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Abstract

A new class of exponential functionals arises when pricing certain equity-linked insurance products.
We study the distribution of these exponential functionals using tools from Probability and Complex
Analysis. In the case of the Kou process we obtain an explicit formula for the probability density
function of the exponential functional and we apply this result to pricing equity-linked insurance
products. As a by-product of this research we have also derived a new class of duality relations for
hypergeometric functions.

In the second part of the thesis, we study correlation uncertainty in Credit Risk. The goal is
to price analogues of first-to-default options under the assumption that the assets follow correlated
stochastic processes with known marginal distributions and unknown dependence structure. We
solve this problem using tools from Stochastic Analysis and Optimal Control Theory. We provide
explicit solutions in some specific examples and numerical approximations in the more general case.
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1 Overview

In this chapter, first we give a general outline of this dissertation; then we present a detailed overview
for the purposes of literature review and new results summary; at the end, we provide the paper
and authorship details.

1.1 General overview and introduction

In Mathematical Finance, stochastic processes are used to model the asset price (stock, fund, eq-
uity). The chosen process has to keep balance between reality and tractability: it needs to describe
the phenomena in the real market as much as possible and it also has to give analytic solutions for
derivative pricing.

Geometric Brownian motion is a well known process which has been widely used to model the
underlying equity. It describes some important facts of the market, and also provides analytic solu-
tions to option pricing. However, several empirical studies have shown that the geometric Brownian
motion does not adequately explain some facts of empirical returns. One popular solution to this
problem is to use Lévy processes to model log-returns of equities. Lévy processes, on one hand,
have the jump term to capture more facts of the market and, on the other hand, they keep the
tractability of the Brownian motion. For example, the Asian option pricing involves the average
value of an exponentiated Lévy process, which is connected to the exponential functional. Many
theoretical results have been obtained for the exponential functional of Lévy processes (see [9], [39],
[40]), which makes an analytic solution for Asian option pricing approachable. Nowadays, equity-
linked insurance products have been adopting Lévy processes to model the equity. However, the
funding mechanism of such insurance product involves the average value and the final value of an
exponentiated Lévy process. In order to model this product, a more general exponential functional
is needed. In this dissertation we investigate that.

We employ analytical methods to derive the distribution of the general exponential functional.
We work with integral transforms (Laplace, Mellin) to take probabilistic objects into the complex
plane. This allows us to obtain an explicit expression directly, which is then inverted to get the
distribution. With this result, any risk measure can be calculated.

The second part of this thesis is devoted to Credit Risk.

Credit risk has been essential for valuing assets. For a single asset, credit risk can be derived
from its market information. However, it is not the case for portfolios consisting of multiple assets,
such as CDOs (collateralized debt obligation). The main challenge lies in specifying the dependence
among the assets. The most widely used mechanism for characterizing the dependence is the copula
model initiated by Li [46]. Although such a model is easy for market calibration and credit risk
valuation, the dependence among assets are introduced without regarding to their dynamics. This
makes the model unreliable when the market becomes stressed, for example the crisis in 2008, where
the mis-pricing of CDOs were a major contributor. In contrast, the structural model can incorpo-
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rate the dependence quite naturally by assuming the assets follow correlated stochastic processes.
Thus the correlation can directly reflect the dependence. In this dissertation we demonstrate such
a way of valuing credit risk by pricing “first to default option”. We investigate the extent of the
price spread according to the dynamic of the correlation, since different settings of the correlation
lead to different prices of the option.

We mainly use stochastic analysis and optimal control theory to investigate the pricing of the
first to default option. If we take the correlation as the controlled object, then the problem is trans-
formed into a stochastic control problem. By working with the theory of martingales, Itô’s formula
and Itô-Tanaka formula, we derive that our object is either a supermartingale or submartingale.
This enables us to optimize the object to obtain the maximum and minimum price of the option,
then their difference determines the price spread.

Generally speaking, the primary purpose of this dissertation is to demonstrate existing and
new techniques for problems arising in mathematical finance by working with specific stochastic
processes. These problems invariably involve two key theoretical objects, namely, the exponential
functional and the verification theorem.

The two stochastic processes employed in this dissertation are precisely the Kou process and
the two dimensional Brownian motion. The Kou process is an outstanding member in the fam-
ily of hyper-exponential processes. It has been widely accepted to model the underlying asset, as
it can explain some important empirical phenomena from the market and it leads to analytical
solutions to a variety of option-pricing problems. The two dimensional Brownian motion is a suit-
able process to model two assets and the correlation is able to reflect the dynamic of the dependence.

A secondary purpose is to show two new research topics, which arise in the process of solving
the insurance product problem and the option pricing problem, we take them as a bonus. The first
one is a duality relation in special functions, which refers to an identity involving finite sums of
products of two hypergeometric functions. We obtain the identity when studying the distribution
of the general exponential functional. We find it may have independent interest in the special
function area, so we generalize the identity to a large family of hypergeometric functions. In the
literature, the first instances of such formulas have appeared in 1932 by Darling [16]. These results
then have been expanded by Bailey [2] in 1933, and they have been greatly generalized recently
by Beukers and Jouhet [6]. Here we present a very simple way to obtain such results. The second
one is about the skew Brownian motion. Harrison and Shepp [31] have introduced a beautiful way
to prove the existence and uniqueness of the solution for a stochastic differential equation (SDE),
which involves the symmetric local time. They also have shown that the solution is exactly a skew
Brownian motion. We modify the idea from Harrison and Shepp and then we apply it to a specific
SDE involving the asymmetric local time. We get this SDE while dealing with the option pricing
problem. Also in the process we provide a new construction of the skew Brownian motion, which
may have independent interest in its area.
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1.2 Detailed overview and summary of specific results

This dissertation is divided into two parts: Part I is intended as a literature review, and to introduce
concepts, and analytical techniques that are used in Part II to derive new results. There are
practically no new results in Part I (except for some discussion in Section 5.3), but the majority of
definitions are made here. Part II consists of three chapters each corresponding to a new contribution
to the literature, see the next section for paper and authorship details, and the summaries below
for details of each contribution.

Part I: Literature review and overview of techniques

Chapter 2: Lévy processes

Here we briefly introduce Lévy processes, and we list the Lévy density and characteristic/Laplace
exponent. Most importantly we introduce the Kou process which is used in Chapter 4 and Chapter
6. We explain why the Kou process is proposed and why it is important in option pricing. In
the meanwhile, we show the analytically tractable property of the Kou process in Wiener-Hopf
factorization and its application in pricing barrier options.

Chapter 3: Complex analysis and special functions

We mention the Identity theorem, Cauchy residue theorem, Liouville’s theorem which are used
in the dissertation. We also mention the Mellin transform and inverse Mellin transform, which
are the essential tools in Chapter 4 and Chapter 6. Furthermore, we introduce hypergeometric
functions, basic hypergeometic functions and Meijer G-functions which enable us to derive some
explicit results in Chapter 4 and Chapter 6. Hypergeometric functions and basic hypergeometic
functions are also the main objects in 8. As the reader may be unfamiliar with Meijer G-functions,
we also show many properties of Meijer G-functions. Those properties will be mainly used in
Chapter 6.

Chapter 4: Exponential functionals

The primary purpose of this chapter is to introduce the exponential functional

Jt =

∫ t

0

eXsds,

where X is a Lévy process. We give a literature review of the development of the exponential
functionals in recent years. An easy way to deal with Jt is by replacing the time t with a random time
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e(q), which has an exponential distribution with parameter q > 0 and is independent of the process
X. Here we use Iq to denote the exponential functional, which means Iq = Je(q). In the meanwhile,
the verification result is introduced for determining the Mellin transform of Iq. We demonstrate how
to apply such result to obtain the Mellin transform of Iq under the Kou process. Such transform
has already been obtained by Cai and Kou [9] alternatively via the ordinary integro-differential
equation approach. Furthermore, we show how to apply the theory of Meijer G-functions to obtain
the probability density function of Iq, after its Mellin transform was obtained. The intention is to
get the reader familiar with the Meijer G-function which appears frequently in Chapter 6.

Chapter 5: Brownian motion

We briefly state some basic concepts of continuous martingales and their connection with Brow-
nian motions. Most of the results in Chapter 7 are under this framework. Furthermore we mention
semimartingale and local time which are important for introducing the skew Brownian motion.
We take the skew Brownian motion as a tool to solve one particular type of stochastic differential
equation (SDE). In this process we follow the idea from Harrison and Shepp [31] but with some
modification. Thus a new theorem regarding the existence and uniqueness of the solution to one
particular SDE is presented. This theorem helps us to prove an important result in Chapter 7.

Part II: New results

Chapter 6: Guaranteed Minimum Death Benefit (GMDB)

GMDB is an equity-linked insurance product. The unique funding mechanism in this product
gives rise to a generalized form of exponential functional as

Jx,t := xeXt +

∫ t

0

eXs ds,

where x is non negative, X is a Lévy process and t is the expiry time of the contract for this product.
It is easy to observe that the exponential functional Jt in Chapter 3 is just the special case of Jx,t
when x = 0. We still adopt the approach by replacing t with e(q), namely Ix,q := Jx,e(q). Therefore
the object which will be studied in this chapter is Ix,q.

The investigation of the Ix,q is a new topic. Feng and Volkmer [23, 24] dealt with the case where
the process X is a Brownian motion. Despite that, we are not aware of any existing results for the
case where the process X has jumps. In this Chapter, we investigate Ix,q where X is a Lévy process.
This is important, as we have already stated in Chapter 2 that the Lévy process can capture some
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important features in the real market comparing to the Brownian motion.

We derive the Mellin transform of Ix,q explicitly for the case when X is a Lévy process and whose
Lévy measure has exponentially decaying tails. The technique of measure change is an essential
step to obtain this result. Here it is also important to note that in the process to obtain the Mellin
transform of Ix,q, we have used some results which are already in the literature for Iq. Those results
can be seen in Rivero [64], Kuznetsov [39], Patie and Savov [60].

In the remainder of this chapter we use the Kou process as an example to obtain the Mellin
transform of Ix,q and also get its probability density function fx,q(y). It can be easily checked
that the Kou process satisfies the requirement of having exponentially decaying tails in its Lévy
measure. We can observe that the formula of the Mellin transform of Ix,q is complicated, which
makes fx,q(y) hard to get. We derive a formula for fx,q(y) by using inverse Mellin transform, the
theory of the Meijer G-function and Cauchy residue theory. The process to obtain its explicit
formula is demonstrated in detail although it is not rigorous. However, after that a rigorous proof is
presented to show that fx,q(y) is exactly the probability density function of Ix,q. The proof involves
many computations related to special functions, and the essential step of the proof is one identity
involving hypergeometric functions. This identity is a special case of Theorem 27 in Chapter 8.
Finally, with the obtained fx,q(y), we can easily compute the tail distribution and tail expectation
of Ix,q. These theoretical results can be directly applied to the computation of various risk measures
in insurance companies’ favor, such as the Value at risk (VaR), the Conditional tail expectation
(CTE). We show that the analytical formulas are much more efficient and more accurate than the
current approach used by the insurance industry—the Monte Carlo simulation.

Chapter 7: Optimal control in first to default problem

Suppose we have two assets A1 and A2 in a portfolio. We are interested in the probability
that the first default happens before a fixed time T . The marginal distribution of the default time
for each asset can be derived from its market information, but the dependence between these two
assets is hard to specify. The copula model, initiated by Li [46], is widely used for characterizing the
dependence. Although such model has the advantage in market calibration and credit risk valuation,
the dependence between assets is introduced without regarding to their dynamics. This makes the
model unreliable when the market become stressed. In order to avoid such situation, we assume the
assets follow correlated stochastic processes, which can incorporate the dependence naturally. By
setting the correlation dynamic, it can dynamically reflect the dependence. Since the correlation is
not fixed, a different choice of correlation will lead to a different probability of first to default. We are
interested in the highest and lowest probability and also the corresponding correlation. However,
depending on the complexity of the stochastic processes, the computation can be very difficult,
especially under dynamic correlation assumption. In order to make the computation feasible, we
will use simple processes to model the assets. We let S1

t = eσ1B
1
t and S2

t = eσ2B
2
t represent the

value of assets A1 and A2, where (B1
t , B

2
t ) is a two dimensional Brownian motion which starts from
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(B1
0 , B

2
0) and satisfies

d〈B1, B2〉t = ρtdt. (1)

Here ρt denotes the correlation and ρt ∈ [−1, 1]. The default happens when either asset reaches
the value 1, which is equivalent to saying that B1

t or B2
t reaches 0. Of course, this is not a

general geometric Brownian motion model, as it assumes that µ1 = σ2
1/2 and µ2 = σ2

2/2 in the
geometric Brownian motion setting. However, in our case some closed form solutions do exist. We
let τ = inf{0 ≤ t ≤ T : B1

t = 0 or B2
t = 0}, thus our study is investigating

max
ρt

P(τ ≤ T ) and min
ρt

P(τ ≤ T ).

It is easy to obtain the answer for the minimum case, which will be shown in a simple proof. How-
ever, for the maximum case, it is a different story.

We generalize the problem by setting a payoff function f , where f(B1
τ , B

2
τ ) = f(B1

τ +B2
τ ), which

means if B1
τ = 0, the payoff will be f(B2

τ ), and vice versa. Therefore this problem will be modeled
as

max
ρt

E(f(B1
τ , B

2
τ )1{τ<T}) and min

ρt
E(f(B1

τ , B
2
τ )1{τ<T}).

We can observe that they are actually optimal control problems. Therefore by applying the op-
timality principle and Itô’s formula, we can obtain a partial differential equation (PDE) for the
optimal expected payoff. It also can be easily derived that the optimal choice of ρt only can switch
between two values 1 and −1. Although it is hard to obtain the analytical solutions for the PDEs,
some numerical results are demonstrated.

In order to decide the exact switch region as the correlation is changing from 1 to −1, we
simplify the problem by getting rid of T . So the problem transforms to maxE(f(B1

τ , B
2
τ )) and

minE(f(B1
τ , B

2
τ )). We investigate two specific forms of the payoff function f(x, y), the symmetric

one f(x, y) = (x+ y)α and the asymmetric one f(x, y) = (x+ by)α, the latter one implies the payoff
will be more favorable if one particular asset defaults first.

For most of the cases in this Chapter, the essential approach to obtain the optimal expected
value and the optimal choice of the correlation is by using the verification theorem. This theorem
transforms the optimal control problem to either a supermartingale or a submartingale problem.
By such theorem, letting the drift term of the supermartingale be 0 gives the optimal choice of ρt,
and then applying Fatou’s lemma gives the maximum expected value; letting the drift term of the
submartingale be 0 gives the optimal choice of ρt, and then applying Doob’s Lp−inequality gives
the minimum expected value. However, for α > 1, it is proved that the maximum expected value
is infinite, by applying theory of complex Brownian motion.

In the process of obtaining the optimal choice of ρt for the maximum case maxE(f(B1
τ , B

2
τ ))

when f(x, y) = (x + by)α, we extract one topic which may have independent interest. The topic
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regards the solution of one particular SDE

dB1
t = sgn(θB1

t −B2
t )dB

2
t ,

where B2
t is a Brownian Motion which starts from B2

0 and 0 < θ < 1. We use the skew Brownian
motion to prove the existence and uniqueness of the solution. Such idea has already been stated in
Chapter 5 in detail. In the meanwhile, we also provide a new construction of the skew Brownian
motion.

Chapter 8: Duality relations for hypergeometric functions

As we state in Chapter 6, one identity involving finite sums of products of two hypergeometric
functions arises. Such an identity is called a duality relation in the special function area and in
this chapter we expand this result for a more general family of hypergeometric functions. The first
instances of such formulas have appeared in 1932 in the paper [16] by Darling. These results have
been expanded by Bailey [2] in 1933, and recently they have been greatly generalized by Beukers
and Jouhet [6], who have used the theory of D-modules of general linear differential (or difference)
equations. In this Chapter we demonstrate our approach to derive such relations. The approach is
elementary and is inspired by a simple fact that the sum of residues of a rational function is zero
when the degree of the denominator is greater than one plus the degree of numerator. Such an
approach is shown as a lemma in this chapter. Before presenting the main results, we demonstrate
how to apply this approach to prove one simple identity in detail, such that readers can get familiar
with the idea behind this approach. Furthermore, we show that the duality has an analogue in
terms of basic hypergeomeric functions.

1.3 Published papers/Preprint

The contents of Chapter 6, 7 and 8 have either been published or in preparation. The results ap-
pearing in these chapters represent joint work with Runhuan Feng, Alexey Kuznetsov and Thomas
Salisbury.

A modified version of: Chapter 6 has been submitted [22]; Chapter 7 has been in preparation;
Chapter 8 has appeared in Journal of Mathematical Analysis and Applications [21].
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2 Lévy processes

In this chapter, we first introduce Lévy processes and some of their properties, then we present the
Kou process to which we will refer in Chapter 4 and Chapter 6. We show the tractable property of
the Kou process in Wiener-Hopf factorization and demonstrate how to apply such result in pricing
barrier options.

2.1 General Lévy processes

A random variable ξ is called infinitely divisible if for each n ∈ N, there exist n i.i.d. random
variables {ξi} such that

ξ
d
= ξ1 + · · ·+ ξn.

This is equivalent to saying that for any n ∈ N, the distribution of ξ is the convolution of n identical
distributions. By the famous Lévy-Khintchine Formula this is again equivalent to the statement
that there exists a unique triple (µ, σ2,Π) such that

E[eizξ] = e−Ψ(z), z ∈ R,

where,

Ψ(z) =
σ2z2

2
− iµz −

∫
R\{0}

(eizx − 1− izx1{|x|<1})Π(dx), (2)

and where, a ∈ R, σ2 ≥ 0, and Π(dx) is a measure on R \ {0} satisfying

Π({0}) = 0, and

∫
R\{0}

min(1, x2)Π(dx) <∞. (3)

The function Ψ(z) is called the characteristic exponent of ξ.

Definition 1. A Lévy process is an R-valued stochastic process X = {Xt : t ≥ 0} defined on a
probability space (Ω,F,P) that has the following properties:

(i) The paths of X are right continuous with left limits P-a.s.

(ii) X0 = 0 P-a.s.

(iii) For 0 ≤ s ≤ t, Xt −Xs is independent of {Xu : u ≤ s}.

(iv) For 0 ≤ s ≤ t, Xt −Xs is equal in distribution to Xt−s.
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Given a Lévy process X we can use properties (iii) and (iv) from the Definition 1 to obtain that,
for any n ∈ N we may write

Xt =
(
Xt −Xn−1

n
t

)
+
(
Xn−1

n
t −Xn−2

n
t

)
+ · · ·+

(
X 2

n
t −X 1

n
t

)
+X 1

n
t. (4)

Here the terms on the right-hand side are independent and identically distributed. This shows
that Xt is an infinitely divisible random variable. Let Ψ(z) be the characteristic exponent of X1 as
defined in (2). Then it follows from property (i) that

E(eizXt) = e−tΨ(z).

In other words, X is completely determined by the triple (µ, σ2,Π) corresponding to the char-
acteristic exponent of X1. Accordingly, the function Ψ(z) used in this context is also called the
characteristic exponent of X. We have seen that every Lévy process is naturally associated with
an infinitely divisible random variable. It is also true, although more difficult to show, that every
infinitely divisible random variable ξ gives rise to a (unique up to equality in distribution) Lévy

process X such that ξ
d
= X1 (see Theorem 2.1 in [44]).

Remark 1. The triple (µ, σ2,Π) is called the the generating triple. The quantity σ2 is known as
the Gaussian component and the measure Π(dx) is known as Lévy measure. The function in (2)
is known as a cut-off function. Without additional restriction on Π(dx), such a function is needed
to ensure convergence of the integral. However, any function h(x) that satisfies h(x) = 1 + o(x) as
|x| → 0 and h(x) = O(1/x) as x→∞ will suffice.

Typically we often classify Lévy processes by the characteristics of their sample paths. The
first such classification deals with the amount of jump activity, which is measured by the number
of discontinuities (jumps) of a sample path over any time interval. Each Lévy process has either
almost surely finite jump activity or almost surely infinite activity. Therefore we can classify Lévy
processes as either finite jump activity processes or infinite activity processes. We note that a Lévy
process is a finite activity process if and only if the jumps follow a compound Poisson process.
Namely

Ψ(z) =
σ2z2

2
− iµz − λ

∫
R
(eizx − 1)v(dx),

where λ ∈ R+ and v is a probability measure (see Section 2 in [44]).

A process is called a finite variation process if its sample paths have almost surely finite total
variation; it is called an infinite variation process if its sample paths have almost surely infinite total
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variation. As with jump activity, each Lévy process has either finite variation or infinite variation.
Note that a process is a finite variation process if and only if∫

R
min(1, |x|)Π(dx) <∞ and σ = 0,

see Section 2 in [44].

The term subordinator refers to a Lévy process whose paths are almost surely increasing. A
Lévy process which is not a subordinator but has no negative jumps is called a spectrally positive
process. Likewise, a Lévy process which is not the negative of a subordinator, but has no positive
jumps is called a spectrally negative process. Spectrally positive and negative processes are called
spectrally one-sided processes. Note that a scaled Brownian motion with drift is both a spectrally
positive and a spectrally negative process. Lévy processes that have only positive or only negative
jumps are called processes with one-sided jumps, or one-sided processes. A process with both
positive and negative jumps is called a process with two-sided jumps or a two-sided process.

Often, we wish to work with the Laplace exponent of a Lévy process X, which we define as

ψ(z) : =
1

t
logE[ezXt ]

= −Ψ(−iz)

=
σ2z2

2
+ µz +

∫
R\0

(ezx − 1− zx1{|x|<1})Π(dx), z ∈ iR. (5)

Of course, this definition is rather pointless unless we can extend ψ(z) beyond just the imaginary
numbers. From [44] we have the following equivalent condition to the existence of ψ(z) in terms of
the Lévy measure Π(dx).

Theorem 1. Let ψ(z) be the Laplace exponent of a Lévy process with generating triple (µ, σ2,Π).
Then ψ(z0) is finite if and only if

∫
|x|≥1

eRe(z0)xΠ(dx) <∞.

See Theorem 3.6, in [44].

In this dissertation, we will focus on the case when the domain of ψ(z) includes a vertical
strip of C containing the origin. Therefore we will work with the Laplace exponent instead of the
characteristic exponent.
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2.2 Kou process

In option pricing, the standard geometric Brownian motion has been widely used under the Black-
Scholes framework. Its analytical tractability not only gives explicit formula for the pricing of call
and put options and also ensures explicitly pricing the path dependent options such as barrier
options and lookback options. However, in several empirical studies (see Cont [15], Madan and
Seneta [48], Carr et al. [11], Kou [36]), it was demonstrated that the geometric Brownian motion
does not explain many stylized facts of empirical equity returns. Here we take two important facts
as examples: the leptokurtic feature and the volatility smile. The leptokurtic feature means that
the return distribution of assets may have a higher peak and two (asymmetric) heavier tails than
those of the normal distribution. The volatility smile means that the implied volatility curve is a
convex curve of the strike price. But under the Black-Scholes model framework, the volatility is
assumed to be constant. Therefore many studies have been conducted to modify the Black-Scholes
model to explain the two empirical phenomena. For example, Merton [53] has proposed the Normal
jump-diffusion model, and Duffie et al. [17] have proposed Affine Jump-Diffusion model. How-
ever, those alternative models can only compute prices explicitly for call and put options, they
can not get analytic solutions for those path-dependent options. Even the numerical methods for
the path-dependent options are not easy, as the convergence rate of Monte Carlo simulation for
path-dependent options are typically much slower than those for call and put options (see Boyle et
al. [7]). This also makes it harder to persuade practitioners to switch from the Black-Scholes model
to more realistic alternative models.

In 2002, Kou [36] proposed the double exponential jump-diffusion model (namely the Kou pro-
cess), which can capture both facts: the leptokurtic feature and the volatility smile. Furthermore,
it can give closed-form solutions for the pricing of the path-dependent options. The Kou process
follows the idea of Merton’s Normal jump-diffusion model, which incorporates jumps into the stan-
dard geometric Brownian motion by adding compound Poisson jumps. But instead of using normal
jumps, Kou[36] used the asymmetric double exponential jumps. By combining the memoryless
property of the exponential jumps with an approach based on differential equations and martin-
gale, Kou and Wang [37] have computed the distribution of the first passage time and applied it in
the path dependent options pricing in [38].

The Kou process is defined as follows:

Xt = µt+ σWt +
Nt∑
j=1

ξi, (6)

where σ > 0, µ ∈ R, Nt is a Poisson process with intensity λ, and {ξi}i are i.i.d. random variables
with the probability density function

pξ(x) = pρe−ρx1{x>0} + (1− p)ρ̂eρ̂x1{x<0},

for some p ∈ (0, 1) and ρ, ρ̂ > 0. Note that Wt, Nt and {ξi}i are independent in the definition.

11



The Laplace exponent is equal to

ψ(z) = µz +
σ2

2
z2 + λp

z

ρ− z
− λ(1− p) z

ρ̂+ z
. (7)

For q > 0 the rational function ψ(z) = q has four zeros {−ζ̂2,−ζ̂1, ζ1, ζ2} and two poles {−ρ̂, ρ}.
This can be easily seen from (7), essentially by using the intermediate value theorem, that the four
zeros are all real and satisfy the interlacing property

−ζ̂2 < −ρ̂ < −ζ̂1 < 0 < ζ1 < ρ < ζ2.

Another attractive aspect of the Kou process is that it has explicit Wiener-Hopf factorization.
Wiener-Hopf factorization is a powerful tool in investigating the first passage time or the extrema
for Lévy processes (see Chapter 6 in [44]). As we have stated above, in order to price the path
dependent options, one needs to investigate either the first passage time or the extrema processes.
An alternative way, different from Kou and Wang [38], for the path dependent options pricing is by
applying the Wiener-Hopf factorization. The essential idea is to get the Wiener-Hopf factors, which
are related to the extrema processes. For most of the Lévy processes, they do not have explicit
factorizations. However, the Kou process does have. Furthermore, it is also easy to obtain the
probability density function of its extrema processes. In the following, we will show the approach
to get the Wiener-Hopf factors for the Kou process and also demonstrate its application in pricing
barrier options.

First we define extrema processes

St = sup{Xs : 0 ≤ s ≤ t}, It = inf{Xs : 0 ≤ s ≤ t}.

We introduce an exponential random variable e(q) with parameter q > 0, which is independent of
the process Xt. We use the following notation for the Laplace exponent of Se(q) and Ie(q):

φ+
q (z) = E[ezSe(q) ], φ−q (z) = E[ezIe(q) ].

The Wiener-Hopf factorization states that the random variables Se(q) and Xe(q)−Se(q) are indepen-
dent; random variables Ie(q) and Xe(q) − Se(q) have the same distribution. Thus we have

q

q − ψ(z)
= E[ezXe(q) ] = E[ezSe(q) ]E[ez(Xe(q)−Se(q)) ] = φ+

q (z)φ−q (z).

Naturally one idea is to factor the function q/(q − ψ(z)) in such a way that we can identify the
Laplace transforms of two infinitely divisible distributions with support on R+ and R− respectively.
But not all the Lévy processes can apply this approach, as it has a specific requirement for the
suitability of the Laplace exponent ψ(z). Luckily, the Kou process is suitable for this approach.
With the Laplace exponent we have shown above, via simple algebra, we can get

q

q − ψ(z)
=

1− z
ρ

(1− z
ζ1

)(1− z
ζ2

)
×

1 + z
ρ̂

(1 + z

ζ̂1
)(1 + z

ζ̂2
)
. (8)
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From (8) we can obtain (the rigorous proof can be inferred from Chapter 6 in [44])

φ+
q (z) =

1− z
ρ

(1− z
ζ1

)(1− z
ζ2

)
=

1− ζ1
ρ

1− ζ1
ζ2

× ζ1

ζ1 − z
+

1− ζ2
ρ

1− ζ2
ζ1

× ζ2

ζ2 − z
,

and

φ−q (z) =
1 + z

ρ̂

(1 + z

ζ̂1
)(1 + z

ζ̂2
)

=
1− ζ̂1

ρ̂

1− ζ̂1
ζ̂2

× ζ̂1

ζ̂1 + z
+

1− ζ̂2
ρ̂

1− ζ̂2
ζ̂1

× ζ̂2

ζ̂2 + z
.

We can identify φ+
q (z) as the Laplace transform of a random variable ξ+ whose distribution is

equal to a mixture of exponential distributions with parameters {ζ1, ζ2}. And likewise, φ+
q (z) is the

Laplace transform of a random variable ξ−, where −ξ− is a mixture of exponential distributions

with parameters {ζ̂1, ζ̂2}. Namely, we have Se(q)
d
= ξ+ and Ie(q)

d
= ξ−.

We will take the up-and-in barrier call option as an example to demonstrate the application of
the Wiener-Hopf factorization. This option gives buyers the right but not obligation to buy a stock
at some expiry time T > 0 for strike price K > 0 on the condition that the option is valid if the
stock price rises above some barrier B > A0 prior to time T . In mathematical terms the quantity
we are interested in is

U(A0, K,B, T ) := e−rTE
[
(AT −K)+

1

(
sup

0≤t≤T
At > B

)]
.

By factoring out the constant S0 and dropping the discounting term, we can instead solve the
equivalent problem by determining

f(T ) := E[(eXT − k)+
1(ST > b)].

Here k = K/A0 and b = log(B/A0). Now if we take the Laplace transform of f(t), we may replace
the deterministic time T by the random time e(q) which is independent of the process Xt. We
define the function F (q) as

F (q) =

∫ ∞
0

qe−qtf(t)dt = E[(eXe(q) − k)+
1(Se(q) > b)]. (9)

Accordingly, we can solve our problem if we can determine F (q) and then invert the Laplace
transform to recover f(t). By observing (9), we can write it as

F (q) = E[(eXe(q)−Se(q)eSe(q) − k)+
1(Se(q) > b)].

Therefore we have rewritten the problems in terms of Se(q) and Xe(q)−Se(q), which are independent
random variables as we mentioned above, also we have obtained probability density functions for
Se(q) and Xe(q) − Se(q) (has the same distribution as Ie(q)). Therefore we are able to get an explicit
expression for F (q). More details can be seen in Jeannin and Pistorius [30].
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3 Complex analysis and special functions

In this chapter, we mention some important theorems in complex analysis which are used in the
dissertation. We also introduce the Mellin transform and inverse Mellin transform, which are the
essential tools in Chapter 4 and Chapter 6. Furthermore, we include Meijer G-functions and many
of their properties, and those properties will be mainly used in Chapter 6.

3.1 Some important theorems and Mellin transform

We introduce the identity theorem in the following, which will be used to prove Proposition 4 in
Chapter 6.

Theorem 2. Let D be a domain and suppose that f1, f2 are analytic functions defined on D.
Then if S = {z ∈ D : f1(z) = f2(z)} has a limit point in D, we must have S = D, which means
f1(z) = f2(z) for all z ∈ D.

See Theorem 6.9, in [3].

There are some known facts coming from this theorem. For example, the exponential function
ez on the complex plane is the unique analytic function that agrees on the real line R with ex.

