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Abstract

Today, one of the major challenges faced by autonomous vehicles (AVs) is the ability to drive

in urban environments. Such a task requires interactions between AVs and other road users,

in particular pedestrians, to resolve various traffic ambiguities. To interact with pedestrians,

AVs must be able to understand the objectives of pedestrians and predict their forthcoming

actions.

In this dissertation, we investigate the role of context on understanding and predicting

pedestrian behavior in urban traffic scenes. Towards this goal, we begin by explaining

why behavior prediction is necessary for social interactions. Next, we conduct a meta-

analysis of a large body of behavioral literature and identify the factors that potentially

impact pedestrian behavior and how these factors are interconnected. We extend the past

findings by conducting two behavioral studies of pedestrians. The first study shows that

pedestrians often engage in different forms of communication, mainly implicit, with changes

in their movement patterns and the frequency of communication varying depending on road

structure, social factors, and scene dynamics. The second study identifies the diversity of

pedestrian behavioral patterns at the time of crossing and how it is influenced by factors

such as the road width, demographics, crosswalk delineation, and driver behavior.

As part of the behavioral studies, we collected two novel large-scale datasets of pedes-

trian crossing behaviors. Using the data, we empirically evaluate various state-of-the-art

and classical pedestrian detection algorithms and show how diversifying training data in

terms of visual properties, such as lighting conditions and pedestrian attributes, enhance the

generalizability of such algorithms. Furthermore, we propose a novel pedestrian trajectory

prediction algorithm that achieves state-of-the-art performance. We show that incorporat-

ing pedestrian intention to cross helps improve reasoning about future motion trajectories.

In addition, we propose a novel pedestrian crossing action prediction algorithm and illus-

trate that by including contextual information, such as pedestrian appearance, pedestrian

pose, and velocity, we can enhance the accuracy of crossing action prediction. We also show

that by combining different modalities of contextual data in a hierarchical fashion better

performance can be achieved compared to alternative approaches.
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Chapter 1

Introduction

Ever since the introduction of early commercial automobiles, engineers and scientists have

been striving to achieve autonomy, which is removing the need for human involvement from

controlling the vehicles. The fascination with autonomous driving technology is not new and

goes back to the 1950s. In that era, articles appeared in the press featuring the autonomous

vehicles in Utopian cities of the future (Figure 1.1) where drivers, instead of spending time

controlling the vehicles, could interact with their family members or undertake other activ-

ities while enjoying the ride to their destinations [1].

Apart from the increased level of comfort for drivers, autonomous vehicles can posi-

tively impact society both at the micro and macro levels. One important aspect of au-

tonomous driving is the elimination of driver involvement, which reduces human errors (e.g.

fatigue, misperception or inattention), and consequently, lowers the number of accidents (up

to 93.5%) [2]. The reduction in human error can improve both the safety of the driver or the

passengers of the vehicle and other traffic participants such as pedestrians. At the macro

level, fleets of autonomous vehicles can improve the efficiency of driving, better the flow

of traffic and reduce car ownership (by up to 43%) through car-sharing, all of which can

minimize energy consumption, and as a result, lower the environmental impact such as air

pollution and road degradation [3].

Over the past few decades, the automotive industry has witnessed many significant break-

throughs in the field of autonomous driving, ranging from simple lane following [4] to com-

plex maneuvers and interaction with traffic in complex urban environments [5]. Today,

autonomous driving has become one of the major topics of interest in technology. This field

has not only attracted the attention of the major automotive manufacturers, such as BMW,

Toyota, and Tesla but also enticed a number of technology giants such as Google, Apple,

and Intel.

Despite the significant amount of interest in the field, there is still much to be done

1



Figure 1.1: A view of a futuristic autonomous vehicle in which a family of four are playing
a board game while enjoying a ride to their destination, 1956. Source: [1].

to achieve fully autonomous driving behavior in the sense of designing a vehicle capable of

handling all dynamic driving tasks without any human involvement. One of the major chal-

lenges, besides developing efficient and robust algorithms for tasks such as visual perception

and control, is interaction with other road users in chaotic traffic scenes. Interaction is a

vital component in resolving various traffic ambiguities such as yielding to others or asking

for the right of way. In order for the interaction to be effective, the parties are required to

understand each others’ behavior, to have the ability to predict each others’ actions and to

communicate their intentions.

The objective of this chapter is to discuss why pedestrian behavior understanding and

prediction is necessary for autonomous driving systems. Before doing so, however, it is

important to define what autonomy means in the context of driving, what is the progress

in developing autonomous driving systems and what remains unsolved. To achieve these

objectives, we present a brief history of autonomous driving systems and discuss some of

the major milestones as well as unresolved challenges. We argue why pedestrian behavior

understanding and prediction are important in the context of autonomous driving and how

they can impact the flow of traffic and the safety of road users.
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1.1 Autonomous Vehicles (AVs): A Brief History

Figure 1.2: Six levels of driving automation. Today we have achieved level 3 autonomy.
Source: [6].

Before reviewing the development of autonomous driving technologies, it is necessary to

define what we mean by autonomy in the context of driving. Traditionally, there have been

four levels of autonomy including no autonomy (the driver is in the control of all driving

aspects), advisory autonomy (such as warning systems in the vehicle which partially aid the

driver), partial control (such as auto-braking or lane adjustment) and full control (all aspects

of the dynamic driving tasks are handled autonomously)[7].

Today, the automotive industry further breaks down the levels of autonomy into six cat-

egories: (see Figure 1.2)[8]:

Level 0: No Automation, where the human driver controls all aspects of the dynamic driv-

ing tasks. This level may include an enhanced warning system but no automatic control is

taking place.

Level 1: Driver Assistance, where only one function of driving such as steering or ac-

celeration/deceleration, using information about the driving environment, is handled au-

tonomously. The driver is expected to control all other aspects of driving.

Level 2: Partial Automation. In this mode, at least two functionalities of the dynamic

driving task, both steering and acceleration/deceleration, are controlled autonomously.

3



Figure 1.3: A century of developments in driving automation. This timeline highlights some
major milestones in autonomous driving technologies from the first attempts in the 1920s to
today’s modern autonomous vehicles. Sources (in chronological order): [9, 1, 10, 11, 12, 13,
14, 15, 16]

Level 3: Conditional Automation, where the autonomous system can handle all aspects of

the dynamic driving tasks in a specific environment but may require human intervention in

the cases of failure.

Level 4: High Automation. This mode is similar to level 3 with the exception that no

human intervention is required at any time during the environment-specific driving task.

Level 5: Full Automation. As the name implies, in this mode all aspects of the dynamic

driving tasks under any environmental conditions are fully handled by an automated system.

The current level of autonomy available on the market, such as the one offered by Tesla,

is level 3.

The following subsections will review the developments in the field of autonomous driving

during the past century. A summary of some of the major milestones are illustrated in

Figure 1.3.

1.1.1 The Beginning

Much of today’s autonomous driving technology is owing to the pioneering works of roboti-

cists such as Sir William Grey Walter, a British neurophysiologist who invented the robots
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(a) (b)

Figure 1.4: a) W. G. Walter and his Tortoises [17], and b) Hans Moravec and Stanford Cart
[18].

Elsie and Elmer (also known as Tortoises)(Figure 1.4a), in the year 1948 [19]. These simple

robotic agents were equipped with light and pressure sensors and are capable of phototaxis

by which they could navigate their way through the environment to their charging station.

The robots were also sensitive to touch which allows them to detect simple obstacles on their

path.

A more modern robotic platform capable of autonomous behaviors is the Stanford Cart

(Figure 1.4b) [20, 21]. This mobile platform was equipped with an active stereo camera

and could perceive the environment, build an occupancy map and navigate its way around

obstacles. In terms of performance, the robot successfully navigated a 20 m course in a room

filled with chairs in just under 5 hours.

Autonomous vehicles rely on similar techniques as in robotics to perform various per-

ception and control tasks. However, since vehicles are used on roads, they generally require

different and often stricter performance evaluations, in terms of robustness, safety, and real-

time reactions. In the remainder of this chapter we particularly focus on robotic applications

that are used in the context of autonomous driving.

Early attempts at developing autonomous driving technology go as far back as the first

commercial vehicles. In this era, autonomous driving was realized in the form of remote-

controlled vehicles removing the need for the driver to be physically present in the car.

In 1921, the first driverless car (Figure 1.5a) was developed by the McCook Air Force

Base in Ohio [1]. This 2.5 meter-long cart was controlled via radio signals transmitted from

the distance of up to 30 m. In the 1930s, this technology was implemented on actual vehicles

some of which were exhibited in various parades (Figure 1.5b) to promote the future of

5



(a) (b)

Figure 1.5: a) The first remote-controlled vehicle, 1921 [9], and b) a more modern version of
a commercial vehicle at Safety Parade 1936 [1].

driverless cars and to show how they could increase driving safety [1].

1.1.2 Hitting the Road

(a) (b)

Figure 1.6: a) GM’s automatically guided automobile [22] and b) Tsukaba Lab’s autonomous
car [23].

The earliest instance of driving an automobile without human involvement was intro-

duced in 1958 by General Motors (GM). The autonomous vehicle called “automatically

guided automobile” (see Figure 1.6a) was capable of autonomous driving on a test track

with electric wires laid on the surface which were used to automatically guide the vehicle

steering mechanism [1].

Perhaps, the first truly autonomous vehicle was introduced in 1977 by the research team
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Figure 1.7: VaMoRs and a view of its interior [24].

at Tsukuba Mechanical Engineering Lab in Japan [25]. This vehicle could drive with the

speed of 33 km/h by recognizing and following lane markings detected by a computer vision

algorithm (see Figure 1.6b). The car, however, still relied on inputs received from an elevated

rail installed on the road. In the late 1980s, one of the pioneers of modern autonomous

driving, E. D. Dickmanns [4, 26], alongside his team of researchers at Daimler, developed a

visual algorithm for road detection in real-time. They employed two active cameras to scan

the road, detect its boundaries, and then measure its curvature. To reduce computation

time, a Kalman filter was used to estimate the changes in the curvature as the car was

traversing the road.

In the early 1990s, the team at Daimler enhanced the algorithm by adding an obstacle

detection capability. This algorithm identified parts of the road as obstacles if their height

was more than a certain elevation threshold above the 2D road surface [27]. In the same year,

the visual perception algorithm was tested on an actual Mercedes van, VaMoRs (Figure 1.7).

Using the algorithm in conjunction with an automatic steering mechanism, VaMoRs was able

to drive up to the speed of 100 km/h on highways, and up to 50 km/h on regional roads. The

vehicle could also perform basic lane-changing maneuvers and safely stop before obstacles

when driving up to 40 km/h.

Throughout the same decade, we witnessed the emergence of learning algorithms such as

neural networks which were designed to handle various driving tasks. ALVINN is one such

example developed that was developed as part of the NAVLAB autonomous car project by

Carnegie Melon University (CMU). The system used a neural network to learn and detect

different types of roads (e.g. dirt or asphalt) and obstacles [28, 29, 30, 31]. The algorithm,

besides passive camera sensors, relied on laser range finders and laser reflectance sensors (for

surface material assessment) to achieve a more robust detection.

To guide the vehicle, a similar learning technique was used by the NAVLAB team to learn
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driving controls from recordings collected from an expert driver [32]. An extension of this

project used an online supervised learning method to deal with illumination changes, and

a neural network to identify more complex road structures such as intersections [33]. The

NAVLAB project was implemented on a U.S. Army High Mobility Multipurpose Wheeled

Vehicle (HMMWV) and was capable of obstacle avoidance and autonomous driving up to

28 km/h on rugged terrains and 88 km/h on regular roads.

Despite the fact that learning algorithms achieved promising performance in various vi-

sual perception tasks, in the late 90s, the traditional vision algorithms still remained popular.

Methods such as color thresholding [11] and various edge detection filters such as Sobel filters

[34] or model-based algorithms for road boundary estimation and prediction [35] were widely

used.

In the mid-90s, autonomous assistive technologies had become standard features in a

number of commercial vehicles. For instance, an extension of the lane detection and following

algorithms developed by Dickmanns’ team [36, 37] was used in the new lines of Mercedes-

Benz vehicles [38]. This new extension, in addition to road detection, could detect cars

by identifying symmetric patterns in their rear views. Using the knowledge of the road,

the automatic system adjusted the position of the vehicle within the lanes and performed

emergency braking if the vehicle came too close to an obstacle. An interesting feature of

this system was the ability to track objects, allowing the vehicle to autonomously follow a

car ahead of it, i.e. the ability to platoon.

The new millennium was the time during which autonomous vehicles started to enjoy

the technological advancements in both the design of sensors and increase in computing

power. At this time, we observed an increase in the use of high power sensors such as GPS,

LIDAR, high-resolution stereo cameras [39] and IMU [40]. The information from various

sources of sensors was commonly used by autonomous vehicles, thanks to the availability of

high computing power, which allowed them to achieve better performance in tasks such as

assessment of the environment, localization, and navigation of the vehicle and mapping. The

emergence of such features brought the automotive industry one step closer to achieving full

autonomy.

1.1.3 Achieving Autonomy

In 2004 the Defense Advanced Research Projects Agency (DARPA) organized one of the

first autonomous driving challenges in which the vehicles were tasked to traverse a distance

of 240 km between Las Vegas and Los Angeles [40]. In this competition, none of the 15

finalists were able to complete the course, and the longest distance traveled was only 11.78

8



(a) (b)

Figure 1.8: a) Stanley from Stanford in DARPA 2005 [12], and b) BOSS from CMU in
DARPA 2007 [13].

km by the team Red from CMU.

The following year a similar challenge was held over the course of 212 km on a desert

terrain between California and Nevada [41]. This year, however, 5 cars finished the entire

course (one of them over the 10 hours limit), out of 23 teams that participated in the final

event. Stanley (Figure 1.8a), the winning car from Stanford, finished the race in 6 hours and

53 minutes while maintaining an average speed of 30 km/h throughout the race [42].

Stanley benefited from various sources of sensory input including a mono color camera

for road detection and assessment, GPS for global positioning and localization, and RADAR

and laser sensors for long and short-range detection of the road respectively. The Stanley

project produced a number of state-of-the-art algorithms for autonomous driving such as

the probabilistic traversable terrain assessment method [43], a supervised learning algorithm

for driving on different surfaces [44] and a dynamic path planning technique to deal with

challenging rugged roads [45].

In the year 2007, DARPA hosted another challenge, and this time it took place in an

urban environment. The goal of this competition was to test vehicles’ ability to drive a

course of 96 kilometers under 6 hours on urban streets while obeying traffic laws. The cars

had to be able to negotiate with other traffic participants (vehicles), avoid obstacles, merge

into traffic and park in a dedicated spot. In addition to robot cars, some professional drivers

were hired to drive on the course.

Among the 11 finalists, BOSS (Figure 1.8b) from CMU [46] won the race. Similar to

Stanley, BOSS benefited from a wide range of sensors and was able to demonstrate safe

driving in traffic at the speed of up to 48 km/h.
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Ever since the DARPA challenges, continuous improvements have been made in vari-

ous tasks that contribute to achieving full autonomy, such as high-resolution and accurate

mapping [47, 48], and complex control algorithms capable of estimating traffic behavior and

responding to it [49, 50, 51].

Autonomous vehicles have also been put to the test on larger scales. In the year 2010,

the autonomous driving company, VisLab, held an intercontinental challenge by setting the

goal of driving the distance of over 13000 km from Parma in Italy to Shanghai in China [52].

Four autonomous vans each with 5 engineers onboard participated in the challenge. One

unique feature of this challenge was that the autonomous vehicles, for most of the course,

performed platooning in which one vehicle led the way and assessed the road while the others

followed it. The driving challenge was concluded after three month of driving. During this

time, the vehicles collected 50 TB of data to be used in for future developments.

Furthermore, autonomous cars have found their way into racing. Shelley from Stanford

[53] was one of the first vehicles that autonomously drove the 20 km world-famous Pikes

Peak International Hill Climb in only 27 minutes while reaching a maximum speed of 193

km/h.

1.1.4 Today’s Autonomous Vehicles

Today, more than 40 companies are actively working on autonomous vehicles [57] including

Tesla [58], BMW [59], Mercedes [60], and Google [61]. Although most of the projects run

by these companies are in the research stage, some are currently being tested on actual

roads (see Figure 1.9). A few companies such as Tesla already sell their newest models with

autonomous driving capability and claim that these vehicles have all the hardware needed

for fully autonomous driving.

Autonomous driving research is not limited to passenger vehicles. Recently, Uber has

successfully tested its autonomous truck system, Otto, to deliver 50,000 cans of beer by

driving the distance of over 190 km [62]. The Reno lab, at the University of Nevada, also

announced that they are working on an autonomous bus technology and are planning to

put it to test on the road in the near future [63]. Autonomous driving technology is even

coming to ships. In a recent news release, Rolls-Royce has disclosed its plans on starting

a joint industry project in Finland, called Advanced Autonomous Waterborne Applications

(AAWA), to develop a fully autonomous ship technology by no later than 2020 [64].
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(a) (b)

(c) (d)

Figure 1.9: Modern autonomous cars: a) Uber [16], b) Waymo (from Google) [54], c) Baidu
[55], and d) Toyota [56].

1.2 Where AVs Should Be and Where They Are Now

How far we are from achieving fully autonomous driving technology is a subject of contro-

versy. Companies such as Tesla [65] and BMW [59] are optimistic and claim that their first

fully autonomous vehicles will enter the market by 2020 and 2022 respectively. Other com-

panies such as Toyota are more skeptical and believe that we are nowhere close to achieving

level 5 autonomy [66].

So the question is, what are the challenges that we need to overcome in order to achieve

autonomy? Besides challenges associated with developing suitable infrastructures [67] and

regulating autonomous cars [68], technologies currently used in autonomous vehicles are not

robust enough to handle all traffic scenarios such as different weather or lighting conditions

(e.g. snowy weather), road types (e.g. driving on roads without clear marking or bridges) or

environments (e.g. cities with large buildings) [69]. Relying on active sensors for navigation

significantly constrains these vehicles, especially in crowded areas. For instance, LIDAR,

which is commonly used as a range finder, has a high chance of interference if similar sensors

11



are present in the environment [70].

Some of the consequences of these technological limitations are evident in recent accidents

reports involving autonomous vehicles. Cases that have been reported include minor rear-end

collisions [71, 72], car flipping over [73], and even fatal accidents [74, 75, 76].

Moreover, autonomous cars face another major challenge, namely interaction with other

road users in traffic scenes [77]. The interaction involves understanding the intention of

other traffic participants, communicating with them and predicting what they are going to

do next.

1.3 The Importance of Prediction for Autonomous Sys-

tems

Prediction as part of interaction between road users is important because:

1. It ensures the flow of traffic. We as humans, in addition to official traffic laws,

often rely on informal laws (or social norms) to interact with other road users. Such

norms influence the way we perceive others and how we interpret their actions [78].

Lack of understanding of such behaviors can potentially slow down the flow of traffic.

For instance, a recent report shows that AVs get confused by bicyclists and their

“fixies” [79]. In this scenario, instead of putting a foot on the ground, the bicyclist

was pedaling forward and backward while trying to maintain his balance and moving

a minimal distance. Observing this action, the AV thought the bicyclists is about to

cross the intersection and therefore it stopped despite having the right of way to cross

first. Although this not a dangerous decision per se, it does contribute to confusion in

traffic flow and is thus undesirable.

In addition, communication, as part of the interaction, is necessary for managing traffic

flow. Road users may communicate to disambiguate certain situations, e.g. if a car

wants to turn at a non-signalized intersection to a street with heavy traffic, it might

wait for another driver’s signal indicating the right of way. In some cases, traffic

officials are responsible for directing traffic by transmitting various nonverbal signals.

The inability to understand these signals may lead to interruption of traffic flow. For

instance, a recent article reports that an autonomous driving vehicle got stuck and

halted the traffic at a school zone because it could not understand the instructions of

a crossing guard [80].

2. It improves safety. Interaction can guarantee the safety of road users, particularly
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pedestrians who are the most vulnerable traffic participants. For instance, at the point

of crossing, pedestrians often establish eye contact with drivers or wait for an explicit

signal from them. This assures the pedestrians that they have been seen, therefore if

they commence crossing, the drivers will slow down or stop before them [81]. Failure

to understand the intention of others, in an autonomous driving context, may result

in accidents of the kind reported in recent years [82, 83].

3. It helps identify malicious behaviors. Given that autonomous cars may potentially

commute without any passengers on board, they are subject to being disrupted or

bullied [78]. For example, people may step in front of the car to force it to stop

or change its route. Such instances of bullying have been reported involving some

autonomous robots currently being used in malls. Some of these robots were defaced,

kicked or pushed over by drunk pedestrians [84].

1.4 Alternatives to Behavior Understanding and Pre-

diction

Designing practical systems for understanding road users’ behaviors is quite challenging (as

will be discussed later in this dissertation). To avoid this issue and ensure safe driving, many

scientists turn to making autonomous vehicles behave conservatively, i.e. driving slower

than usual, selecting paths that minimize the need for complex interactions, e.g. avoiding

left turns, and coming to a stop at the smallest possibility of road conflicts. Although

employing such an approach can potentially enhance the safety of road users, it can negatively

impact the flow of the traffic. For example, recent reports mention that some autonomous

cars behave hesitantly and slow down and stop often [85]. Some are pulled over by law

enforcement officials for driving under the minimum speed limit [86].

Conservative driving can also negatively influence the riding experience of passengers,

and, consequently, the adoption of these vehicles as a means of transportation. A recent

report on Waymo’s autonomous cars shows that these vehicles often select very easy and less

crowded routes which can add up to 100% to overall travel time to the destinations [87].

Another approach that has been suggested by some roboticists is to retrain road users,

in particular pedestrians, to behave appropriately around autonomous vehicles. Following

this idea, pedestrians are expected to behave less erratically and cross only at designated

crosswalks. Some scientists question this approach and believe that this is simply redefining

the problem and if we are going to completely segregate autonomous vehicles, there are

already existing technologies, such as trains, that do that [88]. Others state that the main
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premise of autonomous vehicles was to eliminate traffic deaths. Now if this is to be achieved

by asking humans to change their behaviors around these vehicles, this is simply shifting the

responsibility to someone else [89].

As the arguments above suggest, the alternative approaches to behavior understanding

move autonomous vehicles away from their main objectives, that are to ensure the safety of

the other road users and improve traffic flow.

1.5 The Dissertation Outline

As discussed earlier, interaction with traffic participants is fundamental for safe driving.

As part of an effective interaction, one requires a proper understanding of other road users’

behaviors and various contextual factors that impact such behaviors and the ability to predict

what will happen next.

The focus of this dissertation is on understanding road users behavior in the context

of traffic interaction. In particular, we emphasize understanding and predicting pedestrian

behavior , not only as a task of tracking and predicting the trajectory by extrapolating

from current movement patterns, but importantly, doing so within the physical and social

context in which that movement is occurring. In other words, we are trying to understand

the contextual factors that impact such predictions and understanding. To this end, we

structure the remainder of this dissertation as follows: Chapter 2 presents an overview

of the psychology literature on social interaction and argues why humans need to predict

behavior when interacting with one another. In Chapter 3, we perform a meta-analysis of a

large body of literature on pedestrian behavior understanding in traffic context and identify

the set of contextual factors that impact the behavior, the interconnections between these

factors, and the implications of these findings for developing practical systems. In Chapter

4, an overview of studies of nonverbal communication is presented, followed by an empirical

study on pedestrian communication based on a novel large-scale naturalistic driving dataset

collected as part of this dissertation. The study details the methods of communication and

their meanings as well as factors that impact the way pedestrians communicate. Chapter 5

looks at pedestrian crossing actions by analyzing the patterns of behaviors that pedestrians

exhibit at the time of crossing and the factors that impact the ways pedestrians make crossing

decisions.

The remaining chapters focus on the practical aspects of pedestrian behavior understand-

ing. Chapter 6 investigates the limitations of pedestrian detection algorithms with respect to

the properties of traffic datasets. In Chapter 7, we discuss pedestrian intention estimation

and present findings from a human experiment on a novel large-scale traffic dataset. We
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use the outcome of the experiment to develop a practical algorithm for pedestrian intention

estimation and show how it can be incorporated into a pedestrian trajectory prediction frame-

work for improved results. Chapter 8 is dedicated to pedestrian crossing prediction. In this

chapter, we analyze the impact of various sources of contextual information on crossing pre-

diction and also evaluate different architectural designs for incorporating such multi-modal

data in a learning framework. In Chapter 9, we summarize the findings of our studies, discuss

their limitations and recommend future research directions. It should be noted that parts of

this dissertation were collaborative work. These contributions are detailed in Appendix A.

1.6 Terminology

Throughout this dissertation we use a number of terms to discuss the problem of pedestrian

behavior understanding. For better understanding of the content, below we briefly explain

some of these terms. These terms and others often have varying and inconsistent uses in the

literature, so it is important to specify their meaning for this dissertation. Note that some

of these terms will be explained in more detail later in this dissertation.

Behavior. We use the most general definition of behavior as in the series of actions one

may perform. This includes the way one conducts oneself and acts in response to a situation

or stimulus.

Action refers to the process of doing something, in our case, walking, gesturing, crossing

the road, etc.

Context includes everything that potentially has an effect on one’s behavior or the

occurrence of an event. In traffic scenarios, context may consist of the road structure,

weather conditions, norms, social factors, traffic volume, etc.

Intention refers to the underlying motives of someone to do something. For example,

a pedestrian standing at the curb might have the intention of crossing the road or might

have the intention of hailing a taxi. Whether they will act on it depends on surrounding

conditions, e.g. whether the signal for crossing is green or a taxi is available in the vicinity.

1.7 Evaluation Methodology

In an autonomous driving system, the pedestrian prediction module is only one component

among many other modules that are responsible for performing various tasks such as per-

ception (e.g. observing the scene, detecting and tracking objects), planning (e.g. route

planning) and control (e.g. steering, braking). Being a part of a bigger system, the perfor-

mance of the prediction module highly depends on the performance of other components.
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For example, if the perception is faulty (e.g. it produces wrong detections or poorly localizes

objects), the prediction module would receive erroneous inputs, and consequently, produce

inaccurate outputs. Control and planning modules can also impact prediction. For instance,

if the vehicle does not maintain the speed or driving direction that the prediction algorithm

has expected, the behavior of pedestrians would be different from what was predicted.

