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Abstract

Classification of irreducible characters of some families of groups, for example the

family of the groups of unipotent upper-triangular matrices, is a “wild” problem.

To have a tame and tractable theory for the groups of unipotent-upper trian-

gular matrices André and Yan introduced the notion of supercharacter theory.

Diaconis and Issacs axiomatized the concept of supercharacter theory for any

group.

In this thesis, for an arbitrary group G, by using sublattices of the lattice

of normal subgroups containing the trivial subgroup and G, we build a family

of integral supercharacter theories, called normal supercharacter theories

(abbreviated NSCT). We present a recursive formula for supercharacters in a

NSCT. The finest NSCT is constructed from the whole lattice of normal sub-

groups of G, and is a mechanism to study the behavior of conjugacy classes by

the lattice of normal subgroups. We will uncover a relation between the finest

NSCT, faithful irreducible characters, and primitive central idempotents. We
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argue that NSCT cannot be obtained by previous known supercharacter the-

ory constructions, but it is related to ∗-products of some certain supercharacter

theories.

We also construct a NSCT for the family of groups of unipotent upper-

triangular matrices. These groups are crucial to the supercharacter theory. The

supercharacters of the resulting NSCT are indexed by Dyck paths, which are

combinatorial objects that are central to several areas of algebraic combinatorics.

Finally, we show that this supercharacter construction is identical to Scott An-

drews’ construction after gluing the superclasses and the supercharacters by the

action of the torus group.

iii



Acknowledgment

I would like to express my gratitude and appreciation to my supervisor Professor

Nantel Bergeron for supporting me in all challenging situations during my Ph.D.

studies, for giving me advice that expands my view on scientific and social life.

Being his student was a great experience. I thank Professor Mike Zabrocki for

sharing me his knowledge and for being helpful and responsive as the graduate

program director. I also thank the stuff of the Department of Mathematics and

Statistics for their kindness and for being responsive.

I thank Professor Nat Thiem for answering all my questions and sharing

with me his thoughts. Visiting him at the University of Colorado at Boulder

was incredibly helpful.

I thank my wife, Parnian, who during this challenging time endured all dif-

ficulties we faced. I thank her for being supportive and patient.

Many thanks to my family, and also all my friends in Toronto. I also thank

Ali Seyedi, a person who changed my life.

iv



Contents

Abstract ii

Acknowledgment iv

Table of Contents v

Introduction 1

1 Preliminaries 5

1.1 Character Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.1 Representations and G-modules . . . . . . . . . . . . . . . 5

1.1.2 Irreducible Representations . . . . . . . . . . . . . . . . . 9

1.1.3 Group Characters . . . . . . . . . . . . . . . . . . . . . . . 13

1.2 Lattice Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
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Introduction

Representation theory is undeniably at the heart of many areas of mathematics

and science. For example, it is a fundamental part of Fourier analysis on groups

and a powerful method to study problems in abstract algebra. Also, there is

a connection between representation theory and particle physics in which the

different quantum states of an elementary particle give rise to an irreducible

representation of the Poincaré group.

Studying the character theory of a group individually is always possible using

known techniques and computer programming. Unfortunately, the classification

of all irreducible representations for some families of groups is intractable. These

families of groups are known as wild. For one such family of groups, André

(1995) and Yan (2001) introduced the notion of a supercharacter theory as a

new tractable tool that would allow us to still get useful information about the

representation theory of the groups.
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Inspired by André’s and Yan’s work, Diaconis and Isaacs (2008) axiomatized

the concept of supercharacter theory for arbitrary groups. A given group can

have multiple supercharacter theories. The problem is then to describe, in a

useful way, how to obtain such supercharacter theories with enough information

about the representations.

Denote by 1 and 11 the trivial element and the trivial character of group G,

respectively. More precisely, a supercharacter theory is a pair (X ,K), where K is

a partition of elements of a finite group G containing {1} and X is a partition of

irreducible characters of G containing {11} such that all characters ∑ψ∈X ψ(1)ψ

(X ∈ X ) are constant on every K ∈ K and |K| = |X |. We call a supercharacter

theory (X ,K) integral if ∑ψ∈X ψ(1)ψ(g) ∈ Q for every X ∈ X and g ∈ G.

Diaconis and Isaacs (2008) also mentioned two supercharacter theory con-

structions for finite groups G, one comes from the action of a group A on G

by automorphisms and another one comes from the action of the cyclotomic

field Q[ζ|G|]. They also generalized André’s original construction to define a

supercharacter theory for algebra groups, groups of the form 1 + J where

J is a finite dimensional nilpotent associative algebra over a finite field Fq.

Later, Hendrickson (2012) provided some other supercharacter theories for fi-

nite groups G. Arias-Castro et al. (2004) used Yan’s work in place of the usual
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irreducible character theory to analyze a random walk on UTn(q), the group of

n × n unipotent upper-triangular matrices over a finite field Fq. Also Aguiar

et al. (2012) obtained a relationship between the supercharacter theories of all

unipotent upper-triangular matrices over a finite field Fq and the combinatorial

Hopf algebra of symmetric functions in non-commuting variables.

Let Norm(G) be the set of all normal subgroups of G. Then Norm(G) is

a lattice in which the least upper bound and the greatest lower bound of two

normal subgroups N and M are the product and the intersection of M and N

respectively. Let L be an arbitrary sublattice of Norm(G) containing the trivial

subgroup and G. Let N◦ be the set of those elements of N that do not belong

to any subgroup H ∈ L with H ⊂ N .

Let Irr(G) be the set of all irreducible characters of G. Recall that the kernel

of a character χ of G is the set kerχ = {g ∈ G : χ(g) = χ(1)}. Define XN• to be

the set of all irreducible characters ψ such that the smallest normal subgroup in

L and kerψ is N . We will show in Theorem 3.2.3 that for an arbitrary sublattice

L ⊆ Norm(G),

(
{XN• 6= ∅ : N ∈ L}, {N◦ 6= ∅ : N ∈ L}

)
is an integral supercharacter theory of G.
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In chapter 1, we give a quick review of the basic theorems in character theory.

Next, we present the concept of the lattice of normal subgroups and the Möbius

inversion formula and the dual of the Möbius inversion formula.

In chapter 2, we first review the definitions for supercharacter theories, then

we discuss the main methods for constructing supercharacter theories.

In chapter 3, we present our main supercharacter theory construction for fi-

nite groups. Next, we study the relation between normal supercharacter theories

and some other supercharacter theory constructions. We show how the normal

supercharacter theory can be built by a set of ∗-product supercharacter theories.

Moreover, we indicate how we can combine normal supercharacter theories using

∗-products.

In the last chapter, we obtain a normal supercharacter theory for the set

of normal pattern subgroups of unipotent upper-triangular matrices. We also

construct another supercharacter theory by gluing the superclasses and super-

characters of Andrews’ construction by the action of the torus group. Then we

show that these two supercharacter theories are identical.
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1 Preliminaries

We start to provide the background needed for understanding the concepts in

this thesis. In this chapter we introduce some basic terminology and notation.

At the end of this chapter, we mention the basics of lattice theory and the Möbius

inversion formula.

1.1 Character Theory

We begin by the study of group representations and then we turn to the theory

of characters. Let G be a group with identity 1.

1.1.1 Representations and G-modules

A representation can be thought of as a way to model a group with a concrete

group of matrices. After giving the precise definition, we look at some examples.

Let C denote the complex numbers. The general linear group of degree d,

GLd(C) is the set of all d× d invertible matrices over C.
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Definition. A representation of a group G is a group homomorphism

X : G → GLd(C).