Theorem 3. If Γ is a simple closed curve, which traverses counterclockwise in the complex plane
and f is analytic except for some points z1, z2, · · · , zn inside the contour Γ, then∫

Γ

f(z)dz = 2πi
n∑
k=1

Res(f(z) : z = zk).

See Theorem 10.5, in [3].

This theorem is called Cauchy residue theorem, which will be an essential tool for computing
the probability density function of Ix,q in Chapter 6.

The following is Liouville’s theorem. we will use it to prove Lemma 5 in Chapter 8.

Theorem 4. A bounded analytic function in the complex plane C is constant.

See Theorem 5.10, in [3].
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Definition 2. The Mellin transform of a function f is

M(s) =

∫ ∞
0

xs−1f(x)dx.

Note that, when we refer to the Mellin transform of a random variable X, it means M(X, s) :=
E(Xs−1).

Theorem 5. If M(s) is analytic in the strip a < Re(s) < b, and if it tends to zero uniformly as
|Im(s)| → ∞ for any real value c between a and b, with its integral along such a line converging
absolutely, then we have

f(x) =
1

2πi

∫ c+i∞

c−i∞
x−sM(s)ds, (10)

where the right hand side of (10) is the inverse Mellin transform.

See Theorem 4.3.3, in [69].

We will take the function Γ(s) as an example to demonstrate how to apply the Cauchy residue
theorem to obtain its Inverse Mellin transform. Letting f(x) = e−x, we have the known result

Γ(s) =

∫ ∞
0

xs−1e−xdx.

Letting g(x) denote the inverse Mellin transform

g(x) :=
1

2πi

∫
1+iR

x−sΓ(s)ds. (11)

Since we have the identity

Γ(s) =
Γ(s+ 1)

s
,

so we can get for Re(s) < 0

Γ(s) =
Γ(s+ n+ 1)

s(s+ 1) · · · (s+ n)
.

Here n is the smallest integer such that Re(s) + n + 1 > 0. Therefore, by analytic continuation,
Γ(s) is analytic in the whole complex plane except at 0,−1,−2, · · · ,−n, · · · . We observe that those
points are simple poles of Γ(s).

Here we include Stirling’s asymptotic formula for gamma functions, which will be used many
times in the dissertation,

|Γ(a+ ib)| =
√

2π exp(−π|b|/2 + (a− 1/2) ln(|b|) +O(1)), b→∞, (12)
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which holds uniformly in a on compact subsets of R.

According to the asymptotic result (12), Γ(s) decays exponentially as Im(s) → ∞. This fact
enables us to use the infinite contour and the residue theorem to derive the following expression

1

2πi

∫
1/2+iR

x−sΓ(s)ds = Res(x−sΓ(s) : s = 0) +
1

2πi

∫
−1/2+iR

xsΓ(s)ds. (13)

With the same idea, we keep shifting the contour, we can get

1

2πi

∫
1/2+iR

x−sΓ(s)ds =
m−1∑
j=0

Res(x−sΓ(s) : s = −j) +
1

2πi

∫
−m+1/2+iR

xsΓ(s)ds. (14)

For any m, since we have

Γ(s) =
1

s+m

Γ(s+m+ 1)

s(s+ 1) · · · (s+m− 1)
, (15)

thus the residue of Γ(s) at −m is given by:

Res(Γ(s) : s = −m) = lim
s→−m

(s+m)Γ(s). (16)

When s = −m,
Γ(s+m+ 1) = Γ(1) = 1,

and
s(s+ 1) · · · (s+m− 1) = (−1)mm!.

So the residue at −m is

Res(Γ(s) : s = −m) =
(−1)m

m!
. (17)

Since xs is an analytic function, thus Res(x−sΓ(s) : s = −m) = xmRes(Γ(s) : s = −m) = (−1)mxm

m!
.

By letting m→∞,

1

2πi

∫
1/2+iR

x−sΓ(s)ds =
∞∑
j=0

(−1)jxj

j!
= e−x (18)

As Γ(s) is analytic for Re(s) > 0, by applying Cauchy residue theorem∫
1+iR

x−sΓ(s)ds =

∫
1/2+iR

x−sΓ(s)ds.

Therefore g(x) = e−x = f(x).
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3.2 Hypergeometric function and Meijer G-function

Definition 3. We define the hypergeometric function

pFr

(b1, . . . , bp
a1, . . . , ar

∣∣∣z) :=
∑
k≥0

(b1)k . . . (bp)k
(a1)k . . . (ar)k

× zk

k!
, (19)

where (a)k := Γ(a + k)/Γ(a) is the Pochhammer symbol. When p < r + 1 it is an entire function
of z and when p = r + 1 the series in (19) converges only for |z| < 1 (though the function can be
continued analytically in the cut complex plane).

We will also work with the regularized hypergeometric function

Definition 4.

pΦq

(a1, . . . , ap
b1, . . . , bq

∣∣∣z) = Γ
[ a1, . . . , ap
b1, . . . , bq

]
pFq

(a1, . . . , ap
b1, . . . , bq

∣∣∣z), (20)

where

Γ
[ a1, . . . , ap
b1, . . . , bq

]
:=

∏p
i=1 Γ(ai)∏q
j=1 Γ(bj)

. (21)

This definition will be used widely in Chapter 6

Definition 5. We define the q-Pochhammer symbol

(a; q)k :=
(a; q)∞

(aqk; q)∞
, a ∈ C, |q| < 1, k ∈ Z, (22)

where (w; q)∞ :=
∏

j≥0(1− wqj). The basic hypergeometric function is defined as follows

r+1φr

(b1, b2, . . . , br+1

a1, a2, . . . , ar

∣∣∣z) :=
∑
k≥0

(b1; q)k(b2; q)k . . . (br+1; q)k
(a1; q)k(a2; q)k . . . (ar; q)k

× zk

(q; q)k
. (23)

It is easy to see that the above series converges when |q| < 1 and |z| < 1.

In the following we define Meijer G-functions and discuss some of their properties. We begin
with four non-negative integers m, n, p and q and two vectors a = (a1, . . . , ap) ∈ Cp and b =
(b1, . . . , bq) ∈ Cq and define for 0 ≤ m ≤ q, 0 ≤ n ≤ p,

Gmnpq
(a
b

∣∣∣s) :=

m∏
j=1

Γ(bj + s)
n∏
j=1

Γ(1− aj − s)

q∏
j=m+1

Γ(1− bj − s)
p∏

j=n+1

Γ(aj + s)

. (24)
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We denote
b(m) := min

1≤j≤m
Re(bj), ā(n) := max

1≤j≤n
Re(aj), (25)

and we set b(0) = +∞ and ā(0) = −∞. When the parameters m, n, a and b are fixed we will write
simply b = b(m) and ā = ā(n).

Definition 6. Assume that parameters m,n, p, q, a and b satisfy the following two conditions

Condition A: ā− 1 < b (26)

Condition B: p+ q < 2m+ 2n. (27)

We define the Meijer G-function as follows

Gmn
pq

(a
b

∣∣∣x) :=
1

2πi

∫
λ+iR
Gmnpq

(a
b

∣∣∣s)x−sds, (28)

where x > 0 and λ ∈ (−b, 1− ā).

Let us explain why the Meijer G-function is well-defined. The condition (26) is needed because
it separates the poles of Γ(bj + s) from the poles of Γ(1 − aj − s) in the numerator in (24), thus
the function s 7→ Gmnpq (a,b|s) is analytic in the strip −b < Re(s) < 1 − ā. Condition (27) and the
asymptotic result (12) for the gamma function ensure that the integrand in (28) converges to zero
exponentially fast as Im(s)→∞, and it is easy to check that (28) defines the Meijer G-function as
an analytic function in the sector | arg(z)| < (m+ n− (p+ q)/2)π.

Remark 2. Our definition of the Meijer G-function is sufficient for our purposes, but it is not the
most general possible. One could relax conditions (26) and (27) by appropriately deforming the
contour of integration in (28) . See Section 8.2 in Prudnikov et al. [62] for more details.

We record here some properties of the Meijer G-function, which are used elsewhere in this
dissertation. These properties and many other results on Meijer G-functions can be found in
Gradshteyn and Ryzhik [29]. In Section 8.4 in Prudnikov et al. [62] one can find an extensive
collection of formulas expressing various special functions in terms of Meijer G-functions.

(i)

xcGmn
pq

(a
b

∣∣∣x) = Gmn
pq

(a + c
b + c

∣∣∣x). (29)

(ii)

Gmn
pq

(a
b

∣∣∣x) = Gnm
qp

(1− b
1− a

∣∣∣x−1
)
. (30)
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(iii) For any ε > 0

Gmn
pq

(a
b

∣∣∣x) =

{
O(xb−ε), as x→ 0+,

O(xā−1+ε), as x→ +∞.
(31)

(iv) Assume that bj − bk /∈ Z for 1 ≤ j < k ≤ m. If p < q or p = q and |x| < 1 we have

Gmn
pq

(a
b

∣∣∣x) =
m∑
k=1

∏
1≤j≤m
j 6=k

Γ(bj − bk)
n∏
j=1

Γ(1 + bk − aj)

q∏
j=m+1

Γ(1 + bk − bj)
p∏

j=n+1

Γ(aj − bk)
(32)

× xbkpFq−1

( 1 + bk − a1, . . . , 1 + bk − ap
1 + bk − b1, . . . , ∗, . . . , 1 + bk − bq

∣∣∣(−1)p−m−nx
)
,

where the asterisk in the function pFq−1 denotes the omission of the k-th parameter. If p > q
or p = q and |x| > 1, the corresponding representation of the Meijer G-function in terms of

qFp−1 functions can be obtained using (30) and (32).

The following variant of (32) also will be used frequently:

Gmn
pq

(a
b

∣∣∣x) = πm+n−p−1

m∑
k=1

p∏
j=n+1

sin(π(aj − bk))∏
1≤j≤m
j 6=k

sin(π(bj − bk))
(33)

× xbkpΦq−1

( 1 + bk − a1, . . . , 1 + bk − ap
1 + bk − b1, . . . , ∗, . . . , 1 + bk − bq

∣∣∣(−1)p−m−nx
)
.

Here pΦq−1 is the regularized hypergeometric function defined in (20). This formula can be
easily derived from (32) by using the reflection formula for the Gamma function:

Γ(z)Γ(1− z) =
π

sin(πz)
. (34)

(v) If one of the parameter aj (for j = 1, 2, · · · , n) coincides with one of the parameters bj (for
j = m+ 1,m+ 2, · · · , q), the order of the G-function decreases. For example

Gmn
pq

( a1, · · · , ap
b1, · · · , bq−1, a1

∣∣∣x) = Gm,n−1
p−1,q−1

( a2, · · · , ap
b1, · · · , bq−1

∣∣∣x). (35)

An analogous relationship occurs when one of the parameters bj (for j = 1, 2, · · · ,m) coincides
with one of the parameters aj (for j = n + 1, · · · , p). In this case, it is m and not n that
decreases by one unit.

Gmn
pq

( a1, · · · , ap
ap, b2 · · · , bq

∣∣∣x) = Gm−1n
p−1,q−1

(a1, · · · , ap−1

b1, · · · , bq−1

∣∣∣x). (36)

19



(vi) ∫ ∞
1

xα−1Gmn
pq

(a
b

∣∣∣zx)dx = Gm+1,n
p+1,q+1

(a, 1− α
−α,b

∣∣∣z). (37)

(vii) For p ≤ q and Re(α) > 0,∫ 1

0

xα−1
pFq

(a1, . . . , ap
b1, . . . , bq

∣∣∣zx)dx = α−1 × p+1Fq+1

( α, a1, . . . , ap
α + 1, b1, . . . , bq

∣∣∣z). (38)
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4 Exponential functionals of Lévy processes

In this chapter we introduce exponential functionals of Lévy processes and their application in
pricing the Asian option. We state a verification result for determining the Mellin transform of the
exponential functional and we demonstrate how the verification result may be applied in the case
of the Kou process. Furthermore, we show how to apply the theory of Meijer G-functions to obtain
the probability density function of the exponential functional.

4.1 Introduction

The exponential functional of a Lévy process is a very interesting object, which has many applica-
tions in such areas as self-similar Markov processes and branching processes. An overview of this
topic, covering both theory and applications, can be found in [5]. Recently it has been popularized
in the finance literature by its applications to the pricing of Asian options in financial markets.

The exponential functional is the key to calculating Asian option price. Asian options are a
special type of path dependent option contracts whose payoff is contingent upon the average price
of underlying equity over the contract period. We denote the equity price: At = A0e

Xt . Here Xt is
a stochastic process, A0 is the initial equity value. In our assumption the measure P is risk neutral.
We are interested in calculating the price of an arithmetic average, continuously monitored, fixed
strike price Asian call option, which is given by

C(A0, K, T ) = e−rTE

[(
1

T

∫ T

0

A0e
Xudu−K

)+
]
.

Here T is the expiry time and K is the strike price. By factoring out the constants 1
T

and A0, we
get

C(A0, K, T ) = e−rT × A0/T × f(TK/A0, T ),

where

f(k, t) = E

[(∫ t

0

eXudu− k
)+
]
. (39)

We see that determining f(k, t) is equivalent to obtaining the option price, and
∫ t

0
eXudu is the key

to determining f(k, t).

Let us define the exponential functional of a process X to be

Jt :=

∫ t

0

eXsds.

There has been a vast amount of work in the literature devoted to the distribution of Jt. Yor [68]
employs the Lamperti transformation relating the geometric Brownian motion and the exponential
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functional to a Bessel process. Linetsky [47] starts with an identity in distribution

Jt
d
= Ut := eXt

∫ t

0

e−Xs ds,

and the fact that the latter is a diffusion process and then applies the eigenfunction expansion
technique to determine the distribution of Ut. Vecer [67] applies the change of measure to produce
a partial differential equation satisfied by the Asian option price. The above list is by no means
comprehensive. More applications of exponential functionals of Brownian motion and references
can be found in Carmona et al. [10] and Matsumoto and Yor [49, 50].

As we have mentioned in Chapter 2, several empirical studies have demonstrated that the geo-
metric Brownian motion does not adequately explain many stylized facts of empirical equity returns,
such as the asymmetric leptokurtic log-returns and the volatility smile. One popular solution to this
problem is to use Lévy processes to model log-returns. When working with exponential functionals
of Lévy processes, it is easier to study the distribution of the exponential functional of the form

Iq := Je(q) =

∫ e(q)

0

eXs ds, (40)

where e(q) is an exponential random variable with mean 1/q, independent of the process X.

Instead of investigating Iq directly, one good approach is to use the Mellin transform to determine
the distribution of the exponential functional. The Mellin transform of Iq has some good properties
which enable us to determine its expression. The Mellin transform of Iq is defined as

Mq(s) := E[Is−1
q ],

where s ∈ 1 + iR (s can be extended to a strip later).

We denote the probability density function of Iq by p(x). There has been an extensive literature
covering the asymptotic behavior of p(x) as x → ∞ (see [51],[12],[13]) or as x → 0+ (see [8],
[57]). At the same time, the distribution of Iq is known explicitly for some processes with one-sided
jumps: standard Poisson process, Brownian motion with drift, one particular spectrally negative
Lamperti-stable process (see for instance [12], [45], [58]), spectrally positive Lévy process satisfying
the Cramér’s condition (see for example [59]). In the last several years, the distribution of Iq
have been obtained explicitly for processes with double-sided jumps. First of all, Cai and Kou [9]
obtained the distribution of Iq for hyper-exponential Lévy processes. Additionally, they have shown
Iq has the same distribution as a product of a sequence of independent gamma and beta random
variables. These results were later extended to processes with jumps of rational transform in [39]
and to meromorphic Lévy process in [40]. Furthermore, in [39], a verification technique based
on a functional equation is proposed to identify the Mellin transform of Iq, which considerably
simplifies the derivation of many results on exponential functionals. A rather easy way to compute
the probability density function p(x) explicitly has been presented in [39], which is based on the
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theory of Meijer G-functions. By now the analytical theory behind the exponental functionals Iq is
rather well understood, see the papers by Patie and Savov [60, 61].

As stated above, the Mellin transform is the key to derive the distribution of Iq. Here we will
introduce two important results regarding the expression of the Mellin transform. We will prove
a lemma due to Maulik and Zwart [51], which shows that the Mellin transform satisfies a func-
tional equation involving the Laplace exponent of the process. Then we will show a theorem due
to Kuznetsov and Pardo [41], that any function satisfying this functional equation and some other
technical condition must be the Mellin transform of Iq.

Lemma 1. Let q > 0 and X be a Lévy process with Laplace exponent ψ(s). If s > 0 and q−ψ(s) > 0,
we have

Mq(s+ 1) =
s

q − ψ(s)
Mq(s), (41)

where the equality is interpreted to mean that both sides can be infinite.

Proof. We start by integrating the following identity

d

du
(Jt − Ju)s = −s(Jt − Ju)s−1eXu ,

over the interval [0, t] to obtain

Jst = s

∫ t

0

(It − Iu)s−1eXudu. (42)

Now, we observe that

Jt − Ju = eXu
∫ t−u

0

e(Xu+v−Xu)dv. (43)

Here we have the fact that the process X̃, defined by X̃v := Xt+v−Xt, is independent of the process

X up until time t and has the same distribution as X. From this fact we have
∫ t−u

0
e(Xu+v−Xu)dv

d
=

Jt−u. By plugging (43) into (42), taking expectation and applying Tonelli’s theorem,

E[Jst ] = s

∫ t

0

euψ(s)E[Js−1
t−u ]du. (44)

By plugging (44) into the equation below

E[Isq ] = q

∫ ∞
0

e−qtE[Jst ]dt,
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and applying Tonelli’s theorem again, with the fact that q − ψ(s) > 0, we yield the result

E[Isq ] =
s

q − ψ(s)
E[Is−1

q ].

ut

Now we will state and prove the verification result. The statement of this theorem and the asso-
ciated proof originally appeared in [41], but here we will use the statement and brief proof from [39].

Theorem 6. Assume that Cramér’s condition is satisfied: there exists z0 > 0 such that the Laplace
exponent ψ(z) is finite for all z ∈ (0, z0) and ψ(θ) = q for some θ ∈ (0, z0). If f(s) satisfies the
following three properties

(i) f(s) is analytic and zero-free in the strip Re(s) ∈ (0, 1 + θ),

(ii) f(1) = 1 and f(s+ 1) = sf(s)/(q − ψ(s)) for all s ∈ (0, θ),

(iii) |f(s)|−1 = o(exp(2π|Im(s)|)) as Im(s)→∞, Re(s) ∈ (0, 1 + θ),

then Mq(s) ≡ f(s) for Re(s) ∈ (0, 1 + θ).

Proof. We present the main steps of the proof here. First of all, the Cramér’s condition and
Lemma 2 in [64] imply that Mq(s) can be extended to an analytic function in the vertical strip
Re(s) ∈ (0, 1 + θ). Since |Mq(s)| < Mq(Re(s)), we see that Mq(s) is bounded in the strip
Re(s) ∈ [θ/2, 1 + θ/2]. Also from the Cramér’s condition, we see that the sufficient conditions
of Lemma 1 are satisfied on the interval (0, θ), so we know Mq(s) satisfies the same functional
equation as f(s). Therefore the ratio F (s) =Mq(s)/f(s) is a periodic function: F (s + 1) = F (s);
And due to condition (i) F (s) can be extended to an analytic function in the entire complex plane.
Finally, condition (iii) and boundedness ofMq(s) imply that F (s) = o(exp(2π|Im(s)|)) in the entire
complex plane, and any function which is analytic, periodic with period equal to one, and which
satisfies this upper bound must be identically equal to a constant. Since F (1) = 1, we conclude
that F (s) ≡ 1, that is Mq(s) ≡ f(s). ut

This verification result is a convenient tool which allows us to explicitly identify the Mellin
transform of Iq as a solution to the functional equation f(s + 1) = sf(s)/(q − ψ(s)). What makes
this equation analytically tractable is that if s/(q − ψ(s)) is a rational function, then the function
f(s) can be connected with Gamma functions.

In order to apply the verification result, we need a candidate function f(s) that satisfies the
three criteria. In the following section, we will show how to construct this function for the Kou
process.
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4.2 Application in the Kou process

We will take the Kou process as an example to show how to get the Mellin transform of Iq and then
how to obtain the probability density function p(x). First let us recall the Kou process.

The Kou process X is defined in Chapter 2, its Laplace exponent is equal to

ψ(z) = µz +
σ2

2
z2 + λp

z

ρ− z
− λ(1− p) z

ρ̂+ z
.

For q > 0 the rational function ψ(z) = q has four zeros {−ζ̂2,−ζ̂1, ζ1, ζ2} and two poles {−ρ̂, ρ}
which satisfy the interlacing property

−ζ̂2 < −ρ̂ < −ζ̂1 < 0 < ζ1 < ρ < ζ2.

Theorem 7. Assume q > 0, for Re(s) ∈ (0, 1 + ζ1) we have

E[Is−1
q ] = A1−sΓ(s)

G(s)

G(1)
, (45)

where

G(s) =
Γ(1 + ζ1 − s)Γ(1 + ζ2 − s)Γ(ρ̂+ s)

Γ(1 + ρ− s)Γ(ζ̂1 + s)Γ(ζ̂2 + s)
, (46)

and the constant A = σ2

2
.

Proof. Our approach is to solve the functional equation of Theorem 6 (ii)

f(s+ 1) = sf(s)/(q − ψ(s)), (47)

and then verify that one of our solutions satisfies the remaining requirements of the verification
result. In deriving a solution, we will take advantage of the fact that ψ(s) is a rational function so
that we may write

s

q − ψ(s)
=

s(ρ− s)(ρ̂+ s)

A(ζ1 − s)(ζ2 − s)(s+ ζ̂1)(s+ ζ̂2)
, (48)

where A = σ2

2
.

By observing equation (47) and each factor of (48), we find that it is very similar to the recursion
formula for the gamma function

Γ(s+ 1) = sΓ(s).
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This is precisely what we will use to find a solution. Let us consider each factor of (48) separately
and solve simpler functional equation of the type

f1(s+ 1) = (s+ a)f1(s), f2(s+ 1) = (a− s)f2(s),

and

f3(s+ 1) =
1

s+ a
f3(s), f4(s+ 1) =

1

a− s
f4(s), f5(s+ 1) =

1

A
f5(s).

Here a ∈ {0, ζ1, ζ2, ζ̂1, ζ̂2, ρ, ρ̂}. The first four equations can be solved by using the gamma function
recursion formula. This approach yields solution of the form f1(s) = Γ(s + a), f2(s) = 1

Γ(a−s+1)
,

f3(s) = 1
Γ(s+a)

and f4(s) = Γ(a − s + 1). The final equation can be solved by guessing. It has

the solution f5(s) = (A)1−s. These facts together with our knowledge of the domain of the gamma
function, demonstrate that the function (as a product of those functions we get)

f(s) = (A)1−s × Γ(s)× Γ(1 + ζ1 − s)Γ(1 + ζ2 − s)
Γ(1 + ρ− s)

× Γ(ρ̂+ s)

Γ(ζ̂1 + s)Γ(ζ̂2 + s)
(49)

solves equation (47) for Re(s) ∈ (0, ζ1) and is analytic and zero free for Re(s) ∈ (0, 1 + ζ1). Fur-

ther, the function h(s) = f(s)
f(1)

satisfies h(1) = 1. We observe that h(s) can be a candidate of E[Is−1
q ].

Now we have some insight of how to get the candidate function, the remaining is to verify
the criteria of Theorem 6. Namely, let us demonstrate that h(s) is the Mellin transform of the
exponential functional. We have already checked the condition in (i) and (ii). The definition of
ρ and ζ1 show that Cramér’s condition is satisfied for z0 = ρ and θ = ζ1. In order to check the
asymptotic condition in (iii) holds, we use the asymptotic results (12), which ensures that we can
write |h(s)|−1 as

|h(s)|−1 = f(1)× ARe(s)−1 × exp(π|Im(s)|/2 + c ln(|Im(s)|) +O(1)), |Im(s)| → ∞,

where c is a constant depends on Re(s). This shows that |h(s)|−1 = o(exp(2π|Im(s)|)) as Im(s)→
∞, namely the condition in (iii) holds. Therefore, h(s) ≡Mq(s) for Re(s) ∈ (0, 1 + ζ1). ut

Cai and Kou [9] have shown that Iq has the same distribution as a product of gamma and
beta random variable for hyper-exponential Lévy processes. We will demonstrate it in the Kou
process (the Kou process is a special case of hyper-exponential Lévy processes). In the following
proposition, we let G(α,β) stands for a gamma random variable with shape and scale parameters α
and β respectively; we let B(α,β) stands for a beta random variable with shape parameters α and β
respectively.
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Proposition 1. Let X be the Kou process, and assume q > 0, then

Iq
d
=

1

A

B(1,ζ̂1)B(ρ̂+1,ζ̂2−ρ̂)

G(ζ2,1)B(ζ1,ρ−ζ1)

. (50)

Proof. First let us show that the Mellin transforms of a gamma random variable G(α,β) and beta
random variable B(α,β) are given by

M(G, s) = β1−sΓ(s+ α− 1)

Γ(α)
, Re(s) + α− 1 > 0,

M(B, s) =
Γ(α + s− 1)Γ(α + β)

Γ(α)Γ(α + β + s− 1)
, Re(s) + α− 1 > 0,

respectively.

We can rearrange (45) in this way

E[Is−1
q ] =

(
1

A

)s−1
Γ(s)Γ(1 + ζ̂1)

Γ(1)Γ(ζ̂1 + s)
× Γ(ρ̂+ s)Γ(1 + ζ̂2)

Γ(1 + ρ̂)Γ(ζ̂2 + s)
× Γ(1− s+ ζ2)

Γ(ζ2)
× Γ(1 + ζ1 − s)Γ(ρ)

Γ(ζ1)Γ(1− s+ ρ)
, (51)

since Re(s) ∈ (0, 1 + ζ1), the condition Re(s) + α− 1 > 0 holds. Thus we know

Γ(s)Γ(1 + ζ̂1)

Γ(1)Γ(ζ̂1 + s)
and

Γ(ρ̂+ s)Γ(1 + ζ̂2)

Γ(1 + ρ̂)Γ(ζ̂2 + s)

are the Mellin transforms of B(1,ζ̂1) and B(1+ρ̂,ζ̂2−ρ̂) respectively.

Since by the definition of Mellin transform, if the condition Re(2−s) +α−1 > 0 holds, we have

M(1/G, s) = M(G, 2− s) and M(1/B, s) = M(B, 2− s).

Therefore, we have
Γ(1− s+ ζ2)

Γ(ζ2)
and

Γ(1 + ζ1 − s)Γ(ρ)

Γ(ζ1)Γ(1− s+ ρ)

are the Mellin transform of G(ζ2,1) and B(ζ1,ρ−ζ1) respectively. It also can be checked that the con-
dition Re(2− s) + α− 1 > 0 holds.

Therefore Iq has the same distribution as a product of gamma and beta random variables. ut

Remark 3. We can observe from Theorem 7, the right-hand side of (45) has more gamma functions
in the numerator than in the denominator. This fact and the asymptotic formula (12) imply that
E[Is−1

q ] decreases to zero exponentially fast as |Im(s)| → ∞, which implies(via the inverse Mellin
transform) that the probability density function of Iq is a smooth function on R+.
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Formula (45) gives us the Mellin transform of Iq, which uniquely characterizes the distribution
of Iq via the inverse Mellin transform

p(x) =
1

2πi

∫
1+iR

E[Is−1
q ]x−sds. (52)

In fact, the function p(x) can be computed explicitly, and this can be achieved in a variety of ways.
One approach (which is quite general) is to use the fact that the integrand in the right-hand of (45)
is an analytic function in C except those simple poles (it is easy to observe that since Γ(s)G(s) is the
product of gamma functions), and whose residues can be computed explicitly, therefore by shifting
the contour of integration in (52) we will obtain convergent series representations for p(x). The
second approach is to use the theory of Meijer G-functions, which will be shown in the following.

Proposition 2. Assume that q > 0, then the density function p(x) can be expressed in terms of the
Meijer G-function as follows

p(x) =
A

G(1)
G2,2

3,4

( 1, 1− ρ̂, 1 + ρ

1 + ζ1, 1 + ζ2, 1− ζ̂1, 1− ζ̂2

∣∣∣ 1

Ax

)
. (53)

Proof. By plugging formula (45) into (52) and applying the definition of the Meijer-G function (28),

p(x) =
1

2πi

∫
1+iR

A1−sΓ(s)G(s)

G(1)
x−sds

=
A

G(1)
× 1

2πi

∫
1+iR

Γ(s)Γ(1 + ζ1 − s)Γ(1 + ζ2 − s)Γ(ρ̂+ s)

Γ(1 + ρ− s)Γ(ζ̂1 + s)Γ(ζ̂2 + s)
(Ax)−sds

=
A

G(1)
G2,2

4,3

( −ζ1,−ζ2, ζ̂1, ζ̂2

0, ρ̂,−ρ

∣∣∣Ax). (54)

Note that both conditions 26 and 27 are satisfied, since in our case we have

a = max(−ζ1,−ζ2) = −ζ1, (55)

b = min(0, ρ̂) = 0. (56)

Thus 1 ∈ (−b, 1 − a). The desired result (53) is obtained from applying the property (30) to the
Meijer-G function in (54). ut
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5 Brownian motion

In this chapter, we state the concepts of continuous martingales and stochastic integrals, most of
the results in Chapter 7 are based on them. Furthermore, we mention semimartingale and local
time, for the purpose of introducing the Skew Brownian motion. Finally, we demonstrate how to
employ the Skew Brownian motion to solve one particular type of SDEs.

5.1 Martingale and Stochastic Integrals

Definition 7. A filtration on the measurable space (Ω,F) is an increasing family (Ft)t≥0, of sub-
σ-algebras of F . In other words, for each t we have a sub-σ-algebra Ft and Fs ⊂ Ft if s < t.

A process X on (Ω,F) is adapted to the filtration (Ft) if Xt is Ft-measurable for each t. It is
obvious to see X is adapted to its natural filtration F0

t =σ(Xs, s ≤ t). It is the introduction of a
filtration which allows for the parameter t to be really thought of as time. Heuristically speaking,
the σ-algebra Ft is the collection of events which may occur before or at time t or, in other words,
the set of possible “past events” up to time t.

Definition 8. The process {Xt,Ft; 0 ≤ t <∞} is said to be a submartingale (respectively, a super-
martingale) if, for every 0 ≤ s < t <∞, we have E(Xt|Ft) ≥ Xs P-a.s.(respectively, E(Xt|Ft) ≤ Xs).
If E(Xt|Ft) = Xs, then {Xt,Ft; 0 ≤ t <∞} is a martingale.

A martingale is both a submartingale and supermartingale.

Definition 9. A stopping time T relative to the filtration (Ft) is a positive r.v. with values in
[0,∞], such that for every t,

{T ≤ t} ∈ Ft.

The class of sets A in F∞ such that A ∩ {T ≤ t} ∈ Ft for all t is a σ-algebra denoted by FT .
The sets in Ft are thought of as events which may occur before stopping time T . A Stopping time
is thought of as the first time some event happens, for example the first time the stochastic process
hits some boundary.

