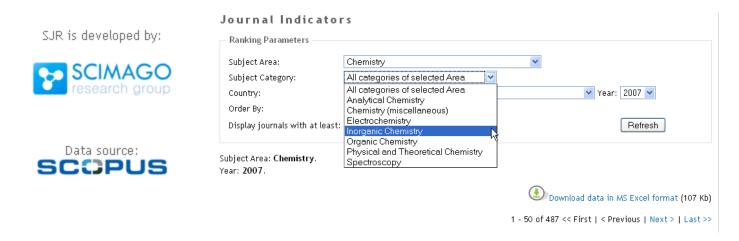
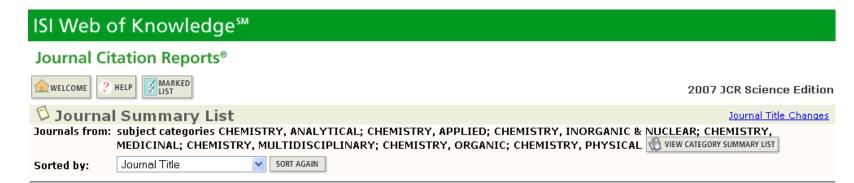
# The Chemistry of Scopus & Web of Science


Rajiv Nariani Science Librarian York University

### Scopus & Web of Science


- Coverage: <u>JCR</u> and <u>SCImago</u>
- Affiliation search versus departmental search
- Subject and author keywords
- Open access content and patents
- Caveats in both databases

## Scopus & Web of Science Chemistry Journals Coverage

Scopus (using ScImago): 487



### Web of Science (from JCR): 448

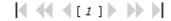


### WoS: Coverage

#### **<sup>®</sup>** Subject Category Summary List

Journal Title Changes

Category data from: subject categories BIOCHEMICAL RESEARCH METHODS; BIOCHEMISTRY & MOLECULAR BIOLOGY; CHEMISTRY, ANALYTICAL; CHEMISTRY, APPLIED; CHEMISTRY, INORGANIC & NUCLEAR; CHEMISTRY, MEDICINAL; CHEMISTRY, MULTIDISCIPLINARY;


CHEMISTRY, ORGANIC; CHEMISTRY, PHYSICAL 🚫 VIEW JOURNAL SUMMARY LIST

Sorted by:

# Journals

SORT AGAIN

Categories 1 - 9 (of 9)



Page 1 of 1

#### Ranking is based on your category and sort selections.

| Rank | <b>Category</b><br>(linked to category information) | Total Cites | Median<br>Impact<br>Factor | Aggregate<br>Impact<br>Factor | Aggregate<br>Immediacy<br>Index | Aggregate<br>Cited<br>Half-Life | # Journals | Articles |
|------|-----------------------------------------------------|-------------|----------------------------|-------------------------------|---------------------------------|---------------------------------|------------|----------|
| 1    | BIOCHEMISTRY & MOLECULAR BIOLOGY                    | 2383087     | 2.550                      | 4.225                         | 0.812                           | 6.7                             | 263        | 48051    |
| 2    | CHEMISTRY, MULTIDISCIPLINARY                        | 973867      | 1.032                      | 3.463                         | 0.649                           | 6.3                             | 127        | 29835    |
| 3    | CHEMISTRY, PHYSICAL                                 | 839377      | 1.739                      | 2.676                         | 0.437                           | 5.8                             | 110        | 32287    |
| 4    | CHEMISTRY, ANALYTICAL                               | 435144      | 1.601                      | 2.555                         | 0.421                           | 6.5                             | 70         | 17428    |
| 5    | CHEMISTRY, APPLIED                                  | 189615      | 0.862                      | 1.768                         | 0.321                           | 6.4                             | 62         | 10635    |
| 6    | BIOCHEMICAL RESEARCH METHODS                        | 339628      | 2.135                      | 3.270                         | 0.513                           | 5.8                             | 60         | 12571    |
| 7    | CHEMISTRY, ORGANIC                                  | 489970      | 1.808                      | 2.666                         | 0.567                           | 6.3                             | 56         | 19182    |
| 8    | CHEMISTRY, INORGANIC & NUCLEAR                      | 286910      | 1.260                      | 2.192                         | 0.434                           | 7.1                             | 43         | 11616    |
| 9    | CHEMISTRY, MEDICINAL                                | 187782      | 1.817                      | 2.516                         | 0.428                           | 5.8                             | 41         | 8860     |

### WoS: Coverage - Organic Chemistry

# Journal Citation Reports® WELCOME HELP 2007 JCR Science Edition Dournal Summary List Journals from: subject categories CHEMISTRY, ORGANIC VIEW CATEGORY SUMMARY LIST Sorted by: Journal Title Sort AGAIN

Journals 1 - 20 (of 56)



Page 1 of 3

MARK ALL UPDATE MARKED LIST

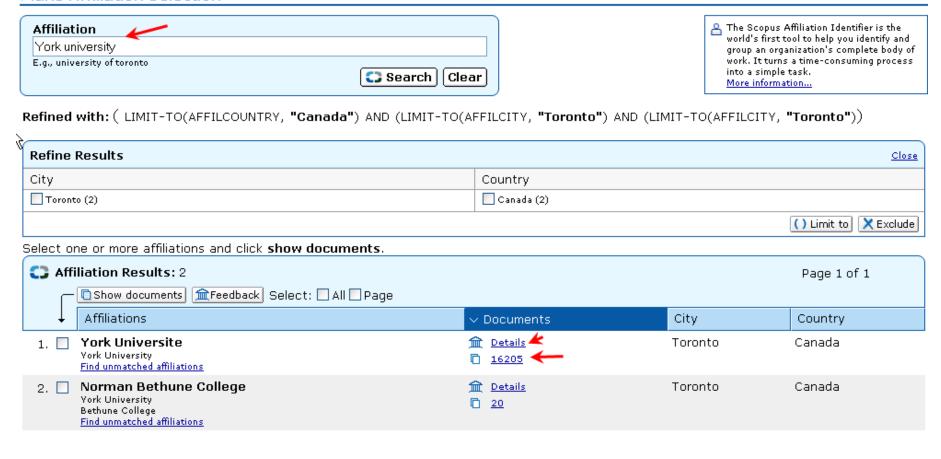
Ranking is based on your journal and sort selections.

