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Abstract 

Multiple agents have become increasingly utilized in various fields ~or both physical 
robots and software agents, such as search and rescue robots, automated driving, 
auctions and electronic commerce agents, and so on. In multiagent domains, agents 
interact and coadapt with other agents. Each agent's choice of policy depends on the 
others' joint policy to achieve the best available performance. During this process, 
the environment evolves and is no longer stationary, where each agent adapts to 
proceed towards its target. Each micro-level step in time may present a different 
learning problem which needs to be addressed. However, in this non-stationary 
environment, a holistic phenomenon forms along with the rational strategies of all 
players; we define this phenomenon as structural properties. 

In our research, we present the importance of analyzing the structural prop­
erties, and how to extract the structural properties in multiagent environments. 
According to the agents' objectives, a multiagent environment can be Classified as 
self-interested, cooperative, or competitive. We examine the structure from these 
three general multiagent environments: self-interested random graphical game play­
ing, distributed cooperative team playing, and competitive group survival. In each 
scenario, we analyze the structure in each environmental setting, and demonstrate 
the structure learned as a comprehensive representation: structure of players' ac­
tion influence, structure of constraints in teamwork communication, and structure 
of inter-connections among strategies. This structure represents macro-level knowl­
edge arising in a multiagent system, and provides critical, holistic information for 
each problem domain. Last, we present some open issues and point toward future 
research. 
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Chapter 1 

Introduction 

What are the differences between single agent learning versus multiagent learning? 

Single agent learning is a process where one single agent improves its performance 

through its own experience; whereas, multi-agent learning describes a process where 

multiple agents perform in the same environment, and each agent learns along with 

o~her agents to achieve each individual's agenda. Mature research exists in sin­

gle agent learning, such as supervised learning (regression modelling and classifica­

tion), unsupervised learning (clustering), and reinforcement learning (learning from 

'rewards given). In contrast, multiagent learni~g, a relatively new field, mostly ex­

tends from a single agent reinforcement learning perspective, and the goal is to learn 

how to perform and achieve the highest rewards under coordination/ constraints of 

other agents who perform jointly and simultaneously. Another branch of multia­

gent learning research, influenced by game theorists, focuses on strategy selection, 

which studies how multiple players play in a game and choose best strategies to 

achieve their goals. Strategy selection is a critical process to analyze the best strat­

egy, for example, the minmax-Q (Littman, 1994) strategy describes a process which 
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is to choose the maximum payoff in the worst/minimum situation. The purpose 

of analyzing this difference is to examine what the important breakthrough is in 

both communities, and what may be missing in addressing/solving some bottleneck 

problems. 

1.1 Rationale 

Multiple agents become increasingly important in various applications for both phys­

ical robots and software agents, such as, robot soccer, search and rescue robots, au­

tomated driving, auctions and electronic commerce agents, and so on. The merits 

of game theory influence computer science researchers in non-human-player game 

playing. An agent, a non-human player, observes the environment and chooses an 

action to perform. Commonly, agents have goals, assumptions, algorithms for learn­

ing and reasoning, and conventions. Learning through single agent tasks has been 

studied extensively in the reinforcement learning field, in which an agent acts alone 

in a stationary environment. In multiagent domains, agents interact with others, 

and co-adapt with others, then act on the best choice available. Since all the agents 

are evolving, the environment is no longer stationary, and this dynamic brings in 

a difficult learning problem that violates the basic stationary assumption of tradi­

tional techniques for behaviour learning. Each agent's choice of policy depends on 

the others' joint policy, which also aims to achieve the best available performance. 

Our work focuses on understanding the dynamics in a multigent system, in order 

to improve the strategic decision-making and learning process of agent behaviours, 

whose target is to select the best strategies, and adapt to unforeseen difficulties and 

changes in the environment. 
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1.2 Objective 

An agent can learn through experience from its own actions and associated effects, 

while l~arning from observation of other agents' experience. Note that an agent 

should effectively associate similar patterns and build knowledge: instead of merely 

keeping a record of the reward history for all agents. By using this knowledge, the 

agent 'Can efficiently explore the strategy space. Exploration vs. exploitation is a 

critical choice in the agent learning process. 

A complex non-stationary environment provides a dynamic learning domain. 

This domain is composed of other agents' diverse states. Thus, the complexity of 

the domain grows with the increase of the number of agents. Our intention is to 

seek an answer to the following questions: 

How can an agent perform robustly in the various types of multiagent 

environment, so that each agent can efficiently observe other agents be­

haviours: and learn from its observation in order to act (or adapt) effec­

tively in the complex non-stationary environment? What is the macro­

level phenomenon of the whole system, and how can this understanding 

of phenomenon improve individual performance? 

Ultimately, through a learning period and a series of actions, agents can achieve 

top-ranked performance. 

In traditional machine learning, the single agent learning process is designed to 

achieve one determined goal through exploration, with or without supervision. A 

rational decision improves performance at each step. However, when a single agent 

explores in a multiagent environment, a new dynamic occurs wherein every agent 

in this environment acts to optimize its own rewards at the state-of-art priority (in-
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terest). Therefore, there may exist a current temporary goal arising in the situation 

which may not lie in the same direction of a simple agent's objective learning curve. 

Further:more, unknown factors in the environment add another level of difficulty to 

an agent who tries to maximize its performance. Assuming each agent is rational, we 

can model other agents' behaviours and predict their behaviours with sufficient con­

fidence. However, if the assumption of rationality does not hold, this problem can 

be seen as a new problem where the original model with a certain objective function 

does not hold; thus, a new dynamic model is required to tackle this problem. 

In addition to this dynamic occurrence arising in multiagent learning, another 

critical issue is how an agent balances between exploration and exploitation in the 

environment. The objective of exploration is to obtain maximum information about 

the environment; however, exploitation, as a result of exploration, is the ultimate 

required action. Thus, we include both these factors in the objective function which 

measures the satisfactory of agents' performance. While performing, this learning 

system is a closed system within a certain limited time; if it fails to reach satisfac-

. tory performance, the system changes to open stage and modifies required learning 

parameters. This whole process repeats in a cycle, and the learning process is for­

mulated continuously. 

1.3 Contributions 

We provide the following contributions to the literature: 1) present the importance 

of analyzing the structural properties in multiagent problems; 2) provide a novel 

structure learning algorithm (MDRLSA) to learn a compact representation in ran­

dom graphical games; 3) introduce an adaptive teamwork algorithm (SE-adaptive) 
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for cooperative agents who choose an optimal level of teamwork in varying density of 

constraint structures; and 4) present a competitive multiagent simulation platform 

(ALGAE), and learn a Bayesian Network structure representation that is revealed 

among agents' strategies. 

In one aspect, multiagent learning research focuses on learning from individual 

agent's past experience or modeling other agents' behaviors to improve performance. 

In the other aspect, research on multiagent systems addresses particular problems 

from a system perspective, with more focus on a number of agents' interactions, and 

provides optimal solutions. However, in a non-stationary multiagent environment, 

each agent adapts to proceed towards its target. Each micro-level step in time 

may present a different learning problem which needs to be addressed. In this 

non-stationary environment, a holistic phenomenon forms along with the rational 

strategies of all players; we define this phenomenon as structural properties. In 

this dissertation, we present how to extract the structural properties in multiagent 

problems. 

A multiagent environment can be classified as self-interested, cooperative, or 

competitive according to agents' goal. Here, a self-interested environment differs 

from a competitive, where all agents are not competing with others as a general-

sum game as in a competitive environment. Thus, we examine the structure from 

these three general multiagent environments: self-interested random graphical game 

playing, distributed cooperative team playing, and competitive group competition. 

In each scenario, we analyze the structure in each environmental setting and demon-

strate a structure learned as a comprehensive representation: structure of players' 

action influence, structure of constraints in teamwork communication, and structure 

of inter-connections among strategies. This structure represents macro-level knowl-
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edge arising in a multiagent system, and provides critical, holistic information for 

each problem domain. 

1.4 Outline 

In the following chapters, we first review the related work in multiagent learning, 

framework and systems. Then, before we present our perspective on how to tackle 

multiagent systems, we analyze the characteristics of various scales of a multiagent 

learning problem from a holistic perspective. 

After revealing the important characteristics which exist among multiple player 

games 'in Chapter :3, we further explore the structural connection of mutual influence 

between players' action choices in game-playing in Chapter 4. In Chapter 5, we 

explore team-playing games, how structure matters to achieve the best exploration 

strategy in various network connections, in order to balance the time consumption 

and overall payoff. In Chapter G, we present a simulation of multiagent systems in 

a competitive environment, artificial life, where we analyze what we can learn from 

survivors' fitness through a graphical representation: Bayesian Networks. In our 

last chapter, we present some open issues and point toward future research. 
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Chapter 2 

Background: Multiagent 

Learning, Framework and 

Systems 

A multiagent system (MAS) (Stone and Veloso, 2000; Wooldridge, 2008; Shoha.m 

and Leyton-Brown, 2009) has a broad set of definitions; each definition leads to 

different constraints to solve MAS tasks. The goal of machine learning is to build 

intelligent programs which can solve problems after a learning and evolving process. 

This intelligent program is often called an "agent". 

An agent is a computational application that is designed to automate certain 

tasks with a guiding intelligence, to achieve a result. A multiagent environment 

is one in which more than one agent acts while agents interact with one another 

to perform tasks. Moreover, agents may or may not know everything about the 

environment. An agent learns by interacting in its environment and by observing 
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the effect of these interactions. This learning, while performing in the environment, 

is the key to accumulating experience and forming knowledge through performance. 

2.1 General Multiagent Learning Approaches 

Multiagent learning (MAL) (Shoham et a.I., 2007; Stone and Veloso, 2000; Panait 

and Luke, 2005) has a long history in the game theory field, as well as in the machine 

learning community. In MAL, agents are given feedback about their behaviors as re­

wards or penalties in a given situation. Thus, reward-based methods are widely used 

in this field, including two major streams: reinforcement learning (RL) (Sutton and 

Barto, 1998) which estimates value functions, and evolutionary computation (EC) 

which directly learn behaviors using stochastic search methods. The similarities 

and differences between these two classes of learning methodology have generated 

a rich literature, and some address both classes, such as the bucket-brigade algo­

rithm (Holland, 1985), the Samuel system (Grefenstette et al., 1990), and the recent 

Stochastic Direct Reinforcement policy gradient algorithm (Moody et al., 2004). 

Evolutionary Computation is a family of mechanisms inspired by biological evo­

lution such as reproduction, mutation, recombination, natural selection and survival 

of the fittest. Candidate solutions to the given problem play the role of individuals 

in a population, and the cost function (also calls "fitness function") determines the 

environment within which the solutions "live". Then evolution of the population 

takes place .to select and continue to refine the population until time is exhausted, 

or an optimal solution is discovered. 

Coevolutionary algorithms (CEAs) naturally apply evolutionary computation 

to refine multi-agent behaviors. In a CEA, the fitness of an individual is both 
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subjective and context-sensitive, based on its iteration with other individuals in the 

population. In competitive coevolution, individuals benefit at the expense of their 

components, but in cooperative coevolution (CCE), individuals succeed and fail 

together in collaboration. Generally, cooperative coevolution algorithms (CCEAs) 

solve a problem starting by decomposing the problem, and then assigning each 

subcomponent to a separate population of individuals (Potter and De .Jong, 2000). 

Before we get into the learning process for multiple agents, we first examine how 

a single agent learns and evolves in an environment. 

2.2 Single Agent Learning 

One interesting problem arising along with this agent reinforcement learning process 

is the trade-off between exploration and exploitation (Sutton and Barto, 1998). Once 

an agent learns a certain action which has performed well, should an agent exploit 

this action since it is known to receive a decent reward? Or should the agent 

explore other possibilities in order to seek a better reward? Obviously, exploring is 

definitely a good tactic sometimes, but without a balance between exploration and 

exploitation, agents will not learn successfully. The common way to achieve a good 

balance is to try a variety of actions while progressively favoring those producing the 

most reward. In this section, we examine the most influential work in RL: temporal 

difference learning and Q-learning. 

2.2.1 Markov Decision Process 

An agent learning process can be separated into the following steps: 
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• Observe the surrounding environment; 

• Decide an action (or "strategy") according to certain criteria; 

• Perform the action; 

• Agent receives feedback, rewards or penalty, from the environment; 

• Information about experience is recorded. In detail, the experience includes 

the environment situation, the action chosen, and the feedback received. 

Eventually, an agent can learn an optimal decision policy which performs the best 

in a certain environment, by performing actions and evaluating the results related. 

Markov decision processes are the foundation for research in single agent learning. 

A Markov decision process (MDP) (Sutton and Barto, 1998;Belhnan, 19.57) is a 

4-tuple, (S, A, T, R), where, 

• S is the finite set of the states; 

• A is the finite set of actions; 

• T : S x A x S --+ [O, 1] is a transition function, which defines a probability 

distribution over next states as a function of the current state and the agent's 

action: 

Vs E S,Va EA, LT(s,a,s') = 1; 
s'ES 

• R : S x A--+ IR is a reward function, which defines the reward received when 

selecting an action from the given state. 

At time t, the agent receives the reward rt= R(st, at), and the agent observes 

a new state st+1 , which is drawn from the probability distribution specified by 
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In general, the transition function T and the reward function R are not known 

in advance. Thus, the goal of a learning agent in an MDP is to learn a policy 7r 

to maximize its long-term reward R based on the only samples received. A policy 

7r is defined to map the probability of selecting an action from a particular state. 

Formally, 7r E S x A---+ [O, 1], where Vs E S, l:aEA 7r(s, a) = 1. 

Two common ways to formulate the long-term reward are the discounted reward 

function and the average reward function. Define V1r(s) as a policy's state value 

function, and E(rt I s0 = s, 7r) as the expected reward received at time t given the 

initial state s and the agent follows the policy 7r. The average reward is formed as: 

T 1 
V1r(s) = lim 2:-TE(rt I s0 = s, 7r), 

T-too 
t=O 

(2.1) 

which is under a common assumption that the MDP is a unichain. The unichain 

assumption is that the Markov chain induced by every stationary policy (perhaps 

randomized) has only one ergodic class of states and, perhaps, some transient states.1 

The discounted reward is described as follows: 

00 

V1r(s) = L "lE(rt I s0 = s,7r),1' E [O, 1). (2.2) 
t=O 

1' is a discount factor, which accumulates the immediate reward with probability 1' 

instead of a larger future utility. Temporal difference learning describes a class of 

algorithms that adopt this discounted reward formulation. 

1 An MDP is unichain if and only if, for all policies, there exists an ergodic set of states (i.e., 
any state in the set can be reached with non-zero probability from any other state in the set), and 
a.ll states outside this set a.re tra.nsient (i.e., after some finite point in time it will never be visited 
again). 
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The Markov decision process is under the Markov assumption, which generally, 

requires that the next state and reward to the agent depend only on the current 

state and agent's action. Formally, we state this property of MDP as follows. 

Definition 1 A decision process is Markovian if and only if, the sequence of states 

{st E, S ), actions (at E A), and the rewards {rf ER}, satisfies 

P { t t I t-1 t-1 o o} p { t t I t-1 t-1} r s = s, ri = ri s , a , ... , s , a = r s = s, ri = ri s , a . 

An agent's selection of actions is Markovian if and only if, 

that is, only if the agent's next action depends only on the current state.2 

We also refer to a Markovian process as stationary, and in the multiagent frame-

work of stochastic games, this property does not hold in a non-stationary environ-

ment. 

2. 2. 2 Q-learning 

Q-learning is the most significant breakthrough as an off-policy Temporal Difference 

(TD) control algorithm. The simplest, one-step Q-learning is defined as follows: 

2Definition l, 2, :3, .J, [), 6, are adopted from the formulation presented in Bowling, 2003, and 
Definition l, G are based on Sutton and Barto, 1998, Bellman, 1.%7. 
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where a is the learning rate, 0 < a < 1; when a is set to 0, it means that the 

Q-value is never updated and nothing is learnt; while a is set to 0.9, it means that 

learning can occur quickly. Q (st, at) is the expected value of performing action a 

in state s; and maxa Q(s, a) is the maximum reward received and then follows the 

optimal policy. The Q-learning algorithm is shown in Algorithm L 

Algorithm 1: Q-learning: An off-policy TD control algorithm 

Initialize Q(s, a) arbitrarily; 

repeat for each episode: 

Initialize s; 

repeat for each step of episode: 

Choose a from s using policy derived from Q; 

Take action a, observe r, s'; 

Q(s, a) +-- Q(s, a)+ a[r + / maxa' Q(s', a') - Q(s, a)]; 

s +-- s'; 

until s is terminal; 

until; 

Take a discrete, grid game, "cat-mouse-cheese", as an example. The traditional 

rules of the Cat and Mouse game are: 

a. Both the cat and mouse have 8 degrees of movement. Up, down, left and right, 

as well as the four diagonals. 

b. The mouse scores reward r ch for getting the cheese. The mouse gets the cheese 

when it is in the same square as the cheese. 

c. The mouse gets punishment r c for being caught by a cat, by simply both being 

in the same square. 
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d. If the mouse gets the cheese, a new piece is placed randomly while the cat and 

mouse keep their positions. 

e. The game is over when the cat catches the mouse. The scores are then updated 

and a new game can begin. 

Jn,this general cat and mouse game, the mouse, as the intelligent agent, performs 

while: learning in a n x n grid; on the other hand, cat is not a learning agent. In 

each 'learning episode, the mouse/ cat action space is a E [ 0, 7), 11a11 = 8; while the 

observation space is the cat's grid position [ex, cy] and the mouse's grid position 

[mx, my] and if the mouse is in hole: flag. The performance measure for this game 

is the cumulative reward for the mouse. Using the off-policy Q-learning algorithm, 

the mouse can be trained to learn strategies to gain optimal cumulative reward in 

this n x n grid environment. However, when the cat is also a learning agent, can 

this mouse continue to survive with optimal performance using the same strategies? 

The answer is probably no. This scenerio leads to a different issue: a multiagent 

learning problem. 

In the next section, we present a general framework for multi-agent learning. 

2.3 General Framework of MAL 

In a multiagent learning framework, multiple agents process three different cate­

gories of activities: perception, reasoning and action (see Figure 2.1). First, each 

agent observes other agents and collect information in the environment, called "per­

ception". Second, agents conduct reasoning according to their own preferences and 
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knowledge to decide an optimal strategy; thereafter, agents perform their actions 

and receive feedback respectively. 