We will introduce the Optional Sampling theorem in the following, this theorem will be used
often in Chapter 7.

Theorem 8. If X is a martingale and S, T are two bounded stopping times with S ≤ T , then

XS = E[XT |FS] a.s. (57)

If X is uniformly integrable, the family {XS} where S runs through the set of all stopping times is
uniformly integrable and if S ≤ T , then

XS = E[XT |FS] a.s. (58)
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See proof in Theorem II 3.2 in [63]

It is obvious that the Optional Sampling theorem generalizes the properties of martingales from
constant times to stopping times. For example, if we replace S with s and T with t, we can observe
that it is exactly the martingale property in Definition 8. In Chapter 7, we will use the former
argument in Theorem 8 with the bounded stopping times. Furthermore, there are similar results
for supermartingale and submartingale with bounded stopping times.

Definition 10. Let X = {Xt,Ft; 0 ≤ t < ∞} be a continuous process with X0 = 0 a.s. If there

exists a nondecreasing sequence {Tn}∞n=1 of stopping times of {Ft}, such that {X(n)
t = Xt∧Tn ,Ft; 0 ≤

t < ∞} is a martingale for each n ≥ 1 and P[limn→∞ Tn = ∞] = 1, then we say that X is a
continuous local martingale.

Theorem 9. If B = {Bt,Ft; 0 ≤ t < ∞} is a standard Brownian motion and X is a measurable,
adapted process with P[

∫ t
0
X2
sds <∞] = 1 for every 0 ≤ t <∞, then the stochastic integral

∫ t
0
XsdBs

is a continuous local martingale.

An adapted process with continuous paths is progressively measurable, and a progressively
measurable process must be measurable (For more details, see Proposition I 4.8 and Definition IV
1.14 of [63]). And for readers’ convenience, all the processes appear in Chapter 7 are measurable
and adapted.

We call B = B1 + iB2 the planar Brownian motion, where (B1, B2) is a pair of independent
Brownian motion. It is also called a complex Brownian motion. We will introduce an important
theorem which is known as the conformal invariance of complex Brownian motion.

Theorem 10. If F is an entire and non constant function, Bt is a complex Brownian motion, then
F (Bt) is a time-changed complex Brownian motion.

See proof in Theorem V 2.5 of [63].

Time-changed Brownian motion has the same paths as Brownian motion but possibly runs at a
different speed.

Theorem 11. Suppose B is a complex Brownian motion that starts from (a+ ib) (b 6= 0), and let
τ denote the first time B hits the real axis, namely, τ = min{t ≥ 0;B2

t = 0}. Then B1
τ , namely the

hitting position on the real axis, has a Cauchy distribution:

P(B1
τ ∈ dx) =

1

π

|b|
(x− a)2 + b2

dx (59)
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5.2 Semimartingale and Local time

Definition 11. A continuous(Ft, P )-semimartingale is a continuous process X that can be written
as X = M + A, where M is a continuous (Ft, P )-local martingale and A is a continuous adapted
process of finite variation.

For example submartingales and supermartingales are semimartingales.

We will introduce the Tanaka’s formula given by Theorem VI 1.2 of [63].

First, let us define the function sgn(x)

Definition 12. sgn(x) = 1 if x > 0 and sgn(x) = −1 if x ≤ 0.

The following theorem is called Tanaka’s formula, which will be used often in Chapter 7.

Theorem 12. Suppose X is a continuous semimartingale. For any real number a, there exists an
increasing continuous process La called the local time of X at a such that,

|Xt − a| = |X0 − a|+
∫ t

0

sgn(Xs − a)dXs + Lat ,

(Xt − a)+ = (X0 − a)+ +

∫ t

0

1{Xs>a}dXs + 1/2Lat ,

(Xt − a)− = (X0 − a)− −
∫ t

0

1{Xs≤a}dXs + 1/2Lat .

In particular, |X − a|, (X − a)+ and (X − a)− are semimartingales.

From Corollary VI 1.9 of [63], Lat has an equivalent definition.

Theorem 13. If X is a continuous semimartingale, then, almost surely,

Lat (X) = lim
ε→0

1

ε

∫ t

0

1[a,a+ε)(Xs)d〈X,X〉s. (60)

for every a and t.
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In this dissertation, we are interested in the local time of X at 0, and also we have the corre-
sponding differential form of the equation for the local time. For convenience, we will write L0

t as
Lt.

d|Xt| = sgn(Xt)dXt + dLt(X),

d(Xt)
+ = 1{Xt>0}dXt + 1/2dLt(X),

d(Xt)
− = −1{Xt≤0}dXt + 1/2dLt(X).

A different definition of the sign function will give a different version of local time for the same
semimartingale X. Another definition of the sign function s̃gn(x) is

Definition 13. s̃gn(x) = 1 if x > 0, s̃gn(x) = 0 if x = 0 and s̃gn(x) = −1 if x < 0.

This sign function is symmetric and we will call the corresponding local time as symmetric local
time (see Exercise VI 1.25 of [63]).

Theorem 14. Suppose X is a semimartingale, for any real number a, there exists an increasing
continuous process L̃a called the symmetric local time of X at a such that,

|Xt − a| = |X0 − a|+
∫ t

0

s̃gn(Xs − a)dXs + L̃at .

L̃at also has an equivalent definition

L̃at (X) = lim
ε→0

1

2ε

∫ t

0

1(a−ε,a+ε)(Xs)d〈X,X〉s. (61)

for every a and t.

We will let L̃t denote L̃0
t for the symmetric local time of X at 0. The differential form will be

d|Xt| = s̃gn(Xt)dXt + dL̃t(X),

The lack of symmetry in the last two identities in the Theorem 12 is due to the choice below of
using left derivatives and the choice of sign function. In this dissertation, we will use this notation
to denote the asymmetric sign function. Also we will see the importance of the value of the sign
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function sgn(x) when x = 0 in one of our proofs in Chapter 7.

It is known that in Itô’s formula, if X is a continuous semimartingale, and f is a C2-function,

df(Xt) = f
′
(Xt)dXt +

1

2
f
′′
(Xt)d〈X,X〉t. (62)

By generalizing the functions in C2 to convex functions, this leads to the Itô-Tanaka formula

Theorem 15. If f is the difference of two convex functions and if X is a continuous semimartingale

f(Xt) = f(X0) +

∫ t

0

f
′

−(Xt)dXt +
1

2

∫
R
Lat f

′′
(da). (63)

In particular, f(x) is a semimartingale.

Here if f is still C2, f
′
−(x) = f

′
(x), and f

′′
(x) will just be the second derivative. However, if

f is only convex, f
′
−(x) is the left-hand derivative of f(x), and f

′′
(x) will be a positive measure

in the sense of distribution, which is associated with the increasing function f
′
−(x) (see Appendix

Sect.3 in [63]). Therefore, for f the difference of two convex functions, f
′
−(x) is still the left-hand

derivative of f(x), but f
′′
(x) will be a measure associated with f

′
−(x). The measure is actually the

difference of two positive measures (see Theorem VI 1.5 in [63]).

5.3 Skew Brownian motion

According to [31], the skew Brownian motion Xα = {Xα(t), t ≥ 0}, indexed by 0 ≤ α ≤ 1, is a diffu-
sion process that can be intuitively constructed by the following procedure. Let Z = {Z(t), t ≥ 0}
be a reflecting Brownian motion on [0,∞) and consider the excursions of Z away from the origin.
Change the sign of each excursion independently with probability 1 − α so that a given excursion
is positive with probability α and negative with probability 1− α.

The following from [31] will explain how to construct the skew Brownian motion Xα. Let

σ2
α(x) =

{
(1− α)2, if x ≥ 0,

α2, if x < 0.
(64)

Let B = {Bt, t ≥ 0} be a standard Brownian motion on some probability space and set

Yα(t) = B(Tα(t)), (65)

where the time change Tα is defined by

t =

∫ Tα(t)

0

du/σ2
α(B(u)). (66)

Thus Yα is a diffusion in natural scale with state space R, the speed measure of Yα is

mα(dx) = 2dx/σ2
α(x). (67)
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Next we let

rα(x) =

{
x/(1− α), if x ≥ 0,

x/α, if x < 0.
(68)

We define Xα by

Xα(t) = rα(Yα(t)). (69)

Thus the scale function of the diffusion Xα is

sα(x) =

{
(1− α)x, if x ≥ 0,

αx, if x < 0.
(70)

We can see sα is the inverse of rα. The construction of Xα is given by (65) and (69).

Harrison and Shepp [31] have introduced a very nice way to prove the existence and uniqueness
of solution for a specific stochastic differential equation

dXt = dBt + βdL̃t(X), − 1 ≤ β ≤ 1. (71)

Furthermore, it was shown that the solution is exactly a skew Brownian motion with parameter
α = (1 + β)/2. As we mentioned above, L̃t(X) is the symmetric local time of Xt at 0, Bt is a
standard Brownian motion.

A natural question will be why the traditional way of proving the existence and uniqueness of
solution for SDE can not apply directly to this particular equation (71)?

The answer is very easy, the traditional argument works for the form of SDE

dXt = σ(Xt)dBt + a(Xt)dt, (72)

but such argument is very hard to directly apply on the dL̃t(X) term.

In this dissertation, we are interested in the same type of SDE as (71), but the local time will
be the asymmetric one Lt. However, we will use the same technique as in [31] and show that the
solution in our case exists and it is also unique. Furthermore, it is a skew Brownian motion.

Theorem 16. Let B = {Bt, t ≥ 0} be a standard Brownian motion on some probability space, then
the equation

dXt = dBt + βdLt(X) β < 1/2, (73)

has a unique solution Xt, Xt is adapted to the filtration {FBt }. Furthermore, Xt is a skew Brownian
motion with parameter 1

2(1−β)
.
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Proof. First we show uniqueness. Assume Xt solves (73) with X0 = x0. We let Yt = sα(Xt), where
sα is the function we defined in (70), and α = 1

2(1−β)
(it is easy to see 0 < α < 1). Let f be the left

derivative of the function sα.

f(x) =

{
(1− α), if x > 0,

α, if x ≤ 0.
(74)

The second derivative of sα is (1− 2α)δ0, where δ0 is a point mass at 0.

By applying the Itô-Tanaka formula to sα(Xt).

sα(Xt) = sα(X0) +

∫ t

0

f(Xs)dXs +
1

2
Lt(X)(1− 2α), (75)

therefore,

dYt = dsα(Xt)

= f(Xt)dXt +
1

2
dLt(X)(1− 2α)

= f(Xt)(dBt + βdLt(X)) +
1

2
dLt(X)(1− 2α)

= f(Xt)dBt + f(0)βdLt(X) +
1

2
dLt(X)(1− 2α)

= f(Xt)dBt = f(Yt)dBt. (76)

In the fourth step, we have used the fact that Lt(X) increase only when Xt = 0. In the fifth step
we have used αβ + 1

2
(1− 2α) = 0. In the last step we have used the fact Xt and Yt have the same

sign because of the definition of sα.

Now we know Yt is a diffusion process and

Yt =

∫ t

0

f(Yu)dBu. (77)

The theorem of Nakao [55] says that this stochastic differential equation (77) has unique solution
Y , and the solution is adapted to the filtration {FBt } of the Brownian motion. Since we have
Y (t) = sα(Xt), therefore Xt is also unique, and Xt is adapted to the filtration {FBt }.

For the existence of solution to the SDE (73), start with Yt which satisfies (77), then we recall
the function rα in (68) and define

Xt = rα(Yt). (78)

Again, here α = 1
2(1−β)

. Let g be the left derivative of function rα.

g(x) =

{
1/(1− α), if x > 0,

1/α, if x ≤ 0.
(79)
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The second derivative of rα is (1/(1− α)− 1/α)δ0.

By applying the Itô-Tanaka formula to rαYt,

rα(Yt) = rα(Y0) +

∫ t

0

g(Ys)dYs +
1

2
Lt(Y )(1/(1− α)− 1/α), (80)

therefore,

dXt = drα(Yt)

= g(Yt)dYt +
1

2
dLt(Y )(1/(1− α)− 1/α)

= g(Yt)f(Yt)dBt +
1

2
(1− α)dLt(X)(1/(1− α)− 1/α)

= dBt + βdLt(X), (81)

in the last step we have used the fact g(x)f(x) ≡ 1 and 1− 1/(2α) = β. In the third step we have
used the fact Lt(Y ) = (1 − α)Lt(X), we will show how to get this in the following. By taking the
definition of Lt

(Yt)
+ =

∫ t

0

1{Ys>0}dYs + 1/2Lt(Y ), (82)

and Yt = sα(Xt), we have for Yt > 0, (Yt)
+ = (1−α)(Xt)

+ and
∫ t

0
1{Ys>0}dYs =

∫ t
0
1{Xs>0}d(1−α)Xs.

Thus the equation (82) can be written as

(1− α)(Xt)
+ =

∫ t

0

1{Xs>0}d(1− α)Xs + 1/2Lt(Y ). (83)

Therefore we obtain (1− α)Lt(X) = Lt(Y ).

Overall we have shown the existence and uniqueness of the solution to (73), now we are going
to show that the solution Xt is a skew Brownian motion.

Corollary 4 in Chapter 3 Section 15 of [25] tells us that if B̃t is a standard Brownian motion
and we define τt as

t =

∫ τt

0

1

σ2(B̃s)
ds, (84)

where σ > 0 is such that P(
∫∞

0
1

σ2(B̃s)
ds = +∞) = 1, then Yt = B̃τt will be a solution to the

stochastic equation dYt = σ(Yt)dBt, for Bt another Brownian motion.

Let Yα(t) be as in (65) so rα(Yα(t)) is a skew Brownian motion. By the above, we can obtain

dYα(t) = f(Yα(t))dBt,

for some Brownian motion Bt. In other words, Yα(t) has the same law as a solution of (77), so Xt

as in (78) has the law of a skew Brownian motion. ut
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6 Guaranteed Minimum Death Benefit (GMDB)

In this chapter, we introduce the equity-linked insurance product—GMDB and its funding mech-
anism. We explain how such funding mechanism gives rise to a general exponential functional.
We derive the Mellin transform of such general exponential functional for those Lévy processes
whose Lévy measure has exponentially decaying tails. Furthermore, we use the Kou process as
an example to get the probability density function of the exponential functional via inverting its
Mellin transform. Additionally, with the obtained probability density function, we compute the
tail distribution and the tail expectation, which can be directly applied to the computation of Var
and CTE in insurance companies’ favor. Finally, we demonstrate that the analytical formulas we
obtained are much more efficient and more accurate than the Monte Carlo approach used by the
insurance industry currently.

6.1 Introduction

Equity-linked insurance products allow policyholders to invest their premiums in equity market.
In other words, the daily returns on the premium investments are directly linked to a particular
equity index, such as S&P 500, or a particular equity fund of the policyholder’s choosing. Upon
selection, the premiums are transferred by the insurer to third-party fund managers. To illustrate
the mathematical structure, we consider a simplified example. Let {Ft, t ≥ 0} denote the evolution
of a policyholder’s investment account and {St, t ≥ 0} denote that of an equity index. Then the
equity-linking mechanism dictates that

Ft = F0
St
S0

e−mt, t ≥ 0, (85)

where m is the rate of account-value-based management and expenses (M&E) fee per time unit.
Among various products, variable annuities are of particular interest as they offer investors a selec-
tion of investments often with added guarantees which protect policyholders from severe losses on
their investments. These added benefits can often be viewed as the insurance industry’s counter-
parts of option contracts in financial markets. For example, a guaranteed minimum death benefit
(GMDB) would guarantee that a policyholder’s beneficiary receives the greater of the then-current
account value and a guaranteed minimum amount upon the policyholder’s death. For example,
the guarantee, denoted by {Gt, t ≥ 0}, is for the policyholder to recoup at least his/her initial
investment with interest accrued at the risk-free rate, i.e. Gt = F0e

rt, where r is the yield rate per
time unit on the insurer’s assets backing up the GMDB liability. Denote by Tx the future lifetime
of the policyholder, who is currently at age x. It is typically assumed in practice that the mortality
model is independent of equity returns, i.e. Tx is independent of {St, t ≥ 0}. Therefore, the payoff
from the GMDB is given by

(GTx − FTx)+,

which resembles a put option in financial markets. Keep in mind, however, that without any guar-
anteed benefits the insurer would simply transfer the premiums to third party fund managers. Like
other guaranteed benefits, the GMDB is technically an add-on provision to the base contract that
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provides additional benefits to the policyholder at an additional cost and from which the insurer
assumes additional liability. Hence the GMDB is often referred to as a rider. Nonetheless, due to
nonforfeiture regulations, the GMDB rider is typically offered on all variable annuity contracts.

While there are many common features of financial derivatives and embedded options in insur-
ance products, a key difference is that financial derivatives are typically short-dated and insurance
coverages last for decades. Due to the lack of long-dated options in the market, the risk management
of equity-linked insurance is much more sophisticated than the trading of derivatives and plays a
fundamental role to the success of insurance business. In this work, we consider a simplified model
that captures the structure of the risk management problem for a variable annuity contract with a
plain-vanilla GMDB.

Unlike many exchange-traded financial derivatives which require only an up-front fee, embedded
options in equity-linked insurance products are often compensated by a stream of fee incomes. For
example, fund managers typically charge a fixed percentage m per time unit per dollar of each
policyholder’s account and a portion of the fees, say md, is kicked back to the insurer to compensate
for the GMDB rider. Here we consider the present value of the fee income collected continuously
up until the time of the policyholder’s death,∫ T∧Tx

0

e−rsmdFs ds,

where r is the yield rate on insurer’s bonds backing up the GMDB liability. As in most cases fee
incomes exceed the GMDB liability, insurers are interested in the present value of insurer’s net
liability (gross liability less fee income)

L := e−rTx(GTx − FTx)+ −
∫ Tx

0

e−rsmdFs ds.

A crucial task of risk management modeling is to quantify and assess the likelihood and severity
of positive net liability, which leads to a loss to the insurer. Practitioners typically apply certain
risk measures to empirical distributions of net liabilities developed from Monte Carlo simulations.
The risk measures would then be used to form the basis of risk management decision making,
such as setting up reserves and capitals, to provide a buffer against losses under adverse economic
conditions. The most commonly used risk measures in the North American insurance industry is
the conditional tail expectation,

CTEp(L) = E[L|L > VaRp(L)],

where the Value-at-Risk is determined by

VaRp(L) := inf{y : P[L ≤ y] ≥ p}.

Since the purpose of risk management is to analyze the severity of positive loss rather than negative
loss (profit), we are interested in the risk measures CTEp and VaRp for p > ξ := P(L ≤ 0). In order
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to compute the above-mentioned risk measures, we need to compute for V > VaRξ ,

P(L > V |Tx = t) = P
(
e−rtFt +

∫ t

0

e−rsmdFs ds < F0 − V
)
.

It is clear that this rather unique funding mechanism in equity-linked insurance gives rise to a
generalized form of exponential functional as defined:

Jx,t := xeXt +

∫ t

0

eXs ds, x ≥ 0,

While any concern regarding fitting empirical data in the modeling of financial derivatives may
carry over to that of equity-linked insurance, there is the additional question of the validity of such
models for long-term projection. Nonetheless, the insurance industry has in the past two decades
adopted many well-known equity return models from the financial industry, such as geometric
Brownian motion, regime-switching geometric Brownian motion, etc. See American Academy of
Actuaries publications [26], [43] and [27] for details on a selection of equity return models. Compu-
tations of risk measures for variable annuity guaranteed benefits based on exponential functionals of
Brownian motion can be found in Feng and Volkmer [23, 24]. In this dissertation, we are interested
in the exponential Lévy processes, primarily for two reasons: (i) such models have been shown to
explain various stylized facts of empirical data and (ii) they often lead to analytical solutions, not
only for pricing problems of exotic options, which are well-studied in finance literature, but also
for risk measures of extreme liabilities in equity-linked insurance products, thereby providing fast
algorithms for computation needed for capital requirement and other risk management purposes.

6.2 Exponential functional and its Mellin transform

We consider a Lévy process X, started from zero, and having the Laplace exponent ψ(z) :=
lnE[exp(zX1)], z ∈ iR. The Lévy-Khintchine formula tells us that

ψ(z) = σ2z2/2 + µz +

∫
R

(
ezx − 1− zx1{|x|<1}

)
Π(dx), z ∈ iR,

where σ ≥ 0, µ ∈ R and the Lévy measure Π(dx) satisfies
∫
R(1 ∧ x2)Π(dx) < ∞. We denote by

e(q) an exponential random variable with mean 1/q, which is independent of X, and we recall our
definition of the exponential functional

Ix,q := xeXe(q) +

∫ e(q)

0

eXsds, x ≥ 0.

Remark 4. By using time-reversal it is easy to show that Ix,q
d
= Ue(q), where Ut is the generalized

Ornstein-Uhlenbeck process

Ut = xeXt + eXt
∫ t

0

e−Xsds. (86)
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Note that Ut is a strong Markov process started from x with the generator

L(U)f(x) = L(X)φ(ln(x)) + f ′(x),

where φ(x) := f(ex) and L(X) is the Markov generator of the Lévy process X. This result follows
from [42, Proposition 2.3].

We define the Mellin transform of Ix,q

Mx,q(s) = E
[
(Ix,q)

s−1] . (87)

Initially Mx,q(s) is well defined on the vertical line Re(s) = 1, later we will extend this function
analytically into a certain vertical strip.

Everywhere in this section we will work under the following condition: the measure Π(dx) has
exponentially decaying tails. In other words∫

R\(−1,1)

eθ|x|Π(dx) <∞, for some θ > 0. (88)

The above condition implies that the Laplace exponent ψ(z) is analytic in the strip |Re(z)| < θ and
it is convex on the real interval z ∈ (−θ, θ).

Now we are going to extend the function Mx,q(s) analytically into a certain vertical strip.

Definition 14. For q > 0 we define

Φ+(q) = sup{z > 0 : ψ(z) < q} and Φ−(q) = inf{z < 0 : ψ(z) < q}.

Note that condition (88) implies that for every q > 0 we have Φ+(q) > 0 and Φ−(q) < 0.
Furthermore, ψ(z) is convex on the real interval z ∈ (Φ−(q),Φ+(q)), which ensures q−ψ(z) > 0 on
this interval.

Proposition 3. For all q > 0, x ≥ 0 and Re(s) ∈ (0, 1 + Φ+(q)) we have |Mx,q(s)| <∞.

Proof. First, we need to mention that |Mx,q(s)| ≤ Mx,q(Re(s)). This is easy since

|Mx,q(s)| = |E(Is−1
x,q )| ≤ E|Is−1

x,q | ≤ E(IRe(s−1)
x,q ) =Mx,q(Re(s)). (89)

Therefore, it is sufficient to prove Mx,q(Re(s)) <∞.
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Let us denote ζ = x exp(Xe(q)) and η = I0,q, so that Ix,q = ζ + η. Note that

E[ζw] = xwE(E[exp(wXt)|e(q) = t])

= xw
∫ ∞

0

eψ(w)t × qe−qtdt

= xw
∫ ∞

0

qe−(q−ψ(w))tdt

= xw
q

q − ψ(w)
<∞, w ∈ (Φ−(q),Φ+(q))

and E[ηw] <∞ for all w ∈ (−1,Φ+(q)) (see Rivero [64, Lemma 2]).

When 0 < w < min(Φ+(q), 1) we use Jensen’s inequality and obtain

E[(ζ + η)w] ≤ E[ζw] + E[ηw] <∞.

If Φ+(q) > 1, then for 1 ≤ w < Φ+(q) we use Minkowski’s inequality to get

E[(ζ + η)w]1/w ≤ E[ζw]1/w + E[ηw]1/w <∞.

Finally, when −1 < w < 0 we use the fact that the function x ∈ (0,∞) 7→ xw is decreasing and
obtain

E[(ζ + η)w] < E[ηw] <∞.

Thus we have proved that E[(Ix,q)
w] = E[(ζ+ η)w] <∞ for all w ∈ (−1,Φ+(q)), which is equivalent

to the statement of Proposition 3. ut

The following theorem is our main result in this section.

Theorem 17. For q > 0 and w ∈ (max(−1,Φ−(q)), 0),

Mx,q(1 + w) = q sin(πw)M0,q(1 + w)×
[
− 1

2i

∫
c+iR

1

z sin(πz)M0,q(−z)
× x−zdz

sin(π(w + z))

]
, (90)

where c ∈ (0,−w).

Before we prove Theorem 17, we need to establish several auxiliary results.
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Lemma 2. For q > 0 the function F (s) = M0,q(s)/Γ(s) is analytic and zero-free in the vertical
strip Φ−(q) < Re(s) < 1 + Φ+(q) and it satisfies

F (s+ 1) =
1

q − ψ(s)
F (s), Φ−(q) < Re(s) < Φ+(q). (91)

Proof. The functional equation follows from Maulik and Zwart [51, Lemma 2.1] (see also Carmona
et al. [10, Proposition 3.1]). The fact that F (s) is zero-free follows from the generalized Weierstrass
product representation (see Patie and Savov [60, Theorem 2.1]). ut

Let us fix q > 0, w ∈ (Φ−(q), 0) and define a new measure Q

dQ
dP

∣∣∣
Ft

= ewXt−tψ(w). (92)

Under the new measure Q, the process X is a Lévy process with the Laplace exponent

ψQ(z) = ψ(z + w)− ψ(w).

This is because

ψQ(z) = lnEQ[exp(zX1)]

= lnE[exp(wX1 − ψ(w) + zX1)] = ψ(w + z)− ψ(w).

Let us define the exponential functional

Ĵt =

∫ t

0

e−Xsds. (93)

Lemma 3. For w ∈ (Φ−(q), 0) we denote q̃ := q − ψ(w). Then for 0 < Re(s) < 1 + w − Φ−(q)

EQ

[
(Ĵe(q̃))

s−1
]

=
M0,q(w)

Γ(w)
× Γ(s)Γ(1 + w − s)
M0,q(1 + w − s)

. (94)

Proof. Let us denote Yt = −Xt: under the measure Q this is a Lévy process with the Laplace
exponent ψY (z) = ψ(w − z) − ψ(w). Let us also denote θ := w − Φ−(q) and the function in the
right-hand side of (94) by f(s). According to Theorem 6, in order to establish Lemma 3 we need
to check the following three conditions

(i) f(s) is analytic and zero-free in the strip Re(s) ∈ (0, 1 + θ),

(ii) f(1) = 1 and f(s+ 1) = sf(s)/(q̃ − ψY (s)) for all s ∈ (0, θ),

(iii) |f(s)|−1 = o(exp(2π|Im(s)|)) as Im(s)→∞, Re(s) ∈ (0, 1 + θ).
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Let us verify Condition (i). Since w ∈ (Φ−(q), 0), we know M0,q(w)/Γ(w) is analytic and
zero-free from Lemma 2. With the condition Φ−(q) < 1 + w − Re(s) < 1, we obtain that
M0,q(1 + w − s)/Γ(1 + w − s) is also analytic and zero-free from Lemma 2, therefore its inverse
Γ(1 + w − s)/M0,q(1 + w − s) is analytic and zero-free. Thus, Condition (i) is satisfied.

Let us check condition (ii): we use (91) and obtain that

M0,q(1 + w − s)
Γ(1 + w − s)

=
1

q − ψ(w − s)
M0,q(w − s)

Γ(w − s)
,

and with the identity Γ(s+ 1) = sΓ(s), so we have

f(s+ 1) =
M0,q(w)

Γ(w)
× Γ(s+ 1)Γ(w − s)

M0,q(w − s)

=
M0,q(w)

Γ(w)

1

q − ψ(w − s)
sΓ(s)Γ(w − s+ 1)

M0,q(w − s+ 1)

=
s

q̃ − ψY (s)
f(s).

The last equality comes from the identity q−ψ(w− s) = q−ψ(w) +ψ(w)−ψ(w− s) = q̃−ψY (s).

To check condition (iii), we use the asymptotic result (12) to estimate the gamma functions, so
we obtain that for any ε > 0 small enough,∣∣∣ 1

Γ(1 + w − s)Γ(s)

∣∣∣ = o(exp((ε+ π)|Im(s)|)),

as |Im(s)| → ∞; Also by the definition of the Mellin transform, similar to (89) , we have |M0,q(1 +
w − s)| ≤ M0,q(1 + w − Re(s)); Thus, we have

∣∣1/f(s)
∣∣ =

∣∣∣M0,q(w)M0,q(1 + w − s)
Γ(w)

∣∣∣∣∣∣ 1

Γ(1 + w − s)Γ(s)

∣∣∣
≤

∣∣∣M0,q(w)M0,q(1 + w − Re(s))

Γ(w)

∣∣∣× o(exp((ε+ π)|Im(s)|)) = o(exp(2π|Im(s)|)).

Thus all three conditions are satisfied and we have proved (94). ut

Proof of Theorem 17: We recall that Ix,q has the same distribution as Ue(q) = eXe(q)(x + Ĵe(q)),

where Ĵt is defined by (93). Assume that q > 0 and w ∈ (max(−1,Φ−(q)), 0), so that q−ψ(w) > 0.
According to Proposition 3, Mx,q(1 + w) <∞ and we can write

Mx,q(1+w) = E
[
Iwx,q
]

= E
[
Uw

e(q)

]
= E

[
ewXe(q)(x+ Ĵe(q))

w
]

=

∫ ∞
0

qe−qtE
[
ewXt(x+ Ĵt)

w
]

dt. (95)
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The last equality comes from conditional expectation on e(q).

Next, we define the measure Q as in (92) and denote q̃ = q − ψ(w). From (95) we find

Mx,q(1 + w) =

∫ ∞
0

qe−qtE
[
ewXt(x+ Ĵt)

w
]

dt (96)

=

∫ ∞
0

qe−qt+ψ(w)tE
[
ewXt−ψ(w)t(x+ Ĵt)

w
]

dt

=

∫ ∞
0

qe−(q−ψ(w))tEQ

[
(x+ Ĵt)

w
]

dt =
q

q̃
EQ

[
(x+ Ĵe(q̃))

w
]
.

In the following, we take Re(z) ∈ (0,−w) and use (96) to compute
∫∞

0
xz−1Mx,q(1+w)dx. First

of all, we will show this integral is well defined.

As x→∞, Mx,q(1 + w) = O(xw), therefore xRe(z−1)Mx,q(1 + w) = O(xRe(z−1+w)) is integrable
as Re(z + w − 1) < −1;

As x → 0, Mx,q(1 + w) = O(1), therefore xRe(z−1)Mx,q(1 + w) = O(xRe(z−1)) is integrable as
Re(z − 1) > −1.