|      |      | Abbreviated Journal                                |                  | JCR Data i)    |                  |                            | Eigenfactor™ Metrics j |          |                    |                       |                                |
|------|------|----------------------------------------------------|------------------|----------------|------------------|----------------------------|------------------------|----------|--------------------|-----------------------|--------------------------------|
| Mark | Rank | <b>Title</b><br>(linked to journal<br>information) | ISSN             | Total<br>Cites | Impact<br>Factor | 5-Year<br>Impact<br>Factor | Immediacy<br>Index     | Articles | Cited<br>Half-life | Eigenfactor™<br>Score | Article<br>Influence™<br>Score |
|      | 1    | ADV CARBOHYD CHEM BI                               | 0065-2318        | 744            | 1.200            | 1.800                      |                        | 0        | >10.0              | 0.00023               | 0.661                          |
|      | 2    | ADV HETEROCYCL CHEM                                | 0065-2725        | 865            | 2.150            | 2.022                      | 0.750                  | 8        | >10.0              | 0.00058               | 0.555                          |
|      | 3    | ADV ORGANOMET CHEM                                 | 0065-3055        | 994            | 4.176            |                            |                        | 0        | >10.0              | 0.00146               |                                |
|      | 4    | ADV PHYS ORG CHEM                                  | 0065-3160        | 450            | 2.667            | 2.519                      |                        | 0        | >10.0              | 0.00068               | 1.089                          |
|      | 5    | ADV SYNTH CATAL                                    | <u>1615-4150</u> | 6277           | 4.977            | 5.193                      | 0.852                  | 317      | 3.1                | 0.04328               | 1.714                          |