Moreover, in a driving framework, the full observations of pedestrians’ current behaviors

are not always possible. The observations are often gradual (one or more frames), partial

(full sequence of observation is not always available), and disconnected (pedestrians might

be occluded or out of view of the sensors for a period of time). All of these factors may affect

the accuracy of a prediction algorithm.

In this dissertation, we do acknowledge that in order to report the true performance of a

prediction algorithm, all of the conditions mentioned above should be present. However, to

evaluate novel approaches or effect of new sources of contextual information, it is not feasible

to test the algorithms in the entire driving platform as a whole. Apart from enormous time

and resources required for such evaluations, it is difficult to measure the performance of the

individual component within a complex system and separate sources of noise introduced by

other modules.

To better reflect the performance of the proposed algorithms in this dissertation, we

evaluate our methods using conventional approaches accepted in the computer vision and

robotics communities. For the methods presented in Chapters 7 and 8, we use ground-truth

observation tracks of pedestrians as input to the systems. If the methods expect a certain

length of observations (e.g. 15 frames), we only consider tracks that are at least that long.

In the datasets used in our work, care was taken to diversify the data as much as possible

by collecting samples on different roads, under different weather and lighting conditions,

capturing pedestrians with different characteristics, etc. In our experiments, we did not

exclude challenging cases, such as those created by occlusion, shadow, reflection, etc., that

might affect the visibility of pedestrians, and as a result, impact the prediction results.
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Chapter 2

Social Interaction, Coordination and

Behavior Prediction

In the previous chapter, we argued that prediction as part of social interaction is an essential

component in safe driving and is necessary for resolving various traffic ambiguities, such as

yielding to others or asking for the right of way, between drivers and pedestrians. For

drivers to safely interact with pedestrians, they should be able to coordinate their actions.

This requires an understanding of pedestrian behavior and the context in which the behavior

is being observed. Before studying the role of context on pedestrian behavior, it is important

to understand the nature of human interaction, how humans coordinate with one another

and why behavior prediction is necessary in the course of an interaction. In the following

section, we begin by explaining the joint attention phenomenon which is the first step for

making interaction possible.

2.1 Joint Attention in Human Interaction

Figure 2.1: The monkey is imitating the human experimenter’s gestures. Source: [90]

The precursor to any form of social interaction between humans (or primates [90], see

Figure 2.1) is the ability to coordinate attention [91], which means the interacting parties at
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very least should be able to pay attention to one another, discern the relevant objects and

events of each other’s attentional focus, and implement their own lines of action by taking

into account where and toward what others may be attending. This dissertation asserts that

this same ability to jointly attend to the same task must play a role in interactions between

autonomous vehicle and human road users, as well as between autonomous vehicles.

In developmental psychology, the ability to share attention and to coordinate behavior

is defined under the joint attention framework, also referred to as, shared attention [91]

or visual co-orientation [92]. Traditionally, joint attention has been studied as a visual

perception mechanism in which two or more interacting parties establish eye contact and/or

follow one another’s gaze towards an object or an event of interest [93, 94]. More recently,

joint attention has also been investigated in different sensory modalities such as touch [95]

or even remotely via the web [96]. Since the objective of this dissertation is reasoning based

on visual perception in autonomous driving, in the following chapters we only focus on the

problem of joint visual attention and simply address it as joint attention.

What does joint attention really mean? Joint attention is often defined as a triadic

relationship between two interacting parties and a shared object or event [97, 98, 99, 91].

Intuitively, joint attention means the simultaneous engagement of two or more individuals

with the same external thing [100].

In the traditional definitions, an important part of joint attention is the ability to reorient

and follow the gaze of another subject to an object or an event [97, 99]. However, in

more recent interpretations of joint attention, the gaze following requirement is relaxed and

replaced by terms such as “mental focus” [100] or “shared intentionality” [101]. This means

joint attention constitutes the ability of a person to engage with another for the sake of a

common goal or task, which may not involve explicit gaze following action.

2.1.1 Early Studies of Joint Attention

Joint attention first was discovered in the context of early childhood development. In 1975,

Scaife and Bruner [93] were the first to describe the joint visual attention mechanism and its

role in early developmental processes in infants. They observed that infants below the age of

4 months were able to respond to the gaze changes of the adults in interactive sessions about

one-third of the time. In comparison, the older infants, above the age of 11 months, almost

always responded to the changes and could follow the gaze of the adults while interacting

with them. In addition, at this age, infants could follow the eye movements of the adults as

well as their head movements.

Butterworth and Cochran [92] further investigated joint attentional behavior and revealed
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that infants between the age of 6 to 18 months adjust their line of gaze with those of the

adult’s focus of attention, however, they act only if the adult is referring to loci within the

infant’s visual space. For example, if the adult looked behind the infant, the infant only scans

the space in front of them. The authors add that at early stages infants do not follow the

gaze to the intended object, instead they turn their head to the corresponding side but focus

their own gaze on the first object that comes in their field of view. The authors conclude

that it is only in the second year when infants are able to focus on the same object that is

intended by the adult.

In a subsequent study by Moore et al. [97] it is shown that while sharing attention, the

actual movement is critical in gaze following. Through experimental evaluations, the authors

illustrate that if only the final focus of the adult is presented to the infant they would not

necessarily focus on the correct object.

2.1.2 Joint Attention in Development of Social Cognition

Joint attention has been linked to the development of social cognitive abilities such as learn-

ing of artifacts and environments [102, 103]. More specifically, joint attention is a funda-

mental component in language development through which infants learn to describe their

surroundings [92, 94, 104]. In a study by Tomasello and Todd [94], it is argued that the

lexical development of children depends on the way the joint attention activity is adminis-

tered between the adult and the infant. It is shown that when mothers initiated interaction

by directing their child’s attention, rather than following it, their child learned fewer object

labels and more personal-social words, i.e. their lexical development suffered but they were

more expressive.

In short, Tomasello and Carpenter [101] summarize the social cognitive skills that are

acquired through joint attention into four groups:

1. Gaze following and joint attention

2. Social manipulation and cooperative communication

3. Group activity and collaboration

4. Social learning and instructed learning

The importance of joint attention is not limited to early childhood and is believed to be

vital for social competence at all ages. Adolescents and adults who cannot follow, initiate, or

share attention in social interactions may be impaired in their capacity for forming relation-

ships [91]. There are a large number of studies on the effects of joint attention weaknesses and
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social disorders, in particular in people with autism [98, 105, 99, 106]. For instance, autistic

children are found to have minor deficits in responding to joint attention while struggling

to initiate joint attention. The effect of aging on joint attention has also been investigated

[106]. It is shown that adults tend to get slower in gaze-cuing as they age.

2.1.3 From Imitation to Coordination

Figure 2.2: Coordination been humans for carrying a table. Rather than imitating each
other’s actions, (left image), people must sometimes perform complementary actions to reach
a common goal (right image). Source: [107]

The traditional view of joint attention, as discussed earlier, focuses on the role of joint

attention as a means whereby infants interact with adults and imitate their behavior to learn

about their surroundings.

However, as adults, we often engage in more complex interactions, which can take many

forms such as competition, conflict, coercion, accommodation, and cooperation [108]. Co-

operation, as in the context of traffic interaction, refers to a social process in which two

or more individuals or groups intentionally combine their activities towards a common goal

[109], e.g. crossing an intersection.

What makes a complex coordination possible? Of course, the immediate answer is that a

form of joint attention has to take place so the parties involved focus on a common objective.

However, joint attention in its classical definition does not fully satisfy the requirements

for cooperation. First, although certain cooperative tasks can be resolved by imitation

(e.g. make the same movements to balance a table while carrying it), in some scenarios

complementary actions are required to accomplish the task (e.g. the person at the front

watches for obstacles while the one behind carries the table) [107], as shown in Figure 2.2.

Second, even though involved parties focus on a common object or event, this does not mean

that they also share the same intention (we will talk about intention more in Chapter 7).

In this regard, in the context of cooperation, some scholars use the term intentional joint

attention [110] indicating that the agents are not only mutually attending to the same entity,
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but they also intend to do so.

This type of cooperation that involves a form of attention sharing is often referred to as

joint action [110, 107]. In some literature, joint attention is considered as the simplest form

of joint action [110]. However, for simplicity, throughout the rest of this report, we address

the whole phenomenon as joint attention.

2.1.4 How Do Humans Coordinate?

Figure 2.3: From joint attention to crossing. Are these pedestrians going to cross?1

As described earlier, joint attention provides a mechanism for sharing the same perceptual

input and directing attention to the same event or object [107]. Here, perhaps, the most

crucial components to trigger this attentional shift are eyes, because they naturally attract

the observer’s attention even if they are irrelevant to the task. Of course, other means

of communication such as hand gesture or body posture changes can be used for seeking

attention [111]. This is particularly true in the case of traffic interaction where nonverbal

communication between road users is the main means of establishing joint attention (see

Chapter 4 for more details).

Next, the interacting parties have to understand each other’s intentions in order to coop-

erate [110]. In some scenarios establishing joint attention might convey a message indicating

1a) no, b) no, c) no, d) yes, e) yes, and f) no.
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the intention of the parties. For instance, at crosswalks, pedestrians often establish eye con-

tact with the drivers indicating their intention of crossing [112]. However, joint attention

on its own is not sufficient for understanding the intention of others (see Figure 2.3 for an

example) or what they are going to do next. A more direct mechanism is action observation

[107].

2.2 Why do We Predict Behavior?

2.2.1 A Biological Perspective

When it comes to understanding the observed actions of others, humans do not rely entirely

on vision [113, 114]. In a study by Umilta et al. [114], the authors found that there is a

set of neurons (referred to as mirror neurons) in the ventral premotor cortex (part of the

motor cortex involved in the execution of voluntary movements) of macaque monkeys that

fire both during the execution of the hand action and the observation of the same action

in others. The authors show that a subset of these neurons become active during action

presentation, even though the part of the action that is crucial in triggering the behavioral

response is hidden and can therefore only be inferred. This implies that the neurons in the

observer action system are the basis of action recognition [115].

Such anticipatory behaviors are also observed in humans. Humans, in general, have

limited visual processing capability (due, in part, to foveation and saccadic eye movements),

especially when it comes to observing multiple moving objects. Therefore, they actively

anticipate the future poses of objects when interpreting a perceived activity [116]. In an

experiment by Flanagan and Johansson [117], the authors showed a video of a person stacking

blocks to a number of human subjects and measured their eye movements. They noticed that

the gaze of the observers constantly preceded the action of the person stacking blocks and

predicted a forthcoming grip in the same way they would perform the same task themselves.

The authors then concluded that when observing an action, the human behavior is predictive

rather than reactive.

It is necessary to note that such predictive behaviors in action observation have biological

advantages for humans (and likely for machines too). In addition to dealing with visual

processing limitations, anticipatory behaviors can help to deal with visual interruptions due

to occlusion in the scene.
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2.2.2 A Philosophical Perspective

From a philosophical perspective, it can also be shown that behavior (or action) prediction

is the only way to engage in social interaction. For this purpose, we refer to the arguments

presented by Dennet [118] and the comments on the topic by Baron-Cohen [119].

The ability to find “an explanation of the complex system’s behavior and predicting what

it will do next”, which may include beliefs, thoughts, and intentions [118], or as Baron-Cohen

terms it “mindreading”, is crucial in both making sense of one’s behavior and communica-

tion. Dennet argues that mindreading, or as he calls it adopting “intentional stance”, is

the only way to engage in social interaction. He further elaborates that the two alterna-

tives to intentional stance, namely physical stance and design stance, are not sufficient for

interpretation of one’s intentions or actions.

According to Dennet, physical stance refers to our understanding of systems whose phys-

ical properties we know about, for instance, we know that cutting skin results in bleeding. In

terms of understanding complex behavior, however, in order to rely on physical properties,

we need to know millions of different physiological (brain) states that give rise to different

behaviors. As a result, mindreading is an infinitely simpler and more powerful solution.

Design stance, on the other hand, tries to understand the system in terms of the func-

tions of its observable parts. For example, one does not need to know anything about the

microprocessor’s internal design to understand the result of pressing the Delete key on the

keyboard. Similarly, the design stance can explain some aspects of human behavior, such as

blinking reflex in response to blowing on an eye surface, but it does not suffice to make sense

of complex behaviors. This is primarily due to the fact that people have very few external

operational parts for which one could work out a functional or design description.

In addition to behavioral understanding, Baron-Cohen [119] argues that mindreading is

a key element in communication. Apart from decoding communication cues or words, we

try to understand the underlying communicative intention. In this sense, we try to find the

“relevance” of the communication by asking questions such as what that person “means” or

“intends me to understand”. For instance, if someone gestures towards a doorway with an

outstretched arm and an open palm, we immediately assume that they mean (i.e. intend us

to understand) that we should go through the door.

2.3 Summary

In this chapter, we elaborated on social interaction with a particular focus on the joint atten-

tion phenomenon, or the ability to share attention regarding a common object or an event.
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We showed that, traditionally, joint attention was explored in the context of early human

development to explain how children engage in social interactions and imitate the behaviors

of adults to learn various behavioral and lexical skills. We argued that joint attention is

also important in various cooperative tasks where, in addition to sharing attentional focus,

parties involved are required to adjust their behavior accordingly in order to accomplish the

task in hand.

Coordination between humans is only possible if they are aware of each other’s intentions

(or underlying motives). In this context, sharing the focus of attention can convey a message

indicating the intention, e.g. looking at the traffic may indicate the intention of a pedestrian

to cross the road.

However, from both biological and philosophical perspectives, we argued that intention

is not always easily observable due to the complex factors underlying human behavior and

decision-making process. The alternative to direct observation of intention is prediction

based on various behavioral cues such as knowledge of the task, communication, and under-

standing of the context in which the interaction is taking place.
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Chapter 3

Traffic Context and its Influence on

Pedestrian Behavior

3.1 What do We Mean by Context?

If humans rely on predicting forthcoming behaviors of one another then how is a predic-

tion generated? We answer this question in two parts: making sense of one’s actions and

interpreting communication cues. According to Humphrey [120], when observing someone’s

action, we first need to perceive the current state of being by relying on our sensory inputs.

Next, we need to understand the meaning of the action by relating it to the knowledge of the

task (e.g. crossing the street). This knowledge is either biologically encoded in our brain,

for instance, people have a very accurate knowledge of the human body and how it moves

[116], or, in more complex scenarios, it requires knowing the stimulus conditions (context)

under which an individual performs an action. The context may include various physical

or behavioral attributes present in the scene. Humphrey also emphasizes that in order to

understand others, we need to predict the consequences of our actions and realize how they

can influence their behavior [120].

The role of context is also highlighted in communication and how it can influence the

way we convey communication cues. Sperber and Wilson [121], in their theory of relevance,

argue that communication is achieved either by encoding and decoding messages via a code

system that pairs internal messages with external signals or by using the evidence from the

context to infer the communicator’s intention. Although this theory was originally developed

for verbal communication, it has implications that can certainly be relevant to nonverbal

communication as well.

The scholars behind the theory of relevance claim that code model does not explain
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the transmission of semantic representations and thoughts that are actually communicated.

They believe that there is a need for an alternative model of communication, what they

call inferential model. In an inferential process, there is a set of premises as input and a

set of conclusions as output which follow logically from the premises. The communicator

intentionally modifies the environment of his audience by providing a stimulus that takes

two forms: the informative intention that informs the audience of something, and the com-

municative intention that informs the audience of the communicator’s informative intention.

On the other hand, the communicatee makes an inference using his background knowledge

that he is sharing with the communicator, i.e. their knowledge of the context in which the

communication is taking place [121].

To characterize the shared knowledge involved in communication, the authors use the

term cognitive environment, which refers to a set of facts that are manifested to an individual.

Intuitively speaking, the total cognitive environment of an individual consists of all the facts

that he is aware of as well as all the facts that he is capable of becoming aware of at that

time and place [121].

Sperber and Wilson use the term “relevance” to connect context to communication. They

argue that any assumptions or phenomena (as part of cognitive environment) are relevant in

communication if and only if they have some effect in that context. They add that the word

“relevance” signifies that the contextual effect has to be large in the given context and at

the same time requires small effort to be processed [121]. The amount of processing required

to understand the context, however, is a subject of controversy.

Pedestrian behavior understanding and prediction in traffic scenes is a very complex

task. Here, context can be quite broad involving various elements such as dynamic factors,

(e.g. speed of the cars, the distance of the pedestrians), social factors (e.g. demograph-

ics), social norms, and environment configuration (e.g. street structure), and traffic signals.

Given the complexity of the problem, in the past literature, numerous methodologies have

been proposed for studying pedestrian behavior and identifying contextual factors that im-

pact pedestrian decision-making process. In the following section, we review some of these

methods.

3.2 Methods of Studying Pedestrian Behavior

The methods of studying human behavior in traffic scenes have transformed during past

decades as new technological advancements have emerged. Traditionally, written question-

naires [122, 123] or direct interviews [124] were widely used to collect information from traffic

participants or authorities monitoring the traffic. Some modern studies still rely on ques-
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tionnaires especially in cases where there is a need to measure the general attitudes of people

towards various aspects of driving, e.g. crossing in front of autonomous vehicles [125]. These

forms of studies, however, have been criticized for potentially biased answers, the question-

able honesty of responses or even how well the interviewees could recall a particular traffic

situation.

Traffic reports are mainly composed by professionals, such as police forces after accidents

[126]. The advantage of traffic reports is that they provide thorough description of the

elements involved in a traffic accident, albeit not being able to substantiate the underlying

reasons.

In addition, behavior can be analyzed via on-site observations by the researcher either

present in the vehicle [127] or standing outside [128] while recording the behavior of the

road users. Observations can be both naturalistic and scripted. In a naturalistic format,

normal activities of road users are monitored without notifying them of such recording [129].

In a scripted setting, the participants, e.g. drivers or pedestrians, are instructed to per-

form certain actions, and then the reactions of other parties are observed [130, 131]. A

major drawback of observation is the strong observer bias, which can be caused by both the

observers’ misperception of the traffic scenes or their subjective judgments.

New technological developments in the design of sensors and cameras have given rise to

different modalities of recording traffic events. Eye-tracking devices are one such system

that can record participants’ eye movements during driving [132] or gaze of pedestrians who

are crossing a street [133]. Computer simulations [134] and video recordings of traffic scenes

[123] are also widely used to study the behavior of drivers in laboratory environments. These

methods, however, are criticized for not providing realistic driving conditions, therefore the

observed behaviors may not necessarily reflect the ones exhibited by road users in a real

traffic scenario.

Naturalistic recording of traffic scenes (both videos [135] and photos [136]), is, perhaps,

one of the most effective methods for studying traffic behavior. Although the first instances

of such studies date back to almost half a century ago [137], they are still widely being used

in recent years. In this method of study, a camera (or a network of cameras) is placed either

inside the vehicle [135, 138] or outside on sidewalks [139, 140]. Since the objective is to record

the natural behavior of the road users, the cameras are located in inconspicuous places not

visible to the observees. In the context of recording driving habits, although the presence

of the camera might be known to the driver, it does not alter the driver’s behavior in the

long run. In fact, studies show that the presence of cameras may only influence the first

10-15 minutes of the driving, hence the beginning of each recording is usually discarded at

the time of analysis [127]. An added advantage of recording compared to on-site observation
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(a) (b)

Figure 3.1: Examples of Wizard of Oz technique. a) The driver is disguised as a car seat
[131] and b) the driver is driving the car from a right-hand steering wheel while a dummy
driver is sitting in the actual driver’s seat [141].

is the possibility of revisiting the observation and using multiple observers to minimize bias

[137].

Naturalistic recording, similar to on-site observation, may also be affected by observer

bias. Moreover, in some cases, it is hard to recognize certain behaviors or underlying motives,

e.g. whether a pedestrian notices the presence of the car or looks at the traffic signal in the

scene and why. To remedy this issue, it is common to employ a hybrid approach where

recordings or observations are combined with on-site interviews [112]. Using this method,

after recording a behavior, the researcher approaches the corresponding road user and asks

questions regarding their actions, for example, whether they looked at the signal prior to

crossing. Overall, the hybrid approach can help resolve the ambiguities observed in certain

behaviors.

In the context of autonomous driving research, the Wizard of Oz technique [141] is

common in which the experimenters simulate the behavior of an intelligent system to observe

the reaction of subjects. Using this technique, experimenters may disguise themselves as a

car seat [131] or control the vehicle from a hidden place inside the vehicle [141] that is not

observable by the participants (see Figure 3.1).

Figures 3.2 and 3.3 summarize the works presented in this chapter and their methods of

study. Note that in this figure, literature survey, refers to expert studies that generate new

findings based on past works.

3.3 Factors Influencing Pedestrian Behavior

We divide pedestrian behavior studies into two categories, classical studies investigating the

interactions between pedestrians and human drivers and studies involving interactions with
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Observation

Classical methods

Hamed (2001)
Moore (1953)
Sjostedt (1969)
Dolphin (1970)
Henderson (1972)
Harrell (1991)
Harrell (1991a)
Harrell (1992)
Cohen (1955)
Sun (2002)
Tom (2011)
Sucha (2017)
Wolf (2016)
Varhelyi (1998)
Risser (1985)
Rosenbloom (2004)
Rosenbloom (2009)
Sisiopiku (2003)
Mortimer (1973)
Hyman (2010)
Crompton (1979)
Schioldborg (1976)
O’Flaherty (1972)
Gheri (1963)
Lam (1995)
Lavalette (2009)
Herwig (1965)
Lefkowitz (1955)

Police report Jacobs (1967)
Johnston (1973)

Video recording

Hemistra (1969)
Willis (2004)
Walker (2007)
Wang (2010)
CYingzi Du (2015)
Rasouli (2017)
Sucha (2017)
Risto (2017)
Dey (2017)
Sucha (2014)
Das (2005)
Oudejans (1996)
Goldhammer (2014)
Tian (2013)
Lam (1995)

Photography DiPietro (1970)

Simulation
Caird (1994)
Sun (2002)
Das (2005)
Wiedemann (1994)

Scripted observation
Nowicki (1994)
Gueguen (2015)
Ren (2016)
Schmidt (2009)
Geruschat (2003)

Questionnaire

Clay (1995)
Evans (1998)
Yagil (2000)
Holland (2007)
Sucha (2017)
Sisiopiku (2003)
Lindgren (2008)
Bjorklund (2005)

Literature survey
Ishaque (2008)
Gupta (2016)
Wilde (1980)

Interview

Risser (1985)
Risto (2017)
Sun (2015)
Sucha (2014)
Chu (2004)

Figure 3.2: Data collection methods used in the classical pedestrian behavior studies.

autonomous vehicles. Compared to studies with autonomous vehicles, the classical studies

focus on pedestrian behavior while interacting with human drivers instead of vehicles. All
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Observation Chang (2017)
Lagstorm (2015)

Video recording

Beggiato (2017)
Matthews (2017)
Mahadevan (2017)
Dey (2017)
Zimmermann (2016)
Rothenbucher (2016)

Photography Yang (2017)
Dey (2017)

Simulation
Beggiato (2017)
Jayaraman (2018)
Chang (2017)
Pillai (2017)

Scripted observation Clamann (2017)
Dey (2017)

Questionnaire

Deb (2017)
Hulse (2018)
Dey (2017)
Yang (2017)
Matthews (2017)
Mahadevan (2017)
Chang (2017)
Zimmermann (2016)
Jayaraman (2018)
Rothenbucher (2016)
Lagstorm (2015)

Literature survey

Prakken (2017)
Meeder (2017)
Millard (2016)
Muller (2016)
Wang (2018)
Pillai (2017)

Interview

Mahadevan (2017)
Bikeleague (2014)
Yang (2017)
Chang (2017)
Lagstorm (2015)

Wizard of Oz

Autonomous
driving methods

Matthews (2017)
Mahadevan (2017)
Dey (2017)
Rothenbucher (2016)
Lagstorm (2015)

Figure 3.3: Data collection methods used in the pedestrian behavior studies involving au-
tonomous vehicles.

the factors identified in the literature are italicized in the text.

3.3.1 Classical Studies

The early works in pedestrian behavior studies come from early 1950s, and since then there

has been a tremendous amount of research done on various factors that impact pedestrian

behavior. Given the magnitude of the work in this area, an exhaustive survey of all the

literature would be prohibitive. As a result, only a subset of major works will be presented.

We divide the factors that influence pedestrian behavior into two groups, the ones that

directly relate to pedestrians and environmental ones. For a summary of these factors and

how they are interrelated refer to Figure 3.4.

Pedestrian Factors

Social Factors . Among the social factors, perhaps, group size is one of the most influential

ones. Heimstra et al. [137] conducted a naturalistic study to examine the crossing behavior
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Figure 3.4: Factors involved in pedestrian decision-making process at the time of crossing.
The diagram is based on a meta-analysis of the past literature. The large circles refer to
the major factors and small circles connected with solid lines are sub-factors. The dashed
lines show the interconnection between different factors and arrows show the direction of
influence.

of children and found that they commonly (in more than 80% of the cases) tend to cross as

a group rather than individually. Group size changes both the behavior of the drivers with

respect to the pedestrians and the way the pedestrians act at crosswalks. For instance, it is

shown that drivers more likely yield to groups of pedestrians (3 or more) than individuals

[139, 142].

When crossing as a group, pedestrians tend to be more careless, pay less attention at

crosswalks and often accept shorter gaps between the vehicles to cross [140, 143, 144] or do

not look for approaching traffic [112]. Group size is also found to impact the way pedestrians

comply with the traffic laws, i.e. group size exerts some form of social control over individual
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pedestrians [145]. It is observed that individuals in a group are less likely to follow a person

who is breaking the law, e.g. crossing on the red light [129].

In addition, group size, for obvious reasons, influences pedestrian flow which determines

how fast pedestrians cross the street. Wiedemann [146] indicates that if there is no interaction

between the pedestrians, there is a linear relationship between pedestrian flow and pedestrian

speed. This means, in general, pedestrians walk slower in denser groups.

Social norms, or as some experts refer to as “informal rules” [78], play a significant role

in how traffic participants behave and how they predict each other’s intention [122]. Social

norms also influence how acceptable a particular action is in a given traffic situation [147].

The difference between social norms and legal norms (or formal rules) can be illustrated

using the following example: formal rules define the speed limit of a street, however, if the

majority of drivers exceed this limit, the social norm is then quite different [122].

The influence of social norms is so significant that merely relying on formal rules does

not guarantee safe interaction between traffic participants. To highlight this fact, Johnston

[148] describes the case of a 34-year old married woman who was extremely cautious (and

often hesitant) when facing yield and stop signs. In a period of four years, this driver was

involved in 4 accidents, none of which she was legally at fault. In three out of four cases this

driver was hit from behind, once by a police car. This example illustrates how disobeying

social norms, even if it is legal, can disrupt traffic flow.