Thus we have∫ ∞
0

xz−1Mx,q(1 + w)dx =
q

q̃

∫ ∞
0

xz−1EQ

[
(x+ Ĵe(q̃))

w
]

dx

=
q

q̃
EQ

[∫ ∞
0

xz−1(x+ Ĵe(q̃))
wdx

]
=
q

q̃
EQ

[(
Ĵe(q̃)

)z+w ∫ ∞
0

yz−1(y + 1)wdy

]
=
q

q̃
EQ

[(
Ĵe(q̃)

)z+w]
× Γ(z)Γ(−w − z)

Γ(−w)
. (97)

=
q

q̃

M0,q(w)

Γ(w)
× Γ(1 + z + w)Γ(−z)

M0,q(−z)
× Γ(z)Γ(−w − z)

Γ(−w)
,

where we used Fubini’s theorem in the second step, change of variables x = Je(q̃)y in the third step,
the well-known beta-function integral in the fourth step∫ ∞

0

yz−1(y + 1)wdy =

∫ ∞
0

( y

y + 1

)z−1(
1− y

y + 1

)−w−z−1

d
( y

y + 1

)
=

Γ(z)Γ(−w − z)

Γ(−w)
,

and Lemma 3 in the fifth step.

Note here, we almost obtained formula (90) by applying inverse Mellin transform to the right
hand side of (97), we just need to verify that it is integrable in the imaginary direction for z.
For arbitrary c ∈ (0,−w), according to Theorems 2.7 and 3.3 in [61], we have an upper bound
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|1/M0,q(−z)| = O(exp((π+ ε)|Im(z)|) (for any ε > 0) as |z| → ∞ along the vertical line c+ iR. By
combining it with the asymptotic result (12), we obtain∣∣∣Γ(1 + z + w)Γ(−z)

M0,q(−z)
× Γ(z)Γ(−w − z)

∣∣∣ = O(exp(−(π − ε)|Im(z)|)),

as |Im(z)| → ∞. Therefore the right hand side of (97) is integrable in the imaginary direction and
we can use the inverse Mellin transform.

Finally, from (91) we find that

1

q̃

M0,q(w)

Γ(w)
=

1

q − ψ(w)

M0,q(w)

Γ(w)
=
M0,q(1 + w)

Γ(1 + w)
.

We also use the reflection formula for the gamma function and rewrite (97) in the form∫ ∞
0

xz−1Mx,q(1 + w)dx = − πq sin(πw)M0,q(1 + w)

z sin(πz)M0,q(−z) sin(π(w + z))
,

from which formula (90) follows by the inverse Mellin transform. ut

6.3 Case study: Kou process

6.3.1 Mellin transform of Ix,q and its probability density function

In this section we demonstrate how Theorem 17 can be used to compute explicitly the density of
the exponential functional Ix,q for the Kou process. Let us recall the definition of the Kou process
from Chapter 2. A Kou process Xt is defined as

Xt = µt+ σWt +
Nt∑
j=1

ξi, (98)

where σ > 0, µ ∈ R, Nt is a Poisson process with intensity λ and {ξi}i are i.i.d. random variables
with the probability density function

pξ(x) = pρe−ρx1{x>0} + (1− p)ρ̂eρ̂x1{x<0},

for some p ∈ (0, 1) and ρ, ρ̂ > 0 (independent of Nt).

The Laplace exponent is equal to

ψ(z) = µz +
σ2

2
z2 + λp

z

ρ− z
− λ(1− p) z

ρ̂+ z
.
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For q > 0 the rational function ψ(z) = q has four zeros {−ζ̂2,−ζ̂1, ζ1, ζ2} and two poles {−ρ̂, ρ}
which satisfy the interlacing property

−ζ̂2 < −ρ̂ < −ζ̂1 < 0 < ζ1 < ρ < ζ2.

The Mellin transformM0,q(s) was computed in Cai and Kou [9] (see also [39]) and is also shown
in Theorem 7 as follows,

M0,q(s) = A1−sΓ(s)
G(s)

G(1)
. (99)

Here A = σ2/2 and

G(s) := Γ
[ 1 + ζ1 − s, 1 + ζ2 − s, ρ̂+ s

1 + ρ− s, ζ̂1 + s, ζ̂2 + s

]
.

In the above formula (and everywhere else in this dissertation) we use the notation

Γ
[ a1, . . . , ap
b1, . . . , bq

]
:=

∏p
i=1 Γ(ai)∏q
j=1 Γ(bj)

. (100)

Our first main result in this section is an explicit expression for the Mellin transform Mx,q(s).

Proposition 4. For 0 ∨ (1− ζ̂1) < Re(s) < 1, we have

Mx,q(s) = qA−sΓ
[ 1 + ζ1 − s, 1 + ζ2 − s, ρ̂+ s

1− s, 1 + ρ− s, ζ̂1 + s, ζ̂2 + s

]
G3,3

4,5

( 1− s, 1,−ρ, ρ̂
1− s, ζ̂1, ζ̂2,−ζ1,−ζ2

∣∣∣ 1

Ax

)
, (101)

where G is the Meijer G-function defined in (28).

Proof. Formula (99) and Theorem 17 tell us that for −(1 ∧ ζ̂1) < w < −c < 0 we have

Mx,q(1 + w) = q sin(πw)A−wΓ
[ 1 + w, ζ1 − w, ζ2 − w, ρ̂+ 1 + w

ρ− w, ζ̂1 + 1 + w, ζ̂2 + 1 + w

]
× −1

2i

∫
c+iR

Γ
[

1 + ρ+ z, ζ̂1 − z, ζ̂2 − z
−z, 1 + ζ1 + z, 1 + ζ2 + z, ρ̂− z

] A−1−zx−zdz

z sin(πz) sin(π(w + z))
.

By using the reflection formula for the Gamma function we rewrite the above equation in the form

Mx,q(1 + w) = qA−1−wΓ
[ ζ1 − w, ζ2 − w, ρ̂+ 1 + w

−w, ρ− w, ζ̂1 + 1 + w, ζ̂2 + 1 + w

]
× 1

2πi

∫
c+iR

Γ
[

1 + w + z, z, 1 + ρ+ z, −w − z, ζ̂1 − z, ζ̂2 − z
ρ̂− z, 1 + ζ1 + z, 1 + ζ2 + z

]
(Ax)−zdz.
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By applying formula (28) we conclude that for all −(1 ∧ ζ̂1) < w < 0

Mx,q(1 + w) = qA−1−wΓ
[ ζ1 − w, ζ2 − w, ρ̂+ 1 + w

−w, ρ− w, ζ̂1 + 1 + w, ζ̂2 + 1 + w

]
(102)

×G3,3
5,4

(
1 + w, 1− ζ̂1, 1− ζ̂2, 1 + ζ1, 1 + ζ2

1 + w, 0, 1 + ρ, 1− ρ̂

∣∣∣Ax).
Note that both conditions (26) and (27) are satisfied, since in our case we have

a = max(1 + w, 1− ζ̂1, 1− ζ̂2) = max(1 + w, 1− ζ̂1) ∈ (0, 1),

b = min(0, 1 + w, 1 + ρ) = 0,

and c ∈ (−b, 1− a).

By applying formula (30), we obtain

Mx,q(1 + w) = qA−1−wΓ
[ ζ1 − w, ζ2 − w, ρ̂+ 1 + w

−w, ρ− w, ζ̂1 + 1 + w, ζ̂2 + 1 + w

]
G3,3

4,5

( −w, 1,−ρ, ρ̂
−w, ζ̂1, ζ̂2,−ζ1,−ζ2

∣∣∣ 1

Ax

)
.

(103)

By replacing the variable w = s− 1, we let

Nx,q(s) = qA−sΓ
[ 1 + ζ1 − s, 1 + ζ2 − s, ρ̂+ s

1− s, 1 + ρ− s, ζ̂1 + s, ζ̂2 + s

]
G3,3

4,5

( 1− s, 1,−ρ, ρ̂
1− s, ζ̂1, ζ̂2,−ζ1,−ζ2

∣∣∣ 1

Ax

)
. (104)

Here −(1∧ ζ̂1) < Re(s−1) < 0, namely 0∨(1− ζ̂1) < Re(s) < 1. We can observe that Nx,q(s) is ana-

lytic for 0∨ (1− ζ̂1) < Re(s) < 1, and we knowMx,q(s) is also analytic for 0∨ (1− ζ̂1) < Re(s) < 1.

With the fact Nx,q(s) and Mx,q(s) agrees on the interval (0 ∨ (1 − ζ̂1), 1), Theorem 2 ensures

Mx,q(s) = Nx,q(s) for 0 ∨ (1− ζ̂1) < Re(s) < 1. Therefore the desired result (101) is obtained. ut

6.3.2 Informal derivation of the probability density function of Ix,q

For the rest of this section we will work under the following

Assumption 1: ζ2 − ζ1 /∈ N and ζ̂2 − ζ̂1 /∈ N.
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In the previous section we have obtained the Mellin transform of Ix,q for the Kou process. Now
a straightforward idea is to get the probability density function by using inverse Mellin transform

fx,q(y) =
1

2πi

∫
c+iR

y−sMx,q(s)ds, 0 ∨ (1− ζ̂1) < c < 1. (105)

By expressing the Meijer G-function in (101) via (32) and (20), we have

Mx,q(s) = M1 +M2 +M3, (106)

where

M1 :=
q

A
× (ρ̂− 1 + s)(1 + ρ− s)

(1 + ζ1 − s)(1 + ζ2 − s)(ζ̂1 + s− 1)(ζ̂2 + s− 1)
(x)s−1

× 4F4

(
1− s, 1, 2− s+ ρ, 2− s− ρ̂

2− s− ζ̂1, 2− s− ζ̂2, 2− s+ ξ1, 2− s+ ξ2

∣∣∣∣ 1

Ax

)
M2 := qA−sΓ

[ 1 + ζ1 − s, 1 + ζ2 − s, ρ̂+ s, 1− ζ̂1 − s
1− s, 1 + ρ− s, ζ̂2 + s

] sin(π(ρ̂− ζ̂1))

sin(π(ζ̂2 − ζ̂1))
(Ax)−ζ̂1 ,

× 3Φ3

( ζ̂1, 1 + ζ̂1 + ρ, 1 + ζ̂1 − ρ̂
1 + ζ̂1 − ζ̂2, 1 + ζ̂1 + ζ1, 1 + ζ̂1 + ζ2

∣∣∣ 1

Ax

)
,

M3 := qA−sΓ
[ 1 + ζ1 − s, 1 + ζ2 − s, ρ̂+ s, 1− ζ̂2 − s

1− s, 1 + ρ− s, ζ̂1 + s

] sin(π(ρ̂− ζ̂2))

sin(π(ζ̂1 − ζ̂2))
(Ax)−ζ̂2

× 3Φ3

( ζ̂2, 1 + ζ̂2 + ρ, 1 + ζ̂2 − ρ̂
1 + ζ̂2 − ζ̂1, 1 + ζ̂2 + ζ1, 1 + ζ̂2 + ζ2

∣∣∣ 1

Ax

)
.

By observing M2 and M3, the idea is to apply the theory of Meijer G-functions on the gamma
functions.

The formula (28) tells us for M2 and M3:

1

2πi

∫
λ+iR

A−sΓ
[ 1 + ζ1 − s, 1 + ζ2 − s, ρ̂+ s, 1− ζ̂1 − s

1− s, 1 + ρ− s, ζ̂2 + s

]
y−sds = G1,3

4,3

(−ζ1,−ζ2, ζ̂1, ζ̂2

ρ̂, 0,−ρ

∣∣∣Ay),
and

1

2πi

∫
λ+iR

A−sΓ
[ 1 + ζ1 − s, 1 + ζ2 − s, ρ̂+ s, 1− ζ̂2 − s

1− s, 1 + ρ− s, ζ̂1 + s

]
y−sds = G1,3

4,3

(−ζ1,−ζ2, ζ̂2, ζ̂1

ρ̂, 0,−ρ

∣∣∣Ay).
But for M1, the theory of the Meijer G-function can not apply. The idea is to use an alternative

method by applying residue theory on M1. We can observe that M1 is analytic in the half plane for
Re(s) < 1− ζ̂2, the Cauchy residue theory implies that

1

2πi

∫
λ+iR

y−sM1ds = lim
c→−∞

1

2πi

∫
c+iR

y−sM1ds.
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Furthermore it can be proved that in the case for 0 < y ≤ x, with the fact (x/y)s is bounded as
Re(s)→ −∞, we have

lim
c→−∞

1

2πi

∫
c+iR

y−sM1ds = 0.

Therefore we obtain the probability density function for y ≤ x,

fx,q(y) =
{
q(Ax)−ζ̂1

sin(π(ρ̂− ζ̂1))

sin(π(ζ̂2 − ζ̂1))
3Φ3

( ζ̂1, 1 + ζ̂1 + ρ, 1 + ζ̂1 − ρ̂
1 + ζ̂1 − ζ̂2, 1 + ζ̂1 + ζ1, 1 + ζ̂1 + ζ2

∣∣∣ 1

Ax

)
×G1,3

4,3

(−ζ1,−ζ2, ζ̂1, ζ̂2

ρ̂, 0,−ρ

∣∣∣Ay)}
+
{
q(Ax)−ζ̂1

sin(π(ρ̂− ζ̂2))

sin(π(ζ̂1 − ζ̂2))
3Φ3

( ζ̂2, 1 + ζ̂2 + ρ, 1 + ζ̂2 − ρ̂
1 + ζ̂2 − ζ̂1, 1 + ζ̂2 + ζ1, 1 + ζ̂2 + ζ2

∣∣∣ 1

Ax

)
×G1,3

4,3

(−ζ1,−ζ2, ζ̂2, ζ̂1

ρ̂, 0,−ρ

∣∣∣Ay)}.
By applying the formula (30), we have

G3,1
3,4

( 1− ρ̂, 1, 1 + ρ

1 + ζ1, 1 + ζ2, 1− ζ̂1, 1− ζ̂2

∣∣∣ 1

Ay

)
= G1,3

4,3

(−ζ1,−ζ2, ζ̂1, ζ̂2

ρ̂, 0,−ρ

∣∣∣Ay).
Finally, we get for y ≤ x,

fx,q(y) =
{
q(Ax)−ζ̂1

sin(π(ρ̂− ζ̂1))

sin(π(ζ̂2 − ζ̂1))
3Φ3

( ζ̂1, 1 + ζ̂1 + ρ, 1 + ζ̂1 − ρ̂
1 + ζ̂1 − ζ̂2, 1 + ζ̂1 + ζ1, 1 + ζ̂1 + ζ2

∣∣∣ 1

Ax

)
×G3,1

3,4

( 1− ρ̂, 1, 1 + ρ

1 + ζ1, 1 + ζ2, 1− ζ̂1, 1− ζ̂2

∣∣∣ 1

Ay

)}
+
{
q(Ax)−ζ̂1

sin(π(ρ̂− ζ̂2))

sin(π(ζ̂1 − ζ̂2))
3Φ3

( ζ̂2, 1 + ζ̂2 + ρ, 1 + ζ̂2 − ρ̂
1 + ζ̂2 − ζ̂1, 1 + ζ̂2 + ζ1, 1 + ζ̂2 + ζ2

∣∣∣ 1

Ax

)
×G3,1

3,4

( 1− ρ̂, 1, 1 + ρ

1 + ζ1, 1 + ζ2, 1− ζ̂1, 1− ζ̂2

∣∣∣ 1

Ay

)}
.

For the case y > x, as (x/y)s is uniformly bounded as Re(s) > 0, so we shift the contour to

the right. The term M1 has simple poles
[
{j + ζ1}j≥1, {j + ζ2}j≥1, {j − ζ̂1}j≥1, {j − ζ̂2}j≥1

]
. Thus

computing the residue is easy but tedious. By doing some algebra on M1,M2 and M3, we can derive
that the Mx,q(s) satisfies

(q − ψ(s))Mx,q(s+ 1) = qxs + sMx,q(s). (107)
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Equation (107) shows

Mx,q(s+ 1) =
qxs + sMx,q(s)

q − ψ(s)
. (108)

By recalling the Kou process, we know

q − ψ(s) =
A(s− ζ1)(s− ζ2)(s+ ζ̂1)(s+ ζ̂2)

(ρ− s)(ρ̂+ s)
. (109)

Since Mx,q(s) is analytic in the vertical strip 0 < Re(s) < 1 + Φ+(q), we can see Mx,q(s) have
simple poles in A = {1 + ζ1, 2 + ζ1, · · · , n + ζ1, · · · } and B = {1 + ζ2, , 2 + ζ2, · · · , n + ζ2, · · · }. As
we shift the contour to the right half of the complex plane, the contour will pass those poles.

When we shift the contour integration to the right, we only need to compute the residues of the
function y−sMx,q(s) on those simple poles.

By applying Cauchy residue theorem, we have

1

2πi

∫ c+i∞

c−i∞
y−sMx,q(s)ds

=

∫ c+1+i∞

c+1−i∞
y−sMx,q(s)ds−

∑
c<a<c+1
a∈A∪B

Res(y−sMx,q(s) : s = a). (110)

By repeating this contour shifting, we can get

1

2πi

∫ c+i∞

c−i∞
y−sMx,q(s)ds

=

∫ c+n+i∞

c+n−i∞
y−sMx,q(s)ds−

∑
c<a<c+n
a∈A∪B

Res(y−sMx,q(s) : s = a). (111)

In employing this technique the conjecture is that as n→∞, the integral on the right-hand side of
(111) is zero. Therefore, we guess the probability density function as

fx,q(y) = −
∑
n≥1

Res(y−sMx,q(s) : s = ζ1 + n)−
∑
n≥1

Res(y−sMx,q(s) : s = ζ2 + n). (112)

At the end we will prove this is true, but here we only show how to compute the density function
explicitly.

In the next step, we compute the residues of y−sMx,q(s) by taking advantage of (108).
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As s→ ζ1,

qxs + sMx,q(s)

q − ψ(s)
=

qxs + sMx,q(s)

(q − ψ(ζ1))− ψ′(ζ1)(s− ζ1) +O((s− ζ1)2)

=
qxs + sMx,q(s)

−ψ′(ζ1)(s− ζ1)
+

O((s− ζ1)2)

−ψ′(ζ1)(s− ζ1)
(
− ψ′(ζ1)(s− ζ1) +O((s− ζ1)2)

)
=

qxs + sMx,q(s)

−ψ′(ζ1)(s− ζ1)
+O(1),

where we used the Taylor series in the first step. Thus it is easy to observe as s→ ζ1, we obtain

Mx,q(s+ 1) =
qxζ1 + ζ1Mx,q(ζ1)

−ψ′(ζ1)(s− ζ1)
+O(1) =

qxζ1 + ζ1Mx,q(ζ1)

−ψ′(ζ1)(s+ 1− (ζ1 + 1))
+O(1). (113)

Therefore by the fact Res(1/(x− c) : x = c) = 1, we can get

Res(Mx,q(s) : s = ζ1 + 1) =
qxζ1 + ξ1Mx,q(ζ1)

−ψ′(ζ1)
.

We let

a :=
qxζ1 + ζ1Mx,q(ζ1)

−ψ′(ζ1)
,

for convenience. Therefore, as s→ ζ1 + 1, we have Mx,q(s) = a/(s− (ζ1 + 1)) +O(1).

By applying the recursion formula

Mx,q(s+ 1) =
qxs + sMx,q(s)

q − ψ(s)
,

and letting s→ ζ1 + 1, we obtain

Mx,q(s+ 1) =
qxs

q − ψ(s)
+

s× a
(q − ψ(s))(s− (ζ1 + 1))

+O(1)

=
s× a

(q − ψ(s))(s+ 1− (ζ1 + 2))
+O(1). (114)

Here we use the conclusionMx,q(s) = a/(s− (ζ1 + 1)) +O(1) as s→ ζ1 + 1, and also the fact that
qxs/(q − ψ(s)) is continuous at ζ1 + 1, so qxs/(q − ψ(s)) = O(1) as s→ ζ1 + 1.

Therefore, we can get

Res(Mx,q(s) : s = ζ1 + 2) =
ζ1 + 1

q − ψ(ζ1 + 1)
a.

By recursion, it is easy to compute

Res(Mx,q(s) : s = ζ1 + n) = a
n−1∏
j=1

ζ1 + j

q − ψ(ζ1 + j)
=
qxζ1 + ζ1Mx,q(ζ1)

−ψ′(ζ1)

n−1∏
j=1

ζ1 + j

q − ψ(ζ1 + j)
.
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Similarly, we can also have

Res(Mx,q(s) : s = ζ2 + n) =
qxζ2 + ζ1Mx,q(ζ2)

−ψ′(ζ2)

n−1∏
j=1

ζ2 + j

q − ψ(ζ2 + j)
.

Furthermore, Res(y−sMx,q(s) : s = ζ1 + n) = y−(ζ1+n) × Res(Mx,q(s) : s = ζ1 + n) since y−s is
continuous at ζ1 + n.

Finally, we obtain∑
n≥1

y−n−ζ1Res(Mx,q : s = ζ1 + n)

=
qxζ1 + ζ1M(ζ1)

−ψ′(ζ1)
y−1−ζ1

∑
n≥1

y−n+1

n−1∏
j=1

(j + ζ1)(ρ− j − ζ1)(ρ̂+ j + ζ1)

A(j)(j + ζ1 − ζ2)(j + ζ1 + ζ̂1)(j + ζ1 + ζ̂2)

=
qxζ1 + ζ1M(ζ1)

−ψ′(ζ1)
y−1−ζ1

3F3

(
1 + ζ1, 1 + ζ1 − ρ, 1 + ζ1 + ρ̂

1 + ζ1 − ζ2, 1 + ζ1 + ζ̂1, 1 + ζ1 + ζ̂2

∣∣∣∣− 1

Ay

)
, (115)

in the first step we replaced

ζ1 + j

q − ψ(ζ1 + j)
=

(j + ζ1)(ρ− j − ζ1)(ρ̂+ j + ζ1)

A(j)(j + ζ1 − ζ2)(j + ζ1 + ζ̂1)(j + ζ1 + ζ̂2)
,

and in the second step we used the definition of hypergeometric function.

Similarly, we also get∑
n≥1

y−n−ζ2Res(Mx,q : s = ζ2 + n)

=
qxζ2 + ζ2M(ζ2)

−ψ′(ζ2)
y−1−ζ2

∑
n≥1

y−n+1

n−1∏
j=1

(j + ζ2)(ρ− j − ζ2)(ρ̂+ j + ζ2)

A(j)(j + ζ2 − ζ1)(j + ζ2 + ζ̂1)(j + ζ2 + ζ̂2)

=
qxζ2 + ζ2M(ζ2)

−ψ′(ζ2)
y−1−ζ2

3F3

(
1 + ζ2, 1 + ζ2 − ρ, 1 + ζ2 + ρ̂

1 + ζ2 − ζ1, 1 + ζ2 + ζ̂1, 1 + ζ2 + ζ̂2

∣∣∣∣− 1

Ay

)
. (116)

Therefore, when y > x, we obtain the probability density function

fx,q(y) =
qxζ1 + ζ1M(ζ1)

ψ′(ζ1)
y−1−ζ1

3F3

(
1 + ζ1, 1 + ζ1 − ρ, 1 + ζ1 + ρ̂

1 + ζ1 − ζ2, 1 + ζ1 + ζ̂1, 1 + ζ1 + ζ̂2

∣∣∣∣− 1

Ay

)
+
qxζ2 + ζ2M(ζ2)

ψ′(ζ2)
y−1−ζ2

3F3

(
1 + ζ2, 1 + ζ2 − ρ, 1 + ζ2 + ρ̂

1 + ζ2 − ζ1, 1 + ζ2 + ζ̂1, 1 + ζ2 + ζ̂2

∣∣∣∣− 1

Ay

)
. (117)
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Let us make a summary about what we have done here, by applying the Cauchy residue theory
and the recursion equation whichMx,q(s) satisfied, we compute the residue explicitly, and finally we
get the probability density function when y > x with the conjecture limc→∞

1
2πi

∫
c+iR y

−sMx,q(s)ds =
0.

We have obtained fx,q(y) explicitly. However, when y > x, we have mentioned that the conjecture
is that the integral on the right-hand side of (111) is zero, thus we guessed the form of fx,q(y).
However, we find it is very hard to prove that integral is zero. Therefore we try another way to
verify that fx,q(y) is exactly the probability density function of Ix,q. The idea is to get the Mellin
transform of fx,q(y) and to prove it is equal to the Mellin transform of Ix,q. The following is the
details of the proof.

6.3.3 Probability density function of Ix,q

Theorem 18. The probability density function of Ix,q is as follows:

for y > x,

fx,q(y) :=
{qxζ1 + ζ1Mx,q(ζ1)

ψ′(ζ1)
y−1−ζ1

3F3

( 1 + ζ1, 1 + ζ1 − ρ, 1 + ζ1 + ρ̂

1 + ζ1 − ζ2, 1 + ζ1 + ζ̂1, 1 + ζ1 + ζ̂2

∣∣∣− 1

Ay

)}
(118)

+
{

the same expression with ζ1 and ζ2 interchanged
}
,

and for 0 < y ≤ x,

fx,q(y) :=
{
q(Ax)−ζ̂1

sin(π(ρ̂− ζ̂1))

sin(π(ζ̂2 − ζ̂1))
3Φ3

( ζ̂1, 1 + ζ̂1 + ρ, 1 + ζ̂1 − ρ̂
1 + ζ̂1 − ζ̂2, 1 + ζ̂1 + ζ1, 1 + ζ̂1 + ζ2

∣∣∣ 1

Ax

)
(119)

×G3,1
3,4

( 1− ρ̂, 1, 1 + ρ

1 + ζ1, 1 + ζ2, 1− ζ̂1, 1− ζ̂2

∣∣∣ 1

Ay

)}
+
{

the same expression with ζ̂1 and ζ̂2 interchanged
}
.

In the above formula, Φ denotes the regularized hypergeometric function, as defined in (20).

Proof. By applying formula (31), we check that for any ε > 0 small enough,

fx,q(y) = O(yρ̂−ε), as y → 0, (120)

fx,q(y) = O(y−1−ζ1), as y → +∞, (121)

so the function ys−1fx,q(y) is integrable for 0 ∨ (1− ζ̂1) < Re(s) < 1.
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For s in this strip we define

I1(s) :=

∫ x

0

fx,q(y)ys−1dy, I2(s) =

∫ ∞
x

fx,q(y)ys−1dy,

and now our goal is to check that I1(s) + I2(s) = Mx,q(s) (where the right-hand side is given by
(101)).

First we use formula (37) and obtain

I1(s) =
{
qA−ζ̂1xs−ζ̂1

sin(π(ρ̂− ζ̂1))

sin(π(ζ̂2 − ζ̂1))
3Φ3

( ζ̂1, 1 + ζ̂1 + ρ, 1 + ζ̂1 − ρ̂
1 + ζ̂1 − ζ̂2, 1 + ζ̂1 + ζ1, 1 + ζ̂1 + ζ2

∣∣∣ 1

Ax

)
×G4,1

4,5

( 1− ρ̂, 1, 1 + ρ, s+ 1

s, 1 + ζ1, 1 + ζ2, 1− ζ̂1, 1− ζ̂2

∣∣∣ 1

Ax

)}
+
{

the same expression with ζ̂1 and ζ̂2 interchanged
}
.

Similarly, by using formula (38) we find

I2(s) =
{qxζ1 + ζ1Mx,q(ζ1)

ψ′(ζ1)

xs−1−ζ1

1 + ζ1 − s
4F4

( 1 + ζ1 − s, 1 + ζ1, 1 + ζ1 − ρ, 1 + ζ1 + ρ̂

2 + ζ1 − s, 1 + ζ1 − ζ2, 1 + ζ1 + ζ̂1, 1 + ζ1 + ζ̂2

∣∣∣− 1

Ax

)}
+
{

the same expression with ζ1 and ζ2 interchanged
}
.

Let us outline the plan for proving the identity

I1(s) + I2(s)−Mx,q(s) = 0, for all s in the strip 0 ∨ (1− ζ̂1) < Re(s) < 1. (122)

First we use formula (32) and express all Meijer G-functions appearing in (122) in terms of hy-
pergeometric functions. This would give us an expression involving products of two hypergeometric
functions. After simplifying this expression we would obtain the following identity

5∑
i=1

(ai − ρ)(ai + ρ̂)∏
1≤j≤5

j 6=i

(ai − aj)
× 4F4

(1 + ai − ρ, 1 + ai + ρ̂, 1 + ai, 1 + ai − s
1 + ai − a1, . . . , ∗, . . . , 1 + ai − a5

∣∣∣− 1

Ax

)
(123)

× 4F4

( 1 + ρ− ai, 1− ρ̂− ai,−ai, s− ai
1 + a1 − ai, . . . , ∗, . . . , 1 + a5 − ai

∣∣∣ 1

Ax

)
= 0, x ∈ R \ {0},

where [a1, a2, a3, a4, a5] = [ζ1, ζ2,−ζ̂1,−ζ̂2, s− 1] and the asterisk means that the term 1 + ai − ai is
omitted. The identity (123) is known to be true: it is a special case of Theorem 27 in Chapter 8.
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Remark 5. The above steps of the proof, while conceptually simple, require very long computations.
At the same time, it is easy to confirm the validity of this identity by a numerical experiment: one
simply needs to compute Meijer G-functions via (32) and the hypergeometric functions via series
expansion (19), and check that (122) holds true with arbitrary choices of parameters.

We recall that x > 0, q > 0, the numbers {−ζ̂2,−ζ̂1, ζ1, ζ2} and {−ρ̂, ρ} are the roots and the
poles of the rational function ψ(z)− q and they are known to satisfy the interlacing property

−ζ̂2 < −ρ̂ < −ζ̂1 < 0 < ζ1 < ρ < ζ2.

Note that the function ψ(z)− q can be factorized as follows

ψ(z)− q = A
(z − ζ1)(z − ζ2)(z + ζ̂1)(z + ζ̂2)

(z − ρ)(z + ρ̂)
, (124)

where A := σ2/2. This fact (and the result ψ(0) = 0) implies

q = A
ζ1ζ2ζ̂1ζ̂2

ρρ̂
, (125)

and

ψ′(ζ1) = A
(ζ1 − ζ2)(ζ1 + ζ̂1)(ζ1 + ζ̂2)

(ζ1 − ρ)(ζ1 + ρ̂)
, (126)

ψ′(ζ2) = A
(ζ2 − ζ1)(ζ2 + ζ̂1)(ζ2 + ζ̂2)

(ζ2 − ρ)(ζ2 + ρ̂)
. (127)

Finally, we recall that we work under the following assumptions

ζ2 − ζ1 /∈ N, ζ̂2 − ζ̂1 /∈ N, 0 ∨ (1− ζ̂1) < Re(s) < 1.