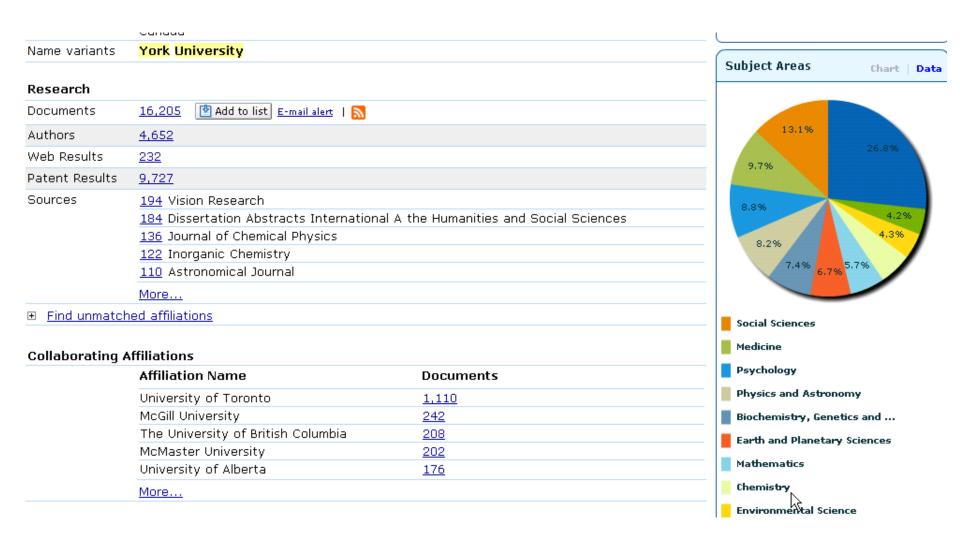
### Scopus Coverage – Organic Chemistry



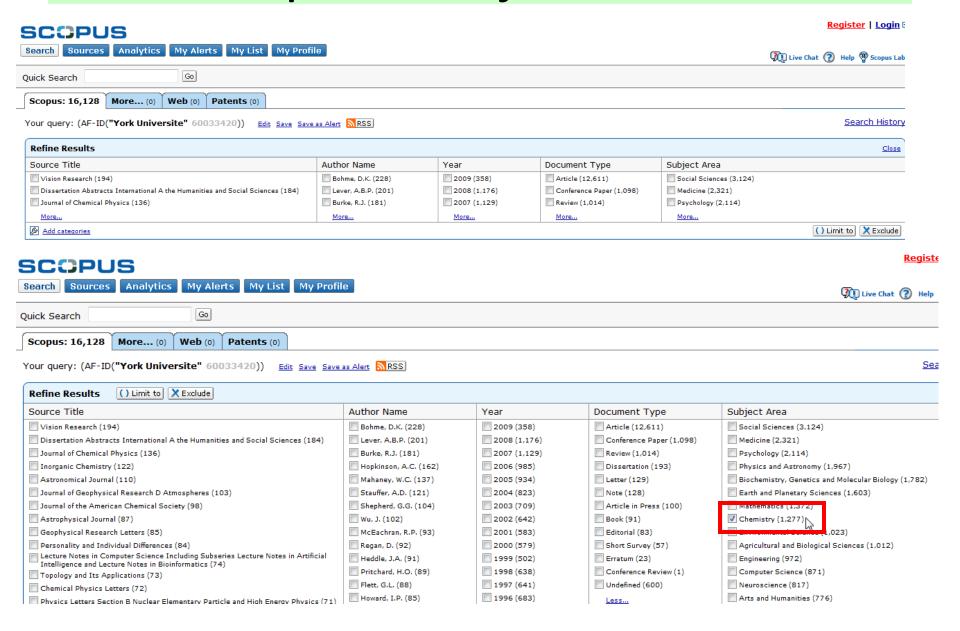
lournal Indicators


Home

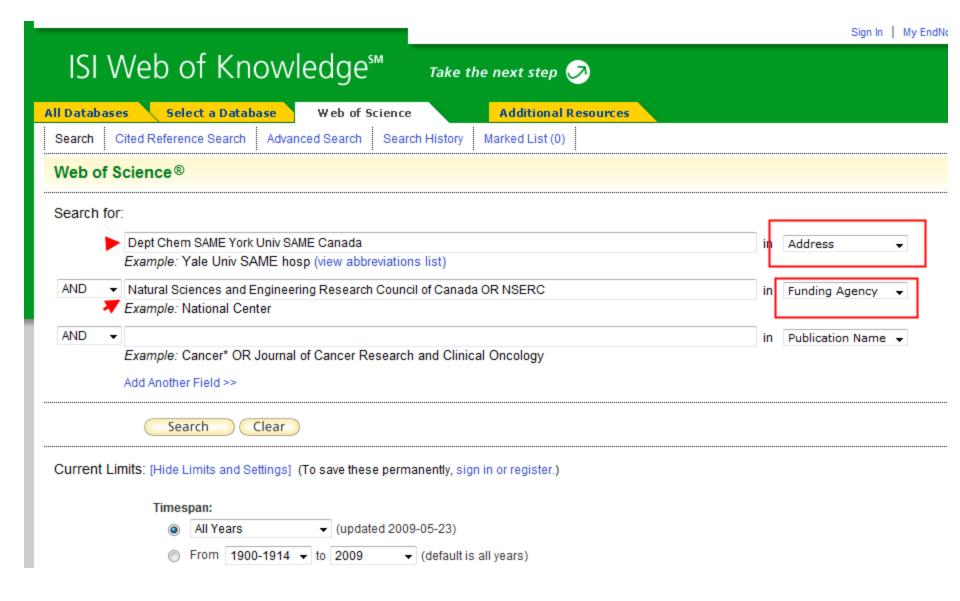



|                           | Journal marcators                                                                  |
|---------------------------|------------------------------------------------------------------------------------|
| > Journal Indicators      | Ranking Parameters                                                                 |
| Journal Search            | Subject Area: → Chemistry                                                          |
| Country Indicators        | Subject Category:  Organic Chemistry                                               |
| Country Search            | Country: All   Order By: SJR   ✓ Year: 2007 ✓                                      |
| Compare                   | Display journals with at least: 0 Citable Docs. (3 years) ▼                        |
| Map Generator             | Subject Area: Chemistry.                                                           |
| Help                      | Subject Category: Organic Chemistry.                                               |
| About Us                  | Year: 2007.                                                                        |
| 2                         | Download data in MS Excel format (18 Kb                                            |
| How to cite this website? | 1 - 50 of 85 << First   < Previous   Next >   Last >                               |
| SJR is developed by:      | Title SJR H Docs. Docs. Refs. (3years) (2years)                                    |
| SCIMAGO research group    | 1 Chemistry and Biology 1,198 92 163 575 5.775 2.494 435 5,30 35,43 UNITED KINGDOM |
| Data source:              | 2 Aldrichimica Acta 1,032 32 9 21 944 224 20 11,54 104,89 UNITED STATES            |
| SCOPUS                    | Medicinal Research 0,880 56 30 81 5.067 600 79 6,96 168,90                         |

### Scopus: Affiliation Search


#### Make Affiliation Selection




### Scopus: Research Outputs



### Scopus: Subject search



### WoS: Departmental Search



#### Tandem mass spectrometry and multiple reaction monitoring using an atmospheric pressure quadrupole mass spectrometer for product identification in atmospherically important reaction

Find it 6 York

Print E-mail Add to Marked List Save to EndNote

Author(s): Auld J (Auld, Janeen), Hastie DR (Hastie, Donald R.)

Source: INTERNATIONAL JOURNAL OF MASS SPECTROMETRY Volume: 282 Issue: 3 Pages: 91-98 Published: MAY 1 20

Times Cited: 0 References: 22 €x€ Citation Map

Abstract: An atmospheric pressure chemical ionization triple quadrupole mass spectrometer has been Coupled to a smog chamber hydrocarbon oxidation reactions. Traditional MS and MS/MS scan modes were used to identify ion signals arising from possible reactions. was used to follow a number of these as target -> fragment ion pairs over the course of the reaction. Mechanistic information has bee signals. MRM profiling has allowed the identification of interferences that occur due to isobaric ions resulting from the formation of iso undetectable using the MS and MS/MS modes. Differences in product formation rate results in variations of their MRM ion pair onset a observed. This method was tested during a Study of the products of the HO radical oxidation of P-pinene. The oxidation product pinak interferences at its (M+H)(+), m/z 139, being more accurately monitored using its (M+H+H2O)(+) cluster ion pairs, 157 -> 139 and 157 ion pair 157 -> 111 has lead to the identification of a More highly oxidized acid-aldehyde product. It has been determined that an organ dependence relative to pinaketone cannot be the expected simple C10 hydroxynitrate product but rather a more highly oxidized C9 niti reaction time has proven to be a valuable addition to existing mass spectrometric acquisition modes for reaction product determinati

Document Type: Article

Language: English

Author Keywords: Mass spectrometry; Atmospheric pressure chemical ionization; beta-Pinene; Oxidation

KeyWords Plus: PARTICULATE PRODUCTS; BETA-PINENE; OXIDATION; OZONE; OH; MONOTERPENES; MECHANISM; H&(H2O)N

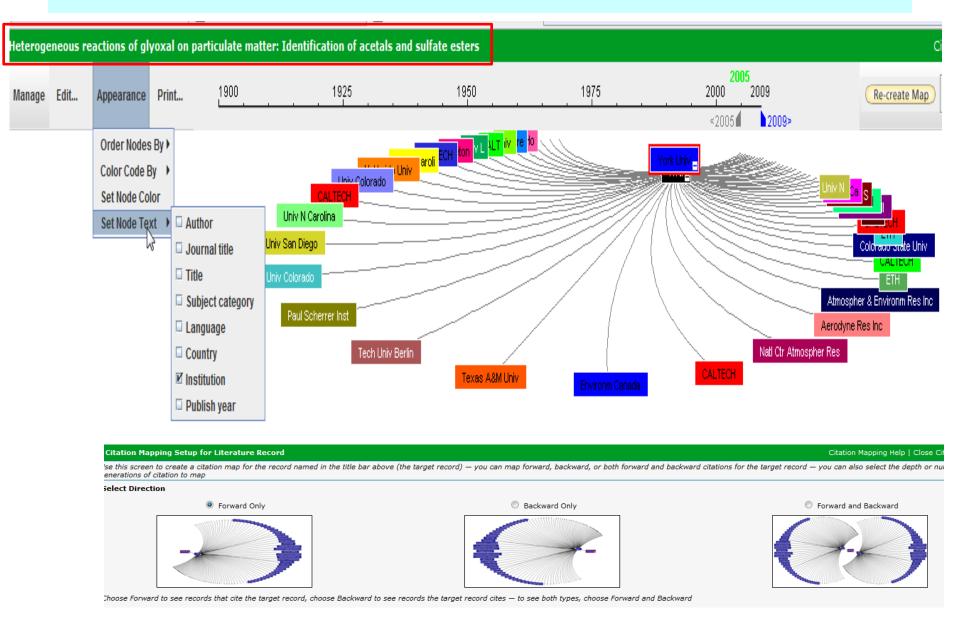
Reprint Address: Hastie, DR (reprint author), York Univ, Dept Chem, 4700 Keele St, Toronto, ON M3J 1P3 Canada

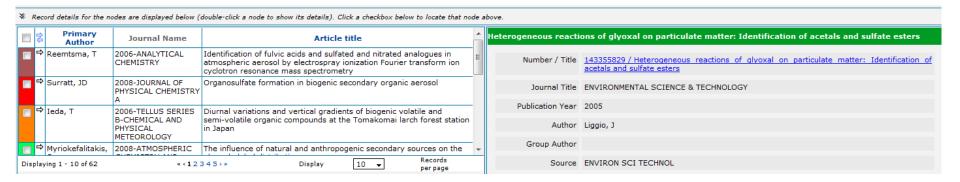
#### Addresses:

