
MULTIAGENT SYSTEMS:

GAMES AND LEARNING FROM STRUCTURES

JING YAN

A DISSERTATION SUBMITTED TO

THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

GRADUATE PROGRAM IN

COMPUTER SCIENCE AND ENGINEERING

YORK UNIVERSITY

TORONTO, ONTARIO

OCTOBER 2013

@2013 JING YAN

r

Abstract

Multiple agents have become increasingly utilized in various fields ~or both physical
robots and software agents, such as search and rescue robots, automated driving,
auctions and electronic commerce agents, and so on. In multiagent domains, agents
interact and coadapt with other agents. Each agent's choice of policy depends on the
others' joint policy to achieve the best available performance. During this process,
the environment evolves and is no longer stationary, where each agent adapts to
proceed towards its target. Each micro-level step in time may present a different
learning problem which needs to be addressed. However, in this non-stationary
environment, a holistic phenomenon forms along with the rational strategies of all
players; we define this phenomenon as structural properties.

In our research, we present the importance of analyzing the structural prop­
erties, and how to extract the structural properties in multiagent environments.
According to the agents' objectives, a multiagent environment can be Classified as
self-interested, cooperative, or competitive. We examine the structure from these
three general multiagent environments: self-interested random graphical game play­
ing, distributed cooperative team playing, and competitive group survival. In each
scenario, we analyze the structure in each environmental setting, and demonstrate
the structure learned as a comprehensive representation: structure of players' ac­
tion influence, structure of constraints in teamwork communication, and structure
of inter-connections among strategies. This structure represents macro-level knowl­
edge arising in a multiagent system, and provides critical, holistic information for
each problem domain. Last, we present some open issues and point toward future
research.

11

f I

Acknowledgements

I wish to express my sincere gratitude to my supervisor, Nick Cercone, for his
support and guidance during the completion of this dissertation. He graciously
allowed me the freedom to explore my interests, with understanding and patient
encouragement, as well as intellectual support.

To my dissertation supervisor committee members, Dr. Yves Lesperance and
Dr. Parke Godfrey, I express my thanks for their insights, comments, suggestions
and for their commitment to helping me be a thorough researcher and better writer,
making my dissertation clear and strong. To my External examiner Dr. Corey Butz,
I appreciate that he made this special trip here for my defence and providing me
with his advice and showing me how to improve myself to be a better and more
precise researcher and writer. To my Internal examiner Dr. Henry Kim, and lastly
to the Dean's representative Dr. Suprakash Datta, I express my thanks for their
insights and comments, and for their suggestions.

To my parents, for their continued and unwavering support in helping and en­
couraging me to realize my goals. For their love, understanding, support, and pa­
tience without which this work would not have been possible.

To my best friends, Mark, Jim, Erich, for their invaluable support, encour­
agement, tolerance and understanding; all of you always gave me your time and
attention in my hardest times.

To colleagues and collaborators, Matt and Albert, for providing me feedback,
discussion and technical support to make my work interesting and bringing balance
and richness to my doctoral experience. To Dr. Anestis Topsis, I express my appre­
ciation for his encouragement during my writing process. And to many others, all
of whom gave me support and made my Ph.D dream possible. Thank you!

iii

/I
I

iv

It is not the mountain we
conquer - but ourselves.

Sm EDMUND HILLARY

! I

Contents

.A.bstract

Acknowledgernent

Table of Contents

:List of Figures

List of Tables

1 Introduction ·
1.1 Rationale
1.2 Objecti'iT!
1.:3 (jontrihutions
1.4 Outline

iii

iv

vii

ix

x

1
2
3
4
6

2 'Background: l\:Iultiagent Learning, :Framework and Systems 7
· 2. l General IVlu1tiagent Learning .Approaches 8
· 2.2 Single .Agent Learning 9

2.:3

2.4
2.5

2.2.l fl.Jarkov Dedsion Process 9
2.2.2 Q-learning 12
General Framework of IVIA.L
2.3.l ivlnt.rix Gan1es
2.:3.2 Stochastic Garnes ..
.\:lultiagent Systems and H.elated \Vorl-;:
Summary

14
16
21
25
27

3 Methodology 29
'.3.l Re~earch J\Jet.hodology and Ftarn<:'work 29
~3.2 Understanding the :rvlultiagent Problem: Structure and Dynamics 31

v

f I

5

6

:3;2.1 La.rge Scale of Agent Systern's Structure Characteristics 31
:1.2.2 Ileplicator Dynamics 35

:3.:3 Si.nrrn1ary

Structure in G-raphical Games
4.1 Graphical Garnes
4..2 Learning Structure Algorithrn:]\JDH.LSA
i.1.:3 Results and Analysis
·-1. 4 · Co1nparison
!.1.5 Concluding Remarks

Structure in Teamwork
5.1 A.d hoe Networks ...
5.2
~1.3

5.4
5.5

llnt.ionale and J-[ypotl.1.esis .
.An Adaptive I'earnwork Algor.ithm: Static Estin1ated (SE)-Adaptive
Experiment Results and Analysis
Conducling Ilt~marks

Structure Learning in Artificial Life Sinmla.tion
G. l Rationale for Artific.ia1 Life Paradigm
6.2 ALGAE Systen1 Design

6.2J. Description
6.2.2 Pseudocod.c and H.u.n Process

G.:J A.LG.AE Simulation
(L~1.l Ex:perilnent Setup
f.U.2
G.:L~

Experimental llesults and Analysis
Fittest Gene Discussion

40

41
42
44
47
51
51

54
55
55
57
58
61

62
63
63
64
72
73
74
76
77

6.4 Bayesia.n Netv .. rorks structure representation of Evolutionary I"rocess 80
6.4.l Independence 'fest 81
6.4.2 Bayesian Network. Lea.ruing A.lgorithr.n: :E-algorith.n1
6.4.:~ Result Discussion .

G.5 Concluding Remarks

83
89
92

7 Conclusions and Future Research 94
95
98

7.1 Contributions
7.2 A Cn.ifi.cd I\:lnltiagent Fr<une\vork
7 .:3 F'ut11re f{ .. esea.rch

7.3. l Scalability
7.:3.2 Adaptive Dynar.nics
7.~1.:J Co1nmunicatio~1 ...

vi

101
103
103
104

I'

7.:3.4 Evaluatio11
7 A In Closing

A Source) Code: MDRLSA

B Source Code: BANANA

C ALGAE Manual

D ALGAE Source Code

Bibliography

vii

105
105

106

109

115

120

155

f I,

List of Figures

2.1 Ivlnltiagent Ftan1e\vork
2.2 Stochastic Games include :rvIDPs and 1vlatrix Gaines

~).l Pub ch()ice (Artificial data): fo). Normc).l distribution: C<:).ch customer

chooses a pub uniformly at ra.ndon1, ignoring how many others are currently

there; (b). Power la\v cHstribuhon: customer chooses a pub proportionally

(1.l

5.2

G.1
6.2
6.;3
6.4
6.S
6.6
6.7
G.8

7.1

C.l

to its current popularity count; (c). Log-.log scale of nmnber of

and uu.:mber of pubs.

Replicator dynamics simulation

D;:1U1. sarnpfo from a 6-pla~yt=ff random gr;:_i.phical game

nJJ player' action rnapping
Convergence of gradient descent ·with learning rate (} ,,,,,, O.Cn
G player graphical ga:r.ne st:rnctu:re

IvU::HlLSA learned. graphical structures ..

.Full and chain topology: a.gent nu1.nbt:!r: 10-15

Hybrid topology~ agent munber: 10-19 .

Mut:ion direction cow~rage sector grn.ph

A.LG AE world
ALCAJ.;~ Interface \\·:ith rene\va.hle plant resources

ALGAE interface with non-renmvable honey resources

ALGAE fina.1 sta.ge in growing p.la.nts wor.ld

A .. LGA.E finaJ si·.age in hc1ney world

6.-·forrn
BN structure of ALGAE genetic characteristics

:Open-Clof:'e' system diagram

ALGAE interface

viii

custonJ(~rs

15
16

33
37

43
45
46
49
52

60
60

69
72
75
76
77
78
87
91

101

118

11

C.2 ALGAE f:;etup .

C.~) ALGAE output: .

ix

119
119

f I

List of Tables

Rand.orn graphical games experin1ental details

G.l lD·-bit chromosome descriptor
6.2 10 Trials Fitness Gene Profiles Datasets Logs
G.a Observed contingency table

, 6.4 Expected contingency table
6.Zi Expected frequencies on the assnrnption of independence .

x

51

65
79
81
82
82

r'

Chapter 1

Introduction

What are the differences between single agent learning versus multiagent learning?

Single agent learning is a process where one single agent improves its performance

through its own experience; whereas, multi-agent learning describes a process where

multiple agents perform in the same environment, and each agent learns along with

o~her agents to achieve each individual's agenda. Mature research exists in sin­

gle agent learning, such as supervised learning (regression modelling and classifica­

tion), unsupervised learning (clustering), and reinforcement learning (learning from

'rewards given). In contrast, multiagent learni~g, a relatively new field, mostly ex­

tends from a single agent reinforcement learning perspective, and the goal is to learn

how to perform and achieve the highest rewards under coordination/ constraints of

other agents who perform jointly and simultaneously. Another branch of multia­

gent learning research, influenced by game theorists, focuses on strategy selection,

which studies how multiple players play in a game and choose best strategies to

achieve their goals. Strategy selection is a critical process to analyze the best strat­

egy, for example, the minmax-Q (Littman, 1994) strategy describes a process which

1

is to choose the maximum payoff in the worst/minimum situation. The purpose

of analyzing this difference is to examine what the important breakthrough is in

both communities, and what may be missing in addressing/solving some bottleneck

problems.

1.1 Rationale

Multiple agents become increasingly important in various applications for both phys­

ical robots and software agents, such as, robot soccer, search and rescue robots, au­

tomated driving, auctions and electronic commerce agents, and so on. The merits

of game theory influence computer science researchers in non-human-player game

playing. An agent, a non-human player, observes the environment and chooses an

action to perform. Commonly, agents have goals, assumptions, algorithms for learn­

ing and reasoning, and conventions. Learning through single agent tasks has been

studied extensively in the reinforcement learning field, in which an agent acts alone

in a stationary environment. In multiagent domains, agents interact with others,

and co-adapt with others, then act on the best choice available. Since all the agents

are evolving, the environment is no longer stationary, and this dynamic brings in

a difficult learning problem that violates the basic stationary assumption of tradi­

tional techniques for behaviour learning. Each agent's choice of policy depends on

the others' joint policy, which also aims to achieve the best available performance.

Our work focuses on understanding the dynamics in a multigent system, in order

to improve the strategic decision-making and learning process of agent behaviours,

whose target is to select the best strategies, and adapt to unforeseen difficulties and

changes in the environment.

2

', 1

1.2 Objective

An agent can learn through experience from its own actions and associated effects,

while l~arning from observation of other agents' experience. Note that an agent

should effectively associate similar patterns and build knowledge: instead of merely

keeping a record of the reward history for all agents. By using this knowledge, the

agent 'Can efficiently explore the strategy space. Exploration vs. exploitation is a

critical choice in the agent learning process.

A complex non-stationary environment provides a dynamic learning domain.

This domain is composed of other agents' diverse states. Thus, the complexity of

the domain grows with the increase of the number of agents. Our intention is to

seek an answer to the following questions:

How can an agent perform robustly in the various types of multiagent

environment, so that each agent can efficiently observe other agents be­

haviours: and learn from its observation in order to act (or adapt) effec­

tively in the complex non-stationary environment? What is the macro­

level phenomenon of the whole system, and how can this understanding

of phenomenon improve individual performance?

Ultimately, through a learning period and a series of actions, agents can achieve

top-ranked performance.

In traditional machine learning, the single agent learning process is designed to

achieve one determined goal through exploration, with or without supervision. A

rational decision improves performance at each step. However, when a single agent

explores in a multiagent environment, a new dynamic occurs wherein every agent

in this environment acts to optimize its own rewards at the state-of-art priority (in-

3

f I

terest). Therefore, there may exist a current temporary goal arising in the situation

which may not lie in the same direction of a simple agent's objective learning curve.

Further:more, unknown factors in the environment add another level of difficulty to

an agent who tries to maximize its performance. Assuming each agent is rational, we

can model other agents' behaviours and predict their behaviours with sufficient con­

fidence. However, if the assumption of rationality does not hold, this problem can

be seen as a new problem where the original model with a certain objective function

does not hold; thus, a new dynamic model is required to tackle this problem.

In addition to this dynamic occurrence arising in multiagent learning, another

critical issue is how an agent balances between exploration and exploitation in the

environment. The objective of exploration is to obtain maximum information about

the environment; however, exploitation, as a result of exploration, is the ultimate

required action. Thus, we include both these factors in the objective function which

measures the satisfactory of agents' performance. While performing, this learning

system is a closed system within a certain limited time; if it fails to reach satisfac-

. tory performance, the system changes to open stage and modifies required learning

parameters. This whole process repeats in a cycle, and the learning process is for­

mulated continuously.

1.3 Contributions

We provide the following contributions to the literature: 1) present the importance

of analyzing the structural properties in multiagent problems; 2) provide a novel

structure learning algorithm (MDRLSA) to learn a compact representation in ran­

dom graphical games; 3) introduce an adaptive teamwork algorithm (SE-adaptive)

4

I '

for cooperative agents who choose an optimal level of teamwork in varying density of

constraint structures; and 4) present a competitive multiagent simulation platform

(ALGAE), and learn a Bayesian Network structure representation that is revealed

among agents' strategies.

In one aspect, multiagent learning research focuses on learning from individual

agent's past experience or modeling other agents' behaviors to improve performance.

In the other aspect, research on multiagent systems addresses particular problems

from a system perspective, with more focus on a number of agents' interactions, and

provides optimal solutions. However, in a non-stationary multiagent environment,

each agent adapts to proceed towards its target. Each micro-level step in time

may present a different learning problem which needs to be addressed. In this

non-stationary environment, a holistic phenomenon forms along with the rational

strategies of all players; we define this phenomenon as structural properties. In

this dissertation, we present how to extract the structural properties in multiagent

problems.

A multiagent environment can be classified as self-interested, cooperative, or

competitive according to agents' goal. Here, a self-interested environment differs

from a competitive, where all agents are not competing with others as a general-

sum game as in a competitive environment. Thus, we examine the structure from

these three general multiagent environments: self-interested random graphical game

playing, distributed cooperative team playing, and competitive group competition.

In each scenario, we analyze the structure in each environmental setting and demon-

strate a structure learned as a comprehensive representation: structure of players'

action influence, structure of constraints in teamwork communication, and structure

of inter-connections among strategies. This structure represents macro-level knowl-

5

ff'
I

edge arising in a multiagent system, and provides critical, holistic information for

each problem domain.

1.4 Outline

In the following chapters, we first review the related work in multiagent learning,

framework and systems. Then, before we present our perspective on how to tackle

multiagent systems, we analyze the characteristics of various scales of a multiagent

learning problem from a holistic perspective.

After revealing the important characteristics which exist among multiple player

games 'in Chapter :3, we further explore the structural connection of mutual influence

between players' action choices in game-playing in Chapter 4. In Chapter 5, we

explore team-playing games, how structure matters to achieve the best exploration

strategy in various network connections, in order to balance the time consumption

and overall payoff. In Chapter G, we present a simulation of multiagent systems in

a competitive environment, artificial life, where we analyze what we can learn from

survivors' fitness through a graphical representation: Bayesian Networks. In our

last chapter, we present some open issues and point toward future research.

6

Chapter 2

Background: Multiagent

Learning, Framework and

Systems

A multiagent system (MAS) (Stone and Veloso, 2000; Wooldridge, 2008; Shoha.m

and Leyton-Brown, 2009) has a broad set of definitions; each definition leads to

different constraints to solve MAS tasks. The goal of machine learning is to build

intelligent programs which can solve problems after a learning and evolving process.

This intelligent program is often called an "agent".

An agent is a computational application that is designed to automate certain

tasks with a guiding intelligence, to achieve a result. A multiagent environment

is one in which more than one agent acts while agents interact with one another

to perform tasks. Moreover, agents may or may not know everything about the

environment. An agent learns by interacting in its environment and by observing

7

! /

the effect of these interactions. This learning, while performing in the environment,

is the key to accumulating experience and forming knowledge through performance.

2.1 General Multiagent Learning Approaches

Multiagent learning (MAL) (Shoham et a.I., 2007; Stone and Veloso, 2000; Panait

and Luke, 2005) has a long history in the game theory field, as well as in the machine

learning community. In MAL, agents are given feedback about their behaviors as re­

wards or penalties in a given situation. Thus, reward-based methods are widely used

in this field, including two major streams: reinforcement learning (RL) (Sutton and

Barto, 1998) which estimates value functions, and evolutionary computation (EC)

which directly learn behaviors using stochastic search methods. The similarities

and differences between these two classes of learning methodology have generated

a rich literature, and some address both classes, such as the bucket-brigade algo­

rithm (Holland, 1985), the Samuel system (Grefenstette et al., 1990), and the recent

Stochastic Direct Reinforcement policy gradient algorithm (Moody et al., 2004).

Evolutionary Computation is a family of mechanisms inspired by biological evo­

lution such as reproduction, mutation, recombination, natural selection and survival

of the fittest. Candidate solutions to the given problem play the role of individuals

in a population, and the cost function (also calls "fitness function") determines the

environment within which the solutions "live". Then evolution of the population

takes place .to select and continue to refine the population until time is exhausted,

or an optimal solution is discovered.

Coevolutionary algorithms (CEAs) naturally apply evolutionary computation

to refine multi-agent behaviors. In a CEA, the fitness of an individual is both

8

f I

subjective and context-sensitive, based on its iteration with other individuals in the

population. In competitive coevolution, individuals benefit at the expense of their

components, but in cooperative coevolution (CCE), individuals succeed and fail

together in collaboration. Generally, cooperative coevolution algorithms (CCEAs)

solve a problem starting by decomposing the problem, and then assigning each

subcomponent to a separate population of individuals (Potter and De .Jong, 2000).

Before we get into the learning process for multiple agents, we first examine how

a single agent learns and evolves in an environment.

2.2 Single Agent Learning

One interesting problem arising along with this agent reinforcement learning process

is the trade-off between exploration and exploitation (Sutton and Barto, 1998). Once

an agent learns a certain action which has performed well, should an agent exploit

this action since it is known to receive a decent reward? Or should the agent

explore other possibilities in order to seek a better reward? Obviously, exploring is

definitely a good tactic sometimes, but without a balance between exploration and

exploitation, agents will not learn successfully. The common way to achieve a good

balance is to try a variety of actions while progressively favoring those producing the

most reward. In this section, we examine the most influential work in RL: temporal

difference learning and Q-learning.

2.2.1 Markov Decision Process

An agent learning process can be separated into the following steps:

9

f I

• Observe the surrounding environment;

• Decide an action (or "strategy") according to certain criteria;

• Perform the action;

• Agent receives feedback, rewards or penalty, from the environment;

• Information about experience is recorded. In detail, the experience includes

the environment situation, the action chosen, and the feedback received.

Eventually, an agent can learn an optimal decision policy which performs the best

in a certain environment, by performing actions and evaluating the results related.

Markov decision processes are the foundation for research in single agent learning.

A Markov decision process (MDP) (Sutton and Barto, 1998;Belhnan, 19.57) is a

4-tuple, (S, A, T, R), where,

• S is the finite set of the states;

• A is the finite set of actions;

• T : S x A x S --+ [O, 1] is a transition function, which defines a probability

distribution over next states as a function of the current state and the agent's

action:

Vs E S,Va EA, LT(s,a,s') = 1;
s'ES

• R : S x A--+ IR is a reward function, which defines the reward received when

selecting an action from the given state.

At time t, the agent receives the reward rt= R(st, at), and the agent observes

a new state st+1 , which is drawn from the probability distribution specified by

10

'!

In general, the transition function T and the reward function R are not known

in advance. Thus, the goal of a learning agent in an MDP is to learn a policy 7r

to maximize its long-term reward R based on the only samples received. A policy

7r is defined to map the probability of selecting an action from a particular state.

Formally, 7r E S x A---+ [O, 1], where Vs E S, l:aEA 7r(s, a) = 1.

Two common ways to formulate the long-term reward are the discounted reward

function and the average reward function. Define V1r(s) as a policy's state value

function, and E(rt I s0 = s, 7r) as the expected reward received at time t given the

initial state s and the agent follows the policy 7r. The average reward is formed as:

T 1
V1r(s) = lim 2:-TE(rt I s0 = s, 7r),

T-too
t=O

(2.1)

which is under a common assumption that the MDP is a unichain. The unichain

assumption is that the Markov chain induced by every stationary policy (perhaps

randomized) has only one ergodic class of states and, perhaps, some transient states.1

The discounted reward is described as follows:

00

V1r(s) = L "lE(rt I s0 = s,7r),1' E [O, 1). (2.2)
t=O

1' is a discount factor, which accumulates the immediate reward with probability 1'

instead of a larger future utility. Temporal difference learning describes a class of

algorithms that adopt this discounted reward formulation.

1 An MDP is unichain if and only if, for all policies, there exists an ergodic set of states (i.e.,
any state in the set can be reached with non-zero probability from any other state in the set), and
a.ll states outside this set a.re tra.nsient (i.e., after some finite point in time it will never be visited
again).

11

! !

The Markov decision process is under the Markov assumption, which generally,

requires that the next state and reward to the agent depend only on the current

state and agent's action. Formally, we state this property of MDP as follows.

Definition 1 A decision process is Markovian if and only if, the sequence of states

{st E, S), actions (at E A), and the rewards {rf ER}, satisfies

P { t t I t-1 t-1 o o} p { t t I t-1 t-1} r s = s, ri = ri s , a , ... , s , a = r s = s, ri = ri s , a .

An agent's selection of actions is Markovian if and only if,

that is, only if the agent's next action depends only on the current state.2

We also refer to a Markovian process as stationary, and in the multiagent frame-

work of stochastic games, this property does not hold in a non-stationary environ-

ment.

2. 2. 2 Q-learning

Q-learning is the most significant breakthrough as an off-policy Temporal Difference

(TD) control algorithm. The simplest, one-step Q-learning is defined as follows:

2Definition l, 2, :3, .J, [), 6, are adopted from the formulation presented in Bowling, 2003, and
Definition l, G are based on Sutton and Barto, 1998, Bellman, 1.%7.