Equivalently, to each g ∈ G is assigned X(g) ∈ GLd(C) such that

1. X(1) = Id the identity matrix in GLd, and

2. X(gh) = X(g)X(h) for all g, h ∈ G.

The parameter d is called the degree, or dimension, of the representation.

In the remainder of this document, we only say a matrix representation with-

out mentioning the group G, if it is clear that we are using G.

Example 1.1.1. All groups have the trivial representation, which is the one

sending every g ∈ G to the matrix (1). This is clearly a representation because

X(1) = (1) and

X(gh) = (1) = (1)(1) = X(g)X(h)

for all g, h ∈ G. We often use the notation 1 to stand for the trivial representa-

tion of G.

Example 1.1.2. Let G = Cn the cyclic group of order n. Let g be a generator

for Cn, i.e.,

Cn = {1, g, g2, · · · , gn−1}.
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We aim to find all one-dimensional representations of Cn. To identify a group

homomorphism form Cn to GLd(C), it is enough to give X(g). Assume that

X(g) = (c) be a one-dimensional representation. Then X(1) = X(gn) =

X(g)n = (c)n = (cn) = 1. Therefore, c must be a nth root of unity, and it

is clear that for every root of unity we have a one-dimensional representation.

Because matrices correspond to linear transformations, we can think of rep-

resentations in these terms. This is the idea of a G-module.

Definition. Let V be a vector space over C and let G be a group. Then V is a

G-module if there is an action

. : G× V → V

(g, v) 7→ g.v

such that

1. g.(cv + dw) = c(g.v) + d(g.w),

2. (gh).v = g.(h.v), and

3. 1.v = v

for all g, h ∈ G; and scalars c, d ∈ C.

Equivalently, V is a G-module if there is a group homomorphism

ρ : G→ GL(V ),
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where GL(V ) is the group of all linear transforms of V . Also, in the future,

“G-module” will be shortened to “module” when it is clear we are using G.

Example 1.1.3. Let V = C-Span{ei : i = 1, 2, . . . , n}. Let Sn be the symmetric

group of [n] := {1, 2, . . . , n}. Then V is a Sn-module with the following action

Sn × V → V

(σ, c1e1 + . . .+ cnen) 7→ c1eσ(1) + . . .+ cneσ(n).

If the dimension of V as a vector space over C is d, it is well-known that

GL(V ) ∼= GLd(C). Therefore, from the definitions of G-modules and matrix

representations we can see whenever we have a G-module we can have a matrix

representation and vice versa. So the following theorem follows from the defini-

tions of G-modules, matrix representation and the fact that GL(V ) ∼= GLd(C).

Theorem 1.1.4. For every group G we have the following.

1. Given a matrix representation X of degree d, then Cd := C× . . .× C is a

G-module with the following action

G× Cd → Cd

(g, v) 7→ X(g)v.

2. Let V be a module with a basis {v1, . . . , vd}. Then there is a representation

X such that X(g) = (xij) where

g.vj =
d∑
i=1

xijvi.
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We now describe regular representation which is one of the most important

representations of any group.

Definition. Let G be a finite group. Then

C[G] = {c1g1 + · · ·+ cngn : ci ∈ C for all i}

is a module with the following actions

G× C[G] → C[G]

(g, c1g1 + · · ·+ cngn) 7→ c1(gg1) + · · ·+ cn(ggn).

The corresponding representation to the module C[G], denoted by PG, is called

the regular representation of G.

1.1.2 Irreducible Representations

Irreducible representations are the building blocks of representation theory since

every representation can be written as a direct sum of irreducible representations.

Here we give the basic concept of irreducible representations.

Definition. Let V be a G-module. A submodule of V is a subspace W that is

G-invariant subspace, i.e., for every w ∈ W and g ∈ G, g.w ∈ W . We write

W ≤ V if W is a submodule of V .

We say a G-module V is the direct sum of two submodules U and W ,

denoted by V = U ⊕W , if every element v ∈ V can be written uniquely as a
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sum

v = u+ w, u ∈ U,w ∈ W.

Also, if X is a matrix, then X is the direct sum of matrices A and B, written

as X = A⊕B, if X can be written as the block diagonal form

X =

 A 0

0 B

 .
Every G-module V contains two trivial submodules, itself and the zero sub-

module. We call a G-module irreducible if it does not contain any non-trivial

submodules. A representation of G is called irreducible if its corresponding

module is irreducible. We now state the Maschke’s Theorem which shows that

the irreducible modules are the building blocks of the G-modules. For a proof

of the Maschke’s Theorem refer to (Sagan 2001, Theorem 1.5.3).

Theorem 1.1.5. (Maschke’s Theorem) Let G be a finite group and let V be a

non-zero G-module. Then

V = W1 ⊕W2 ⊕ · · · ⊕Wk,

where each Wi is an irreducible submodule of V . Equivalently, if X is a non-zero

representation, then

X = X1 ⊕X2 ⊕ · · · ⊕Xk,

where each Xi is an irreducible representation.
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As every module can be written as a direct sum of irreducible submodules, it

is important to see when two irreducible submodules are isomorphic. This yields

Schur’s Lemma (Theorem 1.1.6) which states that a G-homomorphism between

irreducible modules is either an isomorphism or zero.

Definition. Let V and W be G-modules. Then a G-homomorphism (or simply

a homomorphism) is a linear transformation

θ : V → W

such that

θ(g.v) = g.θ(v)

for all g ∈ G and v ∈ V . We also say that θ preserves or respects the action of

G.

We translate the above definition to the language of representations. Let X

be a representation corresponding to V and Y be a representation corresponding

to W . If there is a G-morphism between V and W , that means that there is a

matrix T such that X(g)T = TY (g) for every g ∈ G.

Definition. Let V and W be modules for a group G. A G-isomorphism is a

G-homomorphism θ : V → W that is bijective. In this case we say that V and

W are G-isomorphic, or G-equivalent, written V ∼= W . Otherwise we say that

V and W are G-inequivalent.
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Also, a translation of the G-isomorphism to representations implies that

whenever we have a G-isomorphism between V and W , with corresponding rep-

resentations X and Y respectively, then there is an invertible matrix T such that

X(g)T = TY (g) for every g ∈ G, and we write X ∼= Y .

Now we state Schur’s Lemma which characterizes G-homomorphisms of ir-

reducible modules. For a proof of Schur’s Lemma refer to (Sagan 2001, Theorem

1.6.5).

Theorem 1.1.6. (Schur’s Lemma) Let V and W be two irreducible G-modules.

If θ : V → W is a G-homomorphism, then either

1. θ is a G-isomorphism, or

2. θ is the zero map.

Proposition 1.1.7. (Sagan 2001, Proposition 1.10.1) Let G be a finite group

and suppose

C[G] =
⊕
i

miVi,

where the Vi form a complete list of pairwise inequivalent irreducible G-modules.

Then

1. mi = dimVi,

2. ∑i(dimVi)2 = |G|, and
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3. the number of Vi equals the number of conjugacy classes of G.

As the number of Vi is equal to both the cardinality of pairwise inequivalent

irreducible G-modules and the number of conjugacy classes of G, it turns out

the number of inequivalent irreducible G-modules is finite.

1.1.3 Group Characters

Much of the information about representations can be obtained by the traces of

the corresponding matrices. This is the theory of characters and we spend the

rest of this chapter on character theory.

Definition. Let G be a group and X be a representation of G. Then the char-

acter of X is

χ(g) = trX(g),

where tr denotes the trace of a matrix. Also, a character of a G-module V is the

character of a matrix representation corresponding to V .

Example 1.1.8. Every group has a trivial character which takes every element

of G to 1. We denote the trivial character by 11.