Environment} . {:} /I Agent I 
+------.. 

t t 
I 

{}-- - -{} 
Figure 2.1: Multiagent Framework 

Stochastic games are defined as multiple agents with a multiple states frame-

work, which can be viewed as a synthesis of Markov decision processes and matrix 

games. MDPs model a single agent, multiple states model, which have been explored 

prominently in the field of reinforcement learning (see Section 2.2.1 ). On the other 

hand, matrix games describe a multiagent system with single state model, which are 

the foundational concepts in the game theory field. Since stochastic games share 

concepts with these two simpler frameworks, it is useful to consider them indepen­

dently to analyze the core concepts while addressing the critical issues existing in 

stochastic games only. Figure 2.2 illustrates the relations among these three con-

cepts. In Section 2.2, we discuss MDP as a single agent reinforcement learning; 

then, we examine matrix games, a multiagent, single-state learning process. 
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Figure 2.2: Stochastic Games include MDPs and Matrix Games 

2.3'.1 Matrix Games 

Matrix games were first examined in the field of game theory to model strategic 

interactions of many decision makers (von Neumann and I\.forgenstern, 1944; Os-

borne and Rubinstein, 1994). Mathematically, a matrix game (or strategic game) is 

a tuple (A, R), where A= Ai x · · · x An is the action space for each player; player i 

chooses an action Ai, and receives the payoff Ri, i E [1, n], which depends on all the 

players' act~ons. R is normally written as n-dimensional matrices, and each entry 

in the reward matrices corresponds to the joint actions taken. The learning process 

in matrix games means that agents repeatedly play the same matrix game, which is 

also called a repeated game. Agents learn through experience from observation of 

other agents' behaviors and their rewards, to maximize its own reward. 

Examples 

As follows, we list several matrix games and the payoff function matrices. Note that 

R1 is the payoff matrix for player 1 and R2 is for player 2. In each game matrix, 
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the row represents player 1, and the column represents player 2. 

• (a) Rock-Paper-Scissors 

Two players with each having three options: "Rock", "Paper" and "Scissors", 

and the rules are: "Rock" loses to "Paper", "Paper" loses to "Scissors", and 

"Scissors" loses to "Rock"; otherwise, it is a tie. The winner gains one dollar 

from the loser, while the loser loses one dollar. For example, player 1 plays P 

while player 2 plays S, and the reward is -1 for player 1 and 1 for player 2. 

R p s R p s 
R 0 -1 1 R 0 1 -1 

Ri= , R2 = 
p 1 0 -1 p -1 0 1 

s -1 1 0 s 1 -1 0 

• (b) Coordination Game 

Two players simply both desire to agree on their action choice, but with no 

preferences between them. 

A B A B 

Ri = A 1 0 , R2 = A 1 O 

B 0 1 B 0 1 

• ( c) Stackelberg Stage Game 

The players of this game are a leader and a follower and they compete on re-
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ward quantity; the leader moves first and then the follower moves sequentially. 

Up 

Down 

Left Right 

1 3 

2 4 

Up 

Down 

Left Right 

0 2 

1 0 

Matrix games can be classified according to their payoff function. If one agent's 

gain is other agents' loss, we call this type of game as general-sum games. For 

example game (a), the sum of player l's gain and player 2's loss equals zero, we also 

call this zero-sum game. Another common type of matrix game is team game, i.e., 

game (b), in which all agents have the same payoff function. In other words, one 

agent's best interest is the best interest of all others. Game (c) looks similar to the 

general-sum game and team game, but it is neither of them. 

What we can learn in game ( c) is as follows: imagine a repeated version of this 

game, and assume that the column player (secondary player: follower) is paying 

attention to the row player's (first player: leader) strategy and the rewards after 

each move. The two players will end up in a repeated (Down, Left) play and (Up, 

Right) play, since this is a way that benefits both. We conclude from this example: 

that learning and teaching happens at the same time: the row player has taught the 

column player to play in a way that benefits both most. Or, we can see this as an 

adaptation rather than a learning process. Note that the concept of strategy is not 

the same as a move. A move refers to an action taken by a player at the certain 

point during the game; while a strategy means a complete algorithm for playing the 

game which then tells a player what to do throughout the game. 
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Nevertheless, the learning agent's goal is to learn a strategy that maximizes its 

reward, using either pure strategies or mixed strategies. A pure strategy provides a 

complete set of how a player plays a game; while a mixed strategy is a probability of 

each pure strategy. An arbitrary finite matrix game may not have a pure strategy 

Nash equilibrium, but it always has a mixed strategy Nash equilibrium (Nash, 1951). 

Therefore, in our research, we focus on mixed strategies, and the definition is given 

as below. 

A mixed strategy refers to a joint strategy a for all n players. One player i's 

strategy ai, specifies a probability distribution over all actions A, and its reward 

function Ri is defined over mixed strategy as follows: 

Ri(a) = L Ri(a)IIf=1 ai(a). (2.4) 
aEA 

Ri(a) is the reward received by player i whe!-1 playing action a, and ai(a) is the 

probability distribution of playing action a. 

In matrix games, one player's optimal strategy can only be evaluated if the 

other players' strategies are known. So, this is an opponent-dependent solution, 

also called best-response. We use < ai, a_i > to represent the joint strategy where 

player i follows ai while others follow a-i· a_i refers to a joint strategy for all the 

players except player i. 

Definition 2 For a matrix game, the best-response function for player i, B ~ (a -i), 

is the set of all strategies that are optimal given the other player{s) play the joint 

strategy a-i· Formally, ai E BRi(a-i), if and only if, 
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where P D(Ai) is the set of all probability distributions over the set Ai {the set of all 

mixed strategies for player i).:{ 

One most critical notion in matrix game and game theory is a best-response 

equilibrium, also called Nash Equilibrium (Nash, 1950). 

Definition 3 For a matrix game, a Nash equilibrium is a collection of strategies 

for all players, CYi, with 

The ref ore, no player can do better by changing strategies given that the other players 

continue to follow the equilibrium strategy. 

All matrix games have a Nash equilibrium, and there may be more than one. In 

zero-sum games, one appealing feature is that there is a unique Nash equilibrium, 

and this equilibrium corresponds to the games' minmax solution. In other words, 

this mixed strategy maximizes the worst-case expected reward. This solution can 

be found in a linear program as illustrated in Eq. 2.5. 

Maximize: mina2 EA2 LaiEAi cr(a1)R( < ai, a2 > ), (2.5) 

Subject to: LaiEAi cr(a1) = 1, 

cr(a1) ~ 0, Va1 E Ai. 

This solution is player 1 's equilibrium strategy, where this linear program has 

llA1 II parameters. Player 2's strategy can be solved similarly. In Rock-Paper-Scissors 

game, there is a unique Nash equilibrium in which each player selects their actions 

3 Definitions 2, ;>,, 4., 5 are based on Na.sh, 1950. 
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with equal probability 1/3 (as mixed strategy Nash equilibrium). But, if one player 

simply adopts this equilibrium strategy, will the player win the competition of a 

tournament? The answer is no, because a Nash equilibrium provides a rational 

strategy, not necessary a best benefit one. Furthermore, in a general matrix game, 

finding a Nash equilibrium is known to be NP-hard, yet is still an open question 

(Gilboa and Zemel, 1988; Conitzer and Sandholm, 2008). 

2.3.2 Stochastic Games 

Stochastic games are an extension of a combination of matrix games and MDPs, 

which include multiple agents with multiple stages. Formally, a stochastic game 

(Shapley, 195:3) can be represented as a tuple: (n, S, A, T, R), where: 

• n is the number of agents; 

• S is a set of stages; 

• A is a set of actions, A = Ai,··· , An; Ai is player i's action. (We assume 

that each player has the same strategy space in all games. This is a notational 

convenience, not a substantive restriction.) 

• Tis a transition function specifying the probability of the next stage game to 

be played based on the game just played and the action taken in it: S x Ax S ---+ 

[O, 1], such that, 

Vs ES, Va EA, L T(s, a, s') = 1. 
s'ES 

• R is the reward function, R = Ri, · · · , Rn. ~ is the immediate reward func-

tion of player i for at the stage S: S x A ---+ R. Note that each player has its 

own independent reward function. 
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When n = 1, stochastic games are MDPs; when llSll = 1, they are matrix games 

or repeated games. The goal for player i in a stochastic game is to learn a policy 

that maximizes long-term reward, same as for MDPs. A policy for player i, 'Tri is a 

mapping that defines the probability of selecting an action from a particular stage. 

Formally, 'Tri E S x A ---+ [O, 1], where 

Vs ES, L 1ri(s, a) = l. 
aEA 

We use 7r to refer to a joint policy for all the players, and Ili refers to the set of all 

possible stochastic policies available to player i, while II = II1 x · · · x IIn refers to 

the set of joint policies for all the players. 7r _i refer to a particular joint policy of all 

the players except player i, and II_i refers to the set of such joint policies. Finally, 

the notion <'Tri, 7r_i > refers to the joint policy where player i follows 'Tri while the 

other players follow their policy from 7r -i. 

Next, similar to MDPs, we need to define how to aggregate the set of the imme-

diate rewards received in each stage for each agent in order to quantify the value of 

a policy. For finitely repeated games: we can simply use the sum or average reward 

which is the typical approach. For infinitely repeated games, the most common ap-

proaches are to use either the limit average or the sum of discounted rewards. The 

limit average reward function V of player i in stochastic games is defined similarly 

to MDPs, as follows, 

T 1 
Vt(s) = lim L -TE(r! I s0 = s, 7r), 

T-too t=O 
(2.6) 
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where E(rf I s0 = s, 7r) as the expected reward to player i received at time t given the 

initial state s and the agents follow the policy 7r. Similarly, the sum of discounted 

award function is defined with discount factor/,/ E [O, 1), as, 

00 

V/"(s) = L /t E(rf I s0 = s, 7r). (2.7) 
t=O 

Notice that this reward function for each agent i is dependent on the joint policy 

of the other agents. As in MDPs, we can also define Q-values for a given agent for 

a particular joint policy. For the discounted reward framework, Q-values can be 

formulated as, 

Qi(s, a)= Ri(s, a)+/ L '!'(s, a, s')V/"(s'). 
s'ES 

On the other hand, similar to matrix games, there is a best-response in stochastic 

games. Notice that a policy for a player can only be evaluated in the context of all 

the players' policies. 

Definition 4 For a stochastic game, the best-response function for player i, BRi( 7T"-i), 

is the set of all policies that are optimal given the other player{s) play the joint policy 

7r-i· Formally, 7ri E B~(7r-i), if and only if, 

where P D(Ai) is the set of all probability distributions over the set Ai {the set of all 

mixed strategies for player i). 

We can also define the most critical notion: a best-response equilibrium or Nash 

Equilibrium, similar to matrix games in game theory. 
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Definition 5 For a stochastic game, a Nash equilibrium is a collection of policies, 

one for each player, 1fi, such that, 

The ref ore, no player can do better by changing policies given that the other players 

continue to follow the equilibrium policy. 

Stochastic games can be classified the same way as matrix games. Team games 

are the ones where all the agents receive the same reward function. General-sum 

games are the ones where one player's gain means other players' loss. Zero-sum 

games refer to the sum of total rewards equals to zero. Like matrix games, zero-sum 

stochastic games have a unique Nash equilibrium. 

In stochastic games, the Markov assumption still holds, but it has a different 

form, given in Definition G. 

Definition 6 A multiagent decision problem is Markovian if and only if, the se­

quence of states (st E S ), actions (at E A), and the rewards (rf E R), satisfies 

P { t t I t-1 t-1 o o} P { t t I t-1 t-1} r s = s, ri = ri s , a , ... , s , a = r s = s, ri = ri s , a . 

That is, if the next state and rewards depend only on the previous state and all of 

the agents' actions, but not on the history of states and actions. 

From the game's perspective, stochastic games are Markovian, but from a single 

agent's perspective, the process is no longer stationary or Markovian (versus "be-
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havior strategy" 4 ). It is because the transition probabilities associated with a single 

agent's action from a state are not stationary and change over time as the other 

agents' action choices change. This property is critical to single-agent reinforcement 

learning research, and this violation of basic assumptions require new techniques to 

be developed to learn effective policies in stochastic games. 

2.4 Multiagent Systems and Related Work 

In the evolutionary computing community, multiagent learning research focuses on 

refining multiagent behaviours through each generation by assessing the fitness of 

the individual. In competitive coevolution, individuals benefit at the expense of their 

opponent; in cooperative coevolution, individuals succeed or fail together while in 

collaboration. This process refines the population until the sufficient level of fitness 

for individuals is discovered. As team learning goes, both the homogeneous (Haynes 

and Sen, 1996b; Haynes et al., 1995a; Haynes et al., 1995b) and heterogeneous forms 

(Luke and Spector, 1996; Andre and Teller, 1999; Haynes and Sen, 1996a; Haynes 

and Sen, 1997a.; Haynes and Sen, 1997b; Potter et al., 2001) are promoted, from 

the perspective of allowance of different roles or behaviours for each a.gent in the 

group who has successful achievement. However, in this setting, one critical feature 

in multiagent learning has not been achieved: where a single agent's individual 

learning process has not been addressed to solve the issues arising when emergent, 

unforeseen changes occur. 

This dynamic feature in a multiagent setting has been addressed in reinforce-

ment learning communities. In the MAL literature, the RL community extends 

4 A behavior strategy is defined if 7rt = f(ht) where ht is the history up to time t; a makovian 
or stationary strategy is a special case of behavior strategy when ht = </>. 
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Bellman-style single-agent reinforcement learning techniques to a multiagent set-

ting, in particular Q-learning (Watkins and Dayan, 1992), which learns the utility 

of performing actions in states for controlling and prediction purposes. This tech-

nique has performed well in: a) zero-sum repeated games (Littman, 1994; Littman 

and Szepesvari, 1996), b) common-pay-off (or "team") repeated games (Claus and 

Boutilier, 1998; Kapetanakis and Kudenko, 2004; Wang a.nd Sandholm, 2002), but 

not :so well in c) general-sum stochastic games (Hu a.nd \Vellman, 1998; Littman, 

200'1; Greenwald and Hall, 2003). 

In multiagent reinforcement learning settings, research takes on stochastic games 

and focuses on individuals who learn simultaneously and converge to optimal results 

(Bowling, 2005; Claus and Boutilier, 1998; Hu and Wellrnan, 2003). The important 

research of GIGA-WOLF (Generalized Infinitesimal Gradient Ascent - Win or Learn 

Fast) proves the no-regret and convergence criteria theoretically and experimentally 

in general-sum games. In general, optimal payoff is the common interest for the 

multiagent learning process. (Here, optimal payoff refers to no-regret.) 

Nevertheless, scalability with the number of agents is ~critical problem for mul­

tiagent learning. Multiagent learning involves multiple agents' behaviours in order 

to solve a common task, thus the search space can grow exponentially according to 

the number of agents and the complexity of agent behaviour. The evaluation criteria 

for learning methods should be standardized with respect to their scalability. In a 

general-sum learning process, especially with partially observed stochastic games, 

research usually involves studies in two-agent scenarios, with two or three actions 

for each agent. When scaled up to include more agents, current methods are un-

likely to work in practice. In cooperative multiagent systems, to optimize a global 

objective has been addressed as the Distributed Constraint Optimization Problems 
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(DCOPs) with promising results. Research on finding globally optimal DCOP algo­

rithms has been provided, such as ADOPT (Asynchronous Distributed Constraint 

Optimization) where it proves that DCOPs are NP-hard (Modi et al., 2005). Thus, 

when the number of agents increases, regarding both computational and communi­

cation requirement, the scalability needs to be improved. Furthermore, modelling 

the uncertainty in the multiagent systems, rich model such as Decentralized Partially 

Observable MDPs (DEC-POMDPs) gives promising results but mostly limits their 

applications with two or three agents (Bernstein et al., 2000). Velagapudi et al. have 

scaled DEC-POMDPs with hundreds of agents by given coordination locals (CLs) 

as heuristic information (Velagapudi et al., 2011). Interactive POMDP (IPOMDP) 

(Gmytra.siewicz a.nd Doshi, 2005; Rossi, 201a) can explicitly model and predict the 

other agents intention (i.e., mixed strategy) under partial observability. However, 

both DEC-POMDPs and DCOPs assume that agents act in a static environment, 

and solving IPOMDP is prohibitively expensive due to computational difficulties 

that policy space grows exponentially with the length of planning horizon, where 

dynamic factors havenot been encountered and modeled. 

2.5 Summary 

In this chapter, we described the single agent learning process and examine most 

critical techniques Q-learning in the reinforcement learning field. Thereafter, we in­

troduce MDPs and matrix games, since stochastic games can be seen as a merging 

of both. Through detailed analysis of MDPs and matrix games, we present the gen­

eral framework for multiagent learning, and some important concepts in stochastic 

games and in game theory. Last, we examine multiagent systems and related work. 
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In the next chapter, we analyze the structure characteristics and the dynamics in 

large scale multiagent systems. 
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Chapter 3 

Methodology 

Multiagent research derives from two perspectives: learning and systems. In one 

aspect, multiagent learning research focuses on learning from individual agent's past 

experience or modeling other agents' behaviors to improve performance. In the other 

aspect, research on multiagent system addresses particular problems from a system 

perspective, with more focus on a number of agents' interactions, and provides 

optimal solutions. However, in a non-stationary multiagent environment, each agent 

adapts to proceed towards its target. Each micro-level step in time may present a 

different learning problem which needs to be addressed. In this chapter, we present 

our research methodology on how to solve multiagent problems, and illustrate the 

common characteristics and dynamics in large scale multiagent systems. 

3.1 Research Methodology and Framework 

We propose a novel multiagent environmental description, and a system process to 

describe the interaction among agents. This design differs from the description in 
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Chapter 2, this new unified framework includes more functional features for each 

agent to perform adaptively in dynamic environment with guidance from macro­

level influence of structures, as well as micro-level individual learning and modeling. 

In this non-stationary environment, a holistic phenomenon forms along with the ra­

tional strategies of all players; we define this phenomenon as structural properties. 

The macro-level influence forms as a holistic phenomenon of mutual influence, con­

straints or strategies, while all the players perform intelligently in this environment. 

These structure connections can play crucial role where the collective intelligence 

feature appears. 

A multiagent environment can be classified as self-interested, cooperative, or 

competitive according to an agents' goal. Here, a self-interested environment differs 

from a competitive, where all agents are not competing with others as a general-sum 

game as in a competitive environment. Thus, we examine the structure from these 

three general multiagent environments: self-interested random graphical game play­

ing, distributed cooperative team playing, and competitive group competition. In 

each scenario, we analyze the structure in each environmental setting and demon­

strate a structure learned as a comprehensive representation: structure of players' 

action influence, structure of constraints in teamwork communication, and structure 

of inter-connections among strategies. This structure represents macro-level knowl­

edge arising in a multiagent system, and provides critical, holistic information for 

each problem domain. 
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3.2 Understanding the Multiagent Problem: Structure 

and Dynamics 

Before we present our perspective on how to tackle multiagent systems, we focus on 

understanding the common characteristics in multiple players games. More specif­

ically, we seek to understand the structure formed by a large number of agents in 

a multiagent system. The structure of a multiagent system reveals characteristics, 

which provides critical information for solving multiagent system problems. 

How does each player perform efficiently in a multiagent environment? To find 

an answer to this question, we explore which diagram can describe multiagent sys­

tem procedures. Firstly, we analyze that common characteristics underlying network 

models which are naturally formed (socially or biologically), by inspecting all con­

nections existing among nodes. Then, a "preferential pub choosing" example is 

given to demonstrate large scale agent networks. In contrast to large scale multi­

agent networks, we introduce another interesting phenomenon appearing in group 

population: replicator dynamics. 