12

f I

where a is the learning rate, 0 < a < 1; when a is set to 0, it means that the

Q-value is never updated and nothing is learnt; while a is set to 0.9, it means that

learning can occur quickly. Q (st, at) is the expected value of performing action a

in state s; and maxa Q(s, a) is the maximum reward received and then follows the

optimal policy. The Q-learning algorithm is shown in Algorithm L

Algorithm 1: Q-learning: An off-policy TD control algorithm

Initialize Q(s, a) arbitrarily;

repeat for each episode:

Initialize s;

repeat for each step of episode:

Choose a from s using policy derived from Q;

Take action a, observe r, s';

Q(s, a) +-- Q(s, a)+ a[r + / maxa' Q(s', a') - Q(s, a)];

s +-- s';

until s is terminal;

until;

Take a discrete, grid game, "cat-mouse-cheese", as an example. The traditional

rules of the Cat and Mouse game are:

a. Both the cat and mouse have 8 degrees of movement. Up, down, left and right,

as well as the four diagonals.

b. The mouse scores reward r ch for getting the cheese. The mouse gets the cheese

when it is in the same square as the cheese.

c. The mouse gets punishment r c for being caught by a cat, by simply both being

in the same square.

13

f I
i

d. If the mouse gets the cheese, a new piece is placed randomly while the cat and

mouse keep their positions.

e. The game is over when the cat catches the mouse. The scores are then updated

and a new game can begin.

Jn,this general cat and mouse game, the mouse, as the intelligent agent, performs

while: learning in a n x n grid; on the other hand, cat is not a learning agent. In

each 'learning episode, the mouse/ cat action space is a E [0, 7), 11a11 = 8; while the

observation space is the cat's grid position [ex, cy] and the mouse's grid position

[mx, my] and if the mouse is in hole: flag. The performance measure for this game

is the cumulative reward for the mouse. Using the off-policy Q-learning algorithm,

the mouse can be trained to learn strategies to gain optimal cumulative reward in

this n x n grid environment. However, when the cat is also a learning agent, can

this mouse continue to survive with optimal performance using the same strategies?

The answer is probably no. This scenerio leads to a different issue: a multiagent

learning problem.

In the next section, we present a general framework for multi-agent learning.

2.3 General Framework of MAL

In a multiagent learning framework, multiple agents process three different cate­

gories of activities: perception, reasoning and action (see Figure 2.1). First, each

agent observes other agents and collect information in the environment, called "per­

ception". Second, agents conduct reasoning according to their own preferences and

14

f ,

knowledge to decide an optimal strategy; thereafter, agents perform their actions

and receive feedback respectively.

Environment} . {:} /I Agent I
+------..

t t
I

{}-- - -{}
Figure 2.1: Multiagent Framework

Stochastic games are defined as multiple agents with a multiple states frame-

work, which can be viewed as a synthesis of Markov decision processes and matrix

games. MDPs model a single agent, multiple states model, which have been explored

prominently in the field of reinforcement learning (see Section 2.2.1). On the other

hand, matrix games describe a multiagent system with single state model, which are

the foundational concepts in the game theory field. Since stochastic games share

concepts with these two simpler frameworks, it is useful to consider them indepen­

dently to analyze the core concepts while addressing the critical issues existing in

stochastic games only. Figure 2.2 illustrates the relations among these three con-

cepts. In Section 2.2, we discuss MDP as a single agent reinforcement learning;

then, we examine matrix games, a multiagent, single-state learning process.

15

! !

Figure 2.2: Stochastic Games include MDPs and Matrix Games

2.3'.1 Matrix Games

Matrix games were first examined in the field of game theory to model strategic

interactions of many decision makers (von Neumann and I\.forgenstern, 1944; Os-

borne and Rubinstein, 1994). Mathematically, a matrix game (or strategic game) is

a tuple (A, R), where A= Ai x · · · x An is the action space for each player; player i

chooses an action Ai, and receives the payoff Ri, i E [1, n], which depends on all the

players' act~ons. R is normally written as n-dimensional matrices, and each entry

in the reward matrices corresponds to the joint actions taken. The learning process

in matrix games means that agents repeatedly play the same matrix game, which is

also called a repeated game. Agents learn through experience from observation of

other agents' behaviors and their rewards, to maximize its own reward.

Examples

As follows, we list several matrix games and the payoff function matrices. Note that

R1 is the payoff matrix for player 1 and R2 is for player 2. In each game matrix,

16

n
I

the row represents player 1, and the column represents player 2.

• (a) Rock-Paper-Scissors

Two players with each having three options: "Rock", "Paper" and "Scissors",

and the rules are: "Rock" loses to "Paper", "Paper" loses to "Scissors", and

"Scissors" loses to "Rock"; otherwise, it is a tie. The winner gains one dollar

from the loser, while the loser loses one dollar. For example, player 1 plays P

while player 2 plays S, and the reward is -1 for player 1 and 1 for player 2.

R p s R p s
R 0 -1 1 R 0 1 -1

Ri= , R2 =
p 1 0 -1 p -1 0 1

s -1 1 0 s 1 -1 0

• (b) Coordination Game

Two players simply both desire to agree on their action choice, but with no

preferences between them.

A B A B

Ri = A 1 0 , R2 = A 1 O

B 0 1 B 0 1

• (c) Stackelberg Stage Game

The players of this game are a leader and a follower and they compete on re-

17

'I r I

ward quantity; the leader moves first and then the follower moves sequentially.

Up

Down

Left Right

1 3

2 4

Up

Down

Left Right

0 2

1 0

Matrix games can be classified according to their payoff function. If one agent's

gain is other agents' loss, we call this type of game as general-sum games. For

example game (a), the sum of player l's gain and player 2's loss equals zero, we also

call this zero-sum game. Another common type of matrix game is team game, i.e.,

game (b), in which all agents have the same payoff function. In other words, one

agent's best interest is the best interest of all others. Game (c) looks similar to the

general-sum game and team game, but it is neither of them.

What we can learn in game (c) is as follows: imagine a repeated version of this

game, and assume that the column player (secondary player: follower) is paying

attention to the row player's (first player: leader) strategy and the rewards after

each move. The two players will end up in a repeated (Down, Left) play and (Up,

Right) play, since this is a way that benefits both. We conclude from this example:

that learning and teaching happens at the same time: the row player has taught the

column player to play in a way that benefits both most. Or, we can see this as an

adaptation rather than a learning process. Note that the concept of strategy is not

the same as a move. A move refers to an action taken by a player at the certain

point during the game; while a strategy means a complete algorithm for playing the

game which then tells a player what to do throughout the game.

18

I I !

Nevertheless, the learning agent's goal is to learn a strategy that maximizes its

reward, using either pure strategies or mixed strategies. A pure strategy provides a

complete set of how a player plays a game; while a mixed strategy is a probability of

each pure strategy. An arbitrary finite matrix game may not have a pure strategy

Nash equilibrium, but it always has a mixed strategy Nash equilibrium (Nash, 1951).

Therefore, in our research, we focus on mixed strategies, and the definition is given

as below.

A mixed strategy refers to a joint strategy a for all n players. One player i's

strategy ai, specifies a probability distribution over all actions A, and its reward

function Ri is defined over mixed strategy as follows:

Ri(a) = L Ri(a)IIf=1 ai(a). (2.4)
aEA

Ri(a) is the reward received by player i whe!-1 playing action a, and ai(a) is the

probability distribution of playing action a.

In matrix games, one player's optimal strategy can only be evaluated if the

other players' strategies are known. So, this is an opponent-dependent solution,

also called best-response. We use < ai, a_i > to represent the joint strategy where

player i follows ai while others follow a-i· a_i refers to a joint strategy for all the

players except player i.

Definition 2 For a matrix game, the best-response function for player i, B ~ (a -i),

is the set of all strategies that are optimal given the other player{s) play the joint

strategy a-i· Formally, ai E BRi(a-i), if and only if,

19

! I I

where P D(Ai) is the set of all probability distributions over the set Ai {the set of all

mixed strategies for player i).:{

One most critical notion in matrix game and game theory is a best-response

equilibrium, also called Nash Equilibrium (Nash, 1950).

Definition 3 For a matrix game, a Nash equilibrium is a collection of strategies

for all players, CYi, with

The ref ore, no player can do better by changing strategies given that the other players

continue to follow the equilibrium strategy.

All matrix games have a Nash equilibrium, and there may be more than one. In

zero-sum games, one appealing feature is that there is a unique Nash equilibrium,

and this equilibrium corresponds to the games' minmax solution. In other words,

this mixed strategy maximizes the worst-case expected reward. This solution can

be found in a linear program as illustrated in Eq. 2.5.

Maximize: mina2 EA2 LaiEAi cr(a1)R(< ai, a2 >), (2.5)

Subject to: LaiEAi cr(a1) = 1,

cr(a1) ~ 0, Va1 E Ai.

This solution is player 1 's equilibrium strategy, where this linear program has

llA1 II parameters. Player 2's strategy can be solved similarly. In Rock-Paper-Scissors

game, there is a unique Nash equilibrium in which each player selects their actions

3 Definitions 2, ;>,, 4., 5 are based on Na.sh, 1950.

20

' ,

with equal probability 1/3 (as mixed strategy Nash equilibrium). But, if one player

simply adopts this equilibrium strategy, will the player win the competition of a

tournament? The answer is no, because a Nash equilibrium provides a rational

strategy, not necessary a best benefit one. Furthermore, in a general matrix game,

finding a Nash equilibrium is known to be NP-hard, yet is still an open question

(Gilboa and Zemel, 1988; Conitzer and Sandholm, 2008).

2.3.2 Stochastic Games

Stochastic games are an extension of a combination of matrix games and MDPs,

which include multiple agents with multiple stages. Formally, a stochastic game

(Shapley, 195:3) can be represented as a tuple: (n, S, A, T, R), where:

• n is the number of agents;

• S is a set of stages;

• A is a set of actions, A = Ai,··· , An; Ai is player i's action. (We assume

that each player has the same strategy space in all games. This is a notational

convenience, not a substantive restriction.)

• Tis a transition function specifying the probability of the next stage game to

be played based on the game just played and the action taken in it: S x Ax S ---+

[O, 1], such that,

Vs ES, Va EA, L T(s, a, s') = 1.
s'ES

• R is the reward function, R = Ri, · · · , Rn. ~ is the immediate reward func-

tion of player i for at the stage S: S x A ---+ R. Note that each player has its

own independent reward function.

21

! ' '!

When n = 1, stochastic games are MDPs; when llSll = 1, they are matrix games

or repeated games. The goal for player i in a stochastic game is to learn a policy

that maximizes long-term reward, same as for MDPs. A policy for player i, 'Tri is a

mapping that defines the probability of selecting an action from a particular stage.

Formally, 'Tri E S x A ---+ [O, 1], where

Vs ES, L 1ri(s, a) = l.
aEA

We use 7r to refer to a joint policy for all the players, and Ili refers to the set of all

possible stochastic policies available to player i, while II = II1 x · · · x IIn refers to

the set of joint policies for all the players. 7r _i refer to a particular joint policy of all

the players except player i, and II_i refers to the set of such joint policies. Finally,

the notion <'Tri, 7r_i > refers to the joint policy where player i follows 'Tri while the

other players follow their policy from 7r -i.

Next, similar to MDPs, we need to define how to aggregate the set of the imme-

diate rewards received in each stage for each agent in order to quantify the value of

a policy. For finitely repeated games: we can simply use the sum or average reward

which is the typical approach. For infinitely repeated games, the most common ap-

proaches are to use either the limit average or the sum of discounted rewards. The

limit average reward function V of player i in stochastic games is defined similarly

to MDPs, as follows,

T 1
Vt(s) = lim L -TE(r! I s0 = s, 7r),

T-too t=O
(2.6)

22

where E(rf I s0 = s, 7r) as the expected reward to player i received at time t given the

initial state s and the agents follow the policy 7r. Similarly, the sum of discounted

award function is defined with discount factor/,/ E [O, 1), as,

00

V/"(s) = L /t E(rf I s0 = s, 7r). (2.7)
t=O

Notice that this reward function for each agent i is dependent on the joint policy

of the other agents. As in MDPs, we can also define Q-values for a given agent for

a particular joint policy. For the discounted reward framework, Q-values can be

formulated as,

Qi(s, a)= Ri(s, a)+/ L '!'(s, a, s')V/"(s').
s'ES

On the other hand, similar to matrix games, there is a best-response in stochastic

games. Notice that a policy for a player can only be evaluated in the context of all

the players' policies.

Definition 4 For a stochastic game, the best-response function for player i, BRi(7T"-i),

is the set of all policies that are optimal given the other player{s) play the joint policy

7r-i· Formally, 7ri E B~(7r-i), if and only if,

where P D(Ai) is the set of all probability distributions over the set Ai {the set of all

mixed strategies for player i).

We can also define the most critical notion: a best-response equilibrium or Nash

Equilibrium, similar to matrix games in game theory.

23

' r I

Definition 5 For a stochastic game, a Nash equilibrium is a collection of policies,

one for each player, 1fi, such that,

The ref ore, no player can do better by changing policies given that the other players

continue to follow the equilibrium policy.

Stochastic games can be classified the same way as matrix games. Team games

are the ones where all the agents receive the same reward function. General-sum

games are the ones where one player's gain means other players' loss. Zero-sum

games refer to the sum of total rewards equals to zero. Like matrix games, zero-sum

stochastic games have a unique Nash equilibrium.

In stochastic games, the Markov assumption still holds, but it has a different

form, given in Definition G.

Definition 6 A multiagent decision problem is Markovian if and only if, the se­

quence of states (st E S), actions (at E A), and the rewards (rf E R), satisfies

P { t t I t-1 t-1 o o} P { t t I t-1 t-1} r s = s, ri = ri s , a , ... , s , a = r s = s, ri = ri s , a .

That is, if the next state and rewards depend only on the previous state and all of

the agents' actions, but not on the history of states and actions.

From the game's perspective, stochastic games are Markovian, but from a single

agent's perspective, the process is no longer stationary or Markovian (versus "be-

24

'/I

havior strategy" 4). It is because the transition probabilities associated with a single

agent's action from a state are not stationary and change over time as the other

agents' action choices change. This property is critical to single-agent reinforcement

learning research, and this violation of basic assumptions require new techniques to

be developed to learn effective policies in stochastic games.

2.4 Multiagent Systems and Related Work

In the evolutionary computing community, multiagent learning research focuses on

refining multiagent behaviours through each generation by assessing the fitness of

the individual. In competitive coevolution, individuals benefit at the expense of their

opponent; in cooperative coevolution, individuals succeed or fail together while in

collaboration. This process refines the population until the sufficient level of fitness

for individuals is discovered. As team learning goes, both the homogeneous (Haynes

and Sen, 1996b; Haynes et al., 1995a; Haynes et al., 1995b) and heterogeneous forms

(Luke and Spector, 1996; Andre and Teller, 1999; Haynes and Sen, 1996a; Haynes

and Sen, 1997a.; Haynes and Sen, 1997b; Potter et al., 2001) are promoted, from

the perspective of allowance of different roles or behaviours for each a.gent in the

group who has successful achievement. However, in this setting, one critical feature

in multiagent learning has not been achieved: where a single agent's individual

learning process has not been addressed to solve the issues arising when emergent,

unforeseen changes occur.

This dynamic feature in a multiagent setting has been addressed in reinforce-

ment learning communities. In the MAL literature, the RL community extends

4 A behavior strategy is defined if 7rt = f(ht) where ht is the history up to time t; a makovian
or stationary strategy is a special case of behavior strategy when ht = </>.

25

''

i I

'I

1,

Bellman-style single-agent reinforcement learning techniques to a multiagent set-

ting, in particular Q-learning (Watkins and Dayan, 1992), which learns the utility

of performing actions in states for controlling and prediction purposes. This tech-

nique has performed well in: a) zero-sum repeated games (Littman, 1994; Littman

and Szepesvari, 1996), b) common-pay-off (or "team") repeated games (Claus and

Boutilier, 1998; Kapetanakis and Kudenko, 2004; Wang a.nd Sandholm, 2002), but

not :so well in c) general-sum stochastic games (Hu a.nd \Vellman, 1998; Littman,

200'1; Greenwald and Hall, 2003).

In multiagent reinforcement learning settings, research takes on stochastic games

and focuses on individuals who learn simultaneously and converge to optimal results

(Bowling, 2005; Claus and Boutilier, 1998; Hu and Wellrnan, 2003). The important

research of GIGA-WOLF (Generalized Infinitesimal Gradient Ascent - Win or Learn

Fast) proves the no-regret and convergence criteria theoretically and experimentally

in general-sum games. In general, optimal payoff is the common interest for the

multiagent learning process. (Here, optimal payoff refers to no-regret.)

Nevertheless, scalability with the number of agents is ~critical problem for mul­

tiagent learning. Multiagent learning involves multiple agents' behaviours in order

to solve a common task, thus the search space can grow exponentially according to

the number of agents and the complexity of agent behaviour. The evaluation criteria

for learning methods should be standardized with respect to their scalability. In a

general-sum learning process, especially with partially observed stochastic games,

research usually involves studies in two-agent scenarios, with two or three actions

for each agent. When scaled up to include more agents, current methods are un-

likely to work in practice. In cooperative multiagent systems, to optimize a global

objective has been addressed as the Distributed Constraint Optimization Problems

26

I I '
I

(DCOPs) with promising results. Research on finding globally optimal DCOP algo­

rithms has been provided, such as ADOPT (Asynchronous Distributed Constraint

Optimization) where it proves that DCOPs are NP-hard (Modi et al., 2005). Thus,

when the number of agents increases, regarding both computational and communi­

cation requirement, the scalability needs to be improved. Furthermore, modelling

the uncertainty in the multiagent systems, rich model such as Decentralized Partially

Observable MDPs (DEC-POMDPs) gives promising results but mostly limits their

applications with two or three agents (Bernstein et al., 2000). Velagapudi et al. have

scaled DEC-POMDPs with hundreds of agents by given coordination locals (CLs)

as heuristic information (Velagapudi et al., 2011). Interactive POMDP (IPOMDP)

(Gmytra.siewicz a.nd Doshi, 2005; Rossi, 201a) can explicitly model and predict the

other agents intention (i.e., mixed strategy) under partial observability. However,

both DEC-POMDPs and DCOPs assume that agents act in a static environment,

and solving IPOMDP is prohibitively expensive due to computational difficulties

that policy space grows exponentially with the length of planning horizon, where

dynamic factors havenot been encountered and modeled.

2.5 Summary

In this chapter, we described the single agent learning process and examine most

critical techniques Q-learning in the reinforcement learning field. Thereafter, we in­

troduce MDPs and matrix games, since stochastic games can be seen as a merging

of both. Through detailed analysis of MDPs and matrix games, we present the gen­

eral framework for multiagent learning, and some important concepts in stochastic

games and in game theory. Last, we examine multiagent systems and related work.

27

/I I

In the next chapter, we analyze the structure characteristics and the dynamics in

large scale multiagent systems.

28

'I I

Chapter 3

Methodology

Multiagent research derives from two perspectives: learning and systems. In one

aspect, multiagent learning research focuses on learning from individual agent's past

experience or modeling other agents' behaviors to improve performance. In the other

aspect, research on multiagent system addresses particular problems from a system

perspective, with more focus on a number of agents' interactions, and provides

optimal solutions. However, in a non-stationary multiagent environment, each agent

adapts to proceed towards its target. Each micro-level step in time may present a

different learning problem which needs to be addressed. In this chapter, we present

our research methodology on how to solve multiagent problems, and illustrate the

common characteristics and dynamics in large scale multiagent systems.

3.1 Research Methodology and Framework

We propose a novel multiagent environmental description, and a system process to

describe the interaction among agents. This design differs from the description in

29

r ,

Chapter 2, this new unified framework includes more functional features for each

agent to perform adaptively in dynamic environment with guidance from macro­

level influence of structures, as well as micro-level individual learning and modeling.

In this non-stationary environment, a holistic phenomenon forms along with the ra­

tional strategies of all players; we define this phenomenon as structural properties.

The macro-level influence forms as a holistic phenomenon of mutual influence, con­

straints or strategies, while all the players perform intelligently in this environment.

These structure connections can play crucial role where the collective intelligence

feature appears.

A multiagent environment can be classified as self-interested, cooperative, or

competitive according to an agents' goal. Here, a self-interested environment differs

from a competitive, where all agents are not competing with others as a general-sum

game as in a competitive environment. Thus, we examine the structure from these

three general multiagent environments: self-interested random graphical game play­

ing, distributed cooperative team playing, and competitive group competition. In

each scenario, we analyze the structure in each environmental setting and demon­

strate a structure learned as a comprehensive representation: structure of players'

action influence, structure of constraints in teamwork communication, and structure

of inter-connections among strategies. This structure represents macro-level knowl­

edge arising in a multiagent system, and provides critical, holistic information for

each problem domain.

30

',

3.2 Understanding the Multiagent Problem: Structure

and Dynamics

Before we present our perspective on how to tackle multiagent systems, we focus on

understanding the common characteristics in multiple players games. More specif­

ically, we seek to understand the structure formed by a large number of agents in

a multiagent system. The structure of a multiagent system reveals characteristics,

which provides critical information for solving multiagent system problems.

How does each player perform efficiently in a multiagent environment? To find

an answer to this question, we explore which diagram can describe multiagent sys­

tem procedures. Firstly, we analyze that common characteristics underlying network

models which are naturally formed (socially or biologically), by inspecting all con­

nections existing among nodes. Then, a "preferential pub choosing" example is

given to demonstrate large scale agent networks. In contrast to large scale multi­

agent networks, we introduce another interesting phenomenon appearing in group

population: replicator dynamics.

3.2.1 Large Scale of Agent System's Structure Characteristics

A network graph model, G = (V, E), is composed of a collection of N vertices (or

nodes) V, and lists of edges E. Each vertex represents an individual player; while

every edge connects a pair of nodes that are neighbours. One typical example of a

large scale multiagent environment is social networks. Social networks are formed by

a number of persons, where each has ties with others. In social networks, each player

performs in this complex network, and the structure of a social network plays a role.

Each large scale network is formed from a large number of individuals, where each in-

31

f I

dividual is unique microscopically, however, they emerge with common macroscopic

characteristics. In this section, we introduce three distinct visual characteristics that

exist in large networks: heavy-tailed degree distribution (Broder et al., 2000), small

·diameter (Travers and Milgram, 1969), and high clustering of connectivity (Watts

and Strogatz, 1998; Watts, 1999; Strogatz, 2001; Boccaletti et al., 2006).