Our goal is to verify the following identity

I1(s) + I2(s)−Mx,q(s) = 0, (128)

where we have computed earlier

I1(s) =
{
qA−ζ̂1xs−ζ̂1

sin(π(ρ̂− ζ̂1))

sin(π(ζ̂2 − ζ̂1))
3Φ3

( ζ̂1, 1 + ζ̂1 + ρ, 1 + ζ̂1 − ρ̂
1 + ζ̂1 − ζ̂2, 1 + ζ̂1 + ζ1, 1 + ζ̂1 + ζ2

∣∣∣ 1

Ax

)
×G4,1

4,5

( 1− ρ̂, 1, 1 + ρ, s+ 1

s, 1 + ζ1, 1 + ζ2, 1− ζ̂1, 1− ζ̂2

∣∣∣ 1

Ax

)}
(129)

+
{

the same expression with ζ̂1 and ζ̂2 interchanged
}
,
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and

I2(s) =
{qxζ1 + ζ1Mx,q(ζ1)

ψ′(ζ1)

xs−1−ζ1

1 + ζ1 − s
4F4

( 1 + ζ1 − s, 1 + ζ1, 1 + ζ1 − ρ, 1 + ζ1 + ρ̂

2 + ζ1 − s, 1 + ζ1 − ζ2, 1 + ζ1 + ζ̂1, 1 + ζ1 + ζ̂2

∣∣∣− 1

Ax

)}
(130)

+
{

the same expression with ζ1 and ζ2 interchanged
}
,

and

Mx,q(s) = qA−sΓ
[ 1 + ζ1 − s, 1 + ζ2 − s, ρ̂+ s

1− s, 1 + ρ− s, ζ̂1 + s, ζ̂2 + s

]
(131)

×G3,3
4,5

( 1− s, 1,−ρ, ρ̂
1− s, ζ̂1, ζ̂2,−ζ1,−ζ2

∣∣∣ 1

Ax

)
.

Our main tool will be the following result, which expresses the Meijer G-function as a sum of
hypergeometric functions (see formula (32), (33)). Assume that bj − bk /∈ Z for 1 ≤ j < k ≤ m and
p < q. Then for x > 0 , we have:

Gmn
pq

(a
b

∣∣∣x) = πm+n−p−1

m∑
k=1

p∏
j=n+1

sin(π(aj − bk))∏
1≤j≤m
j 6=k

sin(π(bj − bk))
(132)

× xbkpΦq−1

( 1 + bk − a1, . . . , 1 + bk − ap
1 + bk − b1, . . . , ∗, . . . , 1 + bk − bq

∣∣∣(−1)p−m−nx
)
.

As the proof will be rather technical and will involve many tedious computations, let us explain
the main steps and ideas behind the proof. The first step is to express all Meijer G-functions
appearing in (129), (130) and (101) in terms of hypergeometric functions via (32) or (33). In the
second step we will use the results of step one and we will rewrite the expression in (122) as a sum
of products of two hypergeometric functions. In the third step our goal is to simplify the expression
obtained in step two. In the fourth step we will show the (simplified) identity related to finite sums
of products of hypergeometric functions.

Let us deal with the first step – expressing Meijer G-functions in terms of hypergeometric
functions.

Step 1a. We define

f1 := 4Φ4

( 1, 1− s, 2 + ρ− s, 2− ρ̂− s
2− s− ζ̂1, 2− s− ζ̂2, 2− s+ ζ1, 2− s+ ζ2

∣∣∣ 1

Ax

)
,

f2 := 3Φ3

( ζ̂1, 1 + ζ̂1 + ρ, 1 + ζ̂1 − ρ̂
1 + ζ̂1 − ζ̂2, 1 + ζ̂1 + ζ1, 1 + ζ̂1 + ζ2

∣∣∣ 1

Ax

)
,

f3 := 3Φ3

( ζ̂2, 1 + ζ̂2 + ρ, 1 + ζ̂2 − ρ̂
1 + ζ̂2 − ζ̂1, 1 + ζ̂2 + ζ1, 1 + ζ̂2 + ζ2

∣∣∣ 1

Ax

)
,
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and

a1 := −πqA−sΓ
[ 1 + ζ1 − s, 1 + ζ2 − s, ρ̂+ s

1− s, 1 + ρ− s, ζ̂1 + s, ζ̂2 + s

] sin(π(ρ̂+ s))

sin(π(ζ̂1 + s)) sin(π(ζ̂2 + s))
(Ax)s−1,

a2 := πqA−sΓ
[ 1 + ζ1 − s, 1 + ζ2 − s, ρ̂+ s

1− s, 1 + ρ− s, ζ̂1 + s, ζ̂2 + s

] sin(π(ρ̂− ζ̂1))

sin(π(s+ ζ̂1)) sin(π(ζ̂2 − ζ̂1))
(Ax)−ζ̂1 ,

a3 := πqA−sΓ
[ 1 + ζ1 − s, 1 + ζ2 − s, ρ̂+ s

1− s, 1 + ρ− s, ζ̂1 + s, ζ̂2 + s

] sin(π(ρ̂− ζ̂2))

sin(π(s+ ζ̂2)) sin(π(ζ̂1 − ζ̂2))
(Ax)−ζ̂2 .

Then formulas (101) and (33) give us

Mx,q(s) = a1f1 + a2f2 + a3f3. (133)

Step 1b. We define f4 := f1

∣∣
s=ζ1

and f5 := f1

∣∣
s=ζ2

, that is

f4 := 4Φ4

( 1, 1− ζ1, 2 + ρ− ζ1, 2− ρ̂− ζ1

2, 2− ζ1 − ζ̂1, 2− ζ1 − ζ̂2, 2− ζ1 + ζ2

∣∣∣ 1

Ax

)
f5 := 4Φ4

( 1, 1− ζ2, 2 + ρ− ζ2, 2− ρ̂− ζ2

2, 2− ζ2 − ζ̂1, 2− ζ2 − ζ̂2, 2− ζ2 + ζ1

∣∣∣ 1

Ax

)
.

In the same way we define

b1 := a1

∣∣
s=ζ1

, b2 := a2

∣∣
s=ζ1

, b3 := a3

∣∣
s=ζ1

,

c1 := a1

∣∣
s=ζ2

, c2 := a2

∣∣
s=ζ2

, c3 := a3

∣∣
s=ζ2

.

Then (133) gives us

Mx,q(ζ1) = b1f4 + b2f2 + b3f3, (134)

Mx,q(ζ2) = c1f5 + c2f2 + c3f3.

Step 1c. We define

f6 := 4Φ4

( 1 + ζ1 + ρ̂, 1 + ζ1, 1 + ζ1 − ρ, 1 + ζ1 − s,
2 + ζ1 − s, 1 + ζ1 − ζ2, 1 + ζ1 + ζ̂1, 1 + ζ1 + ζ̂2

∣∣∣− 1

Ax

)
,

f7 := 4Φ4

( 1 + ζ2 + ρ̂, 1 + ζ2, 1 + ζ2 − ρ, 1 + ζ2 − s
2 + ζ2 − s, 1 + ζ2 − ζ1, 1 + ζ2 + ζ̂1, 1 + ζ2 + ζ̂2

∣∣∣− 1

Ax

)
,

f8 := 4Φ4

( 1 + ρ̂− ζ̂1, 1− ζ̂1, 1− ρ− ζ̂1, 1− s− ζ̂1

2− ζ̂1 − s, 1− ζ̂1 − ζ1, 1− ζ̂1 − ζ2, 1 + ζ̂2 − ζ̂1

∣∣∣− 1

Ax

)
,
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and

d1 := − sin(πζ1) sin(π(ρ− ζ1))

sin(π(ζ2 − ζ1)) sin(π(ζ̂1 + ζ1))
(Ax)−ζ1−1,

d2 := − sin(πζ2) sin(π(ρ− ζ2))

sin(π(ζ1 − ζ2)) sin(π(ζ̂1 + ζ2))
(Ax)−ζ2−1,

d3 := − sin(πζ̂1) sin(π(ρ+ ζ̂1))

sin(π(ζ1 + ζ̂1)) sin(π(ζ2 + ζ̂1))
(Ax)ζ̂1−1,

d4 := Γ
[ 1 + ζ1 − s, 1 + ζ2 − s, 1− ζ̂1 − s, s+ ρ̂

s+ ζ̂2, 1− s, 1 + ρ− s

]
(Ax)−s.

Then formulas (32) and (33) give us

G4,1
4,5

( 1− ρ̂, 1, 1 + ρ, s+ 1

s, 1 + ζ1, 1 + ζ2, 1− ζ̂1, 1− ζ̂2

∣∣∣ 1

Ax

)
= d1f6 + d2f7 + d3f8 + d4. (135)

Step 1d. We define

f9 := 4Φ4

( 1 + ρ̂− ζ̂2, 1− ζ̂2, 1− ρ− ζ̂2, 1− s− ζ̂2

2− ζ̂2 − s, 1− ζ̂2 − ζ1, 1− ζ̂2 − ζ2, 1 + ζ̂1 − ζ̂2

∣∣∣− 1

Ax

)
,

and

e1 := − sin(πζ1) sin(π(ρ− ζ1))

sin(π(ζ2 − ζ1)) sin(π(ζ̂2 + ζ1))
(Ax)−ζ1−1,

e2 := − sin(πζ2) sin(π(ρ− ζ2))

sin(π(ζ1 − ζ2)) sin(π(ζ̂2 + ζ2))
(Ax)−ζ2−1,

e3 := − sin(πζ̂2) sin(π(ρ+ ζ̂2))

sin(π(ζ1 + ζ̂2)) sin(π(ζ2 + ζ̂2))
(Ax)ζ̂2−1,

e4 := Γ
[ 1 + ζ1 − s, 1 + ζ2 − s, 1− ζ̂2 − s, s+ ρ̂

s+ ζ̂1, 1− s, 1 + ρ− s

]
(Ax)−s.

Then formulas (32) and (33) give us

G4,1
4,5

( 1− ρ̂, 1, 1 + ρ, s+ 1

s, 1 + ζ1, 1 + ζ2, 1− ζ̂2, 1− ζ̂1

∣∣∣ 1

Ax

)
= e1f6 + e2f7 + e3f9 + e4. (136)

Our next goal is to collect all these formulas and express the functions I1(s) and I2(s) as sums
of products fifj.
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Step 2a. We define

h1 = qA−ζ̂1xs−ζ̂1
sin(π(ρ̂− ζ̂1))

sin(π(ζ̂2 − ζ̂1))
,

h2 = qA−ζ̂2xs−ζ̂2
sin(π(ρ̂− ζ̂2))

sin(π(ζ̂1 − ζ̂2))
,

and from formulas (129), (135) and (136) we obtain

I1(s) = (h1d4)f2 + (h2e4)f3 + (h1d1)f2f6 + (h1d2)f2f7 (137)

+ (h1d3)f2f8 + (h2e1)f3f6 + (h2e2)f3f7 + (h2e3)f3f9.

Step 2b. We define

g1 : =
1

ψ′(ζ1)

xs−1−ζ1

1 + ζ1 − s
Γ
[

2 + ζ1 − s, 1 + ζ1 − ζ2, 1 + ζ1 + ζ̂1, 1 + ζ1 + ζ̂2

1 + ζ1 + ρ̂, 1 + ζ1, 1 + ζ1 − ρ, 1 + ζ1 − s

]
,

g2 : =
1

ψ′(ζ2)

xs−1−ζ2

1 + ζ2 − s
Γ
[

2 + ζ2 − s, 1 + ζ2 − ζ1, 1 + ζ2 + ζ̂1, 1 + ζ2 + ζ̂2

1 + ζ2 + ρ̂, 1 + ζ2, 1 + ζ2 − ρ, 1 + ζ2 − s

]
,

and from formulas (130) and (134) we obtain

I2(s) = (qxζ1g1)f6 + (qxζ2g2)f7 + (ζ1b1g1)f4f6 + (ζ1b2g1)f2f6 (138)

+ (ζ1b3g1)f3f6 + (ζ2c1g2)f5f7 + (ζ2c2g2)f2f7 + (ζ2c3g2)f3f7.

Step 2c. Using all the previous results (formulas (133), (137) and (138)) we rewrite the identity
(122) in an equivalent form

I1(s) + I2(s)−Mx,q(s) = (h1d4)f2 + (h2e4)f3 + (h1d1)f2f6 + (h1d2)f2f7

+ (h1d3)f2f8 + (h2e1)f3f6 + (h2e2)f3f7 + (h2e3)f3f9

+ (qxζ1g1)f6 + (qxζ2g2)f7 + (ζ1b1g1)f4f6 + (ζ1b2g1)f2f6 (139)

+ (ζ1b3g1)f3f6 + (ζ2c1g2)f5f7 + (ζ2c2g2)f2f7 + (ζ2c3g2)f3f7

− (a1f1 + a2f2 + a3f3) = 0.

Now our goal is to simplify the long sum in (139). First we will deal with cancellations and then
we will use a certain transformation of hypergeometric functions.

Step 3a. Using the reflection formula for the Gamma function (34) we check that

ζ1b3g1 = −h2e1,

ζ1b2g1 = −h1d1,

ζ2c2g2 = −h1d2,

ζ2c3g2 = −h2e2,

a2 = h1d4,

a3 = h2e4.
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These identities allow us to simplify the expression in (139) as follows

I1(s) + I2(s)−Mx,q(s) = (qxζ1 + ζ1b1f4)g1f6 + (qxζ2 + ζ2c1f5)g2f7

+ (h1d3)f2f8 + (h2e3)f3f9 − a1f1. (140)

Step 3b. In this step we will simplify (140) via the following result

1 + z
( 3∏
i=1

αi − 1

βi − 1

)
× 4F4

( 1, α1, α2, α3

2, β1, β2, β3

∣∣∣z) = 3F3

( α1 − 1, α2 − 1, α3 − 1
β1 − 1, β2 − 1, β3 − 1

∣∣∣z). (141)

The above identity can be easily established by comparing the coefficients of the Taylor series
of both sides. Applying identity (141) we obtain

qxζ1 + ζ1b1f4 = qxζ1f10, (142)

qxζ2 + ζ2c1f5 = qxζ2f11, (143)

where

f10 := 3F3

( −ζ1, 1 + ρ− ζ1, 1− ρ̂− ζ1

1− ζ1 − ζ̂1, 1− ζ1 − ζ̂2, 1− ζ1 + ζ2

∣∣∣ 1

Ax

)
,

f11 := 3F3

( −ζ2, 1 + ρ− ζ2, 1− ρ̂− ζ2

1− ζ2 − ζ̂1, 1− ζ2 − ζ̂2, 1− ζ2 + ζ1

∣∣∣ 1

Ax

)
.

Formulas (140), (142) and (143) give us an equivalent form of the identity I1(s) + I2(s) −
Mx,q(s) = 0 as follows

(qxζ1g1)f6f10 + (qxζ2g2)f7f11 + (h1d3)f2f8 + (h2e3)f3f9 − a1f1 = 0. (144)

Step 4. By simplifying the coefficients (again, using the reflection formula for the Gamma function
(34)) one can check that the left-hand side in (144) is a finite (that is, non-infinite) multiple of

H(x) :=
5∑
i=1

(αi − ρ)(αi + ρ̂)∏
1≤j≤5

j 6=i

(αi − αj)
× 4F4

(1 + αi − ρ, 1 + αi + ρ̂, 1 + αi, 1 + αi − s
1 + αi − α1, . . . , ∗, . . . , 1 + αi − α5

∣∣∣− 1

Ax

)
(145)

× 4F4

( 1 + ρ− αi, 1− ρ̂− αi,−αi, s− αi
1 + α1 − αi, . . . , ∗, . . . , 1 + α5 − αi

∣∣∣ 1

Ax

)
,

where [α1, α2, α3, α4, α5] = [ζ1, ζ2,−ζ̂1,−ζ̂2, s− 1] and the asterisk means that the term 1 + αi − αi
is omitted. The identity H(x) ≡ 0 is a special case of Theorem 27 in Chapter 8. To see this, we
should set p = r = 4 and

{ai}1≤i≤5 = {ζ1, ζ2,−ζ̂1,−ζ̂2, s− 1}, {bi}1≤i≤4 = {1 + ρ, 1 + ρ̂, 0, s}, {mi}1≤i≤4 = {1, 1, 0, 0},

in the notion of Theorem 27. ut
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Now we have proved that fx,q(y) is exactly the probability density function of Ix,q. At the
beginning, we used the Mellin inverse transform to obtain the fx,q(y), but when y > x, our argument
is not solid, we tried to compare the Mellin transform of fx,q(y) toMx,q, one can do a quick numerical
check that theses two are equal. While we were doing the theoretical proof of the equality, we found
the identity H(x) ≡ 0 in (145), which has triggered the topic in Chapter 8 as a generalization of
this identity for hypergeometric functions.

At the end of this section, we are going to graph the probability density function fx,q(y) under
the different choice of parameters.

(Parameter set A) µ = 0.119161, σ = 0.100499, λ = 1, p = 0.3, ρ = 20, ρ̂ = 10,

x = 1/0.0035, q = 0.785;

(Parameter set B) µ = 0.064186, σ = 0.144395, λ = 0.00005, p = 0.3, ρ = 0.1, ρ̂ = 0.2,

x = 1/0.0035, q = 0.785;

(Parameter set C) µ = −0.681815, σ = 1.399405, λ = 0.142833, p = 0.889337, ρ = 1.063917,

ρ̂ = 0.481293, x = 1.970593, q = 1.120256;

which gives the roots for φ(z) = q according to each set of parameters

set A : ζ1 = 6.120373734933308, ζ2 = 21.755413426264614,

ζ̂1 = 6.7183299869653, ζ̂2 = 34.75358031941775;

set B : ζ1 = 0.099998073227489, ζ2 = 6.129225774533752,

ζ̂1 = 0.199991222181719, ζ̂2 = 12.286187878832155;

set C : ζ1 = 0.934010684229182, ζ2 = 1.632740553575107,

ζ̂1 = 0.469390641058205, ζ̂2 = 0.818415354958329;

From Figure 1, Figure 2 and Figure 3, we can observe that the probability density function is
continuous but is not differentiable at the point y = x.
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Figure 1: Probability density function fx,q(y) for set A

6.3.4 Distribution and expectation of Ix,q

In the following we compute the distribution function of Ix,q and the tail expectation of Ix,q. These
results will be used in Section 6.4.

Corollary 1. For y ≥ x

P(Ix,q > y) =
{qxζ1 + ζ1Mx,q(ζ1)

ζ1ψ′(ζ1)
y−ζ13F3

( 1 + ζ1 − ρ, 1 + ζ1 + ρ̂, ζ1

1 + ζ1 − ζ2, 1 + ζ1 + ζ̂1, 1 + ζ1 + ζ̂2

∣∣∣− 1

Ay

)}
(146)

+
{

the same expression with ζ1 and ζ2 interchanged
}

and for 0 < y < x

P(Ix,q < y) =
{ q
A

(Ax)−ζ̂1
sin(π(ρ̂− ζ̂1))

sin(π(ζ̂2 − ζ̂1))
3Φ3

( ζ̂1, 1 + ζ̂1 + ρ, 1 + ζ̂1 − ρ̂
1 + ζ̂1 − ζ̂2, 1 + ζ̂1 + ζ1, 1 + ζ̂1 + ζ2

∣∣∣ 1

Ax

)
(147)

×G3,1
3,4

( −ρ̂, ρ, 1
ζ1, ζ2,−ζ̂1,−ζ̂2

∣∣∣ 1

Ay

)}
+
{

the same expression with ζ̂1 and ζ̂2 interchanged
}
.

Proof. Formula (146) can be easily obtained from (118) and (38). First we look at formula (118),
for y ≥ x,

P(Ix,q > y) =

∫ ∞
y

fx,q(s)ds. (148)
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Figure 2: Probability density function fx,q(y) for set B

By observing (118), we can find it is essentially∫ ∞
y

s−1−ζ1
3F3

( 1 + ζ1, 1 + ζ1 − ρ, 1 + ζ1 + ρ̂

1 + ζ1 − ζ2, 1 + ζ1 + ζ̂1, 1 + ζ1 + ζ̂2

∣∣∣− 1

As

)
ds

=

∫ ∞
y

−y−ζ1(y
s

)ζ1−1
3F3

( 1 + ζ1, 1 + ζ1 − ρ, 1 + ζ1 + ρ̂

1 + ζ1 − ζ2, 1 + ζ1 + ζ̂1, 1 + ζ1 + ζ̂2

∣∣∣− 1

Ay
· y
s

)
d
y

s

= y−ζ1
∫ 1

0

(t)ζ1−1
3F3

( 1 + ζ1, 1 + ζ1 − ρ, 1 + ζ1 + ρ̂

1 + ζ1 − ζ2, 1 + ζ1 + ζ̂1, 1 + ζ1 + ζ̂2

∣∣∣− 1

Ay
· t
)

dt

=
y−ζ1

ζ1
3F3

( 1 + ζ1 − ρ, 1 + ζ1 + ρ̂, ζ1

1 + ζ1 − ζ2, 1 + ζ1 + ζ̂1, 1 + ζ1 + ζ̂2

∣∣∣− 1

Ay

)
. (149)

Here in the first step and second step we use variable change: t = y/s, in the third step we apply (38).

Similarly, we find ∫ ∞
y

s−1−ζ2
3F3

( 1 + ζ2, 1 + ζ2 − ρ, 1 + ζ2 + ρ̂

1 + ζ2 − ζ1, 1 + ζ2 + ζ̂1, 1 + ζ2 + ζ̂2

∣∣∣− 1

As

)
ds

=
y−ζ2

ζ2
3F3

( 1 + ζ2 − ρ, 1 + ζ2 + ρ̂, ζ2

1 + ζ2 − ζ1, 1 + ζ2 + ζ̂1, 1 + ζ2 + ζ̂2

∣∣∣− 1

Ay

)
, (150)

thus we get (146).

For 0 < y < x,

P(Ix,q < y) =

∫ y

0

fx,q(s)ds. (151)
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Figure 3: Probability density function fx,q(y) for set C

By observing (119), we can find it is essentially∫ y

0

G3,1
3,4

( 1− ρ̂, 1, 1 + ρ

1 + ζ1, 1 + ζ2, 1− ζ̂1, 1− ζ̂2

∣∣∣ 1

As

)
ds

= y

∫ ∞
1

(t)−2G3,1
3,4

( 1− ρ̂, 1, 1 + ρ

1 + ζ1, 1 + ζ2, 1− ζ̂1, 1− ζ̂2

∣∣∣ 1

Ay
· t
)

dt

= yG4,1
4,5

( 1− ρ̂, 1, 1 + ρ, 2

1, 1 + ζ1, 1 + ζ2, 1− ζ̂1, 1− ζ̂2

∣∣∣ 1

Ay

)
= yG3,1

3,4

( 1− ρ̂, 1 + ρ, 2

1 + ζ1, 1 + ζ2, 1− ζ̂1, 1− ζ̂2

∣∣∣ 1

Ay

)
= y · 1

Ay
G3,1

3,4

( −ρ̂, ρ, 1
ζ1, ζ2,−ζ̂1,−ζ̂2

∣∣∣ 1

Ay

)
.

Here in the first step we change variable t = y/s, in the second step we apply (37), in the third step
we apply (36), in the fourth step we apply (29).

Similarly, we find ∫ y

0

G3,1
3,4

( 1− ρ̂, 1, 1 + ρ

1 + ζ1, 1 + ζ2, 1− ζ̂2, 1− ζ̂1

∣∣∣ 1

As

)
ds

= y · 1

Ay
G3,1

3,4

( −ρ̂, ρ, 1
ζ1, ζ2,−ζ̂2,−ζ̂1

∣∣∣ 1

Ay

)
,

thus we can get (147). ut
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Corollary 2. Assume that ζ1 > 1, then for y ≥ x

E[Ix,q1{Ix,q>y}] =
{qxζ1 + ζ1Mx,q(ζ1)

ψ′(ζ1)(ζ1 − 1)
y1−ζ1

4F4

( 1 + ζ1, 1 + ζ1 − ρ, 1 + ζ1 + ρ̂, ζ1 − 1

1 + ζ1 − ζ2, 1 + ζ1 + ζ̂1, 1 + ζ1 + ζ̂2, ζ1

∣∣∣− 1

Ay

)}
(152)

+
{

the same expression with ζ1 and ζ2 interchanged
}
,

and for 0 < y < x

E[Ix,q1{Ix,q<y}] =
{ qy2 sin(π(ρ̂− ζ̂1))

(Ax)ζ̂1 sin(π(ζ̂2 − ζ̂1))
3Φ3

( ζ̂1, 1 + ζ̂1 + ρ, 1 + ζ̂1 − ρ̂
1 + ζ̂1 − ζ̂2, 1 + ζ̂1 + ζ1, 1 + ζ̂1 + ζ2

∣∣∣ 1

Ax

)
(153)

×G4,1
4,5

( 1− ρ̂, 1, 1 + ρ, 3

2, 1 + ζ1, 1 + ζ2, 1− ζ̂1, 1− ζ̂2

∣∣∣ 1

Ay

)}
+
{

the same expression with ζ̂1 and ζ̂2 interchanged
}
.

Proof. Same steps as in the proof of Corollary 1. ut

6.4 Application to GMDB

As we have discussed in the introduction, due to the continual collection of management fees as
a fixed percentage of policyholders’ account value, exponential functionals arise naturally in the
analysis of insurer’s liabilities to variable annuity guaranteed benefits. In this section we use the
obtained theoretical results to compute various risk measures for the guaranteed minimum death
benefit (GMDB), which is one of the most common types of investment guarantees in the market.

Assume that the equity index {St, t ≥ 0} is modeled by an exponential Lévy process

St := S0e
Xt , t ≥ 0,

where X is the Kou process, as defined in (98). Assume, also, that the policyholder’s investment
account is driven by the equity-linking mechanism as in (85). Recall that the GMDB net liability
from an insurer’s viewpoint is given by

L := e−rTx(F0e
rTx − FTx)+ −

∫ Tx

0

e−rsmdFs ds. (154)

Due to the independence of mortality risk and equity risk, we obtain an expression of P(L > V ) for
V ≥ VaRξ > 0,

P(L > V ) =

∫ ∞
0

P (t,K)f(t) dt, (155)
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where f is the probability density function of Tx, K := (F0 − V )/(mdF0) and

P (t,K) := P
(
xeX

∗
t +

∫ t

0

eX
∗
sds < K

)
with x = 1/md. The underlying Lévy process X∗ is the same as the process X in (98), but with µ
replaced by

µ∗ := µ− r −m.

The Laplace transform of P with respect to t is given by

P̃ (q,K) :=

∫ ∞
0

e−qtP (t,K)dt =
1

q
P(Ix,q < K).

Similarly, we can show that

CTEp(L) = F0 −
mdF0

1− p

∫ ∞
0

Z(t,K)f(t)dt, (156)

where

Z(t,K) := E
[(
xeX

∗
t +

∫ t

0

eX
∗
sds

)
1{xeX∗t +

∫ t
0 e

X∗s ds<K}

]
.

Its Laplace transform with respect to t is given by

Z̃(q,K) :=

∫ ∞
0

e−qtZ(t,K)dt =
1

q
E
[
Ix,q1{Ix,q<K}

]
.

A common model for human mortality in the literature is the so-called Gompertz-Makeham law
of mortality, which assumes that the death rate µx is the sum of a constant A (to account for death
due to accidents) and a component Bcx (to account for aging):

µx = A+Bcx, A > 0, B > 0, c > 1.

Its probability density function f is given by

f(t) = (A+Bcx+t) exp

{
−At− Bcx(ct − 1)

ln c

}
. (157)

As shown in Feng and Jing [20], we can always use a decomposition of a Hankel matrix to ap-
proximate f by a combination of exponential functions with complex components and complex
weights,

f(t) ≈
M∑
i=1

wie
−sit, <(si) > 0.
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(a) Bases (b) Weights

Figure 4: Approximating exponential sum

There are many known methods in the literature for such approximations, most of which utilizes
only real components and real weights. However, the Hankel matrix method has the advantage of
using relatively small number of terms. Then, for large enough M ,

P(L > V ) ≈
M∑
i=1

wiP̃ (si, K). (158)

Similarly, we can approximate the CTE risk measure by

CTEp(L) ≈ F0 −
mdF0

1− p

M∑
i=1

wiZ̃(si, K). (159)

Let us illustrate the application to GMDB with a numerical example.

(i) Survival model. Suppose that the variable annuity contract under consideration is issued to a
65-year-old, whose survival model is determined by the Gompertz-Makeham law of mortality with
the probability density given in (157) where x = 65, A = 0.0007, B = 0.00005, c = 100.04. Using
the Hankel matrix method, we approximate the mortality density by a combination of M = 15
terms of exponential functions. The bases and weights of the 15-term exponential sum are shown
in Figure 4. In Figure 5, we show the plot of the original density function as well as the error from
the 15-term approximating exponential sum. It is clear from the plots that the maximum error is
controlled,

sup
t∈[0,100]

∣∣∣∣∣f(t)−
M∑
i=1

wie
−sit

∣∣∣∣∣ < 10−6.
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(a) Mortality density (b) Approximation error

Figure 5: Approximation of mortality density

(ii) Equity model. Suppose that the variable annuity contract is invested in a single equity fund
which is driven by either of the following two models

1. Geometric Brownian motion (GBM): Here we use a standard model from the insurance indus-
try calibrated to monthly S&P 500 total return data from December 1955 to December 2003
inclusive. The model is also known to pass the calibration criteria for equity return models
set by the AAA (c.f. AAA report [26, p.35]).

µ1 = 0.064161, σ1 = 0.16.

2. Exponential Lévy process with bilateral exponential jumps (Kou): we employ two sets of
parameters for comparison with the GBM model.

(Parameter set A) µ2 = 0.119161, σ2 = 0.100499, λ = 1, p = 0.3, ρ = 20, ρ̂ = 10;

(Parameter set B) µ2 = 0.064186, σ2 = 0.144395, λ = 0.00005, p = 0.3, ρ = 0.1, ρ̂ = 0.2.

The parameters are chosen so that the first two moments of X1 are kept the same for both
the GBM model and the Kou model, i.e.

µ1 = µ2 +
λp

ρ
− λ(1− p)

ρ̂
,

σ2
1 = σ2

2 +
2λp

ρ2
+

2λ(1− p)
ρ̂2

.

The first set of parameters leads to relatively frequent occurrence of small jumps, whereas the
second set of parameters is chosen to exhibit relatively rare occurrence of large jumps.

68



λ = 1 λ = 0.01 λ = 0.0001 λ = 0.000001 GBM (λ = 0)

P(L > 0.2) 0.4794368114 0.0954727742 0.0927572184 0.0927302874 0.0927300396
P(L > 0.4) 0.3313624187 0.03327852158 0.03185715421 0.03184312600 0.03184298681
P(L > 0.6) 0.1787553560 0.06201911742 0.005797295345 0.005793340382 0.005793300500

Table 1: Tail probabilities for the GMDB net liability

Analytic Monte Carlo Monte Carlo
(N = 1, 000) (N = 100, 000)

P(L > 0.2) 0.4794368114 0.4787000000 0.4796620000
(0.0154956700) (0.0015078343)

Time 11.097 68.422203 7107.196853
P(L > 0.4) 0.3313624187 0.3342000000 0.3321305000

(0.0143218640) (0.0013534030)
Time 10.912 − −

P(L > 0.6) 0.1787553560 0.1780 0.1794875000
(0.0105481353) (0.0011432358)

Time 10.463 − −

Table 2: Tail probabilities for the GMDB net liability with λ = 1

(iii) Fee schedule. The initial purchase payment is assumed to be F0 = 1. The guarantee level
starts off at G0 = 1 and the yield rate on the insurer’s assets backing up the GMDB liability is given
by r = 0.02. The mortality and expenses (M&E) fee is charged at the rate of m = 0.01 per dollar
of the policyholder’s investment account per time unit. The GMDB rider charge rate is assumed
to be 35% of the M&E fee rate, i.e. md = 0.0035.