3.2.1 Large Scale of Agent System's Structure Characteristics 

A network graph model, G = (V, E), is composed of a collection of N vertices (or 

nodes) V, and lists of edges E. Each vertex represents an individual player; while 

every edge connects a pair of nodes that are neighbours. One typical example of a 

large scale multiagent environment is social networks. Social networks are formed by 

a number of persons, where each has ties with others. In social networks, each player 

performs in this complex network, and the structure of a social network plays a role. 

Each large scale network is formed from a large number of individuals, where each in-
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dividual is unique microscopically, however, they emerge with common macroscopic 

characteristics. In this section, we introduce three distinct visual characteristics that 

exist in large networks: heavy-tailed degree distribution (Broder et al., 2000), small 

·diameter (Travers and Milgram, 1969), and high clustering of connectivity (Watts 

and Strogatz, 1998; Watts, 1999; Strogatz, 2001; Boccaletti et al., 2006). 

Heavy-tailed degree distribution 

In large universal networks, a large number of connections exist and each node 

has influence on various numbers of neighbors. A mathematical model is needed 

to differentiate the influential nodes from all the nodes in the network. Plot a 

histogram between the number of connections each node holds and the number 

of same influential nodes which exist together. The relations follow a power-law 

distribution, rather than follow a bell-shaped normal distribution. The power-law 

qistribution is also called heavy tail distribution, known as the "80-20" rule. The 

statistical characteristic of heavy-tailed is that it is linearly on a log-log scale. 

y = probability(x) ex xk. 

To illustrate the characteristics of social networks, . we illustrate how to choose 

a pub as an example. At scenario one, each customer chooses a pub uniformly at 

random, ignoring how many others are currently there at each pub. In Figure :Ll 

(a), it shows that the distribution of number of customers and the number of pubs 

which contain the same customer volume, which follows the 'bell' curve. At scenario 

two, each customer chooses a pub to go which is more popular. Figure ~U (b) shows 
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the customer numbers and the number of pubs with the same capacity follows a 

heavy tail distribution. Figure ~3.1 gives a demonstration for this pub phenomenon 

and presents the heavy tail characteristic. This example demonstrates the "rich get 

richer" phenomenon, which is also shown as heavy tail distribution. 

0 
·O 5 10 15 20 25 

number of customers number of customers log(number of custormers) 

Figure 3.1: Pub choice (Artificial data): (a). Normal distribution: each customer chooses 
a pub uniformly at random, ignoring how many others are currently there; (b). Power law 
distribution: customer chooses a pub proportionally to its current popularity count; ( c). 
Log-log scale of number of customers and number of pubs. 

Small diameter 

The distance between two vertices is the length of the shortest path connecting 

them. The diameter of a network is the average distance between pairs. It measures 

how near or far typical individuals are from each other. According the definition of 
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diameter, in a N node graph G, the smallest diameter of G is 1, which suggests a 

fully connected network and all N(N -1)/2 edges exists. The largest diameter exists 

in a chain graph, which is linear in N. In large scale networks, small diameter exists, 

considering the large population size, also known as small world of "six degrees of 

separation", (log(N) or log(log(N))). 

. Li,j d( i, j) 
diameter(G) = N(N _ l)/2, 

where i, j are any node in G. 

High clustering 

A clustering coefficient is a measure of how densely tied together edges are in a 

graph. Locally, the clustering coefficient of node Vi describes as the fraction of pairs 

(or friends that are also friends). Formally, let ki is the degree of vi, which also 

means the number of neighbours of Vi. Thereafter, the maximum number of edges 

ejk among node Vi's neighbourhood Ni is ~ki(ki -1), where Vj, Vk E Ni, and ejk EE. 

That is, every neighbour node of Vi is connected with every other neighbour node 

of vi. Let c(vi) denote the fraction of these actual edges that exist, which stand for 

friends of Vi that are also friends: 

The clustering coefficient of graph G is defined as the average of c( vi) over all the 

nodes Vi in G: 

34 

', '/ 



Let p be the edge density of the graph G: 

llEll 
P = N(N - 1)/2. 

When C(G) « p, we say graph G is highly clustered. 

When speculating about the connections among all the players, large scale so-

cial networks form those three common characteristics. However, when a group of 

diversified players co-exist in a game, another interesting phenomenon appears in 

the population: replicator dynamics. 

3.2.~ Replicator Dynamics 

Replicator dynamics presents an evolutionary selection phenomenon appearing in 

variant population evolutionary processes. 

Assume that, 1, 2, ... , N types exist in a population distribution. Given that po : 

0 0 n d no 0 0 n h h t . h . t . . t. 1 d" t . b t. p1 , p2 , ... , Pn, an : 1T 1 , 1T 2 , ... , 1T n, w ere eac ype i as I s m1 Ia is n u 10n 

of ·P? and payoff 7r~. At each time step t, all individual types are rational to be 

updated to choose the highest payoff. Thus, at time t + 1, the proportion of each 

type i is updated as follows: 

(3.1) 

The replicator equation Eq. ~U describes the fitness function to incorporate the 

distribution of population types and provides the essence of selection. 

Furthermore, Fisher's fundamental theorem (Fisher, 1930) states that the rate of 
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increase in fitness of any organism is proportional to its genetic variance in fitness at 

that time. Higher variance genetically increases the rate of adaptation. Accordingly, 

designing high variance in a multiagent system for agent payoff distribution utilizes 

the higher rate of fitness and payoff. 

Take the following example, to demonstrate the replicator dynamics which ap­

pears within these three groups of individuals: with different variance in the payoff 

evolutionary processes. Given three groups G1, G2, G3, each group has four types 

of individuals with initial distribution pO: and each individual type's payoff rr0 . For 

example, Figure 3.2 shows that one random group population is generated and pre­

sented, where four types of individuals co-exist in this size 100 population. Each has 

a proportion of Pi percentage in the population, where i = 1, 2, 3, 4. Respectively, 

each type of individual has its fitness Pi-fitness. 

In the following, we present three groups of population and illustrate their evolu­

tion process. Assuming all groups start with the same level of overall fitness (mean 

of each group), we analyze the overall fitness changes over time as appearing dif­

ferent group distribution and fitness variance. According to Eq. ::u, after one time 

step, each group's distribution changes, as well as the overall fitness of the group. 

The fitness and the adaptation gain calculation is as follows. 

• Given: 

Group 1: pO = [1/4, 1/4, 1/4, 1/4), rr0 = [10, 20, 30, 40]. 

Group 2: po= [1/4, 1/4, 1/4, 1/4), rr0 = [5, 15, 35, 45]. 

Group 3: po= [1/4, 1/4, 1/4, 1/4], rr0 = [O, 10, 40, 50]. 

• Each group's mean, variance and overall group fitness are: 

36 

I' I 



Group 1: 

"* .,, iliill 

iilii A I\ 
ii ~ 

A 
liijj 

t t t 

® ®~Ii 
~ 

8li 

1111 

t 

Figure 3.2: Replicator dynamics simulation 

mean(G1) = 25, var(G1) = 166.67, 

n=4 

~rt t • 
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fitness 0 (G1) =I>?* 7r? = 1/4 * 10 + 1/4 * 20 + 1/4 * 30 + 1/4 * 40 = 25; 
i=l 

Group 2: 

mean( G2) = 25, var( G2) = 333.33, 

n=4 

fitness 0 (G2) = LPt * 7r[ = 1/4*5+1/4*15+1/4·* 35 + 1/4 * 45 = 25; 
i=l 

Group 3: 

mean( G3) = 25, var( G3) = 566.67, 

37 

f I 



n=4 

fitness 0 (G3) =LP}* n-} = 1/4 * 0 + 1/4 * 10 + 1/4 * 40 + 1/4 * 50 = 25; 
i=l 

• After one time step, each group's distribution of four types individuals updates, 

as follows: 

Group 1: 

Group 2: 

Group 3: 

1 1/4*10 I 
Pl = = 1 10 

25 ' 

1=1/4*30 =3/10 
P3 25 ' 

1 = 1/4 * 5 = 5/100 
P1 25 ' 

1 = 1/4 * 35 = 35/100 
P3 25 ' 

1_1/4*0-0 
P1 - 25 - ' 

1 = 1/4 * 20 = 2/10 
P2 25 ' 

Pa= 1/4 * 40 = 4/10. 
25 

1 1/4*15 
P2 = 

25 
= 15/100, 

1 1/4 * 45 
p4 = 25 = 45/100. 

1 = 1/4 * 10 = 1/10 
P2 25 ' 

1=1/4*40 =4/10 1=1/4*50 =5/10. 
P3 25 ' P4 25 

• Thus, the new overall fitness of each group and its adaptation gain is as follows: 

Group 1: 

n=4 

fitness 1(G1) =LP} *7rf = 1/10* 10+2/10*20+3/10*30+4/10*40 = 30, 
i=l 

Gain(G1) = fitness 1(G1) - fitness 0(G1) = 30 - 25 = 5. 
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Group 2: 

n=4 

fitness 1(G2) = LP}*?Tl = 5/100*5+15/100*15+35/100*.35+45/100*45 =· 35, 
i=l 

Gain(G2) = fitness 1 (G2) - fitness 0 (G2) = 35 - 25 = 10. 

Group 3: 

n=4 

fitness 1(G3) =LP}* ?Tl= 0 * 5 + 1/10 * 10 + 4/10 * 40 + 5/10 * 50 = 42, 
i=l 

Gain( G3) = fitness 1 
( G3) - f itness0

( G3) = 42 - 25 = 17. 

As these calculations show, the three groups of individuals, Gi, G2, G3 , start 

with the same level of fitness; then one time step selection, (according to the simple 

rule: each type is rational to choose the highest payoff), results in three different 

fitness levels: 30, 35 and 42, respectively. Group 3 with the largest variance level 

ends with the highest fitness level. 

In all, replicator dynamics reveals diversified players' evolutionary process. The 

higher variance exists in a group, the higher fitness a population leads to. However, 

after a number of selections, t -+ oo, the whole population reaches an equilibrium, 

regardless of the initial distribution of each type. The equilibrium only depends on 

the evolutionary updating rule. In this example, since each type's rational choice is 

to move to a higher payoff, the highest payoff is the principal criterion in the game. 
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3.3 Summary 

In this chapter, we state that our research methodology of a new unified frame­

work pr~vides macro-level holistic information formed among agents. This struc­

ture property exists and is important to solving multiagent problems. Furthermore, 

we illustrate the characteristics which form in large scale networks: heavy-tailed, 

.small diameter and high clustering. This analysis provides insights into how to 

solve problems arising in multiagent systems by taking account of their important 

features. Replicator dynamics demonstrates that the evolutionary selection rule 

appears in diversified populations. That is, high variance among the population 

leads to higher fitness in the evolutionary process. More importantly, these features 

provide us with guidance about how to design a multiagent system in agent-based 

simulations, utilizing these structural characteristics and features to simplify the 

problem solving-process in large-scale networks. 
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Chapter 4 

Structure in Graphical Games 

After revealing the important characteristics that exist among multiple-player games 

in Chapter :3, we further explore the structure connection of mutual influence be­

tween players' action choices in game playing. Much multiagent system and learn­

ing research have been performed from both machine learning and game theoretic 

perspectives. However, characterizing a multiagent system as a multiple players 

game, little research on how to abstract structure among players' actions has been 

performed. In this chapter, we provide a structure learning algorithm, "Multi­

Descendent Regression Learning Structure Algorithm" (MDRLSA), to extract the 

action connections from graphical games. Knowing the influence between players' 

action choice can provide a compact representation for player's utility function, as 

well as reduce the search space for each player's learning process. 
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4.1 Graphical Games 

Graphical games (Kearns et al., 2001) are a representation of multiplayer games to 

capture direct influence among players. A graphical game is described as an undi­

rected graph G in which players are represented as vertices, and each edge identifies 

influence between two vertices. In many natural settings, a player, vertex v, has 

payoffs that are specified by the action of v and those neighbours of v who have 

influence over v. In normal form representation, each player's payoff is given by a 

complete matrix with all players' action choice. However, each player's neighbour 

set is usually a small subset of the complete player set. Rather than give the entire 

population's normal form game, a graphical structure gives a direct and visual rep­

resentation of the relationship among all the players. Graphical games are a suitable 

representation when sparse strong influences exist, whereas when there exists a large 

number of weak influences on each player, congestion games (Rosenthal, 1973) are 

applicable. 

In our research, we generate multiplayer random graphical games represented 

in normal form using GAMUT (Nudelman et al., 2004). GAMUT is a suite of 

game generators designated for testing game-theoretic algorithms. A set of random 

graphical games are generated in GAMUT as experimental data input. For example, 

Figure 4J. describes a six player random graphical game. In this game, each player 

has a choice action representing from 1 to 6, and total connections among players 

are represented as 10 edges. Each ed.ge is a randomly selected connection between 

two players which determines/influences the payoff received for each player. In order 

to compare among different games, we normalize each game's payoff between 0 and 

1. A strategy set [2, 2, 1, 1, 1, 1] represents all players' action choice at one stage of 
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the game, which indicates that player 1 chooses action 2, while player 2 chooses 

action 2, and player 3, 4, 5, 6 all choose action 1. These action combinations (also 

called a "strategy"), gives payoffs for player 1 to player 6 as follows respectively: 

[0.95, 0.19, 0.34, 0.13, 0.55, 0.77]. In Figure ·U, normal form representation of this 6-

player game states total number of 46656 (66) action profiles and the corresponding 

utilities for each player. 

#Players: 6 
#Actions: 666666 
#players'. 6 
# actions: (6) 
# graph: RandomGraph 
# 9raph_params: (-nodes 6 -edges 10 I 
# Graph Params: 
#I nodes: 6, edges: 10, sym_edges: rrue, reflex_ok: false I 
(1 l l 1 l 1): ( 0.9888893423258294 0.14518868307974256 0.34666415138496487 0.038023128819446826 0.23594170400592485 0.8738306301416572 J 
12 l 1 l l 11: I 0.6493444991678932 0.4155071673789125 0.34666415138496487 0.6590567860324859 0.4222770159171085 o.8738306301416572 I 
(3 1 1 1 l 1): [ 0.15193090776347526 0.12172733762196959 0.34666415138496487 0.06639426478458674 0.6214207116085547 0.8738306301416572) 
[4 l l l l 1): ( 0.26835599384705083 0.40252547595207655 0.34666415138496487 0.3413822595203671 0.7823505773305243 0.8738306301416572) 
[5 l l l l 1): ( 0.27927189630690374 0.9420454036400943 0.34666415138496487 0.1561862143425638 0.42474057576059127 0.8738306301416572) 
[6 l l 1 l 1): [ 0.16448162057531782 0.12410679110797923 0.34666415138496487 0.30514189249923224 0.4003220019315194 0.8738306301416572) 
[l 2 l l l 1): ( 0.8218136574744752 0.02561315741805365 0.34666415138496487 0.18312778713997557 0.5239682518208068 0.7784223673233747) 
[2 2 1 l l 1): [ 0.9571011063043914 0.19445471692083255 0.34666415138496487 0.1308573184007137 0.5541933771691710.7784223673233747) 
[3 2 l l l 1): [ 0.21233316527055482 0.19483193314310926 0.34666415138496487 0.36152466372865794 0.2782392490110991 0.7784223673233747) 
(4 2 l 1 l 1): [ 0.3499919411739944 0.34847870983594015 0.34666415138496487 0.37912818965244816 0.2541553162085356 0.7784223673233747) 
(5 2 l l l 1): ( 0.7256479919065064 0.09740757528133273 0.34666415138496487 0.7004412054712835 0.06608667126949293 0.7784223673233747 J 
[6 2 l l l l): [ 0.07736411265241327 0.80196529434451210.346664151384964870.38621656995429077 0.7295648258788623 0.7784223673233747) 

Figure 4.1: Data sample from a 6-player random graphical game 

Inn-player games, assuming that each player has the same number of a actions, 

normal-form representation requires an entries of action profiles to describe multiple 

players' utilities. However, as the number of players n increases, the action profiles 

size grows exponentially. Thus, a compact, visual representation to capture how 

every player's action choice influence others' utilities is interesting and critical. In 

the following section, we introduce a multi-gradient descendent regression model to 

learn a graphical structure representation of multiple players games from the normal 

form representation. 
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4.2 Learning Structure Algorithm: MDRLSA 

In this section, we present a novel graphical structure learning algorithm for mul-

tiagent graphical games, called "Multi-Descendent Regression Learning Structure 

Algorithm" (MDRLSA). The MDRLSA uses a regression model to learn a player's 

utility f~nction. Our hypothesis is that each player's utility function can be rep­

resented as a linear function of all players' individual action choices. Thus, the 

algorithm proceeds in two steps. In the first step, given all players' action profiles as 

input: ,define parameters 0 and fit 0 to all players' utility profiles Y = [Y1Y2 ... Ynp], 

where np is the total number of players. The hypothesis hek (x) is given as Eq. 4.1 

linear model 

Okx = Bok + 01kx1 + · · · + OjkXj, 

Bok 

(4.1) 

To simplify the explanation, we assume all np players have the same number 

of action choices, denoted by na. We apply multi-gradient descendent to achieve 

the objective of linear regression for each player k, which is to minimize its cost 

function, J, Eq. 4.2: 

J(O~) = 2~ ~ ( ho,(x(i)) -yk')f (4.2) 

8 [O~ ... o: ... O~p]. 
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Here, m is the total count of action profile, which is n~a; and Bk is the transpose 

of fh. Xj indicates a player's action choice, where Xj = 1 indicates taking action Xj 

and Xj = 0 indicates action Xj is not chosen. In np players game, [x1, x2, ... , xnal 

describes the first payer's action profile, and [xna+li Xna+2, ... , Xna+na] represents 

the second player's action profile, and so on. Here, j E [1, np * na], np x na is the total 

number of bits used to represent a strategy profile. As in 6 player game and each 

has 6 action choices, the action profile number mis 66 = 46656, and [x1, x2, ... , x36] 

stands for each player's action choice towards ai, a2, ... , a5. X = [x1, x2, ... , x35] 

includes each player's action profile, see Figure 4.2. 

Figure 4.2: np player' action mapping 

The objective is to minimize the cost function value J(B) by adjusting the (}j 

values. In batch gradient descent, each iteration simultaneously update Bj for all j 

in Eq. ·±.:3: 

. ·- 1 ~ ( (i) (i) ) (i) fJ1k .- f)jk - am ~ ho(xk - Yk ) xjk. (4.3) 

In this experiment, we randomly initialize the initial parameters 8 to 0, the 

learning rate a to 0.01 and number of iteration as 400. This procedure is designed 

to observe the performance of our hypothesis linear regression model, in order to 
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Figure 4.3: Convergence of gradient descent with learning rate a= 0.01 

avoid the model over-fitting or under-fitting the data. Figure 4.'.3 shows the cost 

function J(fJk) as each player's utility loss function is decreasing as the number of 

iteration increases. This decrease of cost function J proves that our linear model 

hypothesis Eq. 4.J is correct description between players' action choice and their 

utilities. However, this batch gradient descent learning is quite slow. Thus, in large 

. number of data entries, we choose normal equation Eq. 4.4 to optimize () instead. 