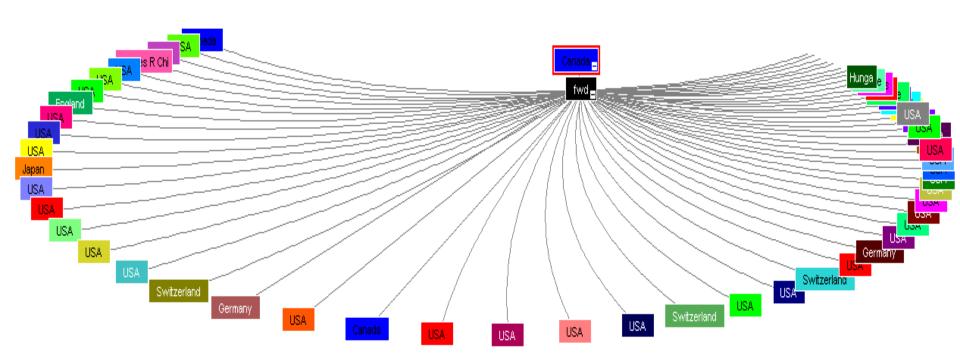
1. York Univ, Dept Chem, Toronto, ON M3J 1P3 Canada -

2. York Univ, Ctr Atmospher Chem, Toronto, ON M3J 1P3 Canada

E-mail Addresses: Hastie@Yorku.ca

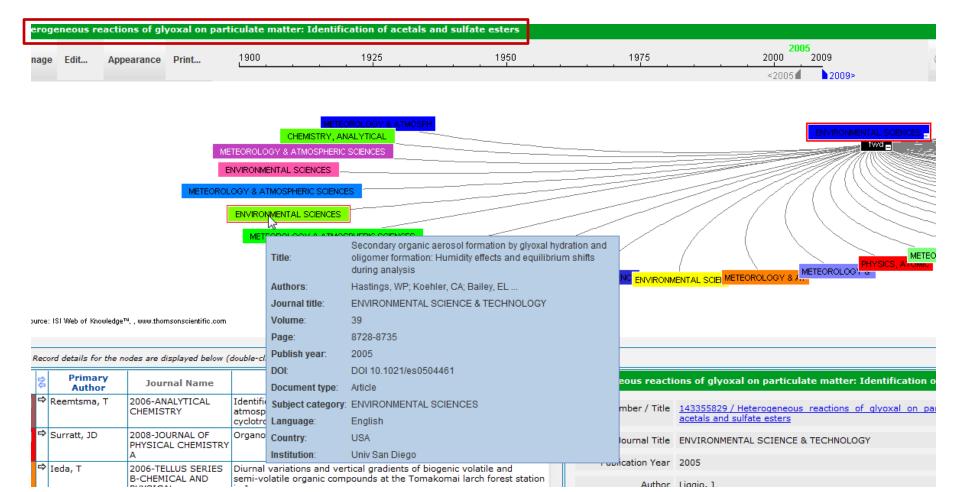

#### Funding Acknowledgement:


| Funding Agency                                                      | Grant Number |  |
|---------------------------------------------------------------------|--------------|--|
| Natural Sciences and Engineering Research Council of Canada (NSERC) | 4            |  |


N N G G N E S

WoS

### Citation Mapper: Sort by University








### Citation Mapper: Sort by Country

### WoS: Mapper: By subject



### WoS: Research Outputs

555 records. Address=(Dept Chem SAME York Univ SAME Canada)

| Rank the records by this field:                     | Analyze:             | Set displ                                                       |  |
|-----------------------------------------------------|----------------------|-----------------------------------------------------------------|--|
| Language Publication Year Source Title Subject Area | Up to 500 ▼ records. | Show the top 25 ▼ results.  Minimum record count (threshold): 2 |  |
| Analyze                                             |                      |                                                                 |  |

Use the checkboxes below to view the records. You can choose to view those selected records, or you can exclude them (and view the others). **Note:** The number of records displayed may be greater than the listed Record Count if the original set contained more records than the number of records analyzed.

| → View Records  X Exclude Records | Field: Subject Area                   | Record<br>Count | % of<br>500 | Bar Chart | Save Analysis Data to File |
|-----------------------------------|---------------------------------------|-----------------|-------------|-----------|----------------------------|
|                                   | CHEMISTRY, PHYSICAL                   | 117             | 23.4000 %   |           |                            |
|                                   | PHYSICS, ATOMIC, MOLECULAR & CHEMICAL | 114             | 22.8000 %   |           |                            |
|                                   | CHEMISTRY, MULTIDISCIPLINARY          | 91              | 18.2000 %   |           |                            |
|                                   | CHEMISTRY, ANALYTICAL                 | 68              | 13.6000 %   |           |                            |
|                                   | CHEMISTRY, INORGANIC & NUCLEAR        | 61              | 12.2000 %   |           |                            |
|                                   | SPECTROSCOPY                          | 60              | 12.0000 %   |           |                            |
|                                   | CHEMISTRY, ORGANIC                    | 46              | 9.2000 %    |           |                            |
|                                   | METEOROLOGY & ATMOSPHERIC SCIENCES    | 27              | 5.4000 %    |           |                            |
|                                   | BIOCHEMICAL RESEARCH METHODS          | 24              | 4.8000 %    |           |                            |
|                                   | BIOCHEMISTRY & MOLECULAR BIOLOGY      | 19              | 3.8000 %    | 100       |                            |
|                                   | ENVIRONMENTAL SCIENCES                | 12              | 2.4000 %    | 1         |                            |
|                                   | CRYSTALLOGRAPHY                       | 11              | 2.2000 %    | 1         |                            |
|                                   | CHEMISTRY, APPLIED                    | 10              | 2.0000 %    | 1         |                            |
|                                   | GEOSCIENCES, MULTIDISCIPLINARY        | 8               | 1.6000 %    | 1         |                            |
|                                   | CELL BIOLOGY                          | 7               | 1 4000 %    | 1         |                            |

### Scopus: Extra Coverage

| Scopus (16,205) More.                           | . (0) Web: 232                                                                            | Patents (9,727)        |                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                       |
|-------------------------------------------------|-------------------------------------------------------------------------------------------|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Your query: (AF-ID( <b>"York</b>                | Universite" 600                                                                           | 033420)) <u>Edit s</u> | Save                                                                                                                                                                                                                                                                                                                                                                        | Ĺ¢                                                                                                                                                                                                                                                                                                                            | Web results brought to you by: SCIFUS for scientific information only                                                                                                                                                                                                                                                 |
| Refine Results () Lin                           | it to X Exclude                                                                           |                        |                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                               | Close                                                                                                                                                                                                                                                                                                                 |
| Content Source                                  | Information :                                                                             | Гуре                   | Keywords                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                       |
| WDLTD: Theses & dissertations (71)              | Repositories Books (120) Theses (71) Full text (42) Preprints (14 Conferences Open Course | (161) ) (7) Pages (2)  | protected by copyright issue date image library subject classification general institutional shifts in government and governance in a comparative and international context law school astronomy political theory evaluation of evidence myalgic encephalomyelitis cost-effectiveness psychosocial interventions human rights disordered offenders k law management studies | visual arts scope of activity prevention of obesity psycholinguistics cultural studies rate of return jc political theory comparative politics political science computer-mediated communication four issues social problems software technology environmental psychology comparative perspectives overig niet-programmatisch | h social sciences southern queensland philosophy of mind political institutions psychology of religion 410200 visual arts and crafts 410000 the arts psychoanalysis digital library performing arts accountancy identification number customer service criminology balance sheet monograph private finance initiative |
| University of Tasmania Eprint<br>Repository (1) | s                                                                                         |                        | therapeutic community treatment                                                                                                                                                                                                                                                                                                                                             | onderzoek                                                                                                                                                                                                                                                                                                                     | project report                                                                                                                                                                                                                                                                                                        |