Recall that the GBM model is in fact a special case of the Kou model. Hence we shall first use
tail probabilities of the GMDB net liability under the GBM model as benchmarks against which
the accuracy of corresponding results under the Kou model can be tested. In Table 1, the last
row of tail probabilities are computed by formula (158) where P̃(s,K) is determined by formulas in
Feng and Volkmer [24, Proposition 3.4]. The rest of the table are by formula (158) where P̃(s,K)
is determined by formulas in Corollary 1. For the ease of direct comparison with the GBM model,
we set for the Kou model

µ2 = 0.064161, σ2 = 0.16, p = 0.3, ρ = 20, ρ̂ = 10.

As expected, Table 1 indicates that the tail probability of the GMDB net liability under the Kou
model converges point-wise to the corresponding result under the GBM model, as the intensity rate
λ of jumps declines to zero.

We can also test the accuracy of results on tail probabilites of GMDB net liability against those
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(a) All positive liabilities (b) Extremely large liabilities

Figure 6: Tail probability of GMDB net liability

resulting from a Monte Carlo method. Take the case of λ = 1 for example in Table 2. For the
Monte Carlo method, we first employ an acceptance-rejection method to generate policyholders’
remaining lifetimes from the Gompertiz-Makeham law of mortality in (157). In each experiment,
we simulate N sample paths of the equity index based on the exponential Levy model from the
beginning to policyholders’ times of death. Under each sample path, we determine the GMDB
net liability by the Riemman sum corresponding to (154) with a step size of 0.01. The GMDB
payment is assumed to be payable at the end of the time step upon death. The tail probabilities
P(L > 0.2),P(L > 0.4),P(L > 0.6) are estimated respectively by the number of sample paths under
which the GMDB net liability surpasses the thresholds 0.2, 0.4, 0.6, respectively, divided by the
total number of sample paths N . In Table 2, we report tail probability results from both analytic
formulas and estimates from Monte Carlo simulations. Computing time is reported in seconds. All
algorithms based on the Monte Carlo method are implemented in Matlab (version 2016a) whereas
results from analytic formulas are obtained in Maple (version 2016.1). In addition, each Monte
Carlo result is the mean of estimates from 20 independent experiments and the corresponding sam-
ple standard deviation is quoted in brackets. Observe that Monte Carlo simulations are very time
consuming to reach accuracy up to three decimal places. Therefore, it is worthwhile performing the
above analysis to develop analytic formulas, as they are in general much more efficient and more
accurate than Monte Carlo simulations.

Owing to the analytic formulas developed in this dissertation, the computational algorithm for
tail probability is very efficient, enabling us to plot the tail probability function. The visualization
of tail probabilities allows us to develop an understanding of the impact of jumps to the overall
riskiness of insurer’s liability. For example, we plot tail probability functions of the GMDB rider
under the GBM model and the Kou models. In Figure 6, the blue line represents the tail probability
function under the GBM model whereas the red line and green line represent the tail probability
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VaR0.85 VaR0.9 VaR0.95 VaR0.9999

Parameter set A 0.069344 0.187615 0.349984 0.868025
Parameter set B 0.038537 0.132969 0.266704 0.967712

CTE0.85 CTE0.9 CTE0.95 CTE0.9999

Parameter set A 0.295863 0.380809 0.498331 0.890319
Parameter set B 0.226736 0.298245 0.401757 0.983389

Table 3: Risk measures for the GMDB net liability

function under the Kou models with parameter sets A and B respectively. The horizontal axis
shows the level of net liability as a percentage of initial purchase payment and the vertical axis
measures the corresponding tail probability. Figure 6(a) appears to indicate that the models with
jumps tend to result in smaller probability of losses (positive net liability), which may be counterin-
tuitive. This is likely caused by the fact that parameter sets A and B for the Kou models introduce
smaller volatilities of white noise than that in the GBM model, which implies that larger probability
masses are concentrated around negative net liabilities (profits for the insurer). The presence of
jumps appears to play a role for generating extremely large liabilities, as shown in Figure 6(b).
The tail probability in the Kou model with large jumps, represented by the green line, has a fatter
tail than that in the GBM model, represented by blue line. The tail probability in the Kou model
with smaller jumps, represented by the red line, also has a fatter tail, although to a less extent
than the Kou model with large jumps. This is not surprising, as the equity index in Kou models
with jumps can drop faster than the GBM can, thereby leading to severe losses for the insurer
in extreme cases. This experiment shows that Kou models tend to produce more conservative es-
timates of insurer’s net liabilities at the far right tail than the standard GBM model used in practice.

Next we illustrate the computation of risk measures for the GMDB net liability. The CTE0.9

risk measure is commonly used to determine risk-based capitals for variable annuity guarantee
products in the US. First we use the expression in (158) to determine tail probability of GMDB
net liability for various levels and then employ a bisection root search algorithm to determine the
exact quantiles. The algorithm terminates when the search interval narrows down to a width less
than 10−7. Then all results in Table 3 are rounded to nearest sixth decimal place. Then the VaR
results are fed into the algorithm for determining the CTE based on the expression (159). Note
that in Table 3 both quantile and CTE risk measures at confidence levels p = 0.85, 0.9, 0.95 for
the model with parameter set A are larger than those in the model with parameter set B, which is
consistent with the observation in Figure 6(a) that tail probability for the model with parameter
set A (red line) tends to dominate that for the model with parameter set B (green line). However,
if we move to the far right tail, the quantile and CTE risk measures at p = 0.9999 for the model
with parameter set A become less than those for the model with parameter set B, confirmed by the
reversed dominance in Figure 6(b). Again the comparison of risk measures show that infrequent
occurrence of large jumps only increases the tail probability at extremely high levels of liabilities
whereas frequent occurrence of small jumps may significantly increase the tail probability at more
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modest levels of liabilities, which are often of interest to insurance applications.
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7 Optimal control in first to default problem

In this chapter, we let a two dimensional Brownian motion with dynamic correlation represent the
value processes of two assets. We demonstrate the way of valuing credit risk by pricing “first to
default option”. Since different choice of the correlation leads to different price for the option, we
investigate the highest price and the lowest price according to the dynamic of the correlation. We
show how we transform this first-to-default problem to an optimal control problem and how we
solve it analytically. Additionally, we extract one topic related to the skew Brownian motion in the
process of obtaining the optimal results, such topic has independent interest.

7.1 Introduction

Credit risk is essential for valuing assets. For a single asset, the credit risk can be derived from
its market spread information, such as spreads on corporate bonds or on single-asset credit default
swaps (see Duffie and Singleton [18]). However, the same is not true for portfolios consisting of
assets, such as CDOs (collateralized debt obligation). The main challenge lies in specifying the
dependence among the assets, given their marginal distributions. The most widely used mechanism
for characterizing this dependence is the copula model initiated by Li [46]. This constructs the joint
probability distribution for the time to default from its marginal distribution. Based on this model,
Monte Carlo simulation has been employed to evaluate the product, see Joshi and Kainth [35],
Chen and Glasserman [14]. A fast procedure is also proposed by Hull and White [33] by using fast
Fourier transforms. The advantage of the copula model is its flexibility, computational speed and
ease of calibration. However, the correlations in this model are introduced without regard to the
dynamics of the underlying assets. This means that such a model provides no means to include the
dynamics of correlation and asset value changes, which makes it unreliable when the credit market
becomes stressed. In contrast, there are models dealing with credit dynamics, such as multifirm
structrual credit model, which is based on Merton [52] by connecting the default with the asset value
process. This model can incorporate the dependence quite naturally by assuming that the assets
follow correlated stochastic processes. However, the computation can be very difficult, depending
on the complexity of the stochastic processes. Especially, the Monte Carlo simulation is also very
hard to implement under dynamic correlation assumptions. Hurd [34] has modeled the credit risk
for multi assets by using time-changed Brownian motions to model the assets value processes, but
with a strong condition that the time-changed Brownian motions are conditionally independent.
There is always a trade-off between the choice of assets value processes and the setting of their
correlation.

In this chapter, suppose we have two assets A1 and A2. We are interested in the probability
that the first default happens before a fixed time T . In order to dynamically reflect the dependence,
we assume the assets follow correlated stochastic processes and set the correlation between them
dynamic. Since a different choice of correlation will lead to a different first-to-default probability, we
are interested in the highest and lowest probability and also the corresponding correlation. However,
under the dynamic correlation assumption, the computation can be very difficult, depending on the
complexity of the stochastic processes. In order to make the computation feasible, we will use
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simple processes to model the assets by trade off. We let S1
t = eσ1B

1
t and S2

t = eσ2B
2
t represent the

value of assets A1 and A2, where (B1
t , B

2
t ) is a two dimensional Brownian motion which starts from

(B1
0 , B

2
0) and satisfies

d〈B1, B2〉t = ρtdt. (160)

Here ρt denotes the correlation and ρt ∈ [−1, 1]. The default happens when either asset reaches the
value 1, which is equivalent to that B1

t or B2
t reaches 0. Of course, this is not a general geometric

Brownian motion model, as it assumes that µ1 = σ2
1/2 and µ2 = σ2

2/2 in the geometric Brownian
motion setting. However, in our case some closed form solutions do exist.

We let τ = inf{0 ≤ t ≤ T : B1
t = 0 or B2

t = 0} be the time the first default happens, thus our
problem transforms to investigating

max
ρt

P(τ ≤ T ) and min
ρt

P(τ ≤ T ).

We will give a quick answer to the minimum case. If we let τ1 = inf{0 ≤ t ≤ T : B1
t = 0} and

τ2 = inf{0 ≤ t ≤ T : B2
t = 0}, so τ = τ1 ∧ τ2. For any choice of ρt, we have

P(τ ≤ T ) = P(τ1 ≤ T or τ2 ≤ T ). (161)

Since we know the facts P(A ∪B) ≥ P(A) and P(A ∪B) ≥ P(B), therefore we have

P(τ ≤ T ) ≥ max{P(τ1 ≤ T ),P(τ2 ≤ T )}.

Also we know if we choose ρt ≡ 1, the first time the two dimensional Brownian motion hits the
boundary is the same as the time one dimensional Brownian motion hits zero by starting from
B1

0 ∧ B2
0 . This fact tells us that P(τ ≤ T ) = max{P(τ1 ≤ T ),P(τ2 ≤ T )}, and this probability is

very easy to compute (the first hitting time of one dimensional Brownian motion).

Therefore we have
min
ρt

P(τ ≤ T ) ≥ max{P(τ1 ≤ T ),P(τ2 ≤ T )},

and the equality holds when ρt ≡ 1. Furthermore, we find

min
ρt

P(τ ≤ T ) =
2√
2πT

∫ ∞
m

e−
x2

2T dx,

where m = B1
0 ∧B2

0 .

However, the answer to the maximum case is not that easy, and also for the minimum case, we
want to generalize the problem and see if it can lead to some non-trivial correlation choice. We
will let f be a payoff function, f(B1

τ , B
2
τ ) = f(B1

τ + B2
τ ), which means if B1

τ = 0, the payoff will be
f(B2

τ ), and vice versa. It is obvious that this payoff function treats B1
t and B2

t equally. If we want
to give more preference to the asset B2

t , we can set f(B1
τ , B

2
τ ) = f(B1

τ + bB2
τ ).
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This problem will be modeled as

max
ρt

E(f(B1
τ , B

2
τ )1{τ<T}) and min

ρt
E(f(B1

τ , B
2
τ )1{τ<T}).

Now we can observe that they are actually optimal control problems, and ρt is the controlled
object. Therefore we will apply the optimal control approach to solve such problems. In the litera-
ture, Merton [54] has applied the optimal control approach to solve the optimal portfolio selection
problem. In Merton’s problem, the objects that need to be controlled are the the consumption and
the allocation to the risky asset. Huang, Milevsky and Salisbury [32] have applied the approach
to find the optimal initiation strategy, in their problem, the object to be controlled is the optimal
initiation time. Rogers [65] has given a very detailed explanation of the theory behind the stochastic
optimal control problems.

If we let
v(B1

t , B
2
t , T − t) := max

{ρs,t≤s≤T}
E(f(B1

τ , B
2
τ )1{τ<T})|B1

t , B
2
t ),

then for t1 < t2, by applying the optimality principle, we have

E[v(B1
t2
, B2

t2
, T − t2)|Ft1 ] ≤ v(B1

t1
, B2

t1
, T − t1), (162)

where Ft1 = σ(B1
t , B

2
t , t ≤ t1). The underlying meaning of equation (162) is very straightforward,

for the maximum case, if we take the optimal choice of ρt earlier, we are supposed to get the larger
expected value. If we take the optimal choice since the beginning, the expected value will be the
largest.

From (162), we can observe that v(B1
t , B

2
t , T − t) is a supermartingale and if we take the optimal

choice, it will be a martingale. Therefore if the function v is C2, we can apply the Itô’s formula

dv(B1
t , B

2
t , T − t) = −vtdt+ vxdB

1
t + vydB

2
t +

1

2
vxxdt+

1

2
vyydt+ ρtvxydt. (163)

In order for v(B1
t , B

2
t , T − t) to be a supermartingale for any choice of ρt and to be martingale for

the optimal choice of ρt, then the value function must satisfy

max
ρt∈[−1,1]

{−vt +
1

2
vxx +

1

2
vyy + ρtvxy} = 0. (164)

From the equation, one can easily observe that: In order to obtain the maximum, we obtain

ρt =

{
1 if vxy > 0,

−1 if vxy ≤ 0,
(165)

which gives us the following partial differential equation. The value function v(x, y, T − t) needs to
satisfy

− vt +
1

2
vxx +

1

2
vyy + |vxy| = 0, (166)
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with the terminal condition

v(x, y, 0) =


0 if x > 0 and y > 0,

f(x) if y = 0,

f(y) if x = 0,

(167)

and the boundary condition

v(x, y, T − t) =

{
f(x) if y = 0 and 0 ≤ t ≤ T,

f(y) if x = 0 and 0 ≤ t ≤ T.
(168)

We can get a similar result for the minimum case: If vxy < 0, ρt = 1; otherwise ρt = −1. The
corresponding partial differential equation will be

− vt +
1

2
vxx +

1

2
vyy − |vxy| = 0, (169)

with the terminal condition

v(x, y, 0) =


0 if x > 0 and y > 0,

f(x) if y = 0,

f(y) if x = 0,

(170)

and the boundary condition

v(x, y, T − t) =

{
f(x) if y = 0 and 0 ≤ t ≤ T,

f(y) if x = 0 and 0 ≤ t ≤ T.
(171)

It is obvious that in both cases we only know the boundary condition partially.

We have found that, if we want to find the maximum or minimum expected payoff, the correla-
tion ρt can only be 1 or −1 for any given t. But we still have no idea when it will be 1 and when
it will be −1.

From the viewpoint of PDE, by observing the equations in (166) and (169), we can find that
they are nonlinear equations, which makes it hard to obtain their analytic solutions. One approach
is using numerical methods to solve these equations to get the value function, and then obtain
the sign of the mixed second order derivative to decide the behavior of the correlation ρt. The
hard part of this method is that we only know the boundary condition partially. Thus in order
to solve the equation numerically on a bounded region, we need to assume the unknown boundary
condition. We will show some numerical examples for the maximum case in Section 7.4, the goal
is to demonstrate the different switch region of the correlation according to different payoff function.
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In order to get analytic results from this problem, we need to reduce the complexity. Our idea
is to get rid of T , which means there is no longer an expiration date. Therefore it is reasonable to
expect that the optimal choice of ρt is not impacted by the time remaining; it is only impacted by
the location. The problem will transform to

max
ρt

E(f(B1
τ , B

2
τ )) and min

ρt
E(f(B1

τ , B
2
τ )).

We will explicitly find the optimal choice of correlation with respect to certain payoff functions.
We will investigate two forms of the payoff function, the symmetric one f(x, y) = (x+ y)α and the
asymmetric one f(x, y) = (x + by)α, the latter one implies the payoff will be more favorable if one
particular asset defaults first.

Remark 6. Suppose that at time 0, we buy a portfolio consisting of 20 shares of asset B1 with
initial value 5 each, and 10 shares of asset B2 with initial value 10 each, so totally we spend 200 to
purchase the portfolio. We also buy 20 shares of our option, which has the payoff f(x, y) = x+y/2.
As soon as the default happens: if asset B1 defaults, the portfolio and the options we have purchased
will be equal to 20 shares of B2 with current value (10 shares from the option and 10 shares from
the the portfolio), which is the same as if we had invested 200 only on B2 at the beginning; if asset
B2 defaults, the portfolio and the options we have purchased will be 40 shares of B1 with current
value (20 shares from the option and 20 shares from the the portfolio), which is the same as if we
had invested 200 only on B1 at the beginning. Above all, upon the default of either asset, the option
plus the portfolio results in what it would have been if the buyer had only bought the surviving
asset with the amount of money that was spent on the portfolio at the beginning. In that sense,
this option is a kind of a lookback option.

Before we present our results, we will introduce the essential idea we have used across the whole
chapter to obtain the minimum or the maximum expected value and the optimal choice of correla-
tion respectively.

If a function v(x, y) ≥ 0 satisfies the following conditions:

(i) v(x, y) = f(x, y) on the boundary,

(ii) v(B1
t∧τ , B

2
t∧τ ) is a supermartingale for every choice of ρt,

(iii) v(B1
t∧τ , B

2
t∧τ ) is a martingale for some choice of ρt,

(iv) for this choice of ρt, the optional sampling theorem applies,

then we have
v(B1

0 , B
2
0) = max

ρt
E(f(B1

τ , B
2
τ )|B1

0 , B
2
0).
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For the minimum case we have a similar idea. If a function v(x, y) ≥ 0 satisfies the following
conditions:

(i) v(x, y) = f(x, y) on the boundary,

(ii) v(B1
t∧τ , B

2
t∧τ ) is a submartingale for every choice of ρt,

(iii) v(B1
t∧τ , B

2
t∧τ ) is a martingale for some choice of ρt,

(iv) for this choice of ρt, the optional sampling theorem applies,

then we have
v(B1

0 , B
2
0) = min

ρt
E(f(B1

τ , B
2
τ )|B1

0 , B
2
0).

The maximum and minimum in the above statement mean the following. We take the maximum
or minimum over all probability measures P for which there is a filtration Ft such that B1

t and B2
t

are Brownian motions and semimartingales with respect to Ft, with d〈B1, B2〉t = ρtdt.

Remark 7. For the maximum case, from (ii), we have v(B1
0 , B

2
0) ≥ E[v(B1

t∧τ , B
2
t∧τ )] for ev-

ery choice of ρt; by applying Fatou’s lemma, we find v(B1
0 , B

2
0) ≥ E[v(B1

τ , B
2
τ )], which means

v(B1
0 , B

2
0) ≥ maxρt E[v(B1

τ , B
2
τ )]; then from (iii), for the particular choice of ρt, we have v(B1

0 , B
2
0) =

E[v(B1
t∧τ , B

2
t∧τ )]; the remaining issue is to show v(B1

0 , B
2
0) = E[v(B1

τ , B
2
τ )] holds for this particular

ρt, in other words, this issue arises because our problem has an infinite horizon.

Remark 8. For the minimum case, the approach is similar. The difference is we can not apply
the Fatou’s lemma here to extend from t∧ τ to τ . Therefore we come up with another way for this
step, which will be presented in the proof.

7.2 Symmetric payoff function

As we mentioned above, our payoff function here is f(x, y) = (x+y)α. We will discuss the maximum
and minimum cases in this section separately.
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7.2.1 Maximum case

For α > 0, the maximum case will be different as α ≤ 1 and α > 1.

Theorem 19. For 0 < α ≤ 1, maxρt E[(B1
τ +B2

τ )
α] = (B1

0 +B2
0)α and ρt ≡ −1 is the optimal choice

to get the maximum.

Proof. By applying Itô’s formula, we obtain

d(B1
t +B2

t )
α = α(B1

t +B2
t )
α−1d(B1

t +B2
t ) + α(α− 1)(B1

t +B2
t )
α−2(1 + ρt)dt. (172)

We have 1 + ρt ≥ 0, (B1
t +B2

t )
α−2 > 0 and α(α− 1) ≤ 0, so (B1

t +B2
t )
α is a local supermartingale

for any choice of ρt, and it is a local martingale when ρt ≡ −1. We define the sequence of increasing
stopping times Tn = inf{t : B1

t ≤ 1/n or B2
t ≤ 1/n} ∧ n, it is easy to observe that Tn < τ , and

Tn → τ as n→∞.

(B1
t∧Tn +B2

t∧Tn)α = (B1
0 +B2

0)α +

∫ t∧Tn

0

α(B1
s +B2

s )
α−1d(B1

s +B2
s )

+

∫ t∧Tn

0

α(α− 1)(B1
s +B2

s )
α−2(1 + ρs)ds. (173)

As (B1
s + B2

s )
α−1 < n1−α when 0 ≤ s ≤ (t ∧ Tn), namely (B1

s + B2
s )
α−1 is bounded. By applying

Theorem 9, we know (B1
t∧Tn + B2

t∧Tn)α is a supermartingale. Since Tn is bounded, the optional
sampling theorem implies that

E(B1
Tn +B2

Tn)α ≤ (B1
0 +B2

0)α. (174)

By applying Fatou’s lemma

E(B1
τ +B2

τ )
α ≤ lim inf

n
E(B1

Tn +B2
Tn)α ≤ (B1

0 +B2
0)α. (175)

Therefore

max
ρt

E[(B1
τ +B2

τ )
α] ≤ (B1

0 +B2
0)α. (176)

If we take ρt ≡ −1, then equality holds in (174), and E[(B1
τ + B2

τ )
α] = (B1

0 + B2
0)α by Dominated

Convergence Theorem. ut

Let us make a summary here: In the first step, we find the value function v(B1
τ , B

2
τ ) = (B1

τ +B2
τ )
α

which satisfies v(x, y) = f(x, y) on the boundary; In the second step, we show v(B1
t∧Tn , B

2
t∧Tn) is a

supermartingale for every choice of ρt, and v(B1
t∧Tn , B

2
t∧Tn) is a martingale for ρt ≡ −1; In the third

step, we apply optional sampling theorem as Tn is bounded; In the last step, we use Fatou’s lemma
to extend Tn to τ and apply Dominated Convergence Theorem to ensure the equality holds.
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Theorem 20. For α > 1, maxρt E[(B1
τ +B2

τ )
α] =∞.

Before presenting the proof, we need to establish one result related to the exit point of Brownian
motion in the complex plane.

Definition 15. We define Zt := W 1
t + iW 2

t , where i is the imaginary unit, W 1
t and W 2

t are inde-
pendent Brownian motions. For β ∈ (0, 2π), we denote a cone by C := {reiθ|0 ≤ r, 0 ≤ θ ≤ β}.
The first exit time of Zt from C is defined as τ1 := inf{t|Zt ∈ C \ C}.

Lemma 4. For β ∈ (0, 2π), we let Zt start at yeiθ(0 < θ < β). If αβ
π
≥ 1, we have E(|Zτ1 |α) =∞.

Proof. We let Yt := g(Zt), where g(z) = zπ/β. By applying the conformal transformation, we know
Yt is a time changed Brownian motion starting from yπ/βeiπθ/β and Yτ1 is the hitting position on
the real axis. By Theorem 10, Yτ1 has Cauchy distribution, which means

E[|Yτ1|c] =∞, for c ≥ 1. (177)

By the fact Yτ1 = (Zτ1)
π/β, we obtain

E[|Zτ1|α] = E[|Yτ1|
αβ
π ].

If αβ
π
≥ 1, we have E[|Zτ1 |α] =∞.

ut

Proof of Theorem 20: Given α > 1, we let β = π
α

, so β ∈ (0, π). By letting ρ = − cos(β), so
|ρ| < 1. We can find particular B1

t , B
2
t with constant correlation ρ,

B1
t = ρW 2

t +
√

1− ρ2W 1
t

B2
t = W 2

t . (178)

Here d
〈
W 2,W 1

〉
t

= 0. By writing(
B1
t

B2
t

)
=

( √
1− ρ2 ρ

0 1

)
×
(
W 1
t

W 2
t

)
, (179)

we have (
1√

1−ρ2
−ρ√
1−ρ2

0 1

)
×
(
B1
t

B2
t

)
=

(
W 1
t

W 2
t

)
. (180)
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When the Brownian motion (B1
t , B

2
t ) starts from (x, y) and hits the boundary of the first quadrant,

this is equivalent to (W 1
t ,W

2
t ) starting from ( 1√

1−ρ2
x − ρ√

1−ρ2
y, y) and hitting the boundary of

C = {reiθ|0 ≤ r, 0 ≤ θ ≤ β}. When B2
τ = 0, from (180), we have W 2

τ = 0 and W 1
τ = 1√

1−ρ2
B1
τ ;

when B1
τ = 0, from (180), we have W 2

τ = B2
τ and W 1

τ = −ρ√
1−ρ2

B2
τ ; above all, we can write

B1
τ +B2

τ =
√

1− ρ2 ×
√

(W 2
τ )2 + (W 1

τ )2 =
√

1− ρ2 × |Zτ1|. (181)

Since here αβ
π

= 1, we can apply Lemma 4, so E(B1
τ + B2

τ )
α = (

√
1− ρ2)αE|Zτ1|α = ∞ for

ρ = − cos(β). Therefore we have maxρt E[(B1
τ +B2

τ )
α] =∞. ut

We found that when α > 1, the maximum expected value will be infinity, so it is impossible to
find the optimal choice of correlation. Now we are going to study the minimum case. As we will
show, the value in the minimum case is finite for all α > 0.

7.2.2 Minimum case

First we will show the result for minimum case when 0 < α < 1, then based on this result, we will
prove the case for α ≥ 1.

Theorem 21. For 0 < α ≤ 1, minρt E[(B1
τ +B2

τ )
α] = (B1

0 +B2
0)α−1|B1

0−B2
0 | and the optimal choice

to get the minimum is ρt = −1 when B1
t 6= B2

t , ρt ≡ 1 once B1
t = B2

t .

Proof. For simplicity, we let Mt := B1
t +B2

t , Nt := B1
t −B2

t . By applying Tanaka’s formula

dMα−1
t |Nt| = Mα−1

t sgn(Nt)dNt + |Nt|(α− 1)Mα−2
t dMt

+|Nt|(α− 1)(α− 2)Mα−3
t (1 + ρt)dt+Mα−1

t dLt(N), (182)

where Lt(N) is the local time of Nt at 0, it is an increasing continuous process and satisfies

d|Nt| = sgn(Nt)dNt + dLt(N).

We have 1 + ρt ≥ 0, Mα−3
t > 0, (α− 1)(α− 2) > 0, Mα−1

t > 0, and dLt(N) ≥ 0, so Mα−1
t |Nt| is

a local submartingale for any choice of ρt. Under the optimal choice of ρt, by denoting τ ∗ = inf{t :
B1
t = B2

t }, we can observe that Nt ≡ 0 for t ≥ τ ∗, thus we have

dMα−1
t |Nt| =

{
Mα−1

t sgn(Nt)dNt, t < τ ∗,

0, t ≥ τ ∗,
(183)

which can be written as dMα−1
t |Nt| = Mα−1

t sgn(Nt)1{τ∗>t}dNt. By applying Theorem 9, we find
Mα−1

t |Nt| is a local martingale provided ρt = −1 when B1
t 6= B2

t and ρt ≡ 1 once B1
t = B2

t . We
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define the sequence of increasing stopping times Tn = inf{t : B1
t ≤ 1/n or B2

t ≤ 1/n}∧n. It is easy
to see that Tn < τ , and Tn → τ as n→∞.

Mα−1
t∧Tn|Nt∧Tn | = Mα−1

0 |N0|+
∫ t∧Tn

0

Mα−1
s sgn(Ns)dNs +

∫ t∧Tn

0

|Ns|(α− 1)Mα−2
s dMs

+

∫ t∧Tn

0

|Ns|(α− 1)(α− 2)Mα−3
s (1 + ρs)ds+

∫ t∧Tn

0

Mα−1
s dLs(N). (184)

Since in formula (184), we have (B1
s+B

2
s )
α−1 ≤ n1−α and (B1

s+B
2
s )
α−2 ≤ n2−α, when 0 ≤ s ≤ (t∧Tn),

thus Mα−1
t∧Tn|Nt∧Tn| is a submartingale. Since Tn is bounded, optional sampling implies that

E
(
Mα−1

Tn
|NTn|

)
≥Mα−1

0 |N0|. (185)

Note that, we want to prove E
(
Mα−1

τ |Nτ |
)
≥ Mα−1

0 |N0|, but the Fatou’s lemma can not make the
inequality in this direction, so will try another approach.

Since 0 < α < 1, we have

E
[

sup
n

(
Mα−1

Tn
|NTn|

)1/α] ≤ (
1

1− α
)1/α sup

n
E
[(
Mα−1

Tn
|NTn|

)1/α]
< (

1

1− α
)1/α sup

n
E
[(
Mα

Tn

)1/α]
= (

1

1− α
)1/α(M0) . (186)

The first inequality comes from Doob’s Lp−inequality, the second one comes from |NTn| < MTn ,
and the final equality comes from E(MTn) = M0 by applying the optional sampling theorem.

By using the fact that s ≤ 1 + s1/α (for s ≥ 0 and 1/α ≥ 1), we have

E
[

sup
n
Mα−1

Tn
|NTn|

]
< 1 + E

[
sup
n

(
Mα−1

Tn
|NTn|

)1/α]
, (187)

then the Dominated Convergence theorem implies

E
(
Mα−1

τ |Nτ |
)

= lim
n

E
(
Mα−1

Tn
|NTn|

)
≥Mα−1

0 |N0| . (188)

Since (B1
τ +B2

τ )
α = (B1

τ +B2
τ )
α−1|B1

τ −B2
τ |, we find

min
ρt

E[(B1
τ +B2

τ )
α] ≥ (B1

0 +B2
0)α−1|B1

0 −B2
0 | . (189)

Now we take ρt = −1 when B1
t 6= B2

t , ρt ≡ 1 once B1
t = B2

t . Without loss of generality, we

assume B1
0 ≤ B2

0 . If τ0 is the first time B1
t exits

[
0,

B1
0+B2

0

2

]
, then P(B1

τ0
= 0) =

B2
0−B1

0

B2
0+B1

0
. With the

given choice, if B1
τ0

= 0 then τ = τ0 and B2
τ = B1

0 + B2
0 . If B1

τ0
6= 0 then B1

τ = B2
τ = 0 since

Brownian motion hits 0. Therefore E[(B1
τ + B2

τ )
α] = (B1

0 + B2
0)α−1|B1

0 − B2
0 |. By symmetry, the

same is true if B1
0 ≥ B2

0 .
ut
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Let us make a summary of the proof here: In the first step, we find the value function v(B1
τ , B

2
τ ) =

(B1
τ + B2

τ )
α−1|B1

τ − B2
τ | = (B1

τ + B2
τ )
α, which satisfies v(x, y) = f(x, y) on the boundary; In the

second step, we show v(B1
t∧Tn , B

2
t∧Tn) is a submartingale for every choice of ρt, and v(B1

t∧Tn , B
2
t∧Tn)

is a martingale for the choice of ρt: ρt = −1 when B1
t 6= B2

t and ρt = 1 when B1
t = B2

t ; In the
third step, we apply optional sampling theorem as Tn is bounded; In the last step, we use Doob’s
Lp−inequality to extend Tn to τ .