As we can see in Eq. 4.4, until converge as in gradient descent, Eq. ·4.4 includes no 

loop in the program, and learning rate a is not required. 

(4.4) 
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where 

Yok 

Ylk 
Yk = 

Yjk 

In the second step, according the parameter 8, we map the coefficiency between 

each .player's action choice and the given utility. Algorithm 2 describes the graph­

ical structure learning algorithm MDRLSA, which indicates whether the influence 

between players are related or independent. The graph parameter is represented in 

a binary n x n matrix: each entry value '1' indicated related, whereas 'O' indicates 

independent. 

4.3 Results and Analysis 

We develop the Multi-Descendent Regression Learning Structure Algorithm in Mat­

lab (see Appendix A), which provides a graphical structure representation among 

players actions' influence for multiagent graphical games. 

Taking one random graph game with six players, six actions and ten number of 

influence edges as an example, the learned player influence among them is shown in 
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Algorithm 2: MDRLSA 

Data: 
X :=. action_profile; 
U := utility _profile; 

Result: graph_param; 
begin 

Step 1: calculate 8 parameter; 
Initialize: 
8= [); 
for each player i do 

I 

y=U(:,i); 
8 = [8, normalEqn(X, y)]; 

end 
Step 2: map coefficiency graph_param; 
Initialize: 
E ;=: 0.00001 
data := 1 -7 na rows in 8 
[m, n] :=size( data); 
graph_param := ones(n,n); 
temp_coef := zeros(n,n); 
for each column player i do 

a := data(:,i); 
for each row player j do 

/ / read game file; 

/ / n is number of player; 

/ / set an x n matrix to all ls; 

/ / Set a n x n matrix to all Os; 

/ / ith column in data; 

player_coef = a((j -1) * (m/n) + 1: ((j -1) * (m/n) + n)); 
/ / yth row player's all action coefficient in a; 

a_norm =player _coefmean(player _coef); 

/ / normalize player _coef between 0 and 1 as a_norm; 

temp_coef(j, i) = sum(abs(a_norm - ones(n, 1))); 
/ / calculate the sum of all the absolute difference between a_norm and all true 

n x 1 connections; 

if temp_coef(j, i) < E then 
/ / any choice of yth row player's action's influence on ith column player 

small than Ej 

graph_param(j,i) = O; 
/ / fiag unrelated player j €3 i as O; 

end 
end 

end 
end 
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the following matrix: 

player 1 2 3 4 5 6 

1 1 1 0 1 1 0 

2 1 1 0 1 1 1 

3 0 0 1 1 1 0 
graph_param = (4.5) 

4 1 1 1 1 1 1 

5 1 1 1 1 1 0 

6 0 1 0 1 0 1 

Figure 4.4 illustrates the conversion of Eq. -L) into graphical structure represen-

tation. 

Figure 4.4: 6 player graphical game structure 

In GAMUT, graph structure is represented as a list of neighbors of all nodes. 

By definition, graph G is undirected; thus, two nodes connected by one edge have 

mutual influence between them. Moreover, each player's action choice results in its 

utility. That is, each player is its own factor. Thus, each player does not have its 

own node in the neighbor list, as well as one edge's two nodes only appear once 
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in the neighbor lists. A 6-player random graphical game's structure is shown in 

GAMUT as lists of each node's neighbors in the following way: 

node 1: 2,4,5 

node 2: 4,5,6 

node 3: 4,5 

node 4: 5,6 

node5: 

node6: 

Comparing the structure shown in Eq. 4.3 with the benchmark generated by 

GAMUT, MDRLSA learns an accurate underlying structure for a 6-player random 

graphical game. 

We test on a set of random graphical games with different number of players, 

actions and number of influence edges generated from GAMUT (see Table 1.1.J.). The 

program runs in Matlab on Mac OS X, with Processor 2.8GHz Intel Core i7, Memory 

8GB 1067MHz. The run time shown in Table 4.1 is one single run of MDRLSA. 

With the same graphical game, the run time varies in the scale of 10-1 of a random 

run time. For instance, a 5-player, 3-action game with 5-influence edges, the run 

time differs in 0.001 seconds. Given the listed random generated graphical games in 

the table, the structures learned are shown in Figure 4.5. MDRLSA shows a robust 

promising results of learning structure representation efficiently and effectively in 

random graphical games. The runnning time increases linearly to the number of 

strategy profiles. 
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Player :\"umber Action Number Number of Influence (Edges) R.uutime (Seconds) Accuracy(%) Normal Form Profile Entries 
4 3 3 0.0055 100 81 
4 4 4 0.0071 100 256 
5 3 5 0.0117 100 243 
5 4 6 0.0098 100 1024 
5 5 7 0.0318 100 3125 
6 4 5 0.0311 100 4096 
6 5 8 0.1007 100 15625 
6 6 10 0.3078 100 46656 

Table 4.1: Random graphical games experimental details 

4.4 Comparison 

Duong et a.l., 2009 give a structure learning algorithm for graphical game struc-

ture learning. Their approach comes from a game theoretical perspective, which 

constructs a loss function and focuses on minimizing the loss of utility function in 

strategy choice. However, our approach comes from a machine learning perspective, 

and focuses on revealing the coeffi.ciency between all the action choices and the out-

come utility. Through the correlated coefficiency, the relative neighbour influence 

is identified. Both approaches are tested on GAMUT generated games. However, 

without demonstrating this in the same programming languages, we cannot eval-

uate the run time efficiency difference on both methodologies. Comparing both 

approaches, there are methodological advantages despite lack of theoretic analysis. 

Our approach is intuitive, straightforward and simple. 

4.5 Concluding Remarks 

In this chapter, we demonstrate the structure properties in a self-interested mul-

tiagent environment. In simulated GAMUT random graphical games, we present 

the Multi-Descendent Regression Learning Structure Algorithm to learn a com-

pact representation among agents' action influence towards each other. The Multi-
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(a) 4 players, 3 actions, 3 edges (b) 4 players, 4 actions, 4 edges 

( c) 5 players, 3 actions, 5 edges ( d) 5 players, 4 actions, 6 edges ( e) 5 players, 5 actions, 7 edges 

(f) 6 players, 4 actions, 5 edges (g) 6 players, 5 actions, 8 edges (h) 6 players, 6 actions, 10 edges 

Figure 4.5: MDRLSA learned graphical structures 

Descendent Regression Learning Structure Algorithm tests on a set of randomly 

generated graphical games. Experiments demonstrate that MDRLSA is suited to 
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various graphical game applications, and provides promising results. The structure 

representation compared with normal form utility matrices reduces search space 

and identifies the mutual action influence among agents. MDRLSA can learn a 

good representation for games and MAS where there are sparse strong influences in 

individual player payoff. 
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Chapter 5 

Structure in Teamwork 

Communication among agents through connections in a network is one important 

aspect in a multiagent system. In a cooperative environment, agents communi­

cate with neighbours and achieve the goal of higher total payoff overall. When 

exclusively acquiring information from neighbours, the time consumption increases 

exponentially to the scale of network inter-connection complexity. Our research ex­

ploits the influence of utilizing the structure information while performing, which 

can improve the optimal exploration strategy in a cooperative environment, so that 

the time consumption and overall payoff achievement is balanced. 

In a multiagent system, incomplete information of strategy payoff is common 

iJ,1 real applications. For instance, in the mobile ad hoc network domain, a group 

df cooperative agents explore in a distributed manner within limited time steps in 

a given environment to maximize the overall total payoff, with some uncertainty 

of local payoff. In this setting, each agent explores its surroundings to maximize 

the overall payoff and moves toward equilibrium. However, how to use a lower 

level of optimization among agents that leads to high overall payoff with limited 
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time steps is a critical issue between the trade-off in exploration and exploitation. 

Our experiments demonstrate that, in a densely connected network, single agent's 

optimization can achieve 983 of a double agent's optimization, but the difference 

of overall payoff is achieved by higher level optimization with a large trade-off of 

time consumption. Thus, knowing the agent's connection structure, it is helpful to 

choose an optimal strategy for overall performance within the time constraint. 

5.1 Ad hoc Networks 

Our researcn chooses the mobile ad hoc network (MANET) domain as an example. 

A wireless ad hoc network is a self-configuring routable networking environment on 

top of a link-layer ad hoc network. A number of wireless sensor agents are free to 

move independently in any direction and change links to other agents frequently. 

Agents communicate with their neighbours according to preset topology connections, 

and forward traffic unrelated to their own use. The signal strength between agent 

communication varies in different locations. In the field, the primary challenge in 

building a MANET is to equip each device to continuously maintain the information 

required to route traffic properly while performing its tasks. Thus, our goal is to 

let each agent freely move to an optimal position in order to maximize the overall 

signal strength between all connected agent pairs, and maintain the information 

forwarding routes. 

5.2 Rationale and Hypothesis 

Scalability with the number of agents is a critical problem for multiagent learning. 

Multiagent learning involves multiple agents' behaviours in order to solve a com-
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mon task, thus the search space can grow exponentially according to the number of 

agents and the complexity of agent behaviour. The evaluation criteria for learning 

methods should be standardized with respect to their scalability. In cooperative 

multiagent systems, to optimize a global objective has been addressed as DCOPs 

with promising results. Research on finding globally optimal DCOP algorithms has 

been provided, such as ADOPT where this proves that DCOPs are NP-hard (I\.fodi 

et a.I., 2005). Thus, when the number of agents increases, regarding both computa­

tional and communication requirements, the scalability needs to be improved. 

Our hypothesis is that exploiting a k-optimal strategy to obtain payoff is associ­

ated with the topology network density. In Modi et al., 200.5, a class of 'incomplete' 

algorithms, k-optimal has been provided. A k-optimal algorithm defines that at 

every time step, a number of k agents coordinate their action choices to reach equi­

librium, where no single agent's change of its action choice can improve the overall 

performance, such as achieving higher total payoff for all agents. As the number of 

k increases, the computation of reaching k equilibrium grows exponentially. That 

is, choosing I-optimal, 2-optimal or k-optimal algorithm, this choice influences the 

performance to balance agents' total payoff and time consumption, and is directly 

associated according to agents' connection network density. Thus, in MANET do­

main, large number of sensors (agents) are required. Thus, I-optimal, 2-optimal 

algorithms are applied to explore agents' total payoff with time constraints, and no 

triplet teamwork is chosen for relatively large numbers of agents. 
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5.3 An Adaptive Teamwork Algorithm: Static Estimated 

(SE)-Adaptive 

In this section, we introduce SE-Adaptive, which can run either I-optimal or 2-

optimal algorithm per agent, improving the overall performance of the team. An 

agent running SE-Adaptive can decide whether to use I-optimal or 2-optimal algo­

rithm, depending on the number of neighbors it has. 

Our hypothesis is that the connection density rate is an important potential 

factor in determining the level of teamwork required. We conducted three sets of 

experiments which include same number of rounds and variable settings: one set 

tested the full graph (where each agent has n - I connections), while another tested 

chain graphs. In sparse topology, single agent movements are optimal, whereas in 

dense topology, high levels of team movement are rewarding. Thus, we choose the 

most sparse topology chain, as well as the most densely structured, fully connected 

network, and a third type of "hybrid" graphs as agents teamwork constraint (com­

munication) structures. "Hybrid" graphs are constructed such that half ( l !J) of 

the agents form a connected clique, and the remainder of the agents form a chain 

connected to one agent in the clique. 

We define connection density rate, denoted by r, as the fraction of an agent's 

connection over the maximum connection number: r = agenLnum_connec~ion. Algo­
max_num_connections 

rithm ;3 describes how the SE-Adaptive performs on connected agents topologies 

with different densities. A heuristic value r = ! is learned empirically from the set 

of experiments described above. When r ::S ! , an agent chooses k = I individual 

movements as the optimal strategy; otherwise, agents move together with another 
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agent as an optimal pair to obtain maximum rewards, where k = 2. 

Algorithm 3: SE-ADAPTIVE 
Data: connected agents networks with assignments; 

Result: optimal gain and assignments overall the team; 

for each neighbor i do 
Send variable assignment and reward matrices to i; 

if r ~!then 
Find max gain and perform I-optimal algorithm: 

g, a f- getMaxGainAndAssignment{); 

Send Bid g to all neighbors; 

else 
Find max gain and perform 2-optimal algorithm: 

g', a' f- getMaxGainAndAssignment{); 

Send Bid g' to all neighbors; 

end 

Receive variable assignment and reward matrices from i; 

end 

5.4 Experiment Results and Analysis 

In this section, we provide SE-Adaptive algorithm to perform on connected agents 

topology with different densities. The number of agents ranged from 10 to I5. 

Comparing the performance of each test on I-optimal and 2-optimal algorithms, 

Figure S, l 'and Figure 5, 2 show the results of using different numbers of agents 

running on different graph topologies for 50 rounds. SE-Adaptive performs as well 

as the best of I-optimal and 2-optimal algorithms on chain and complete graphs. 

SE-Adaptive agents in the clique use 2-optimal algorithm and SE-Adaptive agents 
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in the chain use I-optimal algorithm, outperforming both algorithms individually. 

In Figure 5. 1 and Figure 5.2, the x-axis is the number of agents and the y-axis 

shows the reward value of net gain. We run three sets of experiments on full, chain 

and hybrid topologies for 30 independent trials. Here, hybrid topology is defined· 

as half ( l ~ J) fully connected graph and half ( r ~ l) chain graph. In each trial, an 

agent could explore up to 50 positions in 50 rounds (i.e., variable settings), and 

obtain its rewards. In general, an agent will not explore all 50. In Figure 5.1 and 

Figure 5.2, the average of 30 trials rewards shows rewards obtained in three different 

algorithms. k=I means I-optimal: solo exploration; k=2 means 2-optimal: pairwise 

exploration; and SE-Adaptive means a combination of choices of solo and pairwise. 

Figure 5.1 illustrates a group of fully-connected and chain-connected agents. In 

various sizes of group density for agent numbers 10-I5, the performance of k = I, 

k = 2, and SE-Adaptive algorithms, Figure 5.1 shows that pairwise exploration 

(k = 2) gains higher rewards compared with solo exploration (k = I), and the SE­

Adaptive algorithm chooses to move pairwise and gain the same rewards as k=2. 

Whereas, on a chain topology, solo exploration performs the best on a sparse chain 

topology, while the SE-Adaptive algorithm gives a similar optimal performance, 

both with high time efficiency. On the other hand, pairwise exploration can give 

better performance in a dense topology but performs poorly in a sparse topology; 

both situations have low time efficiency. 

Figure 5. 2 combines a maximum dense topology and a minimum connection 

topology in one graph, where the SE-Adaptive algorithm can choose a level of team­

work based on the neighbour connections and gives the best performance among the 

three. In a group of agents, agent numbers 10-I9, the result shows that the aver­

age of net gain obtained by SE-Adaptive algorithm is higher than the average net 
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Figure 5.1: full and chain topology, agent number: 10-15 

gain of using either k=l or k = 2 only one at time alone, but with much less time 

consumption. 
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Figure 5.2: Hybrid topology, agent number: 10-19 

The implementation and demonstration is tested on existing platform DCEE 

Python simulation code1 . The runtime of each test on the I-optimal algorithm on all 

three types of topologies is on the scale of minutes, agent numbers ranged from 10-15; 

whereas, the runtime on the 2-optimal algorithm on dense and hybrid topologies is on 

a magnitude of hours, where 2-optimal algorithm considers all possible pairs among 

n number of agents and that there are O(n2) such pairs, and that this makes it much 

1http: I /teamcore. use. cdu/dcop, version 0.9.2/5/2010. 
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slower than the 1-optimal algorithm. However, applying the SE-Adaptive algorithm 

on dense topology reduces the runtime to a matter of minutes, the same scale as 

1-optimal algorithm. With double agents' teamwork, 2-optimal considers O(n2) 

such pairs, but achieves worse performance for net gains in a chain connection (see 

Figure 5.1). SE-Adaptive identifies when to choose 1-optimal algorithm according to 

the density rate r. In a chain topology, SE-Adaptive chooses I-optimal since every 

agent satisfies the criterion of r = n:_l ::; !, when total agent number n 2: 7. While 

in hybrid topology, SE-Adaptive switches from 1-optimal to 2-optimal when the 

connection density rater> !, where only a small number of highly clustered agents 

choose 2-optimal algorithm and benefit from teamwork, see Figure 5.2. Meanwhile, 

the runtime of SE-Adaptive algorithm remains on the scale of I-optimal. 

5.5 Concluding Remarks 

In this chapter, we demonstrate the importance of topology structure in a coop­

erative multiagent environment. By analyzing the structure of agents' constraints, 

we present an adaptive teamwork algorithm: SE-Adaptive, to choose optimal level 

of movement in various density constraints (i.e., communication) networks. Ex­

perimental results of SE-Adaptive algorithm give promise to this new concept of 

adaptive learning according to structure density among agent neighbors. Wisely 

chosen teamwork gives multiagent learning an important component to achieve an 

optimal performance within limited time in a dynamic environment. 
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Chapter 6 

Structure Learning in Artificial 

Life Simulation 

In this chapter, we capture the merits of an agents behavior strategy using a graph­

ical model representation, while adapting to environmental changes. Bayesian net­

works (BN) are applied to demonstrate the inter-relationship of the adaptation 

strategies for agents' evolution according to environmental changes. We present a 

simulation of artificial life (AL): where two groups of agents compete for resources 

to survive in one community. This research is not intended to predict which agents 

or which group of agents can survive, but rather illustrate that agents adapt to 

environmental changes and that the inter-connections among the characteristics of 

those agents with the best behavioural strategies survive. 
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6.1 Rationale for Artificial Life Paradigm 

In our research, we exploit the Artificial Life concept by building a simple ecology 

system: ALGAE (Artificial Life Genetic Algorithm Expression). The ALGAE con­

cept is inspired by the evolutionary epoch of Homo Sapiens where two divergent 

species existed in a primitive environment to survive as the primary biological goal. 

The initial ALGAE simulation (Yan and Cercone, 201.0a.) analyzed agents competing 

for resources in an uncertain environment, where that ALGAE simulation provided 

artificial gene data. There are three aspects in this section which are derived from 

this perspective. Firstly, we show the environmental factors which determine the 

living conditions of the two species who are the subject of the experiment. Sec­

ondly, we explore the key genetic combinations which favor survival, with details 

about the intrinsic chromosomes and their variability during the evolutionary pro­

cess. These environmental control settings and group agents' energy consumption 

are set up through the user's interface. This feature promotes understanding of the 

dynamics between species survival and environmental factors. Lastly, we reveal the 

hidden dependencies among fittest behaviour strategies' genomic descriptors which 

emerge during evolution of the species. We apply Bayesian network structure learn­

ing to show these relations among the genetic factors through the evolving strategy 

adaptation to environmental changes. 

6.2 ALGAE System Design 

Creation of a virtual artificial environment to emulate human populations is rel­

atively straightforward. Two populations are devised and designated as separate 

species. These species co-exist in a competitive relationship, the goal of which is 
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merely survival. By reproducing, mutating, and fighting, the program refines its 

variables, evolving to the point where the best solution is generated. Survival of the 

fittest mimics the evolution of living organisms' adaptation. Genetic fitness is one 

index of survivability. 'Rules' exist to govern the existence and inter-relationship of 

the two species in this artificial 'world', called a 'dynamic simulation framework'. 