Example 1.1.9. The character ρG corresponding to the regular representation

PG is called regular character. Note that PG(1) = In the n × n identity matrix

where n is the cardinality of G. To compute ρG(g) for a non-identity element

13



g ∈ G, take the standard basis {g1, . . . , gn} for C[G]. Then the trace of PG is the

number of h ∈ G such that hg = h, but since g is not identity this number is 0.

Thus we have

ρG(g) =


|G| if g = 1,

0 otherwise.

Let X be a representation of a group G of degree d with character χ. We

state some basic properties of character χ.

• By the definition of a representation, we have X(1) = Id, so the trace of

X(1) is d. Therefore, χ(1) = d.

• Let Cg be the conjugacy class of group G containing g. Let h ∈ Cg. Then

h = tgt−1 for some t ∈ G. We have

χ(h) = trX(tgt−1) = trX(t)X(g)X(t−1) = trX(g) = χ(g),

where the second equality is because X is a group homomorphism and

the third equality is because for all matrices A and B, tr(AB) = tr(BA).

Therefore, every character is constant on elements of a conjugacy class.

• If Y is a representation with character ψ and X ∼= Y , then there is an

invertible matrix T such that T−1X(g)T = Y (g) for all g ∈ G. Thus,

tr(Y (g)) = tr(T−1X(g)T ) = tr(X(g)).
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Therefore,

X ∼= Y ⇒ χ(g) = ψ(g)

for all g ∈ G.

Moreover, we have the following theorem.

Theorem 1.1.10. (Sagan 2001, Corollary 1.9.4) Let X and Y be matrix repre-

sentations of G with characters χ and ψ respectively. Then

X ∼= Y if and only if χ(g) = ψ(g)

for all g ∈ G.

This theorem shows that the number of inequivalent irreducible G-modules

and the number of inequivalent irreducible characters of G are equal and so the

number of inequivalent irreducible characters of G is finite.

Also, a character of a representation X is said to irreducible if X is irre-

ducible. Two characters are inequivalent if their representations are inequiv-

alent. We denote by Irr(G) the set of all inequivalent irreducible characters of

G.

As it follows from above, whenever we have a conjugacy class Cg and an

irreducible character χ, then χ is constant on Cg. This gives us the definition of

character table.

15



Definition. Let G be a group. The character table of G is an array with rows

indexed by inequivalent irreducible characters and columns indexed by conjugacy

classes, and the table entry of row indexed by χ and column Cg is χ(h) for an

arbitrary element h ∈ Cg. By convention, the first row corresponds to the the

trivial character, and the first column corresponds to the class containing the

identity, C1 = {1}.

As an example we present the character table of an abelian group.

Example 1.1.11. Let G = C3 × C3 = 〈a〉 × 〈b〉. The following is the character

table of G. Let ζ3 = e2πi/3.

1 b b2 a ab ab2 a2 a2b a2b2

11 1 1 1 1 1 1 1 1 1

χ2 1 1 1 −ζ3 − 1 −ζ3 − 1 −ζ3 − 1 ζ3 ζ3 ζ3

χ3 1 1 1 ζ3 ζ3 ζ3 −ζ3 − 1 −ζ3 − 1 −ζ3 − 1

χ4 1 −ζ3 − 1 ζ3 1 −ζ3 − 1 ζ3 1 −ζ3 − 1 ζ3

χ5 1 ζ3 −ζ3 − 1 1 ζ3 −ζ3 − 1 1 ζ3 −ζ3 − 1

χ6 1 −ζ3 − 1 ζ3 −ζ3 − 1 ζ3 1 ζ3 1 −ζ3 − 1

χ7 1 ζ3 −ζ3 − 1 ζ3 −ζ3 − 1 1 −ζ3 − 1 1 ζ3

χ8 1 −ζ3 − 1 ζ3 ζ3 1 −ζ3 − 1 −ζ3 − 1 ζ3 1

χ9 1 ζ3 −ζ3 − 1 −ζ3 − 1 1 ζ3 ζ3 −ζ3 − 1 1

A character of degree 1 is called linear . When G is finite, the kernel of the

character χ is the normal subgroup:

kerχ := {g ∈ G | χ(g) = χ(1)}
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which by the following lemma, is precisely the kernel of the representation X

corresponding to χ.

Lemma 1.1.12. Let X be a representation whose character is χ. Then kerχ =

kerX.

Proof. Let g be an arbitrary element of G. If X(g) = X(1), then χ(g) = χ(1).

So we can see that kerχ ⊆ kerX. Now let χ(g) = χ(1), we want to show that

X(g) = X(1). Note that the restriction of X to 〈g〉 is a representation of 〈g〉. As

〈g〉 is a cyclic group, we see in Example 1.1.2 that the irreducible representations

of 〈g〉 are one dimensional representations and so they are identical with their

characters. Decompose X〈g〉 as the direct sum of one dimensional irreducible

representations, i.e., X〈g〉(g) = d1X1(g)⊕ . . .⊕ dkXk(g). Note that

X〈g〉(g) = d1X1(g)⊕ . . .⊕ dkXk(g) = d1(χ1(g))⊕ . . .⊕ dk((χk(g)),

where χi is the corresponding irreducible character to Xi. We have χ(g) = χ(1),

thus χ(g) = d1χ1(g) + . . . + dkχk(g) = d1χ1(1) + . . . + dkχk(1) = d1 + . . . + dk.

Since for some positive integer n, χi(g)n = 1, it follows |χi(g)| ≤ 1, furthermore,

di is positive for every i, we can see that χi(g) = χi(1). Since g ∈ kerχ,

X(g) = X〈g〉(g) = d1X1(g)⊕ . . .⊕ dkXk(g) =

d1(χ1(g))⊕ . . .⊕ dk(χk(g)) = d1(χ1(1))⊕ . . .⊕ dk(χk(1)) =

17



d1X1(1)⊕ . . .⊕ dkXk(1) = X〈g〉(1) = X(1).

A character is said to be faithful if its kernel is trivial. A class function

of G is a function from G to C which takes a constant value on each conjugacy

class. The set of irreducible characters of a given group G forms a basis for

cf := C-Span{f : f is a class function of G}.

The space of class functions of a finite group G has a natural inner-product

〈α, β〉 := 1
|G|

∑
g∈G

α(g)β(g),

where β(g) is the complex conjugate of β(g). With respect to this inner prod-

uct, the irreducible characters form an orthonormal basis for the space of class-

functions, i.e, for irreducible characters χ and ψ we have

〈χ, ψ〉 =


1 χ = ψ,

0 otherwise.

Lemma 1.1.13. (Sagan 2001, Corollary 1.9.4) Let χ be a character of G. Then

• Each character χ can be written as

χ = m1χ1 +m2χ2 + . . .+mkχk,

where each mi is an integer and the χi are pairwise inequivalent irreducible

characters.
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• If χ = m1χ1 +m2χ2 + . . .+mkχk, then 〈χ, χi〉 = mi.

• The character χ is irreducible if and only if 〈χ, χ〉 = 1.

Definition. If we write a character

χ = m1χ1 +m2χ2 + . . .+mkχk,

where each mi is a positive integer and the χi are pairwise inequivalent irreducible

characters, then each χi is called a constituent of χ.

When N is a normal subgroup of a group G, then G/N forms a group. In

the following chapter we frequently lift the characters of the group G/N to the

group G and vice versa. We now give a description of the irreducible characters

of G/N and show how they are related to the characters of G.

Example 1.1.14. Let N be a normal subgroup of G. If ψ is an irreducible char-

acter of G such that N ⊆ kerψ, then define ψ : G/N → C by ψ(gN) = ψ(g).

