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Abstract 

 

 Brain Derived Neurotrophic Factor (BDNF) is an important neurotrophin enabling 

synaptogenesis at the dendrites of neurons. Several studies have implicated the Val66Met single 

nucleotide polymorphism of the BDNF gene as a factor affecting cortical thickness and resting-

state functional connectivity (RSFC) of the human brain. In this thesis, I investigated the effects 

of Val66Met on cortical thickness and RSFC among individual cortical regions and at the level 

of large-scale functional networks in all genotype groups (Val/Val, Val/Met, Met/Met, and Met 

carriers). Cutting-edge techniques were used to individually localize anatomical and functional 

brain regions in a large sample of healthy young adults from the Human Connectome Project. A 

comprehensive series of analyses revealed no significant group differences in cortical thickness 

or RSFC across the brain. These results suggest that, contrary to previous reports, the Met allele 

does not confer differences in structural or functional integrity of the healthy young adult brain. 
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Introduction 

Genetic variance can influence the typical functioning of bodily processes, organs, and 

systems (Carmelli et al., 1998; Jackson et al., 2018; Smit et al., 2012). This has been observed 

for genes acting on the human brain, including those involved in the formation of synaptic 

connections between neurons (Pezawas et al., 2004; Ridding & Ziemann, 2010). One of the most 

important genes in the early development, maintenance, and plasticity of neural pathways is 

brain derived neurotrophic factor (BDNF), which codes for a protein responsible for 

synaptogenesis at dendrites (Levine et al., 1998; Patterson et al., 1996). The Val66Met single 

nucleotide polymorphism (SNP) of the BDNF gene has been studied extensively across various 

disciplines of neuroscience (Bathina & Das, 2015; Cheeran et al., 2008; Chen et al., 2006; Hall et 

al., 2003; Pezawas et al., 2004), but the influence this SNP has on large-scale functional brain 

networks--measured using resting-state functional connectivity (RSFC) analyses of functional 

magnetic resonance imaging (fMRI) data--has been largely unexplored. The few studies 

investigating this relationship are limited in sample size and scope, and findings have been 

inconsistent (Jang et al., 2012; Thomason et al., 2009; C. Wang et al., 2014). The Met allele is 

known to have a varied distribution across different ethnic groups (Petryshen et al., 2010) and 

affect the severity and prognosis of various diseases (Duman & Monteggia, 2006; Lim et al., 

2016). Considering these findings, this SNP could be impacting the reliability of fMRI studies. 

Therefore, an analysis of the impact of Val66Met in a larger sample of participants would 

elucidate whether this genetic difference significantly and reliably affects brain structure and 

functional integrity within and between brain networks. The proposed research aims to fill this 

knowledge gap by using the Human Connectome Project (HCP), a large, open-source 

neuroimaging dataset that includes genetic, behavioural, and lifestyle data in addition to MRI 
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data from a variety of neuroimaging protocols (Van Essen et al., 2013). With over 1000 

participants, the HCP provides a comparatively large sample of neuroimaging and genetic data 

that can improve our fundamental understanding of the relationship between the BDNF 

neurotrophin, RSFC, and cortical thickness (CT). 

Brain Derived Neurotrophic Factor: a Critical Brain Protein 

BDNF is a mammalian protein encoded by the BDNF gene found on human autosomal 

chromosome 11 and belongs to the neurotrophin family of proteins. BDNF protein was first 

isolated from pigs (Barde et al., 1982), and has since been studied in rats, mice, and humans 

(Johnson et al., 1986; Patterson et al., 1996; Rosenfeld et al., 1995). As a neurotrophin, it is 

instrumental in the synthesis and maintenance of neuron cell bodies, dendrites, and neural 

pathways (Robinson et al., 1999). As such, BDNF is often associated with neuroplasticity, 

including the creation and modification of synapses between neurons due to damage and/or 

learning. The BDNF protein is primarily produced in neuron cell bodies of the cerebral cortex 

and hippocampus, primarily concentrating at the synaptic bouton (Levine et al., 1998; Patterson 

et al., 1996). BDNF mediates the creation of new synaptic connections between axon terminals 

and dendrites by amplifying N-methyl-D-aspartate (NMDA) receptor-mediated currents at the 

postsynaptic cell (Levine et al., 1998; Xu et al., 2000). BDNF achieves this by binding to 

extracellular Tropomyosin receptor kinase B (TrkB) receptors found at the cell surface and 

engaging key signalling pathways to cell survival and neurite formation (Brunet et al., 1999; 

Klein et al., 1991; Xing et al., 1996). In gene knockout studies performed on mice, the absence 

of BDNF protein led to noticeably reduced dendritic outgrowths from neurons (Bekinschtein et 

al., 2008).  
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An SNP occurs when there is a change in the nucleotide base at a specific locus in the 

DNA sequence, potentially leading to amino acid coding differences that impact protein structure 

and function. One of the most well-studied SNPs for BDNF–Val66Met–is the result of a guanine 

to adenine nucleotide change at position 66 on the pro-peptide, which leads to a valine (Val) 

amino acid being replaced by methionine (Met) and ultimately its composition (See Figure 1). 

Individuals with two copies of the Val allele are known as Val homozygotes or Val/Val. Those 

with one copy of the Met allele are known as Met heterozygotes or Val/Met, and individuals 

with two copies are known as Met homozygotes or Met/Met. Finally, those with either one or 

two copies of the Met allele are referred to as Met carriers. Met allele frequencies vary between 

ethnic populations, ranging from virtually absent in Sub-Saharan Africa, to approximately 25% 

in most European populations, and as high as 70% for the She population in Asia (Petryshen et 

al., 2010; see Figure 2). Due to this allelic distribution, studies of this SNP often group Val/Met 

and Met/Met individuals into a “Met carrier” group to increase sample size. 

Note.  The nucleotide bases of codon 66 are highlighted using a blue rectangle. Letters in red 

represent the first nucleotide, where the guanine (G) to adenine (A) missense mutation occurs on 

codon 66, followed by the second and third nucleotide where no changes are observed. Figure 

provided and adapted courtesy of Dr. Georg Zoidl. 

 

Figure 1 

 

 Visual representation of the Val66Met SNP at codon 66 of exon 1 for the human BDNF gene. 
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The Val66Met is notable because there has been a great deal of research on the effects of 

this SNP at various levels of the nervous system. At a cellular level, both heterozygotes and 

homozygotes for the Met allele produce neurons with shorter and fewer dendritic outgrowths 

(see Figure 3; Egan et al., 2003). These findings are attributed to a decrease in the activity 

dependent secretion of BDNF that results from the Met allele. These cellular level changes have 

been replicated in other human and rodent studies (Chen et al., 2004; Mizui et al., 2015) and are 

often referenced in higher level studies of behavioural (e.g., Dempster et al., 2005), structural 

(e.g., Pezawas et al., 2004), and disease differences (e.g., Lim et al., 2021). Despite evidence 

pointing to these cellular level differences in human and rodent models, studies at the structural 

and behavioural levels are not as clear-cut on whether and how the Met allele impacts the brain. 

Note. The Met allele frequency can be found on the left y-axis, while Val allele frequency can be 

found on the right y-axis. These data come from the Centre d’Etude du Polymorphisme Humain 

(CEPH) dataset, with a total n = 1,157 with data from 57 world populations, and 31 parent-child 

trios from Ibadan, Nigeria. Reprinted by permission from Springer Nature Customer Service 

Centre GmbH: Nature, Molecular Psychiatry, Population genetic study of the brain-derived 

neurotrophic factor (BDNF) gene, Petryshen, T. L., Sabeti, P. C., Aldinger, K. A., Fry, B., Fan, J. 

B., Schaffner, S. F., Waggoner, S. G., Tahl, A. R., & Sklar, P. Copyright 2009. 

Figure 2 

 

Global distribution of the Val66Met SNP of BDNF. 
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For example, studies have observed smaller overall hippocampal volume for Met carriers 

compared to Val homozygotes (e.g, Bueller et al., 2006; Chepenik et al., 2009; Pezawas et al., 

2004; Szeszko et al., 2005). However, other studies have failed to replicate these findings (e.g., 

Gerritsen et al., 2012; Karnik et al., 2010), and a large meta-analysis by Molendijk and 

colleagues of hippocampal volume differences identified that while significant differences in 

volume were observed between healthy Val/Val and Met carriers, all studies were underpowered 

and the effect sizes observed were close to null (Molendijk et al., 2012). Meanwhile, a small 

number of studies have investigated CT differences between Val/Val and Met carriers, with one 

study showing no significant differences between the genotype groups in healthy young adults 

(C. Wang et al., 2014), another finding that Val/Val had greater thickness in frontal, temporal, 

and insular regions relative to Met carriers in healthy young adults (X. Yang et al., 2012), and 

another reporting that occipital and postcentral regions were thicker for Met carrier children 

relative to Val/Val children (Jasínska et al., 2017).  

Other studies have pointed to the Met allele contributing to poorer episodic memory in 

delayed recall tasks (Dempster et al., 2005; Egan et al., 2003), lower processing speeds in an 

alphabet-coding task (Miyajima et al., 2008), shorter iconic memory storage (Beste et al., 2011), 

and decreased performance of verbal learning and memory in healthy individuals (B.-C. Ho et 

al., 2006). However, a meta-analysis by Mandelman and Grigorenko (2012) that included all 

previous behavioural studies did not find that healthy Met carriers and Val homozygotes reliably 

differed on any behavioural measures of general cognitive ability, memory, executive 

functioning, visual processing, or cognitive fluency.  
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Note. Both SNPs of BDNF were genetically modified to express GFP as a reporter protein. The 

neuron with vBDNF shows elaborate dendritic outgrowths, while fewer and shorter dendrites are 

observed in the mBDNF neuron. The graph on the right indicates more GFP expression in 

vBDNF neurons (n = 50) than in neurons containing the mBDNF (n = 50). Adapted by 

permission from Elsevier:  Cell, The BDNF val66met polymorphism affects activity-dependent 

secretion of BDNF and human memory and hippocampal function, Egan, M. F., Kojima, M., 

Callicott, J. H., Goldberg, T. E., Kolachana, B. S., Bertolino, A., Zaitsev, E., Gold, B., Goldman, 

D., Dean, M., Lu, B., & Weinberger, D. R. Copyright 2003 

 

Potential Differences of Val66Met Genotypes on Intrinsic Functional Networks 

The inconclusive evidence from studies of behaviour and structure in groups differing by 

the Val66Met SNP brings attention to whether this allele could impact interactions of brain 

networks that are important in the typical functioning of the brain. A limited number of studies 

have explored the possibility of differences between intrinsic functional brain networks; 

however, there has been progress in the field relating to the methods used in fMRI data 

Figure 3 

Comparison between neurons expressing Val66Val BDNF (vBDNF) and Val66Met BDNF 

(mBDNF), visualized using green fluorescent protein (GFP). 
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collection and analysis. To confirm whether differences in intrinsic brain networks exist, further 

research on the Val66Met SNP using functional neuroimaging is required. 

 To obtain functional brain images, fMRI captures the blood-oxygen-level-dependent 

(BOLD) signal, an indirect measure of neural activity. When a group of neurons fire, blood flow 

is increased to the region to provide oxygen and glucose. fMRI exploits the magnetic differences 

between oxygenated and deoxygenated hemoglobin to visualize the degree to which brain 

regions are active at any given time (Ogawa et al., 1990). When a higher BOLD signal is 

measured in a given region, it reflects greater activity occurring at that location at that point in 

time, taking into account a known and reliable temporal lag between neuronal firing and the 

hemodynamic response. 