These rules pertain to the constraints of the environment. Specifically, they address 

limitations which impinge on each species survival probabilities. 

As AL simulates real organisms in their functioning and characteristics, genetics 

represents the information systems essential to evolution of genetic information so 

that species both survive and adapt over tii;ne. Our model uses standard pertinent 

factors in the artificial environment setting. There are basic operational rules, a 

well-defined virtual environment or search space, and behavioural constraints on 

the population species. 

6.2.1 Description 

In ALGAE, resources must exist, and these resources are distributed in a two di­

mensional grid randomly. We postulate two types of species in this virtual world: 

Species type 'O' and Species type '1'. They survive in the virtual environment 

through competition for resources and obey these rules: species mate within their 

own species only, when minimum amount of energy reserved; each one subsist on 

native honey resource as a form of nourishment; when energy levels reach zero, an 

individual dies. Also, ages increase until they reach the maximum possible life span, 

then natural death occurs. Each individual in ALGAE is called 'ALgent '. Barriers 

are initially placed in their living space and the distribution changes over the time to 

constrict their movement. But in this current setting, we remove the barriers from 
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the environment, because our emphasis is the impact of food resources on ALgents' 

survival, and limiting the percentage of barriers in the environment does have an 

impact on the group's behaviour change. 

All behaviors discussed indicate that the two species compete for resources to 

survive. As the population evolves, the distribution of resources changes over time. 

We examine a population of artificial chromosomes (AChromosomes) which present 

each ALgent Gi in both species, as below: 

Ci= [SP,SL, VF,MD,AS,ML,AC,AA,AL,EF],i = {0,1}. 

We examine a population of AChromosomes which present each ALgent i as 

different species, as Table 6.1.: 

Gene Description Bit Site Gene Description Bit Site 
SP SPecies type 0 ML Motion Loss 9 
SL Life Span 1-2 AC Action Choice 10-12 
VF Vision Field 3-4 AA Attack Ability 13-14 
MD Motion Direction 5-6 AL Attack Loss 15-16 
AS Action Speed 7-8 EF Food Efficiency 17-18 

Table 6.1: 19-bit chromosome descriptor 

ALGAE incorporates the genetic algorithm (GA) for a population of chromo-

somes (bit strings representing organism characteristics) to evolve and reproduce the 

fittest chromosomes. During any reproduction process, parent chromosomes perform 

single point cross-over, bit-flip mutation, and inversion. The fitness function selects 

the most fit individual, whose genes are carried forward in the evolutionary time-

frame. A fitness value or score is assigned to each solution, representing the abilities 

of an individual to 'compete'. The individual with the optimal (or near optimal) 

65 



fitness score is sought. We further define fitness as survivability. Individuals in a 

population compete for resources and mates, and those who cannot survive are not 

fit, in the evolutionary sense, so will become extinct. This process iterates over a 

number of generations given by user's selection. The result is a chromosome com­

prising the 'best' genes which have evolved to foster survival fitness through the two 

species evolutionary process. 

In ALGAE, we consider the following aspects, such as living space, food re­

sources, competition, behaviour patterns and preferences, and physical status. The 

details are discussed below: 

a. Artificial Environment ( AEnvironment) is defined as a search space designed 

in a 2D field, a rectangular region symmetric to the center, for directional 

movement toward a desired object. 

b. Assume resources exist in the AEnvironment composed of n x m grids (here 

we use 51 x 51), randomly distributed and which are renewable. Plant food is 

available to increase energy, located available in the exploring area. 

c. Competition is also intrinsic in an AEnvironment. Individuals attack the other 

species based on Attack Ability (AA). They have a certain amount of energy 

which is lost by movement (Motion Loss, ML), and attack (Attack Loss, AL). 

Species also gain energy by consumption of food (Food Efficiency, EF). Food 

is assigned simulating natural law with corresponding food value and vital­

ity. Each individual is a gene disseminator, an intelligent individual, facing a 

complex environment, so choosing suitable adaptive behavior is very impor­

tant. Appropriate behavior ensures genetic replication and thus evolution. To 

achieve survival and multiplication, the species member undertakes migration, 
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looks for food, exhibits breeding behavior. Also, in order to ensure the popu­

lation's evolution, ALGAE programs in mutual attacking behavior which can 

eliminate the genetically inferior individual. 

e. Individual behavior patterns and preferences are programmed as movement 

modes and action modes into their genes, as follows: 1) ALgents can only mate 

with local individuals within their 'action field'. Each individual complies with 

its own Action Choice (AC) as preference to choose behaviours: look for food, 

attack/defend, or mate. In the hypothetical AL world, motion characteristic 

emulates biological drives. 2) Motion Direction (MD) choice, according to the 

GA aspect of ALGAE, determines that transition motions are all caused by 

corresponding instinctive (genetically determined) decisions. 3) the Action 

Choice gene mimics biological behaviour priorities. 

f. Physical status such as lifespan (SL) is also genetically determined. When a 

certain age is reached, or energy entropy reaches a threshold, ALgent dies. 

Individual age increases along with the generation increase, surpassing the 

lifespan, ending in natural death. Regarding the (biological) initial age, in 

order to simulate the initial population subject to the process of evolution, 

individual age is assigned as a random number pl us the biological minimum 

age (SLMJN ). Similarly, the initial biological energy available is stated as 

Energy = 70 + random(30) (maximum energy is 100) to ensure a level of 

individual energy consumption during the initial migration. 

All behaviors above indicate that the two species compete for resources to sur­

vive. As the population evolves, the distribution of resources changes over time. 
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SP: The first bit, indexed as 'O' shown in Table G.1, represents the SPecies type, 

where each type has different preference: 

ca preference 'l' stands for 'selfish' agent, coloured in blue; 

• whereas 'O' stands for 'altruistic' agent, coloured in pink. 

When the food resource is renewable plant, according to user's specification, 

resources level is set to regrow at certain rates until the maximum limit. A 

height threshold is specified which indicates minimum amount reserved needed 

to maintain plants' healthy growth. If the height level of plants is too low, 

regrowing rate is significant slow which can lead to resources paucity. At 

renewable plants' setting, 'altruistic' ALgent collects food resources in an en­

vironmental way, specifically, when height level is beyond threshold, otherwise, 

'altruistic' type chooses not to consume resources until they reach the thresh­

old. On the other hand, 'selfish' ALgent collects resources regardless of plant's 

regrowing status, as long as any plant exists. 

When the food resource is non-renewable honey, the resource only contains 

two stage: exist or finished. Both ALgent type 'l' and 'O' pursue honey in the 

same way to fetch it when it exists. 

SL: Index 1-2 bits stand for 'Life Span'. 

Age = SLmin +SL; 

in the initial setting, minimim lifespan, SLmin, is set as 50. Age's range is 

between minimum lifespan and its value add 'SL' maximum value 4. 

VF: The next 2 bits describe 'Vision Field' (VF). VF size is set as the length of 

radius, range from 1 to 4. This describes a sector area with certain radius 
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length. 

MD: After setting up the radius of vision field, the next 2 bits are 'Motion Direction' 

(MD). MD gives the moving direction angles which covers 90, 180, 270, or 360 

degrees, see Figure 6.1 

a. MD: 00 - 90 degrees b. MD: 01 - 180 degrees 

c. MD: 10 - 270 degrees d. MD: 11 - 360 degrees 

Figure 6 .1: Motion direction coverage sector graph 

AS: The 7-8 sequence specify individual's 'Action Speed' when moving. Each step, 

an agent can move the distance between 1 to 4. 

ML: Motion Loss is described in bit 9, which reflects various level of energy loss 

during each exploration movement. Motion inevitably consumes energy, ac­

cording to natural law, yet such energy consumption cannot become a decisive 

reason by which a species survives or perishes. When individuals move, the 

energy consumption will be related to and associated with 'ML' gene, that is 

Loss = ML+ min. The minimum movement energy loss is given by user's 
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specification. 

AC: The next 3 bits, indexed 10 to 12, describe each agent's behaviour preference as 

'Action Choice' (AC). In this action sequence, the first bit, Food Preference 

(FP), determines if this agent would search for food resources first when it 

is 'O', or after interaction with other agents when it is '1 '. We number the 

interaction choice with other agents as following: mate is 'a', and fight is 'b'. 

The last two bits in the AC is named 'Interaction Preference' (IP). IP gives 

each agent's preference of interaction with others. Specifically, '00' is choice 

'a'; '01' is choice 'b'; '10' is choice 'a' then 'b'; '11' is choice 'b' then 'a'. 

AA: In each behaviour interaction with other agents, agents lose various amounts 

of energy. During combat, the 'Attack Ability' is critical to determine the 

the fight result afterwards, described in 2 bits sequence from 13 to 14. The 

ability to attack affirms it is important whether this living thing can survive. 

In Nature, species have power and size; for instance, even if the tiger is injured 

he cannot easily be defeated by a rabbit. Here, we do not include a multitude 

of living things, but only two hypothetical species, who do not have the natural 

power which large numbers might generate. ALGAE simulates natural species, 

where concrete behaviour has direct correspondence with inherited genes. As 

in Nature, victory in conflict determines survival. The principle is explained 
I 

as follows. If individual i has an attack capability stronger than individual j, 

then i wins. In an attack process, the energy of striking power is the most 

important. Individual i has a striking power as computed below: 

Attacki = energyi(t) + AAi * r * 20/4, 
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where r is a random float number between 0 and 1. That is, an individual's 

striking power is influenced by its current energy and how large of a fraction 

of energy boost of 20 determined by its 'Attacking Ability'. 

AL: 'Attack Loss' varies from 1 to 4, given as 2 bits sequence from 15 to 16. 

AL gives the energy loss during a fight. After the fight, both 'i and j loss 

energy, but the quantity is different. In order to simulate real biological attack 

beha~ior, each individual loses a random fraction value of the 'Attack Loss' 

stochastically, and this individual has a further energy loss of 40, as follows: 

Energy(t + 1) = Energy(t) - AL* r - 40. 

EF: 'Food Efficiency' is represented as the last 2 bits, which defines agent's food 

absorbing efficiency, scale 1 to 4: 

Energy(t+ 1) = Energy(t) - e * EF, 

where e is 'energy-gain-from-food', given as basic energy provided by resources. 

Amount of energy each ALgent gained is determined by its own observation, 

'EF'. 

Figure G.2 illustrates the initialized ALGAE. Two type of agents are presented: 

type 1 agents ('selfish') coloured in blue, and type 0 agents ('altruistic') coloured 

in pink. Figure G.2(a) presents green plants as regrowing resources. Figure G.2(b) 

states a non-renewable food resource (honey), represented as orange leaves. 
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(a) Renewable plant resources (b) Non-renewable honey resources 

Figure 6.2: ALGAE world 

6.2.2 Pseudocode and Run Process 

In ALGAE, the program establishes the artificial world (AWorld) environment pa­

rameters, comparable to biological evolutionary pressure. Using a graphical interface 

dynamic demonstration, it records the evolutionary processes for each generation 

(which survives). The system operation follows some basic steps and establishes 

parameters in relation to the environment as follows Algorithm 4. 

The program iterates to mimic generational evolution over lengthy time frames. 

Species members experience genetic variations throughout the process, and the sur­

vivors remain to reveal which specific genes adapted. Next, we examine how these 

survivors' genes correlate to produce successful adaptation. 
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Algorithm 4: ALGAE 
Initialize: AWorld environment, food resource, ALgent population; 
Energy= 70 +random (30); 
Age= 1; 
while generation number< maxium number €3 both species ALgents exist do 

ALgent act; 
if first action-choice =food then 

I 
fetch food; 
action-with-mate; 

else 

I 
action-with-mate; 
fetch-food; 

end 
move randomly; 
Age= Age+ 1; 

generation number += 1; 
death-check; · 
Update: environment, food resource, ALgent population; 

end 

6.3 ALGAE Simulation 

In this section, we describe a detailed ALGAE simulation\ developed using Netlogo 

(Wilensky, 1999). The goal for this experiment is to uncover the hidden relations 

among AGenes by using BN to analyze the datasets of survivors' AChrop-losomes. 

This experiment has an initial run to collect the survivor genes over all generations. 

This is the input for BAyesian Networks ANAlysis (BANANA) (Yan a,nd Cercone, 

2010a) to analyze. The ALGAE setup and experimental results are illustrated in 

the following. 

1 ALGAE is available for download at http://www. cse .yorku. ca/-lisayan/algae_code .nlogo. 
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6.3.1 Experiment Setup 

We first identify relevant environmental parameters which affect the species evo­

lutionary chances: population settings and resources settings. First, define the 

environment AWorld size as width 51 units by height 51 units, which provides life 

space or living territory. Next, in the population settings, the initial species pro­

portion indicates a population size of 100, which is a proportion of 5 percent in 

relation to the territory available. This setting provides ample room for migratory 

moyements and food seeking. The minimum lifespan is set as user's specification, 

for example 50, which indicates that species members have some chance to act and 

move in their virtual world for a reasonable period of time. Also a mutation rate 

is set up as 0.05, and crossover rate as 60 percent. Both are carried into this sim­

ulated AWorld also. It allows for unpredictable results in gene recombination. The 

maximum g~neration number for the total run is set as 160. The initial population 

shows even distribution of 50 individual entities of each species, coloured red and 

blue, and positioned in AWorld. This positioning is purely random, and remains 

random for .each generation run. 

Last, resources settings can be specified in two groups: a) renewable plant re­

sources; b) non-renewable honey resources. The initial setup for the ALGAE run 

(Figure G.:3) states the parameters for plants to grow. In Figure G.~3, for example, 

we give a threshold height as 5, and maximum height 10. When the plant height 

is beyond the threshold, plants have a fast growth rate as 70 percentage; or, plants 

have a slow growth rate of 30 percentage when it falls under the threshold. 

In Figme 6.4, we establish the initial proportion of non-renewable food: honey. It 

is set as 40 percent of the living space. Each honey consumption gives an individual 
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ALCAE Simulation 

Figure 6.3: ALGAE Interface with renewable plant resources 



energy reward of 4. All types of resources allow energy level to reach the maximum 

level of 100. 

A.LGAES1mula.Uon 

Figure 6.4: ALGAE interface with non-renewable honey resources 

6.3.2 Experimental Results and Analysis 

In this evolutionary process, two groups of living entities compete to survive. After 

undergoing the simulated evolutionary process, the distribution can be seen in Fig­

ure 6.5 and Figure 6.f.), which presents the final stage of ALGAE simulation of two 

types of resources settings respectively. 

In Figure G.5, renewable plants provide resourceful energy supply for all ALgents. 

In this whole process, both type 0 and type 1 ALgents reach a settled amount of 

population while fetching resources. In the next section, we reveal the common 

inter-relations among all survivors' gene descriptors. 

In Figure G.6, limited resources constraints ALgents' survival conditions. After 
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Fi'gure 6.5: ALGAE final stage in growing plants world 

30 steps of exploration in the environment, population of type 1, coloured in blue, 

drops significantly when few resources (less then 13) remain; whereas, population 

of type 0, coloured in pink, is eliminated from this evolutionary process. Grey leaves 

denotes food sources consumed, orange leaves denote fresh food resources. However, 

given the limitation of resources and random setting for behaviors, both types have 

equal chance to last to the end of survival. In the next section, we analyze what 

insigh,ts are revealed as common inter-relations among all survivors' gene descriptors 

in each exploration, which promote ALgents to survive to the very last as best fit. 

6.3.3 Fittest Gene Discussion 

In this ALGAE .process, we examine the species evolution and gene expression. Af­

ter running a number of experiments, we want to know which genes account for 

an outstanding/surviving individuals? Take the runs illustrated in Figure (),!} and 
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Figure 6.6: ALGAE final stage in honey world 

Figure G.6 as examples. The final positions of surviving ALgents shown are quite 

different. The evolutionary assumption is that less fit ALgents are, less prone to sur-

vival in a harsh environment with other competitor species, and disappeared from 

the gene pool. We conclude the following characteristics of the optimal gene/indi­

vidual that indicate the fittest survival: 

• Lifespan is large in the fittest genes. 

• Vision Field of vision is maximized in the fittest genes. 

• Action Choice suggests that food resources searching first to increase the en-

ergy level before consumption promotes survival. So the fittest genes allow 

individuals to approach the same type of entity and obtain food resources. 

• Attack capability is high in fittest gene. 

• Low attack energy consumption promotes fitness. 
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We conducted ten different ALGAE trials and obtained ten separate datasets. 

It is shown that these ten different experimental results produced the ten different 

best genes over the same initial resource and population settings, see Table G.2. 

This table shows that the results differ from trial to trial. Because the genetic 

Trial NO. Survivor Type Best Genes 
1 1 1 1 1 1 0 1 1 0 1 0 0 0 0 0 1 1 0 0 1 
2 0 0 0 1 1 0 1 1 1 0 0 0 0 0 1 0 1 1 1 0 
3 0 0 1 1 1 0 0 1 0 0 0 0 1 0 1 1 1 1 1 1 
4 1 1 1 0 1 1 1 0 1 0 0 1 0 0 0 1 1 0 1 0 
5 1 1 1 0 1 1 1 1 1 1 0 1 0 1 0 1 0 0 1 1 
6 0 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 0 1 1 
7 0 0011000000101000111 
8 0 0 0 0 1 1 1 1 1 1 1 0 0 1 1 0 0 1 1 1 
9 1 1001101100000000011 
10 1 1 0 0 1 1 1 1 0 0 0 0 1 1 0 1 1 0 1 1 

Table 6.2: 10 Trials Fitness Gene Profiles Datasets Logs 

algorithm itself is a stochastic algorithm, any result is interesting because it reflects 

the pressures on genotypes over time, under variable conditions. An interesting 

question arises. Although each trial produced a 'best' gene, why are they different 

from each other? Another question is how and what can we learn from each of 

the 'best' genes? A third question is what is the similarity among the ten trials 

which could bring forward the best individual chromosome as a surviving remnant 

of evolution? 

Table 6.2 shows variation in the composition of each best gene. Each gene has 

entirely different and unique attributes. ALGAE randomizes the chromosomes for 

each run, as well as certain environmental factors such as population distribution in 

relation to resources. What is interesting is that not every gene has optimal alleles 

or gene bits, so it is clear that survival fitness is not a question of having the best 
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gene or chromosomes, or having proximity to resources. Rather it is the combination 

of genes that remain in the gene pool of a generation which is most significant to 

survival and adaptation. Evolutionary pressure, that is, the degree of harshness and 

difficulty in the struggle to survive, can be severe, such as, Figure 6.6 shows that the 

total number of final stage survivors for that run is only two. Nevertheless, ALGAE 

identifies the best chromosome for those who survive. One type of ALgent tends to 

dominate qne run, and this reflects the genetic fitness of the population in terms of 

its genetic features. The best genes are carried forward, and this is consistent with a 

Darwinian concept. In the next section, we present Bayesian Network learning from 

survivors' chromosomes to illustrate what we can learn about gene contributions to 

survival from ALGAE. 