Note that ψ is an irreducible character of G/N and we say ψ has been lifted to

the irreducible character ψ of G. We have the following bijection between irre-

ducible characters χ of G containing N in their kernels and irreducible characters

of G/N ,

{ψ ∈ Irr(G) : N ⊆ kerψ} → Irr(G/N)

ψ 7→ ψ.
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In order to state a lemma of Brauer, we need the following definition.

Definition. Given finite groups A and G, we say that A acts via automor-

phisms on G if A acts on G as a set, and in addition a.(gh) = (a.g)(a.h) for

all g, h ∈ G and a ∈ A. An action via automorphisms of A on G determines

and is determined by a homomorphism φ : A→ Aut(G). Since a.1 = (a.1)(a.1),

a.1 = 1 and 1 = a.1 = a.(gg−1) = (a.g)(a.g−1), a.g−1 = (a.g)−1. Notice that

a.Ch = {a.(ghg−1) : g ∈ G} = {(a.g)(a.h)(a.g−1) : g ∈ G} = Ca.h,

and we conclude that A permutes the conjugacy classes of G. Also, when A acts

via automorphisms on G, it also acts on irreducible characters as follows

A× Irr(G) → Irr(G)

(a, χ) 7→ χa−1 ,

where χa−1(g) = χ(a−1.g) for all g ∈ G. Note that χa−1 is irreducible since

〈χa−1 , χa−1〉 =
∑
g∈G

χ2
a−1(g) =

∑
g∈G

χ2(a−1.g) =
∑
a.h∈G

χ2(h) = 〈χ, χ〉 = 1.

Therefore the action of A on Irr(G) permutes the irreducible characters.

The following theorem is known as Brauer’s Lemma.

Theorem 1.1.15. (Isaacs 1994, Theorem 6.32) Let A act on Irr(G) and on the

set of conjugacy classes of G. Let a.g be an element of a.Cg. If a.χ(a.g) = χ(g)

for all χ ∈ Irr(G), a ∈ A, and g ∈ G, then for each a ∈ A, the number of fixed

irreducible characters of G is equal to the number of fixed classes.
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As a corollary of this theorem we have the following.

Corollary 1.1.16. (Isaacs 1994, Corollary 6.33) Under the hypotheses of Theo-

rem 1.1.15 the numbers of orbits in the actions of A on the irreducible characters

and conjugacy classes of G are equal.

1.2 Lattice Theory

Our supercharacter theory construction for a finite group G is actually coming

from some sublattices of lattice of normal subgroups. In this section we give the

definition of a lattice and we discuss the Möbius inversion formula and the dual

of the Möbius inversion formula. In the end we present the details of lattice of

normal subgroups.

A partial order is a binary relation ≤ over a set P which satisfies for all

a, b, and c in P :

• a ≤ a (reflexivity),

• if a ≤ b and b ≤ a, then a = b (antisymmetry),

• if a ≤ b and b ≤ c, then a ≤ c (transitivity).

A set with a partial order is called a partially ordered set. We abbreviate

“partially ordered set” as poset.
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If (P,≤) is a poset, and S ⊆ P is an arbitrary subset, then an element u ∈ P

is said to be an upper bound of S if s ≤ u for each s ∈ S; an element v ∈ P is

said to be a lower bound of S if u ≤ s for each s ∈ S.

Definition. A lattice is a partial ordered set in which every two elements have a

unique least upper bound (or join) and a unique greatest lower bound (or meet).

A sublattice of a lattice L is a nonempty subset of L that is a lattice with the

same meet and join operations as L.

1.2.1 The Möbius Inversion Formula and Its Dual

We now present the Möbius inversion formula and its dual. This concept is es-

sential in finding the supercharacters of our supercharacter theory construction.

If (P,≤) is a poset and CP×P is the set of all functions α : P × P → C, the

associated incidence algebra is

A(P ) = {α ∈ CP×P : α(s, u) = 0 unless s ≤ u}.

The Möbius function µ ∈ A(P ) is defined recursively by the following rules:

µ(s, s) = 1,

and

µ(s, u) = −
∑
s≤t<u

µ(t, u), for all s < u in P.
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It is immediate from this definition that

∑
s≤t≤u

µ(t, u) =


1 if s = u,

0 otherwise.

Lemma 1.2.1. (Stanley 1986, Proposition 3.7.1 (Möbius inversion formula))

Let P be a finite poset. Let f, g : P → K, where K is a field. Then

g(t) =
∑
s≤t

f(s), for all t ∈ P,

if and only if

f(t) =
∑
s≤t

g(s)µ(s, t), for all t ∈ P.

Lemma 1.2.2. (Stanley 1986, Proposition 3.7.2 (Möbius inversion formula,

dual form)) Let P be a finite poset. Let f, g : P → K, where K is a field. Then

g(t) =
∑
s≥t

f(s), for all t ∈ P,

if and only if

f(t) =
∑
s≥t

g(s)µ(t, s), for all t ∈ P.

1.2.2 The Lattice of Normal Subgroups of a Group

The lattice of normal subgroups of a group G is the lattice whose elements are

the normal subgroups of G, with the partial order relation being set inclusion.

The least upper bound of two normal subgroups M and N is the product of M
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and N , that is MN = {mn : m ∈ M,n ∈ N} and the greatest lower bound of

two normal subgroups M and N is the intersection of M and N .

Example 1.2.3. The following is the lattice of normal subgroups of G = C4 ×

C4 = 〈a〉 × 〈b〉.

{1}

〈a〉 × 1 1× 〈b〉

G

〈a2〉 × 1 1× 〈b2〉〈(a2, b2)〉

〈a〉 × 〈b2〉 〈a2〉 × 〈b〉

〈a2〉 × 〈b2〉

Here is a sublattice of the lattice of normal subgroups of G containing identity

24



subgroup and G.

{1}

〈a2〉 × 1 1× 〈b2〉

G

〈a2〉 × 〈b2〉
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2 Supercharacter Theory

2.1 Supercharacter Theory

In this section, we first review the definitions for supercharacter theories, then

we discuss the main methods for obtaining supercharacter theories.

We reproduce the definition of supercharacter theory in Diaconis and Isaacs

(2008). Throughout this manuscript for every subset X ⊆ Irr(G) let σX be the

character ∑ψ∈X ψ(1)ψ.

A supercharacter theory of a finite group G is a pair (X ,K) together

with a choice of a set of characters {χX : X ∈ X}, where the elements of X are

constituents of χX ,

• X is a partition of Irr(G), and

• K is a partition of G,
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such that:

1. The set {1} is a member of K.

2. |X | = |K|.

3. The characters χX are constant on the parts of K.

We refer to the characters χX as supercharacters and to the members of K

as superclasses. It is well-known that every supercharacter χX is a constant

multiple of σX (See (Diaconis and Isaacs 2008, Section 2)). Denote by Sup(G)

the set of all supercharacter theories of G.

Every finite group G has two trivial supercharacter theories: the usual ir-

reducible character theory and the supercharacter theory ({{11}, Irr(G) \ {11}},

{{1}, G \ {1}}), where 11 is the trivial character of G. A non-trivial example is

presented as follows.

Example 2.1.1. The following table is the character table of S4.

e C(12) C(12)(34) C(123) C(1234)

11 1 1 1 1 1

χ1 1 −1 1 1 −1

χ2 3 1 −1 0 −1

χ3 3 −1 −1 0 1

χ4 2 0 2 −1 0
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Let

X = {{11}, {χ1}, {χ2, χ3, χ4}}

and

K = {{e}, C(12) ∪ C(1234), C(123) ∪ C(12)(34)}.

Then (X ,K) is a supercharacter theory with

{11, χ1, 3χ2 + 3χ3 + 2χ4}

as the set of supercharacters.