Social norms even influence the way people interpret the law. For example, the concept

of “psychological right of way” or “natural right of way” has been studied [122]. This concept

describes the situation in which drivers want to cross a non-signalized intersection. The law

requires the drivers to yield to the traffic from the right. However, in practice drivers may do

quite the opposite depending on the social status (or configuration) of the street. It is found

that factors such as street width, lighting conditions or the presence of shops may determine

how the drivers would behave [149].

Imitation is another social factor that defines the way pedestrians (as well as drivers

[150]) would behave. A study by Yagil [151] shows that the presence of a law-adhering (or

law-violating) pedestrian increases the likelihood of other pedestrians to obey (or disobey)

the law. This study shows that the impact is more significant when law violation is involved.

The probability of imitation occurrence may depend on the social status of the person

who is being imitated. In the study by Leftkowitz et al. [129] a confederate was asked

by the experimenter to cross or stand on the sidewalk. The authors observed that when

the research confederate was wearing a fancy outfit, there was a higher chance that other

pedestrians would imitate his actions (either breaking the law or complying). This idea,

however, is challenged by Dolphin et al. [152] whose findings indicate that social status and
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gender have no effect on imitation. The authors claim that group size is a better predictor of

imitation, which means the larger the size of the group, the lower the chance of pedestrians

imitating others.

Demographics . Arguably, gender is one of the factors that influences pedestrian be-

havior the most [137, 153, 154]. Studies show that women in general are more cautious than

men [137, 153, 151] and demonstrate a higher degree of law compliance [128, 155].

Furthermore, gender differences affect the motives of pedestrians when complying with

the law. Yagil [151] argues that crossing behavior in men is mainly predicted by normative

motives (the sense of obligation to the law) whereas in women it is better predicted by

instrumental motives (the perceived danger or risk). He adds that women are influenced

by social values, e.g. what people think about them, while men mainly care about physical

conditions, e.g. road structure.

Men and women differ in the way they pay attention to the environment before or during

the crossing. For instance, Tom and Granie [128] show that prior to and during a crossing

event, men more frequently look at vehicles whereas women look at traffic lights and other

pedestrians, i.e. they have different attention patterns. Women also change their gaze

pattern according to road structure, show a higher behavior variability [153], and cross with

a lower speed compared to men [156].

Age impacts pedestrian behavior in obvious ways. Generally, elderly pedestrians are less

physically capable compared to adults, and as a result, they walk slower [156], have a more

varied walking pattern (e.g. do not have steady velocity) [157] and are more cautious in terms

of gap acceptance [139, 158]. Being more cautious means that older pedestrians, compared

to adults and children, spend longer time paying attention to the traffic prior to crossing.

Furthermore, the elderly and children are found less able to correctly assess the speed of

vehicles, hence they are more vulnerable [132]. It is also interesting to note that there is a

higher variability observed in younger pedestrians’ behavior, making them less predictable

[153].

State . The speed of pedestrians is thought to influence their visual perception of dynamic

objects. Oudejans et al. [159] argue that while walking, pedestrians have better optical flow

information, and consequently, a better sense of speed and distance estimation. Thus walking

pedestrians are less conservative to crossing compared to standing ones.

Pedestrian speed may vary depending on the conditions such as road structure. For

instance, pedestrians tend to walk faster during crossing compared to when they walk on

sidewalks [160] and walk faster on wider sidewalks where the density of pedestrians can

be lower [154]. When vehicles have the right of way or pedestrians’ trajectory is towards

the vehicles, they tend to cross faster [160]. In addition, road structure impacts crossing
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speed. For example, Crompton [161] reports pedestrian mean speed at different crosswalks

as follows: 1.49 m/s at zebra crossings, 1.71 m/s as crossing with pedestrian refuge island

and 1.74 m/s at pelican crossings.

Other factors that have been shown to affect pedestrian speed include group size, generally

slower in larger groups, [136, 162, 163], age, pedestrians tend to get slower as they age,

[164, 163], time of day, generally walk faster in early morning rush, and road structure, if

there is more space for pedestrians, they tend to walk faster [163].

The effect of attention on traffic safety has been extensively studied in the context of

driving [165, 166, 167, 168]. As for pedestrians, the majority of them tend to pay attention

prior to crossing, the frequency of which may vary depending on the presence of traffic

signals or zebra crossing lines at the crosswalk. A study by Geruschat et al. [133] shows

that the type of objects pedestrians pay attention to may vary depending on their speed,

law compliance, age and road structure. For example, while moving, pedestrian subjects

primarily fixated on crossing elements, and when standing at the curb, on cars. In addition,

pedestrians who were crossing early against the light were looking at the cars whereas others

were focusing on the traffic light. Some findings suggest that when pedestrians make eye

contact with drivers, the drivers are more likely to slow down and yield [169].

Hymann et al. [170] investigate the effect of attention on pedestrian walking trajectory.

They show that pedestrians who are distracted by the use of electronics, such as mobile

phones, are 75% more likely to display inattentional blindness (not noticing the elements

in the scene). Distracted pedestrians often change their walking direction and, on average,

walk slower than undistracted pedestrians.

Trajectory or pedestrian walking direction is another factor that plays a role in the way

pedestrians make a crossing decision. Schmidt and Farber [130] argue that when pedestri-

ans are walking in the same direction as the vehicles, they tend to make riskier decisions

regarding whether to cross. According to the authors, walking direction can alter the ability

of pedestrians to estimate speed. In fact, pedestrians have a more accurate speed estimation

when the approaching cars are coming from the opposite direction.

Characteristics . Among different pedestrian characteristics, culture plays an impor-

tant role. It defines the way people think and behave and forms a common set of social norms

they obey [171]. Variations in traffic culture exist not only between different countries but

also within the same country, e.g. between towns and countrysides or cities [172].

A number of studies connect culture to the types of behavior that road users exhibit.

Lindgren et al. [171] compare the behaviors of Swedish and Chinese drivers and show that

they assign different levels of importance to various traffic problems such as speeding or

jaywalking. Schmidt and Farber [130] point out the differences in gap acceptance of Indians
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who on average cross between 2 to 8s whereas Germans cross between 2 to 7s time to collision.

Clay [132] indicates the way people from different cultures perceive and analyze a situation.

She notes that Americans judge traffic behavior based on characteristics of the pedestrians

whereas Indians rely more on contextual factors such as traffic conditions, road structure,

etc.

Some researchers go beyond culture and study the effect of faith or religious beliefs on

pedestrian behavior. Rosenbloom et al. [173] gather that ultra-orthodox (in a religious

sense) pedestrians in an ultra-orthodox setting are three times more likely to violate traffic

laws than secular pedestrians.

Generally speaking, pedestrian level of law compliance defines how likely they would

break the law (e.g. crossing at a red light). In addition to demographics, law compliance

can be influenced by physical factors, for instance, the location of a designated crosswalk

influences the decision of pedestrians whether to jaywalk [174].

Another factor that characterizes a pedestrian is his/her past experience. For example,

non-driver female pedestrians generally tend to be more cautious when making crossing

decisions [153].

Abilities . The ability to estimate speed and distance, can influence the way pedestrians

perceive the environment and consequently the way they react to it. In general, pedestrians

are better at judging vehicle distance than vehicle speed [175]. For instance, they can cor-

rectly estimate vehicle speed when the vehicle is moving below the speed of 45 km/h, whereas

vehicle distance can be correctly estimated when the vehicle is moving up to a speed of 65

km/h.

Environmental Factors

Physical context . The presence of traffic signals or zebra crossings, has a major effect on

the way traffic participants behave [154], or on their degree of law compliance [176]. Some

scholars distinguish between the way traffic signals and zebra crossings influence yielding

behavior. For example, traffic signals (e.g. traffic lights) prohibit vehicles to go further

and force them to yield to crossing pedestrians. At non-signalized zebra crossings, however,

drivers usually yield if there are pedestrians present at the curb who either clearly commu-

nicate their intention of crossing (often by eye contact) or start crossing (by stepping on the

road) [112].

Signals can alter pedestrians’ level of cautiousness. In [128], the authors show that

pedestrians look at vehicles 69.5% of the time at signalized and 86% of the time at unsignal-

ized intersections. In addition, the authors point out that pedestrians’ trajectory differs at

unsignalized crossings, i.e. they tend to cross diagonally when no signal is present.
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Some studies discuss the likelihood of pedestrians to use dedicated zebra crossing. In

general, women and children use dedicated zebra crossings more often [154, 155]. Traffic

volume and the presence of law enforcement personnel near crossing lines are also shown to

induce pedestrians to use designated crossing lines. The effect of law enforcement, however,

is much stronger on men than women [154].

In terms of crossing speed, pedestrians tend to walk faster at signalized crosswalks [177,

176]. The presence of signals also induces pedestrians to comply with the law, although this

effect seems to be opposite for one-way streets [178].

Road structure (e.g. crossing type and road geometry) and street width impact the level

of crossing risk (or affordance) [159]. For example, pedestrians pay more attention prior to

crossing in wide streets and accept a smaller gap in narrow streets [130]. Road structure is

also believed to alter the way drivers behave, which subsequently can influence pedestrians’

expectations [172].

With respect to law compliance, contradictory findings have been reported. While some

researchers claim that larger street width can increase the chance of compliance [179], others

report the opposite and show that it can increase crossing violation [178].

Weather or lighting conditions affect pedestrian behavior in many ways [144]. For in-

stance, in bad weather conditions pedestrians’ speed estimation is poor, therefore they be-

come conservative while crossing [175]. Pedestrians (especially the elderly and women) are

found to be more cautious in warm weather than cold [144]. Moreover, lower illumination

level (e.g. nighttime) reduces pedestrians’ major visual functions (e.g. resolution acuity,

contrast sensitivity, and depth perception), causing them to make riskier decisions. Another

direct effect of weather would be on road conditions, such as slippery roads due to rain, that

can impact movements of both drivers and pedestrians [180, 154].

Dynamic factors. One of the key dynamic factors is gap acceptance or how much gap in

traffic (typically in time) pedestrians consider safe to cross. Gap acceptance depends on two

dynamic factors, vehicle speed and vehicle distance from the pedestrian. The combination of

these two factors defines Time To Collision (or Contact) (TTC), or how far the approaching

vehicle is from the point of impact [181, 182]. The average pedestrian gap acceptance is

between 3 and 7 seconds, i.e. usually pedestrians do not cross when TTC is below 3s [136]

and very likely cross when it is higher than 7s [130]. As mentioned earlier, gap acceptance

may highly vary depending on social factors (e.g. demographics [140, 183], group size [136],

culture [130]), level of law compliance [156], and the street width. For instance, women and

the elderly generally accept longer gaps [184] and people in groups accept a shorter time gap

[183].

The effects of vehicle speed and vehicle distance are also studied in isolation. It is shown
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that increase in vehicle speed deteriorates pedestrians’ ability to estimate speed [132] and

distance [175]. In addition, pedestrians are found to rely more on distance when crossing,

i.e. within the same TTC, and they cross more often when the speed of the approaching

vehicle is higher [130].

Some scholars look at the relationship between pedestrian waiting time prior to crossing

and gap acceptance. Sun et al. [139] argue that the longer pedestrians wait, the more

frustrated they become and, as a result, their gap acceptance lowers. The impact of waiting

time on crossing behavior, however, is controversial. Wang et al. [140] dispute the role of

waiting time and claim that in isolation waiting time does not explain the changes in gap

acceptance. They add that to be considered effective, waiting time should be studied in

conjunction with other factors such as pedestrians’ personal characteristics.

Pedestrian waiting time can be influenced by a number of factors such as age, gender,

road structure, location (e.g. how close to one’s destination) and pedestrian walking speed.

Females generally have longer waiting time compared to men [136, 185]. Pedestrians who can

walk faster (which is affected also by age) tend to spend less time waiting prior to crossing

[185]. As for road structure, studies show that, when crossing a road with a refuge island,

pedestrians cross faster from one side to the island than the island to the other side.

Although traffic flow is a byproduct of vehicle speed and distance, on its own it can also

be a predictor of pedestrian crossing behavior [130]. By observing the overall pattern of

traffic, pedestrians might form an expectation about what approaching vehicles might do

next.

Communication In road traffic, any kinds of signals transmitted between road users con-

stitute communication. In this context, communication is particularly precarious because,

firstly, there exists no official set of signals and most of them are ambiguous, and secondly,

the type of communication may change depending on the atmosphere of the traffic situation,

e.g. city or country [127]. For example, in a case study by Varhelyi [186] it is shown that

drivers maintain their speed or accelerate to communicate their intention of not yielding to

pedestrians. This means pedestrian reaction (or intention of crossing) may vary depending

on the behavior of drivers. The stopping behavior of vehicles may also contain a communi-

cational cue. Studies show when drivers stop their cars far shorter than where they legally

must stop, they are signaling their intention of giving the right of way to others [187].

Drivers also often make eye contact and gaze at the face of other road users to assess their

intentions [188]. It is found that the presence of eye contact between road users increases

compliance with instructions and rules. For instance, drivers who make eye contact with

pedestrians will more likely yield right of way at crosswalks [189].

When speaking of communication, two additional factors should be considered, namely
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culture and social norms which determine the type and the meaning of communication

signals used by road users [77]. For example, Gupta et al. [190] show how in Germany

police officers raise one hand to convey attention command, whereas in India this would be

communicated by raising both hands.

Traffic characteristics . Traffic volume or density affects pedestrian [150] and driver

behavior [130] significantly. Essentially, the higher the density of traffic, the lower the chance

of pedestrians to cross [156]. This is particularly true when it comes to law compliance, i.e.

pedestrians are less likely to cross against the signal (e.g. red light) if the traffic volume

is high. The effect of traffic volume, however, is stronger on male pedestrians than women

[151].

The effects of vehicle characteristics such as vehicle size and vehicle color on pedestrian

behavior have been investigated. Although vehicle color has not shown to have a measurable

effect, vehicle size can influence crossing behavior in two ways. First, pedestrians tend to

be more cautious when facing a larger vehicle [182]. Second, the size of the vehicle impacts

pedestrian speed and distance estimation abilities. In an experiment involving 48 men and

women, Caird and Hancock [191] reveal that as the size of the vehicle increases, there is a

higher chance that people will underestimate its arrival time.

When making a crossing decision, the vehicle type matters and can influence different

genders differently. For example, compared to women, men are generally better in judging

the type of vehicles and are more accurate at estimating the arrival time of vans and mo-

torcycles [191]. In addition, pedestrians exhibit different waiting time when facing different

types of vehicles, e.g. they tend to cross faster in front of passenger vehicles [185].

A summary of the factors from the classical literature is illustrated in Figure 3.5. Here

we can see that more studies have been conducted on factors such as gender, group size,

age and gap acceptance, compared to culture, vehicle size, right of way, and faith. Due to

the emergence of intelligent transportation systems and the availability of technology for

collecting data, studies on factors such as communication, attention, pedestrian trajectory

and culture have gained popularity in the past few years. However, a number of factors such

as lighting, road conditions, vehicle type, past experience, social status, and pedestrian flow

are left unaddressed in recent works.

It should be noted that understanding the factors that influence pedestrian behavior has

two important applications: First, factors such as lighting conditions, road structure, signals,

etc. can potentially lead to the design of better roads and intersections, resulting in safer

crossing conditions for both drivers and pedestrians. Second, understanding these factors can

shape drivers’ expectations and their abilities to predict pedestrian behavior under various

conditions. Consequently, the same understanding of pedestrian behavior can directly be
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Figure 3.5: A circular dendrogram of the factors influencing pedestrian behavior and the
classical studies that identified them. Leaf nodes represent the individual studies (identified
by the first author and year of publication) and internal nodes represent minor and major
factors.

used in the design of autonomous driving systems.

3.3.2 Studies in the Context of Autonomous Driving

Similar to classical studies, we divide behavioral studies involving autonomous vehicles into

two groups of pedestrian and environmental factors. A summary of these factors and their
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Figure 3.6: Factors involved in pedestrian decision-making process when facing autonomous
vehicles. The diagram is based on the meta-analysis of the past literature. The large circles
refer to the major factors and small circles connected with solid lines are sub-factors. The
dashed lines show the interconnection between different factors and arrows show the direction
of influence. The grey faded diagram at the background shows the factors from classical
studies.

connections can be found in Figure 3.6.

Studies concerning the social aspects of autonomous driving generally focus on two major

factors, namely communication and attention. The focus of many of these studies is on de-

signing effective interfaces to transmit the intentions of AVs to other road users. Matthews

et al. [192] measure the importance of using an intent display in communication with pedes-

trians. The authors used a remotely controlled golf cart with and without an intent display

mechanism. They observed that when the vehicle equipped with a display was encoun-

tering pedestrians, there was 38% improvement in resolving deadlocks. The authors show
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that further improvements can be achieved based on the pedestrians’ past experience. The

group of participants who were familiarized with the communication technology prior to the

experiment exhibited more trust in the vehicle.

Although intent displays have been shown to improve the overall experience of pedes-

trians during interaction [192, 193], they don’t always seem to be very effective. In her

studies, Yang [194] used a display to show “Safe to Cross” message to pedestrians. When

interviewed by the experimenter, the participants responded that the display did not have

a significant effect on their crossing decisions. In another study, Clamann et al. [195] found

that pedestrians still focus on legacy factors such as vehicle speed and distance when making

crossing decisions. The use of the display only influenced 12% of the participants’ decisions

and overall increased the time of decision-making. In this context, however, the authors

show that informative displays (e.g. with information about vehicle’s speed) compared to

advisory displays (e.g. cross or not to cross signal) are more effective. The authors add that

the traditional social and environmental factors such as age, gender road structure, waiting

time and traffic volume are still very important in the context of autonomous driving. In a

study by Pillai [196], the author similarly concludes that pedestrians mainly rely on implicit

behavior of the vehicle to make crossing decisions, however, under certain circumstances, e.g.

under weather conditions with poor visibility, additional intent display mechanisms such as

audio signals can be very effective. The author adds that culture plays an important role in

the design of communication interfaces.

Other forms of intent display methods have also been examined. Chang et al. [197]

propose the use of moving eyes installed at the front of the vehicles. Using experimental

data collected from 15 participants, the authors show that more than 66% of participants

made street crossing decisions faster in the presence of eyes, and if the eyes were looking at

the participants, this number rose to more than 86%. The empirical evaluation of this study,

however, is limited to virtual reality environments without any direct risk of accident.

Mahadevan et al. [198] investigate various modalities of communication such as audio,

visual, motion, etc. The authors note that in the absence of an explicit intent display

mechanism, pedestrians rely on vehicle speed and distance to make crossing decisions. As for

different means of communication, pedestrians generally prefer LED sequence signals to LCD

displays and other modalities of communication such as auditory and physical cues. The

authors show that the use of human-like features for communication such as animated faces

on displays was not well-received by the participants. Overall, the authors recommend that

a combination of modalities including visual, physical and auditory should be considered.

They point out that there is no limit on where the informative cues are located and can be

either on the vehicle or in the environment. It should be noted that although this study is
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Figure 3.7: The vehicles used in [131], an aggressive looking BMW (left) and a friendly
looking Renault (right).

very thorough in terms of evaluating different design approaches, its scope is very limited.

Only 10 subjects participated in the final phase of the study (Wizard of Oz phase) and the

participants were all North American. Furthermore, the authors admit that culture can play

a very important role in the modality and type of communication preference.

Implicit forms of communication such as the vehicle’s motion pattern (speed and distance)

have also been investigated. Zimmerman et al. [193] show that abrupt acceleration behavior

and short stopping distance by autonomous vehicles can be perceived as erratic behavior by

pedestrians and negatively influence their crossing decisions. The authors suggest that to

be effective, a well-balanced acceleration and deceleration with sufficient distance to other

road users should be used by autonomous vehicles. In another study, Beggiato et al. [199]

examine the effect of the vehicle’s braking action whereby the vehicle can communicate its

intention. The authors argue that the interpretation of the signal may vary with respect

to other factors such as time of day, vehicle speed, and age. For instance, older pedestrians

generally make more conservative crossing decisions when the vehicle speed is lower.

Moving away from communication, the authors of [125] and [200] argue that the perceived

risk of autonomous vehicles may vary depending on pedestrians’ age, gender, past experience,

level of law compliance, location, and social norms. For example, younger male pedestrians,

people with higher acceptance for innovation and people living in urban environments are

more receptive of autonomous driving technology. People with traffic violation history also

tend to be more comfortable when crossing in front of autonomous vehicles.

Dey et al. [131] evaluate the impact of vehicle type on the perceived risk of autonomous

vehicles. The authors use two different types of vehicles, a BMW with an aggressive look

and a Renault with a friendlier look (see Figure 3.7). They report that the vehicle speed and

distance compared to vehicle size and appearance play a more dominant role in making a

crossing decision. Apart from dynamic factors, roughly 30% of the participants claimed that

they merely relied on the behavior of the car when making a crossing decision, whereas the
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rest mentioned that vehicle size was important to them rationalizing that the smaller the

vehicle, the higher their chance of moving out of its way. The majority of the participants

agreed that the friendliness of the vehicle design did not factor in their decision-making

process.

Evaluating the impact of autonomous vehicle behavior on pedestrian crossing, Jayara-

man et al. [201], argue that the presence of traffic signals at crosswalks has little impact

on pedestrian crossing decisions and that decisions are highly determined by autonomous

vehicle’s driving behavior. The implication of these findings, however, is limited because the

evaluation was performed only in a virtual reality environment.

Figure 3.8 summarizes all of our findings on pedestrian behavior studies involving au-

tonomous vehicles. At first glance, we can see that, compared to classical studies, pedestrian

behavior in the context of autonomous driving is fairly understudied. The majority of re-

search currently focuses on the role of communication, intent display, perceived risk and

attention, while factors such as signal, location, road structure, gap acceptance, and social

norms are rarely addressed. More importantly, some of the factors widely studied in classical

works, namely group size, pedestrian speed, and street width, have not been evaluated in the

context of autonomous driving. As was mentioned earlier, these factors significantly impact

the way pedestrians make crossing decision. This means the lack of considerations for such

factors in the design of autonomous systems can lead to misjudgment of pedestrian behavior,

and consequently result in accidents or overly cautious behavior that may interrupt the flow

of traffic.

3.4 What Should be Done Next

As we saw in Section 3.3.1 pedestrian behavior in the context of traffic interactions is a very

well studied field. In recent years, studies of similar nature in the context of autonomous

vehicles have gained momentum, however, the number of these studies is still relatively

small, compared to classical studies (see Figure 3.8). Perhaps, one contributing factor is

the lack of means, such as pedestrian questionnaires or validated simulators [202], that

can aid the study of pedestrian behavior in the context of autonomous driving systems.

Although classical studies have a number of implications for autonomous driving systems, it

is reasonable to expect that pedestrians might behave differently when facing autonomous

vehicles. This means that more studies of similar nature to classical studies have to be

conducted involving autonomous vehicles. To achieve this, the following elements should be

considered in the study of pedestrian behavior and the development of pedestrian intention

estimation algorithms.
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Figure 3.8: A circular dendrogram of the factors influencing pedestrian behavior and the
autonomous driving studies that identified them. Leaf nodes represent the individual studies
(identified by the first author and year of publication) and internal nodes represent minor
and major factors.

Holistic vs focused studies. Pedestrian behavior studies often are conducted on a

small subset of factors in traffic. As our meta-analysis of the literature shows that there are

strong interrelationships between factors that influence pedestrian behavior (see Figure 3.4).

This means that studying only a small subset of these factors may not capture the true
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underlying reasons behind pedestrian crossing decisions. Therefore to avoid fallacies when

reasoning about pedestrian behavior, studies have to be multi-modal and account for chain

effects that factors might have on each other.

Social norms should be the focal point. We found a general consensus in the

literature regarding the impacts of some of the factors that influence pedestrian behavior,

e.g. how group size influences gap acceptance or how individuals behave based on their

demographics. However, we noticed that the results presented by some of the studies are

contradictory especially the ones on topics such as communication, the influence of imitation,

the role of attention, waiting time influence on gap acceptance, etc. Although some of these

contradictions can be explained by the differences in the methods of studies, we believe

that the main reason is the variations in social norms and culture. These studies often are

conducted in different geographical locations where culture and social norms can be quite

different. This means that these studies should be reproduced in different regions to account

for cultural differences.

Large scale studies are needed. Unfortunately, the scope of the majority of behavioral

studies involving autonomous vehicles is relatively limited, both in terms of sample size (often

less than 100) and demographics of participants (e.g. university students). As a result, some

of these studies have reported very contradictory findings, for instance, regarding the need

for communication or pedestrians’ need to engage in eye contact. To be useful for the design

of interactive autonomous vehicles, these works have to be conducted on a much larger

scale and demographically diverse population, and of course, they should follow the same

considerations as classical behavior studies.

Time changes everything. Changes in socioeconomic and technological factors also

influence traffic behavior. For example, compared to the 1950s or 1960s when early behavioral

studies had been conducted, today’s vehicles are much safer, roads are built and maintained

better, the number of vehicles and pedestrians have increased significantly, and traffic laws

have been changed, all of which affect traffic dynamics. To account for current pedestrian

behavior, some of these studies have to be repeated. The same is also true for studies

involving autonomous vehicles. Today, the deployment of autonomous vehicles is very limited

and the majority of pedestrians have not been exposed to them. As time goes by and more

autonomous vehicles become available on roads, pedestrians’ attitude towards them certainly

would change.
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Chapter 4

Pedestrian Communication in Traffic

4.1 Why is Communication Important in Traffic Con-

text?

4.1.1 Communication in Traditional Traffic

In the previous section, we showed that communication is one of the contextual factors that

influence pedestrian behavior. Communication is considered as one of the main factors in

resolving traffic ambiguities [122, 132, 112]. In fact, the lack of communication or miscom-

munication is found to greatly contribute to traffic conflicts. It is shown that more than

a quarter of traffic conflicts is due to the absence of effective communication between road

users. In a study of traffic conflicts, it was found that out of conflicts caused by miscom-

munication, 47% of the cases occurred with no communication, 11% was due to the lack

of necessary communication and 42% happened during communication [127]. In particular,

pedestrians heavily rely on communication when making crossing decisions and report feel-

ing uncomfortable when the communication is non-existent and certain vehicle behaviors are

not observed [203].