Heavy-tailed degree distribution

In large universal networks, a large number of connections exist and each node

has influence on various numbers of neighbors. A mathematical model is needed

to differentiate the influential nodes from all the nodes in the network. Plot a

histogram between the number of connections each node holds and the number

of same influential nodes which exist together. The relations follow a power-law

distribution, rather than follow a bell-shaped normal distribution. The power-law

qistribution is also called heavy tail distribution, known as the "80-20" rule. The

statistical characteristic of heavy-tailed is that it is linearly on a log-log scale.

y = probability(x) ex xk.

To illustrate the characteristics of social networks, . we illustrate how to choose

a pub as an example. At scenario one, each customer chooses a pub uniformly at

random, ignoring how many others are currently there at each pub. In Figure :Ll

(a), it shows that the distribution of number of customers and the number of pubs

which contain the same customer volume, which follows the 'bell' curve. At scenario

two, each customer chooses a pub to go which is more popular. Figure ~U (b) shows

32

the customer numbers and the number of pubs with the same capacity follows a

heavy tail distribution. Figure ~3.1 gives a demonstration for this pub phenomenon

and presents the heavy tail characteristic. This example demonstrates the "rich get

richer" phenomenon, which is also shown as heavy tail distribution.

0
·O 5 10 15 20 25

number of customers number of customers log(number of custormers)

Figure 3.1: Pub choice (Artificial data): (a). Normal distribution: each customer chooses
a pub uniformly at random, ignoring how many others are currently there; (b). Power law
distribution: customer chooses a pub proportionally to its current popularity count; (c).
Log-log scale of number of customers and number of pubs.

Small diameter

The distance between two vertices is the length of the shortest path connecting

them. The diameter of a network is the average distance between pairs. It measures

how near or far typical individuals are from each other. According the definition of

33

',

diameter, in a N node graph G, the smallest diameter of G is 1, which suggests a

fully connected network and all N(N -1)/2 edges exists. The largest diameter exists

in a chain graph, which is linear in N. In large scale networks, small diameter exists,

considering the large population size, also known as small world of "six degrees of

separation", (log(N) or log(log(N))).

. Li,j d(i, j)
diameter(G) = N(N _ l)/2,

where i, j are any node in G.

High clustering

A clustering coefficient is a measure of how densely tied together edges are in a

graph. Locally, the clustering coefficient of node Vi describes as the fraction of pairs

(or friends that are also friends). Formally, let ki is the degree of vi, which also

means the number of neighbours of Vi. Thereafter, the maximum number of edges

ejk among node Vi's neighbourhood Ni is ~ki(ki -1), where Vj, Vk E Ni, and ejk EE.

That is, every neighbour node of Vi is connected with every other neighbour node

of vi. Let c(vi) denote the fraction of these actual edges that exist, which stand for

friends of Vi that are also friends:

The clustering coefficient of graph G is defined as the average of c(vi) over all the

nodes Vi in G:

34

', '/

Let p be the edge density of the graph G:

llEll
P = N(N - 1)/2.

When C(G) « p, we say graph G is highly clustered.

When speculating about the connections among all the players, large scale so-

cial networks form those three common characteristics. However, when a group of

diversified players co-exist in a game, another interesting phenomenon appears in

the population: replicator dynamics.

3.2.~ Replicator Dynamics

Replicator dynamics presents an evolutionary selection phenomenon appearing in

variant population evolutionary processes.

Assume that, 1, 2, ... , N types exist in a population distribution. Given that po :

0 0 n d no 0 0 n h h t . h . t . . t. 1 d" t . b t. p1 , p2 , ... , Pn, an : 1T 1 , 1T 2 , ... , 1T n, w ere eac ype i as I s m1 Ia is n u 10n

of ·P? and payoff 7r~. At each time step t, all individual types are rational to be

updated to choose the highest payoff. Thus, at time t + 1, the proportion of each

type i is updated as follows:

(3.1)

The replicator equation Eq. ~U describes the fitness function to incorporate the

distribution of population types and provides the essence of selection.

Furthermore, Fisher's fundamental theorem (Fisher, 1930) states that the rate of

35

f !

increase in fitness of any organism is proportional to its genetic variance in fitness at

that time. Higher variance genetically increases the rate of adaptation. Accordingly,

designing high variance in a multiagent system for agent payoff distribution utilizes

the higher rate of fitness and payoff.

Take the following example, to demonstrate the replicator dynamics which ap­

pears within these three groups of individuals: with different variance in the payoff

evolutionary processes. Given three groups G1, G2, G3, each group has four types

of individuals with initial distribution pO: and each individual type's payoff rr0 . For

example, Figure 3.2 shows that one random group population is generated and pre­

sented, where four types of individuals co-exist in this size 100 population. Each has

a proportion of Pi percentage in the population, where i = 1, 2, 3, 4. Respectively,

each type of individual has its fitness Pi-fitness.

In the following, we present three groups of population and illustrate their evolu­

tion process. Assuming all groups start with the same level of overall fitness (mean

of each group), we analyze the overall fitness changes over time as appearing dif­

ferent group distribution and fitness variance. According to Eq. ::u, after one time

step, each group's distribution changes, as well as the overall fitness of the group.

The fitness and the adaptation gain calculation is as follows.

• Given:

Group 1: pO = [1/4, 1/4, 1/4, 1/4), rr0 = [10, 20, 30, 40].

Group 2: po= [1/4, 1/4, 1/4, 1/4), rr0 = [5, 15, 35, 45].

Group 3: po= [1/4, 1/4, 1/4, 1/4], rr0 = [O, 10, 40, 50].

• Each group's mean, variance and overall group fitness are:

36

I' I

Group 1:

"* .,, iliill

iilii A I\
ii ~

A
liijj

t t t

® ®~Ii
~

8li

1111

t

Figure 3.2: Replicator dynamics simulation

mean(G1) = 25, var(G1) = 166.67,

n=4

~rt t •
~

Iii llill
Ii t

l
lilfi .,,

t"iti t " t
iii '1

A

fitness 0 (G1) =I>?* 7r? = 1/4 * 10 + 1/4 * 20 + 1/4 * 30 + 1/4 * 40 = 25;
i=l

Group 2:

mean(G2) = 25, var(G2) = 333.33,

n=4

fitness 0 (G2) = LPt * 7r[= 1/4*5+1/4*15+1/4·* 35 + 1/4 * 45 = 25;
i=l

Group 3:

mean(G3) = 25, var(G3) = 566.67,

37

f I

n=4

fitness 0 (G3) =LP}* n-} = 1/4 * 0 + 1/4 * 10 + 1/4 * 40 + 1/4 * 50 = 25;
i=l

• After one time step, each group's distribution of four types individuals updates,

as follows:

Group 1:

Group 2:

Group 3:

1 1/4*10 I
Pl = = 1 10

25 '

1=1/4*30 =3/10
P3 25 '

1 = 1/4 * 5 = 5/100
P1 25 '

1 = 1/4 * 35 = 35/100
P3 25 '

1_1/4*0-0
P1 - 25 - '

1 = 1/4 * 20 = 2/10
P2 25 '

Pa= 1/4 * 40 = 4/10.
25

1 1/4*15
P2 =

25
= 15/100,

1 1/4 * 45
p4 = 25 = 45/100.

1 = 1/4 * 10 = 1/10
P2 25 '

1=1/4*40 =4/10 1=1/4*50 =5/10.
P3 25 ' P4 25

• Thus, the new overall fitness of each group and its adaptation gain is as follows:

Group 1:

n=4

fitness 1(G1) =LP} *7rf = 1/10* 10+2/10*20+3/10*30+4/10*40 = 30,
i=l

Gain(G1) = fitness 1(G1) - fitness 0(G1) = 30 - 25 = 5.

38

r I

Group 2:

n=4

fitness 1(G2) = LP}*?Tl = 5/100*5+15/100*15+35/100*.35+45/100*45 =· 35,
i=l

Gain(G2) = fitness 1 (G2) - fitness 0 (G2) = 35 - 25 = 10.

Group 3:

n=4

fitness 1(G3) =LP}* ?Tl= 0 * 5 + 1/10 * 10 + 4/10 * 40 + 5/10 * 50 = 42,
i=l

Gain(G3) = fitness 1
(G3) - f itness0

(G3) = 42 - 25 = 17.

As these calculations show, the three groups of individuals, Gi, G2, G3 , start

with the same level of fitness; then one time step selection, (according to the simple

rule: each type is rational to choose the highest payoff), results in three different

fitness levels: 30, 35 and 42, respectively. Group 3 with the largest variance level

ends with the highest fitness level.

In all, replicator dynamics reveals diversified players' evolutionary process. The

higher variance exists in a group, the higher fitness a population leads to. However,

after a number of selections, t -+ oo, the whole population reaches an equilibrium,

regardless of the initial distribution of each type. The equilibrium only depends on

the evolutionary updating rule. In this example, since each type's rational choice is

to move to a higher payoff, the highest payoff is the principal criterion in the game.

39

r

3.3 Summary

In this chapter, we state that our research methodology of a new unified frame­

work pr~vides macro-level holistic information formed among agents. This struc­

ture property exists and is important to solving multiagent problems. Furthermore,

we illustrate the characteristics which form in large scale networks: heavy-tailed,

.small diameter and high clustering. This analysis provides insights into how to

solve problems arising in multiagent systems by taking account of their important

features. Replicator dynamics demonstrates that the evolutionary selection rule

appears in diversified populations. That is, high variance among the population

leads to higher fitness in the evolutionary process. More importantly, these features

provide us with guidance about how to design a multiagent system in agent-based

simulations, utilizing these structural characteristics and features to simplify the

problem solving-process in large-scale networks.

40

Chapter 4

Structure in Graphical Games

After revealing the important characteristics that exist among multiple-player games

in Chapter :3, we further explore the structure connection of mutual influence be­

tween players' action choices in game playing. Much multiagent system and learn­

ing research have been performed from both machine learning and game theoretic

perspectives. However, characterizing a multiagent system as a multiple players

game, little research on how to abstract structure among players' actions has been

performed. In this chapter, we provide a structure learning algorithm, "Multi­

Descendent Regression Learning Structure Algorithm" (MDRLSA), to extract the

action connections from graphical games. Knowing the influence between players'

action choice can provide a compact representation for player's utility function, as

well as reduce the search space for each player's learning process.

41

f I '/

4.1 Graphical Games

Graphical games (Kearns et al., 2001) are a representation of multiplayer games to

capture direct influence among players. A graphical game is described as an undi­

rected graph G in which players are represented as vertices, and each edge identifies

influence between two vertices. In many natural settings, a player, vertex v, has

payoffs that are specified by the action of v and those neighbours of v who have

influence over v. In normal form representation, each player's payoff is given by a

complete matrix with all players' action choice. However, each player's neighbour

set is usually a small subset of the complete player set. Rather than give the entire

population's normal form game, a graphical structure gives a direct and visual rep­

resentation of the relationship among all the players. Graphical games are a suitable

representation when sparse strong influences exist, whereas when there exists a large

number of weak influences on each player, congestion games (Rosenthal, 1973) are

applicable.

In our research, we generate multiplayer random graphical games represented

in normal form using GAMUT (Nudelman et al., 2004). GAMUT is a suite of

game generators designated for testing game-theoretic algorithms. A set of random

graphical games are generated in GAMUT as experimental data input. For example,

Figure 4J. describes a six player random graphical game. In this game, each player

has a choice action representing from 1 to 6, and total connections among players

are represented as 10 edges. Each ed.ge is a randomly selected connection between

two players which determines/influences the payoff received for each player. In order

to compare among different games, we normalize each game's payoff between 0 and

1. A strategy set [2, 2, 1, 1, 1, 1] represents all players' action choice at one stage of

42

f f

the game, which indicates that player 1 chooses action 2, while player 2 chooses

action 2, and player 3, 4, 5, 6 all choose action 1. These action combinations (also

called a "strategy"), gives payoffs for player 1 to player 6 as follows respectively:

[0.95, 0.19, 0.34, 0.13, 0.55, 0.77]. In Figure ·U, normal form representation of this 6-

player game states total number of 46656 (66) action profiles and the corresponding

utilities for each player.

#Players: 6
#Actions: 666666
#players'. 6
actions: (6)
graph: RandomGraph
9raph_params: (-nodes 6 -edges 10 I
Graph Params:
#I nodes: 6, edges: 10, sym_edges: rrue, reflex_ok: false I
(1 l l 1 l 1): (0.9888893423258294 0.14518868307974256 0.34666415138496487 0.038023128819446826 0.23594170400592485 0.8738306301416572 J
12 l 1 l l 11: I 0.6493444991678932 0.4155071673789125 0.34666415138496487 0.6590567860324859 0.4222770159171085 o.8738306301416572 I
(3 1 1 1 l 1): [0.15193090776347526 0.12172733762196959 0.34666415138496487 0.06639426478458674 0.6214207116085547 0.8738306301416572)
[4 l l l l 1): (0.26835599384705083 0.40252547595207655 0.34666415138496487 0.3413822595203671 0.7823505773305243 0.8738306301416572)
[5 l l l l 1): (0.27927189630690374 0.9420454036400943 0.34666415138496487 0.1561862143425638 0.42474057576059127 0.8738306301416572)
[6 l l 1 l 1): [0.16448162057531782 0.12410679110797923 0.34666415138496487 0.30514189249923224 0.4003220019315194 0.8738306301416572)
[l 2 l l l 1): (0.8218136574744752 0.02561315741805365 0.34666415138496487 0.18312778713997557 0.5239682518208068 0.7784223673233747)
[2 2 1 l l 1): [0.9571011063043914 0.19445471692083255 0.34666415138496487 0.1308573184007137 0.5541933771691710.7784223673233747)
[3 2 l l l 1): [0.21233316527055482 0.19483193314310926 0.34666415138496487 0.36152466372865794 0.2782392490110991 0.7784223673233747)
(4 2 l 1 l 1): [0.3499919411739944 0.34847870983594015 0.34666415138496487 0.37912818965244816 0.2541553162085356 0.7784223673233747)
(5 2 l l l 1): (0.7256479919065064 0.09740757528133273 0.34666415138496487 0.7004412054712835 0.06608667126949293 0.7784223673233747 J
[6 2 l l l l): [0.07736411265241327 0.80196529434451210.346664151384964870.38621656995429077 0.7295648258788623 0.7784223673233747)

Figure 4.1: Data sample from a 6-player random graphical game

Inn-player games, assuming that each player has the same number of a actions,

normal-form representation requires an entries of action profiles to describe multiple

players' utilities. However, as the number of players n increases, the action profiles

size grows exponentially. Thus, a compact, visual representation to capture how

every player's action choice influence others' utilities is interesting and critical. In

the following section, we introduce a multi-gradient descendent regression model to

learn a graphical structure representation of multiple players games from the normal

form representation.

43

f 1·

4.2 Learning Structure Algorithm: MDRLSA

In this section, we present a novel graphical structure learning algorithm for mul-

tiagent graphical games, called "Multi-Descendent Regression Learning Structure

Algorithm" (MDRLSA). The MDRLSA uses a regression model to learn a player's

utility f~nction. Our hypothesis is that each player's utility function can be rep­

resented as a linear function of all players' individual action choices. Thus, the

algorithm proceeds in two steps. In the first step, given all players' action profiles as

input: ,define parameters 0 and fit 0 to all players' utility profiles Y = [Y1Y2 ... Ynp],

where np is the total number of players. The hypothesis hek (x) is given as Eq. 4.1

linear model

Okx = Bok + 01kx1 + · · · + OjkXj,

Bok

(4.1)

To simplify the explanation, we assume all np players have the same number

of action choices, denoted by na. We apply multi-gradient descendent to achieve

the objective of linear regression for each player k, which is to minimize its cost

function, J, Eq. 4.2:

J(O~) = 2~ ~ (ho,(x(i)) -yk')f (4.2)

8 [O~ ... o: ... O~p].

44

Here, m is the total count of action profile, which is n~a; and Bk is the transpose

of fh. Xj indicates a player's action choice, where Xj = 1 indicates taking action Xj

and Xj = 0 indicates action Xj is not chosen. In np players game, [x1, x2, ... , xnal

describes the first payer's action profile, and [xna+li Xna+2, ... , Xna+na] represents

the second player's action profile, and so on. Here, j E [1, np * na], np x na is the total

number of bits used to represent a strategy profile. As in 6 player game and each

has 6 action choices, the action profile number mis 66 = 46656, and [x1, x2, ... , x36]

stands for each player's action choice towards ai, a2, ... , a5. X = [x1, x2, ... , x35]

includes each player's action profile, see Figure 4.2.

Figure 4.2: np player' action mapping

The objective is to minimize the cost function value J(B) by adjusting the (}j

values. In batch gradient descent, each iteration simultaneously update Bj for all j

in Eq. ·±.:3:

. ·- 1 ~ ((i) (i)) (i) fJ1k .- f)jk - am ~ ho(xk - Yk) xjk. (4.3)

In this experiment, we randomly initialize the initial parameters 8 to 0, the

learning rate a to 0.01 and number of iteration as 400. This procedure is designed

to observe the performance of our hypothesis linear regression model, in order to

45

0.18 ~-~-....--....---.----.-----.-----.-==-r.-----,,

0.16 .

0.14 \ .J~

~-
0.12 I

..
~ 0.1 \

0.08

0.06

0.04

\.
\.
t
t.

\""-'-'-:::::c;;,·~::::::c~ = ~-~";.; ~ --c '.:C ::::::==

50 100 150 200 250 300 350 400

Numberofileroliom

Figure 4.3: Convergence of gradient descent with learning rate a= 0.01

avoid the model over-fitting or under-fitting the data. Figure 4.'.3 shows the cost

function J(fJk) as each player's utility loss function is decreasing as the number of

iteration increases. This decrease of cost function J proves that our linear model

hypothesis Eq. 4.J is correct description between players' action choice and their

utilities. However, this batch gradient descent learning is quite slow. Thus, in large

. number of data entries, we choose normal equation Eq. 4.4 to optimize () instead.

As we can see in Eq. 4.4, until converge as in gradient descent, Eq. ·4.4 includes no

loop in the program, and learning rate a is not required.

(4.4)

46

! I I

where

Yok

Ylk
Yk =

Yjk

In the second step, according the parameter 8, we map the coefficiency between

each .player's action choice and the given utility. Algorithm 2 describes the graph­

ical structure learning algorithm MDRLSA, which indicates whether the influence

between players are related or independent. The graph parameter is represented in

a binary n x n matrix: each entry value '1' indicated related, whereas 'O' indicates

independent.

4.3 Results and Analysis

We develop the Multi-Descendent Regression Learning Structure Algorithm in Mat­

lab (see Appendix A), which provides a graphical structure representation among

players actions' influence for multiagent graphical games.

Taking one random graph game with six players, six actions and ten number of

influence edges as an example, the learned player influence among them is shown in

47

f'/

Algorithm 2: MDRLSA

Data:
X :=. action_profile;
U := utility _profile;

Result: graph_param;
begin

Step 1: calculate 8 parameter;
Initialize:
8= [);
for each player i do

I

y=U(:,i);
8 = [8, normalEqn(X, y)];

end
Step 2: map coefficiency graph_param;
Initialize:
E ;=: 0.00001
data := 1 -7 na rows in 8
[m, n] :=size(data);
graph_param := ones(n,n);
temp_coef := zeros(n,n);
for each column player i do

a := data(:,i);
for each row player j do

/ / read game file;

/ / n is number of player;

/ / set an x n matrix to all ls;

/ / Set a n x n matrix to all Os;

/ / ith column in data;

player_coef = a((j -1) * (m/n) + 1: ((j -1) * (m/n) + n));
/ / yth row player's all action coefficient in a;

a_norm =player _coefmean(player _coef);

/ / normalize player _coef between 0 and 1 as a_norm;

temp_coef(j, i) = sum(abs(a_norm - ones(n, 1)));
/ / calculate the sum of all the absolute difference between a_norm and all true

n x 1 connections;

if temp_coef(j, i) < E then
/ / any choice of yth row player's action's influence on ith column player

small than Ej

graph_param(j,i) = O;
/ / fiag unrelated player j €3 i as O;

end
end

end
end

48

the following matrix:

player 1 2 3 4 5 6

1 1 1 0 1 1 0

2 1 1 0 1 1 1

3 0 0 1 1 1 0
graph_param = (4.5)

4 1 1 1 1 1 1

5 1 1 1 1 1 0

6 0 1 0 1 0 1

Figure 4.4 illustrates the conversion of Eq. -L) into graphical structure represen-

tation.

Figure 4.4: 6 player graphical game structure

In GAMUT, graph structure is represented as a list of neighbors of all nodes.

By definition, graph G is undirected; thus, two nodes connected by one edge have

mutual influence between them. Moreover, each player's action choice results in its

utility. That is, each player is its own factor. Thus, each player does not have its

own node in the neighbor list, as well as one edge's two nodes only appear once

49

'I '

in the neighbor lists. A 6-player random graphical game's structure is shown in

GAMUT as lists of each node's neighbors in the following way:

node 1: 2,4,5

node 2: 4,5,6

node 3: 4,5

node 4: 5,6

node5:

node6:

Comparing the structure shown in Eq. 4.3 with the benchmark generated by

GAMUT, MDRLSA learns an accurate underlying structure for a 6-player random

graphical game.

We test on a set of random graphical games with different number of players,

actions and number of influence edges generated from GAMUT (see Table 1.1.J.). The

program runs in Matlab on Mac OS X, with Processor 2.8GHz Intel Core i7, Memory

8GB 1067MHz. The run time shown in Table 4.1 is one single run of MDRLSA.

With the same graphical game, the run time varies in the scale of 10-1 of a random

run time. For instance, a 5-player, 3-action game with 5-influence edges, the run

time differs in 0.001 seconds. Given the listed random generated graphical games in

the table, the structures learned are shown in Figure 4.5. MDRLSA shows a robust

promising results of learning structure representation efficiently and effectively in

random graphical games. The runnning time increases linearly to the number of

strategy profiles.