Note. BOLD signal is correlated within like coloured regions, while being distinct among 

differently coloured regions. The graph on the right indicates little correlation in the BOLD 

signal between the two regions, indicating low RSFC between these regions. Adapted by 

permission from Elsevier: NeuroImage, Default network activity, coupled with the frontoparietal 

control network, supports goal-directed cognition, Spreng, R. N., Stevens, W. D., Chamberlain, 

J. P., Gilmore, A. W., & Schacter, D. L. Copyright 2010. 

 

Figure 4 

Example of how changes in BOLD signal over time can be used to measure RSFC in the default 

mode network (blue), dorsal attention network (red), and frontoparietal control network (green). 
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Resting-state fMRI (rfMRI) captures spontaneous fluctuations of neural activity over a 

period of time while the participant is awake and at rest (i.e., typically measured in the absence 

of any explicit task). RSFC between these regions can be established by measuring spontaneous 

temporal fluctuations in the BOLD signal among brain regions that are highly temporally 

correlated (Biswal et al., 1995; Fox et al., 2005). Importantly, spontaneous BOLD signal 

fluctuations observed in rfMRI can be used to study neural activity in a variety of processes 

related to cognition, personality, and behaviour (Stevens & Spreng, 2014). This is because the 

spontaneous BOLD fluctuations that occur at rest follow consistent and replicable spatial 

patterns that reflect large-scale functional brain networks associated with different functions such 

as vision, attention, touch and movement, etc. (Schaefer et al., 2018; Yeo et al., 2011). Through 

rfMRI, researchers can determine RSFC among regions by evaluating pairwise functional 

connections between regions that covary in their activation over time. 
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Note. Parcellations for each network were generated from rfMRI collected from 1000 young 

adults and mapped onto a common structural atlas. Parcellations are shown for both the left (a) 

and right (b) hemispheres, and for both hemispheres a lateral (top), medial (bottom) anterior (left 

for (a), right for (b)) and posterior (right for (a), left for (b)) views of the cortical surface is 

shown. The legend identifies each network as it appears on the cortical surface. Adapted by 

permission from The American Physiological Society: Journal of Neurophysiology, The 

organization of the human cerebral cortex estimated by intrinsic functional connectivity, Yeo, B. 

T., Krienen, F. M., Sepulcre, J., Sabuncu, M. R., Lashkari, D., Hollinshead, M., Roffman, J. L., 

Smoller, J. W., Zöllei, L., Polimeni, J. R., Fisch, B., Liu, H., & Buckner, R. L. Copyright 2011 

 

Functional brain networks comprise brain regions that coactivate to enable specific 

sensorimotor, perceptual, and cognitive processes. Regions within these networks need not be 

topographically adjacent, nor are they necessarily directly connected structurally through axons 

and synapses. Rather, functional processes will recruit these regions in different combinations, 

a

) 

b

) 

Figure 5 

 

The Yeo 7-network functional brain atlas.  
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depending on the task. In typical healthy developing brains of children and adolescents, 

communication between functional networks becomes increasingly separated while 

communication within networks becomes increasingly integrated (McIntosh, 2000; Spreng et al., 

2013). This concept, termed network differentiation, is a hallmark characteristic of 

healthy/efficient functional brain network architecture. De-differentiation, such as the changes in 

network relationships that unfold across the adult lifespan, can impact functional architecture 

such that within-network connections decline and between-network connections increase (Chan 

et al., 2014; Setton et al., 2022; Spreng et al., 2016). 

 Studies have identified various numbers of functionally dissociable networks at various 

levels of resolution. For instance, Yeo et al. (2011) identified seven unique functional networks 

with unique brain regions (i.e., region of interest, or ROI) distributed across the brain (see Figure 

5). One such network, the default mode network (DMN), is known to activate in relation to 

internally focused cognitive tasks, including those involving introspection, self-generated 

thought, and mnemonic representations of ourselves and the world (Andreasen et al., 1995; 

Andrews-Hanna et al., 2010, 2014; Buckner et al., 2008; Spreng et al., 2010). Conversely, the 

dorsal attention network (DAN) is linked to externally oriented cognition through top-down 

control of attention to the external environment (Corbetta & Shulman, 2002). The frontoparietal 

control network (FPC) acts as a mediator network, selectively modulating and coupling with 

either the DMN or the DAN depending on the cognitive task. Evidence from Spreng and 

colleagues (2010, 2013) highlights that while the DMN and DAN are anticorrelated (i.e., the 

DMN is supressed when the DAN is active, and vice versa), the FPC alternates its connectivity 

with both and mediates communication between the DMN and DAN. 
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The Yeo seven-network atlases have since been updated by Schaefer et al. (2018), to 

establish more refined boundaries and key nodes of each network at multiple parcel resolutions. 

Atlases like the Schaefer atlas are invaluable assets when performing group comparisons of the 

brain. By registering each participant’s cortical surface to an anatomical template, a group 

parcellation of the functional networks can be established. This method can allow for analytical 

comparisons across different groups/conditions, e.g., control vs. experimental group, patient vs. 

control group, genotype A vs. genotype B, etc. However, atlases assume that the functional 

parcellations of the group are the same for all participants, and thus do not account for individual 

differences in the location, size, or shape of parcels between participants (e.g., Glezer & 

Riesenhuber., 2013). Group results cannot, therefore, be reliably mapped back onto an 

individual. 

Whole brain parcellation methods, such as “group prior individual parcellation” (GPIP), 

aim to generate a group-based parcellation of the brain, common to all participants at the level of 

network components, while preserving the finer individual differences in the spatial properties 

(e.g., size, location, shape) of the nodes of these functional networks (Chong et al., 2017). 

Therefore, GPIP allows for between-group parcel comparison while creating parcel boundaries 

specific to each participant, leading to more accurate and consistent functional regions. The 

result is a more accurate comparison of functional brain networks at both the subject and group-

level. 

As mentioned earlier, there is evidence to suggest that the Val66Met polymorphism of 

the BDNF gene can impact RSFC in various brain networks. Studies in both children and adults 

show reduced RSFC within the DMN (Thomason et al. 2009; Jang et al. 2012), as well as 

reduced RSFC within the FPC and increased paralimbic RSFC in children (See Figure 6; 
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Thomason et al. 2009). On the other hand, Wang and colleagues (2014) suggest that Met allele 

carriers in the Han Chinese population do not have lower RSFC; in fact, these individuals had 

stronger RSFC between the right anterior insula and dorsolateral prefrontal cortex (DLPFC). 

While these studies suggest that Val/Val and Met carriers do display differences in both children 

and healthy young adults, each used seed-based analyses of RSFC based on either literature 

coordinates or from structural differences. Despite being relatively simple methods to employ, 

seed-based analyses often do not accurately account for differences between individual subjects 

because they rely on atlases to localize regions, which may introduce confounding RSFC 

measures from other networks in group analyses (Cole et al., 2010; Gordon et al., 2015).  

Despite methodological limitations, these studies raise important questions about whether 

the Val66Met polymorphism consistently affects RSFC in brain networks, and if so, in what 

way. Furthermore, while these effects have been observed in the DMN and FPC, more research 

is needed to determine how the whole-brain functional connectome is impacted, since 

differences in RSFC between different genotypes might manifest as behavioural differences or 

psychiatric and neurodegenerative disorders, such as eating disorders, anxiety, and Alzheimer’s 

disease (Chen et al., 2006; Pezawas et al., 2004; Ribasés et al., 2004).  
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Note. The FPC is labelled as the executive network in this figure. The following seeds were used 

to capture RSFC: DMN, right PCC: 10, −50, 30; FPC, right DLPFC: 44, 36, 20; Salience 

Network, right pars orbitalis : 38, 26, −10; MNI coordinates used. Ages of the subjects ranged 

from 9-16 (mean age ± SD = 12.2 ± 2.1, n = 38, female = 25). Data were collected using rfMRI. 

Val/Val participants had greater RSFC in the DMN and FPC (but not the paralimbic network) 

relative to Met carriers, as seen by the higher number of coloured regions and the darker orange 

shades. Reprinted by permission from Frontiers Research Foundation: Frontiers in Human 

Neuroscience, BDNF genotype modulates resting functional connectivity in children, Thomason, 

M. E., Yoo, D. J., Glover, G. H., & Gotlib, I. H. In the public domain. Copyright 2009.   

 

Figure 6 

Comparison of averaged RSFC differences in the DMN, FPC, and paralimbic network between 

Val homozygotes and Met carriers in children. 
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Application of Large Datasets in Neuroimaging Studies and Hypotheses 

Findings of impacted RSFC within different brain networks in Met allele carriers point to 

an interesting and potentially impactful relationship between genotype and brain network 

connectivity. However, due to the limited sample sizes and the use of methods that do not 

account for individual differences in functional brain regions, it cannot be concluded with 

certainty that the differences in RSFC are linked to genotypic variance of BDNF. Larger sample 

sizes are critical to studies of genetic variability as they provide the necessary statistical power to 

adequately identify and characterize related differences and are more generalizable to a 

population level. Due to the high cost of MRI scanning (both monetary and time), studies that 

involve fMRI are often limited to small sample sizes. For example, the median sample size of 

neuroimaging studies conducted in 2018 was approximately 24 participants (Szucs & Ioannidis, 

2020).  

To better quantify and characterize the potential impacts of a genetic polymorphism on 

functional brain networks at a population level, a large neuroimaging dataset is key. These 

datasets can contain hundreds to thousands of participants with neuroimaging, genetic, 

behavioural, demographic, and lifestyle data. Importantly, the extensive amount of data collected 

in these datasets can allow researchers to exercise a high degree of control for specific 

combinations of factors. The larger sample sizes in these studies are important in studies of 

genetic variance for 1) determining how widespread the SNP is, 2) determining whether different 

ethnic groups have protective factors against the SNP’s effects, and 3) eliminating biases that 

might be found in studies with smaller sample sizes. 

The HCP comprises a series of studies that have gathered extensive neuroimaging, 

genetic, task/behavioural, demographic, and lifestyle data for various groups (both healthy and 
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diseased) across the lifespan. The HCP dataset has been used extensively as a source for 

secondary analysis, with the original study having been cited over 2800 times. Their “Young 

Adult” dataset features approximately 1200 participants ranging from ages 22-35 years old, with 

demographic information including handedness, drug use, parental history of neurological and 

psychiatric disease, among many other variables. The volume and detail of the data make the 

HCP a highly valuable resource to study differences in CT and RSFC between genotypically 

different groups for Val66Met. 

The proposed study will use the HCP Young Adult dataset to perform a whole-brain 

connectome analysis of RSFC in healthy young adults with different genotypes for the BDNF 

Val66Met SNP. Potential structural differences in CT between groups will also be investigated to 

determine whether genotype influences on RSFC are related to differences in brain structure. 

Based on previous research, including the results of my undergraduate research thesis, I 

hypothesize that:  

1. The Met allele will have a deleterious effect on the functional integrity of resting-state 

networks, as measured by network differentiation (i.e., high within-network to between-

network RSFC ratio). Therefore, functional integrity will decrease in a stepwise manner 

with more copies of the Met allele, such that the Val/Val group will have typical network 

differentiation, the Met/Met group will have the least network differentiation, and the 

Val/Met group will have intermediate network differentiation between that of the Val/Val 

and Met/Met groups. 

2. The Met allele will have a deleterious effect on the structural integrity of the cortex, as 

measured by CT. Therefore, structural integrity will decrease in a stepwise manner with 

more copies of the Met allele, such that the Val/Val group will have typical CT, the 
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Met/Met group will have the least CT, and the Val/Met group will have intermediate CT 

between that of the Val/Val and Met/Met groups. 

 

Materials and Methods 

Data from the HCP Young Adult dataset were used for all analyses in this study. These 

data were collected by Van Essen et al. (2013) and have been made available for use in 

secondary analyses. Comparisons of CT between genotype groups for the Val66Met SNP of 

BDNF were conducted on FreeSurfer CT output data and Val66Met genotype data acquired from 

the ConnectomeDB database (Marcus et al., 2011). The genetic data/analyses presented in the 

current thesis are based on the use of study data downloaded from the dbGaP web site, under 

phs001364.v1.p1 (e.g., https://www.ncbi.nlm.nih.gov/projects/gap/cgi-

bin/study.cgi?study_id=phs001364.v1.p1; Mailman et al., 2007). Comparisons of RSFC between 

genotype groups were performed on RSFC data processed using the GPIP algorithm provided 

courtesy of Dr. Nathan Spreng. 