4.1.2 Communicating with AVs

The autonomous driving community is divided about the necessity of communication with

pedestrians. Millard [204] argues that the interaction between pedestrians and autonomous

vehicles resembles, what he refers to as the game of “crosswalk chicken”. In a normal situation

involving a human driver, if a pedestrian chooses to cross, they accept a large risk because

the norms permit not yielding to pedestrians, the driver might be distracted or assume the

pedestrian would not intend to cross. According to Millard, in the case of autonomous
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Figure 4.1: Driver’s conditions used in the experiments conducted in [141].

driving the perceived risk of crossing is almost nonexistent because the pedestrian knows

that the autonomous vehicle will stop, and as a result, there is no need for any form of

communication to reach an agreement with the vehicle. Using field studies, Rothenbucher et

al. [205] support the same argument and show that without communication and attention

(the need for establishing eye contact), when facing an autonomous vehicle, pedestrians

eventually adjust their behavior and cross the street. The result of this study, however,

is questionable because the trials took place on a university campus where the speed limit

was very low and the vehicle posed minimal threat to pedestrians. The subjects who were

observed or participated in the interviews may also have heard about the experiment, or in

general, had higher acceptance compared to the general population for autonomous driving

technologies.

Overall, arguments in the favor of communication necessity in autonomous driving are

stronger. A number of studies relate to existing literature and past experience to support

the role of communication [206, 207, 208, 209, 210]. Muller [206] argues that identifying

autonomous vehicles in traffic is not always intuitive. Road users might recognize an au-

tonomous vehicle as a traditional vehicle and expect certain behaviors from it. As for the

need for communication, the author describes a busy pedestrian crossing where a driver

might communicate his intention by moving forward slowly into the crowd. The author then

raises a concern regarding how an autonomous vehicle would behave in such a situation.

The communication necessity can also be seen from a different perspective. Prakken

[208] argues that understanding communication cues in obeying traffic laws is important,

but the current technology does not distinguish between the type of pedestrians which can

be problematic when a law enforcement officer is present in the scene for directing the traffic.

According to Prakken, autonomous vehicles should be able to interpret and distinguish

communication messages produced by law enforcement personnel and regular pedestrians.

A number of empirical studies support the role of communication in autonomous driving.
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A survey conducted by the League of American Bicyclists [211] shows that besides issues

related to technological advancements, the inability to communicate and establishing eye

contact are among major reasons that increase pedestrians and bicyclists perceived risk when

interacting with autonomous vehicles.

Lagstrom and Lundgren [141], and, in a later study, Yang [194] evaluate the role of driver

behavior when the vehicle is running autonomously. The authors used several scenarios of

driver behavior when crossing an intersection including the driver making eye contact, staring

straight at the front road, talking on the phone, reading a newspaper and sleeping (see

Figure 4.1). In these experiments, the vehicles were operated by drivers (who were hidden

from the view of pedestrians) using a right-hand steering wheel. Observing pedestrians’

reactions, Lagstrom and Lundgren show that when the vehicle was stopping and the driver

paid attention (made eye contact) to pedestrians, all pedestrians crossed the street. However,

when the driver was busy on the phone, 20% of pedestrians did not cross and when the driver

was reading a newspaper or not present in the vehicle, 60% of the pedestrians did not cross.

In both studies surveys were conducted to measure the pedestrians’ level of perceived risk in

each situation. The results show that when a form of attention (eye contact) was present,

the pedestrians felt most comfortable. Yang [194] also adds that vehicle appearance impacts

the level of pedestrians’ comfort. Her findings indicate that when the pedestrians could not

see the driver (due to dark windows), they felt most uncomfortable.

4.2 Nonverbal Communication: How the Human Body

Speaks to Us

Communication in traffic scenes is mainly nonverbal through the use of hand gestures, chang-

ing gaze direction or any postural movements. In general, nonverbal communication refers

to communication styles that do not include the literal verbal content of communication

[212], i.e. it is affected by means other than words [213]. Buck and Vanlear [214] argue that

nonverbal communication comes in three types (see Figure 4.2):

1. Spontaneous: This form is based on a biologically shared signal system and nonvol-

untary movements. Spontaneous communication may include facial expressions, micro

gestural movements, and postures.

2. Symbolic communication: This type of communication is deliberate and has an ar-

bitrary relationship with its referent and knowledge of what should be shared by the

sender and receiver. For instance, symbolic communication may include a system of

sign language, body movements or facial expressions associated with language.
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Figure 4.2: A simplified view of nonverbal communication forms. Symbolic communication is
about transmitting an intended message to the receiver, for example, instructing the receiver
to do a task. The other two forms of communication reflect (or posed to reflect) the internal
state of the sender in order to change the emotional state of the receiver, e.g. acting. Source:
[214]

3. Pseudo-spontaneous: This form involves the intentional and propositional manipula-

tion by the sender of the expressions that are virtually identical to spontaneous displays

from the point of view of the receiver. This may include acting or performing.

In the traffic context all three types of nonverbal communication are observable. It is

intuitive to imagine the occurrence of the first two types of communication. For example,

pedestrians may perform various spontaneous movements including yawning, scratching their

head, stretching their muscles, etc. As for symbolic communication, humans use various

forms of nonverbal signals to transmit their intentions such as waving hands, nodding, or

any other forms of bodily movements. Symbolic communication in traffic interactions will

be discussed in more detail in Section 4.3.

4.2.1 Studies of Nonverbal Communication

The modern study of nonverbal communication is dated back to the late 19th century.

Darwin, in his book Expression of the Emotions in Man and Animals [215], was the first

to focus on the possible modifying effects of body and facial expressions in communication.

Darwin argues that nonverbal expressions and bodily movements have specific evolutionary

functions, for instance, wrinkling the nose reduces the inhalation of bad odor.

In more recent studies, behavioral ethologists point that in humans, throughout their

evolutionary history, these nonverbal bodily movements had gained communicative values

[216]. In fact, it is estimated that 55% of communication between humans is through fa-

cial expressions [217]. According to Birdwhistell [218], humans are capable of making and
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recognizing about 250, 000 different facial expressions.

Scientists in behavioral psychology measured the importance of bodily movements in

various interaction scenarios. For example, Dimatteo et al. [219] show that the ability to

understand and express emotions through nonverbal communication significantly improves

the level of patient satisfaction in a physician visit.

Comprehension or expression of nonverbal communication is linked to various factors. For

instance, in a work by Nowicki and Duke [220], it is shown that the accuracy of emotional

comprehension increases with age and academic achievement. Gender also plays a role in

nonverbal communication. In general, women are found to engage in eye contact more often

than men [221] and are also better at sending and receiving nonverbal signals [212]. Another

important factor is culture which determines how people engage in nonverbal communication.

For example, in Western culture, eye contact is much less of a taboo compared to Middle

Eastern culture [221].

4.2.2 Methods of Studying Nonverbal Communication

Behavioral responses of subjects are measured by showing them a sequence of videos of

human faces. Then the subjects are either asked about how comfortable they feel making

eye contact with the human in the picture [221] or their emotions are directly observed

[220]. In another method known as Profile of Nonverbal Sensitivity (PONS), in addition to

the assessment of emotions, participants are asked to express certain emotions. The recorded

expressions are then shown to independent observers who are asked to identify the emotions

they represent, for example, whether they imply sadness, anger or happiness. The final score

is the combination of both assessment and expression of emotions by the participants [219].

In some studies, fMRI is used to measure brain activities of participants during nonverbal

communication [222].

In the context of autonomous driving, however, communication is mainly studied through

naturalistic observations [112, 205]. The observation is sometimes combined with other

methods to minimize subjectivity. For instance, pedestrians are instructed to perform a

certain behavior, e.g. engage in eye contact, and then the behavior of the drivers (who are

unaware of the scenario) are observed naturalistically [189]. The observees sometimes are

interviewed to find out how they felt regarding the communication that took place between

them and the other road users [127].
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4.2.3 Eye Contact: Establishing Connection

Eye contact, perhaps, is the most important part and the foundation of communication and

social interaction. In fact, scientists argue that eye contact creates a phenomenon in the

observer called “eye contact effect” which modulates the concurrent and/or immediately fol-

lowing cognitive processing and/or behavioral response [222]. Putting it differently, direct

eye contact increases physiological arousal in humans, triggering the sense of trying to un-

derstand the other party’s intention by asking questions such as “why are they looking at

me?” [119].

Depending on the context, in the course of social interaction, eye contact may serve

different functions, which according to Argyle and Dean [221] can be one of the following:

1. Information-seeking: It is possible to obtain a great deal of feedback by careful inspec-

tion of other’s face, especially in eye region. Various mental states such as noticing

one, desire, trust, caring, etc. can be interpreted from the eyes [119].

2. Signaling that the channel is open: Through eye contact a person knows that the

someone is attending to him, therefore further interaction is possible.

3. Concealment and exhibitionism: Some people like to be seen, and eye contact is ev-

idence of them being seen. In contrast, some people don’t like to be seen, and eye

contact makes them feel depersonalized.

4. Establishment and recognition of social relationship: Eye contact may establish a

social relationship. For example, if person A wants to dominate person B, he stares at

B with the appropriate expression. Person B may accept person A’s dominance by a

submissive expression or deny it by looking away.

5. The affiliative conflict theory: People may engage in eye contact for both approaching

or avoiding contact with others.

Since the communication between road users is a form of social interaction, eye contact

in traffic scenes might serve any of the functions mentioned above. However, in the context

of traffic interaction, the first two functions are particularly important. In most cases, prior

to crossing, pedestrians assess their surroundings to check the state of approaching vehicles,

traffic signals or road conditions. Likewise, drivers continuously observe the road for any

potential hazards. It is also common that pedestrians engage in eye contact with drivers to

transmit, for example, their intention of crossing.
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Figure 4.3: The function of hand gesture depending on its lexical meaning.

4.2.4 Understanding Motives Through Bodily Movements

Besides eye contact, humans often rely on other forms of bodily movements for further

message passing. For instance, hand gestures are commonly used during both nonverbal and

verbal communication. Although all hand gestures are hand movements, all hand movements

are not necessarily hand gestures. This depends on the movement and how the movement

is done. Krauss et al. [216] group hand gestures into three categories (see Figure 4.3):

1. Adapters: These are also known as body-focused movements or self-manipulation.

These are the types of gestures that do not convey any particular meaning and have

pure manipulative purposes, e.g. scratching, rubbing or tapping.

2. Symbolic gestures: Purposeful motions to transfer a conversational meaning. Such

motions are often presented in the absence of speech. Symbolic gestures are highly

influenced by cultural background.

3. Conversational gestures: These are hand movements that often accompany speech.

In addition to hand gestures, body posture and positioning may also convey a great deal

of information regarding one’s intention. Scheflen [223] lists three functionalities of postural

configuration in different aspects of communication:

1. Distinguishes the contribution of individual behavior in group activities.

2. Indicates how the contributions are related to one another.

3. Defines steps and order in interaction.

4.3 Pedestrian Nonverbal Communication: An Empi-

rical Study

Although some past works studied pedestrian communication in traffic scenes, a systematic

investigation of methods and meaning of communication and factors impacting them are
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Figure 4.4: Examples of communication forms demonstrated by pedestrians in traffic scenes.

missing. In this section, we discuss our empirical study of pedestrian communication in

traffic scenes and present some of the findings.

4.3.1 Joint Attention in Autonomous Driving (JAAD) Dataset

We collected a dataset of 346 high-resolution video clips (5-15s) showing various situations

typical for urban driving. These clips were extracted from approx. 240 hours of driving videos

collected in several locations including North America (Toronto, New York) and Europe

(Kremenchuk, Lviv, Hamburg). Two vehicles equipped with wide-angle video cameras were

used for data collection. Cameras were mounted inside the cars in the center of the windshield

below the rear view mirror. Some examples of pedestrians communicating from our dataset

are shown in Figure 4.4.

The video clips represent a wide variety of scenarios involving pedestrians and other

drivers. Most of the data is collected in urban areas (downtown and suburban), and only

a few clips are filmed in rural locations. The samples cover a variety of situations such as

pedestrians crossing individually, or as a group, pedestrians occluded by objects, walking

along the road and many more. The dataset contains fewer clips of interactions with other

drivers, and most of them occur in uncontrolled intersections, in parking lots or when another

driver is moving across several lanes to make a turn.

The videos are recorded during different times of the day and under various weather
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and lighting conditions. Some of them are particularly challenging, for example, those that

include sun glare. The weather can also impact the behavior of road users, for example,

during heavy snow or rain people wearing hooded jackets or carrying umbrellas may have

limited visibility of the road. Since their faces are obstructed it is also harder to tell if they

are paying attention to the traffic from the driver’s perspective.

We attempted to capture all of these conditions for further analysis by providing two

kinds of annotations for the data: bounding boxes and textual annotations. Bounding boxes

are provided for some of the cars and all pedestrians. All bounding box annotations are done

using Piotr’s annotation toolbox [224].

We save the following data for each video clip: weather, time of the day, age and gender

of the pedestrians, location and whether it is a designated crosswalk. For each pedestrian,

we provide the following labels pedestrians: walking, standing, looking, moving, etc. Labels

for moving and changes in moving speed are mutually exclusive, but they can overlap with

all other labels such as crossing, attention, and gestures. The behavioral annotations are

created using BORIS software [225].

We call the dataset described above Joint Attention in Autonomous Driving (JAAD)1 2.

Overall, JAAD has approximately 700 pedestrian samples with behavioral annotations. We

selected 565 pedestrian samples from the JAAD dataset using two criteria: the full event

of crossing or near crossing is observable and in the cases where no crossing takes place, we

have high confidence that the pedestrian intends to cross. For the purpose of this study,

we collected additional 211 pedestrian samples from video footage recorded under similar

conditions as JAAD. This brings our total number of pedestrian samples up to 776.

The data contains 521 crossing events and 255 non-crossing events. There are 332 samples

of male pedestrians, 433 female pedestrians, and 11 children. 656 samples of females and

males are adults (approximately between the age of 15 − 65) and 109 are seniors (over the

age of 65).

4.3.2 Method

We focus our analysis on pedestrian communication patterns during the crossing and non-

crossing events (situations in which the pedestrian intends to cross but does not do so in

front of the recording vehicle). We base our study on the following factors: pedestrians’

demographics (gender and age), crosswalk type, pedestrian group size (the number of pedes-

trians intending to cross at the same time on both sides of crosswalk), street width, and

1The dataset and more details regarding the annotations can be found at
http://data.nvision2.eecs.yorku.ca/JAAD dataset/.

2Collection of this dataset was approved by the York Ethics Committee with certificate # 2016-203.
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driver’s action. The crosswalk type is divided into non-designated (ND), pedestrian crossing

(PC), where only zebra crossing is available and signalized (S), where either a traffic signal

or a stop sign is present.

4.3.3 Pedestrian Forms of Communication and Meaning

Figure 4.5: Frequency and types of communication, methods used to communicate and their
meaning with respect to crossing and non-crossing events. Left, the frequency of communi-
cation in crossing and non-crossing events. The outer circle indicates how often a looking
action was observed. For instance, in crossing events pedestrians communicated 34% of the
time out of which 9% of the cases followed a looking action. Right, types (inner circle),
methods (middle circle) and meaning (outer circle) of communication. For example, 6% of
communication instances were explicit, out of which 60% involved hand gestures with the
intention of yielding (20%), showing gratitude (73%) or dissatisfaction (7%).

Communication always follows a form of joint attention between the driver and pedes-

trian. In the context of driving, joint attention takes place when a pedestrian makes an

eye-contact with the driver, and often on its own can be a strong indicator of pedestrian

intention of crossing.

Other forms of communication between the driver and pedestrian can be either implicit

or explicit. In our data, we observed three forms of implicit communication used by pedes-

trians, namely stepping onto the road (step), indicating that pedestrian is intending to cross,

clearing the vehicle’s path (clear) and slowing down (slow) showing that the pedestrian is

acknowledging the driver’s action.

In comparison to implicit forms of communication, explicit communication, namely hand

gesture (hand), and nodding (nod), is rarer and is used to signal gratitude/dissatisfaction

regarding the driver’s action or to ask for the right of way or yield to the driver. Figure 4.5

summarizes the types of communication observed in our data and their meaning.
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4.3.4 How Often Pedestrians Communicate with Traffic

Overall, out of 776 samples, pedestrians communicated in 341 cases or about 44% of the time.

In some events, we have observed multiple instances of communication, e.g. the pedestrian

stepped onto the road, and once given the right of way, showed hand gesture as a sign of

gratitude. Taking into account all instances of communication, we have 387 observations.

Communication frequency changes significantly depending on whether the pedestrian

eventually crosses or not. In the event of crossing, in only 35% of the cases pedestrians

engaged in some form of communication compared to 62% in non-crossing events.

It should be noted that in our analysis, two forms of communication, namely slowing

down and clearing the vehicle’s path, highly depend on the situation in which they have

been observed. For instance, pedestrians slow down when they are approaching the crosswalk

around the same time as the vehicle is passing, or they clear path if they are standing in the

way of the vehicle. In these situations, the actions are in response to the driver’s action.

After excluding pedestrian reaction cues, we observe communication in only 20% of the

cases. Looking at the crossing and non-crossing events separately, communication had ap-

peared in about 16% and 29% of the cases respectively.

We also found that communication in traffic scenes is predominantly implicit. Out of 387

instances of communication, we only observed 25 cases (6.5%) of explicit communication,

out of which in only 3 cases the communication was instructive, i.e pedestrians were using

hand gestures to yield to the driver.

4.4 Communication and Environmental Factors

4.4.1 When and Where do Pedestrians Look
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Figure 4.6: The effect of a) crosswalk type and b) pedestrian group size on looking frequency.
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Figure 4.7: Examples of how only few pedestrians in larger groups look and the rest of the
group follow.

Looking behavior is particularly important because it is an indicator of opening a com-

munication channel between the pedestrian and the driver. Often looking suffices to convince

the driver to give right of way. If it does not suffice, looking can be followed by a pedestrian’s

actions to request right of crossing by stepping onto the road or using hand gestures.

We have observed that at the point of crossing, pedestrians may look at traffic signals,

other pedestrians, vehicles or drivers. The data collected from the driver’s perspective showed

us that pedestrians, even in the presence of traffic signals, often make eye-contact with drivers

especially in cases where they are explicitly communicating with the driver or waiting for

the driver’s confirmation for giving right of way.

In terms of the frequency of looking behavior, we did not find any strong correlation

between the pedestrian’s gender, age and street width, and how likely pedestrians look.

Two factors, however, appear to have a strong influence on the likelihood of pedestrians

looking towards vehicles. As shown in Figure 4.6a, crosswalk type alters looking frequency.

As one might expect, at ND crossings, pedestrians require a confirmation from the driver

prior to crossing, therefore they look more often. At designated crosswalks, on the other

hand, they might assume the driver’s compliance with the law, and as a result, they do

not look as often. It is particularly important to note that when a traffic signal is present,

pedestrians are less likely to look towards the vehicles because the signal has a higher priority

in determining the right of way.

Larger pedestrian group size is generally found to make pedestrians more confident to

cross (see Figure 4.6b). This is confirmed by our data as the likelihood of looking reduces with

the larger groups of pedestrians. We also observe that in larger groups, typically pedestrians

standing at the front of the group and closer to the approaching vehicles make eye-contact

with the drivers or look at the vehicles, whereas the rest do not look and wait for the people

at the front of the group to make a crossing decision (see Figure 4.7).

Although looking signals the intention of a pedestrian to cross the road, it can be an

indicator of their awareness about their surroundings. This may impact how likely they will
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attempt to cross the street. We expand more on this in Chapter 5.

4.4.2 Factors that Influence Communication

First, we evaluated the effect of demographics on communication. Although we observed

different frequencies of communication for male (23%) and female (18%) pedestrians, we

found gender not to be statistically significant. Pedestrian’s age, however, was shown to

influence the frequency of communication. We observed that adults, seniors, and children

communicated in 22%, 11% and 0% of the cases respectively. It should be noted that our

data was heavily skewed towards adult samples, therefore these results are not necessarily

conclusive.

Similar to looking patterns, communication also varies depending on environmental fac-

tors. By analyzing different factors we found the strongest dependency between signal and

communication. Our findings suggest that the frequency of communication according to

street delineation is 36% in ND, 18% in PC and only 4% in S. In our data, we did not

observe any form of explicit communication at signalized intersections. The major difference

between signalized and other types of crosswalks is that the drivers are expected to comply

with the signal, therefore pedestrians do not need to communicate.

Pedestrian group size is the second most significant factor and has an inverse relationship

with the likelihood of communication, the larger the group size the lower the chance of

pedestrians communicating. For group sizes of 1, 2, 3 and 4 or greater we saw 29%, 20%,

17% and 10% chances of communication respectively.

Street width has a direct relationship with the chance of communication, although with

a lower significance. For streets with 1, 2, 3, and 4 lanes or wider we recorded 11%, 18%,

23% and 26% communication frequency.

It is generally difficult to connect pedestrian communication patterns to driver’s action.

This is particularly the case when pedestrians are performing implicit communication as it

commonly indicates their intention of crossing regardless of what the driver might do.

However, pedestrians communicating explicitly do so to express gratitude towards the

driver who complied by either slowing down or stopping for an extended amount of time.

Hand gestures had a different meaning (yielding) if the driver gave right of way and the

pedestrian slowed down or stopped. In a single case where the driver maintained its speed

and did not yield, the hand gesture expressed dissatisfaction.
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4.5 Summary

In this chapter, we studied the factor of communication in the context of pedestrians and

drivers/vehicles interactions. We argued that communication is necessary not only for

pedestrian-driver interactions but also for the interactions involving autonomous vehicles.

We determined that communication in traffic is predominantly nonverbal. Our review

of the past studies suggests that there are three forms of nonverbal communication: eye

contact, which is used to establish a connection, gestures and postural configuration which

are used to transfer a meaning regarding one’s intentions.

Moreover, we introduced a newly collected large-scale naturalistic driving dataset of

pedestrians at the time of crossing. To enhance the diversity of the dataset, the data was

collected under different weather and lighting conditions, different types of roads, and various

geographical locations across North America and Europe.

Using the proposed dataset, we conducted an empirical study on pedestrian communica-

tion in traffic. Our study confirms some of the findings of the past literature on pedestrian

communication presented earlier in Chapter 3. In the majority of the cases pedestrians look

towards the traffic prior to crossing. The looking action includes establishing eye-contact

in cases when pedestrians intend to resolve traffic ambiguities. In addition, we showed that

pedestrians’ looking frequency varies significantly depending on whether they end up crossing

the street.

Our findings also agree with previous works showing that communication is quite frequent

and important in traffic interactions. We found that, similar to the way drivers communi-

cate, pedestrians mainly communicate implicitly by changing their movement patterns, for

example, stopping, clearing the way or changing their walking speed. Explicit forms of com-

munication, albeit rare, can be quite important for resolving traffic ambiguities by expressing

the intention of pedestrians, e.g. yielding or asking for the right of way.

For the first time, we looked at some of the contextual factors that might impact the way

pedestrians communicate with traffic. We argued that factors such as the size of the group

that pedestrians are part of or the width of the road they are intending to cross can have

a direct impact on how likely pedestrians would look towards the traffic or communicate.

Some of the other important factors include pedestrian demographics (i.e. age and gender)

and the presence of traffic signals or designated crosswalks.
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Chapter 5

Understanding Pedestrian Crossing

Behavior: An Empirical Study

In Chapter 3, we talked about traffic context and enumerated environmental and social

factors that impact pedestrian behavior and crossing decision. Later in that chapter, we

pointed out that the majority of the studies on pedestrian behavior focus either on an

isolated small set of factors or study pedestrian behavior in a limited context (e.g. at

the particular intersection). In addition, none of these studies highlight the patterns of

behavior pedestrians exhibit when making a crossing decision. In this section, we address

these shortcomings. Using a large naturalistic dataset, JAAD, we aim to have a more

comprehensive look at pedestrian behavior, identify factors that impact pedestrian crossing

decision and discuss how some of these factors are interconnected. Another objective of this

section is to highlight some of the major challenges in developing practical systems capable

of pedestrian behavior understanding and prediction.

5.1 Pedestrian Behavioral Data

As mentioned earlier, in this chapter, we make use of the JAAD dataset (see Section 4.3.1),

in particular, the behavioral annotations associated with it. We annotated each pedestrian in

the JAAD dataset the following behavioral tags: First set of tags capture pedestrian move-

ment behavior, i.e. whether the pedestrian is walking or standing, whether the pedestrian

is moving slow or moving fast, or whether the pedestrian is reacting to the driver’s actions

by slowing down, speeding up or stopping. Another set of tags show whether the pedestrian

is looking towards the traffic, nodding or showing hand gesture to the driver. Labels for

moving and changes in moving speed are mutually exclusive, but they can overlap with all

other labels such as crossing, attention (looking), and gestures.

60



Figure 5.1: The timeline of events is recovered from the behavioral data and shows a single
pedestrian crossing the parking lot. Initially, the driver is moving slow and, as he notices
the pedestrian ahead, slows down to let her pass. At the same time the pedestrian crosses
without looking first then turns to check if the road is safe, and, as she sees the driver
yielding, continues to cross.

JAAD also contains behavioral tags for the ego-vehicle’s driver. The driver’s behavior

is captured based on observable changes in the motion of vehicle in videos. The driver’s

actions are summarized with the following tags: speeds (when the driver either maintains

the current speed or speeds up), slows down and stops. An example of annotations for a

pedestrian and the driver’s actions is illustrated in Figure 5.1.

5.2 Pedestrian Behavior at the Time of Crossing

In our data, we observed high variability in the behaviors of pedestrians at the point of

crossing/no-crossing with more than 100 distinct patterns of actions. For instance, Figure

5.2a shows sequences of actions during the completed crossing scenarios found in the dataset.

Two typical patterns, “standing, looking, crossing” and “crossing, looking”, cover only half

of the situations observed in the dataset. Similarly, in one third of non-crossing scenarios

(Figure 5.2b) pedestrians are waiting at the curb and looking at the traffic. Otherwise, the

behaviors vary significantly both in the number of actions before and after crossing and in

the meaning of particular actions (e.g. standing may be both a precondition and a reaction

to driver’s actions).
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(a) crossing events

(b) no crossing events

Figure 5.2: Pedestrian motifs at the time of crossing. Diagram a) shows a summary of 345
sequences of pedestrians’ actions before and after crossing. Diagram b) shows 92 sequences
of actions when pedestrians did not cross. Vertical bars represent the start of actions color-
coded as the precondition to crossing, attention, reaction to driver’s actions, crossing or
ambiguous actions. Curved lines between the bars show connections between consecutive
actions. The thickness of lines reflects the frequency of the action in the ‘crossing’or ‘non-
crossing’subset. The sequences longer than 10 actions (e.g. when the pedestrian hesitates
to cross) are extremely rare, and are truncated.