50

I ' I • '

Player :\"umber Action Number Number of Influence (Edges) R.uutime (Seconds) Accuracy(%) Normal Form Profile Entries
4 3 3 0.0055 100 81
4 4 4 0.0071 100 256
5 3 5 0.0117 100 243
5 4 6 0.0098 100 1024
5 5 7 0.0318 100 3125
6 4 5 0.0311 100 4096
6 5 8 0.1007 100 15625
6 6 10 0.3078 100 46656

Table 4.1: Random graphical games experimental details

4.4 Comparison

Duong et a.l., 2009 give a structure learning algorithm for graphical game struc-

ture learning. Their approach comes from a game theoretical perspective, which

constructs a loss function and focuses on minimizing the loss of utility function in

strategy choice. However, our approach comes from a machine learning perspective,

and focuses on revealing the coeffi.ciency between all the action choices and the out-

come utility. Through the correlated coefficiency, the relative neighbour influence

is identified. Both approaches are tested on GAMUT generated games. However,

without demonstrating this in the same programming languages, we cannot eval-

uate the run time efficiency difference on both methodologies. Comparing both

approaches, there are methodological advantages despite lack of theoretic analysis.

Our approach is intuitive, straightforward and simple.

4.5 Concluding Remarks

In this chapter, we demonstrate the structure properties in a self-interested mul-

tiagent environment. In simulated GAMUT random graphical games, we present

the Multi-Descendent Regression Learning Structure Algorithm to learn a com-

pact representation among agents' action influence towards each other. The Multi-

51

l I ! •

(a) 4 players, 3 actions, 3 edges (b) 4 players, 4 actions, 4 edges

(c) 5 players, 3 actions, 5 edges (d) 5 players, 4 actions, 6 edges (e) 5 players, 5 actions, 7 edges

(f) 6 players, 4 actions, 5 edges (g) 6 players, 5 actions, 8 edges (h) 6 players, 6 actions, 10 edges

Figure 4.5: MDRLSA learned graphical structures

Descendent Regression Learning Structure Algorithm tests on a set of randomly

generated graphical games. Experiments demonstrate that MDRLSA is suited to

52

r i

various graphical game applications, and provides promising results. The structure

representation compared with normal form utility matrices reduces search space

and identifies the mutual action influence among agents. MDRLSA can learn a

good representation for games and MAS where there are sparse strong influences in

individual player payoff.

53

f I

Chapter 5

Structure in Teamwork

Communication among agents through connections in a network is one important

aspect in a multiagent system. In a cooperative environment, agents communi­

cate with neighbours and achieve the goal of higher total payoff overall. When

exclusively acquiring information from neighbours, the time consumption increases

exponentially to the scale of network inter-connection complexity. Our research ex­

ploits the influence of utilizing the structure information while performing, which

can improve the optimal exploration strategy in a cooperative environment, so that

the time consumption and overall payoff achievement is balanced.

In a multiagent system, incomplete information of strategy payoff is common

iJ,1 real applications. For instance, in the mobile ad hoc network domain, a group

df cooperative agents explore in a distributed manner within limited time steps in

a given environment to maximize the overall total payoff, with some uncertainty

of local payoff. In this setting, each agent explores its surroundings to maximize

the overall payoff and moves toward equilibrium. However, how to use a lower

level of optimization among agents that leads to high overall payoff with limited

54

r ~ I

time steps is a critical issue between the trade-off in exploration and exploitation.

Our experiments demonstrate that, in a densely connected network, single agent's

optimization can achieve 983 of a double agent's optimization, but the difference

of overall payoff is achieved by higher level optimization with a large trade-off of

time consumption. Thus, knowing the agent's connection structure, it is helpful to

choose an optimal strategy for overall performance within the time constraint.

5.1 Ad hoc Networks

Our researcn chooses the mobile ad hoc network (MANET) domain as an example.

A wireless ad hoc network is a self-configuring routable networking environment on

top of a link-layer ad hoc network. A number of wireless sensor agents are free to

move independently in any direction and change links to other agents frequently.

Agents communicate with their neighbours according to preset topology connections,

and forward traffic unrelated to their own use. The signal strength between agent

communication varies in different locations. In the field, the primary challenge in

building a MANET is to equip each device to continuously maintain the information

required to route traffic properly while performing its tasks. Thus, our goal is to

let each agent freely move to an optimal position in order to maximize the overall

signal strength between all connected agent pairs, and maintain the information

forwarding routes.

5.2 Rationale and Hypothesis

Scalability with the number of agents is a critical problem for multiagent learning.

Multiagent learning involves multiple agents' behaviours in order to solve a com-

55

mon task, thus the search space can grow exponentially according to the number of

agents and the complexity of agent behaviour. The evaluation criteria for learning

methods should be standardized with respect to their scalability. In cooperative

multiagent systems, to optimize a global objective has been addressed as DCOPs

with promising results. Research on finding globally optimal DCOP algorithms has

been provided, such as ADOPT where this proves that DCOPs are NP-hard (I\.fodi

et a.I., 2005). Thus, when the number of agents increases, regarding both computa­

tional and communication requirements, the scalability needs to be improved.

Our hypothesis is that exploiting a k-optimal strategy to obtain payoff is associ­

ated with the topology network density. In Modi et al., 200.5, a class of 'incomplete'

algorithms, k-optimal has been provided. A k-optimal algorithm defines that at

every time step, a number of k agents coordinate their action choices to reach equi­

librium, where no single agent's change of its action choice can improve the overall

performance, such as achieving higher total payoff for all agents. As the number of

k increases, the computation of reaching k equilibrium grows exponentially. That

is, choosing I-optimal, 2-optimal or k-optimal algorithm, this choice influences the

performance to balance agents' total payoff and time consumption, and is directly

associated according to agents' connection network density. Thus, in MANET do­

main, large number of sensors (agents) are required. Thus, I-optimal, 2-optimal

algorithms are applied to explore agents' total payoff with time constraints, and no

triplet teamwork is chosen for relatively large numbers of agents.

56

5.3 An Adaptive Teamwork Algorithm: Static Estimated

(SE)-Adaptive

In this section, we introduce SE-Adaptive, which can run either I-optimal or 2-

optimal algorithm per agent, improving the overall performance of the team. An

agent running SE-Adaptive can decide whether to use I-optimal or 2-optimal algo­

rithm, depending on the number of neighbors it has.

Our hypothesis is that the connection density rate is an important potential

factor in determining the level of teamwork required. We conducted three sets of

experiments which include same number of rounds and variable settings: one set

tested the full graph (where each agent has n - I connections), while another tested

chain graphs. In sparse topology, single agent movements are optimal, whereas in

dense topology, high levels of team movement are rewarding. Thus, we choose the

most sparse topology chain, as well as the most densely structured, fully connected

network, and a third type of "hybrid" graphs as agents teamwork constraint (com­

munication) structures. "Hybrid" graphs are constructed such that half (l !J) of

the agents form a connected clique, and the remainder of the agents form a chain

connected to one agent in the clique.

We define connection density rate, denoted by r, as the fraction of an agent's

connection over the maximum connection number: r = agenLnum_connec~ion. Algo­
max_num_connections

rithm ;3 describes how the SE-Adaptive performs on connected agents topologies

with different densities. A heuristic value r = ! is learned empirically from the set

of experiments described above. When r ::S ! , an agent chooses k = I individual

movements as the optimal strategy; otherwise, agents move together with another

57

agent as an optimal pair to obtain maximum rewards, where k = 2.

Algorithm 3: SE-ADAPTIVE
Data: connected agents networks with assignments;

Result: optimal gain and assignments overall the team;

for each neighbor i do
Send variable assignment and reward matrices to i;

if r ~!then
Find max gain and perform I-optimal algorithm:

g, a f- getMaxGainAndAssignment{);

Send Bid g to all neighbors;

else
Find max gain and perform 2-optimal algorithm:

g', a' f- getMaxGainAndAssignment{);

Send Bid g' to all neighbors;

end

Receive variable assignment and reward matrices from i;

end

5.4 Experiment Results and Analysis

In this section, we provide SE-Adaptive algorithm to perform on connected agents

topology with different densities. The number of agents ranged from 10 to I5.

Comparing the performance of each test on I-optimal and 2-optimal algorithms,

Figure S, l 'and Figure 5, 2 show the results of using different numbers of agents

running on different graph topologies for 50 rounds. SE-Adaptive performs as well

as the best of I-optimal and 2-optimal algorithms on chain and complete graphs.

SE-Adaptive agents in the clique use 2-optimal algorithm and SE-Adaptive agents

58

in the chain use I-optimal algorithm, outperforming both algorithms individually.

In Figure 5. 1 and Figure 5.2, the x-axis is the number of agents and the y-axis

shows the reward value of net gain. We run three sets of experiments on full, chain

and hybrid topologies for 30 independent trials. Here, hybrid topology is defined·

as half (l ~ J) fully connected graph and half (r ~ l) chain graph. In each trial, an

agent could explore up to 50 positions in 50 rounds (i.e., variable settings), and

obtain its rewards. In general, an agent will not explore all 50. In Figure 5.1 and

Figure 5.2, the average of 30 trials rewards shows rewards obtained in three different

algorithms. k=I means I-optimal: solo exploration; k=2 means 2-optimal: pairwise

exploration; and SE-Adaptive means a combination of choices of solo and pairwise.

Figure 5.1 illustrates a group of fully-connected and chain-connected agents. In

various sizes of group density for agent numbers 10-I5, the performance of k = I,

k = 2, and SE-Adaptive algorithms, Figure 5.1 shows that pairwise exploration

(k = 2) gains higher rewards compared with solo exploration (k = I), and the SE­

Adaptive algorithm chooses to move pairwise and gain the same rewards as k=2.

Whereas, on a chain topology, solo exploration performs the best on a sparse chain

topology, while the SE-Adaptive algorithm gives a similar optimal performance,

both with high time efficiency. On the other hand, pairwise exploration can give

better performance in a dense topology but performs poorly in a sparse topology;

both situations have low time efficiency.

Figure 5. 2 combines a maximum dense topology and a minimum connection

topology in one graph, where the SE-Adaptive algorithm can choose a level of team­

work based on the neighbour connections and gives the best performance among the

three. In a group of agents, agent numbers 10-I9, the result shows that the aver­

age of net gain obtained by SE-Adaptive algorithm is higher than the average net

59

40000 .

N 30000

20000
G

a 15000
I

fylJ cormection

10 11 12 13 14

Chain coonectJon

_IHI .
11 12 13 14 15

Agent Numben

lllk=l

Ok=2

a SE-Adaptive

Figure 5.1: full and chain topology, agent number: 10-15

gain of using either k=l or k = 2 only one at time alone, but with much less time

consumption.

25000 l
N 20000 ·1···· ··

: ,_1
• 10000 .. .

~ '1tH:::; ::';''
5000 t- :~: -~: . ;~; : ~~ ;::

I ·~~~ ~~. . ~~~: :·· ~:~~: : .. :
0 -~·· ... :··· .. ,... . . .,

lC 13 lS 16

Aaent Numbers

19

Ill k=l

Clk=2

CSE-Adaptive

Figure 5.2: Hybrid topology, agent number: 10-19

The implementation and demonstration is tested on existing platform DCEE

Python simulation code1 . The runtime of each test on the I-optimal algorithm on all

three types of topologies is on the scale of minutes, agent numbers ranged from 10-15;

whereas, the runtime on the 2-optimal algorithm on dense and hybrid topologies is on

a magnitude of hours, where 2-optimal algorithm considers all possible pairs among

n number of agents and that there are O(n2) such pairs, and that this makes it much

1http: I /teamcore. use. cdu/dcop, version 0.9.2/5/2010.

60

I,

slower than the 1-optimal algorithm. However, applying the SE-Adaptive algorithm

on dense topology reduces the runtime to a matter of minutes, the same scale as

1-optimal algorithm. With double agents' teamwork, 2-optimal considers O(n2)

such pairs, but achieves worse performance for net gains in a chain connection (see

Figure 5.1). SE-Adaptive identifies when to choose 1-optimal algorithm according to

the density rate r. In a chain topology, SE-Adaptive chooses I-optimal since every

agent satisfies the criterion of r = n:_l ::; !, when total agent number n 2: 7. While

in hybrid topology, SE-Adaptive switches from 1-optimal to 2-optimal when the

connection density rater> !, where only a small number of highly clustered agents

choose 2-optimal algorithm and benefit from teamwork, see Figure 5.2. Meanwhile,

the runtime of SE-Adaptive algorithm remains on the scale of I-optimal.

5.5 Concluding Remarks

In this chapter, we demonstrate the importance of topology structure in a coop­

erative multiagent environment. By analyzing the structure of agents' constraints,

we present an adaptive teamwork algorithm: SE-Adaptive, to choose optimal level

of movement in various density constraints (i.e., communication) networks. Ex­

perimental results of SE-Adaptive algorithm give promise to this new concept of

adaptive learning according to structure density among agent neighbors. Wisely

chosen teamwork gives multiagent learning an important component to achieve an

optimal performance within limited time in a dynamic environment.

61

r i ,

Chapter 6

Structure Learning in Artificial

Life Simulation

In this chapter, we capture the merits of an agents behavior strategy using a graph­

ical model representation, while adapting to environmental changes. Bayesian net­

works (BN) are applied to demonstrate the inter-relationship of the adaptation

strategies for agents' evolution according to environmental changes. We present a

simulation of artificial life (AL): where two groups of agents compete for resources

to survive in one community. This research is not intended to predict which agents

or which group of agents can survive, but rather illustrate that agents adapt to

environmental changes and that the inter-connections among the characteristics of

those agents with the best behavioural strategies survive.

62

6.1 Rationale for Artificial Life Paradigm

In our research, we exploit the Artificial Life concept by building a simple ecology

system: ALGAE (Artificial Life Genetic Algorithm Expression). The ALGAE con­

cept is inspired by the evolutionary epoch of Homo Sapiens where two divergent

species existed in a primitive environment to survive as the primary biological goal.

The initial ALGAE simulation (Yan and Cercone, 201.0a.) analyzed agents competing

for resources in an uncertain environment, where that ALGAE simulation provided

artificial gene data. There are three aspects in this section which are derived from

this perspective. Firstly, we show the environmental factors which determine the

living conditions of the two species who are the subject of the experiment. Sec­

ondly, we explore the key genetic combinations which favor survival, with details

about the intrinsic chromosomes and their variability during the evolutionary pro­

cess. These environmental control settings and group agents' energy consumption

are set up through the user's interface. This feature promotes understanding of the

dynamics between species survival and environmental factors. Lastly, we reveal the

hidden dependencies among fittest behaviour strategies' genomic descriptors which

emerge during evolution of the species. We apply Bayesian network structure learn­

ing to show these relations among the genetic factors through the evolving strategy

adaptation to environmental changes.

6.2 ALGAE System Design

Creation of a virtual artificial environment to emulate human populations is rel­

atively straightforward. Two populations are devised and designated as separate

species. These species co-exist in a competitive relationship, the goal of which is

63

merely survival. By reproducing, mutating, and fighting, the program refines its

variables, evolving to the point where the best solution is generated. Survival of the

fittest mimics the evolution of living organisms' adaptation. Genetic fitness is one

index of survivability. 'Rules' exist to govern the existence and inter-relationship of

the two species in this artificial 'world', called a 'dynamic simulation framework'.

These rules pertain to the constraints of the environment. Specifically, they address

limitations which impinge on each species survival probabilities.

As AL simulates real organisms in their functioning and characteristics, genetics

represents the information systems essential to evolution of genetic information so

that species both survive and adapt over tii;ne. Our model uses standard pertinent

factors in the artificial environment setting. There are basic operational rules, a

well-defined virtual environment or search space, and behavioural constraints on

the population species.

6.2.1 Description

In ALGAE, resources must exist, and these resources are distributed in a two di­

mensional grid randomly. We postulate two types of species in this virtual world:

Species type 'O' and Species type '1'. They survive in the virtual environment

through competition for resources and obey these rules: species mate within their

own species only, when minimum amount of energy reserved; each one subsist on

native honey resource as a form of nourishment; when energy levels reach zero, an

individual dies. Also, ages increase until they reach the maximum possible life span,

then natural death occurs. Each individual in ALGAE is called 'ALgent '. Barriers

are initially placed in their living space and the distribution changes over the time to

constrict their movement. But in this current setting, we remove the barriers from

64

! I

the environment, because our emphasis is the impact of food resources on ALgents'

survival, and limiting the percentage of barriers in the environment does have an

impact on the group's behaviour change.

All behaviors discussed indicate that the two species compete for resources to

survive. As the population evolves, the distribution of resources changes over time.

We examine a population of artificial chromosomes (AChromosomes) which present

each ALgent Gi in both species, as below:

Ci= [SP,SL, VF,MD,AS,ML,AC,AA,AL,EF],i = {0,1}.

We examine a population of AChromosomes which present each ALgent i as

different species, as Table 6.1.:

Gene Description Bit Site Gene Description Bit Site
SP SPecies type 0 ML Motion Loss 9
SL Life Span 1-2 AC Action Choice 10-12
VF Vision Field 3-4 AA Attack Ability 13-14
MD Motion Direction 5-6 AL Attack Loss 15-16
AS Action Speed 7-8 EF Food Efficiency 17-18

Table 6.1: 19-bit chromosome descriptor

ALGAE incorporates the genetic algorithm (GA) for a population of chromo-

somes (bit strings representing organism characteristics) to evolve and reproduce the

fittest chromosomes. During any reproduction process, parent chromosomes perform

single point cross-over, bit-flip mutation, and inversion. The fitness function selects

the most fit individual, whose genes are carried forward in the evolutionary time-

frame. A fitness value or score is assigned to each solution, representing the abilities

of an individual to 'compete'. The individual with the optimal (or near optimal)

65

fitness score is sought. We further define fitness as survivability. Individuals in a

population compete for resources and mates, and those who cannot survive are not

fit, in the evolutionary sense, so will become extinct. This process iterates over a

number of generations given by user's selection. The result is a chromosome com­

prising the 'best' genes which have evolved to foster survival fitness through the two

species evolutionary process.

In ALGAE, we consider the following aspects, such as living space, food re­

sources, competition, behaviour patterns and preferences, and physical status. The

details are discussed below:

a. Artificial Environment (AEnvironment) is defined as a search space designed

in a 2D field, a rectangular region symmetric to the center, for directional

movement toward a desired object.

b. Assume resources exist in the AEnvironment composed of n x m grids (here

we use 51 x 51), randomly distributed and which are renewable. Plant food is

available to increase energy, located available in the exploring area.

c. Competition is also intrinsic in an AEnvironment. Individuals attack the other

species based on Attack Ability (AA). They have a certain amount of energy

which is lost by movement (Motion Loss, ML), and attack (Attack Loss, AL).

Species also gain energy by consumption of food (Food Efficiency, EF). Food

is assigned simulating natural law with corresponding food value and vital­

ity. Each individual is a gene disseminator, an intelligent individual, facing a

complex environment, so choosing suitable adaptive behavior is very impor­

tant. Appropriate behavior ensures genetic replication and thus evolution. To

achieve survival and multiplication, the species member undertakes migration,

66

l ! I'

looks for food, exhibits breeding behavior. Also, in order to ensure the popu­

lation's evolution, ALGAE programs in mutual attacking behavior which can

eliminate the genetically inferior individual.

e. Individual behavior patterns and preferences are programmed as movement

modes and action modes into their genes, as follows: 1) ALgents can only mate

with local individuals within their 'action field'. Each individual complies with

its own Action Choice (AC) as preference to choose behaviours: look for food,

attack/defend, or mate. In the hypothetical AL world, motion characteristic

emulates biological drives. 2) Motion Direction (MD) choice, according to the

GA aspect of ALGAE, determines that transition motions are all caused by

corresponding instinctive (genetically determined) decisions. 3) the Action

Choice gene mimics biological behaviour priorities.

f. Physical status such as lifespan (SL) is also genetically determined. When a

certain age is reached, or energy entropy reaches a threshold, ALgent dies.

Individual age increases along with the generation increase, surpassing the

lifespan, ending in natural death. Regarding the (biological) initial age, in

order to simulate the initial population subject to the process of evolution,

individual age is assigned as a random number pl us the biological minimum

age (SLMJN). Similarly, the initial biological energy available is stated as

Energy = 70 + random(30) (maximum energy is 100) to ensure a level of

individual energy consumption during the initial migration.

All behaviors above indicate that the two species compete for resources to sur­

vive. As the population evolves, the distribution of resources changes over time.

67

SP: The first bit, indexed as 'O' shown in Table G.1, represents the SPecies type,

where each type has different preference:

ca preference 'l' stands for 'selfish' agent, coloured in blue;

• whereas 'O' stands for 'altruistic' agent, coloured in pink.

When the food resource is renewable plant, according to user's specification,

resources level is set to regrow at certain rates until the maximum limit. A

height threshold is specified which indicates minimum amount reserved needed

to maintain plants' healthy growth. If the height level of plants is too low,

regrowing rate is significant slow which can lead to resources paucity. At

renewable plants' setting, 'altruistic' ALgent collects food resources in an en­

vironmental way, specifically, when height level is beyond threshold, otherwise,

'altruistic' type chooses not to consume resources until they reach the thresh­

old. On the other hand, 'selfish' ALgent collects resources regardless of plant's

regrowing status, as long as any plant exists.

When the food resource is non-renewable honey, the resource only contains

two stage: exist or finished. Both ALgent type 'l' and 'O' pursue honey in the

same way to fetch it when it exists.

SL: Index 1-2 bits stand for 'Life Span'.

Age = SLmin +SL;

in the initial setting, minimim lifespan, SLmin, is set as 50. Age's range is

between minimum lifespan and its value add 'SL' maximum value 4.

VF: The next 2 bits describe 'Vision Field' (VF). VF size is set as the length of

radius, range from 1 to 4. This describes a sector area with certain radius

68

length.

MD: After setting up the radius of vision field, the next 2 bits are 'Motion Direction'

(MD). MD gives the moving direction angles which covers 90, 180, 270, or 360

degrees, see Figure 6.1

a. MD: 00 - 90 degrees b. MD: 01 - 180 degrees

c. MD: 10 - 270 degrees d. MD: 11 - 360 degrees

Figure 6 .1: Motion direction coverage sector graph

AS: The 7-8 sequence specify individual's 'Action Speed' when moving. Each step,

an agent can move the distance between 1 to 4.

ML: Motion Loss is described in bit 9, which reflects various level of energy loss

during each exploration movement. Motion inevitably consumes energy, ac­

cording to natural law, yet such energy consumption cannot become a decisive

reason by which a species survives or perishes. When individuals move, the

energy consumption will be related to and associated with 'ML' gene, that is

Loss = ML+ min. The minimum movement energy loss is given by user's

69

specification.