6.4 Bayesian Networks structure representation of Evo­

lutionary Process 

We create a topological structure BN to see the implicit connections among AGenes. 

ALGAE is a dynamic process based on GA, so the 'survivors' genes' change with 

each run. Our interest lays on why those survivors have proven to possess the 

fittest/best genes in the AWorld. The underlying reasons can be discovered using a 

BN. 

Given a set of variables and a dataset composed of all these variables' values, the 

problem is how to build a structure to present the connections among the variables. 

This structure learning process needs to select the arcs between them and estimate 

the parameters. Developing a structure gives a visual presentation to understand 

what underlies the knowledge or what attributes are correlated. However, to include 
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all the information from the data into the structure, yet to keep the structure simple 

and condensed with only critical information, is going to result in a trade-off. The 

two main approaches are used to learn structure in BNs: the constraint-based and 

the score-based approaches. In this section, we use the E-algorithm (Yan, 2003) to 

construct a Bayesian Network representation for ALGAE data. 

6.4.1 Independence Test 

Given the sample data of ALGAE, we want to know whether there is an association 

between the 'Vision Field' levels and the type of Species, or both types of species in 

attack motion differ in their energy loss. This type of question is the x2-test designed 

to solve (Pearson, 1900). This section, we present a simple example to illustrate how 

to conduct x2-test to identify the independence between characteristics in ALGAE. 

We take 'Species type' and 'Motion Direction' two variables as an example. This 

2 x 4 contingency table (see Table G.:3) presents the observed frequericies of MD value 

and Species types from one trial's ALGAE data. 

MD'l' MD'2' MD'3' MD'4' Total 
Type 0 389 50 2158 5123 7720 
Type 1 561 455 300 5773 7089 
Species num 950 505 2458 10896 14809 

Table 6.3: Observed contingency table 

Now, let us define our null hypothesis as follows: The number of species type 'O' 

and '1' in ALGAE survived due to their 'MD' value choice range 1to4 is independent 

of their species type. 

According to the null hypothesis, we can calculate the expected 2 x 4 contingency 

table (see Table 6.4) presents as follows: 
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MD'l' MD'2' MD'3' MD'4' Total 
Type 0 Ei E2 E3 E4 7720 
Type 1 Es E6 E1 Es 7089 
Species num 950 505 2458 10896 14809 

Table 6.4: Expected contingency table 

Under the hypothesis that two variables' classifications are independent, that is 

we would expect the proportion of type '0' species has MD '1' is equal to the same 

type'O' with MD '2', '3', and '4'. So the following equations hold: 

Ei 
950 

Ei +Es 

E2 = E3 = _§__ = 7720 = 0.5213 
505 2458 10896 14809 ' 

950, 

505, 

2458, 

10896. 

Solving the Eq. 6.1 for values of Ei,(i = 1, ... , 8), we obtain Table 6.5. 

MD'l' MD'2' MD'3' MD'4' Total 
Type 0 495 263 1281 5680 7720 
Type 1 455 242 1177 5216 7089 
Species num 950 505 2458 10896 14809 

Table 6.5: Expected frequencies on the assumption of independence 

(6.1) 

To compare the observed and expected frequencies, we calculate the x2 value 

using the following equation: 
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where Oi (i = 1, ... , 8) is the observed frequencies in Table 6.:3. The degree of 

freedom (di) of two variables in contingency table with r rows and c columns is 

computed as: 

df = ( r - 1) * ( c - 1). 

According to Species type and Motion Direction these two variables, the degree 

of freedom is 3. To assess the significance of the x2 value 1775.35, we check the x2 

table with df = 3. Given the confidence value a= 0.001, the corresponding value is 

16.2662. Our x2 value 1775.35 is much greater than 16.2662, which suggests that in 

less than 0.001 level of probability the null hypothesis is true. Thus, we reject the 

null hypothesis and conclude that SP and MD is not independent. 

In the next section, we give a brief introduction to the Bayesian Network learn­

ing E-algorithm, which first conducts constraint independence tests using x2 test. 

Thereafter a MDL scoring method is performed to optimize the graphical structure. 

6.4.2 Bayesian Network Learning Algorithm: E-algorithm 

The key aspect of the structure learning problem is to construct a topology network 

from fully observable variables. This section provides an improved BN learning 

algorithm: the E-algorithm first proposed in Yan, 200;3 undertaken in relation to 

improving learning Bayesian Networks. The E-algorithm has been adapted to busi­

ness applic.ations, e.g., suggested business strategies that a business should choose, 

as reported in Ji et al., 2004; Yan et al., 2007. In Ji et al., 2005, the accuracy and 

efficiency of the :&algorithm has been established by comparing execution time of 

the E-algorithm against two established algorithms: I-MDL, 1-B&B-MDL. 

The following section briefly illustrates the E-algorithm. The E-algorithm com-

83 



bines both a constraint-based approach and a score-based approach, jointly apply-

ing the conditional independence (CI) test and minimum description length (MDL) 

metr.ic search. First, a small number of dependence tests are used to reduce the cal-

culation complexity and to restrict the feasible search space. Second, the improved 

MDL metric search boosts both time performance and efficiency of BN learning. 

a. Constraint-based approach: 

The constraint-based approach poses learning as a constraint satisfaction prob-

lem, which is more intuitive and follows the definition of a BN more closely. 

This method performs tests of CI on the data, and search for a network that 

is consistent with the observed dependencies and independencies (Heckerman, 

1995; Pearl, 1986; Cooper and. Herskovits, 1991). 

As a typical metric, CI is based on information flow in information theory, 

thus the mutual information of two variables X, Y is defined as Eq. G.2: 

"""""' p ( x' y) """""' I(X, Y) =?,; P(x, y) log P(x)P(y) = L...J P(x, y~I(x, y), (6.2) 

and conditional mutual information is defined as Eq. G.:~: 

"""""' P( x, y le) """""' I(X, YIC) = L...J P(x, y) log P(xlc)P(ylc) = L...J P(x, y)I(x, yic), 
x,y,c 

(6.3) 

where C is a conditional set of nodes, P denotes the instance frequency (prob­

ability) observed from a sample dataset. The mutual information can show 

if the two variables are dependent and if so, how close is their relationship. 

Hence, when I(X, YIC) is smaller than a certain threshold value c, we can say 
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that X is independent of Y given the set C, or else X is independent of Y if 

C is the empty set. So we can deduce if there is a connection between two 

variables in view of the mutual information. 

Here, the threshold value c can be given based on expert knowledge, alterna­

tively, there is another similar method, the x2 test (Qiang et al., 2002), which 

is based on a statistical hypothesis to estimate a connection between two vari-

ables. Given a degree of confidence CJ, a connection between two variables 

can be deduced by t-value(threshold) which is generated by x2 test. In our 

case, if the connection value I is greater than or equal to t-value, then X is 

·independent of Y, which implies that there is no direct connection between 

these two variables. Otherwise, if the connection value I is less than t-value, 

then X is dependent of Y, which means that an arc connects X and Y in the 

resultant network. 

b. Score-based approach: 

The score-based method is to define a score function that evaluates how well 

the dependencies in a structure match the data, and search for the simplest 

structure which also maximizes the score. In the set of feasible solutions, 

a recursive search can be used to find an optimal structure that satisfies the 

criteria. A scoring function commonly used to learn a BN is the log-likelihood, 

which is simply the log of the likelihood function, that is, Eq. GA: 

n 

l(Xlg, 09 ) log IJp(Xillli, g, fJ9 ) (6.4) 
i=l 

n 

L logp(Xillli, g, 09 ), (6.5) 
i=l 
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where ()9 is a parameter of the structure gin a dataset X which also represents 

all the variables, and lli is the parents set of node Xi. The log-likelihood 

is easier to analyze than the likelihood, because the logarithm turns all the 

products into sums. Therefore, according to Eq. GA, we have Eq. G.5. 

There are a couple of important points to note about the log-likelihood. The 

log-likelihood increases linearly with the size of a dataset. The higher scoring 

networks are those where a node and its parents are highly correlated. The net­

work structure that maximizes the likelihood is often fully connected. Adding 

a node into a network always increases the log-likelihood. This deficiency of 

the log-likelihood score is not desired. Thus, a score that makes it harder to 

add arcs is necessary. In other words, we would like to penalize structures 

with too many arcs. One possible formulation of this idea is called the MDL 

score (Suzuki, 1993). The MDL score is a compromise between fit to data 

and model complexity. Adding a variable as a parent causes the log-likelihood 

term to increase, but so does the penalty. There will be an arc addition if its 

increase to the likelihood is worth it. The detailed MDL scoring function will 

be explained in the following section. 

The space of Bayesian networks is a combinatorial space, consisting of an ex­

ceeding large number of structures. This problem is combinatorially complex; both 

approaches have their limitations. The general idea of the E-algorithm is quite 

straightforward. First, the constraint based tests are performed to get an initial 

network to consider, which reduces the search space. Then, a metric score function 

is used to find a matching structure which has the best motivated score. 

The E-algorithm considers the BN structure learning as a connection elimination 
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process starting from a fully connected graph Go among all the variables. It features 

three elements: 1) order-0 independence tests are used to delete weak connections 

and obtain a graph G1 ; 2) order-1 conditional independence x2 tests, which only 

appears in the "~-form", are conducted and simplify G1 to G2. The definition of 

"~-form" is as follows: 

Given an arc between two nodes Xi and Xj in BN structure g, if there is another 

path connecting them which only includes one extra node Xk , we call this acyclic 

subgraph an order-1 "~-form" (Figure 6.7); if this path includes two extra nodes, 

we call this subgraph order-2 "~-form". 

Figure 6.7: ~-form 

This process reduces the search space for scoring possible structures. 3) The 

E-algorithm then directly evaluates the structure MDL scores~ Eq. G.6 defines a 

score that evaluates how well the dependencies in a structure match the data, and 

we can search for a structure that maximizes the score (Qia.ng et al., 2002; Suzuki, 

1993). 

MDL(g,X) f,H(i,g,X) + k~) logn, (6.6) 
i=l 

n 

H(i,g,X) L-p(Xi logp(XilIIi, g), (6.7) 
i=l 
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where MDL(g, X) is the description length of graph g for overall data variables X, 

H(i, g, X) describes the empirical entropy of each node i and its sum stands for the 

overall structure fitness to the observed data, and k(g) is the description for the 

complexity of nodes (each node i has the number Vi values, j is a parent node of i, 

j = [1, i - 1]), as follows: 

n 

k(g) = L k(i, g), 
i=l 

i-1 

k(i,g) =(vi - 1) L Vj. 

j=l 

(6.8) 

(6.9) 

As can be seen, the problem of learning BN becomes a search problem for a 

structure with MDL metric. A recursive search is applied to the MDL-based search 

procedure. This search examines all possible local changes in the set of parent nodes, 

revealing that the cost of those evaluations is too high for massive dataset~. 

The E-algorithm, described in Algorithm 5, takes numeric data input from AL-

GAE's output of the suvivors' genetic data. The learning process is to learn n x n 

binary matrix G, to represent connections among all the nodes, where '1' in the 

coresponding entry indicates an edge between these two nodes, and 'O' indicates no 

connection. A fully connected graph is generated as an initial step, where all the 

corresponding entries are given value '1' in the matrix for graph G. Then, com-

pute the conditional mutual information in light of Eq. ().;) to remove any invalid 

edge by x2-test according to a given degree of confidence level <J = 0.001. For each 

node Xi, sort its candidate parents Ili nodes as ascending ordering by their mutual 

information; then search to find a Ili with the minimum MDL score and confirm 

the local optimized structure of Xi. Update all the nodes, until the minimum MDL 
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score is reached for the whole structure, and output graph matrix G. We test the 

E-algorithm in a benchmark ALARM Network dataset, and it demonstrates that it 

is efficient, valid and produces high accuracy for learning BN structures (Yan, 2003; 

Ji et al., 2005; Yan and Cercone, 2010a). 

6.4.3 Result Discussion 

We reimplement a Bayesian Network structure learning software BANANA in Mat­

lab, (see Appendix B), where a graphical representation is constructed using the 

E-algorithm to reveal the inter-connections among data. We use randomly cho­

sen 10 trial datasets from ALGAE as input, with total size of 68504 data entries. 

BANANA provides a graphical representation in Figure G.8 to reveal the inter­

connections among the genetic descriptors among these 10 trial simulations in AL­

GAE. The program runs in Matlab on Mac OS X, with Processor 2.8GHz Intel 

Core i7, Memory 8GB 1067MHz. The runtime for a single run is approximately 28 

minutes. 

The BN structure indicates the formula for the rule of survival: relationship 

(edges) between the genetic characteristics (nodes) will determine who lives and 

who does not. The ability to act rapidly (AS), obtain food (FP) or reproduce (IP) 

are related to ability and skill to move (MD). Species type (SP), lifespan (SL) and 

the visual field in the environment (VF) determines the motion direction (MD). In 

a competitive world, the ability to defend and resist annihilation is represented by 

the ability to attack (AA), and limited by entropy of energy (AL). This is tied to the 

power to move and act (MD, AS) and limited by loss of motion (ML). Energy can 

be replenished by food resources (EF), which have a scaled level of uptake efficiency. 

All these abilities are genetically determined in the ALGAE. 
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Algorithm 5: E-ALGORITHM 

Input: numeric data from ALGAE; 
Output: structure G. matrix; 
begin 

Initialize: 
G: fully connected graph matrix; 
conj idencelevel : a = 0.001; 
Step 1: mutual information test; 
for each node i do 

for each i's neighbor node j do 
if mutual-info(i, j) = true then 
I remove edge i ,j; 

else 
I sort parent list Ili according to mutual-info ascendingly ; 

end 
end 

end 
Step 2: CI test, remove redundant edges; 
for each node i do 

for each i's neighbor node j do 
if CI-test(i, j, a) = true then 
I remove edge i ,j; 

end 
end 

end 
Step 3: MDL test, remove redundant edges; 
for each node i do 

for each i's neighbor node j do 
if MDL-score(i, j) = true then 
I remove edge i ,j; 

end 
end 

end 
end 
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(1) ;sP: SPecies type; (2) SL: Life Span; (3) VF: Vision Field; 

(4) MD: Motion Direction; (5) AS: Action Speed; 

(6) .ML : Motion Loss; (7) FP: Food Preference; (8) IP: Interaction Preference; 

(9) AA: Attack Ability; (10) AL : Attack Loss; (11) EF : Food Efficiency; 

Figure 6.8: BN structure of ALGAE genetic characteristics 

Chance primarily determines which genes are present at the start of a run, but 

it is evolutionary fitness which determines actual survival. BANANA reveals the 

hidden structure behind this fitness of successful genotypes. In Figure G.8, the seven 

edge connections in red are the core structure for this ALGAE setting. It shows that 

motion and action are most important in that they impact other abilities that are 

inheritable and promote evolutionary fitness. Of additional importance are species 

type and lifespan (SP, SL). These would play a role for any organism, so in the 

AWorld they are to be expected to be fundamental. What is notable in this experi-

ment is that these characteristics seem to be both necessary and sufficient to ensure 

fitness. Under the given. constraints, these genes emerge repeatly until dominance of 

one species occurs. The combination of such genes, revealed by Bayesian analysis, 
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give us insight into evolutionary processes. 

6.5 Concluding Remarks 

In this chapter, we demonstrate the structure of inter-connections among agents 

strategies in a competitive environment. First, we develop a competitive multiagent 

interaction platform: ALGAE. The process of simulated environment in ALGAE 

provides us to observe generations of genes evolving in an accelerated period. AL­

GAE also allows us to foresee the genetic recombination process and provide us 

insights into variations among group behaviors. Second, we develop BANANA us­

ing the E-algorithm to extract the Bayesian Network structure representation among 

agents strategies. BN reveals the hidden structure of relationships in ALgents be­

haviours, and provides us a visual representation of them. 

The experiment demonstrates that the reimplementation of BAN AN A in Matlab 

is robust. Testing BANANA in a real example enhanced the performance such that 

it learns effectively and robustly on a number of variables and connections. Applying 

the E-algorithm in a complete domain shows that it can learn the influence of factors 

to build policies in this complex environment and application. 

The principles of how a survivor adapts in evolution from either optimal an­

cestors or weak ones, and at what point the evolutionary process can be tilted to 

favor certain adaptive ones, needs further exploration. How we develop a ratio­

nal decision-making component for each ALgent, rather than mere random choice, 

needs further research. The knowledge revealed from Bayesian analysis need to 

be provided to each individual to allow actions to be chosen intelligently accord­

ing to various factors in the environment. Applying this knowledge (constraints) 
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which exists among various factors in the multiagent environment, allows an indi­

vidual ALgent to choose an optimal action and obtain a gain of equilibrium. Thus, 

ALGAE and BANANA have been shown to be useful applications to extend our 

understanding of MAL, where dependency exists among multiple factors which in­

fluence agent strategies. These applications suggest further research into artificial 

intelligence in terms of heritability and evolutionary processes. 
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Chapter 7 

Conclusions and Future 

Research 

Our research examines the following questions: 

How can an agent perform robustly in the various types of multiagent 

environments, so that each agent can efficiently observe other agents 

behaviours, and learn from its observations in order to act (or adapt) 

effectively in the complex non-stationary environment? What is the 

macro-level phenomenon of the whole system, and how can this under­

standing of the phenomenon improve individual performance? 

Ultimately, through a learning period and a series of actions, agents can achieve 

top-ranked performance. 

In this dissertation, we present the importance of analyzing the structural prop­

erties in multiagent problems. In a non-stationary multiagent environment, each 

agent adapts to proceed towards its target. Each micro-level step in time may 
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present a different learning problem which needs to be addressed. However, struc­

tural properties constitute a holistic phenomenon along with the rational strategies 

of all players. In this chapter, we summarize our contributions and discuss some 

future research directions. 

7.1 Contributions 

We present the importance of analyzing the structural properties in multiagent 

problems. Multiagent research derives from two perspectives: learning and systems. 

In one aspect, multiagent learning research focuses on learning from an individual 

agent's past experience or modeling other agents' behaviors to improve performance. 

In the other aspect, research on multiagent system addresses particular problems 

from a system perspective, with more focus on a number of agents' interactions, and 

provides optimal solutions. However, in a non-stationary multiagent environment, 

each agent adapts to proceed towards its target. Each micro-level step in time 

may present a different learning problem which needs to be addressed. In this 

non-stationary environment, a holistic phenomenon forms along with the rational 

strategies of all players; we define this phenomenon as structural properties. In this 

dissertation, we present methods to extract some structural properties in multiagent 

problems. 

A multiagent environment can be classified as self-interested, cooperative, or 

competitive according to agents' goal. Here, a self-interested environment differs 

from a competitive, where all agents are not competing with others as a general­

sum game ~sin a competitive environment. Thus, we examine the structure from 

these three general multiagent environments: self-interested random graphical game 
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playing, distributed cooperative team playing, and competitive group competition. 

In each scenario, we analyze the structure in each environmental setting and demon­

strate a structure learned as a comprehensive representation: structure of players' 

action influence, structure of constraints in teamwork communication, and structure 

of inter-connections among strategies. This structure represents macro-level knowl­

edge arising in a multiagent system, and provides critical, holistic information for 

each problem domain. 