Participants 

Participant data were collected as part of the Human Connectome Project (HCP) 1200 

subject release dataset. All participants from the HCP Young Adult dataset were recruited from a 

population of 22–35-year-old groups of twin and non-twin siblings. None of the participants had 

any major neurological diseases, psychiatric disorders, or mental health disorders. For a full list 

of selection criteria, refer to Supplemental Table 1 in Van Essen et al. (2013). Participants were 

selected such that there were no statistical differences in age or education. Of the total 1029 

participants for which both GPIP and genotype data were available, only one individual from any 

group of siblings was randomly selected for this study to eliminate confounds of genetic overlap 
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within or between participant groups, resulting in a sub-sample of n = 392 for CT analyses 

(Val/Val = 257, Val/Met = 121, Met/Met = 14). A subset of this sample was selected for the 

RSFC analyses based on several exclusion criteria, including drug use (McCulloch et al., 2022; 

Müller et al., 2021; Sutherland et al., 2012), a breathalyzer test over .05% blood alcohol content 

(Khalili-Mahani et al., 2012), parental history of psychiatric disorder (Fox & Greicius, 2010; 

Woodward & Cascio, 2015), handedness (Knecht et al., 2000; Somers et al., 2015), and quality 

control flags of severe head movement (Friston et al., 1996) (see Figure 7 and Appendix A). A 

total of 281 right-handed, genetically unrelated participants were selected. Participants were 

separated into groups according to their BDNF Val66Met polymorphism: (Val/Val n = 187), 

(Val/Met; n = 80), (Met/Met; n = 14). Additionally, the Val/Met and Met/Met groups were 

combined to form a Met carrier group for comparisons of all participants with a Met allele; this 

group was used in every analysis (n = 135 for structural subgroup, n = 94 for functional 

subgroup).  
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Figure 7 

Breakdown of participants in the Val/Val, Val/Met, and Met/Met groups following application of 

exclusion criteria to create a functional analysis subset.  

Note. The numbers included in the first row of boxes represent the total number in each genotype 

group, while the numbers in the following rows of boxes represent how many participants were 

excluded based on the listed exclusion criteria. From the HCP Young Adult dataset, 1029 had both 

GPIP parcellations and genetic data available. Of these, participants were randomly selected such 

that only one member of each family was selected (n=392). Factors with the potential to influence 

RSFC (e.g., drug use) were used as exclusion criteria, resulting in 281 participants in the functional 

analysis. Drug tests included THC, opiates, amphetamines, methamphetamines, and oxycontin. 

Parental history of psychiatric disorder(s) was reported by the participant. Handedness was 

measured using the Edinburgh Handedness Inventory (Oldfield, 1971). Participants flagged for 
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motion during one or more rfMRI scans had a significant coil- or movement-related artifact and 

errors during independent component analysis. 

Neuroimaging Acquisition 

 All HCP participants included in the analyses were scanned on a customized Siemens 3T 

Connectome Skyra MRI scanner at Washington University in St. Louis (see Table 1 for relevant 

scan parameters). All MRI data (including structural, functional, and diffusion MRI) for each 

participant were collected over four 1-hour sessions. Two of the sessions included the collection 

of rfMRI data, which were acquired in two 15-minute runs per session (four RSFC runs total per 

participant), during which participants were instructed to keep their eyes open and fixate on a 

light cross against a dark background. For a full overview of the scanning protocol, refer to the 

WU-Minn HCP 1200 Subjects Release: Reference Manual and Appendix I. 

Table 1  

MRI scan parameters for the Human Connectome Project - Young Adult population including 

structural (T1w) and rs-MRI (Rest). 

Note. Adapted from Glasser et al., 2013 and WU-Minn HCP 1200 Subjects Release: Reference 

Manual. 

 

Type Description TR 

(ms) 

TE 

(ms) 

Slices Flip 

Angle 

FOV 

(mm) 

Matrix Voxel Size Acquisition 

Time (min:sec) 

T1w 3D MPRAGE 2400 2.14 256 8 deg 224x224 320x320 0.7 mm 

isotropic 

7:40 

Rest Gradient-echo EPI 720 33.1 72 52 deg 208x180 104x90 2.0 mm 

isotropic 

14:33 
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Structural Analysis 

A secondary analysis was conducted on the CT values from the HCP FreeSurfer output 

files provided by the ConnectomeDB database (Marcus et al., 2011). CT was calculated using 

FreeSurfer, a software package capable of reconstructing the cortical surface using the T1-

weighted images from MRI scans (Dale et al., 1999; Fischl & Dale, 2000). These data were 

preprocessed using the minimal preprocessing pipeline (Glasser et al., 2013). Briefly, three 

structural pipelines were employed to remove noise and distortions, create cortical maps and 

segmentations, and align data to a common MNI atlas. A full description of the pre-processing 

pipeline can be found in Glasser et al. (2013). CT analyses were conducted to compare structural 

differences between genotype groups. Analyses of CT provide insightful measurements of brain 

health at the level of the gray matter layer, wherein reductions in CT in different regions may 

suggest an abnormality afflicting the brain (Querbes et al., 2009).  

 

Figure 8 

 

Flowchart of methods used in this study. 
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Preprocessing  

Through the minimal preprocessing pipeline described by Glasser et al. (2013), T1-

weighted structural brain scans for each participant were segmented and classified into different 

tissue types (i.e., grey matter, white matter, and cerebrospinal fluid). The left and right 

hemispheres were then separated while the brainstem and cerebellum were removed. Lastly, 

FreeSurfer generated a reconstruction of the grey and white matter surfaces.  

CT Measures  

Alongside the reconstruction of grey and white matter surfaces, FreeSurfer calculates CT 

as the shortest distance from the newly established pial and white matter surfaces. This process 

was applied to all participants to acquire a CT measure each of 34 regions of interest (ROIs) in 

each hemisphere (68 total) corresponding to the Desikan-Killiany atlas, a structural atlas that 

divides the brain into distinct ROIs in each hemisphere based on gyral separation between 

regions (Desikan et al., 2006).  

ROI Selection 

Previous studies have identified differences between Val66Met groups in CT using 

FreeSurfer for the following bilateral ROIs: inferior parietal cortex (IPC), insula (INS), lingual 

gyrus (LING) postcentral gyrus (PG), posterior cingulate cortex (PCC), precuneus cortex 

(PCUN), superior frontal gyrus (SFG), superior temporal gyrus (STG) (Jasínska et al., 2017; C. 

Wang et al., 2014; X. Yang et al., 2012). Furthermore, these ROIs belong to the DMN and FPC, 

where differences in RSFC have previously been reported between genotype groups for BDNF 

Val66Met (Jang et al., 2012; Thomason et al., 2009). Therefore, CT analyses were focused on 

these ROIs.  
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Statistics 

 A one-way analysis of co-variance (ANCOVA) controlling for biological sex was 

performed to evaluate whether the Val66Met SNP influenced CT at the ROIs listed above. This 

comparison was performed for all genotype groups (Val/Val, Val/Met, and Met/Met). Any 

significant results were further investigated with post-hoc analyses. A Mann-Whitney U test was 

also conducted between the Val/Val and Met carrier groups. The Mann-Whitney U is a non-

parametric alternative to Student’s t-test that is resistant to violations of variance and normality 

that may arise due to group size differences (Wilcoxon, 1945). 

Functional Analysis 

A secondary analysis was conducted on RSFC correlation matrices data provided 

courtesy of Dr. Nathan Spreng. These data were acquired from the first rFMRI run (15 minutes) 

collected during the first session. Preprocessing was conducted using the minimal preprocessing 

pipeline (Glasser et al., 2013). This included the three structural pipelines described earlier, as 

well as two functional pipelines to remove spatial distortions, perform motion correction, align 

and register the functional scans to the structural scan, and spatially smooth the data with a 2 mm 

full width at half maximum Gaussian kernel. Preprocessed data were used as an input for the 

GPIP algorithm to delineate functional parcels specific to each participant. The normalized 

BOLD signal timeseries were used to generate RSFC matrices of pairwise ROI correlations for 

every participant. I then used these matrices to quantify group differences in RSFC between and 

within networks across the whole brain (i.e., the Fisher-Z correlation values between each ROI 

pairing, both between and within networks). In addition to ROI-level pairwise comparisons, 

average within and between-network RSFC comparisons were conducted to assess network-level 

differences.  
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GPIP Overview   

Individual-specific functional parcels were created for each participant using their RSFC 

data and GPIP. GPIP uses group-averaged RSFC and the 400-parcel, seven-network Schaefer 

atlas as priors to a Bayesian formulation that iteratively produces functional parcels that are 

consistent in number and network-affiliation across groups, but with parcel boundaries specific 

to each participant (Chong et al., 2017; Schaefer et al., 2018). These individualized parcel 

boundaries provide more accurate BOLD signal classification for each functional parcel studied. 

Each parcel corresponded to a region in one of seven functional networks described by the 

Schaefer atlas (Schaefer et al., 2018; see Figure 9), those being the visual network (VIS), 

somatomotor network (SOM), dorsal attention network (DAN), ventral attention network 

(VAN), limbic network (LIM), frontoparietal control network (FPC), and default mode network 

(DMN). 

 

 Note. Different colours represent functionally distinct networks, where: purple = VIS, blue = 

SOM, green = DAN, violet = VAN, cream = LIM, orange = FPC, and red = DMN. Each parcel 

Figure 9 

Example of the 400 parcel, seven-network Schaefer atlas. 
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represents a functionally distinct region. The RSFC data for each participant in this study were 

initialized to this atlas, and later refined using GPIP to more accurately define parcel boundaries 

across individual participants. Schaefer, A., Kong, R., Gordon, E. M., Laumann, T. O., Zuo, X.-

N., Holmes, A. J., Eickhoff, S. B., & Yeo, B. T. T. Local-Global Parcellation of the Human 

Cerebral Cortex from Intrinsic Functional Connectivity MRI. Cerebral Cortex, (2018), 28(9), 

3095, by permission of Oxford University Press. 

RSFC Data Used  

The resulting correlation values for all pairwise parcel-correlations were used to create an 

RSFC matrix for each participant (see Figure 10). This involved extracting the BOLD timeseries 

for each voxel, averaging these timeseries across all voxels within each parcel, and calculating 

the Pearson correlation coefficient between each parcel-pair. Pearson’s r values were Fisher-Z 

transformed to standardize the data.  
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Note. ROI-level RSFC matrices were provided courtesy of Dr. Nathan Spreng. RSFC was 

measured using the Fisher-Z correlation between the BOLD timeseries of two ROIs. Warm 

colours indicate strong positive correlation between ROIs, while cool colours represent 

low/negative correlations between ROIs. RSFC data in these matrices were collected from the 

first run of rfMRI of the first scan session. These data were used to calculate group average ROI-

level and network-level RSFC for each genotype. Network labels: VIS = visual network, SOM = 

somatomotor network, DAN = dorsal attention network, VAN = ventral attention network, LIM 

= limbic network, FPC = frontoparietal control network, DMN = default mode network.   

Analyses 

 Univariate analyses were conducted on all pairwise ROI correlations and averaged 

network level RSFC (that is, the average of all ROI correlations within networks and between 

different networks). To compare all three genotypes for the Val66Met SNP, a series of Kruskal 

Wallis-H tests were conducted on all pairwise ROI comparisons and network-level RSFC 

Figure 10 

 

Example of a 400 parcel, seven-network Schaefer atlas ROI-level RSFC matrix. 
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comparisons using the seven-network template of the Schaefer atlas (Schaefer et al., 2018). 

Mann-Whitney U tests were used to compare both pairwise ROI and network-level RSFC 

between the Val/Val and Met carrier groups. To assess whether the genotype differences in 

RSFC described by Wang et al. (2014) between the right anterior insular cortex and DLPFC 

could be observed, an a priori analysis based on the findings of Wang et al. (2014) was 

conducted between these regions. Since the coordinates for the right anterior insular cortex were 

not provided, and the exact coordinates for the right DLPFC could not be used, the centroid 

coordinates of these ROIs from the 400 parcel, seven-network Schaefer atlas in MNI space were 

used (right anterior insula =  40, 6, -16; right DLPFC = 38, 34, 38). 