In the following subsections we review known supercharacter theory construc-

tions for G. The supercharacter constructions in Sections 2.2, 2.3, and 2.6 are

introduced by Diaconis and Isaacs (2008), and for more details about the other

constructions see (Hendrickson 2012, Section 4) and Andrews (2015).

2.2 A Group Acting Via Automorphisms on a Given

Group

Suppose that A is a group that acts via automorphisms on our given group G.

As we showed before, A permutes both the irreducible characters of G and the

conjugacy classes of G. By the lemma of Brauer, the numbers of A-orbits on

Irr(G) and on the set of classes of G are equal (see Theorem 1.1.15 and Corollary
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1.1.16). The A-orbit of χ is the set

{χa−1 : a ∈ A}.

Also, the union of A-orbits of elements in Cg is

⋃
b∈A

b.Cg.

We claim that ∑a∈A χa−1(1)χa−1 is constant on each element of ⋃b∈A b.Cg. We

have that for every a ∈ A, χ(a.1) = χ(1), thus

∑
a∈A

χa−1(1)χa−1(g) =
∑
a∈A

χ(a−1.1)χ(a−1.g) =
∑
a∈A

χ(1)χ(a−1.g) =

χ(1)
∑
a∈A

χ(a−1.g).

Moreover, for every b ∈ A,

χ(1)
∑
a∈A

χ(a−1.g) = χ(1)
∑
a∈A

χ((a−1b−1).g) = χ(1)
∑
a∈A

χ(ba)−1(g).

We showed that χa for every a ∈ A is an irreducible character, therefore,

χ(1)
∑
a∈A

χ(ba)−1(g) = χ(1)
∑
a∈A

χ(ba)−1(hgh−1) = χ(1)
∑
a∈A

χa−1(b−1.hgh−1).

Thus, the sum of the characters in an orbit X ∈ X is constant on each member of

⋃
b∈A b.Cg. Therefore, these orbit decompositions yield a supercharacter theory

(X ,K) where the members of X are the A-orbits on the classes of G and members

of K are the unions of the A-orbits on the classes of G. We denote by AutSup(G)

the set of all such supercharacter theories of G.

29



Example 2.2.1. Let G = C2 × C2 = 〈a〉 × 〈b〉. Also define the automorphism

α1 : G → G as the identity map and α : G → G is the automorphism of G in

which α(a) = b and α(b) = a. So C2 = 〈x〉 acts on G as follows,

C2 ×G → G

(xi, g) 7→


α1(g) i = 0

α(g) i = 1.

Then the set of C2-orbits on G are

{{1}, {a, b}, {ab}}.

1 ab a b

11 1 1 1 1

χ1 1 1 −1 −1

χ2 1 −1 1 −1

χ3 1 −1 −1 1

The set of C2-orbits on Irr(G) are

{{11}, {χ1}, {χ2, χ3}}.

Now we can see that

({{11}, {χ1}, {χ2, χ3}}, {{1}, {a, b}, {ab}})

is a supercharacter theory.
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When A acts via automorphisms on G, as this action is determined by a

group homomorphism form A to Aut(G), the orbits of this action on G are

determined by a subgroup H of Aut(G). More precisely, the orbit of an element

g ∈ G is the set

{α(h) : α ∈ H, h ∈ Cg} .

2.3 Action of Automorphisms of The Cyclotomic Field

Q[ζ|G|]

Another general way to construct a supercharacter theory for G uses the action

of a group A of automorphisms of the cyclotomic field Q[ζ|G|], where ζ|G| is a

primitive |G|th root of unity. There is an action on the classes of G, defined

as follows. Given σ ∈ A, there is a unique positive integer r < |G| such that

σ(ζ|G|) = ζr|G|, and we let σ carry the class Cg to the class Cgr . Also we have the

following action of A on Irr(G),

A× Irr(G) → Irr(G)

(σ, χ) 7→ χσ−1 ,

where χσ−1(g) = χ(σ−1.g).

Let g ∈ G. Note that for every h ∈ G,

σ.χ(σ.hgh−1) = χ(σ−1σ.hgh−1) = χ(hgh−1) = χ(g),
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Brauer’s lemma (Theorem 1.1.15) shows that the numbers of A-orbits on Irr(G)

and on the set of conjugacy classes of G are equal. We take X to be the set of

A-orbits on Irr(G), and again, K is the set of unions of the various A-orbits on

conjugacy classes. The A-orbit of χ ∈ Irr(G) is the set

{χσ−1 : σ ∈ A}.

Also, the union of A-orbits of elements in Cg is

⋃
τ∈A

τ.Cg.

We claim that ∑σ∈A χσ−1(1)χσ−1 is constant on each element of ⋃τ∈A τ.Cg. We

have that for every σ ∈ A, χ(σ.1) = χ(1), thus

∑
σ∈A

χσ−1(1)χσ−1(g) =
∑
σ∈A

χ(σ−1.1)χ(σ−1.g) =
∑
σ∈A

χ(1)χ(σ−1.g) =

χ(1)
∑
σ∈A

χ(σ−1.g).

Moreover, for every τ ∈ A,

χ(1)
∑
σ∈A

χ(σ−1.g) = χ(1)
∑
σ∈A

χ((σ−1τ−1).g) = χ(1)
∑
σ∈A

χ(τσ)−1(g).

We have for every h ∈ G,

χ(1)
∑
σ∈A

χ(τσ)−1(g) = χ(1)
∑
σ∈A

χ(τσ)−1(hgh−1) = χ(1)
∑
σ∈A

χσ−1(τ−1.hgh−1).

Thus, the sum of the characters in an orbit X ∈ X is constant on each member

of K. Therefore (X ,K) is a supercharacter theory. We denote by ACSup(G) the

set containing the above supercharacter theories.
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Example 2.3.1. Let G = C2×C3 = 〈a〉× 〈b〉. The set of automorphisms of the

cyclotomic field Q[ζ|G|] = Q[ζ6] is

A := {σk : k ∈ {1, 5}},

where σk(ζ6) = ζk6 . Then the set of A-orbits on G are

{{1}, {a}, {b, b2}, {ab, ab2}}.

1 a b ab b2 ab2

11 1 1 1 1 1 1

χ1 1 −1 1 −1 1 −1

χ2 1 −1 −ζ3 − 1 ζ3 + 1 ζ3 −ζ3

χ3 1 −1 ζ3 −ζ3 −ζ3 − 1 ζ3 + 1

χ4 1 1 −ζ3 − 1 −ζ3 − 1 ζ3 ζ3

χ5 1 1 ζ3 ζ3 −ζ3 − 1 −ζ3 − 1

The set of A-orbits on Irr(G) are

{{11}, {χ1}, {χ2, χ3}, {χ4, χ5}}.

We can see that

({{11}, {χ1}, {χ2, χ3}, {χ4, χ5}}, {{1}, {a}, {b, b2}, {ab, ab2}})

is a supercharacter theory for G.
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2.4 The ∗-Product

In this subsection, we show that if N is a normal subgroup of G, then some

supercharacter theories of N can be combined with supercharacter theories of

G/N to form supercharacter theories of the full group G.

Let G and H be groups and let G act on H by automorphisms. We say that

(X ,K) ∈ Sup(H) is G-invariant if the action of G fixes each part K ∈ K setwise.

We denote by SupG(H) the set of all G-invariant supercharacter theories of H.

For each subset L ⊆ G/N let L̃ := ⋃
Ng∈LNg. Extend this notation to a set

L of subsets of G/N by L̃ := {L̃ : L ∈ L}, and let L◦ denote L \ {{N}}.

