_Domain(1);  /* returns fluid domain pointer       */ 

        //determine the number of useful cells for each node 

        #endif 

 

        //determine file name 

        #if !RP_NODE 

        char filename[100]; 

        snprintf(filename, sizeof(filename), "%s_%d.txt", fileNamePrefix, file_num); 

        FILE *fp = NULL; 

        #endif 

 

       //Node Variables 

        #if PARALLEL 

        int size; 

        int var_size = 5; //x, y, z, UDM_Value, PW Value 

        real ** data; 

        real *data_1D; 

        int pe; 

        #endif 

 

        //Find thread for current node 

        #if !RP_HOST 

            thread = Lookup_Thread(domain,ZONE_ID); 

        #endif 

 

        //Open or create file on Host/Serial 

        #if !RP_NODE 

        if ((fp = fopen(filename, "w"))==NULL) 

        { 

            fprintf(fp, "*** t = %d ***\n",file_num); 

        } 

             

        else 

        { 

        } 

         

        #endif 

 

        //save the data 

        #if RP_NODE 

        size=THREAD_N_ELEMENTS_INT(thread); 

        data = create_2d_array(size, var_size); 

        data_1D = (real *)malloc(size * var_size * sizeof(real)); 
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        //array = (real *)malloc(size * sizeof(real)); 

 

        begin_c_loop_int(cell,thread) 

        { 

            C_CENTROID(xc,cell,thread); 

            //array[cell] = C_UDMI(cell, thread, 0); 

            data[cell][0] = xc[0]; 

            data[cell][1] = xc[1]; 

            data[cell][2] = xc[2]; 

            data[cell][3] = C_UDMI(cell, thread, 0); 

            data[cell][4] = C_UDMI(cell, thread, 1); 

        } 

        end_c_loop_int(cell,thread) 

             

        encode_2d_to_1d(data,size,var_size,data_1D); 

 

        /* Set pe to destination node */ 

        /* If on node_0 send data to host */ 

        /* Else send to node_0 because */ 

        /*   compute nodes connect to node_0 & node_0 to host */ 

 

        pe = (I_AM_NODE_ZERO_P) ? node_host : node_zero;  

 

        PRF_CSEND_INT(pe, &size, 1, myid); 

        PRF_CSEND_REAL(pe, data_1D, size* var_size, myid); 

 

        //free(data_1D);/* free array on nodes after data sent */ 

        //free_2d_array(data,size); 

 

        if (I_AM_NODE_ZERO_P)  

        compute_node_loop_not_zero (pe) 

        { 

            PRF_CRECV_INT(pe, &size, 1, pe); 

            real *data_1D = (real *)malloc(size * var_size *sizeof(real)); 

            PRF_CRECV_REAL(pe, data_1D, size* var_size, pe); 

                 

            PRF_CSEND_INT(node_host, &size, 1, myid); 

            PRF_CSEND_REAL(node_host, data_1D, size* var_size, myid); 

        } 

        #endif 

 

        #if RP_HOST 

        compute_node_loop (pe) 

        { 
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            PRF_CRECV_INT(node_zero, &size, 1, node_zero); 

            data_1D = (real *)malloc(size * var_size * sizeof(real)); 

            PRF_CRECV_REAL(node_zero, data_1D, size* var_size, node_zero); 

 

            data = create_2d_array(size,var_size); 

            decode_1d_to_2d(data_1D, size, var_size, data); 

 

            for (int i=0; i<size; i++) 

            { 

                //fprintf(fp, "%g\n",array[i]);  

                if (data[i][3] != 0) 

                { 

                    fprintf(fp, "%g, %g, %g, %g, %g\n",data[i][0],data[i][1],data[i][2],data[i][3],data[i][4]);  

                }   

            } 

        } 

        #endif /* RP_HOST */ 

 

        free(data_1D); 

        free_2d_array(data,size); 

         

        #if !RP_NODE /* SERIAL or HOST */ 

        file_num++; 

        fclose(fp); /* Close the file that was only opened if on SERIAL or HOST */ 

        moveFileToFolder(filename, folderName); 

        Message("Done\n"); 

        #endif 

 

    } 

} 

 

 