Propensity Score Matching  

Propensity score matching (PSM) is a form of subset selection used to create covariate 

balance between groups so that parametric statistical methods can be employed (D. E. Ho et al., 

2011). This allows researchers to use more robust, parametric models to analyze data and, by 

extension, more confidently interpret findings (D. E. Ho et al., 2007).   

Met homozygous participants comprise less than 4% of the full HCP dataset, but due to 

the large pool of homozygous Val participants I was able to use PSM to compare 14 Val 

homozygous participants matched on multiple demographic, lifestyle, and cognitive variables to 

the 14 Met homozygous participants in my sample (D. E. Ho et al., 2007). This analysis was 

conducted to study the influence of the Met allele on RSFC between the Val and Met 

homozygous groups, as a means to compare the genotypes where the largest between-group 

differences are expected. 
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The R package MatchIt, was used to assess the initial imbalance of covariates in an 

exclusively homozygous dataset (e.g., Val/Val and Met/Mets only) using a general linear model 

(D. E. Ho et al., 2011). Due to the scope and volume of data collected for the HCP, I was able to 

match participants on several covariates from demographic (e.g., sex, age, race, handedness, 

BMI, and zygosity status), lifestyle (e.g., years of education, income, employment, student 

status, and relationship status), and cognitive domains (e.g., Montreal Mental State Examination 

(MMSE) score, and Pittsburgh Sleep Quality Index (PSQI) score).  

The subset selection implemented by MatchIt prunes and weighs “units” (i.e., 

participants) to produce a weighted subset from the original dataset where BDNF genotype is 

unassociated with covariates that could act as potential confounds. For the comparison of 

homozygous Val and Met groups, PSM was used to estimate the average marginal effect of the 

BDNF genotype on MMSE score while accounting for the potentially confounding covariates 

mentioned above. After an initial inspection of the imbalances, PSM using 1:1 nearest neighbour 

and “optimal” approaches were attempted. These matches were unsuccessful at achieving 

adequate balance for all covariates, so full matching on the propensity score was attempted 

(Hansen, 2004). I found that using a probit regression of the covariates produced better 

propensity score estimates compared to logistic regression. See Table 5 for original and matched 

group means. The distribution of covariates was approximately equal after matching (see Figure 

17).  

Two sample t-tests were conducted for every unique pairwise ROI correlation in the 400 

parcel Schaefer seven-network atlas between the matched Val/Val and Met/Met groups. The 

average between and within-network RSFC measures for the Schaefer seven-network atlas were 

also compared using a two-sample t-test for the matched Val/Val group and Met/Met groups. 
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All analyses were performed using data from the HCP Young Adult dataset through the 

open access, restricted access, and genetics access data. Analyses were performed in SPSS 28.0 

(IBM Corp, 2021), MATLAB R2019b Update 1 (Mathworks Inc., 2019), and R 4.1.3 (R Core 

Team, 2022). The scripts for GPIP can be requested from the Biomedical Imaging Group of the 

University of Southern California.  

Results 

This thesis investigated whether structural differences in CT and functional differences in 

RSFC were present between healthy young adults according to their genotype for the Val66Met 

SNP of BDNF. Based on prior observations of reduced CT and decreased RSFC in carriers of the 

Met allele, I predicted that the Val/Val group would have the greatest CT, followed by the 

Val/Met group, with the Met/Met group having the lowest CT. Similarly, I predicted that 

Val/Val participants would have strong functional network integrity, while the Met/Met group 

would display the weakest network integrity, and the Val/Met group would display network 

integrity in-between the Val/Val and Met/Met group. 

Cortical Thickness  

Demographic Statistics 

A sample of n = 392 was used to study CT differences. Allele frequencies for the 

Val66Met SNP were 0.81 and 0.19 for the Val allele and Met allele, respectively. The genotype 

frequencies of the participant sample were found to be in Hardy-Weinberg equilibrium (Val/Val 

= 0.65, Val/Met = 0.31, Met/Met = .04; χ2 =2.70x10-3, p = 0.99). Genotype groups did not differ 

significantly in age, sex, or education (p > .05; see Table 2). 
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Table 2  

 

Descriptive statistics for the HCP participant subsample used in CT analyses. 

  

Note. ap-value (ANOVA), bp-value (Pearson χ2 test) 

Group Comparisons 

To assess whether the Val66Met SNP of BDNF influenced structural integrity of the 

human brain, mean CT differences in 16 ROIs were compared via ANCOVA between all groups, 

and via Mann-Whitney-U tests to compare Val/Val to Met carriers. An ANCOVA approach was 

used to covary for possible sex differences that could impact CT (Cieri et al., 2022; Somers et 

al., 2015; Yang et al., 2020). 

The assumption of normally distributed residuals was tested with the Shapiro-Wilk test. 

Standardized residuals for each ROI were normally distributed across all genotypes and the 

majority of ROIs (p > .05). There was one exception, with the Val/Val group not displaying 

normally distributed standardized residuals at the left PCC (W = .84, p <0.001). Additionally, the 

assumption of homoscedasticity was also tested, using the Breusch-Pagan Test. 

Homoscedasticity was observed for all ROIs when comparing between the Val/Val, Val/Met, 

and Met/Met groups (p > .05). However, when comparing between the Val/Val and Met carrier 

group, the left PCC did violate this assumption (χ2 = 5.53, p = .02). Levene’s test was used to test 

the assumption of homogeneity of variance. Homogeneity of variance was observed for all ROIs 

when comparing between the Val/Val, Val/Met, and Met/Met groups (p > .05) and for most 

Group n Mean Age Male/Female Mean Years Education 

Val/Val 257 28.78 ± 3.72 122/135 15.75 ± 1.86 

Val/Met 121 28.00 ± 3.67 54/67 15.09 ± 1.68 

Met/Met 14 27.64 ± 5.20 9/5 15.50 ± 1.51 

 Total =392 p = .13a p = .37b p = .08a 
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ROIs when comparing between the Val/Val and Met carrier groups, with the exception of the left 

IPC (F = 4.74, p =.03) and right IPC (F = 5.43, p = 0.02). 

Of the 16 total ROIs analyzed, nine ROIs had the highest mean CT value (numerically) in 

the Val/Met group, including the left and right LING, left and right INS, right PG, left and right 

PCC, right PCUN, and left STG. Mean CT value in the remaining seven ROIs was highest in the 

Met/Met group, including the left and right IPC, left PC, left PCUN, left and right SFG, and right 

STG. 

Note. Regions are arranged according to the Desikan Killiany atlas (Desikan et al., 2006). Light 

green represents regions with signifcant differences with the Val/Met group having the greatest 

No Differences Met carriers > Val/Val Val/Met > Val/Val & Met/Met 

Right 

Left 

Lateral  Medial 

Figure 11 

 

Map of the cortical regions investigated for between-group differences in CT. 
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CT relative to the Val/Val and Met/Met groups (uncorrected p <.05). Muted green represents 

regions with signifcant differences with the Met carrier group having the greatest CT relative to 

the Val/Val group (uncorrected p <.05). Regions in blue indicate no significant differences 

between any genotype groups (uncorrected p >.05).  

Comparisons of the Val/Val, Val/Met, and Met/Met groups using ANCOVA revealed a 

significant difference between the groups at the left PCC, F (2, 391) = 5.40, uncorrected p = 

.005, and right PCC, F (2, 391) = 3.50, uncorrected p = .03, with the Val/Met group displaying 

the highest CT at both ROIs, followed by the Val/Met and Met/Met groups (see Figure 13). Post-

hoc analyses were performed with a Sidak multiple comparisons correction, which indicated a 

significant difference between the Val/Val and Val/Met groups for the left PCC (p = .04), but not 

the right PCC (p = .06) (Sidak, 1967). However, differences in neither of these ROIs survived 

multiple comparisons correction for false discovery rate (left PCC corrected p = .08, right PCC 

corrected p = .25; see Table 3). Furthermore, closer inspection of the two ROIs showed that there 

were outliers for both ROIs that skewed the mean CT of the Val/Val group (see Figure 12). 

When the Val/Val and Met carrier groups were compared via Mann-Whitney U test, no 

significant differences were observed between Val66Met genotypes for the majority of the ROIs 

(see Figure 14). There were four exceptions where significant differences were initially 

observed, notably in the left PCC (U = 20272, uncorrected p = .006, rank biserial correlation = 

.17), right PG (U = 19788, uncorrected p = .02, rank biserial correlation = .14), left PCUN (U = 

19708, uncorrected p = .03, rank biserial correlation = .14) and left LING (U = 19550, 

uncorrected  p = .04, rank biserial correlation = .18). In each case, CT was greater in the Met 

carrier group compared to the Val/Val group. However, differences in none of the ROIs survived 

multiple comparisons correction for false discovery rate (PCC corrected p = .10; PG corrected p 

= .14; PCUN corrected p = .14; LING corrected p = .15) (Benjamini & Hochberg, 1995). 
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Furthermore, closer inspection revealed that several outliers were observed in these ROIs that 

skewed the mean CT of the Val/Val group (see Figure 12); upon removing these outliers, no 

signifcant differences were observed (p  > .05).   

 Table 3 

 

Mean CT differences between Val/Val, Val/Met, Met/Met, and Met carrier participants. 

 Left Hemisphere Right Hemisphere 

 Val/Val Val/Met Met/Met Met Carriers Val/Val Val/Met Met/Met Met Carriers 

INS         

M 3.1 3.1 3.0 3.1 3.0 3.0 3.0 3.0 

SE .01 .01 .04 .01 .01 .01 .03 .01 

Test Statistic .53a 17088b .42 17353.50b 

p .73 .86 .73 .99 

STG         

M 2.9 2.9 2.9 2.9 3.0 3.0 3.0 3.0 

SE .01 .01 .03 .01 .01 .01 .03 .01 

Test Statistic .39a 18065.50b .72 17875.50b 

p .73 .72 .73 .75 

SFG         

M 2.8 2.9 2.9 2.9 2.9 2.9 2.9 2.9 

SE .01 .01 .03 .01 .01 .01 .03 .01 

Test Statistic .44a 18006.50b .25 17816.50b 

p .73 .72 .78 .75 

IPC         

M 2.6 2.6 2.6 2.6 2.6 2.7 2.7 2.7 

SE .01 .01 .03 .01 .01 .01 .03 .01 

Test Statistic .74a 18709.50b 1.29 18969.50b 

p .73 .36 .63 .28 

PCC         

M 2.6 2.6 2.5 2.6 2.5 2.6 2.5 2.6 

SE .01 .01 .04 .01 .01 .01 .04 .01 

Test Statistic 5.40a 20272b 3.50 19373.50b 

p .08* .10* .25* .15 

PCUN         

M 2.5 2.5 2.6 2.5 2.6 2.6 2.6 2.6 

SE .01 .01 .03 .01 .01 .01 .03 .01 

Test Statistic 2.88a 19708b 1.09 18911.50b 

p .30 .14* .67 .28 

PG         

M 2.2 2.2 2.2 2.2 2.2 2.3 2.3 2.3 

SE .01 .01 .03 .01 .01 .01 .03 .01 
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Test Statistic 1.85a 19417.50b 1.65 19788b 

p .51 .15 .51 .14* 

LING         

M 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 

SE .01 .01 .03 .01 .01 .01 .03 .01 

Test Statistic 2.44a 1955b .48 18545.50b 

p .51 .15* .73 .42 

 

Note. Mean (M), standard error (SE), test statistic and p values are reported. aANCOVA was 

used to compare CT differences between Val/Val, Val/Met, and Met/Met participants, while a 

bMann-Whitney U test was used to compare between Val/Val and Met carrier groups. Corrected 

p values are reported. ROIs: insula (INS), superior temporal gyrus (STG), superior frontal gyrus 

(SFG), inferior parietal cortex (IPC), posterior cingulate cortex (PCC), precuneus cortex 

(PCUN), postcentral gyrus (PG), lingual gyrus (LING). Stars (*) indicate significant differences 

between groups prior to multiple comparisons correction (p < .05), but not after. 
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Note. Differences in CT were compared between the Val/Val, Val/Met, and Met/Met groups at 

Figure 12 

Box-and-whisker plots of CT measures (mm) for ROIs with significant uncorrected differences 

between genotype groups.  

a) b) 

e) 

d) c) 

f) 
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the a) left PCC and b) right PCC, and for the Val/Val and Met carrier groups at the c) left PCC, 

d) right PC. e) left PCUN, and f) left LING. Whiskers indicate the minimum and maximum 

values not including outliers, while the box represents the interquartile range between the third 

and first quartile. The line bisecting the box represents the median CT value. Outliers are 

represented with the open circles outside of the whiskers; a data point was considered an outlier 

if it was 1.5 times larger or smaller than the interquartile range. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note. ROIs (vertical axis) were formed using the Desikan-Killiany atlas. Colour bars represent 

mean CT for Val/Val (green), Val/Met (blue), and Met/Met (yellow) groups, while the error bars 

represent 95% confidence intervals. The following ROIs were selected based on prior 

observations of CT differences between Val66Met genotype groups: insula (INS), superior 

temporal gyrus (STG), superior frontal gyrus (SFG), inferior parietal cortex (IPC), posterior 

cingulate cortex (PCC), precuneus cortex (PCUN), postcentral gyrus (PG), lingual gyrus (LING). 