### Scopus Patent Coverage

| Quick Search Go                                                                                                                                                                               |                   |                               |                      |                       |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------------------|----------------------|-----------------------|--|--|
| Scopus (1,284) More (0) Web (0) Pa                                                                                                                                                            | atents: 991 Pat   | tents not from York Universit | ty                   |                       |  |  |
| Your query: (AF-ID( <b>"York Universite"</b> 60033420)) AND (LIMIT-TO(SUBJAREA, <b>"CHEM"</b> )) <u>Edit</u> <u>Save</u> For more in-depth patent information click here: <u>□ LexisNexis</u> |                   |                               |                      |                       |  |  |
| Refine Results                                                                                                                                                                                |                   |                               |                      | Close                 |  |  |
| Patent Office                                                                                                                                                                                 | Keywords          |                               |                      |                       |  |  |
| US Patent Office (657)                                                                                                                                                                        | inhibitors        | fluorescence                  | phosphorylases       | electrochemical       |  |  |
| European Patent Office (227)                                                                                                                                                                  | nanoparticles     | fluorescent                   | catalyst             | 🔲 ligand              |  |  |
| World Intellectual Property Organization (WIPO) (107)                                                                                                                                         | hydrophobic       | nanoparticle                  | hydrocarbon          | skill in the art      |  |  |
| (1121 0) (201)                                                                                                                                                                                |                   |                               |                      | More                  |  |  |
|                                                                                                                                                                                               |                   |                               |                      | () Limit to X Exclude |  |  |
|                                                                                                                                                                                               |                   |                               |                      |                       |  |  |
| C Results: 991                                                                                                                                                                                |                   | Se                            | earch within results | Go                    |  |  |
| _ 🕒 🔤 💌 Output   Select: 🔲 All 🔲 Pag                                                                                                                                                          | e                 |                               |                      | 1 to 20 Next▶         |  |  |
| Date V Document (sort by releva                                                                                                                                                               |                   |                               |                      |                       |  |  |
| 1. 2008 PHOTOCHEMICAL METHODS AND PHOTOACTIVE COMPOUNDS FOR MODIFYING SURFACES CARROLL, Gregory T., WANG, Denong, TURRO, Nicholas J., KOBERSTEIN, Jeffrey T.                                  |                   |                               |                      |                       |  |  |
| Patent record available from the European Patent Office                                                                                                                                       |                   |                               |                      |                       |  |  |
| 2. 2008 ORGANIC LIGHT EMITTING D                                                                                                                                                              | DEVICES WITH DINU | JCLEAR COPPER COMPOUNDS       |                      |                       |  |  |
| DEATON, Joseph Charles,                                                                                                                                                                       |                   |                               |                      |                       |  |  |
|                                                                                                                                                                                               |                   |                               |                      |                       |  |  |

### WoS: Clarity required

<< Back to results list

■ Record 9 of 555 ▶

Synthesis, spectroscopic and a ZINDO study of cis- and trans-(X-2)bis(4,4 '-dicarboxylic acid-2,2 '-bipyridine)ruthenium(II) complexes (X = CI-, H2O, NCS-)

Find it 6 York

Print (E-mail) (Add to Marked List) (Save to EndNote Web) (Save to EndNote, Ref Man, ProCite) more options

Author(s): Nazeeruddin MK, Zakeeruddin SM, Humphry-Baker R, Gorelsky SI, Lever ABP, Gratzel M

Who is from York?

Source: COORDINATION CHEMISTRY REVIEWS Volume: 208

Pages: 213-225

Published: OCT 2000

Times Cited: 70 References: 45

Citation Map

Abstract: Ruthenium complexes of the type trans-[Ru(dcbpyH(2))(2)(Cl)(2)], trans-[Ru(dcbpyH(2))(2)(H2O)(2)] and trans-[Ru(dcbpyH(2))(2)(NCS)(2)] (dcbpyH(2) = 4,4'-dicarboxylic acid-2,2'-bipyridine) were synthesized and characterized by NMR, UV-vis absorption and emission spectroscopy. The proton NMR spectra of the trans isomers, in the aromatic region, show only three peaks corresponding to the two dcbpy ligands in which all the pyridine rings are trans to each other and magnetically equivalent. The C-13-NMR spectrum of the trans isomer is characterized by a relatively simple pattern of resonances from the four equivalent pyridine rings. The lowest energy metal-to-ligand charge-transfer transition maximum of the trans-[Ru(dcbpvH(2))(2)(Cl)(2)] complex is at 14500 cm(-1) in DMF solution and shows onset of weak and broad emission signals above 11100 cm(-1). This is a significantly larger red shift compared with any of the trans ruthenium(II) polypyridyl complexes reported to date. The absorption and emission maxima of the trans complexes are red shifted compared with the cis analogues, which is due to the CO2H contribution in the trans isomer that stabilizes the LUMO relative to the LUMO of the cis isomer. The enhanced red response of the trans complexes renders them as suitable dyes for dye-sensitized titanium dioxide mesoporous electrodes. The electronic spectra of cis- and trans-[Ru(dcbpyH(2))(2)(Cl)(2)] complexes were calculated by ZINDO/S and compared with the experimental data, (C) 2000 Elsevier Science S.A. All rights reserved.

Document Type: Proceedings Paper

Language: English

Author Keywords: spectroscopic; ZINDO study; ruthenium complexes; cis-trans isomers; sensitizers

KeyWords Plus: EFFECTIVE CORE POTENTIALS; NANOCRYSTALLINE TIO2; CRYSTAL-STRUCTURE; MOLECULAR CALCULATIONS; ELECTRON-TRANSFER; SOLAR-CELLS; DYE;

RUTHENIUM; ABINITIO; FILMS

Reprint Address: Nazeeruddin, MK (reprint author), Swiss Fed Inst Technol, Inst Phys Chem, Lab Photon & Interfaces, CH-1015 Lausanne, Switzerland

#### Addresses:

Swiss Fed Inst Technol, Inst Phys Chem, Lab Photon & Interfaces, CH-1015 Lausanne, Switzerland

York Univ, Dept Chem, Toronto, ON M3J 1P3 Canada

Publisher: ELSEVIER SCIENCE SA. PO BOX 564, 1001 LAUSANNE, SWITZERLAND

Subject Category: Chemistry, Inorganic & Nuclear ...