For further analysis, we split these behavioral patterns into 9 groups depending on the

initial state of the pedestrian and whether the attention or the act of crossing is happening.

We list these actions and the number of samples in Table 5.1. Here attention refers to the

first moment the pedestrian is assessing the environment and expressing his/her intention to

the approaching vehicles.

Visual attention takes two forms: looking and glancing. Looking refers to the scenarios in

which the pedestrian inspects the approaching car (typically for 1 second or longer), assesses

the environment and in some cases establishes eye contact with the driver. The other form

of attention, glance, usually lasts less than a second and is used to quickly assess the location

or speed of the approaching vehicles. Pedestrians glance when they have a certain level of

confidence in predicting the driver’s behavior, e.g. the vehicle is stopped or moving very

slowly or otherwise is sufficiently far away and does not pose any immediate danger.
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Table 5.1: The behavioral patterns observed in the data.

Behavior Sequence Meaning # Samples
Crossing The pedestrian is observed at the point

of crossing and no attention is taking
place

152

Crossing + Attention The pedestrian is observed at the point
of crossing and some form of attention
is occurred

64

Crossing + Attention + Reaction The pedestrian is observed at the point
of crossing and some form of attention
is occurred and the pedestrian changes
behavior

29

PreCondition + Crossing The pedestrian is walking/standing
and crosses without paying attention

37

Precondition + Attention + Crossing The pedestrian is walking/standing
and crosses after paying attention

160

Precondition + Attention + Reaction + Crossing The pedestrian is walking/standing,
pays attention and changes behavior
prior to crossing

64

Action The pedestrian is walking/standing
and his/her intention is ambiguous

56

Action + Attention The pedestrian is about to cross and
pays attention

43

Action + Attention + Reaction The pedestrian is about to cross, pays
attention and responds

49

Total 654

5.3 Analyzing Pedestrian Crossing Behavior

Our data contains various scenarios in which pedestrians are observed during or prior to

crossing. Two categories from Table 5.1, crossing and action, are omitted from the analysis.

In the crossing scenarios, pedestrians are not observable prior to the crossing event, therefore

it is difficult to assess the behavior of the pedestrians at time or prior to crossing. In action

cases the intentions of the pedestrians are ambiguous, because, for example, pedestrians are

not approaching the curb or are standing far away from the crossway.

5.3.1 Attention Occurrence Prior to Crossing

In Section 4.3, we talked about looking action which can signal the intention of the pedestrian

to cross. Besides its communication properties, identifying pedestrian looking action (or as

we call it attention here) is important as it shows how much the pedestrian is aware of the

surroundings. In our data, we observed that about 90% of pedestrians look towards the

traffic (whether it is for an extended amount of time or just a glance). To investigate the
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Figure 5.3: Relationship between TTC and probability of attention occurring prior to cross-
ing. Pedestrians more likely look at the traffic prior and during crossing when the crossing
time gap is lower.

(a) (b)

Figure 5.4: The pedestrian attention at a) non-designated and b) designated crosswalks.
When pedestrians intend to cross at non-designated crosswalks, the tend to be more conser-
vative, and therefore, look at the upcoming traffic more often.

probability of attention occurrence, one important factor to consider is Time To Collision

(TTC) (at the start of crossing) or how long it takes the approaching vehicle to arrive at the

position of the pedestrian, given that they maintain their current speed and trajectory.

The relationship between attention occurrence and TTC is illustrated in Figure 5.3.

Crossing without attention comprises only about 10% of all crossing scenarios out of which

more than 50% of the cases occurred when TTC is above 10s (including situations where

the approaching vehicle is stopping). There are also no cases of crossing without attention

when TTC is less than 2s.

The context in which the crossing takes place also plays a role in crossing behavior. The

context can be described by factors such as weather condition, street structure, and the
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Figure 5.5: Attention occurrence with respect to the number of lanes and TTC. Pedestrians
tend to look at the traffic more often when intending to cross wide streets (> 2 lanes) and
when TTC is lower.

Figure 5.6: Average duration of the pedestrian’s attention prior to crossing based on TTC
for different age groups.

driver’s reaction. Since analyzing all these factors is beyond the scope of this analysis, here

we only look at the effect of the street structure.

There are two factors that characterize a crosswalk: whether it is designated (there is

a zebra crossing or traffic signal) and its width (measured as the number of lanes). In our

samples, crossing without attention only happened in non-designated crosswalks when TTC

was higher than 6 seconds (see Figure 5.4).

The full crossing events happen in street with widths ranging from 1 (narrow one-way

streets) to 4 lanes (main streets). We report on the data by dividing the results into 4

intervals with respect to the TTC values and in each category, we group them based on

the number of lanes (see Figure 5.5). As illustrated, when TTC is below 3s there is no

occurrence of crossing without attention in wide streets (more than 2 lanes). For higher

TTC values, crossing without attention may still occur in wider streets, however, it happens

less frequently than in narrow streets.

The duration of attention or how fast pedestrians tend to begin crossing from the moment

they gaze at the approaching car also may vary. As illustrated in Figure 5.6, the duration of
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(a) crossing and crosswalk prop-
erty

(b) non-designated

(c) zebra crossing (d) traffic signal

Figure 5.7: Pedestrians crossing behavior at crosswalks with different properties.

looking depends on time to collision. The further away the vehicle is from the pedestrians,

the longer it will take them to assess the intention of the driver, hence they will attend longer.

The gaze duration increases up to a maximum safe TTC threshold (from 7s for adults and

up to 8s for elderly) after which it dramatically declines when the vehicle is either far away

or stopped. In addition, the elderly pedestrians in comparison to adults and children tend

to be more conservative and spend on average about 1s longer on looking prior to crossing.

5.3.2 Crossing Action Post Attention Occurrence

Although the pedestrian’s head orientation and attentive behavior are strong indicators of

crossing intention, they are not always followed by a crossing event. In addition to TTC,

which reflects both the approaching driver’s speed and their distance to the contact point,

the structure of the street and the driver’s reaction can impact the pedestrians’ level of

confidence to cross.

To investigate this we divide the crosswalks into three categories: non-designated, without

zebra or traffic signal, zebra-crossing, with either zebra or/and a pedestrian crossing sign and

traffic signal with a signal such as traffic light or stop sign which forces the driver to stop.
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Figure 5.7a shows that pedestrians are less likely to cross the street after communicating

their intention if the crosswalk is not designated and more likely to cross if some form of

signal or dedicated pathway is present.

To understand under what circumstances the crossing takes place in different crosswalks,

we look at the driver’s reaction to the pedestrian’s intention of crossing. Figures 5.7b and

5.7c show that when there is no traffic signal present, in the majority of the cases pedestrians

cross if the driver acknowledges their intention of crossing by slowing down or stopping. In

a few scenarios, the pedestrian still crosses the street even though the vehicle accelerates. In

these cases, either TTC is very high (average of 25.7 s) or the car is in traffic congestion and

the pedestrian anticipates that the car would shortly stop. Moreover, crossing also might not

take place when the driver slows down or stops (even in the presence of a traffic signal) (see

Figure 5.7b and 5.7d). In these cases either the pedestrian hesitates to cross or explicitly

(often by some form of hand gesture) yields to the driver.

5.4 What Makes Understanding Pedestrian Actions Dif-

ficult

In section 4.3 and earlier in this chapter, we conducted behavioral studies of pedestrians

in traffic. We highlighted the ways pedestrians behave and the factors that impact their

behaviors. Here, we look at the problem from a computational perspective and analyze the

challenges in understanding and predicting pedestrian behavior.

5.4.1 Identifying Actions

(a) Looking (b) Hand gesture

Figure 5.8: Pedestrian actions with the same meaning and different appearances.

One of the major challenges in traffic scenarios is interpreting pedestrian actions such

as head movement or gestures. This is primarily due to the fact that actions with the
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same meaning can appear in very different ways. For example, pedestrian head orientation

while looking can be very subtle or rather extreme, involving major changes in body posture

(Figure 5.8a). Likewise, pedestrians’ hand gestures as a sign of gratitude can appear very

differently (Figure 5.8b).

5.4.2 Identifying Relevant Elements

Figure 5.9: Selecting relevant objects in the scene with the aid of communication cues.
Relevant and irrelevant pedestrians are shown with green and red boxes respectively.

Computational resources in practical systems, such as those used in autonomous vehicles

are limited as the vehicles have to deal with various tasks such as visual perception, control,

mapping, etc. Given such limitations, reasoning about all road users in the traffic scenes is

infeasible. Understanding how pedestrians behave and show their intention of crossing (e.g.

stepping onto the road or looking) can help eliminate the ones that are irrelevant to the

current driving task, and as a result, reduce computational load. For example, in Figure 5.9,

it may seem that all pedestrians close to the curb are relevant and the ones farther away can

be ignored. Taking into account pedestrians’ attention towards the traffic, we can see that

only 4 pedestrians are potentially relevant including the woman with a child on the right

who are about to change their direction.

5.4.3 Interpreting Behavior

The Role of Context

Besides the challenges associated with detecting communication cues due to the high vari-

ability of pedestrian gestures (see Figure 5.8), understanding the underlying meaning of

communication is not always intuitive and requires the knowledge of the context. As de-

picted in Figure 5.10, by merely relying on gestures, it is hard to infer the intention of the

pedestrian.

For instance, in Figure 5.10, the first image from the left, the driver has been standing

at the intersection for an extended period of time, therefore the pedestrian is showing his
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Figure 5.10: Making sense of hand gesture based on context. From left to right : showing
gratitude, dissatisfaction, yielding and greeting another person (irrelevant).

gratitude. In the second image, the driver does not slow down and the pedestrian is waving

his hand as a sign of dissatisfaction. In the third image, both the driver and the pedestrian

slow down, but the pedestrian shows a yielding gesture. The last case is quite different as

the pedestrian is waving his hand at someone on the other side of the road.

Identifying Relevant Actions

Figure 5.11: Various pedestrian hand movements without any symbolic meaning. From the
left to right and top to bottom, pedestrians are snacking, touching face, cleaning face and
looking at a cellphone.

Not all hand movements are hand gestures. In a course of an interaction, only the types

of body movements that contain a symbolic meaning (i.e. an intended message) should be
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considered as gestures. In traffic scenes, most observed body movements have no particular

meaning, for example, pedestrians eating or bringing hands to their faces, using mobile

phones, adjusting their clothes or bags, etc. (see Figure 5.11 for examples). From a practical

point of view, these body movements can be easily confused with symbolic hand gestures. To

remedy this, once again the knowledge of the context is needed as well as an understanding

of the ways pedestrians communicate their intention under different conditions.

5.4.4 Other Road Users

Figure 5.12: The pedestrian is crossing the street regardless of the action of the ego-vehicle’
driver because the pedestrian anticipates that the vehicle will stop due to traffic congestion.

In some circumstances, the behavior of pedestrians might be influenced by elements that

are not directly involved in the interaction. For instance, as illustrated in Figure 5.12, the

pedestrian starts crossing because he expects the ego-vehicle to slow down due to the traffic

congestion. This means that when making a crossing decision, the pedestrian relied on

the expected behavior of the ego-vehicle due to the environmental conditions instead of its

current action.

5.5 Summary

In this chapter, we looked at pedestrian crossing behavior in traffic scenes. Unlike the

previous studies, instead of focusing on a few specific factors, we took a broader look at

traffic context and its impact on pedestrian behavior.

Through an empirical study, for the first time, we illustrated the wide range of behaviors

that pedestrians exhibit at the time of crossing. We concluded that such a diverse range of

behaviors makes predicting pedestrians’ future actions extremely challenging.
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Our study on the role of context on pedestrian behavior suggests that there are numerous

elements present in a scene that can help predict what a pedestrian is going to do next. Street

properties, such as width, the presence of zebra crossings or traffic signals, can determine

pedestrians’ level of confidence while crossing. In addition, the driver’s dynamic state with

respect to pedestrians is important. Factors such as TTC, which reflects the speed and the

position of the vehicle, should be considered. These results agree with some of the findings

presented in Chapter 3.

As part of this study, we identified the interrelationships between different contextual

elements. For instance, although the majority of pedestrians tend to look at the traffic prior

to crossing, they do so less when the street is narrow or when TTC is high. This is also true

if the crosswalk is signalized because pedestrians feel safer and are, therefore, less cautious

while crossing. This suggests that studies of traffic context and its impact on pedestrian

behavior should be conducted on a broader scope by including not few but many different

contextual elements. This is something that was not often considered in the past works.

At the end of this chapter, we enumerated some of the practical challenges in under-

standing and predicting pedestrian behavior. Some of these challenges include the high

dependency of action interpretability on context, the diversity of action appearances, the

presence of irrelevant objects and non-symbolic actions, and the influence of other road

users’ behaviors.
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Chapter 6

Detecting Pedestrians in Cluttered

Traffic Scenes

The first step towards understanding pedestrian behavior is to detect relevant objects in the

environment. Among typical objects present in traffic scenes, pedestrians are particularly

challenging for identification because they assume different poses, have high variability of

appearances and can be easily confused with other objects with similar properties [226].

In the past decades numerous pedestrian detection algorithms [227, 228, 226, 229, 230]

have been proposed, the majority of which have been tested on the publicly available datasets

such as Caltech [231] and KITTI [232]. Although these datasets contain an adequately large

amount of data for evaluating the performance of pedestrian detection algorithms, they lack

sufficient variability in scene properties such as different lighting conditions and pedestrians’

appearance corresponding to different weather conditions. Examples of errors caused by the

changes in data properties are illustrated in Figure 6.1.

Given the dynamic nature of driving and the fact that autonomous vehicles should be

able to handle a wide range of conditions robustly, there is a need to examine the perfor-

mance of pedestrian detection algorithms and measure their limitations under various visual

conditions.

To this end, we examine the performance of state-of-the-art pedestrian detection algo-

rithms with respect to dataset properties and highlight changes in their behavior with respect

to different training and testing samples. We perform a cross-evaluation of the state-of-the-

art algorithms on the JAAD (in an extended format) and Caltech datasets to measure the

generalizability of algorithms and datasets based on different properties of the data. In

addition, as part of this study, we contribute a software framework (which has been made

public) for experimentation and benchmarking classical and state-of-the-pedestrian detection

algorithms.
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(a) Localization errors (b) False positives (c) False negatives

Figure 6.1: Different sources of detection errors due to the variability in the appearance
of the pedestrians and scenes: a) shows localization errors due to the presence of bags,
backpack and umbrellas which are commonly associated with pedestrians observed in the
scenes; b) false positives caused by various environmental factors such as reflections on wet
surfaces, over-exposure as well as the presence of objects resembling pedestrians; and c) false
negatives due to variation in shape, e.g. children who have different aspect ratio compared
to adults, and appearance, e.g. pedestrians wearing hooded jackets, holding umbrellas or
carrying bulky backpacks.

6.1 A Literature Review on Pedestrian Detection

6.1.1 Pedestrian Detection Algorithms

Pedestrian detection is a well-studied field. Over the years, a large number of algorithms

have been developed, ranging from models based on hand-crafted features [228, 227, 233]

to modern convolutional neural networks [230, 229, 234], and hybrid algorithms benefiting

from a combination of both of these techniques [235, 236].

The modern pedestrian detection algorithms use various techniques to overcome the

challenges of identifying pedestrians in the wild. For example, Tian et al. [237] propose

a part-based detection algorithm to deal with occlusion. The model consists of a number

of part detectors, combinations of which determine the existence of a pedestrian in a given

location. In [226], the authors use semantic information of the scene in the form of pedes-

trian attributes, e.g. carrying a backpack, and scene attributes such as trees or vehicles to

distinguish the pedestrians from the background.

In [234] the authors use bootstrapping techniques to mine hard negative samples to mini-

mize confusions caused by background while detecting pedestrians. The proposed algorithm

uses features learned by a region proposal network (RPN) to train a cascaded boosted forest
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for the final hard negative mining and classification. In a more recent approach, Brazil et

al. [230] show that jointly training a Faster R-CNN network and semantic segmentation

network on pedestrian bounding boxes can improve the overall detection results.

The focus of more recent algorithms is on occlusion handling in detection using methods

such as part-based detection [238, 239, 240], novel loss functions [241, 242], attention mech-

anisms [243], and feature transformation techniques [244]. Some algorithms are concerned

with pedestrian detection at far distances [245] and in crowds [246]. A group of algorithms

proposes various architectural and computational techniques to improve the overall per-

formance, e.g novel feature generation methods [247, 248, 249], novel anchor generation

methods [250] and data synthesis methods to generate more training samples [251]. Even

though many of the recent works adopted more diverse datasets such as CityPersons [252] for

benchmarking, most of these algorithms still heavily use datasets such as Caltech [231] and

KITTI [232]. Given that the performance of state-of-the-art pedestrian detection algorithms

on benchmark datasets began to saturate (e.g. 7-9% miss rate reported on Caltech [231]),

attention has shifted towards the effects of data properties on detection performance.

6.1.2 Pedestrian Detection Datasets

Besides datasets such as KITTI [232], Waymo [253], nuScenes [254] and ArgoVerse [255]

that have multiple object classes, there are a number datasets that are specifically designed

for training pedestrian detection algorithms including MIT [256], INRIA [257], Daimler

datasets [258, 259, 260, 261], Penn-Fudan [262], ETHZ [263], Caltech [231], TUD Brussels

[264], Berkley [265], CUHK [266], PETA [267], Kaist [268], CityPersons [252], and EuroCity

Person [269]. Among these datasets, Caltech and CityPersons (more recently) are widely

used. The Caltech dataset contains a very large number of pedestrian samples (350K) along

with occlusion information in the form of bounding boxes that cover only the visible portions

of occluded pedestrians. This dataset, however, is collected under uniform weather conditions

and on similar roads which make this dataset very monotonous in terms of visual properties.

CityPersons, on the other hand, has been collected in different geographical conditions and

has more diverse samples. This dataset, however, does not contain samples under severe

weather conditions and does not also have pedestrian attribute information.

6.1.3 Data Properties and Pedestrian Detection

A recent study on generic object recognition tasks shows that an order of magnitude increase

in the size of training samples can enhance performance even in the presence of up to 20%

error in ground truth annotation [270]. For example, factors such as the effect of occlusion
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and sample size [271], the balance between negative and positive samples [272], and the

cleanness of ground truth annotations [273] have been investigated. Zhang et al. [274],

for instance, demonstrate that the percentage of mis-classifications and localization errors

varies significantly depending on the algorithm. Through experimental evaluations, the

authors show that simply by improving the quality of ground truth annotations, localization

errors can be significantly reduced resulting in an overall performance boost of more than

7% miss rate in state-of-the-art pedestrian detection algorithms. What is missing from these

studies is that neither of them explores the effects of data properties such as the changes in

visual representations, e.g. due to lighting or weather conditions or visual appearances of

pedestrians, on the performance of the pedestrian detection algorithms.

6.2 A Pedestrian Detection and Attribute Dataset

There are a number of existing pedestrian attribute datasets that provide fine-grained at-

tributes (e.g. RAP [275], PETA [267]). These datasets primarily cater to applications such

as surveillance and identification tasks, and, as a result, often contain indoor scenes or are

recorded using on-site security cameras. Such characteristics make these datasets unsuitable

for analyzing pedestrian detection algorithms for applications such as autonomous driving.

This is because some of these datasets are recorded from a viewing angle that is not repre-

sentative of driving scenarios (e.g. bird’s-eye-view for surveillance), there is often no camera

motion as in driving scenarios, and visual representations, such as lighting conditions, object

types, etc., are not the similar to those present in traffic scenes.

For the context of pedestrian detection in traffic, Tian et al. [226] introduced pedestrian

attribute information for the Caltech dataset. The authors augmented the dataset with 9 at-

tributes on 2.7K pedestrian samples. These augmented annotations, however, lack attribute

diversity we require for our study purposes as the Caltech dataset has insufficient variability

of weather, lighting and scenery properties.

To investigate the effect of pedestrian attributes and data properties on detection al-

gorithms, we utilized the JAAD dataset (introduced earlier in Section 4.3.1). We further

extended the annotations of JAAD by annotating all pedestrians in the scenes and adding

16 attributes for each of the 392K pedestrian samples, a total of 900K new attribute labels,

summarized in Figure 6.2a. There are attributes for coarse pose (left, right, back, front),

clothing color (upper dark and lower dark) and length (below knee for long coats and skirts)

(see Figure 6.2b for examples).

There are also several attributes for the presence and location of bags and their type:

whether they are worn on the left side or right side relative to pedestrian’s body and carried
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Figure 6.2: a) Types and frequency of new attribute labels in the JAAD dataset color-coded
based on the attribute type (e.g. pose, clothing color, accessories); b) Samples of pedestrians
with select attribute labels shown.

on the shoulder (bag shoulder), elbow (bag elbow), back (backpack) or held in the hand

(bag hand). In addition, we add labels for hooded clothing (hood) and caps (cap), accessories

(e.g. phone, sunglasses) and various objects that pedestrians can hold in their hands (e.g.

object, baby).

The attributes were selected based on their appropriateness for the driving tasks. For

instance, the pose of the pedestrian and color of their clothing affect visibility. Long clothing

obscures the shape and movement of the human body. Caps, hoods, and sunglasses occlude

pedestrian’s face and may limit their view of the traffic scene as well. Carrying large bags,

backpacks or other objects may not only change the appearance and shape of the pedestrian

but limit their mobility. Holding a phone does not change the pose significantly, but can be

used to determine pedestrian’s distraction as illustrated in [276].
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Clothing color and pose are the only attributes provided for all bounding boxes in the

JAAD dataset and form the minimum attribute set. As can be seen from the bar plot in

Figure 6.2a, most pedestrians in the dataset are wearing dark clothes, for instance, nearly

70% of pedestrians have both upper dark and lower dark attributes present.

Pose attributes, left, right, back, and front, are nearly equally distributed. Aside from

clothing color and pose, the bags category is the most represented. In fact, nearly 50% of all

pedestrians carry a bag or a backpack. In the following sections, we will consider the effect

of the diversity and uneven distribution of attributes in the training data on detection.

6.3 Experiment Setup

6.3.1 Pedestrian Detection Algorithms

For the experimental evaluations in this chapter we choose three classical algorithms as

baselines including ACF+ and its variation LDCF [227], and LDCF++ [233], and deep

learning algorithms including RPN+BF [234], MS-CNN [277], and SDS-RCNN [230]. From

RPN+BF algorithm, we only report the results of its RPN component to highlight how the

weak segmentation approach proposed in the RPN component of SDS-RCNN would behave

under different conditions.

The algorithms were trained on the subsets of the JAAD dataset using the default pa-

rameters proposed by the authors for the Caltech dataset. The only exception is that we

modified the width parameters of training and testing images to maintain the aspect ratio of

the images in JAAD. For cross-evaluation with the Caltech dataset, we used the pre-trained

models published by the authors of corresponding algorithms.

6.3.2 Data

The JAAD dataset contains HD quality images with dimensions of 1080 × 1920 pixels. To

maximize the performance of the detection algorithms using default parameters tuned on

Caltech, we resized all images to half-scale of 540 × 960. For evaluation and training, we

selected samples with reasonable scale (bounding box height of 50 pixels or more) with

partial occlusion (visibility of 75% or more).

For experimental evaluations, we divided JAAD into four different train/test subsets

according to the property of the data in terms of weather conditions including clear, cloudy,

cloudy+clear (c+c) and mix. As the names imply, clear and cloudy subsets only include

training images collected under clear and cloudy skies with no rain/snow, and mix contains

all weather conditions including clear and cloudy, and more extreme weather conditions such
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as rain/snow. It should be noted that we excluded the videos from the JAAD dataset that

were collected under very poor visibility conditions such as nighttime and heavy rain.

The training images for each subset are generated by uniformly sampling 50% of the

videos that are recorded under the given condition. Each training subset contains approxi-

mately 6.5K pedestrian samples. The remainder of the videos (which may include all weather

conditions) are also uniformly sampled and divided into validation and test set.

6.3.3 Metrics

To report the performance of the algorithms, we use log-average miss rate over the precision

range of [10−2, 100] (MR2) and [10−4, 100] (MR4) false positives per image (FPPI) as in

[234, 274]. We also follow [274] and apply two oracle test cases to measure the contributions

of background and localization errors. The localization oracle excludes all false positives that

overlap with ground truth from evaluation thus reflecting the contribution of background

error. The background oracle does not count all false positives that do not overlap with

ground truth hence showing the amount of localization error. All of our results are presented

using the matching criterion of intersection over union (IoU) ≥ 0.5, unless otherwise stated.

6.4 Data Properties and Detection Accuracy

6.4.1 Weather
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Figure 6.3: ROC curves for all algorithms trained and tested on mix, clear, cloudy and c+c
(clear and cloudy) datasets with detection threshold set to 0.5 IoU. Legends for each plot
show the names of algorithms together with MR2(MR4) measures. In each plot legend the
algorithms are sorted by MR2 in the descending order.

Weather conditions have multiple effects on the visibility of the pedestrians (e.g. due

to rain) and their appearances (e.g. presence of sunglasses or umbrellas). In addition, the

appearance of the scene itself may be altered by different lighting conditions, precipitation,
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Figure 6.4: The relative contribution of background and localization errors to the perfor-
mance of state-of-the-art pedestrian detection algorithms. The errors are calculated as
changes in a) MR2 and b) MR4 measures for algorithms trained and tested on different
subsets of JAAD.

reflections, sharp shadows, etc., leading to detection errors as illustrated in Figure 6.1. In

order to quantify these effects, we trained and tested all pedestrian detection algorithms on

different subsets of JAAD dataset split by weather conditions as explained earlier.

We begin by reporting the ROC curves along with MR2 and MR4 metrics. As can be

seen in Figure 6.3, despite the changes in the overall performance of the algorithms, the

rankings are the same across different subsets. The only exception is in the clear case where

SDS-RPN outperforms RPN.

The main difference between SDS-RPN and regular RPN is that the former adds a

weak segmentation component utilizing binary masks from bounding box annotations. It

is apparent that using this technique is only effective under clear weather conditions which

correspond to the properties of the Caltech dataset that this algorithm was originally tested

on (see Table 6.3). Under different weather conditions, however, the weak segmentation

results in a poorer performance compared to the regular RPN.