3.1  3  2.9  2.8  2.7  2.6  2.5  2.4  2.3  2.2  2.1  2 

Thickness (mm) 

2  2.1  2.2  2.3  2.4  2.5  2.6  2.7  2.8  2.9  3  3.1 

Thickness (mm) 

INS 

STG 

SFG 

IPC 

PCC 

PCUN 

PG 

LING 

Figure 13 

Mean CT (mm) in the a) left hemisphere and b) right hemisphere between all genotypes. 
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Significant differences prior to multiple comparisons correction (p < .05) were identified 

between groups at the left and right PCC, with the Val/Met group having the greatest CT, 

followed by the Val/Val and Val/Met groups. None of these differences were significant after 

multiple comparisons correction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note. ROIs (vertical axis) were formed using the Desikan-Killiany atlas. Colour bars represent 

mean CT, while the error bars represent 95% confidence intervals. The following ROIs were 

selected based on prior observations of CT differences between Val66Met genotype groups: 

insula (INS), superior temporal gyrus (STG), superior frontal gyrus (SFG), inferior parietal 

cortex (IPC), posterior cingulate cortex (PCC), precuneus cortex (PCUN), postcentral gyrus 

(PG), lingual gyrus (LING). Significant differences prior to multiple comparisons correction (p < 

.05) were identified between groups at the left PCC, left PCUN, right PG, and left LING, with 

the Met carrier group having the greater CT relative to the Val/Val group. None of these 

Figure 14 

Mean CT (mm) in the a) left hemisphere and b) right hemisphere between Val/Val and Met 

carriers. 
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differences were significant after multiple comparisons correction; CT difference in the left PCC 

approached significance (p = .08). 

Resting-State Functional Connectivity  

Demographic Statistics 

A sample of n = 281 was used to study differences in network function. Allele 

frequencies for the Val66Met SNP were 0.81 and 0.19 for the Val allele and Met allele, 

respectively. The genotype frequencies of the participant sample were found to be in Hardy-

Weinberg equilibrium (Val/Val = 0.65, Val/Met = 0.31, Met/Met = .04; χ2 = 1.93, p = 0.38). 

Genotype groups did not differ significantly in age, sex, or education (p > .05; see Table 4). 

Table 4  

Descriptive statistics for the HCP participant subsample used in RSFC analyses. 

  

 

Note. ap-value (ANOVA), bp-value (Pearson χ2 test). 

Pairwise ROI Comparisons 

A visual inspection of the mean RSFC between all pairwise ROI comparisons revealed 

typical network structure/organization for the Val/Val, Val/Met, and Met/Met groups in the 

seven-network model of the 400 parcel Schaefer atlas (see Figure 15; Schaefer et al., 2018). 

Three-way Kruskal-Wallis non-parametric tests were conducted to compare RSFC 

between all pairwise correlations (using the seven-network model of the Schaefer atlas) for 

Val/Val, Val/Met, and Met/Met groups for the Val66Met SNP. Additionally, all pairwise 

Group n Mean Age Male/Female Mean Years Education 

Val/Val 187 28.75 ± 3.63 87/100 15.17 ± 1.57 

Val/Met 80 27.90 ± 3.69 37/43 15.44 ± 1.43 

Met/Met 14 27.64 ± 5.20 9/5 15.50 ± 1.51 

 Total =281 p = .17a p = .43b p = .34a 
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correlations were also compared between the Val/Val and Met carrier groups through Mann-

Whitney U tests. Although mean RSFC did differ numerically between genotype groups, 

differences were not statistically significant between groups (p > .05; see Figure 15). 

Furthermore, a targeted analysis of RSFC between the right anterior insular cortex and the right 

DLPFC based on the a priori findings of Wang et al. (2014) did not reveal any significant 

differences between the Val/Val, Val/Met, and Met/Met groups (p = .13) or between the Val/Val 

and Met carrier groups, although this difference approached significance (U = 10010, p = .06). 

Relative to the Val/Val group, the Met carriers had greater RSFC between the right insular cortex 

and DLPFC. 

 

Note. The Fisher-Z correlation was averaged for all participants in the a) Val/Val, b) Val/Met, c) 

Met/Met, and d) Met Carrier groups to acquire mean RSFC for every pairwise comparison. 

Figure 15 

Mean RSFC (Fisher-Z correlation) between all pairwise ROIs. 
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Matrices are arranged according to network order of the 400 parcel, seven-network Schaefer 

atlas (Schaefer et al., 2018). Warm colours indicate strong positive correlation between ROIs, 

while cool colours represent low/negative correlations between ROIs. Matrices are arranged 

according to network order of the seven-network Schaefer atlas, where: VIS = visual network, 

SOM = somatomotor network, DAN = dorsal attention network, VAN = ventral attention 

network, LIM = limbic network, FPC = frontoparietal control network, DMN = default mode 

network.  

Between and Within-Network Comparisons  

 Three-way Kruskal-Wallis H non-parametric tests were conducted to perform a network-

level comparison of mean RSFC between and within-networks using the seven-network model of 

the Schaefer atlas (Schaefer et al., 2018) for Val/Val, Val/Met, and Met/Met groups for the 

Val66Met SNP. All groups demonstrated higher RSFC within networks than between networks. 

Relative to the Val/Val and Val/Met groups, the Met/Met group displayed the greatest RSFC 

both within and between networks. Additionally, all network-level correlations were also 

compared between the Val/Val and Met carrier groups through Mann-Whitney U tests. Again, 

both groups demonstrated higher RSFC within networks than between networks. The Met carrier 

group displayed the greatest RSFC between and within networks compared to the Val/Val group.  

Results of the Kruskal-Wallis H test did not reveal any significant differences in RSFC 

between or within-networks among the Val/Val, Val/Met, and Met/Met groups, so no post-hoc 

comparisons were conducted (p > .05; see Figure 16 and 17). The Mann-Whitney U test did not 

reveal significant differences between the Val/Val and Met carrier groups (p > .05), although the 

difference between these two groups within the DAN approached significance (U = 9905, p = 

.08; see Figures 16 and 17), with the Met carrier group displaying greater RSFC within the DAN 

than the Val/Val group.  
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Note. Mean RSFC was calculated using the mean Fisher-Z correlation between each ROI 

pair both between and within-networks atlas for the a) Val/Val group, b) Val/Met group, c) 

Met/Met group, and d) Met carrier group. Darker colours represent higher RSFC, while 

brighter colours represent lower RSFC. Matrices are arranged according to network order 

of the 400 parcel, seven-network Schaefer atlas (Schaefer et al., 2018), where: VIS = visual 

network, SOM = somatomotor network, DAN = dorsal attention network, VAN = ventral 

attention network, LIM = limbic network, FPC = frontoparietal control network, DMN = 

default mode network. 

 

Figure 16 

Comparison of network-averaged RSFC between- and within-networks. 
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Note. Test statistics were calculated using the Kruskal-Wallis H test and Mann-Whitney U test 

for the comparisons a) Val/Val, Val/Met, and Met/Met groups, and b) Val/Val and Met carrier 

groups, respectively. Darker shades of blue on the test statistic matrix indicate greater between 

group differences, while darker shades of green on the uncorrected p matrix indicate values 

further from significance. Matrices are arranged according to network order of the 400 parcel, 

seven-network Schaefer atlas (Schaefer et al., 2018), where: VIS = visual network, SOM = 

somatomotor network, DAN = dorsal attention network, VAN = ventral attention network, LIM 

= limbic network, FPC = frontoparietal control network, DMN = default mode network. 

Figure 17 

Test statistics (left) and significance values (right) of network-averaged RSFC comparisons.  
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Differences between groups were typically small in both the comparisons, although the 

difference between the Val/Val and Met carrier groups within the DAN was large and 

approached significance (p = .08). 

Smaller Sample Comparisons Following PSM 

PSM allows one to create individually matched groups of participants based on multiple 

covariates. The goal of PSM in this study was to evaluate whether comparing Val/Val and 

Met/Met groups of equal sample sizes of better-matched participants across multiple variables 

would produce similar results to the previous analysis with a larger, unmatched Val/Val group. 

PSM was used to identify 14 Val/Val participants optimally matched with the Met/Met 

participant sample (n=14) on various demographic, lifestyle, and cognitive measures. Propensity 

scores for each of the matched groups are plotted in Figure 16. Following PSM, the group sizes 

were 14 Val/Val participants (age: mean ± SD =  27.38 ± 4.79 , 5 female) and 14 Met/Met 

participants (age: mean ± SD =  27.64 ± 5.20 , 5 female). 

Table 5  

Covariate Balance across Met/Met and Val/Val groups before and after matching on the 

Propensity Score. 

Original Sample`         Matched Sample` 

Variable 

Met 

Mean 

Val 

Mean Std Mean 

Difference 

Test 

Statistic 
p 

Met 

Mean 

Val 

Mean Std Mean 

Difference 

Test 

Statistic 
p 

(n=14) (n=708) (n=14) (n=14) 

MMSE 28.71 29 -.40 3743a .10 28.71 28.65 .09 -.43c .67 

Sex    2.55b .12    0b 1 

  Female 5 406 -.45 

  

5 5 .07 

  

  Male 9 302 .45 9 9 -.07 

Age 27.64 28.90 -.24 4006a .22 27.64 27.38 .05 -.61c .55 

Race    28.18b 
0.0

03 
   0b 1 

  Amer. 