IDS Number: 365AL

ISSN: 0010-8545

View at Publisher Find it @ York

#### Tau protein binds single-stranded DNA sequence specifically - The proof obtained in vitro with non-equilibrium capillary electrophoresis of equilibrium mixtures

Krylova, S.M.<sup>a</sup> <sup>a</sup>, Musheev, M.<sup>a</sup> <sup>a</sup>, Nutiu, R.<sup>b</sup> <sup>a</sup>, Li, Y.<sup>b</sup> <sup>a</sup>, Lee, G.<sup>c</sup> <sup>a</sup>, Krylov, S.N.<sup>a</sup> <sup>a</sup> ™

- Department of Chemistry, York University, Toronto, Ont. M3J 1P3, Canada
- <sup>b</sup> Depts. of Biochemistry and Chemistry, McMaster University, Hamilton, Ont. L8N 3Z5, Canada
- <sup>c</sup> Departments of Internal Medicine, University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242, United States

Tau is a microtubule-associated protein, which plays an important role in physiology and pathology of neurons. Tau has been recently reported to bind doublestranded DNA (dsDNA) but not to bind single-stranded DNA (ssDNA) [Cell. Mol. Life Sci. 2003, 60, 413-421]. Here, we prove that tau binds not only dsDNA but also ssDNA. This finding was facilitated by using two kinetic capillary electrophoresis methods: (i) non-equilibrium capillary electrophoresis of equilibrium mixtures (NECEEM); (ii) affinity-mediated NECEEM. Using the new approach, we observed, for the first time, that tau could induce dissociation of strands in dsDNA by binding one of them in a sequence-specific fashion. Moreover, we determined the equilibrium dissociation constants for all tau-DNA complexes studied. © 2005 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

#### **Language of Original Document**

Enalish



#### **Author Keywords**

Alzheimer disease; Non-equilibrium capillary electrophoresis of equilibrium mixture; Protein-DNA interaction; ssDNA-binding protein; Tau protein

#### Index Keywords

- → EMTREE drug terms: double stranded DNA; single stranded DNA; tau protein
- → EMTREE medical terms: article; capillary electrophoresis; dissociation; DNA sequence; nonhuman; priority journal; protein DNA binding
- → MeSH: Animals: Base Seguence: DNA, Single-Stranded: Electrophoresis, Capillary: Escherichia coli: Protein Binding: Substrate Specificity: tau Proteins:

Medline is the source for the MeSH terms of this document.

### Keywords

Tau protein binds single-stranded DNA sequence specifically - the proof obtained in vitro with non-equilibrium ca electrophoresis of equilibrium mixtures

Find it 6 York

Print (E-mail) (Add to Marked List) (Save to EndNote Web) (Save to EndNote, Ref Man, Pro

Author(s): Krylova SM, Musheev M, Nutiu R, Li YF, Lee G, Krylov SN

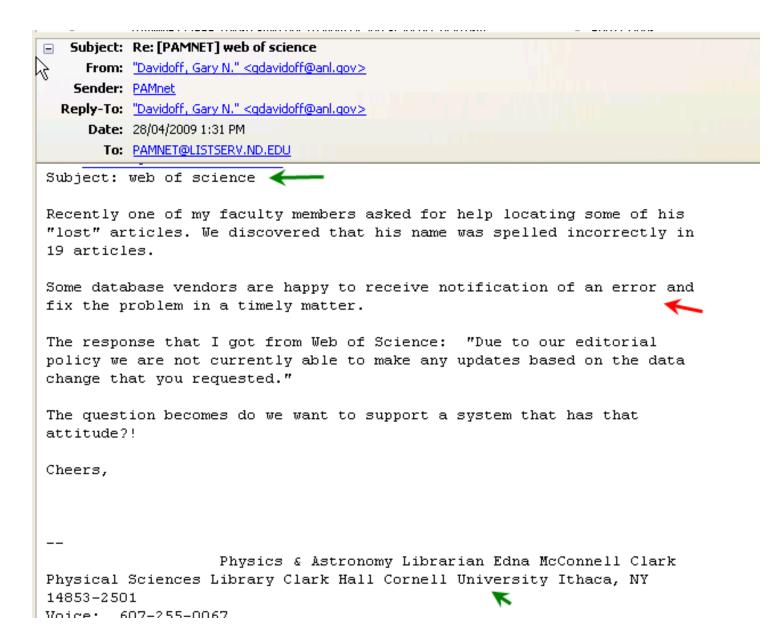
Source: FEBS LETTERS Volume: 579 Pages: 1371-1375 Published: FEB 28 2005 Issue: 6

Times Cited: 17 References: 24 Citation Map

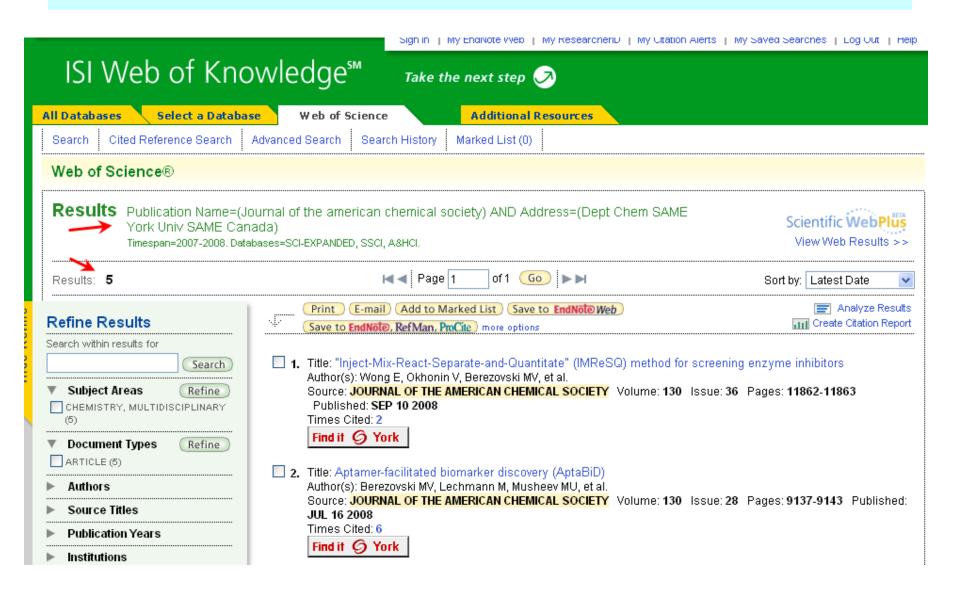
Abstract: Tau is a microtubule-associated protein, which plays an important role in physiology and pathology of neurons. Tau has been recently reported to bind dou DNA (dsDNA) but not to bind single-stranded DNA (ssDNA) [Cell. Mol. Life Sci. 2003. 60, 413-421]. Here, we prove that tau binds not only dsDNA but also ssDNA. Th facilitated by using two kinetic capillary electrophoresis methods: (i) non-equilibrium capillary electrophoresis of equilibrium mixtures (NECEEM); (ii) affinity-mediate Using the new approach, we observed, for the first time, that tau could induce dissociation of strands in dsDNA by binding one of them in a sequence-specific fashio determined the equilibrium dissociation constants for all tau-DNA complexes studied. (C) 2005 Federation of European Biochemical Societies. Published by Elsevie reserved.