AC: The next 3 bits, indexed 10 to 12, describe each agent's behaviour preference as

'Action Choice' (AC). In this action sequence, the first bit, Food Preference

(FP), determines if this agent would search for food resources first when it

is 'O', or after interaction with other agents when it is '1 '. We number the

interaction choice with other agents as following: mate is 'a', and fight is 'b'.

The last two bits in the AC is named 'Interaction Preference' (IP). IP gives

each agent's preference of interaction with others. Specifically, '00' is choice

'a'; '01' is choice 'b'; '10' is choice 'a' then 'b'; '11' is choice 'b' then 'a'.

AA: In each behaviour interaction with other agents, agents lose various amounts

of energy. During combat, the 'Attack Ability' is critical to determine the

the fight result afterwards, described in 2 bits sequence from 13 to 14. The

ability to attack affirms it is important whether this living thing can survive.

In Nature, species have power and size; for instance, even if the tiger is injured

he cannot easily be defeated by a rabbit. Here, we do not include a multitude

of living things, but only two hypothetical species, who do not have the natural

power which large numbers might generate. ALGAE simulates natural species,

where concrete behaviour has direct correspondence with inherited genes. As

in Nature, victory in conflict determines survival. The principle is explained
I

as follows. If individual i has an attack capability stronger than individual j,

then i wins. In an attack process, the energy of striking power is the most

important. Individual i has a striking power as computed below:

Attacki = energyi(t) + AAi * r * 20/4,

70

I I

where r is a random float number between 0 and 1. That is, an individual's

striking power is influenced by its current energy and how large of a fraction

of energy boost of 20 determined by its 'Attacking Ability'.

AL: 'Attack Loss' varies from 1 to 4, given as 2 bits sequence from 15 to 16.

AL gives the energy loss during a fight. After the fight, both 'i and j loss

energy, but the quantity is different. In order to simulate real biological attack

beha~ior, each individual loses a random fraction value of the 'Attack Loss'

stochastically, and this individual has a further energy loss of 40, as follows:

Energy(t + 1) = Energy(t) - AL* r - 40.

EF: 'Food Efficiency' is represented as the last 2 bits, which defines agent's food

absorbing efficiency, scale 1 to 4:

Energy(t+ 1) = Energy(t) - e * EF,

where e is 'energy-gain-from-food', given as basic energy provided by resources.

Amount of energy each ALgent gained is determined by its own observation,

'EF'.

Figure G.2 illustrates the initialized ALGAE. Two type of agents are presented:

type 1 agents ('selfish') coloured in blue, and type 0 agents ('altruistic') coloured

in pink. Figure G.2(a) presents green plants as regrowing resources. Figure G.2(b)

states a non-renewable food resource (honey), represented as orange leaves.

71

'I

(a) Renewable plant resources (b) Non-renewable honey resources

Figure 6.2: ALGAE world

6.2.2 Pseudocode and Run Process

In ALGAE, the program establishes the artificial world (AWorld) environment pa­

rameters, comparable to biological evolutionary pressure. Using a graphical interface

dynamic demonstration, it records the evolutionary processes for each generation

(which survives). The system operation follows some basic steps and establishes

parameters in relation to the environment as follows Algorithm 4.

The program iterates to mimic generational evolution over lengthy time frames.

Species members experience genetic variations throughout the process, and the sur­

vivors remain to reveal which specific genes adapted. Next, we examine how these

survivors' genes correlate to produce successful adaptation.

72

Algorithm 4: ALGAE
Initialize: AWorld environment, food resource, ALgent population;
Energy= 70 +random (30);
Age= 1;
while generation number< maxium number €3 both species ALgents exist do

ALgent act;
if first action-choice =food then

I
fetch food;
action-with-mate;

else

I
action-with-mate;
fetch-food;

end
move randomly;
Age= Age+ 1;

generation number += 1;
death-check; ·
Update: environment, food resource, ALgent population;

end

6.3 ALGAE Simulation

In this section, we describe a detailed ALGAE simulation\ developed using Netlogo

(Wilensky, 1999). The goal for this experiment is to uncover the hidden relations

among AGenes by using BN to analyze the datasets of survivors' AChrop-losomes.

This experiment has an initial run to collect the survivor genes over all generations.

This is the input for BAyesian Networks ANAlysis (BANANA) (Yan a,nd Cercone,

2010a) to analyze. The ALGAE setup and experimental results are illustrated in

the following.

1 ALGAE is available for download at http://www. cse .yorku. ca/-lisayan/algae_code .nlogo.

73

6.3.1 Experiment Setup

We first identify relevant environmental parameters which affect the species evo­

lutionary chances: population settings and resources settings. First, define the

environment AWorld size as width 51 units by height 51 units, which provides life

space or living territory. Next, in the population settings, the initial species pro­

portion indicates a population size of 100, which is a proportion of 5 percent in

relation to the territory available. This setting provides ample room for migratory

moyements and food seeking. The minimum lifespan is set as user's specification,

for example 50, which indicates that species members have some chance to act and

move in their virtual world for a reasonable period of time. Also a mutation rate

is set up as 0.05, and crossover rate as 60 percent. Both are carried into this sim­

ulated AWorld also. It allows for unpredictable results in gene recombination. The

maximum g~neration number for the total run is set as 160. The initial population

shows even distribution of 50 individual entities of each species, coloured red and

blue, and positioned in AWorld. This positioning is purely random, and remains

random for .each generation run.

Last, resources settings can be specified in two groups: a) renewable plant re­

sources; b) non-renewable honey resources. The initial setup for the ALGAE run

(Figure G.:3) states the parameters for plants to grow. In Figure G.~3, for example,

we give a threshold height as 5, and maximum height 10. When the plant height

is beyond the threshold, plants have a fast growth rate as 70 percentage; or, plants

have a slow growth rate of 30 percentage when it falls under the threshold.

In Figme 6.4, we establish the initial proportion of non-renewable food: honey. It

is set as 40 percent of the living space. Each honey consumption gives an individual

74

l I I

ALCAE Simulation

Figure 6.3: ALGAE Interface with renewable plant resources

energy reward of 4. All types of resources allow energy level to reach the maximum

level of 100.

A.LGAES1mula.Uon

Figure 6.4: ALGAE interface with non-renewable honey resources

6.3.2 Experimental Results and Analysis

In this evolutionary process, two groups of living entities compete to survive. After

undergoing the simulated evolutionary process, the distribution can be seen in Fig­

ure 6.5 and Figure 6.f.), which presents the final stage of ALGAE simulation of two

types of resources settings respectively.

In Figure G.5, renewable plants provide resourceful energy supply for all ALgents.

In this whole process, both type 0 and type 1 ALgents reach a settled amount of

population while fetching resources. In the next section, we reveal the common

inter-relations among all survivors' gene descriptors.

In Figure G.6, limited resources constraints ALgents' survival conditions. After

76

Fi'gure 6.5: ALGAE final stage in growing plants world

30 steps of exploration in the environment, population of type 1, coloured in blue,

drops significantly when few resources (less then 13) remain; whereas, population

of type 0, coloured in pink, is eliminated from this evolutionary process. Grey leaves

denotes food sources consumed, orange leaves denote fresh food resources. However,

given the limitation of resources and random setting for behaviors, both types have

equal chance to last to the end of survival. In the next section, we analyze what

insigh,ts are revealed as common inter-relations among all survivors' gene descriptors

in each exploration, which promote ALgents to survive to the very last as best fit.

6.3.3 Fittest Gene Discussion

In this ALGAE .process, we examine the species evolution and gene expression. Af­

ter running a number of experiments, we want to know which genes account for

an outstanding/surviving individuals? Take the runs illustrated in Figure (),!} and

77

I

I

I I

Figure 6.6: ALGAE final stage in honey world

Figure G.6 as examples. The final positions of surviving ALgents shown are quite

different. The evolutionary assumption is that less fit ALgents are, less prone to sur-

vival in a harsh environment with other competitor species, and disappeared from

the gene pool. We conclude the following characteristics of the optimal gene/indi­

vidual that indicate the fittest survival:

• Lifespan is large in the fittest genes.

• Vision Field of vision is maximized in the fittest genes.

• Action Choice suggests that food resources searching first to increase the en-

ergy level before consumption promotes survival. So the fittest genes allow

individuals to approach the same type of entity and obtain food resources.

• Attack capability is high in fittest gene.

• Low attack energy consumption promotes fitness.

78

I I I

We conducted ten different ALGAE trials and obtained ten separate datasets.

It is shown that these ten different experimental results produced the ten different

best genes over the same initial resource and population settings, see Table G.2.

This table shows that the results differ from trial to trial. Because the genetic

Trial NO. Survivor Type Best Genes
1 1 1 1 1 1 0 1 1 0 1 0 0 0 0 0 1 1 0 0 1
2 0 0 0 1 1 0 1 1 1 0 0 0 0 0 1 0 1 1 1 0
3 0 0 1 1 1 0 0 1 0 0 0 0 1 0 1 1 1 1 1 1
4 1 1 1 0 1 1 1 0 1 0 0 1 0 0 0 1 1 0 1 0
5 1 1 1 0 1 1 1 1 1 1 0 1 0 1 0 1 0 0 1 1
6 0 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 0 1 1
7 0 0011000000101000111
8 0 0 0 0 1 1 1 1 1 1 1 0 0 1 1 0 0 1 1 1
9 1 1001101100000000011
10 1 1 0 0 1 1 1 1 0 0 0 0 1 1 0 1 1 0 1 1

Table 6.2: 10 Trials Fitness Gene Profiles Datasets Logs

algorithm itself is a stochastic algorithm, any result is interesting because it reflects

the pressures on genotypes over time, under variable conditions. An interesting

question arises. Although each trial produced a 'best' gene, why are they different

from each other? Another question is how and what can we learn from each of

the 'best' genes? A third question is what is the similarity among the ten trials

which could bring forward the best individual chromosome as a surviving remnant

of evolution?

Table 6.2 shows variation in the composition of each best gene. Each gene has

entirely different and unique attributes. ALGAE randomizes the chromosomes for

each run, as well as certain environmental factors such as population distribution in

relation to resources. What is interesting is that not every gene has optimal alleles

or gene bits, so it is clear that survival fitness is not a question of having the best

79

gene or chromosomes, or having proximity to resources. Rather it is the combination

of genes that remain in the gene pool of a generation which is most significant to

survival and adaptation. Evolutionary pressure, that is, the degree of harshness and

difficulty in the struggle to survive, can be severe, such as, Figure 6.6 shows that the

total number of final stage survivors for that run is only two. Nevertheless, ALGAE

identifies the best chromosome for those who survive. One type of ALgent tends to

dominate qne run, and this reflects the genetic fitness of the population in terms of

its genetic features. The best genes are carried forward, and this is consistent with a

Darwinian concept. In the next section, we present Bayesian Network learning from

survivors' chromosomes to illustrate what we can learn about gene contributions to

survival from ALGAE.

6.4 Bayesian Networks structure representation of Evo­

lutionary Process

We create a topological structure BN to see the implicit connections among AGenes.

ALGAE is a dynamic process based on GA, so the 'survivors' genes' change with

each run. Our interest lays on why those survivors have proven to possess the

fittest/best genes in the AWorld. The underlying reasons can be discovered using a

BN.

Given a set of variables and a dataset composed of all these variables' values, the

problem is how to build a structure to present the connections among the variables.

This structure learning process needs to select the arcs between them and estimate

the parameters. Developing a structure gives a visual presentation to understand

what underlies the knowledge or what attributes are correlated. However, to include

80

l I '

all the information from the data into the structure, yet to keep the structure simple

and condensed with only critical information, is going to result in a trade-off. The

two main approaches are used to learn structure in BNs: the constraint-based and

the score-based approaches. In this section, we use the E-algorithm (Yan, 2003) to

construct a Bayesian Network representation for ALGAE data.

6.4.1 Independence Test

Given the sample data of ALGAE, we want to know whether there is an association

between the 'Vision Field' levels and the type of Species, or both types of species in

attack motion differ in their energy loss. This type of question is the x2-test designed

to solve (Pearson, 1900). This section, we present a simple example to illustrate how

to conduct x2-test to identify the independence between characteristics in ALGAE.

We take 'Species type' and 'Motion Direction' two variables as an example. This

2 x 4 contingency table (see Table G.:3) presents the observed frequericies of MD value

and Species types from one trial's ALGAE data.

MD'l' MD'2' MD'3' MD'4' Total
Type 0 389 50 2158 5123 7720
Type 1 561 455 300 5773 7089
Species num 950 505 2458 10896 14809

Table 6.3: Observed contingency table

Now, let us define our null hypothesis as follows: The number of species type 'O'

and '1' in ALGAE survived due to their 'MD' value choice range 1to4 is independent

of their species type.

According to the null hypothesis, we can calculate the expected 2 x 4 contingency

table (see Table 6.4) presents as follows:

81

! ! I

-~-~-----~------------,---

MD'l' MD'2' MD'3' MD'4' Total
Type 0 Ei E2 E3 E4 7720
Type 1 Es E6 E1 Es 7089
Species num 950 505 2458 10896 14809

Table 6.4: Expected contingency table

Under the hypothesis that two variables' classifications are independent, that is

we would expect the proportion of type '0' species has MD '1' is equal to the same

type'O' with MD '2', '3', and '4'. So the following equations hold:

Ei
950

Ei +Es

E2 = E3 = _§__ = 7720 = 0.5213
505 2458 10896 14809 '

950,

505,

2458,

10896.

Solving the Eq. 6.1 for values of Ei,(i = 1, ... , 8), we obtain Table 6.5.

MD'l' MD'2' MD'3' MD'4' Total
Type 0 495 263 1281 5680 7720
Type 1 455 242 1177 5216 7089
Species num 950 505 2458 10896 14809

Table 6.5: Expected frequencies on the assumption of independence

(6.1)

To compare the observed and expected frequencies, we calculate the x2 value

using the following equation:

82

where Oi (i = 1, ... , 8) is the observed frequencies in Table 6.:3. The degree of

freedom (di) of two variables in contingency table with r rows and c columns is

computed as:

df = (r - 1) * (c - 1).

According to Species type and Motion Direction these two variables, the degree

of freedom is 3. To assess the significance of the x2 value 1775.35, we check the x2

table with df = 3. Given the confidence value a= 0.001, the corresponding value is

16.2662. Our x2 value 1775.35 is much greater than 16.2662, which suggests that in

less than 0.001 level of probability the null hypothesis is true. Thus, we reject the

null hypothesis and conclude that SP and MD is not independent.

In the next section, we give a brief introduction to the Bayesian Network learn­

ing E-algorithm, which first conducts constraint independence tests using x2 test.

Thereafter a MDL scoring method is performed to optimize the graphical structure.

6.4.2 Bayesian Network Learning Algorithm: E-algorithm

The key aspect of the structure learning problem is to construct a topology network

from fully observable variables. This section provides an improved BN learning

algorithm: the E-algorithm first proposed in Yan, 200;3 undertaken in relation to

improving learning Bayesian Networks. The E-algorithm has been adapted to busi­

ness applic.ations, e.g., suggested business strategies that a business should choose,

as reported in Ji et al., 2004; Yan et al., 2007. In Ji et al., 2005, the accuracy and

efficiency of the :&algorithm has been established by comparing execution time of

the E-algorithm against two established algorithms: I-MDL, 1-B&B-MDL.

The following section briefly illustrates the E-algorithm. The E-algorithm com-

83

bines both a constraint-based approach and a score-based approach, jointly apply-

ing the conditional independence (CI) test and minimum description length (MDL)

metr.ic search. First, a small number of dependence tests are used to reduce the cal-

culation complexity and to restrict the feasible search space. Second, the improved

MDL metric search boosts both time performance and efficiency of BN learning.

a. Constraint-based approach:

The constraint-based approach poses learning as a constraint satisfaction prob-

lem, which is more intuitive and follows the definition of a BN more closely.

This method performs tests of CI on the data, and search for a network that

is consistent with the observed dependencies and independencies (Heckerman,

1995; Pearl, 1986; Cooper and. Herskovits, 1991).

As a typical metric, CI is based on information flow in information theory,

thus the mutual information of two variables X, Y is defined as Eq. G.2:

"""""' p (x' y) """""' I(X, Y) =?,; P(x, y) log P(x)P(y) = L...J P(x, y~I(x, y), (6.2)

and conditional mutual information is defined as Eq. G.:~:

"""""' P(x, y le) """""' I(X, YIC) = L...J P(x, y) log P(xlc)P(ylc) = L...J P(x, y)I(x, yic),
x,y,c

(6.3)

where C is a conditional set of nodes, P denotes the instance frequency (prob­

ability) observed from a sample dataset. The mutual information can show

if the two variables are dependent and if so, how close is their relationship.

Hence, when I(X, YIC) is smaller than a certain threshold value c, we can say

84

I,

that X is independent of Y given the set C, or else X is independent of Y if

C is the empty set. So we can deduce if there is a connection between two

variables in view of the mutual information.

Here, the threshold value c can be given based on expert knowledge, alterna­

tively, there is another similar method, the x2 test (Qiang et al., 2002), which

is based on a statistical hypothesis to estimate a connection between two vari-

ables. Given a degree of confidence CJ, a connection between two variables

can be deduced by t-value(threshold) which is generated by x2 test. In our

case, if the connection value I is greater than or equal to t-value, then X is

·independent of Y, which implies that there is no direct connection between

these two variables. Otherwise, if the connection value I is less than t-value,

then X is dependent of Y, which means that an arc connects X and Y in the

resultant network.

b. Score-based approach:

The score-based method is to define a score function that evaluates how well

the dependencies in a structure match the data, and search for the simplest

structure which also maximizes the score. In the set of feasible solutions,

a recursive search can be used to find an optimal structure that satisfies the

criteria. A scoring function commonly used to learn a BN is the log-likelihood,

which is simply the log of the likelihood function, that is, Eq. GA:

n

l(Xlg, 09) log IJp(Xillli, g, fJ9) (6.4)
i=l

n

L logp(Xillli, g, 09), (6.5)
i=l

85

where ()9 is a parameter of the structure gin a dataset X which also represents

all the variables, and lli is the parents set of node Xi. The log-likelihood

is easier to analyze than the likelihood, because the logarithm turns all the

products into sums. Therefore, according to Eq. GA, we have Eq. G.5.

There are a couple of important points to note about the log-likelihood. The

log-likelihood increases linearly with the size of a dataset. The higher scoring

networks are those where a node and its parents are highly correlated. The net­

work structure that maximizes the likelihood is often fully connected. Adding

a node into a network always increases the log-likelihood. This deficiency of

the log-likelihood score is not desired. Thus, a score that makes it harder to

add arcs is necessary. In other words, we would like to penalize structures

with too many arcs. One possible formulation of this idea is called the MDL

score (Suzuki, 1993). The MDL score is a compromise between fit to data

and model complexity. Adding a variable as a parent causes the log-likelihood

term to increase, but so does the penalty. There will be an arc addition if its

increase to the likelihood is worth it. The detailed MDL scoring function will

be explained in the following section.

The space of Bayesian networks is a combinatorial space, consisting of an ex­

ceeding large number of structures. This problem is combinatorially complex; both

approaches have their limitations. The general idea of the E-algorithm is quite

straightforward. First, the constraint based tests are performed to get an initial

network to consider, which reduces the search space. Then, a metric score function

is used to find a matching structure which has the best motivated score.

The E-algorithm considers the BN structure learning as a connection elimination

86

--------------------~~-----~-~~-~ IT

process starting from a fully connected graph Go among all the variables. It features

three elements: 1) order-0 independence tests are used to delete weak connections

and obtain a graph G1 ; 2) order-1 conditional independence x2 tests, which only

appears in the "~-form", are conducted and simplify G1 to G2. The definition of

"~-form" is as follows:

Given an arc between two nodes Xi and Xj in BN structure g, if there is another

path connecting them which only includes one extra node Xk , we call this acyclic

subgraph an order-1 "~-form" (Figure 6.7); if this path includes two extra nodes,

we call this subgraph order-2 "~-form".

Figure 6.7: ~-form

This process reduces the search space for scoring possible structures. 3) The

E-algorithm then directly evaluates the structure MDL scores~ Eq. G.6 defines a

score that evaluates how well the dependencies in a structure match the data, and

we can search for a structure that maximizes the score (Qia.ng et al., 2002; Suzuki,

1993).

MDL(g,X) f,H(i,g,X) + k~) logn, (6.6)
i=l

n

H(i,g,X) L-p(Xi logp(XilIIi, g), (6.7)
i=l

87

where MDL(g, X) is the description length of graph g for overall data variables X,

H(i, g, X) describes the empirical entropy of each node i and its sum stands for the

overall structure fitness to the observed data, and k(g) is the description for the

complexity of nodes (each node i has the number Vi values, j is a parent node of i,

j = [1, i - 1]), as follows:

n

k(g) = L k(i, g),
i=l

i-1

k(i,g) =(vi - 1) L Vj.

j=l

(6.8)

(6.9)

As can be seen, the problem of learning BN becomes a search problem for a

structure with MDL metric. A recursive search is applied to the MDL-based search

procedure. This search examines all possible local changes in the set of parent nodes,

revealing that the cost of those evaluations is too high for massive dataset~.

The E-algorithm, described in Algorithm 5, takes numeric data input from AL-

GAE's output of the suvivors' genetic data. The learning process is to learn n x n

binary matrix G, to represent connections among all the nodes, where '1' in the

coresponding entry indicates an edge between these two nodes, and 'O' indicates no

connection. A fully connected graph is generated as an initial step, where all the

corresponding entries are given value '1' in the matrix for graph G. Then, com-

pute the conditional mutual information in light of Eq. ().;) to remove any invalid

edge by x2-test according to a given degree of confidence level <J = 0.001. For each

node Xi, sort its candidate parents Ili nodes as ascending ordering by their mutual

information; then search to find a Ili with the minimum MDL score and confirm

the local optimized structure of Xi. Update all the nodes, until the minimum MDL

88

l.

score is reached for the whole structure, and output graph matrix G. We test the

E-algorithm in a benchmark ALARM Network dataset, and it demonstrates that it

is efficient, valid and produces high accuracy for learning BN structures (Yan, 2003;

Ji et al., 2005; Yan and Cercone, 2010a).

6.4.3 Result Discussion

We reimplement a Bayesian Network structure learning software BANANA in Mat­

lab, (see Appendix B), where a graphical representation is constructed using the

E-algorithm to reveal the inter-connections among data. We use randomly cho­

sen 10 trial datasets from ALGAE as input, with total size of 68504 data entries.