Indian 
0 0 -.05   0 0 -.01   
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  Asian .29 .03 .56 .29 .29 -.01 

  Black 0 .20 -.50 0 0 -.01 

  Two or 

more 
0 .03 -.17 0 0 -.02 

  Not 

reported 
0 .02 -.14 0 0 -.01 

  White .71 .72 -.02 .71 .71 -.01 

Handedness 67.86 67.27 .01 4791.50a .83 67.86 66.50 .03 -.03c .98 

Zygosity    1.02b .60    2.29b .32 

  MZ twin .43 .31 .24 

  

.43 .30 .26 

    DZ twin .14 .21 -.19 .14 .19 -.14 

  Not twin .43 .48 -.11 .43 .51 -.17 

Education 15.50 14.79 .47 6000a .16 15.50 15.55 -.03 -.38c .71 

BMI 24.03 26.78 -.55 3271.50a .03 24.03 24.22 -.04 .51c .62 

Employment 1.43 1.54 -.13 4682a .67 1.43 1.53 -.12 -.47c .64 

PSQI Score 3.93 4.82 -.42 3999a .21 3.93 3.97 -.02 -.54c .59 

Income    6.69b .57    3.83b .70 

1 .07 .08 -.03 

  

.07 .06 .06 

  

2 .07 .08 -.05 .07 .07 .01 

3 0 .13 -.39 0 .01 -.04 

4 .14 .13 .04 .14 .10 .11 

5 .14 .08 .17 .14 .19 -.14 

6 .07 .21 -.56 .07 .06 .06 

7 .21 .13 .20 .21 .21 .01 

8 .29 .14 .33 .29 .30 -.03 

  Not 

reported 
0 .01 -.08 0 0 -.01 

In school .21 .19 .06 .05b .82 .21 .25 -.10 0b 1 

In 

relationship 
.43 .44 -.02 0.00004b .94 .43 .44 -.02 .14b .70 

Cocaine use 0 0 -.05 .04b .84 0 0 -.01 0b 1 

THC use .07 .13 -.22 .39b .53 .07 .08 -.04 1.17b .28 
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Total 

alcohol/wee

k 

3.36 4.70 -.23 4377.50a .44 3.36 3.22 .02 .50c .62 

 

Note. Lower standardized mean differences (closer to 0) indicate less difference between 

groups on a given variable. Significance tests used were: aMann-Whitney U test, bPearson 

χ2 test, cStudent’s t-test. Variables used in the PSM analysis are listed in the first column, 

and include: Mini Mental State Exam (MMSE) score, sex, age, self identified race 

(American Indian, Asian, Black, Two or more, Not Reported, White), years of education, 

Body Mass Index (BMI), employment status, Pittsburgh Sleep Quality Index score,  total 

household income (<$10,000 = 1,10K-19,999 = 2, 20K-29,999 = 3,30K-39,999 = 4, 40K-

49,999 = 5, 50K-74,999 = 6, 75K-99,999 = 7, >=100,000 = 8), enrollment in school at time 

of testing, relationship status, positive test for cocaine use on any day of testing, positive 

test for THC use on any day of testing, and total number of alcoholic beverages per week.  
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Figure 18  

Standardized mean differences for selected covariates before (red) and after (blue) PSM 

Unmatched 

Matched 

Note. The vertical centre line indicates no standardized mean differences between the 

Met/Met group and the unmatched (red) or matched (blue) Val/Val groups. Lower 

standardized mean differences (closer to 0) indicate less difference between groups on a 

given variable. Variables used in the PSM analysis are listed in the first column, and 

include: Mini Mental State Exam (MMSE) score, sex, age, self identified race (American 

Indian, Asian, Black, Two or more, Not Reported, White), years of education, Body Mass 

Index (BMI), employment status, Pittsburgh Sleep Quality Index score,  total household 

income (<$10,000 = 1,10K-19,999 = 2, 20K-29,999 = 3,30K-39,999 = 4, 40K-49,999 = 5, 

50K-74,999 = 6, 75K-99,999 = 7, >=100,000 = 8), enrollment in school at time of testing, 

relationship status, positive test for cocaine use on any day of testing, positive test for THC 

use on any day of testing, and total number of alcoholic beverages per week. 
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 Using PSM to identify 14 Val/Val participants matched to the 14 Met/Met participants, a 

series of independent samples t-tests were conducted to compare RSFC between all pairwise 

ROI interactions between these groups. Following correction for multiple comparisons (false 

discovery rate; Benjamini & Hochberg, 1995), no significant differences in RSFC between any 

pairs of ROIs were identified between the groups (corrected p > .05; see Figure 19). A targeted 

analysis of RSFC between the right anterior insular cortex and the right DLPFC based on the a 

priori findings of Wang et al. (2014) did not reveal a significant difference between the PSM 

matched Val/Val, and Met/Met groups (p = .79) 

 

Note. The Fisher-Z correlation was averaged for all participants in the a) PSM matched Val/Val 

and b) Met/Met groups to acquire mean RSFC for every pairwise comparison. Matrices are 

arranged according to network order of the 400 parcel, seven-network Schaefer atlas (Schaefer et 

al., 2018).  Warm colours indicate strong positive correlation between ROIs, while cool colours 

represent low/negative correlations between ROIs. Matrices are arranged according to network 

order of the seven-network Schaefer atlas, where: VIS = visual network, SOM = somatomotor 

network, DAN = dorsal attention network, VAN = ventral attention network, LIM = limbic 

network, FPC = frontoparietal control network, DMN = default mode network. 

Figure 19 

Mean RSFC (Fisher-Z correlation) between all pairwise ROIs for the: a) PSM Val/Val and b) 

Met/Met groups. 
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Mean RSFC between and within functional networks using the seven-network Schaefer 

atlas was also evaluated for the PSM-matched samples. Both the PSM Val/Val and Met/Met 

groups demonstrated higher RSFC within networks than between networks. Relative to the PSM 

Val/Val group, the Met/Met group displayed the greatest RSFC within and between networks. 

RSFC values for PSM Val/Val and Met/Met groups were not significantly different between any 

within or between network comparisons (p > .05; see Figures 20 and 21).  

 

 

Note. Mean RSFC was calculated using the mean Fisher-Z correlation between each ROI pair 

both between and within-networks. Darker colours represent higher RSFC, while brighter 

colours represent lower RSFC. Matrices are arranged according to network order of the 

seven-network Schaefer atlas, where: VIS = visual network, SOM = somatomotor network, 

DAN = dorsal attention network, VAN = ventral attention network, LIM = limbic network, 

FPC = frontoparietal control network, DMN = default mode network. 

 

Figure 20 

Comparison of network-averaged RSFC between- and within-networks for the a) PSM Val/Val 

and b) Met carrier groups. 
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Figure 21 

Test statistics (left) and significance values (right) of network-averaged RSFC comparisons 

between the PSM matched Val/Val and Met/Met groups. 

Note. Test statistics were calculated using a Student’s t-test. Mean RSFC was calculated using 

the mean Fisher-Z correlation between each ROI pair between and within-networks. Darker 

shades of blue on the test statistic matrices indicated greater between group differences, while 

darker shades of green on the uncorrected p matrices indicated values further from 

significance. Matrices are arranged according to network order of the seven-network Schaefer 

atlas, where: VIS = visual network, SOM = somatomotor network, DAN = dorsal attention 

network, VAN = ventral attention network, LIM = limbic network, FPC = frontoparietal 

control network, DMN = default mode network. 
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Discussion 

The Val66Met SNP of the BDNF gene has been studied in the context of cellular level 

changes to dendritic outgrowths (Chen et al., 2004; Egan et al., 2003) and in neurodegenerative 

and psychiatric diseases, such as schizophrenia, major depressive disorder, and Alzheimer’s 

disease (Egan et al., 2003; Hosang et al., 2014; Lim et al., 2021). Notably, differences in CT  and 

RSFC in healthy carriers of the Met allele for this SNP have previously been reported, 

suggesting that cellular-level effects of the Met allele may impart a deleterious effect on the 

structural and functional integrity of the brain (Jang et al., 2012; Jasínska et al., 2017; Thomason 

et al., 2009; C. Wang et al., 2014; X. Yang et al., 2012).  

However, previous efforts to study the neurological implications of carrying the BDNF 

Met allele faced two considerable challenges. Previous studies have been limited by small 

sample sizes (range of total participants: 32-78 participants in CT studies, 23-38 participants in 

RSFC studies, with the Wang et al. (2014) study being the exception for both study types), and 

due to the low prevalence of the Met/Met genotype, these participants were often grouped with 

the Val/Met participants. Additionally, neuroimaging methods have progressed alongside 

technological and theoretical advances since these earlier studies, expanding the ways in which 

empirical questions can be addressed and data can be analyzed. To avoid previous limitations, 

this study used a comparatively large sample of participants from the HCP, combined with a 

cutting-edge functional parcellation method (GPIP), to evaluate whether the Val66Met SNP has 

an impact on CT and RSFC on a population of North American healthy young adults. I 

hypothesized that the Val/Val group will show the highest structural integrity (i.e., highest CT), 

followed by the Val/Met and Met/Met groups who carry the potentially deleterious Met allele. I 

predicted a similar pattern with respect to RSFC, where the Val/Val group will show higher 
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network integrity (i.e., robust differentiation of functional network structure) than the Val/Met 

group, and both Val/Val and Val/Met groups higher than the Met/Met group (see Figure 6). 

Here, I demonstrate that there were no significant differences in CT or RSFC in healthy young 

adults who differed by genotype for the Val66Met SNP of BDNF. 

Cortical Thickness of Val66Met Genotypes 

 Differences in CT are expected to provide insight into structural integrity at the level of 

the columnar organization of the neocortex. Neuron columns are important functional units in the 

neocortex, and reductions in CT could suggest impacts to the structure or number of neurons in a 

column. Although the parcels of the Desikan-Killiany atlas cover fairly large areas relative to 

other brain parcellations (e.g., 400 parcel Schaefer atlas), the reduction of neurons in column(s) 

within a given ROI would be reflected as a change in CT. The following section will describe the 

analysis, how these results relate to previous findings, and alternative neuroimaging approaches 

that could be utilized to study cortical thickness. 

ROI Analysis  

The mean CT of eight ROIs in each of the left and right hemispheres of the neocortex 

were compared between genotypes for the Val66Met SNP of BDNF in a sample of 392 

participants. These ROIs were selected due to previous studies of CT differences between 

genotype groups and their relationships with intrinsic functional networks, including the DMN 

and FPC, where RSFC differences have been identified between Val/Val and Met carriers (Jang 

et al., 2012; Thomason et al., 2009). No consistent or significant differences were observed 

between the Val/Val, Val/Met, and Met/Met groups when sex was included as a covariate, nor 

between Val/Val and Met carriers. Based on the absence of CT differences between genotypes, I 
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do not expect that the structural integrity of neuron layers is impacted, although microscale 

cellular differences cannot be ruled out, as they are not directly shown by CT measures. 

 Yang et al. (2012) did observe between-group differences in CT in a sample of Han 

Chinese healthy young adults. In that study, the Val/Val (n = 15) participants consistently had 

significantly greater thickness in various regions, including the INS and PCC, relative to the 

Met/Met group (n = 17), and greater thickness in the PC and INS relative to the Val/Met (n = 29) 

group. Not long after, Wang et al. (2014) reported no significant differences in CT between 

Val/Val (n = 95), Val/Met(n = 156), and Met/Met(n = 57) groups of the SNP in a healthy 

population of Han Chinese young adults (n = 308, female = 166), despite observing differences 

in RSFC between genotype groups. The reason for these contradictory results is unclear, as both 

studies used the same methodological approach to measure CT. Some possible explanations 

could include the stricter exclusion criteria and smaller sample sizes in the study by Yang et al. 

(2012) or that sex was not controlled for by Wang et al. (2014). A replication study of the latter 

should be conducted on the Han Chinese population, with more efforts to covary for CT 

impacting factors including sex to get a better understanding on the role of Val66Met on CT. 

Although this study was conducted in a North American population of mostly Caucasian 

participants, the comparatively larger sample sizes used in the present study and by Wang and 

colleagues seem to indicate that healthy young adult brains are not susceptible to CT differences 

based on the Val66Met SNP alone (Wang et al., 2014).  

Interestingly, a relationship between the developing brain and the BDNF Met allele has 

been observed. While the influence of the Met allele on CT varied in different studies of healthy 

young adults, studies in healthy children have shown a consistent difference by genotype group 

for the Val66Met SNP. In a group of healthy 6 to 10-year-olds, Jasińska et al. (2017) observed 
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greater thickness in the left STG, temporal pole, and entorhinal cortex for the Val/Val relative to 

Met carriers, and greater thickness in Met carriers relative to Val/Val in regions including the left 

PC and the right LING. In typically developing children ages 6-12 years old, de Araujo et al. 

(2018) found increased CT in the lateral occipital cortex for Met carriers relative to the Val/Val 

group, while greater CT for Met carriers was observed in the right middle temporal gyrus in a 

group of children ages 6-12-years old diagnosed with various psychiatric disorders including but 

not limited to major depressive disorder, bipolar disorder, autism, anorexia nervosa, among many 

others. It remains unclear why previous work showed predominantly greater CT for Met carriers 

and Met homozygotes relative to Val homozygotes since the Met allele is typically considered 

deleterious based on the effects it has at the cellular level. It is possible that the increase in CT 

for Met carriers is the result of compensatory mechanisms from other neurotrophins. This 

difference should be explored further in children determine the age/developmental stage at which 

BDNF genotype-based differences in CT cease to be significant.  