Document Type: Article

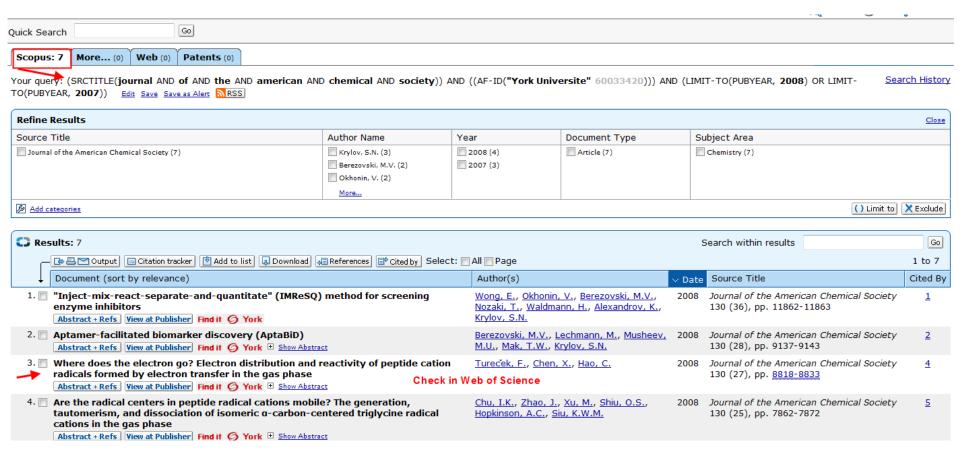
Language: English


ISI Web of Knowledge™

Author Keywords: tau protein; protein-DNA interaction; Alzheimer disease; non-equilibrium capillary electrophoresis of equilibrium mixture; ssDNA-binding protein


KeyWords Plus: HUMAN NEUROBLASTOMA-CELLS: NUCLEAR-TAU: IDENTIFICATION: INHIBITION: RNA




### Web of Science: Abbreviated Author names



### JACS 2007 & 2008 in WoS



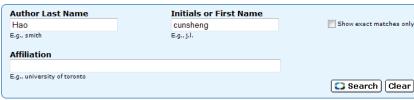
### JACS 2007 & 2008 in Scopus



### Scopus – Same last name?



### Where does the electron go? Electron distribution and reactivity of peptide cation transfer in the gas phase


Tureček, F.ª △ ×, Chen, X.ª b △, Hao, C.ª c △ 🗹

- Department of Chemistry, Bagley Hall, University of Washington, Seattle, WA 98195-1700, United States
- National Institutes of Health (NIH), 9000 Rockville Pike, Bethesda, MD 20892, United States
- Department of Chemistry, York University, Toronto, ON, Canada

#### Abstract

We report the first detailed analysis at correlated levels of ab initio theory of experimentally studied peptide cations ur transfer and competitive dissociations by loss of H atoms, ammonia, and  $N-C_0$  bond cleavage in the gas phase. Doubly  $(KK + 2H)^{2+}$ , are each calculated to exist as two major conformers in the gas phase. Electron transfer to conformers v exothermic dissociation by loss of ammonia from the Gly residue, which occurs from the ground (X) electronic state of atoms is predicted to occur from the first excited (A) state of the charge-reduced ions. The X and A states are nearly of unpaired electron degree of the peptide ca Make Author Selection

attachment to ion configroup forming dihydroxy involving reversible prot Lys c<sup>+</sup> fragments from cleavage. This emphasicapture. © 2008 Americal



A link to authors Scopus may not than on same at More in

References (95) view in tab

| Refine Results           |                     |             |            |               |  |  |
|--------------------------|---------------------|-------------|------------|---------------|--|--|
| Source Title             | Affiliation         | City        | Country    | Subject Area  |  |  |
| Analytical Chemistry (1) | Vork Universite (1) | Toronto (1) | Canada (1) | Chemistry (1) |  |  |

Select one or more authors and click **show documents** or **citation tracker**.



Nost recent document title:

Gas chromatographic detector for selective and sensitive detection of atmospheric organic nitrates



### Web of Science - Results

#### 

Abstract: We report the first detailed analysis at correlated levels of ab initio theory of experimentally studied peptide cations undergoing charge reduction by collisional electron transfer and competitive dissociations by loss of H atoms, ammonia, and N-C-alpha bond cleavage in the gas phase. Doubly protonated Gly-Lys, (GK + 2H)(2+), and Lys-Lys, (KK + 2H)(2+), are each calculated to exist as two major conformers in the gas phase. Electron transfer to conformers with an extended lysine chain triggers highly exothermic dissociation by loss of ammonia from the Gly residue, which occurs from the ground (X) electronic state of the cation radical. Loss of Lys ammonium H atoms is predicted to occur from the first excited (A) state of the charge-reduced ions. The X and A states are nearly degenerate and show extensive delocalization of unpaired electron density over spatially remote groups. This delocalization indicates that the captured electron cannot be assigned to reduce a particular charged group in the peptide cation and that superposition of remote local Rydberg-like orbitals plays a critical role in affecting the cation-radical reactivity. Electron attachment to ion conformers with carboxyl-solvated Lys ammonium groups results in spontaneous isomerization by proton-coupled electron transfer to the carboxyl group forming dihydroxymethyl radical intermediates. This directs the peptide dissociation toward N-C-alpha bond cleavage that can proceed by multiple mechanisms involving reversible proton migrations in the reactants or ion-molecule complexes. The experimentally observed formations of Lys z(+center dot) fragments from (GK + 2H)(2+) and Lys c(+) fragments from (KK + 2H)(2+) correlate with the product thermochemistry but are independent of charge distribution in the transition states for N-C-alpha bond cleavage. This emphasizes the role of ion-molecule complexes in affecting the charge distribution between backbone fragments produced upon electron transfer or capture.