Theorem 22. For α ≥ 1, minρt E[(B1
τ +B2

τ )
α] = |B1

0 −B2
0 |α and the optimal choice to achieve the

minimum is ρt ≡ 1.

Proof. We will use two steps to prove this theorem. First, we prove that the equality holds for
α = 1; then we prove that the equality holds for α > 1 based on the result of α = 1.

From Theorem 21, when 0 < p < 1 we have E[Mp
τ ] ≥ Mp−1

0 |N0| for any choice of ρt. Since Mp
τ

is a continuous function of p, by applying Monotone Convergence Theorem, we have

E[lim
p→1

Mp
τ 1(Mτ>1)] = lim

p→1
E[Mp

τ 1(Mτ>1)],

by applying Dominated Convergence Theorem, we have

E[lim
p→1

Mp
τ 1(Mτ≤1)] = lim

p→1
E[Mp

τ 1(Mτ≤1)].

Therefore we get
E[lim

p→1
Mp

τ ] = lim
p→1

E[Mp
τ ],

and

E[Mτ ] = E[lim
p→1

Mp
τ ] = lim

p→1
E[Mp

τ ] ≥ lim
p→1

Mp−1
0 |N0| = |N0|. (190)

Thus

min
ρt

E[Mτ ] ≥ |N0|. (191)

Now if we take ρt ≡ 1, then E[Mτ ] = |N0|.

For α > 1, for any choice of ρt,

E[Mα
τ ] ≥ (E[Mτ ])

α ≥ |N0|α,

the first inequality comes from Holder’s inequality and the second comes from the previous result
E[Mτ ] ≥ |N0|. Therefore

min
ρt

E[Mτ ]
α ≥ |N0|α. (192)

Now if we take ρt ≡ 1, then E[Mτ ]
α = |N0|α.

Overall, for α ≥ 1, minρt E[(B1
τ +B2

τ )
α] = |B1

0 −B2
0 |α. ut
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α B1
0 B2

0 max min Variation((max−min)/min)

1 13 7 20 6 233%
0.5 13 7 4.4721 1.3416 233%
0.5 15 12 5.1962 0.5774 800%

Table 4: Range of option prices for symmetric payoff function

7.2.3 Conclusions

We have constructed closed form solutions for special boundary conditions, we are going to demon-
strate the spread of the maximum and minimum in Table 4. For example, by setting the parameters
α = 1, B1

0 = 13, B2
0 = 7, we obtain that the maximum price max = 20 and the minimum price

min = 6, which have a variation of 233%. This is large, so we conclude that uncertainty in the
correlation ρt yields a wide range of option prices.

7.3 Asymmetric payoff function

In the above section, we got the behaviors of the bivariate Brownian motion according to optimal
choices to obtain either the maximum or the minimum expected payoff. In this section we want to
study more complicated behavior of the Brownian motion, so we will investigate a more general pay-
off function (x+by)α, here 0 ≤ b < 1. Note that, when b > 1, (B1

τ +bB2
τ )
α = bα(1

b
B1
τ +B2

τ )
α. There-

fore without loss of generality, we only need to discuss maxρt E[(B1
τ+bB2

τ )
α] and minρt E[(B1

τ+bB2
τ )
α]

for 0 ≤ b < 1. Furthermore, we provide a new way to construct skew Brownian motion in the proof
of Theorem 24.

We will discuss the maximum and minimum cases separately.

7.3.1 Maximum case

For α > 1, by applying the previous results in section 7.2 and the fact 0 ≤ b < 1, we have

max
ρt

E[(B1
τ + bB2

τ )
α] ≥ max

ρt
bαE[(B1

τ +B2
τ )
α] =∞. (193)

For 0 < α ≤ 1, the maximum case will have some interesting results. Before showing the results,
we need to introduce some definitions.

Definition 16. We define the functions v1(x, y) and v2(x, y) as follows:

v1(x, y) = xη

(
x+ y

1 + θ

)α−1

− (θx− y)bα(x+ y)α−1, (194)
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v2(x, y) =

b
α(x+ y)α−1 + 1

θ
(x− y)α−1 + 1

θx−y

[
yη
θ

(
x−y
1−θ

)α−1 − xη
(
x+y
1+θ

)α−1
]
, y 6= θx,

bα(x+ y)α−1 + 1
θ
(x− y)α−1 + xα−1

[
−η
θ

+ η(α−1)
1−θ + η(α−1)

1+θ

]
, y = θx.

(195)

Here θ satisfies the equation

bα =

(
1 + θ

1− θ

)1−α
1− θ − α
1 + θ − θα

, (196)

and

η =
bαθ(1− θ)(1 + θ)α + (1 + θ)(1− θ)α

(1− θ)(1 + θ) + 2(1− α)θ
. (197)

Remark 9. v2(x, y) is a continuous function. This can be shown by applying L’Hospital’s rule
when y = θx. Furthermore, we let

z :=
y

x
, m(z) :=

z

θ
η

(
1− z
1− θ

)α−1

− η
(

1 + z

1 + θ

)α−1

,

it is obvious that m(z)
z−θ is C2 for z 6= θ. By applying Taylor series, we have

m(z)

z − θ
= m′(θ) +

z − θ
2

m′′(θ) +
(z − θ)2

6
m′′′(θ) + o((z − θ)2),

thus in fact m(z)
z−θ is also C2 at z = θ. Therefore v2(x, y) is a C2 function as is v1(x, y). It can be

shown that this choice of η makes v2(x, θx) = 0.

Remark 10. Although we can not get θ explicitly via equation (196), it can be shown that the
function

f(θ) :=

(
1 + θ

1− θ

)1−α
1− θ − α
1 + θ − θα

is decreasing and ranging over (0, 1−α] as θ ranges over [0, 1−α), which guarantees equation (196)
has unique solution θ for βα < 1− α.

Theorem 23. For 0 < α ≤ 1,

(i) If 1 − α ≤ bα ≤ 1, maxρt E[(B1
τ + bB2

τ )
α] = (B1

0 + B2
0)α−1(B1

0 + bαB2
0) and ρt ≡ −1 is the

optimal choice to achieve the maximum;
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(ii) If bα < 1 − α, maxρt E[(B1
τ + bB2

τ )
α] = v1(B1

0 , B
2
0) + v2(B1

0 , B
2
0)(θB1

0 − B2
0)+ and the optimal

choice to get the maximum is ρt = −1 when B2
t ≥ θB1

t and ρt = 1 when B2
t < θB1

t .

Proof. (i) Let Mt := B1
t +B2

t , Ct := B1
t + bαB2

t for simplicity. By applying Itô’s formula, we find

dMα−1
t Ct = (α− 1)Mα−2

t CtdMt +Mα−1
t dCt

+(α− 1)Mα−3
t [B1

t (α + bα − 1) +B2
t (b

α(α− 1) + 1)](1 + ρt)dt (198)

We have 1 + ρt ≥ 0, Mα−3
t > 0, α− 1 ≤ 0, bα(α− 1) + 1 ≥ 0 and α+ bα − 1 ≥ 0, so Mα−1

t Ct
is a local supermartingale for any choice of ρt, and it is a local martingale when ρt ≡ −1. We
define the sequence of increasing stopping times Tn = inf{t : B1

t ≤ 1/n or B2
t ≤ 1/n} ∧ n,

it is easy to see that Tn < τ , and Tn → τ as n → ∞. By applying the same technique used
in the proof of Theorem 19, Mα−1

t∧TnCt∧Tn is a supermartingale. Since Tn is bounded, optional
sampling implies that

E(Mα−1
Tn

CTn) ≤Mα−1
0 C0. (199)

By applying Fatou’s lemma, E(Mα−1
τ Cτ ) ≤ Mα−1

0 C0. As (B1
τ + bB2

τ )
α = (B1

τ + B2
τ )
α−1(B1

τ +
bαB2

τ ), we get

max
ρt

E[(B1
τ + bB2

τ )
α] ≤ (B1

0 +B2
0)α−1(B1

0 + bαB2
0). (200)

Now if we take ρt ≡ −1, E[(B1
τ + bB2

τ )
α] = (B1

0 +B2
0)α−1(B1

0 + bαB2
0).

(ii) For simplicity, we let v(B1
t , B

2
t ) := v1(B1

t , B
2
t )+v2(B1

t , B
2
t )(θB

1
t −B2

t )
+. By applying Tanaka’s

formula, we have

dv(B1
t , B

2
t ) = (

∂v1

∂x
+
∂v2

∂x
× (θB1

t −B2
t )

+ + v2θ1{θB1
t−B2

t>0})dB
1
t

+(
∂v1

∂y
+
∂v2

∂y
× (θB1

t −B2
t )

+ − v2θ1{θB1
t−B2

t>0})dB
2
t

+f(B1
t , B

2
t )dt+

v2

2
dLt(θB

1 −B2). (201)

Here

f(x, y) : =
1

2

∂2v1

∂x2
+ ρ

∂2v1

∂x∂y
+

1

2

∂2v1

∂y2

+(θx− y)+[
1

2

∂2v2

∂x2
+
∂2v2

∂x∂y
ρ+

1

2

∂2v2

∂y2
]

−[(ρ− θ)∂v2

∂x
+ (1− θρ)

∂v2

∂y
]1{θx−y>0}, (202)

where Lt(θB
1−B2) is the local time of θB1

t −B2
t at 0. It is an increasing continuous process

and satisfies

d(θB1
t −B2

t )
+ = 1{θB1

t−B2
t>0}d(θB1

t −B2
t ) +

1

2
dLt(θB

1 −B2),
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by the definition of local time, we know dLt(θB
1 − B2) = 0 when θB1

t − B2
t 6= 0. Since

v2(x, θx) = 0, we have v2(B1
t , B

2
t ) = 0 when θB1

t = B2
t . Thus

v2

2
dLt(θB

1 −B2) ≡ 0.

We write f(x, y) as g(x, y)I{θx−y≤0} + h(x, y)I{θx−y>0}, here g and h are both C2.

g(B1
t , B

2
t ) = (α− 1)(B1

t +B2
t )
α−3(1 + ρt)×

(
η

(1 + θ)α−1
(α− 1) + bα(1 + θ − θα)

)
B1
t

+(α− 1)(B1
t +B2

t )
α−3(1 + ρt)×

(
η

(1 + θ)α−1
+ bα(α− 1− θ)

)
B2
t , (203)

h(B1
t , B

2
t ) = (α− 1)(B1

t −B2
t )
α−3(1− ρt)×

(
−η
θ

1

(1− θ)α−1
+ (α− 1 +

1

θ
)

)
B1
t (204)

+(α− 1)(B1
t −B2

t )
α−3(1− ρt)×

(
η

θ

1

(1− θ)α−1
(α− 1)− α− 1 + θ

θ

)
B2
t .

It can be shown that g(B1
t , B

2
t ) ≤ 0 when B2

t ≥ θB1
t ; similarly, it also can be shown

h(B1
t , B

2
t ) ≤ 0 when B2

t < θB1
t . We will present it below.

From (203), we find that g(B1
t , B

2
t ) has the opposite sign to

g1(B1
t , B

2
t ) :=

(
η

(1 + θ)α−1
(α− 1) + bα(1 + θ − θα)

)
+

(
η

(1 + θ)α−1
+ bα(α− 1− θ)

)
B2
t

B1
t

.

Clearly g1(B1
t , B

2
t ) is a linear function of

B2
t

B1
t
. By looking at the coefficient

η

(1 + θ)α−1
+ bα(α− 1− θ) (205)

=
bα(α− 1)((1 + θ)2 − 2θα) + (1 + θ)2−α(1− θ)α

(1− θ)(1 + θ) + 2(1− α)θ

=

(
1 + θ

1− θ

)1−α
(1− θ − α)(α− 1)((1 + θ)2 − 2θα) + (1 + θ)(1− θ)(1 + θ − θα)

(1 + θ − θα)((1− θ)(1 + θ) + 2(1− α)θ)

=

(
1 + θ

1− θ

)1−α
(1− (1− α)2)(1− θ2) + 2θ((1− α)− (1− α)3)

(1 + θ − θα)((1− θ)(1 + θ) + 2(1− α)θ)
> 0.

The first and the second equality come by plugging (196) and (197) into the formula (205),

the third equality comes by simple algebra. Thus g1(B1
t , B

2
t ) is an increasing function of

B2
t

B1
t
,

and when
B2
t

B1
t

= θ, we have(
η

(1 + θ)α−1
(α− 1) + bα(1 + θ − θα)

)
+

(
η

(1 + θ)α−1
+ bα(α− 1− θ)

)
θ (206)

=
1

(1− θ)(1 + θ) + 2(1− α)θ

(
1 + θ

1− θ

)1−α

×
(
βα(1− θ)2−α(1 + θ)α(1 + θ − αθ)− (1 + θ)(1− θ)(1− θ − α)

)
= 0.
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The equality comes by plugging (196) and (197) into the formula (206) and doing simple

algebra. Therefore, as
B2
t

B1
t
≥ θ, we obtain g1(B1

t , B
2
t ) ≥ 0, which means g(B1

t , B
2
t ) ≤ 0.

Similarly, From (204), we get that h(B1
t , B

2
t ) has the opposite sign to

h1(B1
t , B

2
t ) :=

(
−η
θ

1

(1− θ)α−1
+ (α− 1 +

1

θ
)

)
B1
t

B2
t

+

(
η

θ

1

(1− θ)α−1
(α− 1)− α− 1 + θ

θ

)
.

Here h1(B1
t , B

2
t ) is a linear function of

B1
t

B2
t
. By looking at the coefficient

−η
θ

1

(1− θ)α−1
+ (α− 1 +

1

θ
) (207)

=
(1− α)(1− θ)(1− θ) + 2α(1− α)θ − βα(1− θ)2−α(1 + θ)α

(1− θ)(1 + θ) + 2(1− α)θ

=
2α(1− α)θ + αθ(1−θ)(2θ+α−θα)

1+θ−θα

(1− θ)(1 + θ) + 2(1− α)θ
> 0.

The first and the second equality come by plugging (196) and (197) into the formula (207)

and doing simple algebra. Therefore h1(B1
t , B

2
t ) is an increasing function of

B1
t

B2
t
, and when

B1
t

B2
t

= 1
θ
, we have(

−η
θ

1

(1− θ)α−1
+ (α− 1 +

1

θ
)

)
1

θ
+

(
η

θ

1

(1− θ)α−1
(α− 1)− α− 1 + θ

θ

)
(208)

=
1

θ((1− θ)(1 + θ) + 2(1− α)θ)

×
(
−βα(1 + θ)α(1− θ)2−α(1 + θ − θα) + (1− θ)(1 + θ)(1− θ − α)

)
= 0.

The equality comes by plugging (196) and (197) into the formula (208) and doing simple

algebra. Therefore, as
B1
t

B2
t
> θ, we get h1(B1

t , B
2
t ) > 0, which means h(B1

t , B
2
t ) ≤ 0.

We define the sequence of increasing stopping times Tn = inf{t : B1
t ≤ 1/n or B2

t ≤ 1/n} ∧ n.
It is easy to see that Tn < τ , and Tn → τ as n→∞. By applying the same technique used in
the proof of Theorem 19, v(B1

t∧Tn , B
2
t∧Tn) is a local supermartingale for any choice of ρt, and

it is a local martingale for ρt = −1 when B2
t ≥ θB1

t and ρt = 1 when B2
t < θB1

t . Since Tn is
bounded, optional sampling theorem implies that

E(v(B1
t∧Tn , B

2
t∧Tn)) ≤ v(B1

0 , B
2
0) . (209)

By applying Fatou’s lemma, we get

E(v(B1
τ , B

2
τ )) ≤ v(B1

0 , B
2
0).
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As (B1
τ + bB2

τ )
α = v1(B1

τ , B
2
τ ) + v2(B1

τ , B
2
τ )(θB

1
τ −B2

τ )
+, we get

max
ρt

E[(B1
τ + bB2

τ )
α] ≤ v1(B1

0 , B
2
0) + v2(B1

0 , B
2
0)(θB1

0 −B2
0)+. (210)

Now if we take ρt = −1 when B2
t ≥ θB1

t and ρt = 1 when B2
t < θB1

t , we will show in Theorem
24, that (B1

t , B
2
t ) with such correlation does exist. Therefore, we obtain E[(B1

τ + bB2
τ )
α] =

v1(B1
0 , B

2
0) + v2(B1

0 , B
2
0)(θB1

0 −B2
0)+ by applying Dominated Convergence Theorem.

ut

As we mentioned above, we choose ρt = −1 when B2
t ≥ θB1

t and ρt = 1 when B2
t < θB1

t . One
question arises naturally: does the Brownian motion (B1

t , B
2
t ) with such correlation exist? We will

introduce one important result in the following, which is related to the skew Brownian motion (see
Chapter 5) and has independent interest.

Theorem 24. Assume that B2
t is a Brownian Motion which starts from B2

0 and 0 < θ < 1. Then
the SDE dB1

t = sgn(θB1
t −B2

t )dB
2
t has a unique solution B1

t and it is also a Brownian Motion.

Proof. For simplicity, we let : Ht = θB1
t −B2

t .
For proving the uniqueness, we assume B1

t satisfies this SDE, so we have

d|Ht| = sgn(Ht)dHt + dLt(H)

= θsgn(Ht)× sgn(Ht)dB
2
t − sgn(Ht)dB

2
t + dLt(H)

= θdB2
t − dB1

t + dLt(H). (211)

The first equality is by applying Tanaka’s formula, where Lt(H) is the local time of Ht at 0. The
second and the third equalities are obtained by applying dB1

t = sgn(Ht)dB
2
t . Furthermore, we get

d|Ht|+ dB1
t −

1

θ
dB2

t = (θ − 1

θ
)dB2

t + dLt(H). (212)

We let

Wt =:
|Ht|+ 1

θ
Ht

1
θ
− θ

,

then Lt(W ) is the local time of Wt at 0. By applying Tanaka’s formula

d|Wt| = sgn(Wt)dWt + dLt(W )

= sgn(Wt)×
d|Ht|+ 1

θ
dHt

1
θ
− θ

+ dLt(W )

= sgn(Wt)×
sgn(Ht)dHt + dLt(H) + 1

θ
dHt

1
θ
− θ

+ dLt(W ). (213)
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On the other hand, since 1
θ
> 1, which means the sign of |Ht|+ 1

θ
Ht is dominated by 1

θ
Ht, so

|Wt| =
Ht + 1

θ
|Ht|

1
θ
− θ

.

We can write d|Wt| as

d|Wt| =
dHt + 1

θ
d|Ht|

1
θ
− θ

=
dHt + 1

θ
(sgn(Ht)dHt + dLt(H))

1
θ
− θ

. (214)

By comparing (213) with (214), since Wt has the same sign as Ht and

sgn(Wt)dLt(H) = sgn(0)dLt(H) = −dLt(H),

so we obtain

Lt(W ) =
1 + 1

θ
1
θ
− θ

Lt(H).

Therefore we can write (212) as

dWt = −dB2
t +

1

1 + 1
θ

dLt(W ). (215)

As we have already discussed in Theorem 16, for the SDE

dXt = dBt + βdLt(X), (216)

that if β < 1/2, with given Brownian motion Bt, the SDE has a unique solution Xt. Actually Xt

is a skew Brownian motion with parameter 1
2(1−β)

. In our case, β = 1
1+ 1

θ

< 1/2, so Wt is unique.

Furthermore, Wt is a skew Brownian motion with parameter 1+θ
2

. By simple algebra, it is easy to
see

θB1
t −B2

t = (1− θ)Wt, when Wt > 0 (217)

θB1
t −B2

t = (1 + θ)Wt, when Wt ≤ 0.

Since Wt is unique and B2
t is given, so B1

t is unique.

By giving B2
t and assuming B1

t satisfies the SDE, we have constructed a skew Brownian motion
Wt. Via the uniqueness of Wt, we have proved B1

t is the only solution.

Now for proving the existence, we are going to construct B1
t , such that it satisfies the SDE

dB1
t = sgn(θB1

t −B2
t )dB

2
t . Note that with given B2

t , the equation

dŴt + (− 1

1 + 1
θ

)dLt(Ŵ ) = d(−B2
t )
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has a unique solution Ŵt by applying Theorem 16. Here Lt(Ŵ ) is the local time of Ŵt at 0. We
are going to construct B1

t by using Ŵt. Let θB1
t −B2

t = Ŵt − θ|Ŵt|, namely

B1
t =

Ŵt − θ|Ŵt|+B2
t

θ
,

then we have

dB1
t =

dŴt − θd|Ŵt|+ dB2
t

θ

=
(−dB2

t + 1
1+ 1

θ

dLt(Ŵ ))− θ(sgn(Ŵt)dŴt + dLt(Ŵ )) + dB2
t

θ

=
(−dB2

t + 1
1+ 1

θ

dLt(Ŵ ))− θ(−sgn(Ŵt)dB
2
t + sgn(Ŵt)

1
1+ 1

θ

dLt(Ŵ ) + dLt(Ŵ )) + dB2
t

θ

=
θsgn(Ŵt)dB

2
t

θ
= sgn(Ŵt)dB

2
t . (218)

The fourth equality comes from sgn(Ŵt)dLt(Ŵ ) = sgn(0)dLt(Ŵ ) = −dLt(Ŵ ) and simple algebra.
Since 0 < θ < 1, θB1

t −B2
t and Ŵt have the same sign, so finally we obtain

dB1
t = sgn(θB1

t −B2
t )dB

2
t . (219)

ut

Here in Figure7, we would like to show one simulated path of the Brownian motion (B1
t , B

2
t )

with such correlation. We let (B1
t , B

2
t ) start from (1, 1), in this path the Brownian motion stops

while B2
t hits 0. By observing equation (217), we can obtain such conclusions: while Wt > 0,

we have θB1
t − B2

t > 0, which means (B1
t , B

2
t ) is below the line y = θx; while Wt < 0, we have

θB1
t −B2

t < 0, which means (B1
t , B

2
t ) is above the line y = θx. Furthermore, Wt is a skew Brownian

motion with parameter 1+θ
2

, this tells us when the Brownian motion is on the line y = θx, it has
the probability 1+θ

2
moves below the line and it has the probability 1−θ

2
moves above the line. Since

we have 1+θ
2
> 1/2, then the Brownian motion has more excursions below the line y = θx than the

above. However, the excursions above the line y = θx in average have greater magnitude than the
below. These conclusions agree with Figure7.

Remark 11. In the proof we provide a new way to construct skew Brownian motion: Given
Brownian motion (B1

t , B
2
t ) with correlation ρt = sgn(θB1

t −B2
t ), then

Wt :=
|θB1

t −B2
t |+ 1

θ
(θB1

t −B2
t )

1
θ
− θ

is a skew Brownian motion.
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Figure 7: The Brownian motion path

7.3.2 Minimum case

The minimum case for the asymmetric payoff function is similar to the case for the symmetric payoff
function.

Theorem 25. For 0 < α < 1, we have

min
ρt

E[(B1
τ + bB2

τ )
α] = (B1

0 +B2
0)α−1(B1

0 −B2
0)+ + bα(B1

0 +B2
0)α−1(B1

0 −B2
0)−,

and the optimal choice to obtain the minimum is ρt = −1 when B1
t 6= B2

t , ρt ≡ 1 once B1
t = B2

t .

Proof. Let Mt := B1
t +B2

t , Nt := B1
t −B2

t . By applying Tanaka’s formula

d(Mα−1
t N+

t + bαMα−1
t N−t ) = Mα−1

t (1(Nt>0) − bα1(Nt≤0))dNt + (α− 1)Mα−2
t (N+

t + bαN−t )dMt

+(α− 1)(α− 2)Mα−3
t (N+

t + bαN−t )(1 + ρt)dt

+1/2Mα−1
t (1 + bα)dLt. (220)
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We have 1+ρt ≥ 0, Mα−3
t > 0, (α−1)(α−2) > 0, Mα−1

t > 0 and dLt ≥ 0, so Mα−1
t N+

t +bαMα−1
t N−t

is a local submartingale for any choice of ρt. Under the optimal choice of ρt, by denoting τ ∗ = inf{t :
B1
t = B2

t }, we can observe that Nt ≡ 0 for t ≥ τ ∗, thus we have

d(Mα−1
t N+

t + bαMα−1
t N−t ) =

{
Mα−1

t (1(Nt>0) − bα1(Nt≤0))dNt, t < τ ∗,

0, t ≥ τ ∗,
(221)

which can be written as

d(Mα−1
t N+

t + bαMα−1
t N−t ) = Mα−1

t (1(Nt>0) − bα1(Nt≤0))1{τ∗>t}dNt.

By applying Theorem 9, we find Mα−1
t N+

t + bαMα−1
t N−t is a local martingale provided ρt = −1

when B1
t 6= B2

t and ρt ≡ 1 once B1
t = B2

t .

We define the sequence of increasing stopping times Tn = inf{t : B1
t ≤ 1/n or B2

t ≤ 1/n} ∧ n.
It is easy to see that Tn < τ , and Tn → τ as n→∞. By applying the same technique used in the
proof of Theorem 21, we know Mα−1

t∧TnN
+
t∧Tn +bαMα−1

t∧TnN
−
t∧Tn is a submartingale. Since Tn is bounded,

optional sampling theorem implies that

E
(
Mα−1

Tn
N+
Tn

+ bαMα−1
Tn

N−Tn
)
≥Mα−1

0 N+
0 + bαMα−1

0 N−0 . (222)

Same as in the proof of Theorem 21, we have

E
[

sup
n

(
Mα−1

Tn
N+
Tn

+ bαMα−1
Tn

N−Tn
)1/α] ≤ ( 1

1− α

)1/α

sup
n

E
[(
Mα−1

Tn
N+
Tn

+ bαMα−1
Tn

N−Tn
)1/α]

<
( 1

1− α

)1/α

sup
n

E
[(

(1 + bα)Mα
Tn

)1/α]
=

(1 + bα

1− α

)1/α

M0 . (223)

The first inequality comes from Doob’s Lp−inequality, the second one comes from |NTn| < MTn ,
and the final equality comes from E(MTn) = M0 by applying the optional sampling theorem.

Same as in the proof of Theorem 21, for 0 < α < 1 we find the fact

E
[

sup
n

(
Mα−1

Tn
N+
Tn

+ bαMα−1
Tn

N−Tn
)]
< 1 + E

[
sup
n

(
Mα−1

Tn
N+
Tn

+ bαMα−1
Tn

N−Tn
)1/α]

,

the Dominated Convergence Theorem implies

E
(
Mα−1

τ N+
τ + bαMα−1

τ N−τ
)

= lim
n

E
(
Mα−1

Tn
N+
Tn

+ bαMα−1
Tn

N−Tn
)
≥Mα−1

0 N+
0 + bαMα−1

0 N−0 . (224)

Since (B1
τ + bB2

τ )
α = (B1

τ +B2
τ )
α−1(B1

τ −B2
τ )

+ + bα(B1
τ +B2

τ )
α−1(B1

τ −B2
τ )
−, we get

min
ρt

E[(B1
τ + bB2

τ )
α] ≥ (B1

0 +B2
0)α−1(B1

0 −B2
0)+ + bα(B1

0 +B2
0)α−1(B1

0 −B2
0)−. (225)

Now we take the strategy ρt = −1 when B1
t 6= B2

t and ρt ≡ 1 once B1
t = B2

t , we obtain
E[(B1

τ + bB2
τ )
α] = (B1

0 +B2
0)α−1(B1

0 −B2
0)+ + bα(B1

0 +B2
0)α−1(B1

0 −B2
0)−.

ut
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α bα B1
0 B2

0 max min Variation((max−min)/min)

1 0.7 13 7 17.9 6 198.3%
1 0.7 7 13 16.1 4.2 283.3%

0.7 0.01 13 7 5.3458 2.4425 118.9%
0.7 0.01 7 13 2.9161 0.0244 11839%
0.5 0.3 13 7 3.3865 1.3416 152.4%
0.5 0.3 7 13 2.4427 0.4025 506.9%

Table 5: Range of option prices for asymmetric payoff function

Theorem 26. For α ≥ 1, we have

min
ρt

E[(B1
τ + bB2

τ )
α] = ((B1

0 −B2
0)+ + b(B1

0 −B2
0)−)α,

and the optimal choice to achieve the minimum is ρt ≡ 1.

Proof. Same as in the proof of Theorem 22, we get minρt E[B1
τ + bB2

τ ] ≥ (B1
0 −B2

0)+ + b(B1
0 −B2

0)−.
If we take ρt ≡ 1, then E[B1

τ + bB2
τ ] = (B1

0 −B2
0)+ + b(B1

0 −B2
0)−.

For α > 1, we have E(B1
τ + bB2

τ )
α ≥ (E(B1

τ + bB2
τ ))

α ≥ ((B1
0 − B2

0)+ + b(B1
0 − B2

0)−)α. Now if
we take ρt ≡ 1, then E[(B1

τ + bB2
τ )
α] = ((B1

0 −B2
0)+ + b(B1

0 −B2
0)−)α.

Overall, minρt E[(B1
τ + bB2

τ )
α] = ((B1

0 −B2
0)+ + b(B1

0 −B2
0)−)α for α ≥ 1. ut

7.3.3 Conclusions

We have constructed closed form solutions for special boundary conditions, we are going to demon-
strate the spread of the maximum and minimum in Table 5. For example, by setting the parameters
α = 0.5, βα = 0.3, B1

0 = 13, B2
0 = 7, we obtain that the maximum price max = 3.3865 and the min-

imum price min = 1.3416, which have a variation of 152.4%. This is large, so we conclude that
uncertainty in the correlation ρt yields a wide range of option prices. In that sense, together with
the results in Table 4, these compares with the results of Avallaneda, Levy and Parás [1], who show
that volatility uncertainty implies a wide range of call option prices.

7.4 Numerical techniques

As we mentioned in Section 7.1, we will demonstrate the correlation’s evolution according to dif-
ferent choice of the payoff function f(x). Since our main goal is to show some insight into the
correlation’s evolution, we will use the explicit method as the numerical scheme. The advantage of
such scheme is straightforward and easy to handle.
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Let us recall the maximum case, our value function is v(x, y, T − t), which satisfies

− vt +
1

2
vxx +

1

2
vyy + |vxy| = 0, (226)

with the terminal condition

v(x, y, 0) =


0 if x > 0 and y > 0,

f(x) if y = 0,

f(y) if x = 0,

(227)

and the boundary condition

v(x, y, T − t) =

{
f(x) if y = 0 and 0 ≤ t ≤ T,

f(y) if x = 0 and 0 ≤ t ≤ T.
(228)

To solve a PDE by finite difference methods, we must set up a discrete grid, in our case with
respect to time and two asset prices. Since we know the domain for the PDE is unbounded with
respect to asset prices, so we need to bound it for computational purposes. We set them as xmax

and ymax.