There are four contributions in our research. 

First, we present the importance of structure, a new yet vital point to tackle 

the problem of how agents perform robustly in various multiagent environments. 

We focus on understanding the common characteristics in multi-player games, more 

specifically, understanding the structure formed in a large number of agents in a 

multiagent system. The structure reveals characteristics in a multiagent system, 

which provides critical information for solving multiagent system problems. 

Second, after revealing the characteristics which exist within multi-player games, 

we further explore the structural connection exerting mutual influence between play­

ers' choices of actions in game playing. Much multiagent system and learning re­

search has been done from both machine learning and game theoretic perspectives. 

However, characterizing a multiagent system as a multi-player game, little research 

on how to abstract structure among players' actions has been conducted. In Chap­

ter 4, we provide a novel structure-learning algorithm, MDRLSA, to extract the 

action connections from graphical games. Knowing the influence between players' 

choice of action provides a compact representation for player's utility function, as 

well as reducing the search space for each player's learning process. MDRLSA can 

learn a good representation for games and MAS where there are sparse strong in-
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fluences in individual player payoff. 

Third, we analyze the importance of the structure of constraints in solving dis­

tributed team learning problem. We present the SE-Adaptive search algorithm and 

demonstrate in its application: the mobile ad hoc network domain. Communica­

tion among agents through connections in a network is a critical aspect in such a 

multiagent system. In a cooperative environment, agents communicate with neigh­

bours and achieve the goal of higher overall payoff. When exclusively acquiring 

information from neighbours, the time consumption increases exponentially to the 

scale of network inter-connection complexity. Our research exploits how to utilize 

the structure information while performing can improve the optimal exploration 

strategy in a cooperative environment, so that the time consumption and overall 

payoff achievement is balanced. In MANET, a group of cooperative agents explore 

in a distributed manner within limited time steps in a given environment to max­

imize the overall total payoff, with incomplete information of strategy payoff. In 

this setting, each agent explores to maximize the overall payoff, and moves toward 

equilibrium. However, how to use a lower level of optimization among agents to 

reach a higher overall payoff with limited time steps is a critical issue between the 

trade-off in exploration and exploitation. Our experiments demonstrate that, in 

a densely connected network, only a single agent's optimization can achieve 983 

of a two-agent optimization, although the difference of overall payoff is achieved by 

higher level optimization with a large trade-off in time consumption. Thus, knowing 

the structure of an agent's connections, it is helpful to choose an optimal strategy 

for overall performance within the time constraints. 

Last, we demonstrate the structure of inter-connections among agents strategies 

in a competitive environment. We develop a competitive multiagent interaction 

97 

l l 



platform: ALGAE. The process of simulating agent interaction within ALGAE 

provides us a way to observe generations of genes evolving in an accelerated period. 

ALGAE also allows us to foresee the genetic recombination process and provide 

us insights into variations among group behaviors. Then, we develop BAN AN A 

using the E-algorithm to extract the Bayesian Network structure representation 

among agents strategies. BN reveals the hidden structure of relationships in ALgents 

behaviours, and provides us a visual representation of them. This research presents 

the insight that the inter-connection among the characteristics of those agents with 

the best behavioural strategies to survive, where dependency exists among multiple 

factors which influence agent strategies. 

7.2 A Unified Multiagent Framework 

This section summarizes the insights gained from examing structural properties and 

evolutionary computing. We propose a novel multiagent environmental description, 

and a system process to describe the interaction among agents. This design differs 

from the description in Chapter 2. This new unified framework includes more func­

tional features for each agent to perform adaptively in dynamic environments with 

guidance from macro-level influence of structures, as well as micro-level individual 

learning and modeling. The macro-level influence forms as a holistic phenomenon of 

mutual influence, constraints or strategies, while all the players perform intelligently 

in this environment. These structural connections can play crucial role where the 

collective intelligent features appear. 

Framework Description 

Given an environment E, n number of agents Ag = Ag1 , Ag2 , ... , Agn, (n ~ 1) 
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act towards their goals G1, ... , Gn. In this process, each agent Agi, i = {1, 2, ... , n}, 

explores E and learns through its experience. In order to achieve its individual goal 

Gi, agent Agi need to learn how to co-adapt with other agents, while its environment 

E changes over time. Under the dynamic environment, with unknown factors arising 

from other agents' learning process, we give the following formal description for this 

learning process in such a dynamic environment: 

• Agi is represented as an entity with a set of intrinsic information, called 

A chromosome: 

- rules; 

- experience; 

- preference; 

- self-stage: {position/location, wealth, energy, constraints} 

This list of code of Achromosome is a compact stage for encoding information, 

which is a carrier for an agent to store and retrieve the learned knowledge for 

its planned action. We adopt thi~ idea of using coded information (such as a 

chromosome) to represent the knowledge of Agi. However, the structure does 

not have to be a list, but could be a network structure with these properties 

as nodes. 

• Decision-making component DMi: 

- priority (ranking factors); 

- rewards comparison; 

future influence / impact; 
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/ 

- knowledge known; 

(7.1) 

This equation refers that the decision making D Mi for agent Agi depends on a 

weighted combination w of its current stage Ci, future influence/impact Fi and 

its past experience (or knowledge known) Pi. Current stage C is composed of 

action priorities and reward estimate. 

Other sub-components compute a Nash equilibrium decision, for example: 

- minimax-Q; 

- coalition modeling. 

• E = {e1,e2, ... ,em},ei = {lleill,Zabeli}, lleill is the content information de­

scribed for the ith environment factor, and labeli refers to. this factor ei is 

hidden (labeli = 0), or is revealed (labeli = 1). (The initial Ei, randomly set 

a binary value for each label over the time steps.) 

• Stage of agents at time t: S = { sl, s~, .. , s~}: each stage s~ = { i, kf, dmf, ... , 

staten, k! is the knowledge held by agent i at time t; dm~ is the decision 

making component of agent i at time t. 

• Goal G = {gf}; 

Compared to game theory, this description is a learning process, not only solving 

a game. What there is to learn is a decision-making function which combines the 

learned knowledge, current rewards, and future estimate. This new framework dif­

fers from the common description, and operates differently in a multiagent learning 
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environment. We quantify these learning dynamics in a multiagent learning prob-

lem. This non-stationary learning multiagent system can be seen as an 'open-close' 

system, see Figure 7 .1. 

Ope 
{ 

Feedback '\ 

Positiv~ !egative 

Activation Inhibition 
ose 

<:'super.;igent Cel~ 
Figure 7.1: 'Open-Close' system diagram 

In future research, we will explore how to utilize the holistic structural informa-

tion to improve problem solving in multiagent systems. 

7.3 Future Research 

As early as 1951, fictitious play as the first learning algorithm was proposed to com-

pute equilibria in games, and there have been numerous proposals since, regarding 

learning techniques in stochastic games. The MAL and MAS research has produced 

some inspiring results, yet, it is important to examine the foundations of MAL, 

and consider some relevant questions. What question exactly is MAL addressing? 

What is the goal for MAS? What is there to learn in stochastic games? What is 

the optimal design for MAS? What are the criteria by which to measure answers to 

these questions? How can we evaluate the success of learning rules and a system? 

We further ask: do the agents know the stochastic game, including the stage 

game and the transition probability? More specifically, the information regarding 

the following: stochastic stages, transition probabilities, specific actions at each 
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stage, actions available according to the agents, transparent (or not) for all the 

agents stages, action/strategies, rewards, and so on. These all are rather important 

factors in the whole process of agent learning. In general, this learning process 

can be classified as known or unknown games, observable, partially observable, 

or unobservable play. Furthermore, in broader settings, there is more to learn, 

including but not limited to learning opponents' strategies or developing the agent's 

own strategy for proceeding effectively against competitors. 

In a multiagent system, the agents can be controlled in a centralized or decentral­

ized manner. Is there a diagram suitable for a moment-to-moment situation? What 

is the tipping point for this shift from one state to another? Do the agents com­

municate with all their neighbors as necessary? How do we design a self-organized 

multiagent system to perform tasks? And how does an observed or learned macro­

level phenomenon provide knowledge for micro-level individual agent learning? 

In the literature, for the known, fully observable games, there are two aspects to 

learn in this restricted setting. One is that an agent learns the opponents' strategies 

as a model, so the agent can devise a best (or at least "good") response, (also 

known as "model-based" learning), for example, fictitious play (Brown, 1951). The 

other one is that an agent can learn a strategy of its own which does well against 

the opponents, without explicitly learning the opponents' strategies, (also known as 

"model-free" learning), for example, Q-learning (Watkins, 1989). 

Open issues for multiagent learning research remain. Multiple agents act jointly 

in a common environment to achieve their own agenda, through interaction, either 

cooperatively or in competitive with one another. Issues of scalability, adaptive 

dynamics, and communication require further exploration. 
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7.3.1 Scalability 

Scalability is an endemic problem for multiagent learning and multiagent systems. 

Multiagent systems involve multiple agent behaviors to achieve a common goal. 

Thus, the search space can grow exponentially according to the number of agents 

and the complexity of agent behavior. The evaluation criteria for learning methods 

should be standardized with respect to their scalability. In a general-sum learn­

ing process, especially with partially observed stochastic games, research usually 

involves studies in two-agent scenarios, with two or three actions for each agent. 

When scaled up to include more agents, current multiagent learning methods are 

unlikely to work in practice. A new multiagent framework will be required to incor­

porate diverse multiagent learning techniques with multiagent system designs. 

7.3.2 Adaptive Dynamics 

Due to the small changes caused by agents, multiagent systems can result in unpre­

dictable global, emergent effects. How does an agent in the system recognize this 

phenomenon and proceed to discover an .optimal strategy with the presence of such 

emergent effects? In a particular task, a holistic perspective of the environment 

should be learned. This holistic information can be stationary, given the particular 

problem settings. For example, the structural connections among the players can 

deviate how a game plays significantly. Providing such macro-level system-specific 

knowledge for agents can give important guidance to enable one individual to make 

more accurate predictions in this adaptive dynamic environment. 
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7.3.3 Communication 

Communication is a principal means to effectively and immediately improve perfor­

mance, and help agents accomplish their tasks. However, it can markedly increase 

the computation within the exploration space. The interaction can help complete 

tasks through passing or sharing information. However, it can also increase the 

complexity rapidly, in proportion to the number of agents and their idiosyncratic 

behaviors. 

To date, much research on multiagent communication has been conducted from 

two perspectives: direct communication and indirect communication. Direct com­

munication is a way for an agent to inform other agents about past experience, which 

can effectively improve team performance; methods include blackboards (posting 

and modifying information), and messages. Notably, reinforcement learning meth­

ods have presumed that the agents have access to a joint policy table to which each 

agent can contribute. Another perspective, indirect communication uses a third 

party, such as location or direction marking in the environment to pass information 

to others. Most indirect communication is inspired from social insects, such as ants, 

who utilize pheromones to mark trails, and bees send waggle dancing signals to lead 

others. One agent broadcasts the information in the environment, and the others 

can utilize and exploit it. 

Yet, in a multiagent system, (just like any social system), communication is 

restricted by the environment. Some researchers claim that unrestricted communi­

cation in effect brings the multiagent system back to a single-agent system (Stone 

and Veloso, 2000). Thus, how to define the level of communication among agents 

and allow agents to communicate according to adaptation in the environment is still 
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a open question which needs to be addressed. 

7.3.4 Evaluation 

In multiple agent interaction, each agent can constrain, adapt, evolve in the environ­

ment together with other agents; this diagram is not yet fully defined or understood 

in game theory, and brings in unknown complexity to computation. How we set up 

standard evaluation criteria for such complex systems and their learning process is 

still an open question. 

7.4 In Closing 

Seeking answers to these questions will bring us to many new research questions. 

Designing a robust multiagent learning system to solve real-time problems, such as 

emergency response, is a continuing challenge, but, exploring these questions can 

lead us to understand and develop more fully automatic multiagent systems. Fully 

automatic multiagent system can be more reflective of the ultimate goals in the field 

of Artificial Intelligence. 
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Appendix A 

Source Code: MDRLSA 

Multi-Descendent Regression Learning Structure Algorithm (MDRLSA) is a novel 

graphical structure learning algorithm for multiagent graphical games, using a re­

gression model to learn a player's utility function. 

Multi-Descendent Regression Learning Structure Algorithm 

II regression_learningStructure.m 

% Loading Data 

if nargin < 1 

% option 1: Load Data 

load('action_profile.mat'); 

load('A_profile.mat'); 

load('U_profile.mat') 

else 

% option 2: get matrix from reading game_file.txt file 

[U, A, action_profile] = fread_game_profile(game_file); 

end 
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tic 

% 

X action_profile; 

y U(:,1); 

m = length(y); 

% Add intercept term to X 

X = [ones(m, 1) X]; 

%get munber of players and each players 1 action number; 

[r, playerNum] = size(A); 

action_num = ceil(r-(1/playerNum)); 

%% Calculate the parameters from the normal equation 

theta_eq = []; 

for i = 1: size(U,2) 

y=U(:,i); 

theta_eq = [theta_eq, normalEqn(X, y)]; 

end 

% Di.splay normal equa.ti.on' s result 

fprintf('Theta computed from the normal equations: \n'); 

theta_eq 

%% Analyze the learning result 

epsilon= 1.0000e-5 

data= theta_eq(2:end,:); 

[m,n] = size(data); 
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% give n*n matrix: 0 indicates independent; 1 indicates related; 

graph_param = ones(n,n); 

temp_coef = zeros(n,n); 

for i = 1:n 

end 

a = data(:, i); 

for j = 1 :n 

end 

player_coef = a((j-1)*(m/n)+1:((j-1)*(m/n)~action_num)) 

a_norm = player_coef I mean(player_coef) 

temp_coef(j,i) = sum(abs(a_norm - ones(action_num,1))) 

if temp_coef(j,i) <epsilon 

end 

% flag unrelated player j & i as O; 

graph_param(j,i) = O; 

t = toe 

graph_param 
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Appendix B 

Source Code: BAN AN A 

BAN AN A is a Bayesian Network structure learning software, where a graphical 

representation is constructed using the E-algorithm to reveal the inter-connections 

among data. Here, ALGAE provides a genetic descriptors' data for BANANA. 

II HybridElearning.m 

function DG = HybridElearning( file , a) 

% thi.s hybrid E-algori.thm uses ALARM as benchmark to test BN lea.rni.ng 

algorithm; 

D = importdata(file); % 'genedecode __ 1.. csv' 

data = D.data; 

' % Input variable: a threshold of CI test a 

% a = 0. 001 ; 

% Data i.s a variable that saves our training database. 

LGObj = ConstructLGObj(data); % construct an object 

LG= struct(LGObj); 
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Dim LG.VarNumber; 

% Step 1.: Complete undirected gra.ph H 

DG =ones( Dim); % A directed graph 

for q = 1 :Dim 

DG( q,q ) = O; 

DG( q:end,q) = O; % only upper triangle is set for ls; 

end 

mutual_info = zeros(Dim, Dim); 

% Step2a., test every independence relationship at first, test the mutual 

in.formation. I(xi,xj) CI test 

for p = 1 : ( Dim - 1 ) 

end 

for q = ( p + 1): Dim 

end 

[MI,R,M] = Marginallyindependent_Mutualinforrnation( LGObj,p,q ); 

mutual_info(p, q) = MI; 

CI= CITest_ChiTwoVar( MI,R,M,a ); 

if CI == 1 

DG( p,q ) O; DG( q,p ) O; 

end 

% Step2b is optional for testing purpose; 

% Step2b-1, test every independence relationship, using Expectation 

Chi--square test 

chi2_testinfo = zeros(Dirn, Dim); 

for p = 1 : ( Dim - 1 ) 
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end 

for q = ( p + 1): Dim 

end 

[CI, chi2_testinfo(p,q)] = Chi2_Test( LGObj, p,q, a); 

if CI == 1 

DG( p,q ) O; DG( q,p ) O; 

end 

% Step3: 

%1 ·-·variable mutual inf ormatiou I (xi, xj z) CI test 

% if i->j, j->k a.nd i->k, test I(i,kj)? and I(j ,ki); 

for i = 1 : Dim 

J = find(DG(i,:)>O); 

for indexl = l:length(J) 

j = J(indexl); 

K = find(DG(j,:)>O); 

for index2 = 1: length(K) 

k = K(index2); 

if f ind(J == k) - 0 

% i->j, j->k and i->k exists, test info I(.i,kj)? 

[MI1 , R1, Ml ] = 

Conditionallyindependent_Mutualinformation( 

LG Obj , i , k , j ) ; 

CI1 = CITest_ChiTwoVar( MI1,R1,M1,a ); 

if CI1 == 1 % if MI <= 0.009 

DG( i,k ) = O; DG( k,i ) = O; 

end 
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% test info I(j,ki)? 

[MI2,R2,M2 ] = 

Conditionallyindependent_Mutualinformation( 

LGObj,j,k,i); 

CI2 = CITest_ChiTwoVar( MI2,R2,M2,a ); 

if CI == 1 

DG( j ,k O; DG( k,j ) O· 
' 

end 

end 

end 

end 

end 

% Step4, using scoring test to evaluate DG; and remove the redundent 

representation; 

num = length(find(DG > 0)); 

count = O; 

flag = 1; 

% repeat Step4 a&b, until no further edges information changes. 

while flag == 1 

% step 4a: removing edge (ascending order of mutual info) 

% MDL scoring test all nodes: 

% score each node j outreached by node i, through deleting edge i·-»j 

% MDL scoring test ea.ch edge in DG and find the mininum score graph 

[indx, indy] = find(DG > O); 

struct_matrix = [indx indy]; 

map_info_matrix = mutual_info(find(DG>O)); 

% sorting orders of the edges a.scend.J.ngly according to mutual_in-fo 
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between these two nodes 

[new_map_info_matrix, IX] = sort(map_info_matrix); 

order_edge_matrix = struct_matrix(IX,:); 

[DG, remove_list] = score_descending_removedge(LGObj, DG, 

order_edge_matrix); 

% step 4b: adding edges deleted in step4a. rechecking (decending order 

ot mutual info) 

% By avoiding the sequence prob, the first time adding all the edges 

back and retesting the scores: 

% d.esending order of mutual_info for all the edges; 

% adding from the last deleted edge to the first one; 

% MDL scoring test all nodes: 

% score ea.ch node j outreached by node i, through deleting edge i->j 

% .MDL scoring test each edge ].n DG and find the mininum score graph 

remove_list_backup = remove_list; 

[DG, remove_list, add_list] = score_ascending_addedge(LGObj, DG, 

remove_list_backup); 

% step4c: sort edges according to the node ascending; 

edge_matrix = sortrows(order_edge_matrix); 

[DG, remove_list] = score_descending_removedge(LGObj, DG, edge_matrix); 

% step 4d: adding edges deleted in step4a rechecking (decending order 

of mutual info) 

% By avoiding the sequence prob, the first time adding all the edges 

back and testing again the scores: 
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end 

end 

% desending order of mutual_info for all the edges; 

% adding from the last deleted edge to the first one; 

% MDL scoring test al.1 nodes: 

% score each node j outreached by node i, through deleting edge i->j 

% MDL scoring test each edge in DG and find the mininum score graph 

remove_list_backup = remove_list; 

[DG, remove_list, add_list] = score_ascending_addedge(LGObj, DG, 

remove_list_backup); 

num_new = length(find(DG > O)); 

if num_new == num 

flag = O; 

else 

end 

num num_new 

coub.t = count + 1; 
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Appendix C 

ALGAE Manual 

ALGAE explores the relations of group population's competition survival. 