Another observation is that the MS-CNN algorithm (which according to [249] is not

among top five performing algorithms on Caltech) achieves the best performance by a large

margin (up to 2% on mix, clear and c+c subsets and more than 5% on cloudy) compared

to state-of-the-art SDS-RCNN.

To further understand the underlying factors impacting the performance of each algo-

rithm, we report background and localization errors under different weather conditions. As

79



Table 6.1: The performance of pedestrian detection algorithms in the presence of individual
attributes. The results are reported as MR4 metric. The top performing algorithms for each
attribute are highlighted in bold.

Algorithms
Attributes

female male pose back pose front pose left pose right child backpack bag cap hood umbrella
ACF+ 38.96 34.66 39.71 38.28 34.70 33.91 60.92 38.88 36.00 40.21 69.18

LDCF+ 37.02 33.84 35.27 37.24 32.90 30.94 55.02 33.50 33.94 38.27 68.16
LDCF++ 30.09 28.30 34.41 31.79 26.44 26.71 55.16 32.76 26.69 33.29 56.64
MS-CNN 13.49 14.03 17.77 14.00 15.20 11.19 45.37 16.01 10.77 14.08 31.06

RPN 21.99 25.79 28.03 26.82 22.72 21.34 53.59 24.59 19.48 28.97 37.35
SDS-RPN 24.31 22.57 26.58 23.67 21.51 22.74 52.54 19.50 20.12 24.61 31.68

SDS-RCNN 14.30 15.77 17.72 15.29 14.46 13.60 43.14 15.85 12.25 15.68 25.57

depicted in Figure 6.4, testing and training on the subsets of JAAD with different properties

reveal inconsistencies in the performance of each detection algorithm as well as their rela-

tive performance compared to other algorithms. For example, in the case of c+c, MS-CNN

reaches its highest background error while at the same time it achieves the lowest localization

error compared to others.

For RPN-based models the same trend does not hold as they all perform poorly in terms

of localization error, when trained and tested on c+c. Comparatively, MS-CNN has the

lowest background error on the mix, clear and cloudy subsets and the second worst on c+c.

Likewise, on average, RPN performs best in terms of localization error, however, it is the

worst in terms of background error. One interesting observation is the added benefit of the

weak segmentation component to RPN (in SDS-RPN) which helps improve the background

error but at the price of reducing its localization accuracy.

6.4.2 Pedestrian Attributes

In this section we evaluate the contribution of select attributes (shown in Table 6.1) on the

performance of detection algorithms trained and tested on the mix dataset. Due to the

fact that many attributes often appear together in various combinations, it is very hard to

disentangle the effect of the individual attributes on the overall detection accuracy of each

algorithm. However, major differences can be observed in the relative performances of the

algorithms in the presence of certain attributes in the scene.

As one would expect, the performance of classical models is inferior compared to the

CNN-based algorithms, particularly with respect to some of the rarely occurring attributes

such as child and umbrella. The performance of the state-of-the-art also varies on different

attributes. For example, MS-CNN, which shows the highest results on mix, underperforms

compared to SDS-RCNN on umbrella, backpack, child, pose-back and pose-left.

To investigate the common causes of error for MS-CNN and SDS-RCNN we group false
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Figure 6.5: Error analysis for MS-CNN and SDS-RCNN trained and tested on the mix
reasonable subset of JAAD. Plot a) shows the relative percentages of false positives (FP)
and false negatives (FN) for each algorithm at 0.1 FPPI. FP is further split into localization
and background errors depending on whether the detected bounding box overlaps with the
ground truth or not. Plot b) shows a detailed breakdown of false positive and false negative
errors grouped by the corresponding attributes.

positive (FP) and false negative (FN) detections at 0.1 FPPI by the object present in the

bounding box as shown in Figure 6.5.

Beginning with FP, SDS-RCNN and MS-CNN differ greatly not only in the relative

contributions of background and localization errors but also in terms of the objects they

commonly confuse with pedestrians. Aside from annotation errors, MS-CNN is much more

distracted by elongated objects often found in the street scenes, such as tree trunks, hydrants

and parking meters.

Many of the localization errors for both MS-CNN and SDS-RCNN are caused by not

being able to distinguish pedestrians in groups of 2 or more, particularly when children are

also present (attribute group child in Figure 6.5b). SDS-RCNN also has a higher tendency

to place bounding boxes on body parts of the pedestrians or objects they carry (e.g. bags)

than MS-CNN. Finally, for both MS-CNN and SDS-RCNN, partially occluded pedestrians,

groups of pedestrians and children stand out as main sources of false negative detections.
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Table 6.2: The performance of state-of-the-art pedestrian detection algorithms on the Cal-
tech and JAAD mix datasets. The table shows the results for algorithms trained and tested
on the same dataset. In the table, for example, C → C means that the models were trained
and tested on Caltech. The performances on the Caltech test set are reported on both old
(MRO) and new (MRN) annotations. The best results are highlighted with blue color.

C → C
MRN

2 (MRO
2 )

mix→ mix
MR2

ACF+ 26.27 (30.55) 23.36
LDCF+ 23.07 (25.79) 23.07

LDCF++ 13.66 (16.10) 16.90
RPN 11.71 (14.33) 11.71

MS-CNN 9.47 (11.21) 5.70
SDS-RPN 8.15 (9.27) 11.89

SDS-RCNN 6.58 (7.59) 7.78

Note that despite individual sensitivities to certain attributes, both MS-CNN and SDS-

RCNN have trouble detecting children and pedestrians with infrequently occurring attributes

such as backpacks, umbrellas, hooded clothing, etc. There is also evidence that algorithms

may learn the appearance of common attributes such as bags instead of the pedestrian itself

leading to poor localization.

The former issue may be addressed by increasing the variability of the training data either

by explicitly ensuring the presence of certain hard attributes or implicitly, by gathering data

under different weather conditions, which in turn affect the appearance of the pedestrians.

On the other hand, explicitly learning the attributes may also help, as demonstrated by

[226].

6.4.3 Generalizability Across Different Datasets

Here, our goal is to identify the link between the generalizability of the dataset and its

properties, i.e. we want to measure whether using training data from a diverse dataset

can improve the performance of detection algorithms on other datasets with more uniform

properties.

For this purpose, we employed the widely used Caltech dataset [231] and JAAD. We

evaluated the algorithms trained on Caltech using the test data from the mix subset of

JAAD, and also the models trained on different subsets of JAAD using Caltech test set. All

the tests are done on a reasonable set of pedestrians with a height of 50 pixels and above.

The minimum allowable visibility is set to 75% on the Caltech test set to match the partial

occlusion of the JAAD dataset.

Given that a large portion of the original bounding box annotations in the Caltech dataset
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Table 6.3: The performance of state-of-the-art pedestrian detection algorithms on the Cal-
tech and different subsets of the JAAD dataset. The results show the performance of the
algorithms trained on Caltech and tested on JAAD (C → mix) and trained on different
subsets of JAAD and tested on Caltech (J → C). The performances on the Caltech test set
are reported on both old (MRO) and new (MRN) annotations. The best and second best
results are highlighted with blue and green color respectively.

C → mix
MR2

J → C
MRN

2 (MRO
2 )

mix c+c cloudy clear
ACF+ 77.94 46.97 (53.63) 49.52 (55.06) 70.79 (74.06) 49.99 (55.23)

LDCF+ 54.82 43.61 (49.93) 44.89 (50.85) 59.18 (64.11) 47.29 (52.54)
LDCF++ 47.94 37.66 (46.04) 40.41 (48.54) 54.86 (60.72) 44.77 (51.93)

RPN 40.15 27.80 (41.19) 25.74 (38.18) 34.67 (47.34) 28.75 (40.05)
MS-CNN 35.09 22.87 (34.83) 26.30 (38.11) 31.55 (46.35) 29.49 (41.64)
SDS-RPN 43.40 24.24 (30.84) 26.64 (33.61) 35.62 (42.90) 30.85 (38.52)

SDS-RCNN 25.45 21.47 (27.73) 25.29 (32.69) 35.20 (42.35) 23.81 (31.75)

are poorly localized, following the advice of [274], we report the results on both the original

and newly clean Caltech test set. We denote the miss rate results as MRO and MRN for

old and new annotations respectively. All detections are calculated on IoU ≥ 0.5.

The results of the evaluations of the algorithms trained and tested on the same dataset

are summarized in Table 6.2 and the results of cross-evaluation between algorithms trained

and tested on Caltech and subsets of JAAD are shown in Table 6.3.

The first observation is that the performance of algorithms on a uniform dataset compared

to a diverse one varies significantly. SDS-RCNN algorithm that achieves state-of-the-art

performance on Caltech is the second best in JAAD and its counterpart, SDS-RPN, which

has the second-best performance on Caltech, performs even worse compared to the regular

RPN algorithm. MS-CNN, on the other hand, performs best on the mix subset, even though

on Caltech it is the third best in our evaluation and not even in the top five in the latest

benchmarks [230].

As was mentioned earlier, the Caltech dataset contains images collected during daylight

under clear sky. Surprisingly, we observe that the clear subset of JAAD that has similar

properties does not generalize best to Caltech. Besides having the second-best performance

on SDS-RCNN models, it ranks third in other cases. In fact, we can see that diversifying

the data by training on c+c and further adding extreme weather conditions such as rainy

and snowy samples achieves the best results on the Caltech dataset.

Partly, such performance improvement is owing to better localization. For instance, MS-

CNN and SDS-RCNN on average have IoUs of 0.73 and 0.75 respectively when trained on
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Figure 6.6: Examples of the performance of state-of-the-art pedestrian detection algorithms
on samples with different weather conditions and pedestrian attributes. From left to right,
the ground truth (GT) and the results of algorithms trained on different subsets of the
JAAD dataset are shown. Colors green, red and blue correspond to the ground truth, MS-
CNN and SDS-RCNN respectively. The results show that the behaviors of both detection
algorithms are affected based on the changes in the training data, but in different and
somewhat unpredictable ways. For instance, in the example in the second row, SDS-RCNN
performs better when trained on the mix subset whereas MS-CNN does so on when trained
on the clear subset.

JAAD clear and 0.74 and 0.76 when trained on JAAD mix. The same models trained on

Caltech, on the other hand, have an average IoU of 0.73.

It should be noted that the CNN-based models in the table are trained on Caltech10x

[228] which contains over 45K images with more than 16K training samples. The diverse mix

dataset contains less than 7K samples, yet generalizes better on Caltech than vice versa.

6.5 Summary

In this chapter, we conducted a series of experiments to investigate the effect of dataset

diversity on the performance of pedestrian detection algorithms (see some qualitative exam-

ples in Figure 6.6). Using the extended JAAD dataset, we showed that the performance

measures reported on the classical benchmark datasets, such as Caltech, do not necessarily

reflect the true potential of detection algorithms in dealing with a wider range of environ-

mental conditions. For instance, MS-CNN which ranks fifth in the recent state-of-the-art

benchmarks, outperforms the current top-ranking algorithm, SDS-RCNN, by a significant

margin on all subsets of the JAAD dataset.

We showed that the changes in relative performance can be attributed to different prop-

erties of the datasets, e.g. depending on what types of weather conditions are represented
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in the training data. For example, SDS-RPN outperforms the classical RPN on the Caltech

dataset owing to the use of a weak segmentation technique, however, it shows inferior results

on the JAAD dataset under all weather conditions except clear (which is the most similar

to Caltech).

Similar fluctuations in the performance of detection algorithms can be seen with respect

to pedestrian attributes. Particularly, rarely occurring attributes such as child, backpack

and umbrella are associated with the highest miss rate for all algorithms. On the other

hand, some of the most frequently occurring attributes such as handbags are shown to be

commonly localized instead of pedestrians.

The diversity of training data also leads to better generalization of pedestrian detection

algorithms across different datasets. Our empirical results suggest that mixing samples with

different properties can improve the performance of algorithms even on a more uniform

dataset. For example, the MS-CNN algorithm trained on the mix subset of JAAD had 7%

and 3% lower miss rates on Caltech compared to the models trained on the clear and c+c

subsets respectively.

A carefully selected dataset can also reduce the need for a large volume of training data.

For example, the models trained on the mix subset of JAAD using only 7K training samples

performed better on the Caltech dataset compared to models that were trained on more than

16K training samples from Caltech and tested on the JAAD mix.

In conclusion, our study shows that the selection of benchmark datasets for the evaluation

of pedestrian detection algorithms for practical applications such as autonomous driving

should be revisited to properly assess their performance and limitations under different

conditions and to better reflect their generalizability.

Using larger datasets certainly benefits the training of the algorithms as does balancing

the data with respect to underrepresented weather conditions and pedestrian categories.

On the other hand, overrepresented attributes in the data can cause detection errors which

should be taken into account when designing pedestrian detection algorithms.
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Chapter 7

Understanding Pedestrians’

Intentions and Their Role in

Predicting Trajectories

In Section 2.1.3 we talked about the necessity of understanding intentions in the context

of social interaction and coordination. We showed that in addition to sharing the focus of

attention, parties involved in an interaction should have the intention of doing so for the

sake of accomplishing a common task. For predicting pedestrian behavior in traffic scenes,

intention of crossing can serve as a source of contextual information. In this chapter we

look at pedestrian intention from a practical point of view and investigate the importance

of intention estimation in predicting pedestrian trajectory.

Most current approaches to pedestrian action prediction are trajectory-based [278, 279,

280], meaning that they rely on the past observed motion of the pedestrians and/or vehicle

dynamics to predict the future locations of the pedestrians. These approaches, however, are

effective when the pedestrians are already crossing or are about to do so, i.e. these algorithms

react to an action already in progress instead of anticipating it. For example, scenarios, where

a pedestrian is standing at the intersection or walking alongside the road prior to crossing can

be challenging for trajectory-based approaches. Moreover, the past trajectory of a pedestrian

might not necessarily reflect their ultimate objective. For instance, a pedestrian waiting at

a bus stop might step on the road to check for the bus. This action might be interpreted as

a crossing event by a trajectory-based approach.

A remedy for the common drawbacks of trajectory-based algorithms is to anticipate the

action by estimating its underlying cause or intention. Intention estimation allows one to

predict a future situation using expected behaviors rather than merely rely on scene dynamics

[281]. In the context of intelligent driving, a pedestrian’s intention reflects their principal
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Figure 7.1: Processing stages for different sources of information required for understanding
and predicting pedestrian behavior. Three examples are shown: a) a pedestrian who does not
intend to cross, b) a pedestrian who intends to cross but does not cross and c) a pedestrian
who intends to cross and crosses the street. Observations of pedestrians’ appearance and
movement in combination with local context help estimate whether they intend to cross the
street. Intention can be used to filter out irrelevant pedestrians (eliminating the need for
further processing as shown with dashed lines) and/or to improve trajectory prediction.

goal of crossing the street (see Figure 7.1). The pedestrian might not have any intention to

cross (e.g. they could be waiting for a bus, talking to someone, or taking a photo), or they

intend to cross and may or may not act on it depending on the traffic conditions. Detecting

pedestrians’ intentions can potentially reduce the cognitive load of an intelligent driving

system allowing it to identify those pedestrians whose actions will be relevant to their own

behavior planning. This may also grant such systems a better ability to anticipate pedestrian

behavior [281].

As part of our contribution presented in this chapter, we introduce a newly collected

dataset that is the first large-scale dataset for pedestrian intention estimation and trajectory

prediction. We propose a baseline model for pedestrian intention estimation and show how

intention can be used to improve the performance of pedestrian trajectory prediction.
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7.1 A Literature Review of State-of-the-Art

7.1.1 Vision-Based Trajectory Prediction

As the name implies, these algorithms are designed to predict the future trajectories of

objects (e.g. pedestrians), i.e. the future positions of the objects over time. These algorithms

are particularly important for applications such as intelligent driving in which predicted

locations can be used for route planning or predicting future events such as anomalies,

events (e.g. accidents) or actions (e.g. pedestrian crossing).

In recent years, many trajectory prediction algorithms rely on classical reasoning methods

including Gaussian mixture models [282, 283] and processes [284, 285], Markov decision

processes (MDPs) [286, 287, 288, 289, 290, 291, 292, 293, 294], Markov chains [295, 296] and

other techniques [297, 298, 299, 300, 301, 302, 303, 304]. However, in this review we focus

on deep learning approaches given their popularity in recent years.

Trajectory prediction applications like many other sequence prediction tasks heavily rely

on recurrent architectures such as LSTMs [255, 305, 306, 307, 308, 309, 310, 311, 312, 313,

314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 279], and GRUs [328,

329, 330, 331, 332, 333]. These methods often use an encoder-decoder architecture in which

a network, e.g. an LSTM encodes single- or multi-modal observations of the scenes for

some time, and another network generates future trajectories given the encoding of the

observations. Depending on the complexity of input data, these algorithms may rely on

some form of pre-processing for generating features or embedding mechanisms to minimize

the dimensionality of the data.

The feedforward algorithms [328, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344]

often use whole views of the scenes (i.e. the environment and moving objects) and encode

them using convolutional layers followed by a regression layer to predict trajectories. A few

algorithms use hybrid approaches in which both convolutional and recurrent reasonings are

applied [345, 346].

Depending on the prediction task, algorithms may rely on single- or multi-modal observa-

tions. For example, in the context of visual surveillance where a fixed camera provides a top-

down or bird’s eye viewing angle, many algorithms only use past trajectories of the agents in

either actual 2D frame coordinates or velocities of agents calculated by the changes from each

time step to another [346, 307, 311, 312, 316, 318, 347, 320, 322, 331, 324, 348, 319, 327, 279].

In addition to observations of individual trajectories of agents, these algorithms focus on

modeling the interaction between the agents and how they affect each other. For example,

Zhang et al. [307] use a state refinement module that aligns all pedestrians in the scene with

a message passing mechanism that receives as input the current locations of the subjects and
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their encodings from an LSTM unit. In [311] a graph-based approach is used where pedes-

trians are considered as nodes and the interactions between them as edges of the graph.

By aggregating information from neighboring nodes, the network learns to assign a different

level of importance to each node for a given subject. The authors of [320, 279] perform a

pooling operation on the generated representations by sharing the state of individual LSTMs

that have spatial proximity.

As shown in some works, other sources of information are used in surveilling objects

[305, 306, 308, 310, 313, 330, 321, 323, 324, 326, 332, 343, 344]. For example, in addition

to encoding the interactions with the environment, Liang et al. [305] use the semantic

information of the scene as well as changes in the poses of the pedestrians. In [306, 308,

310, 313, 330, 326, 332, 344] the visual representations of the layout of the environment and

the appearances of the subjects are included. The authors of [324] use an occupancy map

which highlights the potential traversable locations for the subjects. The method in [321]

takes into account pedestrians’ head orientations to estimate their fields of view in order to

predict which subjects would potentially interact with one another. To predict interactions

between humans, in [323] the authors use both poses and trajectories of the agents. Ma

et al. [343] go one step further and take into account the pedestrians’ characteristics (e.g.

age, gender) within a game-theoretic perspective to determine how the trajectory of one

pedestrian impacts another.

In the context of traffic understanding, predicting trajectories can be more challenging

due to the fact that there is camera ego-motion involved (e.g. the prediction is from the

perspective of a moving vehicle), there are interactions between different types of objects

(e.g. vehicles and pedestrians), and there are certain constraints involved such as traffic

rules, signals, etc. To achieve robustness, many methods in this domain take advantage

of multi-modal data for trajectory prediction [345, 255, 328, 309, 329, 336, 314, 337, 349,

350, 330, 317, 335, 339, 280, 333, 340, 341, 332]. In addition to using past trajectories,

all these algorithms account for the road structure (whether from the perspective of the

ego-vehicle or a top-down view) often in the form of raw visual inputs or, in some cases,

as an occupancy map [309, 340]. The scene layout can implicitly capture the structure of

the road, the appearances of the objects (e.g. shape) and the dynamics (e.g. velocity or

locations of subjects). Such implicit information can be further augmented by explicit data

such as the shapes of the objects (in the case of vehicles) [345], the speed [337, 280] and

steering angle [337, 280] of the ego-vehicle, the distance between the objects [255, 350], traffic

rules [350] and signals [341], and kinematic constraints [342]. For example, the method in

[280] uses a two-stream LSTM encoder-decoder scheme: the first stream encodes the current

ego-vehicle’s odometry (steering angle and speed) and the last observation of the scene
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and predicts future odometry of the vehicle. The second stream is a trajectory stream

that jointly encodes location information of pedestrians and the ego-vehicle’s odometry and

then combines the encoding with the prediction of the odometry stream to predict the

future trajectories of the pedestrians. Chandra et al. [345] create embeddings of contextual

information by taking into account the shape and velocity of the road users and their spatial

coordinates within a neighboring region. These embeddings are then fed into some LSTM

networks followed by a number of convolutional layers to capture the dynamics of the scenes.

In [309] the authors use separate LSTMs for encoding the trajectories of pedestrians and

vehicles (as oriented bounding boxes) and then combine them into a unified framework by

generating an occupancy map of the scene centered at each agent, followed by a pooling

operation to capture the interactions between different subjects. Lee et al. [332] predict

the future trajectories of vehicles in two steps: First, an encoder-decoder GRU architecture

predicts future trajectories by observing the past ones. Then a refinement network adjusts

the predicted trajectories by taking into account the contextual information in the form of

social interactions, dynamics of the agents involved, and the road structure.

A recent trend in trajectory prediction algorithms is the use of attention modules [305,

306, 307, 311, 313, 330, 319, 348, 331]. For example, in [305, 311], the attention module jointly

measures spatial and temporal interactions. The authors of [306, 307, 313, 348] propose

the use of social attention modules which estimate the relative importance of interactions

between the subject of interest and its neighboring subjects. Xue et al. [319] propose an

attention mechanism to measure the relative importance between different data modalities,

namely the locations and velocities of subjects.

Overall, as it becomes obvious from the review, the recurrent architectures are strongly

favored in this domain primarily due to the fact that they are flexible in terms of dealing

with variable lengths of data sequence and also incorporating multi-modal data.

7.1.2 Intention Estimation

In the computer vision and robotics literature, the term intention is often used in the context

of action classification or path refinement. In [351], the authors assume that pedestrians

want to cross and decide whether the crossing takes place in front of the vehicle and when.

Intention, defined as the potential goal (destination) of pedestrians, is used to refine predicted

trajectories [352, 353, 294, 325]. These approaches rely heavily on the motion history of the

pedestrians and predict the trajectory of every individual.

To the best of our knowledge, there is only one previous work that defines pedestrian

crossing intention as their principal goal to cross [281]. The authors propose to infer pedes-
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trian crossing intention from their movement patterns and their proximity to various road

elements, e.g. curbside, bus stop, ego-vehicle lane. Their algorithm, however, does not

contain a perception mechanism and relies on ground truth information for reasoning.

7.1.3 Datasets for Pedestrian Trajectory Prediction

A number of datasets for trajectory prediction contain videos collected from a top-down view

[354, 355, 356, 357] or surveillance camera perspective [358, 359, 360]. There are relatively

fewer datasets that are specifically catered for pedestrian behavior prediction from a moving

vehicle perspective. Publicly available pedestrian detection datasets [231, 232, 252] can

potentially be used for such a purpose, however, they lack necessary characteristics such as

ego-vehicle information [231], temporal correspondence [252], or enough pedestrian samples

with long tracks [232]. These datasets also do not include any form of pedestrian behavior

annotations that can be used for action prediction.

The JAAD that we introduced in Section 4.3.1, contains a large number of pedestrian

samples with temporal correspondence, a subset of which are annotated with behavior in-

formation. However, for the purposes of intention estimation and trajectory prediction, this

dataset has a number of drawbacks. The dataset does not have ego-vehicle information, the

videos are divided into short discontinuous chunks, and the majority of pedestrian samples

with behavioral annotations have the intention of crossing.

7.2 Pedestrian Intention Estimation (PIE) Dataset

The PIE dataset1 2 consists of over 6 hours of driving footage captured with calibrated

monocular dashboard camera Waylens Horizon equipped with 157◦ wide-angle lens. All

videos are recorded in HD format (1920× 1080 px) at 30 fps. The camera was placed inside

the vehicle below the rear-view mirror. For convenience, videos are split into approx. 10

minute long chunks and grouped into 6 sets. The entire dataset was recorded in downtown

Toronto, Canada during the daytime under sunny/overcast weather conditions.

Our dataset represents a wide diversity of pedestrian behaviors at the point of crossing

and includes locations with high foot-traffic and narrow streets as well as wide boulevards

with fewer pedestrians. PIE provides long continuous sequences and annotations for a wide

range of applications.

1The dataset and more details regarding the annotations can be found at
http://data.nvision2.eecs.yorku.ca/PIE dataset/.

2Collection of this dataset was approved by the York Ethics Committee with certificate # 2016-203.
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PIE JAAD
# of frames 911K 82K
# of annotated frames 293K 75K
# of pedestrians 1.8K 2.8K
# of pedestrians with behavior annot. 1.8K 686
# of pedestrian bboxes 740K 391K
Avg. pedestrian track length 401 140
Pedestrian intention yes no
Ego-vehicle sensor information yes no
Scene object annotations bboxes+text text

Table 7.1: Properties of the PIE dataset compared to JAAD.

7.2.1 Annotations

For each pedestrian close to the road that can potentially interact with the driver we provide

the following annotations: bounding boxes with occlusion flags, as well as crossing intention

confidence and text labels for pedestrians’ actions (“walking”, “standing”, “looking”, “not

looking”, “crossing”, “not crossing”). Each pedestrian has a unique id and can be tracked

from the moment of appearance in the scene until going out of the frame. An occlusion flag

is set to partial occlusion if between 25 and 75% of the pedestrian is not visible and to full

if > 75% of the pedestrian is not visible. Crossing intention confidence is a numeric score

estimated from human reference data (see Section 7.3).

Spatial annotations are provided for other relevant objects in the scene, including in-

frastructure (e.g. signs, traffic lights, zebra crossings, road boundaries) and vehicles that

interact with pedestrians of interest3.

Using an on-board diagnostics (OBD) sensor synchronized with the camera we provide

GPS coordinates and vehicle information, such as accurate speed and heading angle, for each

frame of the video. Table 7.1 summarizes the properties of PIE and JAAD datasets. JAAD

has bounding box annotations for all pedestrians, which makes it suitable for detection and

tracking applications. However, it lacks accurate vehicle information, spatial annotations for

traffic objects and pedestrian intentions which are vital for pedestrian action prediction.