Alternative Methods to Measure Structural Integrity 

BDNF is also thought to contribute to myelinogenesis — the process by which axons are 

myelinated for faster action potential conduction — as well as the regeneration of myelin 

following injury (Du et al., 2003; Fletcher et al., 2018). These two functions may be impacted by 

the Val66Met SNP, where the Met allele may not allow for these pathways to be properly 

engaged. Therefore, other neuroimaging methods such as diffusion tensor imaging (DTI) might 

provide insightful comparisons of white matter integrity between genotypes. Previous DTI 

studies aiming to identify the structural effects of this SNP have displayed inconsistent results. 

Some studies of healthy adults suggest greater white matter integrity in Met carriers (Tost et al., 

2013), while others report decreased white matter robustness in Met carriers (Carballedo et al., 
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2012; C. Park et al., 2017) Although these studies had generally larger sample sizes than other 

CT studies (range: 42-85 participants), each study grouped the Val/Met and Met/Met participants 

into a Met carrier group, so differences between Val/Met and Met/Met individuals have not been 

studied. Additionally, the number of Met carriers varied drastically between studies (e.g., 8 Met 

carriers of 42 total participants in Tost et al. study, 55 Met carriers of 73 total participants in Park 

et al. study), making it difficult to draw accurate conclusions on the influence of this SNP on 

white matter integrity. Future studies on white matter differences between genotypes for BDNF 

Val66Met should aim to expand the sample size of participants recruited and to evaluate 

differences between all three genotypes with more evenly balanced groups. 

Altogether, this study did not show CT differences in the eight bilateral ROIs studied 

between the Val/Val, Val/Met, Met/Met, or Met carrier groups of healthy young adults. While 

these results did not support my hypotheses of structural integrity differences between 

genotypes, they are consistent with another study that had a similar group size (C. Wang et al., 

2014), but inconsistent with findings in studies with smaller sample sizes (X. Yang et al., 2012) 

and in studies of children (de Araujo et al., 2018; Jasínska et al., 2017). Further research on other 

measures of structure, including white matter integrity, should be conducted to gather a complete 

picture of the effects of the Val66Met SNP on structure. 

Resting-State Functional Connectivity  

While previous studies have reported differences in RSFC between BDNF genotypes, 

this study, which used larger sample sizes and more advanced, rigorous analysis techniques, did 

not replicate any of the aforementioned findings. After examining pairwise ROI comparisons 

using the 400-parcel, seven-network Schaefer atlas, as well as averaged within and between-

network connectivity, I did not observe any significant differences in RSFC between the 
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Val/Val, Val/Met, and Met/Met groups, or when grouping Met carriers together. This was true of 

both a large sample comparison comprising 281 participants and a smaller PSM group 

comparison of 28 participants, comprising 14 Val/Val and 14 Met/Met participants.  

Typical Functional Connectivity Between Genotypes 

 Across all the genotype groups studied, typical functional integrity of intrinsic functional 

networks was observed: the highest RSFC correlations were within network, while between-

network measures were comparatively lower. At the pairwise comparisons level, ROIs close to 

the diagonal (i.e., ROIs of the same network) had the highest Z-scores. ROIs were less correlated 

as comparisons moved away from the diagonal (i.e., comparisons between networks). The same 

pattern was observed for RSFC measures when averaging all pairwise comparisons between and 

within-networks. While I predicted that there would be between-groups differences in inter- and 

intra-network RSFC, the results show typical functional integrity of intrinsic functional 

networks. These results contradict the within-network decreases in networks like the DMN and 

FPC for Met carriers (Jang et al., 2012; Thomason et al., 2009), as well as increasing RSFC 

between the anterior insula and DLPFC in a dosage-dependent manner, such that the highest 

RSFC correlation was observed in the Met/Met group, followed by the Val/Met group, and lastly 

the Val/Val group (C. Wang et al., 2014). 

Improving Statistical Power with Larger Samples 

The sample of 281 participants used in this study represents the largest sample used to 

study RSFC in relation to the Val66Met SNP. Until now, the largest sample in a study of RSFC 

differences between genotypes for Val66Met was that of Wang et al. (2014), with a sample of 

280 participants. Thomason et al. (2009) recruited a sample of 38 participants, and Jang et al. 

(2012) had a sample of 23 participants. While these are typical sample sizes for a neuroimaging 



55 
 

study, Marek and colleagues (2022) have recently argued that much larger sample sizes are 

required to reduce the likelihood of spurious correlations when investigating brain-behaviour 

relationships. They analyzed the three largest neuroimaging datasets available and found that the 

median sample size used (n = 25) was unlikely to replicate in a separate sample. Additionally, 

studies with smaller sample sizes also reported larger effect sizes (e.g., 0.2 or greater), while the 

large-sample replications reported a 0.01 median effect size (Marek et al., 2022). This study 

illustrates the importance of sample size in neuroimaging studies; researchers should strive to 

recruit larger samples and continue to work with large neuroimaging datasets as a means to 

ascertain the validity of findings with smaller samples. 

Methodological Considerations in RSFC Analysis 

Among the many methodological decisions to be made in group-level rfMRI analyses, 

two in particular can influence results substantially, sometimes introducing error and/or bias, 

including 1) the atlas used (e.g., atlases are often based on cellular structure), and 2) the seed-

based correlation method used to identify ROIs and, by extension, intrinsic functional networks.  

Atlases are not Specific to Individuals 

 It is typical for both anatomical and functional data to be spatially aligned to a common 

atlas that represents averaged anatomical/functional boundaries for the population being studied 

(Gholipour et al., 2007; Schaefer et al., 2018; Yeo et al., 2011). To illustrate, a study comparing 

younger and older participants would require an atlas created using both age-groups to best fit 

the data and avoid biasing the results in favour of either group. While group-averaged atlases 

enable comparisons at the group level in a straightforward manner and the number of available 

atlases continues to expand (e.g., older adults, clinical populations), even the best atlas cannot 

fully account for individual differences in structural and functional topology. Registering all 
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participants to a common template may fail to identify or correctly characterize the 

relationship/connectivity between functional regions (Gordon et al., 2015; Mueller et al., 2013; 

D. Wang et al., 2015). Furthermore, these atlases are often based on structural properties of the 

brain, despite observations that structural and functional boundaries often do not correspond 

(Suárez et al., 2020). Methods like GPIP are becoming the new standard in neuroimaging studies 

because they mitigate these shortcomings by creating accurate functional parcels for each 

participant using the participant’s RSFC data, while employing the most up-to-date functional 

atlases as biological constraints (Chong et al., 2017). Using individualized parcellation methods 

can improve the accuracy of RSFC measurements across groups, allowing for researchers to 

observe potentially novel findings that were previously undetected by methods that obscured the 

nuances of dynamic relationships between low frequency signals (Chong et al., 2017). Equally 

relevant is the opportunity to use more precise methods of measuring RSFC to test the strength 

and significance of previously reported effects through data reanalysis and replication studies.  

Seed-based Correlational Analyses are not Always Accurate 

 The second issue, seed-based correlation methods for quantifying RSFC, may also 

introduce errors into analyses. In this approach, the rfMRI signal of a specific coordinate-based 

location (the “seed”) is correlated with the timeseries of other brain regions or the rest of the 

brain (Biswal et al., 1995; Fox et al., 2005). This method requires the seed to be determined 

beforehand, often using coordinates identified by other researchers in the literature (e.g., 

coordinates of the voxel with peak activation during task fMRI, or from strictly anatomically 

based definitions). This method also assumes that functional regions are consistent between 

participants when mapped onto a template/atlas used for group analysis. However, the choice of 

seed may not accurately reflect an interaction between large scale brain networks, which can lead 
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to variability in results within and between studies (Glezer & Riesenhuber, 2013; Kerepesi et al., 

2018; Sohn et al., 2015). Furthermore, seeds are often defined as a sphere, wherein the average 

timeseries of all voxels within that sphere are correlated with the rest of the brain. The process of 

selecting seed size is arbitrary, does not necessarily reflect the actual size or shape of the ROI, 

may capture timeseries from voxels that are not part of the functional region of interest, and may 

not reflect individual differences in functional connectivity (Cole et al., 2010). 

The Importance of Individual Localization to Functional Neuroimaging 

A study by Glezer and Reisenhuber (2013) showed that the location of functional 

activation of a region, such as the visual word form area (VWFA), can vary considerably 

between participants, literature coordinates, and even the group average of all participants in a 

sample. In their study, differences between the location of an individual’s VWFA and the group-

averaged or literature-based VWFA were so large that using either group- or literature-based 

coordinates as seeds did not reveal any specificity for words in the VWFA, an area which is 

known to be specialized for processing written words. This points to the necessity of 

individualized functional parcellations of the brain when studying RSFC, especially at the group-

level, since the seed-based approach alone cannot accommodate the variance in ROI location 

across individuals. 

Literature Coordinates Based are Insufficient 

Previous studies of RSFC and the Val66Met SNP have used literature-based seed-based 

comparison. In the original paper that identified RSFC differences between genotype groups for 

Val66Met, Thomason et al. (2009) used literature-based coordinates for the three networks they 

evaluated (DMN, right PCC: 10, −50, 30; FPC, right DLPFC: 44, 36, 20; Salience Network, 
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right pars orbitalis : 38, 26, −10; MNI coordinates used) and found within-network RSFC 

differences in children who were carriers of the Met allele, relative to Val/Val children. 

Thomason’s group (2009) reported that Met carriers had reduced within-network RSFC for the 

DMN and FPC and increased within-network RSFC for the paralimbic network. This was also 

the case in the study of young adults by Jang et al. (2012), where literature-based coordinates for 

the left PCC (-5, -49, 40) were used to seed intrinsic functional networks. They observed RSFC 

differences between the PCC and precuneus, such that Met carriers showed a weaker relationship 

between the two nodes compared to the Val/Val group. While it is not inherently incorrect to use 

seeds, neither of these studies accounted for the individual differences in the locations of 

functional regions between participants because they apply the literature coordinates to each 

participant. 

The Choice of Seed Can “Beg the Question” 

Wang et al. (2014) obtained their RSFC seed using the ROI where they reported 

significant group differences for cortical surface area (the insular cortex). It can be the case that 

CT differences can inform structural connectivity differences. Indeed, one of the first papers to 

show small world connectivity of anatomical networks in humans, a theory that is widely 

accepted today as the way the brain is anatomically organized, did so by assessing CT 

associations between areas (He et al., 2007). Others, (e.g., Lerch et al., 2006) have shown direct 

differences in CT that impact anatomical connectivity through diffusion tensor imaging. 

Although studies have shown that structural connectivity can sometimes predict functional 

connectivity (Honey et al., 2009), functional connectivity represent dynamic interactions 

between regions that are subject to changes over short periods of time (e.g., milliseconds), 

making structural connectivity an unreliable measure of the functional relationships between 
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disparate regions of intrinsic functional networks (Ekman et al., 2012; Hermundstad et al., 2013; 

Sporns, 2011). Leveraging the debateable assumption that structural and functional connectivity 

have an isomorphic relationship, Wang and colleagues (2014) chose the right angular gyrus as a 

seed for RSFC based on cortical surface area differences. This design is circular in that the 

premise assumes the consequence; that is, they assumed the coordinates where CT differences 

were identified could be seeded to identify differences in RSFC. Researchers should be careful 

not to misinterpret the overlap of structural and functional networks since changes on the cortical 

surface may not necessarily reflect functional changes for either short- or long-range 

connections. Functional networks are more flexible than structural networks and regional overlap 

between networks should not be misconstrued as isomorphic (H.-J. Park & Friston, 2013).  

There is an increased push in the field of fMRI to adapt methods that create 

individualized brain parcellations for more accurate assessments of functional connectivity. 

Other approaches to generating individualized brain parcellations akin to GPIP have been 

developed using different algorithms (Blumensath et al., 2013; Kong et al., 2019; Li et al., 2019). 

While these other methods have a similar framework, there has yet to be a comparison between 

all methods to determine which is most effective. GPIP was selected as it uses the most current 

classification of regions based on atlases made specifically from fMRI data (Chong et al 2017). 