In order to have more discretization points close to 0 and fewer near the boundary, we will
change variable for x and y,

x = (1 + ξ)γ − 1, y = (1 + η)γ − 1.

Therefore
ξmax = (1 + xmax)

1
γ − 1, ηmax = (1 + ymax)

1
γ − 1.

The equation (226) will change after change of variable, first we have

∂v

∂ξ
=

∂v

∂x

∂x

∂ξ
=
∂v

∂x
× γ(1 + ξ)γ−1,

∂v

∂η
=

∂v

∂y

∂y

∂η
=
∂v

∂y
× γ(1 + η)γ−1,

∂2v

∂ξ2
=

∂2v

∂x2
(
∂x

∂ξ
)2 +

∂v

∂x

∂2x

∂ξ2
=
∂2v

∂x2
× γ2(1 + ξ)2γ−2 +

∂v

∂x
× γ(γ − 1)(1 + ξ)γ−2,

∂2v

∂η2
=

∂2v

∂y2
(
∂y

∂η
)2 +

∂v

∂y

∂2y

∂η2
=
∂2v

∂y2
× γ2(1 + η)2γ−2 +

∂v

∂y
× γ(γ − 1)(1 + η)γ−2,

∂2v

∂ξ∂η
=

∂2v

∂x∂y

∂x

∂ξ

∂y

∂η
=

∂2v

∂x∂y
× γ2(1 + ξ)γ−1(1 + η)γ−1.

By expressing ∂2v
∂x2

, ∂2v
∂y2

, ∂2v
∂x∂x

in (226) with the form of ∂v
∂ξ

, ∂v
∂η

, ∂2v
∂ξ2

, ∂2v
∂η2

, ∂2v
∂ξ∂η

, we obtain

− vt +
(1 + ξ)2−2γ

2γ2

(
vξξ −

γ − 1

1 + ξ
vξ

)
+

(1 + η)2−2γ

2γ2

(
vηη −

γ − 1

1 + η
vη

)
+

(1 + ξ)1−γ(1 + η)1−γ

γ2
|vξη| = 0.
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As one can see above that vxy and vξη have the same sign, therefore the sign of vξη will be enough
to decide the behavior of the correlation.

The grid consists of points (ξ, η, t) such that

ξ = 0, δξ, 2δξ, · · · ,Mδξ ≡ ξmax,

η = 0, δη, 2δη, · · · ,Mδη ≡ ηmax,

t = 0, δt, 2δt, · · · , Nδt ≡ T.

We will use the grid notation vi,j,k = v (iδξ, jδη, kδt).
The partial derivatives will be approximated by the finite differences:

vt =
vi,j,k+1 − vi,j,k

δt
,

vξ =
vi+1,j,k − vi−1,j,k

2δξ
,

vη =
vi,j+1,k − vi,j−1,k

2δη
,

vξξ =
vi+1,j,k − 2vi,j,k + vi−1,j,k

(δξ)2
,

vηη =
vi,j+1,k − 2vi,j,k + vi,j−1,k

(δη)2
,

vξη =
vi+1,j+1,k − vi+1,j−1,k − vi−1,j+1,k + vi−1,j−1,k

4(δξ)(δη)
.

Before we present the results from the numerical approach, we need to discuss about the stability
of the solution obtained from such numerical scheme. Note that, by changing variable, the PDE
(226) is transformed into the PDE (229). Therefore, under the same numerical scheme, the PDE
(226) has stable solution is equivalent to the PDE (229) has stable solution. Also note that, since
we do not have complete boundary condition, we only can provide the necessary condition for the
stability.

We define

vk,j,n = an(w)eikwδx+ijwδy (229)

and

G(w) =
an(w)

an+1(w)
,

the Von Neumann stable condition states that: If the scheme needs to be stable, then |G(w)| ≤ 1
for 0 ≤ wδx ≤ π and 0 ≤ wδy ≤ π.(see Chapter 3 in [66])
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For the numerical scheme, by substituting (229) into the PDE (226), we have

an+1(w)eikwδx+ijwδy = an(w)eikwδx+ijwδy

+
δt

2δ2
x

(
an(w)ei(k+1)wδx+ijwδy − 2an(w)eikwδx+ijwδy + an(w)ei(k−1)wδx+ijwδy

)
+
δt

2δ2
y

(
an(w)eikwδx+i(j+1)wδy − 2an(w)eikwδx+ijwδy + an(w)eikwδx+i(j−1)wδy

)
+

δ

4δxδy

∣∣∣an(w)ei(k+1)wδx+i(j+1)wδy − an(w)ei(k+1)wδx+i(j−1)wδy

− an(w)ei(k−1)wδx+i(j+1)wδy + an(w)ei(k−1)wδx+i(j−1)wδy
∣∣∣, (230)

then we can compute

G(w) =
an+1(w)

an(w)

= 1 +
δt

2δ2
x

(
eiwδx − 2 + e−iwδx

)
+

δt
2δ2
y

(
eiwδy − 2 + e−iwδy

)
+

δt
4δxδy

∣∣∣eiwδx+iwδy − eiwδx−iwδy − e−iwδx+iwδy + e−iwδx−iwδy
∣∣∣ |an(w)eikwδx+ijwδy |
an(w)eikwδx+ijwδy

(231)

= 1 +
δt
δ2
x

(
cos(wδx)− 1

)
+
δt
δ2
y

(
cos(wδy)− 1

)
+

δt
δxδy
| sin(wδx) sin(wδy)|

|an(w)eikwδx+ijwδy |
an(w)eikwδx+ijwδy

,

where the last equality is obtained by applying Euler’s formula and trigonometric identities.

By letting δx = δy and using formula (231), we have

|G(w)| ≤
∣∣∣∣1 +

δt
δ2
x

(
cos(wδx)− 1

)
+
δt
δ2
y

(
cos(wδy)− 1

)∣∣∣∣
+

∣∣∣∣ δtδxδy
| sin(wδx) sin(wδy)|

|an(w)eikwδx+ijwδy |
an(w)eikwδx+ijwδy

∣∣∣∣
=

∣∣∣∣1 + 2
δt
δ2
x

(
cos(wδx)− 1

)∣∣∣∣+

∣∣∣∣ δtδ2
x

sin2(wδx)

∣∣∣∣
= |1− 4

δt
δ2
x

sin2(wδx/2)|+ 4
δt
δ2
x

sin2(wδx/2) cos2(wδx/2), (232)

where the last equality is obtained by applying trigonometric identities.

Let λ := δt/δ
2
x and a := sin2(wδx/2), we can write (232) as

|G(w)| ≤ |1− 4λa|+ 4λa(1− a),

where 0 ≤ a ≤ 1. When 1 − 4λa ≥ 0, we have 1 − 4λa + 4λa(1 − a) ≤ 1; when 1 − 4λa < 0, we
have 4λa− 1 + 4λa(1− a) ≤ 4λ− 1; above all, if 4λ− 1 ≤ 1, we can guarantee |G(w)| ≤ 1 for all
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the a ∈ [0, 1]. Therefore, if δt/δ
2
x ≤ 1/2, we can guarantee the stability of the numerical solution to

the PDE (226).

Note that, during the process of changing variable x = (1 + ξ)γ − 1 and y = (1 + η)γ − 1, we
have δx = γ(1 + ξ)(γ−1)δξ ≥ γδξ for γ ≥ 1, thus we can find

δt
δ2
x

≤ δt
γ2δ2

ξ

.

It is the same for δy and δη. By letting δt
γ2δ2ξ

< 1
2

and δη = δξ, we have the necessary condition for

the stability of the numerical solution to the PDE (226), then such necessary condition also applies
to the PDE (229) under the same numerical scheme.

Now we need to take care of the boundary condition. As we mentioned, the boundary condition
is partially known. For computational purpose, we need to give values to the unknown boundary
condition.

We take f(x, y) = (x+ by)α, for the known boundary condition, in grid notation we have

vi,j,0 =


0 if i 6= 0 and j 6= 0,(
(1 + iδξ)

γ − 1
)α

if j = 0,

bα
(
(1 + jδη)

γ − 1
)α

if i = 0,

(233)

and

vi,0,k =
(
(1 + iδξ)

γ − 1
)α
,

v0,j,k = bα
(
(1 + jδη)

γ − 1
)α
.

For the unknown boundary condition, we will do interpolation between v0,M,k and vM,0,k:

vi,M,k =
2M − i

2M
× v0,M,k +

i

2M
× vM,0,k,

vM,j,k =
2M − j

2M
× vM,0,k +

j

2M
× v0,M,k.

Because of giving value to the unknown part of the boundary condition, the obtained correla-
tion may be unreliable for the location near such boundary. In order to control the impact on the
correlation from the unknown boundary value, we will only investigate the correlation constraint in
the area [0, xmax/8]× [0, ymax/8].

The parameters we have used in the numerical scheme are:

xmax = ymax = 40, M = 200, T = 150, N = 120000, bα = 0.01, α = 0.7, γ = 2.
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Figure 8: The correlation for the asymmetric payoff function

We demonstrate the correlation with respect to the location (x, y) in Figure 8, the light blue
region represents ρ = −1, the dark blue region represents ρ = 1. It can be seen that the correlation
switches when the two dimensional Brownian motion moves across a line.

In the following example, we will show a more complicated switch pattern of the correlation.
We set the payoff function as f(x, y) = 1 + sin(8(x+ y)), which is non-negative and periodic. The
parameters we have used in the numerical scheme are:

xmax = ymax = 40, M = 200, T = 150, N = 120000, γ = 2.

We demonstrate the correlation with respect to the location (x, y) in Figure 9, the light blue
region represents ρ = −1, the dark blue region represents ρ = 1. It is easy to observe that the
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Figure 9: The correlation for the periodic payoff function

switch pattern of the correlation has some periodic property. However, other parts of the switch
pattern are too complicated to explain, which motivate us to work on some simple payoff functions
to obtain analytic results for the correlation switch.

At the end we compare the numerical results with the theoretical result obtained in Section 7.3.
The payoff function is given as f(x, y) = (x + by)α, where we take α = 0.7 and bα = 0.01. For
the numerical results, we set the T as 75, 150 and 300 respectively; for the theoretical result, given
bα = 0.01, we can obtain θ = 0.2909 from equation (196). The parameters we have used in the
numerical scheme are:

Figure 10(a)

xmax = ymax = 40, M = 200, T = 75, N = 60000, bα = 0.01, α = 0.7, γ = 2, θ = 0.2909.
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(a) T=75
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(b) T=150
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(c) T=300

Figure 10: The correlation (numerical result vs theoretical result)

Figure 10(b)

xmax = ymax = 40, M = 200, T = 150, N = 120000, bα = 0.01, α = 0.7, γ = 2, θ = 0.2909.

Figure 10(c)

xmax = ymax = 40, M = 200, T = 300, N = 240000, bα = 0.01, α = 0.7, γ = 2, θ = 0.2909.

We demonstrate the correlation with respect to the location (x, y) in Figure 10, the green region
represents ρ = −1, the light blue region represents ρ = 1, which are numerical results; the dash line
(the slope θ = 0.2909) is the theoretical result, which represents the boundary where the correlation
switches. Note that as T becomes large, the critical boundary becomes linear, as our closed form
solution to the infinite horizon problem implies.
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8 Duality relations for hypergeometric functions

At the beginning of this chapter, we introduce the approach which is used to derive the following
duality relations. By taking one simple identity as an example, we demonstrate how to apply such
approach. After that, we present the main results: duality relations for hypergeometric functions
and duality relations for basic hypergeometric functions.

8.1 Introduction

As we mentioned in Chapter 6, we will present a more generalized identity with new proof and
we have already showed there that the identity H(x) = 0 in (145) is a special case of Theorem
27. Although this identity arises from the problem in Chapter 6, it has independent interest in the
special functions area.

Duality relations for hypergeometric functions refer to identities involving finite sums of products
of two such functions. There is also a similar notion of duality for basic hypergeometric functions.
It seems that the first instances of such formulas have appeared in 1932 in the paper [16] by Darling.
These results have been expanded by Bailey [2] in 1933, and they have been greatly generalized
recently by Beukers and Jouhet [6], who have used the theory of D-modules of general linear dif-
ferential (or difference) equations. Our goal in this chapter is to present a different approach to
derive duality relations. As we will demonstrate, our approach is elementary and it is based on
the generalization of a simple fact that the sum of residues of a rational function is zero when the
degree of the denominator is greater than one plus the degree of numerator.

In the following one lemma will be presented which is exactly what our approach based on. This
lemma is stated using notions of a set and a multiset. We remind the reader that the only difference
in the definition of a set A = {a1, . . . , an} and a multiset B = {b1, . . . , bn} is that all elements ai of
the set must be distinct (ai 6= aj for i 6= j) whereas the elements bi of a multiset may be repeated
several times (bi may be equal to bj for some i 6= j).

Lemma 5. Assume that A is a set of nA complex numbers and B is a multiset of nB complex
numbers (possibly empty). For each element a ∈ A we define

γ(a) = γ(a;A,B) =

∏
x∈B

(a− x)∏
y∈A\{a}

(a− y)
, (234)

with the convention that the product over an empty set is equal to one. Then we have

∑
a∈A

γ(a) =


0, if nA > nB + 1,

1, if nA = nB + 1,∑
a∈A

a−
∑
b∈B

b, if nA = nB.
(235)
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Proof. We define the rational function

f(z) :=

∏
b∈B

(z − b)∏
a∈A

(z − a)
. (236)

Since A is a set, all the numbers a ∈ A are distinct, therefore f(z) has only simple poles. This fact
and the condition nA ≥ nB allow us to write the partial fraction expansion of f(z) in the form

f(z) = δnA,nB +
∑
a∈A

γ(a)

z − a
. (237)

Here δm,n = 1 if m = n, otherwise δm,n = 0.

Here we are going to give a short proof to show why equation (237) holds. We let

g(z) := f(z)− δnA,nB −
∑
a∈A

γ(a)

z − a
, (238)

so g(z) at most can have simple poles. By applying residue theory, from (236) we have

Res(f(z) : z = a) = γ(a); (239)

Cauchy residue theory also tells us

Res(δnA,nB +
∑
a∈A

γ(a)

z − a
: z = a) = γ(a); (240)

therefore, we have Res(g(z) : z = a) = 0, combining with the fact g(z) at most can have simple
poles, we find g(z) is analytic in the whole complex plane.

Furthermore, as |z| → ∞,

f(z) =

{
0, if nA > nB,

1, if nA = nB.
(241)

Thus we have g(z) = 0 as |z| → ∞. Liouville’s theorem tells us: if a function is analytic in the
whole complex plane and bounded, then it is clearly a constant. Therefore g(z) is a constant, and
since g(z) = 0 as |z| → ∞, we obtain g(z) ≡ 0. This means equation (237) holds.

From the equation (237) we obtain an asymptotic expansion of f(z) as |z| → ∞:

f(z) = δnA,nB + z−1
∑
a∈A

γ(a) +O(z−2). (242)
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We can obtain another asymptotic expansion of f(z) if we start from (236):

f(z) = znB−nA

∏
b∈B

(1− bz−1)∏
a∈A

(1− az−1)
(243)

= znB−nA + znB−nA−1

[∑
a∈A

a−
∑
b∈B

b

]
+O(znB−nA−2),

where 1
1−az−1 = 1 + az−1 +O(z−2) as |z| → ∞ by applying Taylor series.

The desired result (235) follows by comparing the coefficients in front of the term z−1 in the two
formulas (242) and (243). ut

Remark 12. The result (235) in the case nA = nB is equivalent to the nonlocal derangement
identity (see formula (1.20) in [28]). In fact, the case nA = nB is really the main one – the other
two cases can be deduced from it by a simple limiting procedure. For example, the result in the
case nA = nB + 1 can be deduced from the case nA = nB as follows: take an element b1 ∈ B, divide
both sides of (235) by b1 and then let b1 → ∞. In a similar way one can derive the result in case
nA > nB + 1.

We will take the simple identity we obtained from the research in exponential functional as an
example to show how we prove it in a very simple way by using Lemma 5.

Proposition 5.

b× 1F1

( a− c
1 + b− c

∣∣∣z)2F2

( 1 + c− a, c
1 + c− b, 1 + c

∣∣∣− z) (244)

− c× 1F1

( a− b
1 + c− b

∣∣∣z)2F2

( 1 + b− a, b
1 + b− c, 1 + b

∣∣∣− z) = (b− c)2F2

( a, 1
1 + b, 1 + c

∣∣∣z).
Here a, b, c are complex numbers satisfying b /∈ Z, c /∈ Z and b− c /∈ Z.
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Proof. We transform (244) to the form of

1

(−b− (−c))(−b− 0)
2F2

(1− b− (1− a), 1− b− 0
1− b− (−c), 1− b− 0

∣∣∣z)2F2

( 1− a− (−b), 0− (−b)
1− c− (−b), 1 + 0− (−b)

∣∣∣(−1)2+2+1z
)

+
1

(−c− (−b))(−c− 0)
2F2

(1− c− (1− a), 1− c− 0
1− c− (−b), 1− c− 0

∣∣∣z)2F2

( 1− a− (−c), 0− (−c)
1− b− (−c), 1 + 0− (−c)

∣∣∣(−1)2+2+1z
)

+
1

(0− (−b))(0− (−c))2F2

( 1 + 0− (1− a), 1 + 0− 0
1 + 0− (−b), 1 + 0− (−c)

∣∣∣z)2F2

(1− a− (0), 0− (0)
1− b− 0, 1− c− 0

∣∣∣(−1)2+2+1z
)

= 0.

(245)

We are going to prove the identity by expand the hypergeometric function by definition, so the
left-hand side of (245) can be written as

∑∞
n=0 cnz

n. The method here is to prove for each term zn,
its coefficient cn = 0.

For the constant term z0

c0 =
1

(−b− (−c))(−b− 0)
+

1

(−c− (−b))(−c− 0)
+

1

(0− (−b))(0− (−c))
.

By applying Lemma 5, we set A = {−b,−c, 0}, B = {}, then we get c0 = 0.

For the term z1. First let us denote {ai}1≤i≤3 = {−b,−c, 0}, {bi}1≤i≤2 = {1 − a, 0} for notion
purposes. We have

c1 =
3∑
i=1

1∏
1≤j≤3

j 6=i

(ai − aj)
×


2∏
l=1

(1 + ai − bl)∏
1≤j≤3

j 6=i

(1 + ai − aj)
+

2∏
l=1

(bl − ai)∏
1≤j≤3

j 6=i

(1− ai + aj)
(−1)5

 . (246)

Since 1 + ai − ai = 1, we can rewrite (246) as

c1 =
3∑
i=1

1∏
1≤j≤3

j 6=i

(ai − aj)
×


2∏
l=1

(1 + ai − bl)∏
1≤j≤3

(1 + ai − aj)
+

2∏
l=1

(ai − bl)(−1)2∏
1≤j≤3

(ai − (1 + aj))(−1)3
(−1)5

 (247)

By applying Lemma 5, we set A = {a1, a2, a3, a1 +1, a2 +1, a3 +1}, B = {b1, b2}, then we get c1 = 0.

For the general term zn,

cn =
3∑
i=1

1∏
1≤j≤3

j 6=i

(ai − aj)
×


n∑
k=0

1

k!

2∏
l=1

(1 + ai − bl)k∏
1≤j≤3

j 6=i

(1 + ai − aj)k
× (−1)5(n−k)

(n− k)!

2∏
l=1

(bl − ai)n−k∏
1≤j≤3

j 6=i

(1− ai + aj)n−k
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By the definition and some simple algebra, we obtain

(1 + ai − bl)k = (1 + ai − bl)(1 + ai − bl + 1) · · · (ai − bl + k)

= (ai + k − (bl + k − 1))(ai + k − (bl + k − 2)) · · · (ai + k − bl), (248)

(bl − ai)n−k = (bl − ai)(bl − ai + 1) · · · (bl − ai + n− k − 1)

= (−1)n−k(ai + k − (bl + k))(ai + k − (bl + k + 1)) · · · (ai + k − (bl + n− 1)),

with the same idea, we can get

(1 + ai − aj)k = (ai + k − (aj + k − 1))(ai + k − (aj + k − 2)) · · · (ai + k − aj),

(ai − aj) = (ai + k− (aj + k)), k! = (ai + k− (ai + k− 1))(ai + k− (ai + k− 2)) · · · (ai + k− ai),

(1− ai + aj)n−k = (−1)n−k(ai + k − (aj + k + 1))(ai + k − (aj + k + 2)) · · · (ai + k − (aj + n)),

(n− k)! = (−1)n−k(ai + k − (ai + k + 1))(ai + k − (ai + k + 2)) · · · (ai + k − (ai + n)).

By setting
A = {a1, a2, a3, a1 + 1, a2 + 1, a3 + 1, · · · , a1 + n, a2 + n, a3 + n},

B = {b1, b2, b1 + 1, b2 + 1, · · · , b1 + n− 1, b2 + n− 1},
we can rewrite cn as

cn =
∑
a∈A

∏
b∈B

(a− b)∏
y∈A\{a}

(a− y)
.

By applying Lemma 5, then we get cn = 0. ut

8.2 Hypergeometric functions duality

In what follows we will be working with functions represented by power series in z, and we will use
notation F (z) ≡ G(z) to mean that F (z) = G(z) for all z in some neighbourhood of zero. Let Pn
be the set of polynomials of degree n. We say that F (z) ≡ G(z) (mod Pn) if F (z)−G(z) ∈ Pn.

Theorem 27. Assume that p ≤ r + 1, {ai}1≤i≤r+1 are complex numbers satisfying ai − aj /∈ Z for

1 ≤ i < j ≤ r + 1, {bi}1≤i≤p are complex numbers and {mi}1≤i≤p are integers. Define M :=
p∑
i=1

mi,

ci :=

p∏
j=1

(1 + ai − bj)mj∏
1≤j≤r+1

j 6=i

(ai − aj)
for 1 ≤ i ≤ r + 1, (249)
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and

H(z) :=
r+1∑
i=1

ci × pFr

(1 + ai +m1 − b1, . . . , 1 + ai +mp − bp
1 + ai − a1, . . . , ∗, . . . , 1 + ai − ar+1

∣∣∣z) (250)

× pFr

( b1 − ai, b2 − ai, . . . , bp − ai
1 + a1 − ai, . . . , ∗, . . . , 1 + ar+1 − ai

∣∣∣(−1)p+r+1z
)
,

where the asterisk means that the term 1+ai−ai is omitted. Assuming that mi ≥ 0 for 1 ≤ i ≤ r+1,
the following is true:

(i) If M < r then H(z) ≡ 0;

(ii) If M = r then H(z) ≡ 1 in the case p ≤ r, and H(z) ≡ 1/(1− z) in the case p = r + 1;

(iii) If M = r + 1 then H(z) ≡ C in the case p ≤ r − 1, and H(z) ≡ C + z in the case p = r, and

H(z) ≡ (α− β + p)
z

(1− z)2
+

C

1− z
in the case p = r + 1,

where α =
r+1∑
i=1

ai, β =
p∑
i=1

bi and C = α +
p∑
i=1

mi(mi + 1− 2bi)/2.

In the case when some of mi are negative, the above results in (i)-(iii) hold modulo P−m̂, where
m̂ = min

1≤i≤p
mi.

Proof. Let us prove the first part of Theorem 27: we assume that mi ≥ 0 for 1 ≤ i ≤ p. Let k be a
non-negative integer. We define

A =
⋃

1≤i≤r+1

{ai + j : 0 ≤ j ≤ k}. (251)

Note that the condition ai−aj /∈ Z for 1 ≤ i < j < r+1 implies that the set A has nA = (r+1)(k+1)
elements. Similarly, we define a multiset

B =
⊎

1≤i≤p

{bi + j : −mi ≤ j ≤ k − 1}. (252)

The symbol “
⊎

” means that we are taking union of multisets; in other words, one complex number
may be repeated several times in B. It is clear that the multiset B has nB = M + kp elements
(recall that M = m1 + · · ·+mp).
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Let us fix i and j such that 1 ≤ i ≤ r + 1 and 0 ≤ j ≤ k and consider the element ai + j of the
set A. From formula (234) we find

γki,j := γ(ai + j;A,B) =

∏
x∈B

(ai + j − x)∏
y∈A\{ai+j}

(ai + j − y)

=

p∏
l=1

k−1∏
s=−ml

(ai + j − bl − s)

∏
0≤s≤k
s 6=j

(j − s)
∏

1≤l≤r+1

l 6=i

k∏
s=0

(ai + j − al − s)
(253)

Now we will simplify the expression in (253). We check that∏
0≤s≤k
s 6=j

(j − s) = (−1)k−jj!(k − j)!

and for any w ∈ C, m ≥ 0, k ≥ 0 and 0 ≤ j ≤ k

k−1∏
s=−m

(w + j − s) = (−1)k−j(1 + w)m(1 +m+ w)j(−w)k−j. (254)

The above two identities allow us to rewrite the expression in (253) as follows

γki,j =

p∏
l=1

(1 + ai − bl)ml∏
1≤l≤r+1

l 6=i

(ai − al)
× 1

j!
×

p∏
l=1

(1 +ml + ai − bl)j∏
1≤l≤r+1

l 6=i

(1 + ai − al)j
× (−1)(k−j)(p+r+1)

(k − j)!

p∏
l=1

(bl − ai)k−j∏
1≤l≤r+1

l 6=i

(1− ai + al)k−j
.

(255)

Using the above equation and formulas (19), (249) and (250) we see that

r+1∑
i=1

∑
k≥0

zk
k∑
j=0

γki,j = H(z). (256)

At the same time, we can change the order of summation in (256) and write H(z) as

H(z) =
∑
k≥0

zk

[
r+1∑
i=1

k∑
j=0

γki,j

]
. (257)

Now the plan is to compute the sum in the square brackets by applying Lemma 5. Recall that we

have denoted α =
r+1∑
i=1

ai and β =
p∑
i=1

bi. Definitions (251) and (252) easily give us

sk :=
∑
x∈A

x−
∑
y∈B

y = (k + 1)α + (r + 1)
k(k + 1)

2
− kβ − p(k − 1)k

2
+

1

2

p∑
i=1

mi(mi + 1− 2bi).
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Then, using our earlier computations nA = (r + 1)(k + 1) and nB = M + kp and applying Lemma
5, we find

r+1∑
i=1

k∑
j=0

γki,j =


0, if (r + 1− p)k > M − r,
1, if (r + 1− p)k = M − r,
sk, if (r + 1− p)k = M − r − 1.

(258)

By combining (257) and (258) we finish the proof of Theorem 27 in the case when mi ≥ 0 for
1 ≤ i ≤ p.

Let us consider the case when some mi are negative. Note that formula (254) holds true when m
is negative, as long as k ≥ |m|. Thus formula (255) is also true, as long as k ≥ |mi| for all negative
mi. Therefore, our result (258) remains true for all k ≥ −m̂ (recall that m̂ = min{mi : 1 ≤ i ≤ p}),
which means that all results in Theorem 27 hold true modulo P−m̂. ut

8.3 Basic hypergeometric functions duality

Theorem 27 has an analogue given in terms of basic hypergeometric functions. The definition of
the basic hypergeometric function can be found in Section 3.2.

Theorem 28. Assume that q is a complex number satisfying |q| < 1, {ai}1≤i≤r+1 are non-zero
complex numbers satisfying

ai/aj /∈ {. . . , q−2, q−1, 1, q, q2, . . . },

{bi}1≤i≤r+1 are non-zero complex numbers and {mi}1≤i≤r+1 are integers. Define M :=
r+1∑
i=1

mi,

M2 :=
r+1∑
i=1

mi(mi + 1)/2 and

ci := (−1)Mq−M2

r+1∏
j=1

b
mj
j (qai/bj; q)mj∏

1≤j≤r+1

j 6=i

(ai − aj)
for 1 ≤ i ≤ r + 1. (259)

Let

G(z) :=
r+1∑
i=1

ci × r+1φr

(q1+m1ai/b1, . . . , q
1+mr+1ai/br+1

qai/a1, . . . , ∗, . . . , qai/ar+1

∣∣∣wz) (260)

× r+1φr

( b1/ai, . . . , br+1/ai
qa1/ai, . . . , ∗, . . . , qar+1/ai

∣∣∣z),
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where w := q−r
r+1∏
i=1

bi/ai and the asterisk means that the term qai/ai is omitted. Assuming that

mi ≥ 0 for 1 ≤ i ≤ r + 1, the following is true:

(i) If M < r then G(z) ≡ 0;

(ii) If M = r then G(z) ≡ 1/(1− z);

(iii) If M = r + 1 then

G(z) ≡ 1

1− q

[
C

1− z
− qα− β

1− qz

]
,

where α =
r+1∑
i=1

ai, β =
r+1∑
i=1

bi and C = α−
r+1∑
i=1

biq
−mi.

In the case when some of mi are negative, the above results in (i)-(iii) hold modulo P−m̂, where
m̂ = min

1≤i≤r+1
mi.

Proof. The proof is very similar to the proof of Theorem 27, thus we will present only the important
steps and we will omit many details. Assume that mi ≥ 0 for 1 ≤ i ≤ r + 1 and k ≥ 0 (or k ≥ −m̂
if some of mi are negative). We define

A =
⋃

1≤i≤r+1

{aiqj : 0 ≤ j ≤ k}, B =
⊎

1≤i≤r+1

{biqj : −mi ≤ j ≤ k − 1}.

It is clear that nA = (r + 1)(k + 1) and nB = M + (r + 1)k. Next, we fix indices i and j such that
1 ≤ i ≤ r + 1 and 0 ≤ j ≤ k and compute

γki,j := γ(aiq
j;A,B) =

r+1∏
l=1

k−1∏
s=−ml

(aiq
j − blqs)

∏
0≤s≤k
s 6=j

(aiqj − aiqs)
∏

1≤l≤r+1

l 6=i

k∏
s=0

(aiqj − alqs).
(261)

After some straighforward (though tedious) computations we rewrite the above expression in the
form

γki,j = (−1)Mq−M2

r+1∏
l=1

bmll (qai/bl; q)ml∏
1≤l≤r+1

l 6=i

(ai − al)
×

wj
r+1∏
l=1

(q1+mlai/bl; q)j

(q; q)j
∏

1≤l≤r+1

l 6=i

(qai/al; q)j
(262)

×

r+1∏
l=1

(bl/ai; q)k−j

(q; q)k−j
∏

1≤l≤r+1

l 6=i

(qal/ai; q)k−j
,
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which shows that
r+1∑
i=1

∑
k≥0

zk
k∑
j=0

γki,j = G(z), (263)

where the function G(z) is defined in (260). We also compute

sk :=
∑
x∈A

x−
∑
y∈B

y =
1

1− q

[
α−

r+1∑
l=1

blq
−ml − (qα− β)qk

]
,

and Lemma 5 gives us

r+1∑
i=1

k∑
j=0

γki,j =


0, if M < r,

1, if M = r,

sk, if M = r + 1.

(264)

The remaining steps of the proof are exactly the same as in the proof of Theorem 27 and we leave
them to the reader. ut
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rational transform. Stochastic Processes and their Applications, 122(2):654 – 663, 2012.

[40] A. Kuznetsov and D. Hackmann. Asian options and meromorphic Lévy processes. Finance
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