Recall that if N is a normal subgroup of G and ψ ∈ Irr(N), then Irr(G|ψ)

denotes the set of irreducible characters χ of G such that 〈χN , ψ〉 > 0, where χN

is the restriction of χ to N . If Z ⊆ Irr(N) is a union of G-orbits, then define

the subset ZG of Irr(G) to be ⋃ψ∈Z Irr(G|ψ). Extend this notation to a set Z of

subsets of Irr(N) by letting ZG := {ZG : Z ∈ Z}, and let Z◦ := Z \ {{11N}}.

Define

∗N : SupG(N)× Sup(G/N) → Sup(G)

((X ,K), (Y ,L)) 7→
(
(X ◦)G ∪ Y ,K ∪ L̃◦

)
,

then by (Hendrickson 2012, Theorem 5.3) the map ∗N is well-defined. Denoted

by Sup∗N(G) the image of ∗N and let Sup∗(G) = ⋃
N∈Norm(G) Sup∗N(G).
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Example 2.4.1. The following is the character table of alternating group A4.

1 C(12)(34) C(123) C(124)

11 1 1 1 1

ψ1 1 1 −ζ3 − 1 ζ3

ψ2 1 1 ζ3 −ζ3 − 1

ψ3 3 −1 0 0

Let

K = {{1}, {(12)(34)}, {(123), (124)}}

and

X = {{11}, {ψ1, ψ2}, {ψ3}}.

Then (X ,K) is a supercharacter theory in SupS4(A4). We have

(Y ,L) = ({{11}, {χ}}, {{A4}, (12)A4})

is a supercharacter theory for S4/A4, where χ(A4) = 1 and χ((12)A4) = −1.

Then

L̃◦ = {C(12) ∪ C(1234)}

and

K = {{1}, C(12)(34), C(123)}.

Also, as we can see from the character table of S4 in Example 2.1.1,

Y = {{11}, {χ1}}
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and

{ψ1, ψ2}S4 = {χ4},

{ψ3}S4 = {χ2, χ3},

and so

(X ◦)S4 = {{χ2, χ3}, {χ4}}.

Therefore,

(X ,K) ∗A4 (Y ,L) =
(
(X ◦)G ∪ Y ,K ∪ L̃◦

)
=

(
{{11}, {χ1}, {χ2, χ3}, {χ4}} ,

{
{1}, C(12) ∪ C(1234), C(12)(34), C(123)

})

is a supercharacter theory for S4.

2.5 The ∆-Product

Let G be a group and let N and M be normal subgroups of G such that N ⊆M .

Similar to the ∗-product, we can obtain another supercharacter theory from an

operation called the ∆-product, from the supercharacter theory C of M and

the supercharacter theory D of G/N , provided that C and D satisfy certain

conditions.

Let mG(N) be the finest supercharacter theory in SupG(N) and m(G/N)

be the finest supercharacter theory in Sup(G/N). We need a little notation. If

Z ⊆ Irr(G) is a union of sets of the form Irr(G|ψ) for various ψ ∈ Irr(N), let f(Z)
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denote the set of all irreducible constituents of ∑χ∈Z χN , so that (f(Z))G = Z.

Moreover, let φ : G→ G/N be the canonical homomorphism.

Definition. Let G be a group, let C = (X ,K) ∈ Sup(G), and let N be a union of

superclasses of C. Suppose (Y ,L) = mG(N)∗Nm(G/N). Writing (X∨Y ,K∨L) =

(Z,M) and defining φ and f as above, let

CN =
(
{f(Z) : Z ∈ Z, Z 6⊆ Irr(G/N)} ∪ {{1N}}, {M ∈M : M ⊆ N}

)

and

CG/N =
(
{Z ∈ Z : Z ⊆ Irr(G/N)}, {φ(M) : M ∈M, M 6⊆ N} ∪ {{N}}

)
.

Theorem 2.5.1. (Hendrickson 2012, Theorem 9.1) Let G be a group with nor-

mal subgroups N ≤ M ≤ G. Suppose C ∈ Sup(M) and D ∈ Sup(G/N) such

that

1. N is a union of the superclasses of C.

2. M/N is a union of the superclasses of D.

3. The “overlap” of the two theories on M/N is the same, i.e., CM/N = DM/N .

Then there exists a unique supercharacter theory E ∈ Sup(G) such that EM = C

and EG/N = D and every superclass outside M is a union of N-cosets. Using

our earlier notation, if C = (X ,K) and D = (Y ,L), then

E =
(
Y ∪ {XG : X ∈ X , X 6⊆ Irr(M/N)},K ∪ {L̃ : L ∈ L, L 6⊆M/N}

)
.
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We call this supercharacter theory the ∆-product of C and D. Denote by

Sup∆(G) the set of all supercharacter theory construction by the ∆-product.

Example 2.5.2. Let G = C2 × C2 × C2 = 〈a〉 × 〈b〉 × 〈c〉. Let N = 〈a〉 and

M = 〈a〉 × 〈b〉. The following are the character tables of G, M , and G/N .

1 c b bc a ac ab abc

11 1 1 1 1 1 1 1 1

χ1 1 −1 −1 1 −1 1 1 −1

χ2 1 −1 −1 1 1 −1 −1 1

χ3 1 −1 1 −1 −1 1 −1 1

χ4 1 −1 1 −1 1 −1 1 −1

χ5 1 1 −1 −1 −1 −1 1 1

χ6 1 1 −1 −1 1 1 −1 −1

χ7 1 1 1 1 −1 −1 −1 −1

1 b a ab

11 1 1 1 1

ψ1 1 −1 −1 1

ψ2 1 −1 1 −1

ψ3 1 1 −1 −1
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1 cN bN bcN

11 1 1 1 1

χ1 1 −1 −1 1

χ3 1 −1 1 −1

χ5 1 1 −1 −1

Note that

C = (X ,K) = ({{11}, {ψ1, ψ2}, {ψ3}} , {{1}, {a}, {a, ab}})

and

D = (Y ,L) = ({{11}, {χ1, χ3}, {χ5}} , {{1}, {bN}, {cN, bcN}})

are supercharacter theories for M and G/N respectively. Moreover, N is a union

of the superclasses of C, M/N is a union of the superclasses of D, and

CM/N =
({
{11}, {ψ2}

}
, {{N}, {bN}}

)
= DM/N .

Therefore by Theorem 2.5.1, we have

E =
(
Y ∪ {XG : X ∈ X , X 6⊆ Irr(M/N)},K ∪ {L̃ : L ∈ L, L 6⊆M/N}

)
=

({{11}, {χ2, χ6}, {χ4}, {χ3, χ5, χ7}} , {{1}, {a}, {b, ab}, {c, ac, bc, abc}})

is a supercharacter theory.
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2.6 Supercharacter Theory for Algebra Groups

In addition to the generalization of supercharacter theory to arbitrary groups,

Diaconis and Isaacs obtained a supercharacter theory for a large class of p-groups,

i.e., algebra groups; many authors have studied this supercharacter theory, for

instance, see André (1995), André and Neto (2006), Diaconis and Isaacs (2008),

Marberg and Thiem (2009), Thiem (2010), Thiem and Venkateswaran (2009),

Yan (2001). We now describe this supercharacter theory. We first need the

definition of arc diagram of a set partition of [n] = {1, 2, . . . , n}.

2.6.1 Set Partition

We represent every set partition of [n] by an arc diagram, i.e, if {λi : i ∈ I} is

a set partition of [n], we give it the following arc diagram representation λ,

{i_j : if i < j and i, j ∈ λk for some λk}.

For example the arc diagram representation of λ = {{1, 4}, {2}, {3, 5, 6}} is

1λ = 2 3 4 5 6
.