Further research should investigate other algorithms for individual parcellation to determine 

which produces the most accurate individualized parcellation, and whether the results of this 

study replicate with other algorithms. 

BDNF Differences in the Developing Brain 

Although this study did not show between group differences of RSFC for Val66Met 

genotype in healthy young adults, questions remain as to the effects of this SNP in other stages 
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of life, such as the developing brain. For example, the most robust network differences in RSFC 

between Val66Met groups were observed by Thomason et al. (2009) in a group of children 

(mean age = 12); no adult study showed the same level of difference in RSFC within the DMN 

Executive, or Salience networks. Whereas much of the research on adult populations does not 

conclusively show RSFC, structural, or behavioural differences in adults, there are studies 

reliably showing the Val66Met SNP affects all three in children.  

 Differences in task-related functional connectivity have been identified in children 

between the left IPL and right SPL for Met carriers relative to Val/Val participants. A study by 

Jasińska et al. (2016) found lower task activation in Val/Val participants relative to Met carriers 

when performing language and reading tasks, which has also been associated with worse task 

performance for the Met carriers relative to Val homozygotes. Findings were distributed, with 

the IPL being one of the regions showing increased activation. Recently, Mascheretti et al. 

(2021) followed up on this study, indicating that while they could not find the same effect on 

reading ability, they did find increased brain activation in reading-related regions for Met carriers 

5-13 years old relative to their Val/Val counterparts (2021). Similar to the differences in CT 

observed between Val/Val and Met carriers, the authors of this study suggest that the differences 

in activation between genotypes could be the result of the brain compensating for poorer 

underlying functional connections. This stands in contrast to studies of healthy young adults, 

which have not consistently identified behavioural differences between Val/Val and Met carriers 

(Mandelman & Grigorenko, 2012). More studies on behavioural differences, particularly in 

children, would help to reveal whether there are any group differences in this respect. It also 

remains to be seen why these differences do not persist into adulthood and are only observed in 

the developing brain. Further research should be conducted to investigate differences in task-
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related functional connectivity in Met carriers with more reading paradigms and at later stages of 

development to better understand why developmental differences are observed.  

As mentioned earlier, CT differences have been observed in Met carrier children relative 

to Val homozygotes, such that Met carriers had greater CT in lateral occipital, superior parietal 

and postcentral regions relative to Val/Val participants (de Araujo et al., 2018; Jasińska et al., 

2017). Furthermore, other studies have identified hippocampal volume reduction in children who 

are Met carrier relative to Val/Val (Hashimoto et al., 2016; Toro et al., 2009), whereas many 

adult studies have not shown this consistently (Gerritsen et al., 2012; Karnik et al., 2010; 

Koolschijn et al., 2010). This implicates the Met allele in structural developmental differences in 

the child and adolescent brain. What is not clear, however, is why there would be greater CT for 

a group where the BDNF protein has a deleterious effect at the cellular level. Furthermore, no 

explanation has been provided with respect to how these differences in CT are 

resolved/disappear by young adulthood.   

However, it cannot be definitively concluded that the BDNF Val66Met SNP affects brain 

structure, behaviour, and RSFC of children, as there have been very few studies in this 

population, unlike studies in adults where a greater number of behavioural and structural studies 

have been conducted. To date, the study by Thomason et al. is the only study of the effects of the 

Val66Met SNP on RSFC in children (2009). Meanwhile, structural differences, including 

reduced hippocampal volume in Met carriers (Hashimoto et al., 2016, Toro et al., 2009) and CT 

differences across temporal and parietal regions (Jasińska et al., 2017), and behavioural 

differences in reading ability (Jasińska et al., 2016; Mascheretti et al., 2021) represent the bulk of 

the limited research on the effect of this SNP in healthy children. Therefore, more studies (both 
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replication and novel experiments) should be conducted on children to get a better understanding 

of the Val66Met SNP and differences at the structural, functional, and behavioural levels. 

Limitations and Future Directions  

 The goal of working towards structural and functional connectomes is an important one 

in our field to gain a better understanding of the interactions between structure and function. 

However, it is important to consider that said connectomes differ across healthy and diseased 

populations, as well as between age-groups. For example, studies have identified decreased 

within network connectivity and greater-between network connectivity in healthy older adults 

relative to young adults (Chan et al., 2014; Geerligs et al., 2015; Setton et al., 2022; Spreng et al., 

2016). Furthermore, in mild cognitive impairment and preclinical Alzheimer’s disease, a 

breakdown in within-network connectivity of the DMN, DAN, and salience networks has been 

observed (Sheline & Raichle, 2013), and a recent study identified the buildup of amyloid beta 

and tau proteins in functional hubs of brain networks (Sintini et al., 2021). Therefore, although 

this study showed no association between the Val66Met SNP and structural/functional 

differences in the brain, it is important to study this further in disease and across the lifespan. 

Large neuroimaging datasets like the HCP will assist in these efforts; other HCP researchers are 

currently working to acquire more varied datasets including diseased, developing, and aging 

brains, while other projects like the Alzheimer's Disease Neuroimaging Initiative have emerged 

to study specific diseases and populations (Petersen et al., 2010). 

 Multivariate methods could prove to be great assets in understanding the extent to which 

SNP differences like BDNF Val66Met contribute to RSFC. For example, analyses like partial 

least squares could be used to identify the association between two sets of variables (e.g., brain 

activity and genotype) by finding spatiotemporal patterns of covariance that most optimally 
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differentiate the variables. This data-driven approach, which could consider the relationship 

between multiple independent variables, could provide insight into the relationship between the 

Val66Met SNP and RSFC that would not be possible in univariate analyses. A study by Setton et 

al. (2022), who used multivariate methods to study the differences in RSFC and network 

differentiation between younger and older adults, provides a good framework for future studies 

aiming to perform a rigorous, data-driven study of genotypes and intrinsic functional networks. 

 This thesis used the FreeSurfer cortical surface reconstruction measures of CT in all 

analyses involving CT. Importantly, these measures are an estimation of CT based on the 

reconstruction of the white matter and pial matter surfaces; they do not represent a direct 

measurement of CT (although a direct measurement would not be possible without invasive 

methods). As such, the measures of CT could vary if a different processing approach were used 

(for example, the Computational Anatomy Toolbox being used to calculate CT instead of 

FreeSurfer), as different methods of calculating CT are taken (Seiger et al., 2018). This limitation 

is not a cause for concern, as cortical parcellations and CT measures taken from FreeSurfer are 

widely utilized and considered one of the most reliable approaches to measuring CT (Dale et al., 

1999; Fischl & Dale, 2000; Seiger et al., 2018). Nevertheless, it may be worthwhile to replicate 

CT analyses with an alternative approach to verify the findings of no significant differences 

between Val66Met genotype in CT. 

 Another limitation stems from the fact that the RSFC data available for this study 

comprised only Fisher-Z scores for every pairwise correlation among the 400 parcels (GPIP 

transformed) of the Schaefer atlas (Schaefer et al., 2018). Additional data, such as the GPIP 

output files delineating the individually parcellated brain regions for all participants, would have 

been useful to further validate the accuracy of functional parcellation for every participant and 
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the RSFC correlation values between each pairwise ROI. Moreover, it would have allowed for 

analyses of functional parcels at different levels of spatial resolution (e.g., 200 vs. 400 parcels). 

In the future, my analyses should be replicated with both HCP participants and other samples of 

healthy young adults, following the GPIP processing steps, to determine if any of the additional 

data can provide further insights into the relationship between the Val66Met SNP and RSFC in 

healthy young adults. 

The Val66Met SNP has been linked to the effectiveness of transcranial magnetic 

stimulation in healthy young adults, most notably with intermittent and continuous theta burst 

stimulation (iTBS and cTBS, respectively). Previous studies have demonstrated that Val/Val 

participants show increased cortical excitability after iTBS and reduced excitability after cTBS at 

the motor cortex, while Met carriers show no significant change in motor evoked potential 

following stimulation with either iTBS (Antal et al., 2010; Cheeran et al., 2008) or cTBS 

(Cheeran et al., 2008). In a previous case study of two participants, one Val/Val and the other 

Met/Met, I observed that the Met/Met participant did not respond as strongly as the Val/Val 

participant to iTBS and cTBS when attempting to modulate RSFC of the DMN (Alba Suarez, 

2020). These studies point to a possible interaction between the Val66Met SNP and transcranial 

magnetic stimulation, which could impact applications of TBS in treating major depressive 

disorder (George et al., 2000) and enhancing cognitive performance (Walsh et al., 1998). 

Researchers should continue to explore the potential effects that this BDNF polymorphism may 

have on iTBS, cTBS, and other transcranial magnetic stimulation protocols to better understand 

whether these non-invasive stimulation approaches have genotype-dependent viability. 

 A limitation affecting both the structural and functional analyses in the current study was 

the limited sample sizes of Val/Met and Met/Met groups. While this is to be expected, given the 
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low gene frequency in the North American population studied (Petryshen et al., 2010), 

researchers in North America will always face difficulties in recruiting adequate numbers of 

participants with the Met allele. While a larger sample of Met carriers could be recruited from 

different regions with higher frequencies of this SNP (e.g., Asia), there is research to suggest that 

the Met allele has different effects across different ethnicities. For example, researchers have 

identified differences in the effectiveness of antidepressants between Asian and Caucasian 

samples, where Asian Met allele carriers have a better response (e.g., better efficacy) to SSRIs 

relative to their Caucasian counterparts (Yan et al., 2014). An important next step, then, is to find 

a way to recruit a larger sample of Val/Met and Met/Met participants to increase statistical power 

in future research. Alternatively, a dataset with a larger number of participants, such as the UK 

Biobank, could be used in future studies to acquire a more diverse (albeit older) sample that is 

likely to have many more Met/Met participants. 

Conclusion 

 The Val66Met SNP of BDNF has been implicated as a factor affecting structural integrity 

at the level of CT, and functional differences as measured by RSFC. However, previous studies 

have been limited both by sample size and the methods available at the time. Using cutting-edge 

methods and a larger sample of participants from the HCP project, I set out to determine whether 

the Val66Met SNP has any effect on structural or functional network integrity in healthy young 

adult participants by measuring CT and RSFC within and between networks. No significant 

differences were identified in CT measures between genotype groups (with one exception which 

was later found to have significant outliers leading to this result). No significant differences in 

RSFC were found between the genotype comparisons in within-network or between-network 

RSFC. Altogether, these findings suggest that the Val66Met SNP does not moderate structural or 
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functional differences in healthy young adults. These results highlight the importance of using 

individualized functional parcellations in studies of intrinsic functional brain networks, studying 

different age groups/developmental stages of the brain in neurosciences, and using large samples 

of participants such as the HCP in genetic analyses. Future studies should further investigate 

Val66Met genotype differences in structure and function observed in the developing brain, as 

well as other populations, including diseased and older adults, to get a better understanding of 

the effects of this SNPs across the lifespan.  
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Appendix A 

Number of participants excluded based on exclusion criteria for the Val/Val, Val/Met, and 

Met/Met groups. 

Category Val/Val Val/Met Met/Met Total 

remaining 

Positive drug test 21 4 0 367 

Breathalyzer over .05% blood alcohol 

content 

1 0 0 366 

Father history of psychiatric disorder 13 12 0 341 

Mother history of psychiatric disorder 11 11 0 319 

Handedness 21 14 0 284 

Quality control flag for motion 3 0 0 281 

Table A. From a total of 1029 participants with both GPIP parcellations and genetic data 

available, the participants were randomly selected such that only one member of each family 

group was selected (n = 392). The additional exclusion criteria listed here were included due to 

potential influence on RSFC, resulting in a total of n = 281 participants in the functional 

analysis. Drug tests included THC, cocaine, opiates, amphetamines, methamphetamines, and 

oxycontin. Father and mother history of psychiatric disorder were reported by the participant. 

Handedness was measured using the Edinburgh Handedness Inventory (Oldfield, 1971). 

Participants flagged for motion had one or more rfMRI scans with a significant coil- or 

movement-related artifact.   

 

 