BANANA provides a graphical representation in Figure G.8 to reveal the inter­

connections among the genetic descriptors among these 10 trial simulations in AL­

GAE. The program runs in Matlab on Mac OS X, with Processor 2.8GHz Intel

Core i7, Memory 8GB 1067MHz. The runtime for a single run is approximately 28

minutes.

The BN structure indicates the formula for the rule of survival: relationship

(edges) between the genetic characteristics (nodes) will determine who lives and

who does not. The ability to act rapidly (AS), obtain food (FP) or reproduce (IP)

are related to ability and skill to move (MD). Species type (SP), lifespan (SL) and

the visual field in the environment (VF) determines the motion direction (MD). In

a competitive world, the ability to defend and resist annihilation is represented by

the ability to attack (AA), and limited by entropy of energy (AL). This is tied to the

power to move and act (MD, AS) and limited by loss of motion (ML). Energy can

be replenished by food resources (EF), which have a scaled level of uptake efficiency.

All these abilities are genetically determined in the ALGAE.

89

''

Algorithm 5: E-ALGORITHM

Input: numeric data from ALGAE;
Output: structure G. matrix;
begin

Initialize:
G: fully connected graph matrix;
conj idencelevel : a = 0.001;
Step 1: mutual information test;
for each node i do

for each i's neighbor node j do
if mutual-info(i, j) = true then
I remove edge i ,j;

else
I sort parent list Ili according to mutual-info ascendingly ;

end
end

end
Step 2: CI test, remove redundant edges;
for each node i do

for each i's neighbor node j do
if CI-test(i, j, a) = true then
I remove edge i ,j;

end
end

end
Step 3: MDL test, remove redundant edges;
for each node i do

for each i's neighbor node j do
if MDL-score(i, j) = true then
I remove edge i ,j;

end
end

end
end

90

! I

(1) ;sP: SPecies type; (2) SL: Life Span; (3) VF: Vision Field;

(4) MD: Motion Direction; (5) AS: Action Speed;

(6) .ML : Motion Loss; (7) FP: Food Preference; (8) IP: Interaction Preference;

(9) AA: Attack Ability; (10) AL : Attack Loss; (11) EF : Food Efficiency;

Figure 6.8: BN structure of ALGAE genetic characteristics

Chance primarily determines which genes are present at the start of a run, but

it is evolutionary fitness which determines actual survival. BANANA reveals the

hidden structure behind this fitness of successful genotypes. In Figure G.8, the seven

edge connections in red are the core structure for this ALGAE setting. It shows that

motion and action are most important in that they impact other abilities that are

inheritable and promote evolutionary fitness. Of additional importance are species

type and lifespan (SP, SL). These would play a role for any organism, so in the

AWorld they are to be expected to be fundamental. What is notable in this experi-

ment is that these characteristics seem to be both necessary and sufficient to ensure

fitness. Under the given. constraints, these genes emerge repeatly until dominance of

one species occurs. The combination of such genes, revealed by Bayesian analysis,

91

give us insight into evolutionary processes.

6.5 Concluding Remarks

In this chapter, we demonstrate the structure of inter-connections among agents

strategies in a competitive environment. First, we develop a competitive multiagent

interaction platform: ALGAE. The process of simulated environment in ALGAE

provides us to observe generations of genes evolving in an accelerated period. AL­

GAE also allows us to foresee the genetic recombination process and provide us

insights into variations among group behaviors. Second, we develop BANANA us­

ing the E-algorithm to extract the Bayesian Network structure representation among

agents strategies. BN reveals the hidden structure of relationships in ALgents be­

haviours, and provides us a visual representation of them.

The experiment demonstrates that the reimplementation of BAN AN A in Matlab

is robust. Testing BANANA in a real example enhanced the performance such that

it learns effectively and robustly on a number of variables and connections. Applying

the E-algorithm in a complete domain shows that it can learn the influence of factors

to build policies in this complex environment and application.

The principles of how a survivor adapts in evolution from either optimal an­

cestors or weak ones, and at what point the evolutionary process can be tilted to

favor certain adaptive ones, needs further exploration. How we develop a ratio­

nal decision-making component for each ALgent, rather than mere random choice,

needs further research. The knowledge revealed from Bayesian analysis need to

be provided to each individual to allow actions to be chosen intelligently accord­

ing to various factors in the environment. Applying this knowledge (constraints)

92

l'

which exists among various factors in the multiagent environment, allows an indi­

vidual ALgent to choose an optimal action and obtain a gain of equilibrium. Thus,

ALGAE and BANANA have been shown to be useful applications to extend our

understanding of MAL, where dependency exists among multiple factors which in­

fluence agent strategies. These applications suggest further research into artificial

intelligence in terms of heritability and evolutionary processes.

93

'l

Chapter 7

Conclusions and Future

Research

Our research examines the following questions:

How can an agent perform robustly in the various types of multiagent

environments, so that each agent can efficiently observe other agents

behaviours, and learn from its observations in order to act (or adapt)

effectively in the complex non-stationary environment? What is the

macro-level phenomenon of the whole system, and how can this under­

standing of the phenomenon improve individual performance?

Ultimately, through a learning period and a series of actions, agents can achieve

top-ranked performance.

In this dissertation, we present the importance of analyzing the structural prop­

erties in multiagent problems. In a non-stationary multiagent environment, each

agent adapts to proceed towards its target. Each micro-level step in time may

94

I,

present a different learning problem which needs to be addressed. However, struc­

tural properties constitute a holistic phenomenon along with the rational strategies

of all players. In this chapter, we summarize our contributions and discuss some

future research directions.

7.1 Contributions

We present the importance of analyzing the structural properties in multiagent

problems. Multiagent research derives from two perspectives: learning and systems.

In one aspect, multiagent learning research focuses on learning from an individual

agent's past experience or modeling other agents' behaviors to improve performance.

In the other aspect, research on multiagent system addresses particular problems

from a system perspective, with more focus on a number of agents' interactions, and

provides optimal solutions. However, in a non-stationary multiagent environment,

each agent adapts to proceed towards its target. Each micro-level step in time

may present a different learning problem which needs to be addressed. In this

non-stationary environment, a holistic phenomenon forms along with the rational

strategies of all players; we define this phenomenon as structural properties. In this

dissertation, we present methods to extract some structural properties in multiagent

problems.

A multiagent environment can be classified as self-interested, cooperative, or

competitive according to agents' goal. Here, a self-interested environment differs

from a competitive, where all agents are not competing with others as a general­

sum game ~sin a competitive environment. Thus, we examine the structure from

these three general multiagent environments: self-interested random graphical game

95

playing, distributed cooperative team playing, and competitive group competition.

In each scenario, we analyze the structure in each environmental setting and demon­

strate a structure learned as a comprehensive representation: structure of players'

action influence, structure of constraints in teamwork communication, and structure

of inter-connections among strategies. This structure represents macro-level knowl­

edge arising in a multiagent system, and provides critical, holistic information for

each problem domain.

There are four contributions in our research.

First, we present the importance of structure, a new yet vital point to tackle

the problem of how agents perform robustly in various multiagent environments.

We focus on understanding the common characteristics in multi-player games, more

specifically, understanding the structure formed in a large number of agents in a

multiagent system. The structure reveals characteristics in a multiagent system,

which provides critical information for solving multiagent system problems.

Second, after revealing the characteristics which exist within multi-player games,

we further explore the structural connection exerting mutual influence between play­

ers' choices of actions in game playing. Much multiagent system and learning re­

search has been done from both machine learning and game theoretic perspectives.

However, characterizing a multiagent system as a multi-player game, little research

on how to abstract structure among players' actions has been conducted. In Chap­

ter 4, we provide a novel structure-learning algorithm, MDRLSA, to extract the

action connections from graphical games. Knowing the influence between players'

choice of action provides a compact representation for player's utility function, as

well as reducing the search space for each player's learning process. MDRLSA can

learn a good representation for games and MAS where there are sparse strong in-

96

fluences in individual player payoff.

Third, we analyze the importance of the structure of constraints in solving dis­

tributed team learning problem. We present the SE-Adaptive search algorithm and

demonstrate in its application: the mobile ad hoc network domain. Communica­

tion among agents through connections in a network is a critical aspect in such a

multiagent system. In a cooperative environment, agents communicate with neigh­

bours and achieve the goal of higher overall payoff. When exclusively acquiring

information from neighbours, the time consumption increases exponentially to the

scale of network inter-connection complexity. Our research exploits how to utilize

the structure information while performing can improve the optimal exploration

strategy in a cooperative environment, so that the time consumption and overall

payoff achievement is balanced. In MANET, a group of cooperative agents explore

in a distributed manner within limited time steps in a given environment to max­

imize the overall total payoff, with incomplete information of strategy payoff. In

this setting, each agent explores to maximize the overall payoff, and moves toward

equilibrium. However, how to use a lower level of optimization among agents to

reach a higher overall payoff with limited time steps is a critical issue between the

trade-off in exploration and exploitation. Our experiments demonstrate that, in

a densely connected network, only a single agent's optimization can achieve 983

of a two-agent optimization, although the difference of overall payoff is achieved by

higher level optimization with a large trade-off in time consumption. Thus, knowing

the structure of an agent's connections, it is helpful to choose an optimal strategy

for overall performance within the time constraints.

Last, we demonstrate the structure of inter-connections among agents strategies

in a competitive environment. We develop a competitive multiagent interaction

97

l l

platform: ALGAE. The process of simulating agent interaction within ALGAE

provides us a way to observe generations of genes evolving in an accelerated period.

ALGAE also allows us to foresee the genetic recombination process and provide

us insights into variations among group behaviors. Then, we develop BAN AN A

using the E-algorithm to extract the Bayesian Network structure representation

among agents strategies. BN reveals the hidden structure of relationships in ALgents

behaviours, and provides us a visual representation of them. This research presents

the insight that the inter-connection among the characteristics of those agents with

the best behavioural strategies to survive, where dependency exists among multiple

factors which influence agent strategies.

7.2 A Unified Multiagent Framework

This section summarizes the insights gained from examing structural properties and

evolutionary computing. We propose a novel multiagent environmental description,

and a system process to describe the interaction among agents. This design differs

from the description in Chapter 2. This new unified framework includes more func­

tional features for each agent to perform adaptively in dynamic environments with

guidance from macro-level influence of structures, as well as micro-level individual

learning and modeling. The macro-level influence forms as a holistic phenomenon of

mutual influence, constraints or strategies, while all the players perform intelligently

in this environment. These structural connections can play crucial role where the

collective intelligent features appear.

Framework Description

Given an environment E, n number of agents Ag = Ag1 , Ag2 , ... , Agn, (n ~ 1)

98

act towards their goals G1, ... , Gn. In this process, each agent Agi, i = {1, 2, ... , n},

explores E and learns through its experience. In order to achieve its individual goal

Gi, agent Agi need to learn how to co-adapt with other agents, while its environment

E changes over time. Under the dynamic environment, with unknown factors arising

from other agents' learning process, we give the following formal description for this

learning process in such a dynamic environment:

• Agi is represented as an entity with a set of intrinsic information, called

A chromosome:

- rules;

- experience;

- preference;

- self-stage: {position/location, wealth, energy, constraints}

This list of code of Achromosome is a compact stage for encoding information,

which is a carrier for an agent to store and retrieve the learned knowledge for

its planned action. We adopt thi~ idea of using coded information (such as a

chromosome) to represent the knowledge of Agi. However, the structure does

not have to be a list, but could be a network structure with these properties

as nodes.

• Decision-making component DMi:

- priority (ranking factors);

- rewards comparison;

future influence / impact;

99

l I '

/

- knowledge known;

(7.1)

This equation refers that the decision making D Mi for agent Agi depends on a

weighted combination w of its current stage Ci, future influence/impact Fi and

its past experience (or knowledge known) Pi. Current stage C is composed of

action priorities and reward estimate.

Other sub-components compute a Nash equilibrium decision, for example:

- minimax-Q;

- coalition modeling.

• E = {e1,e2, ... ,em},ei = {lleill,Zabeli}, lleill is the content information de­

scribed for the ith environment factor, and labeli refers to. this factor ei is

hidden (labeli = 0), or is revealed (labeli = 1). (The initial Ei, randomly set

a binary value for each label over the time steps.)

• Stage of agents at time t: S = { sl, s~, .. , s~}: each stage s~ = { i, kf, dmf, ... ,

staten, k! is the knowledge held by agent i at time t; dm~ is the decision

making component of agent i at time t.

• Goal G = {gf};

Compared to game theory, this description is a learning process, not only solving

a game. What there is to learn is a decision-making function which combines the

learned knowledge, current rewards, and future estimate. This new framework dif­

fers from the common description, and operates differently in a multiagent learning

100

T' I'

l I I

environment. We quantify these learning dynamics in a multiagent learning prob-

lem. This non-stationary learning multiagent system can be seen as an 'open-close'

system, see Figure 7 .1.

Ope
{

Feedback '\

Positiv~ !egative

Activation Inhibition
ose

<:'super.;igent Cel~
Figure 7.1: 'Open-Close' system diagram

In future research, we will explore how to utilize the holistic structural informa-

tion to improve problem solving in multiagent systems.

7.3 Future Research

As early as 1951, fictitious play as the first learning algorithm was proposed to com-

pute equilibria in games, and there have been numerous proposals since, regarding

learning techniques in stochastic games. The MAL and MAS research has produced

some inspiring results, yet, it is important to examine the foundations of MAL,

and consider some relevant questions. What question exactly is MAL addressing?

What is the goal for MAS? What is there to learn in stochastic games? What is

the optimal design for MAS? What are the criteria by which to measure answers to

these questions? How can we evaluate the success of learning rules and a system?

We further ask: do the agents know the stochastic game, including the stage

game and the transition probability? More specifically, the information regarding

the following: stochastic stages, transition probabilities, specific actions at each

101

stage, actions available according to the agents, transparent (or not) for all the

agents stages, action/strategies, rewards, and so on. These all are rather important

factors in the whole process of agent learning. In general, this learning process

can be classified as known or unknown games, observable, partially observable,

or unobservable play. Furthermore, in broader settings, there is more to learn,

including but not limited to learning opponents' strategies or developing the agent's

own strategy for proceeding effectively against competitors.

In a multiagent system, the agents can be controlled in a centralized or decentral­

ized manner. Is there a diagram suitable for a moment-to-moment situation? What

is the tipping point for this shift from one state to another? Do the agents com­

municate with all their neighbors as necessary? How do we design a self-organized

multiagent system to perform tasks? And how does an observed or learned macro­

level phenomenon provide knowledge for micro-level individual agent learning?

In the literature, for the known, fully observable games, there are two aspects to

learn in this restricted setting. One is that an agent learns the opponents' strategies

as a model, so the agent can devise a best (or at least "good") response, (also

known as "model-based" learning), for example, fictitious play (Brown, 1951). The

other one is that an agent can learn a strategy of its own which does well against

the opponents, without explicitly learning the opponents' strategies, (also known as

"model-free" learning), for example, Q-learning (Watkins, 1989).

Open issues for multiagent learning research remain. Multiple agents act jointly

in a common environment to achieve their own agenda, through interaction, either

cooperatively or in competitive with one another. Issues of scalability, adaptive

dynamics, and communication require further exploration.

102

I I

7.3.1 Scalability

Scalability is an endemic problem for multiagent learning and multiagent systems.

Multiagent systems involve multiple agent behaviors to achieve a common goal.

Thus, the search space can grow exponentially according to the number of agents

and the complexity of agent behavior. The evaluation criteria for learning methods

should be standardized with respect to their scalability. In a general-sum learn­

ing process, especially with partially observed stochastic games, research usually

involves studies in two-agent scenarios, with two or three actions for each agent.

When scaled up to include more agents, current multiagent learning methods are

unlikely to work in practice. A new multiagent framework will be required to incor­

porate diverse multiagent learning techniques with multiagent system designs.

7.3.2 Adaptive Dynamics

Due to the small changes caused by agents, multiagent systems can result in unpre­

dictable global, emergent effects. How does an agent in the system recognize this

phenomenon and proceed to discover an .optimal strategy with the presence of such

emergent effects? In a particular task, a holistic perspective of the environment

should be learned. This holistic information can be stationary, given the particular

problem settings. For example, the structural connections among the players can

deviate how a game plays significantly. Providing such macro-level system-specific

knowledge for agents can give important guidance to enable one individual to make

more accurate predictions in this adaptive dynamic environment.

103

r I

7.3.3 Communication

Communication is a principal means to effectively and immediately improve perfor­

mance, and help agents accomplish their tasks. However, it can markedly increase

the computation within the exploration space. The interaction can help complete

tasks through passing or sharing information. However, it can also increase the

complexity rapidly, in proportion to the number of agents and their idiosyncratic

behaviors.

To date, much research on multiagent communication has been conducted from

two perspectives: direct communication and indirect communication. Direct com­

munication is a way for an agent to inform other agents about past experience, which

can effectively improve team performance; methods include blackboards (posting

and modifying information), and messages. Notably, reinforcement learning meth­

ods have presumed that the agents have access to a joint policy table to which each

agent can contribute. Another perspective, indirect communication uses a third

party, such as location or direction marking in the environment to pass information

to others. Most indirect communication is inspired from social insects, such as ants,

who utilize pheromones to mark trails, and bees send waggle dancing signals to lead

others. One agent broadcasts the information in the environment, and the others

can utilize and exploit it.

Yet, in a multiagent system, (just like any social system), communication is

restricted by the environment. Some researchers claim that unrestricted communi­

cation in effect brings the multiagent system back to a single-agent system (Stone

and Veloso, 2000). Thus, how to define the level of communication among agents

and allow agents to communicate according to adaptation in the environment is still

104

I I

a open question which needs to be addressed.

7.3.4 Evaluation

In multiple agent interaction, each agent can constrain, adapt, evolve in the environ­

ment together with other agents; this diagram is not yet fully defined or understood

in game theory, and brings in unknown complexity to computation. How we set up

standard evaluation criteria for such complex systems and their learning process is

still an open question.

7.4 In Closing

Seeking answers to these questions will bring us to many new research questions.

Designing a robust multiagent learning system to solve real-time problems, such as

emergency response, is a continuing challenge, but, exploring these questions can

lead us to understand and develop more fully automatic multiagent systems. Fully

automatic multiagent system can be more reflective of the ultimate goals in the field

of Artificial Intelligence.

105

l ! I

Appendix A

Source Code: MDRLSA

Multi-Descendent Regression Learning Structure Algorithm (MDRLSA) is a novel

graphical structure learning algorithm for multiagent graphical games, using a re­

gression model to learn a player's utility function.

Multi-Descendent Regression Learning Structure Algorithm

II regression_learningStructure.m

% Loading Data

if nargin < 1

% option 1: Load Data

load('action_profile.mat');

load('A_profile.mat');

load('U_profile.mat')

else

% option 2: get matrix from reading game_file.txt file

[U, A, action_profile] = fread_game_profile(game_file);

end

106

tic

%

X action_profile;

y U(:,1);

m = length(y);

% Add intercept term to X

X = [ones(m, 1) X];

%get munber of players and each players 1 action number;

[r, playerNum] = size(A);

action_num = ceil(r-(1/playerNum));

%% Calculate the parameters from the normal equation

theta_eq = [];

for i = 1: size(U,2)

y=U(:,i);

theta_eq = [theta_eq, normalEqn(X, y)];

end

% Di.splay normal equa.ti.on' s result

fprintf('Theta computed from the normal equations: \n');

theta_eq

%% Analyze the learning result

epsilon= 1.0000e-5

data= theta_eq(2:end,:);

[m,n] = size(data);

107

% give n*n matrix: 0 indicates independent; 1 indicates related;

graph_param = ones(n,n);

temp_coef = zeros(n,n);

for i = 1:n

end

a = data(:, i);

for j = 1 :n

end

player_coef = a((j-1)*(m/n)+1:((j-1)*(m/n)~action_num))

a_norm = player_coef I mean(player_coef)

temp_coef(j,i) = sum(abs(a_norm - ones(action_num,1)))

if temp_coef(j,i) <epsilon

end

% flag unrelated player j & i as O;

graph_param(j,i) = O;

t = toe

graph_param

108

Appendix B

Source Code: BAN AN A

BAN AN A is a Bayesian Network structure learning software, where a graphical

representation is constructed using the E-algorithm to reveal the inter-connections

among data. Here, ALGAE provides a genetic descriptors' data for BANANA.

II HybridElearning.m

function DG = HybridElearning(file , a)

% thi.s hybrid E-algori.thm uses ALARM as benchmark to test BN lea.rni.ng

algorithm;

D = importdata(file); % 'genedecode __ 1.. csv'

data = D.data;

' % Input variable: a threshold of CI test a

% a = 0. 001 ;

% Data i.s a variable that saves our training database.

LGObj = ConstructLGObj(data); % construct an object

LG= struct(LGObj);

109

Dim LG.VarNumber;

% Step 1.: Complete undirected gra.ph H

DG =ones(Dim); % A directed graph

for q = 1 :Dim

DG(q,q) = O;

DG(q:end,q) = O; % only upper triangle is set for ls;

end

mutual_info = zeros(Dim, Dim);

% Step2a., test every independence relationship at first, test the mutual

in.formation. I(xi,xj) CI test

for p = 1 : (Dim - 1)

end

for q = (p + 1): Dim

end

[MI,R,M] = Marginallyindependent_Mutualinforrnation(LGObj,p,q);

mutual_info(p, q) = MI;

CI= CITest_ChiTwoVar(MI,R,M,a);

if CI == 1

DG(p,q) O; DG(q,p) O;

end

% Step2b is optional for testing purpose;

% Step2b-1, test every independence relationship, using Expectation

Chi--square test

chi2_testinfo = zeros(Dirn, Dim);

for p = 1 : (Dim - 1)

110

end

for q = (p + 1): Dim

end

[CI, chi2_testinfo(p,q)] = Chi2_Test(LGObj, p,q, a);

if CI == 1

DG(p,q) O; DG(q,p) O;

end

% Step3:

%1 ·-·variable mutual inf ormatiou I (xi, xj z) CI test

% if i->j, j->k a.nd i->k, test I(i,kj)? and I(j ,ki);

for i = 1 : Dim

J = find(DG(i,:)>O);

for indexl = l:length(J)

j = J(indexl);

K = find(DG(j,:)>O);

for index2 = 1: length(K)

k = K(index2);

if f ind(J == k) - 0

% i->j, j->k and i->k exists, test info I(.i,kj)?