Also, we usually omit the labels from the nodes of arc diagrams. A Fq-set

partition of [n] is an arc diagram representation of a set partition in which

every arc is labeled by a non-zero element of Fq. For example an Fq-set partition
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of λ is
a1 a3 a4

,

Where a1, a2, and a3 are some non-zero elements of Fq. If ν is a set partition

of [n], we say that ν is nonnesting if there is no k < i < j < l such that

k _ l, i _ j ∈ ν. The following partition λ of [8] is nonnesting,

1λ = 2 3 4 5 6 7 8
,

while η is not nonnesting,

1
η =

2 3 4 5 6 7 8
.

2.6.2 A Supercharacter Theory for The Group of Unipotent Upper-

Triangular Matrices

Let J be a finite dimensional nilpotent associative algebra over a field F (without

unity), and let G = {1 + x : x ∈ J}. It is easy to see that G is a group with the

following multiplication

(1 + x)(1 + y) = 1 + x+ y + xy.

The group G, constructed in this way is the algebra group based on J .
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By using a two-sided action of G on J , we define a supercharacter theory

(X ,K) for G; the superclasses containing 1 + a, for a ∈ J , is the set

Ka = {1 + xay : x, y ∈ G, a ∈ J}.

Thus,

K = {Ka : a ∈ J}.

Let the dual of J denoted by J∗ be the space of F-linear functionals λ : J → F,

i.e., J∗ = Hom(J,F). The algebra group G has a the following two-sided action

on J∗,

(xλy)(a) = λ(x−1ay−1), for x, y ∈ G, a ∈ J,

and the number of two-sided orbits on J and J∗ are equal (Diaconis and Isaacs

2008, Lemma 4.1).

Now we construct the supercharacters. Fix a non-trivial homomorphism

θ : F+ → C×.

In other words, this map is any of the |F| − 1 non-trivial linear characters of the

additive group F+ of F. Choose an arbitrary F-linear functional λ in a two-sided

orbit on J∗, then define the function χλ(x) : G→ C by

χλ(x) = |λG|
|G(x− 1)G|

∑
a∈G(x−1)G

θ(λ(a)).
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This function is actually a character of G and is constant on superclasses; also

if λ and µ be in the same two-sided orbit on J∗, then χλ = χµ. Moreover, if Xλ

is the set of irreducible constituent of χλ, then {Xλ : λ ∈ J∗} is a partition of

Irr(G) (Diaconis and Isaacs 2008, Theorem 5.5 and Theorem 5.8). Therefore,

X = {Xλ : λ ∈ J∗}.

When we consider J as the set of strictly upper-triangular n × n matrices

nn, G turns to be UTn(q), the group of unipotent upper-triangular matrices over

the finite field Fq.

We can parametrize the superclasses of UTn(q) as follows,


Superclasses

of UTn(q)


m

The unipotent upper-triangular matrices

with at most one nonzero entry in each

row and column strictly above the diagonal


m{

Fq-Set Partitions of n
}
.

Therefore, we index supercharacters and superclasses by Fq-set partitions. The

following table lists the correspondences for n = 3.
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Superclasses

 1 0 0

0 1 0

0 0 1


 1 0 a

0 1 0

0 0 1


 1 a 0

0 1 0

0 0 1


 1 0 0

0 1 a

0 0 1


 1 a 0

0 1 b

0 0 1



1 2 3 1 2 3

a

1 2 3

a

1 2 3

a

1 2 3

a b

We usually use the notation Kλ and χλ for the superclasses and supercharacters

of this supercharacter theory respectively.

2.7 Nonnesting Supercharacter Theory for Unipotent

Upper-Triangular Matrices

Andrews (2015) constructed a supercharacter theory for UTn(Fq). This super-

character theory is coarser than the one defined by Diaconis and Isaacs (2008).

We now describe this supercharacter theory in this section. For proofs of the

results in this section refer to Andrews (2015).

Let η be an Fq-set partition, and define

sml(η) = {i a
_ j ∈ η | there are no k b

_ l ∈ η with i < k < l < j} and

big(η) = {i a
_ j ∈ η | there are no k b

_ l ∈ η with k < i < j < l}.
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For example when

η =
a5

a1
a4 a6 a7

a3a2

,

then we have

sml(η) =
a5a4 a6 a7

and

big(η) =

a1
a3a2

.

Note that both sml(η) and big(η) are nonnesting Fq-set partitions. These meth-

ods of producing a nonnesting Fq-set partition from an arbitrary Fq-set partition

both define equivalence relations on the set of Fq-set partitions, and in both cases

the equivalence classes are indexed by the nonnesting Fq-set partitions. For a

nonnesting Fq-set partition η, let

K[η] =
⋃

sml(ν)=η
Kν and

χ[η] =
∑

big(ν)=η
χν ,

where Kν and χν are the superclass and supercharacter corresponding to the

Fq-set partition ν, respectively.

There is an alternative description of the characters χ[η]. We first need to
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define a subgroup

Uη =
{
g ∈ UTn(Fq)

∣∣∣∣∣ gij = 0 if there exists k a
_ l ∈ η such that

(i, j) 6= (k, l) and k ≤ i < j ≤ l

}
.

For example if

1λ = 2 3 4 5 6 7 8
,

a1 a2 a3 a4

then we have

Uη =





1 0 0 ? • • • •

0 1 0 0 • • • •

0 0 1 0 ? • • •

0 0 0 1 0 • • •

0 0 0 0 1 0 ? •

0 0 0 0 0 1 0 ?

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1





,

where the star entries correspond to the arcs of η.

As a corollary, we can calculate the dimensions of the characters χ[η].

Corollary 2.7.1. (Andrews 2015, Corollary 5.2) Let η be a nonnesting Fq-set
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partition. Then χ[η](1) = |U : Uη|, and we have that if

a =

∣∣∣∣∣∣∣∣∣

 (i, j)
∣∣∣∣∣ i < j and there exists k a

_ l ∈ η with

(i, j) 6= (k, l) and k ≤ i < j ≤ l


∣∣∣∣∣∣∣∣∣,

then

|U : Uη| = qa.

We now calculate the values of the characters χ[η] on the elements of the sets

K[ν].

Proposition 2.7.2. (Andrews 2015, Proposition 5.3) Let η and ν be nonnesting

Fq-set partitions and let g ∈ K[ν]. Then

χ[η](g) =



χ[η](1)
∏

i
a
_j∈η
i
b
_j∈ν

θ(ab)
if there are no i a

_ j ∈ η and k b
_ l ∈ ν

with (i, j) 6= (k, l)and i ≤ k < l ≤ j,

0 otherwise.

We can now show that we have constructed a supercharacter theory of

UTn(Fq).

Theorem 2.7.3. (Andrews 2015, Theorem 5.4) The sets

{χ[η] | η is a nonnesting Fq-set partition}

and

{K[ν] | ν is a nonnesting Fq-set partition}

are the supercharacters and superclasses for a supercharacter theory of UTn(Fq).
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3 Normal Supercharacter Theories

3.1 Introduction

As we mentioned earlier, in order to find a tractable theory to substitute for the

wild character theory of the group of n× n unipotent upper-triangular matrices

over a finite field Fq, André and Yan introduced the notion of supercharacter

theory. In this thesis, we construct a supercharacter theory for a finite group

from an arbitrary set S of normal subgroups of G. We call such a supercharacter

theory the normal supercharacter theory generated by S.

Let Norm(G) be the set of all normal subgroups of G. The product of

two normal subgroups is a normal subgroup. Therefore, Norm(G) is a semi-

group. Let S ⊆ Norm(G). We define A(S) to be the smallest subsemigroup of

Norm(G) such that

1. {1}, G ∈ A(S).
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2. S ⊆ A(S).