3We used the CVAT tool (https://github.com/opencv/cvat) for all spatial annotations and behavior
labels.
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7.3 A Human Study on Predicting Pedestrian Crossing

Intention

As mentioned earlier, research in the field of pedestrian behavior understanding largely

focuses on the problem of action and behavior prediction, while the topic of intention es-

timation remains relatively unaddressed. Partly this is due to the fact that establishing

ground truth for crossing intention is infeasible since it would require interviewing people on

the street and observing their actions after the vehicle passed by them [281]. However, this

data is necessary for identifying and focusing on the most relevant pedestrians on the street,

pedestrian behavior understanding and prediction, including trajectory estimation. In order

to determine human reference data for samples in the PIE dataset we conducted a human

experiment described below.

7.3.1 Experiment Description

(a) (b)

(c)

Figure 7.2: An example of the first (a) and the last (b) freeze-frames from a video clip used
in the human experiment. c) The timeline showing how the clips were cropped from the
pedestrian track.

The experiment involved watching short videos from the PIE dataset. We asked the

participants to observe a single pedestrian highlighted in the first few seconds and, after

viewing each video once, answer the following question: “Does this pedestrian want to cross
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Figure 7.3: A plot of average responses to the question “Does this pedestrian want to cross?”
for each of the 1842 video samples containing a single pedestrian of interest. Answer option
5 is selected for the presence and option 1 for the absence of crossing intention respectively.
Answer options in between represent various levels of uncertainty. In-lab and AMT responses
are shown as green and red dots respectively. Average responses are sorted in descending
order for clarity.

the street?”. The options were set on a 5-interval scale (the outer intervals for definite ‘yes’

or ‘no’ and 3 intervals expressing varying degrees of uncertainty in between).

Videos used in the experiment were generated for each of the 1842 labeled pedestrians in

the PIE dataset. Using GPS information and vehicle speed we created short clips showing ≈
3s before the vehicle reaches 1.5−3s time-to-event. In cases when ego-vehicle was stationary

the video was cropped at 3s before the pedestrian began crossing. The first and the last

frames of each video clip were frozen for 4s to allow the subjects to get familiar with the

scene. The pedestrian of interest was highlighted with a red arrow pointing down for the

duration of freeze-frames in the beginning and at the end of the video (see Figure 7.2 for an

example).

7.3.2 Procedure

We first ran the experiment in a lab setting with 5 subjects (ages 27−62) each of whom viewed

the entire set of 1842 videos. We then repeated the same experiment on Amazon Mechanical

Turk (AMT) to gather additional 10 answers per video. For the AMT experiment, we

grouped videos into sets of 10 for each HIT (Human Intelligence Task). We limited our

study to participants residing in Canada and the USA to ensure that they are familiar with

the rules of the road, signs, road delineation, etc. and to reduce any cultural bias. In total,

we collected 27, 630 responses from over 700 subjects (ages 19− 88).
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7.3.3 Results

A plot of aggregated responses from lab and AMT participants is shown in Figure 7.3. Since

ground truth data was not available, we focused on analyzing the agreement among subjects

to validate our results. First, we computed an intraclass correlation coefficient (ICC), a

measure of inter-rater consistency, commonly used to analyze subjective responses from a

large population of raters in the absence of ground truth data [361]. Despite an inherent

degree of subjectivity of estimating pedestrian intention, the measured ICC4 is 0.97 and 0.93

for the lab and AMT subjects respectively, which suggests a very high degree of agreement

within both groups of raters (ICC = 1 for absolute agreement). The slightly lower agreement

among the AMT workers is likely due to the much larger and diverse group of subjects and

the presence of factors that we could not control for (e.g. viewing conditions, distractions,

etc.).

Despite some noise present in the AMT data, the Pearson correlation coefficient between

the average responses of the lab and AMT subjects is 0.90 suggesting that both groups

answer similarly. For instance, 14 out of 15 raters agreed on the same answer in nearly 17%

of cases. On the other hand, there were only 10 cases in the entire dataset where raters did

not reach an agreement with respect to the pedestrian’s intention, resulting in an average

score of exactly 3 (’Not sure’). The samples in question included pedestrians who were close

to the curb or already stepped onto the road but were distracted, e.g. by their phone or by

interacting with another person. Bus stops in close proximity to the pedestrian crossings were

another source of confusion, making it difficult to distinguish between pedestrians waiting

for the bus and those waiting to cross. However, the number of these borderline cases was

very low (≈ 3%).

The PIE dataset contains 898 examples of people who intend to but do not cross, 512

pedestrians with the intention to cross who eventually cross in front of the vehicle and 430

pedestrians with no crossing intention. Interestingly, there are only 2 samples where the

pedestrian crossed the street but responses from human subjects did not indicate crossing

intention. Since this type of false negative is a potential safety concern, it is reassuring that

human participants are particularly good at interpreting others’ intentions.

4We use ICC(3,k) and ICC(1,k) for lab and AMT data respectively. The first measure assumes that a
fixed number of raters k (in this case k = 5 for in-lab participants) rate all targets and the second measure
assumes that a subset of k raters (k = 10) from a large population rates all targets. Ratings are aggregated
across raters in both cases.
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Figure 7.4: The proposed intention estimation and trajectory prediction framework. The
system receives as input a sequence of images and the current speed of the ego-vehicle.
The intention estimation model’s encoder receives as input a square cropped image around
the pedestrians, produces some representation which is concatenated with their observed
locations (bounding box coordinates) before feeding them to the decoder. The speed model
predicts future speed using an encoder-decoder scheme followed by a series of self-attention
units. The location prediction unit receives location information as encoder input and the
combination of encoder representations, pedestrian intention and future speed as decoder
input, and predicts future trajectory. In the diagram, FC refers to fully-connected layers,
s1:m. ©+ to concatenation operation and s1:m. ©× to element-wise multiplication. Location,
intention and speed are denoted by l, int and s respectively.

7.4 Methods for Intention Estimation and Trajectory

Prediction

In this work, we address the problem of pedestrian behavior prediction on two levels: Early

anticipation in the form of estimating pedestrians’ intention of crossing and trajectory pre-

diction as late forecasting of the future trajectory of pedestrians based on observed scene

dynamics. The former primarily serves as a refinement procedure to change the focus of

an intelligent system to those pedestrians that matter, or potentially will interact with the

vehicle. Intention estimation may also benefit trajectory prediction by implying the types

of motion patterns that are more probable in the scene. For instance, someone with no

intention of crossing will not perform a lateral movement across the street in front of the

vehicle.
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7.4.1 Pedestrian Intention Estimation

We represent pedestrian intention for each sample as an average response of human ex-

periment participants, rescaled to range [0, 1] and rounded. Then we define the task as

a binary classification problem of predicting whether the pedestrian i has an intention of

crossing the street inti ∈ {0, 1} given a partial observation of local visual context around

pedestrian Cobs = {ct−mi , ct−m+1
i , ..., cti} and trajectory Lobs = {lt−mi , lt−m+1

i , ..., lti}, where l

is a 2D bounding box around the pedestrian defined by top-left and bottom-right points

([(x1, y1), (x2, y2)]).

It has been shown that pose, implicitly encoded in the appearance (e.g. whether the

person is leaning forward or turned towards the road), immediate local surroundings (e.g.

location relative to the curb) and motion, convey vital information about the intention to

cross. Other context elements, such as street signs, traffic signals as well as the behavior of

the ego-vehicle, may influence pedestrian’s actions, e.g. whether they will attempt to cross,

but will not have an effect on their initial intention to cross the street.

For the task of the intention estimation, we employ an RNN encoder-decoder architecture

(see Figure 7.4), where encoder receives a sequence of feature representations correspond-

ing to the image areas around the detected pedestrian. The output of the encoder is then

concatenated with the sequence of bounding box coordinates which capture pedestrian dy-

namics. We use a binary cross-entropy loss function for training.

7.4.2 Pedestrian Trajectory Prediction

We address the problem of future trajectory prediction as an optimization process in which

the objective is to learn the distribution p(Lpred|Lobs, Spred, Inti) for multiple pedestrians 1 ≤
i ≤ n, where Lpred = {lt+1

i , lt+2
i , ..., lt+τi } are the predicted trajectories of pedestrians, Lobs =

{lt−mi , lt−m+1
i , ..., lti} are the observed locations of pedestrians, Spred = {st+1, st+2, ..., st+τ}

refers to predicted future speed of the ego-vehicle, and Inti is the crossing intention of

pedestrian i estimated by the intention estimation stream. The locations, l are 2D bounding

boxes around pedestrians defined by top-left and bottom-right corner points [(x1, y1), (x2, y2)]

As depicted in Figure 7.4, the proposed model is based on an RNN encoder-decoder

architecture where the inputs to the encoder are the observed locations of pedestrians for

some time t and the output of the decoder is the future trajectory prediction up to time

t + τ . We use two types of attention: a temporal attention module applied to the encoder

inputs and a self-attention unit applied to the decoder inputs. The former focuses on finding

the most relevant information (key frames) in the observed sequence, whereas the latter is

applied at feature-level and focuses on the parts of the encoding representation that are
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relevant to current prediction. The self-attention units are preceded by embedding units for

dimensionality reduction of encodings in order to minimize the effect of noise. The final

predictions are generated by a linear transformation of the decoder’s output.

The vehicle speed estimation stream follows a similar scheme, except it learns p(Spred|Sobs),
where Sobs refers to observed speed of the vehicle up to time t. At training time, both

sequence prediction models use a mean squared error loss function defined as MSE =
1
N

∑τ
j=1 ||loc

t+j
i − ˆloci

t+j
||.

7.4.3 Implementation

Intention Estimation. We use Convolutional LSTM with 64 filters and kernel size of 2×2

with stride 1 as encoder and for decoder an LSTM with 128 hidden units, tanh activation,

dropout of 0.4 and recurrent dropout of 0.2. VGG16 [362] (without fc layers) pretrained

on ImageNet [363] is used to encode image features. We experiment with two different

types of visual information. The first is imgbbox which is input image cropped to the size

of the bounding box, resized so that the larger dimension matches the VGG input size of

224 × 224 and padded with zeros to preserve the aspect ratio. The second type of input is

local context around the pedestrian (imgcontext) which is input image cropped to 2× the size

of the bounding box, squarified and resized to 224× 224.

Trajectory Prediction. We use LSTMs with 256 hidden units and softsign activation

in our trajectory and speed prediction streams. Compared to tanh activation, we observed

faster training and performance improvement of up to 5% when using softsign activation.

The embedding layer in the trajectory prediction stream is a fully-connected network with

64 output nodes and no dropout5.

Training. Models are trained separately and combined at test time. Intention and

trajectory models are trained using RMSProp [364] optimizer with learning rate of 10−5 and

10−2 respectively. The intention model was trained for 300 epochs using a batch size of 128

with L2 regularization of 0.001. We trained the trajectory model for 60 epochs using a batch

size of 64 with L2 regularization of 0.0001.

5The full implementation can be found at https://github.com/aras62/PIEPredict.
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7.5 Experimental Evaluations

7.5.1 Datasets

Pedestrian Intention Estimation (PIE). There are 1842 pedestrian samples divided into

train, test and validation sets with the ratios of 50%, 40% and 10% respectively. We sample

the tracks with an overlap ratio of 0.5. For trajectory prediction training, the tracks below

the minimum length of 2 seconds (observation + prediction) are discarded. We use the OBD

sensor readings for speed information.

Joint Attention in Autonomous Driving (JAAD). For trajectory prediction evalu-

ation using only bounding boxes we use pedestrian tracks from the JAAD dataset. Given the

smaller number of samples and shorter tracks in this dataset, we use all pedestrian samples

with overlap ratio of 0.8. We use the same train/test split as in Section 6.3.2 using JAAD

mix subset and exclude the low-resolution and low-visibility videos (13 out of 346) from the

evaluation.

7.5.2 Metrics

For intention estimation we report accuracy and F1-score defined as 2·precision·recall/(precision+

recall). The following metrics are used for evaluation of the proposed trajectory prediction

algorithm: MSE over bounding box coordinates [280], CMSE and CFMSE which are the

MSEs of the center of the bounding boxes averaged over the entire predicted sequence and

only the last time step (t + τ) respectively. All results of the bounding box predictions are

in pixels.

7.5.3 Pedestrian Intention Estimation

Method Input data acc F1

LSTM loc 0.63 0.73

LSTMed
loc 0.67 0.76
imgbbox 0.60 0.78

PIEint

imgbbox 0.69 0.79
imgcontext 0.71 0.82
imgbbox + loc 0.73 0.82
imgcontext + loc 0.79 0.87

Table 7.2: Pedestrian intention estimation results for various combinations of input data:
loc - bounding box coordinates, imgbbox - image cropped to the size of bounding box, and
imgcontext - image cropped to 2× size of the bounding box to show local context.
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Table 7.2 summarizes the results of various models trained on different combinations of

input data over 0.5s of observation. The following models are used in the evaluation: a

vanilla LSTM trained on normalized bounding box coordinates (loc) as a baseline, an LSTM

encoder-decoder (LSTMed) trained on normalized bounding box coordinates or imgbbox and

the proposed model PIEint trained on 4 different types of input data, imgbbox, imgcontext,

imgbbox + loc and imgcontext + loc.

The baseline LSTM achieves 63% accuracy. In comparison, LSTM encoder-decoder

(LSTMed), performs better using the same information, however, it does worse using only

imgbbox even though it has a higher F1-score. This can be due to the fact that pedestrian

appearance in the absence of dynamics is not informative enough.

PIEint overall performs better than the other two models on all input types. Its per-

formance on appearance features (imgbbox) and motion data (loc) is approx. 4% above the

baseline performance. Adding local context (imgcontext) offers a small performance improve-

ment. This suggests that, despite using different representations, motion or appearance

features on their own may not be effective in estimating intention. As expected, combin-

ing different sources of information results in improved performance. We see that motion

improves intention estimation on samples that are relatively far away or occluded, where

visual information is unreliable. However, in situations where the pedestrian was more visi-

ble, their pose and context elements were also very important. Overall, the combination of

appearance, local context and motion offer the most advantage boosting the final accuracy

to 79%. Figure 7.5 shows some examples of the proposed algorithm’s performance.

7.5.4 Trajectory Prediction

PIE JAAD
Method MSE CMSE CFMSE MSE CMSE CFMSE

0.5s 1s 1.5s 1.5s 1.5s 0.5s 1s 1.5s 1.5s 1.5s

Linear 123 477 1365 950 3983 223 857 2303 1565 6111
LSTM 172 330 911 837 3352 289 569 1558 1473 5766

B-LSTM [280] 101 296 855 811 3259 159 539 1535 1447 5615
PIEtraj 58 200 636 596 2477 110 399 1248 1183 4780

Table 7.3: Location (bounding box) prediction errors over varying future time steps. MSE in
pixels is calculated over all predicted time steps, CMSE and CFMSE are the MSEs calculated
over the center of the bounding boxes for the entire predicted sequence and only the last
time step respectively.

We begin by evaluating the proposed model using only location (bounding box) informa-

tion. For this purpose we report the results on the following models: two baseline models,
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Figure 7.5: Results of pedestrian intention estimation overlaid on top of frames from the
PIE dataset (cropped for better visibility). Bounding boxes are colored depending on the
presence (green) or absence (red) of crossing intention as detected by our model. Dashed
bounding boxes represent incorrectly estimated intention.

a linear Kalman filter [365] and a vanilla LSTM model, state-of-the-art algorithm, Bayesian

LSTM [280] (B-LSTM), and the proposed model PIEtraj. Each model is trained and tested

on 0.5s (15 frames) observation, and predicts trajectories over 0.5, 1 and 1.5 seconds in

future.
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Table 7.3 summarizes the results of the predictions using only bounding box information.

As shown in the table, the proposed method achieves state-of-the-art performance on all

metrics, by up to 26% on the PIE dataset and 18% on JAAD compared to B-LSTM. The

performance of all models is generally poorer on the JAAD dataset which can be partially

attributed to the smaller number of samples, scales and shorter tracks all of which reduce

the diversity of the dataset. The deterioration of linear model performance for long-term

predictions indicates the complexity of human motion patterns that cannot be explained

with simple linear interpolation. As expected, the performance of all models is generally

better on bounding box centers due to the fewer degrees of freedom.

7.5.5 Ego-Vehicle Speed Prediction

MSE
Method 0.5s 1s 1.5s last

Linear 0.87 2.28 4.27 10.76
LSTM 1.50 1.91 3.00 6.89

PIEspeed 0.63 1.44 2.65 6.77

Table 7.4: Speed prediction errors over varying time steps on the PIE dataset. Last stands
for the last time step. The results are reported in km/h.

We first evaluate the proposed speed prediction stream, PIEspeed, by comparing this model

with two baseline models, a linear Kalman filter and a vanilla LSTM model. We use MSE

metric and report the results in km/h. Table 7.4 shows the results of our experiments. The

linear model achieves reasonable performance in short-term which is better than the vanilla

LSTM over 0.5s. This indicates that the speed variation often is insignificant in the short-

term, especially in urban environments which is the case in the proposed PIE dataset. In

long-term, however, LSTM-based models perform significantly better. The proposed PIEspeed

achieves the best performance by up to 10% over vanilla LSTM model.

7.5.6 Intention in Trajectory Prediction

Earlier we argued that pedestrian intention can serve as an early prediction stage in addition

to trajectory prediction. Here, we examine whether estimating pedestrians’ intention of

crossing can improve trajectory prediction. We report the results on our trajectory prediction

model PIEtraj which receives as input the context information provided by PIEspeed and

PIEint. We report the results on 0.5s observation and 1.5s prediction.

As shown in Table 7.5, conditioning trajectory prediction on pedestrian intentions can

improve the results by up to 4%. This is due to the fact that intention may imply certain
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Method Input MSE CMSE CFMSE

PIEtraj

loc 636 596 2477
loc+PIEint 611 570 2414
loc+PIEspeed 572 535 2204
loc+PIEint+PIEspeed 559 520 2162
loc+ int+ speed 473 435 1741

Table 7.5: Location (bounding box) prediction errors of the proposed model PIEtraj on 0.5s
observation and 1.5s prediction using different inputs. loc, int and speed stand for location,
intention and vehicle speed. PIEint and PIEspeed are the outputs of the intention and vehicle
speed estimation models. MSE is reported in pixels and calculated over all predicted time
steps. CMSE and CFMSE are the MSEs over the center of the bounding boxes for the entire
predicted sequence and only the last time step respectively.

patterns of motion. For instance, someone with the intention of crossing might have a lateral

movement across the street whereas someone without intention might stand still. As one

would expect, the ego-vehicle’s speed improves the trajectory prediction, and when combined

with pedestrian intention, the best results are achieved with more than 11% improvement

over baseline using only bounding boxes.

Figure 7.6 illustrates the performance of our proposed algorithm using different contextual

information on the PIE dataset. Even though speed has a dominant effect in improving

trajectory prediction it may also fail in certain cases, when the vehicle is stationary or when

the pedestrian has no intention of crossing.

7.6 Summary

In this chapter, we presented a novel large-scale dataset for studying pedestrian crossing

intention and behavior with extensive multimodal annotations for visual reasoning tasks.

Since there is no ground truth data for crossing intention, we conducted a large-scale exper-

iment to determine human reference data for this task. Our data shows that a large number

of human experiment subjects have a high degree of agreement in their answers.

As part of this work, we proposed a trajectory prediction algorithm for an on-board

camera. Our model outperforms the state-of-the-art by a significant margin. In addition, we

proposed a baseline intention estimation model and by evaluating various input data combi-

nations we showed that the appearance of pedestrians and their local surrounding context in

conjunction with the changes in their movements are good predictors for estimating crossing

intention. In the end, we presented empirical results that suggest that combining various

sources of information such as ego-vehicle speed and pedestrian intention with motion history

can improve the performance of the trajectory prediction algorithm.
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t t + 0.5s t + 1s t + 1.5s

Figure 7.6: Examples of trajectory prediction algorithm using the proposed model PIEtraj

with different input combinations. The color and model combinations are: loc (yellow),
loc+PIEint (blue), loc+PIEspeed (red), and loc+PIEint+PIEspeed (purple). Ground truth
annotations are shown in green. The sequences depict different traffic scenarios. From top
to bottom: A man leaving his vehicle, a woman crossing the street, a man hailing a taxi,
and a woman waiting to cross.
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Chapter 8

Anticipating Pedestrian Crossing

Action Using Contextual Cues

Figure 8.1: Examples of pedestrians prior to making crossing decisions. Green and red colors
indicate whether the pedestrian will or will not cross.

In Chapter 7, we talked about trajectory prediction algorithms as one of the important

components for planning in autonomous driving systems. Another common approach for

planning is event prediction, in particular, predicting pedestrian crossing actions. This

allows autonomous cars to make an assessment of pedestrians’ behavior and act accordingly.

Similar to the trajectory prediction tasks, merely relying on pedestrian dynamics is not

sufficient for making sense of pedestrian behavior and predicting their upcoming actions

as they are often subject to error. For example, a pedestrian intending to cross the street

could be standing at the intersection (with no motion history), walking alongside the road

or abruptly changing their walking pattern prior to crossing [130] (see Figure 8.1). In addi-

tion, pedestrians exhibit highly variable motion patterns which can be influenced by various

environmental factors such as signals, the ego-vehicle motion, road structure, etc. All of

these factors add to the complexity of predicting pedestrian actions (see Chapter 3 for more
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information). Thus statistical inference on pedestrian trajectories alone may not be sufficient

for predicting their actions.

In this chapter we examine the role of context on pedestrian action prediction. Given

that the main point of interaction between autonomous vehicles and pedestrians is at the

time of crossing, here we particularly focus on the pedestrian crossing anticipation, i.e. we

determine whether an observed pedestrian will cross in front of the vehicle. For this purpose,

we discuss a subset of contextual information that can potentially impact pedestrian behavior

and analyze various computational models to incorporate such information for reasoning

about future actions.

8.1 A Review of Action Prediction Algorithms

Action prediction algorithms can be categorized into two groups: Next action or event

prediction (or action anticipation) [366, 367, 368, 369, 370, 371], and early action prediction

[372, 373, 374, 375, 323, 376, 377, 378, 379, 380]. In the former category, the algorithms use

the observation of current activities or scene configurations and predict what will happen

next. Early action prediction algorithms, on the other hand, observe parts of the current

action in progress and predict what this action is. Our focus will be on the former category

in which we intend to predict what will happen next without observing any parts of the

upcoming action. Some recent works use traditional learning methods for behavior prediction

[381, 382, 383, 384, 385, 386], however, given the dominance of deep learning algorithm, we

focus our review on this class of algorithms.

Action prediction algorithms are used in a wide range of applications including cooking

activities [366, 367, 368, 387, 369, 370, 371, 388], traffic understanding [389, 390, 391, 392,

393, 392, 394, 341, 395, 396], accident prediction [397, 398, 399, 400], sports [401, 402]

and other forms of activities [305, 372, 403, 404, 405, 406, 407, 408, 409, 386]. Although

the majority of these algorithms use sequences in which the objects and agents are fully

observable, a number of methods rely on egocentric scenes [366, 367, 370, 403, 401, 386]

which are recorded from the point of view of the acting agents and only parts of their bodies

(e.g. hands) are observable.

The methods used in action prediction predominantly use a variation of RNN-based

architectures including LSTMs [305, 367, 368, 387, 392, 369, 370, 398, 403, 393, 392, 404,

405, 401, 400, 402, 388, 407, 410, 395, 396], GRUs [372, 389, 371], ConvLSTMs [394], and

Quasi-RNNs (QRNNs) [399]. For instance, in [372, 369] the authors use a graph-based RNN

architecture in which the nodes represent actions and the edges of the graph represent the

transitions between the actions. The method in [371] employs a two-step approach: using a
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recognition algorithm, the observed actions and their durations are recognized. These form

a one-hot encoding vector which is fed into GRUs for the prediction of the future activities,

their corresponding start time and length. In the context of vehicle behavior prediction,

Ding et al. [389] uses a two-stream GRU-based architecture to encode the trajectory of two

vehicles and a shared activation unit to encode the vehicles mutual interactions. Scheel et

al. [411] encode the relationship between the ego-vehicle and surrounding vehicles in terms

of their mutual distances. The vectorized encoding is then fed into a bi-directional LSTM.

At each time step, the output of the LSTM is classified, using a softmax activation, into a

binary value indicating whether it is safe for the ego-vehicle to change lane. In [399] the

authors use a QRNN network to capture the relationships between road users in order to

predict the likelihood of a traffic accident. To train the model, the authors propose an

adaptive loss function that assigns penalty weights depending on how early the model can

predict accidents.

As an alternative to recurrent architectures, some algorithms use feedforward architec-

tures using both 3D [366, 390, 391] and 2D [397, 371, 341, 402, 406, 408, 409, 386] convo-

lutional networks. For example, in the context of pedestrian crossing prediction, in [390]

the authors use a generative 3D CNN model that produces future scenes and is followed

by a classifier. The method of [391] detects and tracks pedestrians in the scenes, and then

feeds the visual representations of the tracks, in the form of an image sequence, into a 3D

CNN architecture, which directly classifies how likely the pedestrian will cross the road. To

predict the time of traffic accidents, the method in [397] processes each input image using

a 2D CNN model and then combines the representations followed by a fully-conntected (fc)

layer for prediction. Farha et al. [371] create a 2D matrix by stacking one-hot encodings of

actions for each segment of observation and use a 2D convolutional net to generate future

actions encodings. Casas et al. [341] use a two-stream 2D CNN, each processing the stacked

voxelized LIDAR scans and the scene map. The feature maps obtained from each stream are

fused and fed into a backbone network followed by three headers responsible for the detection

of the vehicles and predicting their intentions and trajectories. For sports forecasting, Felsen

et al. [402] concatenate 5 image observations channel-wise and feed the resulting output into

a 2D CNN network comprised of 4 convolutional layers and an fc layer.

Although some algorithms rely on a single source of information, e.g. a set of pre-

processed features from RGB images [372, 398, 399, 405, 400, 402, 388, 407, 410] or trajecto-

ries [389], many algorithms use a multimodal approach by using various sources of informa-

tion such as optical flow maps [367, 369, 370, 393, 386], poses [305, 369, 404, 396], road struc-

ture [403, 341], text [368], speed (e.g. ego-vehicle or surrounding agents) [392, 393, 411, 401],

and gaze [403, 404]. For example, Gammulle et al. [387] propose a two-stream LSTM net-
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work with external neural memory units. Each stream is responsible for encoding visual

features and action labels. Farha et al. [371] use a two-layer stacked GRU architecture

which receives as input a feature tuple of the length of the activity and its corresponding

one-hot vector encoding. In [393], the method uses a two-stage architecture: First informa-

tion regarding the appearance of the scene, optical flow (pre-processed using a CNN) and

vehicle dynamics are fed into individual LSTM units. Then, the output of these units is

combined and passed through an fc layer to create a representation of the context. This

representation is used by another LSTM network to predict future traffic actions. Jain et

al. [396] use a fusion network to combine head pose information of the driver, outside scene

features, GPS information, and vehicle dynamics to predict the driver’s next action.