[MI1 , R1, Ml] =

Conditionallyindependent_Mutualinformation(

LG Obj , i , k , j) ;

CI1 = CITest_ChiTwoVar(MI1,R1,M1,a);

if CI1 == 1 % if MI <= 0.009

DG(i,k) = O; DG(k,i) = O;

end

111

I I I

% test info I(j,ki)?

[MI2,R2,M2] =

Conditionallyindependent_Mutualinformation(

LGObj,j,k,i);

CI2 = CITest_ChiTwoVar(MI2,R2,M2,a);

if CI == 1

DG(j ,k O; DG(k,j) O·
'

end

end

end

end

end

% Step4, using scoring test to evaluate DG; and remove the redundent

representation;

num = length(find(DG > 0));

count = O;

flag = 1;

% repeat Step4 a&b, until no further edges information changes.

while flag == 1

% step 4a: removing edge (ascending order of mutual info)

% MDL scoring test all nodes:

% score each node j outreached by node i, through deleting edge i·-»j

% MDL scoring test ea.ch edge in DG and find the mininum score graph

[indx, indy] = find(DG > O);

struct_matrix = [indx indy];

map_info_matrix = mutual_info(find(DG>O));

% sorting orders of the edges a.scend.J.ngly according to mutual_in-fo

112

I,

between these two nodes

[new_map_info_matrix, IX] = sort(map_info_matrix);

order_edge_matrix = struct_matrix(IX,:);

[DG, remove_list] = score_descending_removedge(LGObj, DG,

order_edge_matrix);

% step 4b: adding edges deleted in step4a. rechecking (decending order

ot mutual info)

% By avoiding the sequence prob, the first time adding all the edges

back and retesting the scores:

% d.esending order of mutual_info for all the edges;

% adding from the last deleted edge to the first one;

% MDL scoring test all nodes:

% score ea.ch node j outreached by node i, through deleting edge i->j

% .MDL scoring test each edge].n DG and find the mininum score graph

remove_list_backup = remove_list;

[DG, remove_list, add_list] = score_ascending_addedge(LGObj, DG,

remove_list_backup);

% step4c: sort edges according to the node ascending;

edge_matrix = sortrows(order_edge_matrix);

[DG, remove_list] = score_descending_removedge(LGObj, DG, edge_matrix);

% step 4d: adding edges deleted in step4a rechecking (decending order

of mutual info)

% By avoiding the sequence prob, the first time adding all the edges

back and testing again the scores:

113

l I

end

end

% desending order of mutual_info for all the edges;

% adding from the last deleted edge to the first one;

% MDL scoring test al.1 nodes:

% score each node j outreached by node i, through deleting edge i->j

% MDL scoring test each edge in DG and find the mininum score graph

remove_list_backup = remove_list;

[DG, remove_list, add_list] = score_ascending_addedge(LGObj, DG,

remove_list_backup);

num_new = length(find(DG > O));

if num_new == num

flag = O;

else

end

num num_new

coub.t = count + 1;

114

Appendix C

ALGAE Manual

ALGAE explores the relations of group population's competition survival.

The ALGAE concept is inspired by the evolutionary epoch of Homo

Sapiens where two divergent species exist, Type 0 and Type 1, and

compete for resources in a primitive environment where survival is the

primary biological goal.

HOW ALGAE WORKS

Type 0 and Type 1 migrate randomly around the landscape. Each step costs

individuals energy, and they must eat food, 'veggie' or 'honey', in

order to replenish their energy - when they run out of energy, they

die.

There are two main food variations to this model.

115

In the first variation, fix amount of food resources ('honey') is randomly

located and is not renewable.

The second variation includes renewable vegetable crops('veggie') in the

landscape. Once a veggie is eaten, it will only regrow according to

its height at a slow growth or fast growth rate.

HOW TO USE THE PARAMETERS

1. Set the veggie? switch to TRUE to include veggie in the model, or to

FALSE to only include type 1 and type 0 species.

2. Set the growth? switch for the veggie resources to TRUE to allow veggie

to regrow, or to FALSE to only fixed number to the initial amount.

3. Set the honey? switch to TRUE to include honey in the model, or to

FALSE to only include type 1 and type 0 species.

4. Adjust the slider parameters (see below), or use the default settings.

5. Press the SETUP button.

6. Press the GO button to begin the simulation.

7. Look at the monitors to see the current population sizes and best

fitness genes and its fitness level.

8. Look at the POPULATIONS plot to watch the populations fluctuate over

time.

9. Export survivors' information to data files.

Resources Parameters:

116

max-veggie-height: The maximum height level of veggie

slow-growth-rate: The veggie slowly grows at this percentage

height-threshold: The veggie's threshold for growth rate: below the

threshold, it grows slowly; above the threshold, it grows fast.

fast-growth-rate: The veggie grows rapidly at this percentage

honey-reward: The amount of energy reward each individual gets for every

honey resource taken

honey-percentage: The amount of resources located in that environment

Population Parameters:

population-size: The initial size of population

crossover-rate: The crossover incidence in each chromosome pairing

mutation-rate: The probability of chromosome bits mutating

MIN-LIFESPAN: Minimum life span of an individual

max-population: Maximum population allowed in environment

energy-gain-from-food: The amount of energy individual gets for every

resource consumed

move-enerygy-consumption: The amount of energy each agent consumes to make

a move

reproduction-threshold: The threshold of an agent's energy required for

reproducing at each time step

show-age?: Whether to show the age of each agent as a number

show-energy?: Whether to show the energy of each agent as a number

Example run:

1. Open 'ALGAE', the interface is given as:

117

Figure C.1: ALGAE interface

2. Adjust parameter settings. Click 'SETUP' button, ALGAE presents an initial

setup accordingly.

3. Click 'RUN' button, ALGAE runs a number of generations and present the

final stage when it reaches stopping criteria.

118

Figure C.2: ALGAE setup

Figure C.3: ALGAE output

119

Appendix D

ALGAE Source Code

breed [turts turt]

breed [honeys honey]

turtles-own [

bits fitness energy age wealth

preference life-span vision-radius move-angle action-speed motion-loss

action-choice attack-ability attack-loss food-efficiency

patches-own [vegie value]

globals [

winner

generation

to setup

clear-all

turtle that currently has the best solution

120

setup-common-variables

if vegie? [

ask patches

set vegie max-vegie-height

color-vegie

set value random 20

if honey? [

draw-g:tid

distribute-honey

setup-turts

display-labels

reset-ticks

end

to setup-common-variables

set generation 0

ask turtles [

end

set energy 70 + random 30

set age 1

set wealth 0

setxy random-xcor random-ycor

1'

121

to setup-turts

set-default-shape turtles "person"

;create-turts population-size [

ask patches [

if count turts < population-size

sprout-turts 1

set size 2 easier to see

set bits n-values 18 [one-of [O 1]]

if else count turts <= population-size I 2

(rand.om-float 1.0 <=cooperative-probability

set bits fput 0 bits set color red set preference 0]

set bits fput 1 bits set color blue set preference 1]

decode-turt-genes

calculate-fitness

update-best-turt

save-file-var best-fitness-decode-filename

save-file-var survivors-decode-filename

end

to save-file-var [filename

file-open filename

file-write (word "[preference, life-span, vision-radius, move-angle,

action-speed, motion-loss, food-pref, inter-pref, attack-ability,

122

attack-loss, food-efficiency] 11
);, fitness]")

end

to draw-grid

ask patches

end

set pcolor blue + 4

sprout 1 [

set shape 11 square 11

set color cyan + 2

stamp

die

to distribute-honey

set-default-shape honeys 11 leaf 11

ask patches with [random 100 < honey-percentage] [

sprout-honeys 1 [set size 1 set color orange + 1]

end

to save-winner-decode-file

file-open best-fitness-decode-filename

if winner != nobody ; ; [output-print (word [bits] of wi.nner 11 \n") J;;

file,..·write (word [bits] of winner 11 \n")

ask winner [

123

f I

decode 11 action--choice 11 into two parts: food-pref & interaction

preference

let action-queue but-first action-choice

let food-pref (first action-queue

let list-2-bi ts [[O OJ [O 1J [1 OJ [1 1J J

let inter-pref (1 + position action-queue list-2-bits)

file-write (word 11
[

11 preference 11
,

11 (life-span - MIN-LIFESPAN)

vision-radius II II

'
(move-angle I 90) 11

,
11 action-speed 11

,
11

motion-loss 11 11 food-pref 11
," inter-pref 11

,
11 attack-ability

II II

'

II II

'
attack-loss II II

'
food-efficiency 11

]
11
);

II II

'
floor (fitness) 11

]
11

)

end

to save-survivors-decode-file

file-open survivors-decode-filename ;"genedecode.txt 11

ask turts

decode '' action-choice 11 into two parts: food-pref & interaction

preference

let action-queue but-first action-choice

let food-pref (first action-queue

let list-2-bi ts [[O OJ [O 1J [1 OJ [1 1J J

let inter-pref (1 + position action-queue list-2-bits)

file-write (word 11
[

11 preference 11
,

11 (life-span - MIN-LIFESPAN)

vision-radius II II

'
(move-angle I 90) "," action-speed 11

,
11

motion-loss 11 "food-pref 11
,

11 inter-pref

attack-loss II II

'
food-efficiency 11

]
11

)

124

II II

'
attack-ability

11 II ,

II II

'

end

to save-survivors-gene-file

file-open survivors-gene-filename ;; 11 gene.txt 11

ask turts [file-write (word bits)]

end

to go

ifelse (not any? turtles) or (count turts with [preference = 1] 0) or

(count turts with [preference = O] = 0) or (generation >=

max-n"-generation);; or (honey? and. not any? honeys) or (vegie?

and not any? patches with [vegie > 1]) ;; if vegie is on, check

vegie on patch

save-wipner-decode-f ile

save-survivors-gene-file

save-survivors-decode-file

file-close-all

stop

save-winner-decode-file

save-survivors-gene-file

save-survivors-decode-file

file-close-all

if vegie? [

ask patches

125

1 I

if grow? [grow-vegie

color-vegie

turts-act

display-labels

tick

end

to turts-act

ask turts [

turt-act

calculate-fitness

;create-next-generation

set generation generation + 1

update-best-turt

end

to update-best-turt

without Tournament

set winner max-one-of turts [fitness]

end

to grow-vegie

if else (vegie >= height-threshold)

if fast-growth-rate >= random-float 100

[set vegie·vegie + 1]

126

I,

]

[if slow-growth-rate >= random-float 100

[set vegie vegie + 1]

if vegie > max-vegie-height

[set vegie max-vegie-height

end

according to vegie height level, turn the patch green color in scale of

hue

to color-vegie

set pcolor scale-color (green - 1) vegie 0 (2 * max-vegie-height)

end

to move ;; turtle procedure

rt random 360

f d 1

set age age + 1

set energy energy - move-energy-consumption

if energy < 0 [die]

end

turts eat vegie, change vegie height and turn the patch brown hue;

to eat-vegie-pref erence [selfish]

if else preference = 1

if vegie > 0 [

set vegie vegie - 1

127

set energy energy + energy-gain-from-food * food-efficiency

energy through eating, [1*energy--gain·-·frorn·-·food,

4~energy-gain-from-f ood]

set wealth wealth + value

set .value 0

if vegie > height-threshold

set vegie vegie - 1

set energy energy + energy-gain-from-food * food-efficiency

energy through eating, [1*energy-gain-from-f ood,

4*energy-gain-f rom-f ood]

set wealth wealth + value

set value 0

gain

gain

if energy >~ max-energy [set energy max-energy]

energy

, , maximum

end

to fight [prey

let win 0

ask prey

;show (word "prey energy (before):" energy)

set energy energy - max list 10 random energy

minimum 10 or more if ra..ridorn energy is more

;show (word "prey energy (after): 11 energy)

128

prey loses energy

l I

if energy <= 0 [set win 1 die]

;show (word "predator energy (before):" energy

let loss min list 10 random energy predator loses energy

of maximum 10 or less (if random energy is less than 10)

if else win = 1 ; ; kill it

set energy energy+ energy-gain-from-prey - loss] ;; get energy from

prey, and. lose energy fi.ghting

set energy energy - loss] ;; get no energy from prey, and lose

energy fighting

if energy >= max-energy [set energy max-energy]

;show (word "predator energy (after):" energy)

end

maximum energy

to attack [prey]

stronger wins;

calculate attack strength for self and prey, and the

let strength-prey 0

let strength-self energy + attack-ability * random-float 1 * 20 I 4

; ; self strength

ask prey [set strength-prey energy + attack-ability * random-float 1 *

20 I 4] ;; prey stength

the stronger wins

if else strength-self >= strength-prey [

set energy energy - attack-loss * random-float 1 death-check

ask prey [set energy energy - attack-loss * random-float 1 - 40

death-check]

129

[set energy energy - attack-loss * random-float 1 - 40 death-check

ask prey [set energy energy - attack-loss * random-float 1 death-check

end

to calculate-fitness

set fitness energy

end

turts procedure

to death-check energy change, need to update fitness and turt.surv.ior

status

if energy <= 0 [die

calculate-fitness

end

to decode-turt-genes

let list-2-bi ts [[O OJ [O 1J [1 OJ [1 1J J

let list-3-bi ts [[O 0 OJ [O 0 1J [O 1 OJ [O 1 1J [1 0 OJ [1 0 1J [1 1 OJ

[1 1 1J J

set preference first bits

1 bit - take item 0: first bit to describe agent's preference 1:

selfish blue 0: a1truisti.c pink

set life~span (MIN-LIFESPAN + position (sublist bits 1 3 list-2-bits

) ; ; 2 bit - take the gene from i tern 1 - 4 ; ; obtain max life span,

set as span; minimum··-lifespan is 50

130

I' ,

set vision-radius (1 + position (sublist bits 3 5) list-2-bits)

2 bit ·- take the gene from item 5 -· 6 ; ; obtain vision field size,

set as radius; mirunum radius is 1

set move-angle 90 * (1 + position (sublist bits 5 7) list-2-bits

''

2 bit - take the gene from item 7 - 8 ;; obtain move direction

degrees, set as angle [90 180 270 360]; move direction refers to 360

degrees coverage

set action-speed (1 + position (sublist bits 7 9) list-2-bits) ; ; 2

bit - take the gene from item 9 - 10 ; ; obtain move action-· speed, set

as each move stepsize 1-4;

set motion-loss (1 + item 9 bits 1

bit - take the gene from item 11 ,, obtain energy motion-loss: 1-2

set action-choice sublist bits 10 13 ; ; 3

bit - take the gene from item 12 - 14 ;; obtain action preferece: 0-7

1st bit: O:eat-food first 1:eat-food later 1:mate 2: fight 00: 1 I

01: 2 I 10: 12 I 11: 21

set attack-ability (1 + position (sublist bits 13 15) list-2-bits)

;; 2 bit - take the gene from item 15 - 18 ;; obtain attack ability:

1-16

set attack-loss (1 +position (sublist bits 15 17) list-2-bits) ;; 2

bit - take the gene from item 19 - 21 ;; obtain attack loss: 1-8

set food-efficiency (1 + position (sublist bits 17 19) list-2-bits

end

; ; 2 bit -- take the gene from item 22 -· 23 ; ; obtain food aborbing

eff.iciency: 1-4

to action-with-mate

let action-queue but-first action-choice

131

if else first action-queue = 0

if else last action-queue = 1

let prey look-for-prey if prey !=nobody [attack prey]] 01:

fight ;; attack prey

if count turts < max-population - 1 and energy >=

reproduction-threshold;; 00: mate

let mate look-for-mate

if mate != nobody and [energy] of mate >= reproduction-threshold

reproduce-crossover-turt mate]

;; look for the best mate to reproduce

if else last action-queue 1

; ; 11: fight mate

[let prey look-for-prey if prey != nobody [attack prey]

]

[

; ; atta.ck prey

if count turts < max-population - 1 and energy >=

reproduction-threshold ; ; look for the best mate to reproduce

let mate look-for-mate

if mate != nobody and [energy] of mate >= reproduction-threshold

reproduce-crossover-turt mate]

;; 10: mate fight

if count turts < max-population - 1 and energy >=

reproduction-threshold;; look for the best mate to reproduce

132

[let mate look-for-mate

if mate != nobody and [energy] of mate >= reproduction-threshold

reproduce-crossover-turt mate]

let prey look-for-prey if prey != nobody [attack prey]

; ; attack prey

end

to turt-act

ifelse first action-choice= 0 ;; eat food first

fetch-food action-with-mate

action-with-mate fetch-food

rt random move-angle

f d action-speed

set energy energy - motion-loss

death-check

set age age + 1

if age >= life-span [die]

end

to-report look-for-honey

let h one-of honeys in-cone vision-radius move-angle

report h

end

133

to fetch-honey [h]

face h

move-to h

set energy energy+ honey-reward* food-efficiency;; energy gain from

honey, when honey-re1tJard is 4, 4 - 16, [l*honey-reward,

4*honey-reward]

ask h [set color gray stamp die]

if energy >= max-energy [set energy max-energy] ma.ximum

energy

end

to-report look-for-food-target

let p max-one-of patches in-cone vision-radius move-angle [vegie

;show (word "pat.ch here: vegie 11 patch-here vegie) ;show (word 11 p:

vegie" p [vegie] of p)

ifelse p != nobody

report p]

report patch-here

end

to-report look-for-mate

let mate max-one-of other breed in-cone vision-radius move-angle [

fitness] ;;vision-radius vision-angle; [let p max-one-of neighbors

[patch-variable]

report mate

end

134

to-report look-for-prey

let prey min-one-of other breed in-cone vision-radius move-angle [

fitness] ;;vision-radius vision-angle ; [let p max-one-of neighbors

[patch-variable]

report prey

end

to fetch-food

if honey? ,, if honey is resources,

fetch honey

if else any? honeys-here

let hone-of honeys-here fetch-honey h] ;; preference

food-efficiency J ;; show h

here

let h look-for-honey

here: I honey " patch-here h.)

area

if h != nobody [fetch-honey h]

go and get it

show "honey here 11 J ; , pick up can

output-print (woTd. "patch

look for an.y can in the vision

found honey in vision area,

[rt rand.om move-angle f d action-speed.

the area, move randomly

nothing found in

set energy energy - motion-loss

death-check

if vegie? [if vegie is resources,

take vegie ; show (word 11 patch here: 11 patch-··here)

135

end

let target-patch look-for-food-target

patch and eat by preference

move-to target-patch

here: 11 patch-here)

eat-vegie-pref erence

to reproduce-crossover-turt [mate]

let parent1 self

let parent2 mate

move to the best vegie

show (word 0 new patch

let child-bits crossover ([bits] of parent1) ([bits] of parent2)

; create the two children, with their new genetic material

ask parent 1 [

set energy (0.5 * energy)

calculate-fitness

hatch 1 [set bits item 0 child-bits

mutate

rt random-float 360 f d 1

set age 1

later for selfish and altruistic

decode-turt-genes

if else preference 0

set color red]

set color blue]

136

set up offspring's initial level

set up wealth distribution level

l I

ask parent2 [

end

set energy (0.5 * energy)

calculate-fitness

hatch 1 [set bits item 1 child-bits

mutate

rt random-float 360 fd 1 set up offspring>s initial 1.eve1

set age 1 set up wealth distribution level

later for selfish and altruistic

decode-turt-genes

if else preference 0

set color red]

[set color blue]

J

to-report crossover [bits1 bits2]

let split-point 1 + random (length bits1 - 1)

report list (sentence (sublist bits! 0 split-point)

end

(sublist bits2 split-point length bits2))

(sentence (sublist bits2 0 split-point)

(sublist bits1 split-point length bits1))

This procedure causes random mutations to occur in a solution's bits.

137

The probability that each bit will be flipped is controlled by the

MUTATION-RATE slider.

to mutate turtle procedure

let p first bits

; ; show (word "bits:" bits)

let temp-bits map [ifelse-value (random-float 100.0 < mutation-rate) [1

- ?] [?] J

but-first bits

set bits fput p temp-bits

show (word 11 mutate bits:" bits)

end

to display-labels

ask turts [

end

if else show-info?

if show-energy? [set label-color black set label round energy]

if show-age? [set label age]

set label 1111
]

138

-- ~--~------~~~~~~,~,~.-

Bibliography

Alfeld, S., Berkele, K., Desalvo, S. A., Pham, T., Russo, D., Yan, L., and Taylor,

M. E. (2011). Reducing the team uncertainty penalty: Empirical and theoretical

approaches. In Proceedings of the Workshop on· Multiagent Sequential Decision

Making in Uncertain Domains, AAMAS '11, pages 2-15.

Andre, D. and Teller, A. (1999). ·Evolving team darwin united. In Robot Soccer

World Cup II (RoboCup-98), pages 346-351. Springer-Verlag.

Axelrod, R. and Hamilton, W. (1981). The evolution of cooperation. Science,

211(4489):1390-1396.

Axelrod, R. M. (1984). The evolution of cooperation. Basic Books, New York.

Balch, T. (1997). Learning roles: Behavioral diversity in robot teams. In 1997 AAA!

Workshop on Multiagent Learning, pages 7-12. AAAI.

Balch, T. (1999). Reward and diversity in multirobot foraging. In IJCAI-99 Work­

shop on Agents Learning A bout, From and With other Agents.

Banerjee, B. and Peng, J. (2005). Efficient no-regret multiagent learning. In Pro-

139

ceedings of the Twentieth National Conference on Artificial Intelligence, volume 1

of AAA! '05, pages 41-46. AAAI Press.

Bellman, R. (1957). Dynamic programming. Princeton University Press.

Bernstein, D. S., Zilberstein, S., and Immerman, N. (2000). The complexity of de­

centralized control of markov decision processes. In Proceedings of the Sixteenth

Conference on Uncertainty in Artificial Intelligence, UAI '00, pages 32-37. Mor­

gan Kaufmann.

Bishop, C. M. (2006). Pattern Recognition and Machine Learning (Information

Science and Statistics). Springer.

Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., and Hwang, D.-U. (2006). Com­

plex networks: Structure and dynamics. Physics Reports, 424(4-5): 175-308.

Bowling, M. (2003). Multiagent learning in the presence of agents with limitations.

PhD thesis, Carnegie Mellon University, Pittsburgh, PA, USA.