Document Type: Article

Language: English

KeyWords Plus: N-C-ALPHA; CAPTURE-INDUCED DISSOCIATION; HYDROGEN-ATOM ADDUCTS; REIONIZATION MASS-SPECTROMETRY; DENSITY-FUNCTIONAL THEORY; CHARGED PROTEIN CATIONS: ION-BEAM SPECTROSCOPY; AB-INITIO: NEUTRALIZATION-REIONIZATION: PROTON AFFINITY

Reprint Address: Turecek, F (reprint author), Univ Washington, Dept Chem, Bagley Hall, Box 351700, Seattle, WA 98195 USA

#### Addresses:

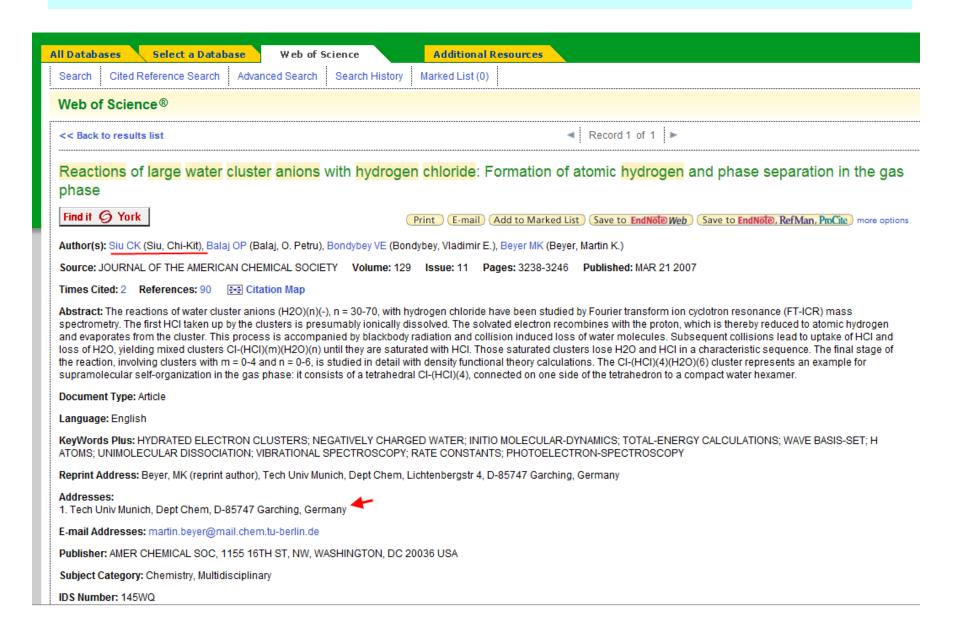
Univ Washington, Dept Chem, Seattle, WA 98195 USA

Times Cited: 4 References: 95 Citation Map

E-mail Addresses: turecek@chem.washington.edu

Publisher: AMER CHEMICAL SOC, 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

V


### Scopus Author Affiliation

| Refine Results                               |                                 |              |                   |                                 |  |  |
|----------------------------------------------|---------------------------------|--------------|-------------------|---------------------------------|--|--|
| Source Title                                 | Affiliation                     | City         | Country           | Subject Area                    |  |  |
| Journal of the American Chemical Society (2) | Academia Sinica Taiwan (2)      | Nankang (2)  | United States (4) | Chemistry (3)                   |  |  |
| Nanotechnology (1)                           | Vork Universite (2)             | Beijing (2)  | Canada (3)        | Engineering (3)                 |  |  |
| Materials and Manufacturing Processes (1)    | Chinese Academy of Sciences (2) | New York (2) | China (2)         | Biochemistry, Genetics and Mole |  |  |
| More                                         | More                            | More         | More              | More                            |  |  |

Select one or more authors and click show documents or citation tracker. Author Results: 5 🔤 Citation tracker 🛮 🖰 Feedback | Select: 🔲 All 🔲 Page 🛅 Show documents Documents Authors Subject Area Affiliation (most recent) City A Details University of Washington Seattle Hao, Changtong Chemistry 10 Not from York U York Universite Hao, Cunsheng Chemistry Toronto Show Last Title Hao, Jingcheng Cheng 🖺 Details Chemistry; Materials Science; Lanzhou Institute of Chemical Physics Chinese Lanzhou Hao, J. Academy of Sciences D 103 Chemical Engineering; ... Hao, Jing Cheng Hao, Jingcheng Hao, Steven C. A Details Medicine; Biochemistry, Genetics Yale University New Haven □ 26 Hao, Steven and Molecular Biology; Nursing; ... Hao, Zhang Cheng Details Engineering; Computer Science; Nanjing Forestry University Nanjing Hao, Z. C. □ <u>75</u> Materials Science; ... Hao, Z. Hao, ZHANG

. Here we have the first of the

### Another Author: from Munich Univ.



### Author not from York U

| Quick Search                                     | Go                                                                 |                       |
|--------------------------------------------------|--------------------------------------------------------------------|-----------------------|
| Journal of the Americ<br>Volume 129, Issue 11, 2 | <mark>an Chemical Society</mark><br>21 March 2007, Pages 3238-3246 |                       |
| DOI: 10.1021/ja0673550<br>Document Type: Article |                                                                    | □ □ Output ■ Bookmark |
| View at Publisher Find it                        | G York                                                             |                       |

#### Reactions of large water cluster anions with hydrogen chloride: Formation of atomic hydrogen and p in the gas phase

Siu, C.-K.<sup>a b</sup> <sup>△</sup>, Balaj, O.P.<sup>a c</sup> <sup>△</sup>, Bondybey, V.E.<sup>a</sup> <sup>△</sup>, Beyer, M.K.<sup>a d</sup> <sup>△</sup> ⋈ 🖼

- Department Chemie, Physikalische Chemie 2, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
- Department of Chemistry, Centre for Research in Mass Spectrometry, York University, 4700 Keele Street, Toronto, Ont. M3J1P3, Canada
- <sup>c</sup> Ecole Polytechnique, Departement de Chimie, Laboratoire DCMR, Route de Saclay, 91128 Palaiseau Cedex, France
- Institut für Chemie, Technische Universität Berlin, Strasse des 17, 10623 Berlin, Germany

#### Abstract

The reactions of water cluster anions  $(H_2O)_n$ , n=30-70, with hydrogen chloride have been studied by Fourier transform ion cyclotron resonance ( spectrometry. The first HCl taken up by the clusters is presumably ionically dissolved. The solvated electron recombines with the proton, which is t atomic hydrogen and evaporates from the cluster. This process is accompanied by blackbody radiation and collision induced loss of water molecules collisions lead to uptake of HCl and loss of  $H_2O$ , yielding mixed clusters  $Cl^-(HCl)_m(H_2O)_n$  until they are saturated with HCl. Those saturated clusters a characteristic sequence. The final stage of the reaction, involving clusters with m=0-4 and n=0-6, is studied in detail with density functional to The  $Cl^-(HCl)_4(H_2O)_6$  cluster represents an example for supramolecular self-organization in the gas phase: it consists of a tetrahedral  $Cl^-(HCl)_4$ , control of the tetrahedron to a compact water hexamer. © 2007 American Chemical Society.