Similar to trajectory prediction algorithms, in the field of action anticipation, recurrent

architectures are strongly preferred. Compared to feedforward algorithms, recurrent methods

have the flexibility of dealing with variable observation lengths and multi-modal data, in

particular, when they are significantly different, e.g. trajectories and poses.

In terms of the use of context, many of the pedestrian behavior prediction algorithms for

traffic scenes rely on dynamic information. Those that include visual context either focus

on very limited information, e.g. head orientation, or encode the entire scene which can be

quite noisy and uninformative for reasoning. Here, we focus on a subset of visual context

and encode what may matter for reasoning, both implicitly and explicitly.

8.2 Anticipating Crossing Using Multi-Modal Data Fu-

sion

We define pedestrian crossing prediction as a binary classification problem in which the objec-

tive is to determine whether a pedestrian i will cross the street given the observed context up

to some time m. The prediction relies on five sources of information including the local con-

text {Cpi , Csi}, where Cpi = {c1pi , ..., c
m
pi
} and Csi = {c1si , ..., c

m
si
} refer to visual features of the

pedestrian and their surroundings respectively, pedestrian pose Pi = {p1i , ..., pmi }, 2D bound-

ing box locations Bi = {b1i , ..., bmi }, where bi is a two-point coordinate [(x1i, y1i)(x2i, y2i)]

corresponding to the top-left and bottom-corner of the bounding box around the pedestrian,

and the speed of the ego-vehicle S = {s1, ..., sm}.

8.2.1 Context for crossing prediction

In this section we describe how we incorporated some of the contextual elements that we

discussed in Chapter 3. It should be noted that due to algorithmic limitations and lack
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of data we cannot include all these factors. For example, identifying pedestrians abilities

to asses the environment, their belief system or how long they have been waiting prior to

crossing is not possible to detect. In addition, our dataset does not have 3D information

which limits our abilities to reason about traffic flow, distance, and other dynamic factors.

Annotated data is also limited to pedestrians who likely want to cross. This means that

training a model to explicitly detect all traffic objects and reason about the relationships

between them is extremely challenging.

To accommodate these limitations, we define five sources of information to capture many

of contextual elements discussed in Chapter 3.

Local context refers to the visual representations of pedestrians and their surround-

ings. We make use of pedestrians’ appearances within the predefined bounding boxes. This

information reflects pedestrian age, state, gender or any other relevant attributes. We also

consider a region around the pedestrians proportional to the size of their bounding boxes.

The size of the region is set in a way to include information regarding the presence of signals,

zebra crossing lines, pedestrians proximity to curbs, and whether or not the pedestrians are

in a group. By relying on visual representations in this way, we intend to implicitly identify

the potential relevant components.

At each time step of the observation, for each pedestrian, we use their appearance and

surroundings. The former is captured using images cropped to the size of 2D bounding boxes

around the pedestrian in the frame. For the surroundings, we extract a region around the

pedestrian by scaling up the 2D bounding box coordinates, and squarifying the dimensions

so the width of the scaled bounding box matches its height. This gives us a wider viewing

angle of the scene around the pedestrian which may include street, other pedestrians, signals

or traffic. In the surround crop, we suppress the pedestrian appearance by setting the

pixel values in the original bounding box coordinate to neutral gray. Both appearance and

surround crops are processed using a convolutional neural network (CNN) which produces

two feature vectors vc1:mp and vc1:ms .

Pose. We explicitly make use of pedestrians’ poses. The pose information shows whether

the pedestrian is looking at the traffic or distracted, whether she is walking, standing, or

sitting and to some extent can capture certain disabilities.

The pose network used for this purpose generates 18 body joints coordinates, each corre-

sponding to a point in 2D space, for each pedestrian. The joint coordinates are normalized

and concatenated into a 36D feature vector vp1:m.

2D bounding box. The bounding box information captures the trajectories of pedes-

trians in the scene. In addition, using box coordinates provides a sense of scale which helps

estimate distances of pedestrians to the ego-vehicle. In conjunction with the speed of the
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ego-vehicle, time to collision (TTC) can also be approximated.

We transform the bounding box coordinates into relative displacement from the initial

position forming a feature vector vb1:m. This can be seen as the velocity of the pedestrian

at every time step.

Speed of the ego-vehicle is necessary to reason about the dynamics of the scene which

has a direct impact on pedestrian behavior. As was mentioned in Chapter 3 and 4, changes

in the speed of the vehicle can be an indicator that the driver is communicating his intention

to pedestrians.

We present this information as a vector of the ego-vehicle speed recordings for each time

step vs1:m in km/h.

8.2.2 Architecture

Recurrent neural networks (RNNs) are extensions of feedforward networks. RNNs have

recurrent hidden states allowing them to learn temporal dependencies in sequence data.

This inherent temporal depth has been shown to greatly benefit tasks, such as pedestrian

trajectory prediction, that apply single-layer RNNs to point coordinates in a space. In

addition to temporal depth, the spatial depth of RNNs can also be increased by stacking

multiple layers of RNN units on top of one another. This approach is an effective way of

improving sequential data modeling in complex tasks [412], in particular, video sequence

analysis [413, 414] in which the network models dependencies between visual features of

consecutive video frames.

Given the multimodal nature of pedestrian action anticipation which relies on both dy-

namics and visual scene information, we employ a hybrid approach. We use a stacked RNN

architecture similar to [414] in which we gradually fuse the features at each level according

to their complexity. In other words, we input the visual features of the scene that can benefit

more from spatial depth of the network at the bottom layers and the dynamics features, e.g.

trajectories and speed, at the higher levels of the network (see Figure 8.2).

Multimodal feature fusion. For the joint modeling of our sequence data, we use gated

recurrent units (GRUs) [415] which are simpler compared to LSTMs and, in our case, achieve

similar performance. Recalling the equation of GRU, the jth level of the stack is given by,

rtj = σ(W xr
j xtj +W hr

j ht−1
j ),

ztj = σ(W xz
j xtj +W hz

j ht−1
j ),

h̃tj = tanh(W xh
j xtj +W hh

j (rtj � ht−1
j ),

htj = (1− ztj)� ht−1
j + ztj � h̃tj),

(8.1)
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Figure 8.2: The architecture of the proposed algorithm SF-GRU comprised of five GRUs
each of which processes a concatenation of features of different modalities and the hidden
states of the GRU in the previous level. The information is fused into the network gradually
according to the complexity of the features. Each feature input consists of m sequential
observations. From bottom to top layers features are fused as follows: pedestrian appearance
c1:mp , surrounding context c1:ms , poses p1:m, bounding boxes b1:m and ego-vehicle speed s1:m.
©+ refers to concatenation operation.

where σ(.) is the sigmoid function, rt and zt are reset and update gates, and matrices W .. are

weights between two units. For j = 0 (the bottom level of the stack), xt0 = vctp and for j > 0,

xtj = htj−1 + vyt[j − 1] where yt = {vcts, vpt, vbt, vst}. The final prediction is achieved by a

linear transformation of htn where n is the number of levels (in our case 5) in the proposed

stacked architecture. In the training phase we use the binary cross-entropy loss function.

8.2.3 Implementation

In our architecture, we use GRUs [415] with 256 hidden units. For local context, we crop

the pedestrian samples Cp using the 2D bounding box annotations, resize them so the larger

dimension is equal to 224 and pad them with zeros to preserve the aspect ratio. For surround

context, Cs, we use 2.5x (set empirically) scaled version of the 2D bounding boxes. The parts

of the cropped images that include pedestrians of interest are suppressed by neutral gray with

RGB of (128, 128, 128). We resize these images to 224 × 224. The local context images are

processed using VGG16 [362] (without fully-connected (fc) layers) pretrained on ImageNet
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[363] followed by an average global pooling generating a feature vector of size 512 per crop.

For pedestrian poses, we use [416] which is pretrained on the COCO dataset [417]. The

network generates 18-joint pose per pedestrian sample 1.

Training. The model is trained using ADAM [418] optimizer with a learning rate of

5 × 10−6 for 60 epochs with batch size of 32 and L2 regularization of 0.0001. The context

and pose features are precomputed. In addition, we augment the data at training time by

horizontally flipping the images and sub-sampling the over-represented class to equalize the

number of crossing and non-crossing samples.

8.3 Experimental Evaluations

8.3.1 Dataset

There are not many datasets suitable for the purpose of pedestrian crossing prediction. The

JAAD dataset introduced in Section 4.3.1 contains videos of pedestrians prior or during

crossing. Unfortunately, the number of samples in this dataset is small, no vehicle infor-

mation is available and sequences are short snippets which are not suitable for long-term

predictions. Therefore, we only use our PIE dataset (see Section 7.2) which comprises 1842

pedestrian tracks captured using an on-board monocular camera while driving in urban en-

vironments with various street structures and crowd densities. The samples represent people

who are close to the curbs or are at intersections and may or may not have the intention of

crossing, e.g. waiting for a bus. Overall, the ratio of non-crossing to crossing events is 2.5

to 1. All video sequences are collected during daylight under clear weather conditions. The

videos are continuous allowing us to observe the pedestrians from the moment they appear

in the scene until they go out of the field of view of the camera.

For each pedestrian sample we identified an event point. For those who cross in front of

the ego-vehicle, the event is the moment they start crossing. For other samples, the events

are set at the time when the pedestrians go out of the field of view of the camera. We

randomly split the data into train-test sets with ratio of 60-40 respectively.

8.3.2 Metrics

As in [399], we report all the evaluation results using the following metrics: Accuracy, F1

score, precision and recall. We also use Area Under Curve (AUC) metric which, in the case

of binary event anticipation, reflects the balanced accuracy of the algorithms.

1The full implementation can be found at https://github.com/aras62/SF-GRU.
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8.3.3 Predicting Crossing Events

We evaluate the performance of our proposed algorithm, stacked with multilevel fusion GRU

(SF-GRU ), against baseline models and state-of-the-art sequence analysis approaches:

Static. This model serves as a baseline. It has two VGG16 branches (without fc layers

and with a global pooling layer) pretrained on ImageNet. One network processes the local

context corresponding to the pedestrian crop cmp and the other processes the surroundings

cms at the last frame of the observation. The outputs of both networks are combined and fed

into a fc layer for the final prediction.

GRU. A single-layer GRU [415] trained and tested only on pedestrians’ appearances Cp

and their surroundings Cs. We also use this model with all sources of information which are

concatenated and fed into the network at the same time.

Multi-stream GRU (M-GRU). Following the approach in [280], this architecture pro-

cesses different types of features separately using different GRUs, and feeds the concatenation

of the last hidden states of all GRUs into a dense layer for prediction.

Hierarchical GRU (H-GRU). This model has a hierarchical structure similar to [419].

H-GRU processes each feature type using a separate GRU, concatenates the hidden states

of all units and then feeds them into another GRU whose last hidden state is used for pre-

diction.

Stacked GRU (S-GRU). This is a five-level stacked GRU architecture as described in

[414] which receives the feature inputs at the bottom layer. The inputs to the subsequent

GRUs in the higher levels are the hidden states of the GRUs in the previous layers.

All evaluations are done on observation sequences of 0.5s (15 frames) duration. The sam-

ples are selected with 2s time to event (TTE), the minimum time within which pedestrians

make crossing decisions according to [130].

Models Features Acc AUC F1 Prec Recall

Static cmp , c
m
s 0.592 0.589 0.419 0.328 0.582

GRU Cp, Cs 0.681 0.644 0.475 0.407 0.570

GRU Cp, Cs, P, B, S 0.811 0.812 0.685 0.593 0.812
M-GRU Cp, Cs, P, B, S 0.804 0.792 0.665 0.585 0.770
H-GRU Cp, Cs, P, B, S 0.819 0.805 0.685 0.612 0.776
S-GRU Cp, Cs, P, B, S 0.801 0.770 0.643 0.588 0.709
SF-GRU (ours) Cp, Cs, P, B, S 0.844 0.829 0.721 0.657 0.800

Table 8.1: Evaluation results of the algorithms using observation length of 0.5s and time
to event (TTE) of 2s. Abbreviations in features column are: pedestrian appearance Cp,
surround context Cs, pose P , bounding box B, and ego-vehicle speed S. cmp and cms stand
for appearance and surround context in the last observation frame respectively.
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Figure 8.3: Examples of the predictions produced by the proposed algorithm SF-GRU and
top competing methods, namely GRU, M-GRU, H-GRU, and S-GRU. In the examples, GT
stands for ground truth and green and red colors indicate whether the pedestrian will cross
in front of the ego-vehicle or not respectively. The instances where the color of the algorithm
labels matches the GT means that their predictions are correct.

The results are summarized in Table 8.1. We can see that using the visual information of

the local context, even as a single image in the static method can lead to approximately 60%

accuracy which can be improved by 9% by performing temporal reasoning using a GRU.

Using all sources of information, the proposed algorithm SF-GRU performs best on all

metrics except recall. For this metric single-layer GRU performs slightly better (by 1.2%)

at the expense of more than 6% drop in precision. In addition, the results show that no

performance improvement is achievable by simply adding layers to the network or separating

the processing of features with different modalities. Example predictions made by the SF-

GRU method are shown in Figure 8.3.

8.3.4 When to Predict Crossing Events

The prediction of crossing events may vary depending on TTE as the scene dynamics changes,

in particular, when the ego-vehicle motion impacts the way people make a crossing decision.

Here we examine the prediction ability of the temporal algorithms with respect to TTE.

We alter TTE points from 0s to 3s with steps of approximately 0.16s, a total of 19 different

points. To maintain the consistency of data across different time frames, we only sample from

pedestrian tracks equal to or longer than 3.5s (the maximum TTE time in the experiment +

observation length). All other parameters including the observation sequence length remain

the same as before.
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(a) (b)

Figure 8.4: The performance of the algorithms with respect to varying time to event (TTE)
points with 0.5s observation length.

The proposed algorithm SF-GRU performs best for the most part at different TTE points

(see Figure 8.4). At early TTE times where the intention of pedestrians becomes obvious, all

algorithms perform similarly well. However, as expected, the performance of the algorithms

degrades gradually (some at a faster rate than others) as the observations are moved further

away from the time of the event. We can also see that the single-layer GRU only performs

better than M-GRU and S-GRU up to 2s TTE after which its performance drops rapidly.

8.3.5 The Effect of Observation Length on Prediction
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Figure 8.5: The changes in the performance of SF-GRU according to varying observation
length and time to event (TTE).

Longer observation time can potentially provide more information but at the same time

may add noise. We examine the effect of observation length on the proposed algorithm

SF-GRU with respect to different TTE points. For the same reason as mentioned in the

previous experiment, we only sample from tracks with length equal to or longer than 4.5s

(the longest observation length + the largest TTE value). In total, we examine 16 different

combinations.
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As shown in Figure 8.5, on most metrics the improvement gain is only on samples very

close (0s) or far away (3s) from the event. In these cases, precision can be improved by

longer observations at the expense of reducing the recall. In critical decision regions of 1−2s,

however, a small gain is achieved by increasing observation from 0.3s to 0.5s after which point

the performance drops rapidly. This could be due to noise in longer observations caused by

accumulation of the changes in the scene dynamics. For instance, within 1.5s observation

window, the speed of the vehicle can change significantly which can have a considerable effect

on predicting pedestrian crossing behavior.

8.3.6 Feature Types and Prediction Accuracy

Features Acc AUC F1 Prec Recall

Cp 0.660 0.622 0.448 0.380 0.546
Cp+s 0.666 0.650 0.483 0.397 0.618
Cp, Cs 0.692 0.645 0.475 0.417 0.552
Cp, Cs, P 0.745 0.705 0.554 0.498 0.624
Cp, Cs, P,D 0.796 0.765 0.636 0.580 0.703
Cp, Cs, P, B 0.816 0.781 0.661 0.619 0.709
Cp, Cs, P, B, S 0.844 0.829 0.721 0.657 0.800

Table 8.2: The impact of different sources of information on the performance of SF-GRU.
The feature types are as follows: Cp pedestrian context (appearance), Cs surround context,
Cp+s full context , P pose, D displacement (center coordinates), B bounding box, and S
speed.

We examine the contribution of each feature type on the performance of the proposed

algorithm. In addition to the features discussed earlier, we also evaluate two other types of

features: displacement D (the center coordinates of the bounding boxes) and full context

Cp+s which is the pedestrian appearance and surround context in a single frame, not as

decoupled features as proposed earlier.

As shown in Table 8.2, we can see that adding contextual information in addition to

pedestrian appearance to the network improves the overall performance by more than 18%.

We also see that decoupling appearance and surround context boosts the accuracy by almost

3% owing to precision gain. Another observation is that using bounding box coordinates

instead of center coordinates improves the results by 2%. This can be due to the fact

that the changes in the scale of the bounding boxes in a sequence can add another layer

of information, e.g. the movement of pedestrian or the changes in their distance to the

ego-vehicle.
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8.3.7 The Order of Fusion and Performance

Features Acc AUC F1 Prec Recall

P, S,B,Cp, Cs 0.753 0.737 0.590 0.509 0.703
S,B,Cp, Cs, P 0.784 0.759 0.624 0.557 0.709
B,Cp, Cs, P, S 0.798 0.776 0.647 0.579 0.733
S,Cp, Cs, P, B 0.810 0.785 0.661 0.602 0.733
Cp, B, Cs, S, P 0.813 0.803 0.679 0.619 0.788
Cp, Cs, P, B, S 0.844 0.829 0.721 0.657 0.800

Table 8.3: Feature fusion strategies and their impact on the performance of the proposed
algorithm SF-GRU. The feature types are as follows: Cp pedestrian context (appearance),
Cs surround context, P pose, B bounding box, and S speed.

In this experiment, we investigate how different fusion strategies alter the performance.

Since reporting on all possible permutations of different sources of information is prohibitive,

we only include a subset of these permutations to show the fluctuations in the overall per-

formance.

A summary of the results is provided in Table 8.3. Here, it is shown that when more

complex features such as local context are infused into higher levels of the network, the

performance gets worse. By inputting different feature types in the right order, that is by

moving simpler features, such as speed, to the higher levels of the stack, the performance

improves by up to 9% on accuracy, 10% on recall and more than 15% on precision. This

can be due to the fact that more complex visual features, which benefit more from deeper

spatial analysis, are inputted at the bottom layers of the network while simpler features such

as trajectory coordinates are entered at the higher levels.

8.4 Does Intention Help Action Prediction?

In Chapter 7 we discussed the pedestrian intention factor and showed how estimating in-

tention of pedestrians can improve predicting their trajectories. In this section, we examine

whether intention can benefit the task of pedestrian crossing prediction. For this purpose,

we use a simplified version of the model presented earlier.

We use a single layer GRU architecture which as input receives a feature vector generated

by concatenating surround context features Cs as before but instead keep the pedestrian

visual features included, normalized bounding boxes, speed of the ego-vehicle and intention

scores. The last hidden state of the GRU is fed into a fc layer to reduce the dimensionality of

representations before entering another fc for the final classification of actions. The training

and testing samples are selected the same as before using the default data split as in Section
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Features Acc AUC F1 Precision Recall
C 0.60 0.58 0.55 0.56 0.57
C+B 0.78 0.78 0.75 0.74 0.78
C+B+S 0.80 0.81 0.78 0.76 0.80
C+B+S+Int 0.83 0.85 0.81 0.79 0.85

Table 8.4: Pedestrian crossing action prediction using different contextual features, namely
Context (C), Bounding boxes (B), Speed (S) and Intention (Int).

7.5.1. The learning rate is set to 10−6 and the model is trained for 100 epochs using a batch

size of 32 and L2 regularization of 0.0001.

A summary of action prediction results is presented in Table 8.4. As we can see, using

intention probability as input, the best results on all metrics are achieved. In our experiment,

accuracy is improved by 3% and recall by 5%. The balanced accuracy represented by Area

Under the Curve (AUC) is improved by 4% showing that intention can be helpful for the

correct prediction of both non-crossing and crossing events.

8.5 Summary

In this chapter, we examined the role of different contextual information and architectural

design approaches to pedestrian crossing prediction. We presented a novel stacked RNN

architecture in which different sources of contextual information including pedestrian and

the vehicle dynamics, pedestrians’ appearances and their surroundings are fused gradually

at different levels of processing. Using empirical evaluations we showed that the proposed

approach performs best compared to alternative RNN architectures.

In addition, we demonstrated how different sources of contextual information and data

fusion strategies within the network can impact crossing action prediction. We highlighted

that the performance of action prediction algorithms can be improved when adding more

complex features to the bottom layers of the network and the simpler ones at the higher levels.

Although the proposed architecture was presented in the context of pedestrian crossing

prediction, other applications of similar nature e.g. activity recognition may also benefit

from using this approach.
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Chapter 9

Final Remarks

9.1 Dissertation Summary

Social interaction with traffic participants, in particular pedestrians as the most vulnerable

ones, is fundamental for autonomous driving systems designed for urban environments. To

effectively interact with pedestrians, it is necessary to understand the behavior and what

they are going to do next. In this dissertation, we focused on the problem of pedestrian

behavior understanding and prediction in traffic scenes. In particular, we studied the effect

of context on pedestrian behavior and investigated the importance of including contextual

information in developing behavior prediction algorithms.

We began by discussing theoretical foundations of social interaction and coordination,

and based on past behavioral and philosophical studies, argued that behavior prediction and

understanding one’s intentions are necessary in social interactions.

A meta-analysis of the impact of traffic context on pedestrian behavior prediction was

presented. This study identified a large number of factors that influence pedestrian behavior

and showed how these factors are interconnected and in what ways they can impact the

future behaviors of pedestrians.

We further investigated driver-pedestrian communication as one of the factors that influ-

ence pedestrian behavior. We analyzed the ways pedestrians transmit their intentions and

the factors that impact the likelihood of pedestrians communicating. For the purpose of this

study, we introduced a large-scale dataset of pedestrian crossing events in traffic scenes. We

call this dataset Joint Attention in Autonomous Driving or JAAD. The data was annotated

with bounding box and behavioral information which make the dataset suitable for both

behavioral studies and developing practical applications.

Using the JAAD dataset, we conducted an empirical study of pedestrian crossing actions.

We highlighted what behaviors pedestrians exhibited at the time of crossing, identified the
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contextual factors that impact pedestrian crossing decision-making processes and discussed

the challenges in designing practical systems capable of predicting pedestrian crossing action.

Next, we focused on the practical aspects of pedestrian behavior prediction. We started

by evaluating the performance of pedestrian detection algorithms. We showed how various

data properties (e.g. lighting conditions or pedestrian attributes) impact the performance of

these algorithms, and how diversifying the data can improve the generalizability of pedestrian

detection algorithms. As part of this evaluation, we provided approximately 900k attribute

labels for samples from JAAD.

For practical model of pedestrian behavior prediction, we began by framing it as the

problem of future trajectory prediction. As part of this work, we introduced a novel large-

scale dataset, called Pedestrian Intention Estimation (PIE), comprised of 6 hours of driving

footage with annotated traffic object elements, behavioral information as well as vehicle sen-

sor data. Using the PIE dataset, we conducted an extensive human experiment in which we

asked the subjects to rank the crossing intention of pedestrian observed in videos. Moreover,

we proposed a state-of-the-art trajectory prediction algorithm and showed that including

various contextual information such as pedestrian intention and the ego-vehicle speed can

positively impact the prediction of pedestrian trajectory.

The last chapter was dedicated to pedestrian crossing action prediction. For this, we

examined the impact of various sources of contextual information and learning architectures

on crossing prediction. We showed that a hierarchical architecture with multi-level contextual

information fusion achieves the best performance for crossing action prediction. In addition,

we evaluated the impact of changing observation properties and the order of fusing features

within the network architecture on the accuracy of crossing prediction.

9.2 Study Limitations

The behavioral studies conducted as part of this dissertation were based on observations

pedestrians in a naturalistic setting. Therefore, there is a possibility of some bias in judging

pedestrian behavior and intentions. We tried to overcome this problem in later studies by

increasing the number of people used for annotations.

Some of the behavioral factors such as pedestrians looking towards the traffic or making

eye-contact were based on the judgments of the people involved in collecting the data.

The behavioral datasets collected as part of this work only contain images of pedestrians

and lack the recordings of the drivers of the vehicles. Having the full recordings of both

pedestrians and drivers could help to interpret some of the observed behaviors.

We collected the behavioral datasets using vehicles driven by humans. Using an actual
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autonomous driving system can potentially impact the way pedestrians would behave.

Last but not least, in the chapters involving practical systems, we evaluated the per-

formance of the algorithms in isolation without the presence of prerequisite methods for

detecting and tracking pedestrians or any other aspects of an intelligent driving system.

Although such an isolated evaluation strategy is necessary for understanding the limitations

of the algorithms, in practice there are many sources of noise and interference from other

modules that can potentially impact the performance of the prediction algorithms.

9.3 Future Work

Even though we covered various aspects of pedestrian behavior understanding and prediction,

we barely scratched the surface of this problem. On the theoretical side, there is still a

need for many behavioral studies of pedestrians. These studies should be conducted on

a larger scope both in terms of the number of samples and the diversity of locations to

capture effects of the environment and cultural norms. In addition, more studies involving

autonomous vehicles are needed. Although classical traffic analyses involving pedestrian-

driver interactions can shed light on understanding some of the fundamental aspects of

pedestrian behavior, the ways pedestrians would behave can be quite different when facing

autonomous vehicles.

To design better prediction algorithms we need to answer many questions. What are the

best sources of information for prediction? What learning strategies are most suited (e.g.

supervised vs reinforcement learning) for learning pedestrian behavior? What architectures

should be used (e.g. feedforward vs recurrent networks) to make predictions? How the

task(s) should be defined (e.g. should we be focusing on actions, trajectories or both) in the

context of traffic prediction?

On the practical side of the problem, pedestrian behavior prediction should be examined

in a driving system as a whole. In addition to social and environmental factors, there are

other properties of the traffic scenes that can impact pedestrian behavior. For example,

one should take into account the behavior of the ego-vehicle and other road users. In addi-

tion, noise present in various driving modules, such as perception and planning, should be

considered when predicting pedestrian behavior.
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