The ALGAE concept is inspired by the evolutionary epoch of Homo 

Sapiens where two divergent species exist, Type 0 and Type 1, and 

compete for resources in a primitive environment where survival is the 

primary biological goal. 

HOW ALGAE WORKS 

Type 0 and Type 1 migrate randomly around the landscape. Each step costs 

individuals energy, and they must eat food, 'veggie' or 'honey', in 

order to replenish their energy - when they run out of energy, they 

die. 

There are two main food variations to this model. 
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In the first variation, fix amount of food resources ('honey') is randomly 

located and is not renewable. 

The second variation includes renewable vegetable crops('veggie') in the 

landscape. Once a veggie is eaten, it will only regrow according to 

its height at a slow growth or fast growth rate. 

HOW TO USE THE PARAMETERS 

1. Set the veggie? switch to TRUE to include veggie in the model, or to 

FALSE to only include type 1 and type 0 species. 

2. Set the growth? switch for the veggie resources to TRUE to allow veggie 

to regrow, or to FALSE to only fixed number to the initial amount. 

3. Set the honey? switch to TRUE to include honey in the model, or to 

FALSE to only include type 1 and type 0 species. 

4. Adjust the slider parameters (see below), or use the default settings. 

5. Press the SETUP button. 

6. Press the GO button to begin the simulation. 

7. Look at the monitors to see the current population sizes and best 

fitness genes and its fitness level. 

8. Look at the POPULATIONS plot to watch the populations fluctuate over 

time. 

9. Export survivors' information to data files. 

Resources Parameters: 
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max-veggie-height: The maximum height level of veggie 

slow-growth-rate: The veggie slowly grows at this percentage 

height-threshold: The veggie's threshold for growth rate: below the 

threshold, it grows slowly; above the threshold, it grows fast. 

fast-growth-rate: The veggie grows rapidly at this percentage 

honey-reward: The amount of energy reward each individual gets for every 

honey resource taken 

honey-percentage: The amount of resources located in that environment 

Population Parameters: 

population-size: The initial size of population 

crossover-rate: The crossover incidence in each chromosome pairing 

mutation-rate: The probability of chromosome bits mutating 

MIN-LIFESPAN: Minimum life span of an individual 

max-population: Maximum population allowed in environment 

energy-gain-from-food: The amount of energy individual gets for every 

resource consumed 

move-enerygy-consumption: The amount of energy each agent consumes to make 

a move 

reproduction-threshold: The threshold of an agent's energy required for 

reproducing at each time step 

show-age?: Whether to show the age of each agent as a number 

show-energy?: Whether to show the energy of each agent as a number 

Example run: 

1. Open 'ALGAE', the interface is given as: 
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Figure C.1: ALGAE interface 

2. Adjust parameter settings. Click 'SETUP' button, ALGAE presents an initial 

setup accordingly. 

3. Click 'RUN' button, ALGAE runs a number of generations and present the 

final stage when it reaches stopping criteria. 
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Figure C.2: ALGAE setup 

Figure C.3: ALGAE output 
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Appendix D 

ALGAE Source Code 

breed [turts turt] 

breed [honeys honey] 

turtles-own [ 

bits fitness energy age wealth 

preference life-span vision-radius move-angle action-speed motion-loss 

action-choice attack-ability attack-loss food-efficiency 

patches-own [vegie value] 

globals [ 

winner 

generation 

to setup 

clear-all 

turtle that currently has the best solution 
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setup-common-variables 

if vegie? [ 

ask patches 

set vegie max-vegie-height 

color-vegie 

set value random 20 

if honey? [ 

draw-g:tid 

distribute-honey 

setup-turts 

display-labels 

reset-ticks 

end 

to setup-common-variables 

set generation 0 

ask turtles [ 

end 

set energy 70 + random 30 

set age 1 

set wealth 0 

setxy random-xcor random-ycor 

1' 
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to setup-turts 

set-default-shape turtles "person" 

;create-turts population-size [ 

ask patches [ 

if count turts < population-size 

sprout-turts 1 

set size 2 easier to see 

set bits n-values 18 [one-of [O 1]] 

if else count turts <= population-size I 2 

(rand.om-float 1.0 <=cooperative-probability 

set bits fput 0 bits set color red set preference 0 ] 

set bits fput 1 bits set color blue set preference 1 ] 

decode-turt-genes 

calculate-fitness 

update-best-turt 

save-file-var best-fitness-decode-filename 

save-file-var survivors-decode-filename 

end 

to save-file-var [ filename 

file-open filename 

file-write (word "[preference, life-span, vision-radius, move-angle, 

action-speed, motion-loss, food-pref, inter-pref, attack-ability, 
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attack-loss, food-efficiency] 11
);, fitness]") 

end 

to draw-grid 

ask patches 

end 

set pcolor blue + 4 

sprout 1 [ 

set shape 11 square 11 

set color cyan + 2 

stamp 

die 

to distribute-honey 

set-default-shape honeys 11 leaf 11 

ask patches with [ random 100 < honey-percentage ] [ 

sprout-honeys 1 [ set size 1 set color orange + 1 ] 

end 

to save-winner-decode-file 

file-open best-fitness-decode-filename 

if winner != nobody ; ; [ output-print ( word [bits] of wi.nner 11 \n" ) J;; 

file,..·write ( word [bits] of winner 11 \n" ) 

ask winner [ 
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decode 11 action--choice 11 into two parts: food-pref & interaction 

preference 

let action-queue but-first action-choice 

let food-pref ( first action-queue 

let list-2-bi ts [ [O OJ [O 1J [1 OJ [1 1J J 

let inter-pref ( 1 + position action-queue list-2-bits ) 

file-write (word 11
[

11 preference 11
,

11 (life-span - MIN-LIFESPAN) 

vision-radius II II 

' 
(move-angle I 90) 11

,
11 action-speed 11

,
11 

motion-loss 11 11 food-pref 11
," inter-pref 11

,
11 attack-ability 

II II 

' 

II II 

' 
attack-loss II II 

' 
food-efficiency 11

]
11
); 

II II 

' 
floor (fitness) 11

] 
11

) 

end 

to save-survivors-decode-file 

file-open survivors-decode-filename ;"genedecode.txt 11 

ask turts 

decode '' action-choice 11 into two parts: food-pref & interaction 

preference 

let action-queue but-first action-choice 

let food-pref ( first action-queue 

let list-2-bi ts [ [O OJ [O 1J [1 OJ [1 1J J 

let inter-pref ( 1 + position action-queue list-2-bits ) 

file-write (word 11
[

11 preference 11
,

11 (life-span - MIN-LIFESPAN) 

vision-radius II II 

' 
(move-angle I 90) "," action-speed 11

,
11 

motion-loss 11 "food-pref 11
,

11 inter-pref 

attack-loss II II 

' 
food-efficiency 11

]
11

) 
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end 

to save-survivors-gene-file 

file-open survivors-gene-filename ;; 11 gene.txt 11 

ask turts [ file-write ( word bits ) ] 

end 

to go 

ifelse (not any? turtles) or (count turts with [preference = 1] 0 ) or 

(count turts with [preference = O] = 0 ) or ( generation >= 

max-n"-generation );; or (honey? and. not any? honeys) or ( vegie? 

and not any? patches with [vegie > 1] ) ;; if vegie is on, check 

vegie on patch 

save-wipner-decode-f ile 

save-survivors-gene-file 

save-survivors-decode-file 

file-close-all 

stop 

save-winner-decode-file 

save-survivors-gene-file 

save-survivors-decode-file 

file-close-all 

if vegie? [ 

ask patches 
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if grow? [ grow-vegie 

color-vegie 

turts-act 

display-labels 

tick 

end 

to turts-act 

ask turts [ 

turt-act 

calculate-fitness 

;create-next-generation 

set generation generation + 1 

update-best-turt 

end 

to update-best-turt 

without Tournament 

set winner max-one-of turts [fitness] 

end 

to grow-vegie 

if else ( vegie >= height-threshold ) 

if fast-growth-rate >= random-float 100 

[set vegie·vegie + 1] 
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] 

[ if slow-growth-rate >= random-float 100 

[ set vegie vegie + 1 ] 

if vegie > max-vegie-height 

[ set vegie max-vegie-height 

end 

according to vegie height level, turn the patch green color in scale of 

hue 

to color-vegie 

set pcolor scale-color (green - 1) vegie 0 (2 * max-vegie-height) 

end 

to move ;; turtle procedure 

rt random 360 

f d 1 

set age age + 1 

set energy energy - move-energy-consumption 

if energy < 0 [ die ] 

end 

turts eat vegie, change vegie height and turn the patch brown hue; 

to eat-vegie-pref erence [ selfish ] 

if else preference = 1 

if vegie > 0 [ 

set vegie vegie - 1 
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set energy energy + energy-gain-from-food * food-efficiency 

energy through eating, [1*energy--gain·-·frorn·-·food, 

4~energy-gain-from-f ood] 

set wealth wealth + value 

set .value 0 

if vegie > height-threshold 

set vegie vegie - 1 

set energy energy + energy-gain-from-food * food-efficiency 

energy through eating, [1*energy-gain-from-f ood, 

4*energy-gain-f rom-f ood] 

set wealth wealth + value 

set value 0 

gain 

gain 

if energy >~ max-energy [ set energy max-energy ] 

energy 

, , maximum 

end 

to fight [ prey 

let win 0 

ask prey 

;show (word "prey energy (before):" energy) 

set energy energy - max list 10 random energy 

minimum 10 or more if ra..ridorn energy is more 

;show (word "prey energy (after): 11 energy) 
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if energy <= 0 [ set win 1 die ] 

;show (word "predator energy (before):" energy 

let loss min list 10 random energy predator loses energy 

of maximum 10 or less (if random energy is less than 10) 

if else win = 1 ; ; kill it 

set energy energy+ energy-gain-from-prey - loss] ;; get energy from 

prey, and. lose energy fi.ghting 

set energy energy - loss] ;; get no energy from prey, and lose 

energy fighting 

if energy >= max-energy [ set energy max-energy ] 

;show (word "predator energy (after):" energy) 

end 

maximum energy 

to attack [ prey ] 

stronger wins; 

calculate attack strength for self and prey, and the 

let strength-prey 0 

let strength-self energy + attack-ability * random-float 1 * 20 I 4 

; ; self strength 

ask prey [ set strength-prey energy + attack-ability * random-float 1 * 

20 I 4] ;; prey stength 

the stronger wins 

if else strength-self >= strength-prey [ 

set energy energy - attack-loss * random-float 1 death-check 

ask prey [ set energy energy - attack-loss * random-float 1 - 40 

death-check ] 
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[ set energy energy - attack-loss * random-float 1 - 40 death-check 

ask prey [ set energy energy - attack-loss * random-float 1 death-check 

end 

to calculate-fitness 

set fitness energy 

end 

turts procedure 

to death-check energy change, need to update fitness and turt.surv.ior 

status 

if energy <= 0 [ die 

calculate-fitness 

end 

to decode-turt-genes 

let list-2-bi ts [ [O OJ [O 1J [1 OJ [1 1J J 

let list-3-bi ts [ [O 0 OJ [O 0 1J [O 1 OJ [O 1 1J [1 0 OJ [1 0 1J [1 1 OJ 

[1 1 1J J 

set preference first bits 

1 bit - take item 0: first bit to describe agent's preference 1: 

selfish blue 0: a1truisti.c pink 

set life~span ( MIN-LIFESPAN + position ( sublist bits 1 3 list-2-bits 

) ; ; 2 bit - take the gene from i tern 1 - 4 ; ; obtain max life span, 

set as span; minimum··-lifespan is 50 
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set vision-radius ( 1 + position ( sublist bits 3 5 ) list-2-bits ) 

2 bit ·- take the gene from item 5 -· 6 ; ; obtain vision field size, 

set as radius; mirunum radius is 1 

set move-angle 90 * ( 1 + position ( sublist bits 5 7 ) list-2-bits 

'' 

2 bit - take the gene from item 7 - 8 ;; obtain move direction 

degrees, set as angle [90 180 270 360]; move direction refers to 360 

degrees coverage 

set action-speed ( 1 + position ( sublist bits 7 9 ) list-2-bits ) ; ; 2 

bit - take the gene from item 9 - 10 ; ; obtain move action-· speed, set 

as each move stepsize 1-4; 

set motion-loss ( 1 + item 9 bits 1 

bit - take the gene from item 11 ,, obtain energy motion-loss: 1-2 

set action-choice sublist bits 10 13 ; ; 3 

bit - take the gene from item 12 - 14 ;; obtain action preferece: 0-7 

1st bit: O:eat-food first 1:eat-food later 1:mate 2: fight 00: 1 I 

01: 2 I 10: 12 I 11: 21 

set attack-ability ( 1 + position ( sublist bits 13 15 ) list-2-bits ) 

;; 2 bit - take the gene from item 15 - 18 ;; obtain attack ability: 

1-16 

set attack-loss ( 1 +position (sublist bits 15 17) list-2-bits) ;; 2 

bit - take the gene from item 19 - 21 ;; obtain attack loss: 1-8 

set food-efficiency ( 1 + position ( sublist bits 17 19 ) list-2-bits 

end 

; ; 2 bit -- take the gene from item 22 -· 23 ; ; obtain food aborbing 

eff.iciency: 1-4 

to action-with-mate 

let action-queue but-first action-choice 
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if else first action-queue = 0 

if else last action-queue = 1 

let prey look-for-prey if prey !=nobody [ attack prey] ] 01: 

fight ;; attack prey 

if count turts < max-population - 1 and energy >= 

reproduction-threshold;; 00: mate 

let mate look-for-mate 

if mate != nobody and [energy] of mate >= reproduction-threshold 

reproduce-crossover-turt mate ] 

;; look for the best mate to reproduce 

if else last action-queue 1 

; ; 11: fight mate 

[ let prey look-for-prey if prey != nobody [ attack prey ] 

] 

[ 

; ; atta.ck prey 

if count turts < max-population - 1 and energy >= 

reproduction-threshold ; ; look for the best mate to reproduce 

let mate look-for-mate 

if mate != nobody and [energy] of mate >= reproduction-threshold 

reproduce-crossover-turt mate ] 

;; 10: mate fight 

if count turts < max-population - 1 and energy >= 

reproduction-threshold;; look for the best mate to reproduce 
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[ let mate look-for-mate 

if mate != nobody and [energy] of mate >= reproduction-threshold 

reproduce-crossover-turt mate ] 

let prey look-for-prey if prey != nobody [ attack prey ] 

; ; attack prey 

end 

to turt-act 

ifelse first action-choice= 0 ;; eat food first 

fetch-food action-with-mate 

action-with-mate fetch-food 

rt random move-angle 

f d action-speed 

set energy energy - motion-loss 

death-check 

set age age + 1 

if age >= life-span [ die ] 

end 

to-report look-for-honey 

let h one-of honeys in-cone vision-radius move-angle 

report h 

end 
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to fetch-honey [ h ] 

face h 

move-to h 

set energy energy+ honey-reward* food-efficiency;; energy gain from 

honey, when honey-re1tJard is 4, 4 - 16, [l*honey-reward, 

4*honey-reward] 

ask h [ set color gray stamp die ] 

if energy >= max-energy [ set energy max-energy ] ma.ximum 

energy 

end 

to-report look-for-food-target 

let p max-one-of patches in-cone vision-radius move-angle [ vegie 

;show ( word "pat.ch here: vegie 11 patch-here vegie ) ;show ( word 11 p: 

vegie" p [vegie] of p) 

ifelse p != nobody 

report p ] 

report patch-here 

end 

to-report look-for-mate 

let mate max-one-of other breed in-cone vision-radius move-angle [ 

fitness] ;;vision-radius vision-angle; [let p max-one-of neighbors 

[patch-variable] 

report mate 

end 
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to-report look-for-prey 

let prey min-one-of other breed in-cone vision-radius move-angle [ 

fitness] ;;vision-radius vision-angle ; [let p max-one-of neighbors 

[patch-variable] 

report prey 

end 

to fetch-food 

if honey? ,, if honey is resources, 

fetch honey 

if else any? honeys-here 

let hone-of honeys-here fetch-honey h] ;; preference 

food-efficiency J ;; show h 

here 

let h look-for-honey 

here: I honey " patch-here h. ) 

area 

if h != nobody [ fetch-honey h ] 

go and get it 

show "honey here 11 J ; , pick up can 

output-print ( woTd. "patch 

look for an.y can in the vision 

found honey in vision area, 

[ rt rand.om move-angle f d action-speed. 

the area, move randomly 

nothing found in 

set energy energy - motion-loss 

death-check 

if vegie? [ if vegie is resources, 

take vegie ; show ( word 11 patch here: 11 patch-··here) 
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end 

let target-patch look-for-food-target 

patch and eat by preference 

move-to target-patch 

here: 11 patch-here) 

eat-vegie-pref erence 

to reproduce-crossover-turt [ mate ] 

let parent1 self 

let parent2 mate 

move to the best vegie 

show ( word 0 new patch 

let child-bits crossover ([bits] of parent1) ([bits] of parent2) 

; create the two children, with their new genetic material 

ask parent 1 [ 

set energy ( 0.5 * energy ) 

calculate-fitness 

hatch 1 [ set bits item 0 child-bits 

mutate 

rt random-float 360 f d 1 

set age 1 

later for selfish and altruistic 

decode-turt-genes 

if else preference 0 

set color red ] 

set color blue ] 
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ask parent2 [ 

end 

set energy ( 0.5 * energy ) 

calculate-fitness 

hatch 1 [ set bits item 1 child-bits 

mutate 

rt random-float 360 fd 1 set up offspring>s initial 1.eve1 

set age 1 set up wealth distribution level 

later for selfish and altruistic 

decode-turt-genes 

if else preference 0 

set color red ] 

[ set color blue ] 

J 

to-report crossover [bits1 bits2] 

let split-point 1 + random (length bits1 - 1) 

report list (sentence (sublist bits! 0 split-point) 

end 

(sublist bits2 split-point length bits2)) 

(sentence (sublist bits2 0 split-point) 

(sublist bits1 split-point length bits1)) 

This procedure causes random mutations to occur in a solution's bits. 
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The probability that each bit will be flipped is controlled by the 

MUTATION-RATE slider. 

to mutate turtle procedure 

let p first bits 

; ; show (word "bits:" bits ) 

let temp-bits map [ifelse-value (random-float 100.0 < mutation-rate) [1 

- ?] [?] J 

but-first bits 

set bits fput p temp-bits 

show ( word 11 mutate bits:" bits) 

end 

to display-labels 

ask turts [ 

end 

if else show-info? 

if show-energy? [ set label-color black set label round energy ] 

if show-age? [ set label age ] 

set label 1111 
] 
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