Bowling, M. (2005). Convergence and no-regret in multiagent learning. In Advances

in Neural Information Processing Systems, pages 209-216. MIT Press.

Bowling, M. and Veloso, M. (2002). Multiagent learning using a variable learning

rate. Artificial Intelligence, 136:215-250.

Broder, A., Kumar, R., Maghoul, F., Raghavan, P., Rajagopalan, S., Stata, R.,

Tomkins, A., and Wiener, J. (2000). Graph structure in the web. Computer

Networks: The International Journal of Computer and Telecommunications Net­

working, 33(1-6):309-320.

140

Brown, G. W. (1949). Some notes on computation of games solutions. Technical

report, The RAND Corporation, Santa Monica, California.

Brown, G. W. (1951). Iterative solutions of games by fictitious play. In Activity

Analysis of Production and Allocation, pages 367-383. Wiley.

Cheng, J., Bell, D., and Liu, W. (1997). Learning belief networks from data: An

information theory based approach. In Proceedin.gs of the Sixth A CM International

Conference on Information and Knowledge Management, pages 325-331. ACM

Press.

Cheng, J., Greiner, R., Kelly, J., Bell, D., and Liu, W. (2002). Learning Bayesian

Networks from data: an information-theory based approach. Artificial Intelli­

gence, 137(1-2) :43-90.

Claus, C. and Boutilier, C. (1998). The dynamics ofreinforcement learning in coop­

erative multiagent systems. In Proceedings of the Fifteenth National Conference

on Artificial Intelligence, pages 746-752. AAAI Press.

Conitzer, V. and Sandholm, T. (2006). AWESOME: A general multiagent learning

algorithm that converges in self-play and learns a best response against station­

ary opponents. In Proceedings of the 20th International Conference of Machine

Learning, pages 83-90. ACM Press.

Conitzer, V. and Sandholm, T. (2008). New complexity results about Nash equilib­

ria. Games and Economic Behavior, 63(2) :621 - 641.

Cooper, G. F. and Herskovits, E. (1991). A Bayesian method for constructing

Bayesian belief networks from databases. In Cooper, G. F. and Moral, S., editors,

141

':

• I

Proceedings of the Seventh Conference on Uncertainty in Artificial Intelligence,

pages 86-94. Morgan Kaufmann.

Cooper, G. F. and Herskovits, E. (1992). A Bayesian method for the induction of

probabilistic networks from data. Machine Learning, 09(4):309-347.

de Campos, L. M., Fernandez-Luna, J. M., and Huete, J. F. (2004). Bayesian Net­

works and information retrieval: an introduction to the special issue. Information

Processing 8 Management, 40(5):727 - 733.

Duong, Q., Vorobeychik, Y., Singh, S., and Wellman, M. P. (2009). Learning graph­

ical game models. In Proceedings of the 21st International Jont Conference on

Artifical Intelligence, pages 116-121. Morgan Kaufmann.

Ficici, S. G. and Pollack, J. B. (2000). A game-theoretic approach to the simple

coevolutionary algorithm. In PPSN VI: Proceedings of the 6th International Con­

ference on Parallel Problem Solving from Nature, pages 467-476. Springer-Verlag.

Fisher, R. (1930). The Genetical Theory of Natural Selection. Clarendon Press,

Oxford.

Friedman, N., Linial, M., Nachman, I., and Peer, D. (2000). Using Bayesian networks

to analyze expression data. Journal of Computational Biology, 7:601-620.

Friedman, N., Nachman, I., and Peer, D. (1999). Learning Bayesian network struc­

ture from massive datasets: The "sparse candidate" algorithm. In Proceedings of

the Fifteenth Conference on Uncertainty in Artificial Intelligence, UAI '99, pages

206-215. Morgan Kaufmann.

142

I:

Fudenberg, D. and Levine, D. K. (1995). Consistency and cautious fictitious play.

Journal of Economic Dynamics and Control, 19(5-7):1065-1089.

Gilboa, I. and Zemel, E. (1988). Nash and correlated equilibria: Some complex­

ity considerations. Discussion Papers 777, Northwestern University, Center for

Mathematical Studies in Economics and Management Science.

Gmytrasiewicz, P. J. and Doshi, P. (2005). A framework for sequential planning in

multi-agent settings. Journal Artificial Intelligence Research, 24(1):49-79.

Greenwald, A. and Hall, K. (2003). Correlated-Q learning. In AAA! Spring Sym­

posium, pages 242-249. AAAI Press.

Grefenstette, J., Ramsey, C. L., and Schultz, A. C. (1990). Learning sequential deci­

sion rules using simulation models and competition. Machine Learning, 5(4):355-

381.

Hara, A. and Nagao, T. (1999). Emergence of cooperative behavior using adg;

automatically defined groups. In Proceedings of the Genetic and Evolutionary

Computation Conference, GECCO '99, pages 1039-1046. Morgan Kaufmann.

Haynes, T. and Sen, S. (1996a). Cooperation of the fittest. Technical Report

UTULSA-MCS-96-09, The University of Tulsa.

Haynes, T. and Sen, S. (1996b). Evolving behavioral strategies in predators and

prey. In Adaptation and Learning in Multiagent Systems, pages 113-126. Springer­

Verlag.

Haynes, T. and Sen, S. (1997a). Crossover operators for evolving a team. In Genetic

143

Programming 1997: Proceedings of the Second Annual Conference, pages 162-167.

Morgan Kaufmann.

Haynes, T., Sen, S., Schoenefeld, D., and Wainwright, R. (1995a). Evolving a team.

In Working Notes for the AAA! Symposium on Genetic Programming, pages 23-

30. MIT, Cambridge, MA, USA.

Haynes, T., Sen, S., Schoenefeld, D., and Wainwright, R. (1995b). Evolving mul­

tiagent coordination strategies with genetic programming. Technical report, The

University of Tulsa.

Haynes, T. D. and Sen, S. (1997b). Co-adaptation in a team. International Journal

of Computational Intelligence and Organizations, 1: 1-4.

Heckerman, D. (1995). A tutorial on learning with Bayesian networks. Technical

report, Microsoft Research, Redmond, Washington.

Heckerman, D., Geiger, D., and Chickering, D. M. (1995). Learning Bayesian net­

works: The combination of knowledge and statistical data. Machine Learning,

20(3):197-243.

Holland, J. H. (1985). Properties of the bucket brigade. In Proceedings of the

First International Conference on Genetic Algorithms, pages 1-7. L. Erlbaum

Associates Inc.

Holland, J. H. and Miller, J. H. (1991). Artificial adaptive agents in economic theory.

American Economic Review, 81(2):365-71.

Hu, J. and Wellman, M. P. (1998). Multiagent reinforcement learning: Theoret-

144

ical framework and an algorithm. In Proceedings of the Fifteenth International

Conference on Machine Learning, pages 242-250. Morgan Kaufmann.

Hu, J. and Wellman, M. P. (2003). Nash Q-learning for general-sum stochastic

games. Maching Learning Research, 4:1039-1069.

Jan't Hoen, P. and Tuyls, K. (2004). Analyzing multi-agent reinforcement learning

using evolutionary dynamics. In Machine Learning: ECML 2004, volume 3201 of

Lecture Notes in Computer Science, pages 168-179. Springer.

Ji, J., Liu, C., Yan, J., and Zhong, N. (2004). Bayesian networks structure learning

and its application to personalized recommendation in a B2C portal. In Proceed­

ings of the 2004 IEEE/WIG/ACM International Conference on Web Intelligence,

pages 179-184. IEEE Computer Society.

Ji, J., Yan, J., Liu, C., and Zhong, N. (2005). An improved Bayes!an networks

learning algorithm based on independence test and MDL scoring. In Proceedings

of the International Conference on Active Media Technology, pages 315-320.

Kaelbling, L. P., Littman, M. L., and Moore, A. W. (1996). Reinforcement learning:

A survey. Journal of Artificial Intelligence Research, 4:237-285.

Kapetanakis, S. and Kudenko, D. (2004). Reinforcement learning of coordination

in heterogeneous cooperative multi-agent systems. In Proceedings of the Third

International Joint Conference on Autonomous Agents and Multiagent Systems,

AAMAS '04, pages 1258-1259, Washington, DC, USA. IEEE Computer Society.

Kearns, M., Littman, M., and Singh, S. (2001). Graphical models for game theory.

145

In Proceedings of the Seventeenth Conference Annual Conference on Uncertainty

in Artificial Intelligence, pages 253-260. Morgan Kaufmann.

Lewontin, R. (1974). The Genetic Basis of Evolutionary Change. Columbia Univer-

sity Press.

Leyton-Brown, K. and Tennenholtz, M. (2003). Local-effect games. In Proceedings of

the Eighteenth International Joint Conference on Artificial Intelligence, IJCAI'03,

pages 772-777. Morgan Kaufmann Publishers Inc.

Lichbach, M. I. (1996). The cooperator's dilemma. University of Michigan Press,

Ann Arbor.

Littman, M. L. (1994). Markov games as a framework for multi-agent reinforcement
'

learning. In Proceedings of the Eleventh International Conference on Machine

Learning, pages 157-163. Morgan Kaufmann.

Littman, M. L. (2001). Friend-or-foe Q-learning in general-sum games. In ICML

'01: Proceedings of the Eighteenth International Conference on Machine Learning,

pages 322-328. Morgan Kaufmann.

Littman, M. L. and Szepesvari, C. (1996). A generalized reinforcement-learning

model: Convergence and applications. In Proceedings of the Thirteenth Interna-

tional Conference on Machine Learning, pages 310-318. Morgan Kaufmann.

Liu, G., Feng, W., Wang, H., Liu, L., and Zhou, C. (2009). Reconstruction of

gene regulatory networks based on two-stage Bayesian Network structure learning

algorithm. Journal of Bionic Engineering, 6(1):86 - 92.

146

I,

Luke, S. and Spector, L. (1996). Evolving teamwork and coordination with ge­

netic programming. In Proceedings of the First Annual Conference on Genetic

Programming, GECCO '96, pages 150-156, Cambridge, MA, USA. MIT :press.

Mannor, S. and Shimkin, N. (2001). Adaptive strategies and regret minimization

in arbitrarily varying Markov environments. In Proceedings of Fourteenth Annual

Conference on Computational Learning Theory, pages 128-142. Springer-Verlag.

Mannor, S. and Shimkin, N. (2003). The empirical Bayes envelope and regret min­

imization in competitive Markov decision processes. Mathematics of Operations

Research, 28(2):327-345.

Mataric, M. J. (1994). Interaction and intelligent behavior. Technical report, Cam­

bridge, MA, USA.

·Michod, R. E. (1981). Positive heuristics in evolutionary biology. The British

Journal for the Philosophy of Science, 32(1):1-36.

Mitchell, M. and Forrest, S. (1994). Genetic algorithms and artificial life. Artificial

Life, 1(3):267-289.

Modi, P. J., Shen, W., Tambe, M., and Yokoo, M. (2005). ADOPT: Asynchronous

distributed constraint optimization with quality guarantees. Artificial Intelligence

Journal, pages 149-180.

Moody, J., Liu, Y., Saffell, M., and Youn, K. (2004). Stochastic direct reinforce­

ment: Application to simple games with recurrence. In Proceedings of Artificial

Multiagent Learning 2004 AAA! Fall Symposium.

147

Nair, R., Tambe, M., Yokoo, M., Pynadath, D., and Sella, S. M. (2003). Taming

decentralized POMDPs: Towards efficient policy computation for multiagent set­

tings. In Proceedings of the Eighteenth International Joint Conference on Artificial

Intelligence, IJCAI '03, pages 705-711. Morgan Kaufmann Publishers Inc.

Nash, J. F. (1950). Equilibrium points in n-person games. Proceedings of the Na­

tional Academy of Sciences of the United States of America, 36(1):48-49.

Nash, J. F. (1951). Non-cooperative games. The Annals of Mathematics, 54(2):286-

295.

Nudelman, E., Wortman, J., Shoham, Y., and Leyton-Brown, K. (2004). Run the

gamut: A comprehensive approach to evaluating game-theoretic algorithms. In

Proceedings of the Third International Joint Conference on Autonomous Agents

and Multiagent Systems, pages 880-887.

Osborne, M. J. and Rubinstein, A. (1994). A Course in Game Theory. MIT Press

Books. The MIT Press.

Panait, L. and Luke, S. (2005). Cooperative multi-agent learning: The state of the

art. Autonomous Agents and Multi-Agent Systems, 11(3):387-434.

Panait, L., Wieg, R. P., and Luke, S. (2004a). A sensitivity analysis of a cooperative

coevolutionary algorithm biased for optimization. In Genetic and Evolutionary

Computation Conference, pages 573-584. Springer.

Panait, L., Wieg, R. P., and Luke, S. (2004b). A visual demonstration of convergence

properties of cooperative coevolution. In Parallel Problem Solving from Nature,

PPSN-2004, pages 892-901. Springer.

148

I'

Panait, L., Wiegand, R. P., and Luke, S. (2003). Improving coevolutionary search for

optimal multiagent behaviors. In IJCAI'03: Proceedings of the 18th international

joint conference on Artificial intelligence, pages 653-658. Morgan Kaufmann.

Partridge, L. and Harvey, P.H. (1985). Evolutionary biology: Costs ofreproduction.

Nature, 316(6023):20.

Pearl, J. (1986). A constraint-propagation approach to probabilistic reasoning. In

Kanal, L. N. and Lemmer, J. F., editors, Uncertainty in Artificial Intelligence,

pages 357-369. North-Holland.

Pearson, K. (1900). On the criterion that a given system of deviations from the

probable in the case of a correlated system of variables is such that it can be rea­

sonably supposed to have arisen from random sampling. Philosophical Magazine

Series, 50(302) :157-175.

Pelikan, M. (2008). Probabilistic model-building genetic algorithms. In Proceed­

ings of the 2008 Genetic and Evolutionary Computation Conference, GECCO

'08, pages 2389-2416. ACM.

Peshkin, L., Kim, K.-E., Meuleau, N., and Kaelbling, L. P. (2000). Learning to

cooperate via policy search. In Sixteenth Conference on Uncertainty in Artificial

Intelligence, U AI '00, pages 489-496. Morgan Kaufmann.

Potter, M. A. and De Jong, K. A. (2000). Cooperative coevolution: An architecture

for evolving coadapted subcomponents. Evolutionary Computation, 8(1):1-29.

Potter, M.A., Meeden, L., and Schultz, A. C. (2001). Heterogeneity in the coevolved

behaviors of mobile robots: the emergence of specialists. In Proceedings of the

149

I,

17th International Joint. Conference on Artificial Intelligence, volume 2, pages

1337-1343. Morgan Kaufmann.

Puppala, N., Sen, S., and Gordin, M. (1998). Shared memory based cooperative

coevolution. In Proceedings of the 1998 IEEE World Congress on Computational

Intelligence, pages 570-574, Anchorage, Alaska, USA. IEEE Press.

Qiang, L., Xiao, T. Y., and Qiao, G. X. (2002). An improved Bayesian Networks

learning algorithm. Journal of Computer Research and Development, 39(10):1221-

1226.

Quinn, M. (2001). A comparison of approaches to the evolution of homogeneous

multi-robot teams. In Proceedings of the 2001 Congress on Evolutionary Compu­

tation, volume 1, pages 128-135. IEEE Press.

Quinn, M., Smith, L., Mayley, G., and Husbands, P. (2003). Evolving teamwork

and role-allocation with real robots. In Proceedings of the eighth International

Conference on Artificial Life, ICAL '03, pages 302-311, Cambridge, MA, USA.

MIT Press.

Robinson, J. (1951). An iterative method of solving a game. The Annals of Mathe­

matics, 54(2):296-301.

Rosenthal, R. W. (1973). A class of games possessing pure-strategy Nash equilibria.

International Journal of Game Theory, 2(1):65-67.

Rossi, F., editor (2013). Interactive POMDP Lite: Towards Practical Planning

to Predict and Exploit Intentions for Interacting with Self-Interested Agents. IJ­

CAI/ AAAI..

150

Rubinstein, A. (2005). Discussion of "behavioral economics". Advances in Eco­

nomics and Econometrics Theory and Applications, Ninth World Congress.

Salustowicz, R. P., Wiering, M. A., and Schmidhuber, J. (1998). Learning team

strategies: Soccer case studies. Machine Learning, 33(2-3):263-282.

Sandholm, T. (2003). Making markets and democracy work: A story of incentives

and computing. In Proceedings of the International Joint Conference on Artificial

Intelligence, pages 1649-1671.

Schuster, P. and Sigmund, K. (1983). Replicator dynamics. Journal of Theoretical

Biology, 100(3):533 - 538.

Shapley, L. S. (1953). Stochastic Games. Proceedings of the National Academy of

Sciences of the United States of America, 39(10):1095-1100.

Shoham, Y. and Leyton-Brown, K. (2009). Multiagent Systems: Algorithmic, Game­

Theoretic, and Logical Foundations. Cambridge University Press.

Shoham, Y., Powers, R., and Grenager, T. (2007). If multi-agent learning is the

answer, what is the question? Artificial Intelligence, 171(7):365-377.

Singh, S. P., Kearns, M. J., and Mansour, Y. (2000). Nash convergence of gra­

dient dynamics in general-sum games. In Proceedings of the 16th Conference on

Uncertainty in Artificial Intelligence, U AI '00, pages 541-548. Morgan Kaufmann.

Stone, P. and Veloso, M. (2000). Multiagent systems: A survey from a machine

learning perspective. Autonomous Robots, 8(3):345-383.

Strogatz, S. H. (2001). Exploring complex networks. Nature, 410:268-276.

151

Sutton, R. S. (1988). Learning to predict by the methods of temporal differences.

Machine Learning, 3(1):9-44.

Sutton, R. S. (1989). Implementation details of the TD(A) procedure for the case

of vector predictions and backpropagation. Technical Report TN87-509.l, GTE

laboratories.

Sutton, R. S. and Barto, A. G. (1998). Introduction to Reinforcement Learning.

MIT Press, Cambridge, MA, USA.

Suzuki, J. (1993). A construction of Bayesian networks from databases based on an

mdl principle. In Proceedings of the Ninth International Conference on Uncer­

tainty in Artificial Intelligence, pages 266-273. Morgan Kaufmann.

Taylor, M. E., Jain, M., Jin, Y., Yooko, M., and Tambe, M. (2010). When should

there be a "me" in "team"? Distributed multi-agent optimization under uncer­

tainty. In Proceedings of the International Conference on Autonomous Agents and

Multiagent Systems. IFAAMAS.

Travers, J. and Milgram, S. (1969). An experimental study of the small world

problem. Sociometry, 32(4):425-443.

Tuyls, K., Verbeeck, K., and Lenaerts, T. (2003). A selection-mutation model for Q­

learning in multi-agent systems. In Proceedings of the second international joint

conference on Autonomous agents and multiagent systems, AAMAS '03, pages

693-700, New York, NY, USA. ACM.

Uther, W. T. B. and Veloso, M. M. (2003). Adversarial reinforcement learning.

Technical Report CMU-CS-03-107, Carnegie Mellon University.

152

Velagapudi, P., Varakantham, P., Sycara, K., and Scerri, P. (2011). Distributed

model shaping for scaling to decentralized POMDPs with hundreds of agents.

In The Tenth International Conference on Autonomous Agents and Multiagent

Systems, pages 955-962. International Foundation for Autonomous Agents and

Multiagent Systems.

Vidal, J. and Durfee, E. (1998). The moving target function problem in multi-agent

learning. In Proceedings of the third International Conference on Multi Agent

Systems, ICMAS '98, page 317, Washington, DC, USA. IEEE Computer Society.

Vidal, J. M. and Durfee, E. H. (2003). Predicting the expected behavior of agents

that learn about agents: The CLRI framework. Autonomous Agents and Multi­

Agent Systems, 6(1):77-107.

von Neumann, J. and Morgenstern, 0. (1944). Theory of Games and Economic

Behavior. Princeton University Press.

Vrieze, 0. (1987). Stochastic games with finite state and action spaces. CWI tracts.

Wang, X. and Sandholm, T. (2002). Reinforcement learning to play an optimal Nash

equilibrium in team markov games. In Advances in Neural Information Processing

Systems, volume 15, pages 1571-1578. MIT Press.

Watkins, C. (1989). Learning from Delayed Rewar.ds. PhD thesis, Cambridge Uni­

versity, England.

Watkins, C. J. C. H. and Dayan, P. (1992). Technical note: Q-learning. Machine

Learning, 8(3-4) :279-292.

153

'I

I'

Watts, D. J. (1999). Networks, dynamics, and the small-world phenomenon. Amer­

ican Journal od Sociology, 105(2):493-527.

Watts, D. J. and Strogatz, S. H. (1998). Collective dynamics of 'small-world' net­

works. Nature, 393(6684):440-442.

Wiegand, R. P. (2004). An analysis of cooperative coevolutionary algorithms. PhD

thesis, George Mason University, Fairfax, VA, USA.

Wiering, M., Salustowicz, R., and Schmidhuber, J. (1999). Reinforcement learning

soccer teams with incomplete world models. Autonomous Robots, 7(1):77-88.

Wilensky, U. (1999). NetLogo itself Center for Connected Learning and Computer­

Based Modeling, Northwestern University., Evanston, IL.

Wong, M. L., Lam, W., and Leung, K. S. (1999). Using evolutionary programming

and minimum description length principle for data mining of Bayesian Networks.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 21(2):174-178.

Wooldridge, M. (2008). An Introduction to MultiAgent Systems. Wiley.

Yan, J. (2003). Bayesian Network structure learning. Technical report, Beijing

University of Technology.

Yan, J. (2007). Bayesian Networks in gene selection. Master thesis, Beijing Univer­

sity of Technology.

Yan, J., Lv, S., and Zhong, N. (2007). Artificial life modeling in corporate strategy.

Journal of Guangxi Normal University, 25(4).

154

Yan, L. J. and Cercone, N. (2010a). Bayesian Network modeling for ·evolutionary

genetic structures. Computers f3 Mathematics with Applications, 59:2541-2551.

Yan, L. J. and Ger.cone, N. (2010b). Thoughts on multiagent learning: From a

reinforcement learning perspective. Technical Report CSE-2010-07, Department

of Computer Science and Engineering, York University, 4700 Keele St., Toronto.

Yan, L. J. and Cercone, N. (2011). Hierarchical adaptive cooperation for emergency

response. In First IEEE Canada Women in Engineering National Conference,

IEEE WIENC, Toronto, Canada.

155