3. A(S) is closed under intersection.

Note that A(S) always exists since Norm(G) satisfies 1, 2, and 3, and also

every element N ∈ A(S) is a normal subgroup of G. We define for an element

N ∈ A(S),

N◦A(S) := N \
⋃

H∈A(S),H⊂N
H,

In other words, N◦A(S) is the set of elements g for which the smallest normal

subgroup in A(S) containing g is N . For simplicity of notation, we write N◦

instead of N◦A(S) when it is clear that N is in A(S).

A subgroup of G is normal if and only if it is the union of a set of conjugacy

classes of G. We have an equivalent characterization of normality in terms of

the kernels of irreducible characters. Recall that the kernel of a character χ of

G is the set kerχ = {g ∈ G : χ(g) = χ(1)}.

A subgroup of G is normal if and only if it is the intersection of the kernels

of some finite set of irreducible characters (James and Liebeck 1993, Proposition

17.5); thus the normal subgroups of G are subgroups that we can construct from

the character table of G.

For each N ∈ A(S), let

XN := {ψ ∈ Irr(G) : N ⊆ kerψ}
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and

χN :=
∑

ψ∈XN
ψ(1)ψ.

Indeed, XN is the set of irreducible characters of G lifting from irreducible

characters of G/N . Therefore,

χN(g) = ρG/N(gN),

where ρG/N is the regular character of G/N . Define for every N ∈ A(S),

XN•

A(S) := XN \
⋃

K∈A(S):
N⊂K

XK ,

then

N =
⋂

ψ∈XN
kerψ,

and

χN
•

A(S) :=
∑

ψ∈XN•
A(S)

ψ(1)ψ.

By convention χN
•

A(S) = 0, whenever XN•

A(S) = ∅. For simplicity of notation, we

write XN• and χN• instead of XN•

A(S) and χN•A(S) respectively when it is clear that

N is in A(S).

In Theorem 3.2.3, we will show that for an arbitrary subset S ⊆ Norm(G),

(
{XN• 6= ∅ : N ∈ A(S)}, {N◦ 6= ∅ : N ∈ A(S)}

)
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is a supercharacter theory of G. We call this supercharacter theory the normal

supercharacter theory generated by S.

Note that when we have a larger set of normal subgroups, the normal su-

percharacter theory we obtain will be finer. In particular the finest normal

supercharacter theory is obtained when we consider the set of all normal sub-

groups of G, and is related to a partition of G given by certain values on the

primitive central idempotents.

The lattice of normal subgroups has been well studied (for example see Baer

(1938b), Birkhoff (2012), Jońsson (1954)); we show that every sublattice of the

lattice of normal subgroups of G containing the trivial subgroup and G yields a

normal supercharacter theory and vice versa.

A character χ of a group G is said to be integral if χ(g) ∈ Q for every ele-

ment g ∈ G; a supercharacter theory is said to be integral if its supercharacters

are integral.

In Section 3.2, we show that the normal supercharacter theory generated

by an arbitrary subset S ⊆ Norm(G) is integral. Furthermore, we provide a
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recursive formula for the supercharacters of any normal supercharacter theory.

In Section 3.3, we study the finest normal supercharacter theory and we show

that the finest normal supercharacter theory is obtained by considering certain

values of the primitive central idempotents. Also, It is shown that XN• is equal

to the set of all faithful irreducible characters of G/N . In the end of this section,

we provide an algorithm to construct the finest normal supercharacter theory

from the character table. In section 3.4, we argue that, in general, the nor-

mal supercharacter theory cannot be obtained by the constructions described in

Sections 2.2, 2.3, and 2.4. In the end, we study the relation between normal

supercharacter theory and Andrews’ construction.

3.2 Normal Supercharacter Theories

In this section we show that our constructions are indeed supercharacter theories

of G. Furthermore, we show that these supercharacter theories are integral.

Proposition 3.2.1. Let G be a group.

1. For any arbitrary subset S of Norm(G), A(S) is a sublattice of the lattice

of normal subgroups containing identity subgroup and G.

2. Every sublattice of the lattice of normal subgroups that contains the identity

subgroup and G is of the form A(S).
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Proof. (1) Note that A(S) is a poset with inclusion as the binary relation. Let

N,H ∈ A(S). Then the least upper bound of N and H exists and that is

NH ∈ A(S); also the the greater lower bound of N and H exists and that is

N∩H ∈ A(S). Therefore, A(S) is a sublattice of the lattice of normal subgroups

of G containing the trivial subgroup and G.

(2) Let L be a a sublattice of the lattice of normal subgroups of G containing

the trivial subgroup and G. Suppose S is the set of all elements of L. Then

A(S) = L.

Lemma 3.2.2. Let G be a group. Then the following holds for an arbitrary

subset S ⊆ Norm(G).

1.
{
XN• 6= ∅ : N ∈ A(S)

}
is a partition of Irr(G).

2. {N◦ 6= ∅ : N ∈ A(S)} is a partition of G.

Proof. Recall that for every N ∈ A(S),

N◦ = N \
⋃

H∈A(S),H⊂N
H.

Therefore, g ∈ N◦ if and only if N is the smallest normal subgroup in A(S)

containing g. This implies that N◦ ∩K◦ = ∅ for every pair of non-equal normal

subgroups N,K ∈ A(S). Also, since G ∈ A(S), for every g ∈ G there exists a

normal subgroup N ∈ A(S) such that g ∈ N◦. This completes the proof of (2).
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Recall that for every N ∈ A(S), XN := {ψ ∈ Irr(G) : N ⊆ kerψ} and

XN• := XN \
⋃

K∈A(S):
N⊂K

XK .

Therefore, XN• is the set of irreducible characters ψ of G such that if for a

normal subgroup H ∈ A(S), H ⊆ kerψ, then H ⊆ N . This implies that

XN• ∩ XK• = ∅ for every pair of non-equal normal subgroups N,K ∈ A(S).

Also, since X {1} = Irr(G), for every ψ ∈ Irr(G) there exists a normal subgroup

N ∈ A(S) such that ψ ∈ XN• . This completes the proof of (1).

Theorem 3.2.3. Let G be a group. Then for an arbitrary subset S ⊆ Norm(G),

(
{XN• 6= ∅ : N ∈ A(S)}, {N◦ 6= ∅ : N ∈ A(S)}

)

is an integral supercharacter theory of G. Moreover,

χN
•(g) =

∑
M∈A(S):
g∈M,N⊆M

µ(N,M) |G|
|M |

.

Proof. Let X = {XN• 6= ∅ : N ∈ A(S)} and K = {N◦ 6= ∅ : N ∈ A(S)}. By

Lemma 3.2.2, X is a partition of Irr(G) and K is a partition of G. Recall that

χN
• :=

∑
ψ∈XN•

A(S)

ψ(1)ψ.

We aim to show that (X ,K) is an integral supercharacter theory of G with the

set of supercharacters {χN• 6= 0 : N ∈ A(S)}. Therefore, we only need to show

the following holds.
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1. The set {1} is a member of K.

2. |X | = |K|.

3. The characters χN• are integral and constant on the parts of K.

Since {1} = {1}◦, {1} is a member of K. Therefore, (1) holds.

Define for every N ∈ A(S),

fN
◦(g) :=


1 if g ∈ N◦,

0 Otherwise.

Thus for K ∈ A(S) we have,

∑
N∈A(S):
N⊆K

fN
◦(g) =


1 if g ∈ K,

0 Otherwise.

Recall that

χK(g) = ρG/K(gK) =


|G|
|K| if g ∈ K,

0 Otherwise.

Therefore,

χK(g) = |G|
|K|

∑
N∈A(S):
N⊆K

fN
◦(g).

It follows from Möbius inversion formula (Lemma 1.2.1) that

fK
◦(g) =

∑
N∈A(S):
N⊆K

|N |
|G|

µ(N,K)χN(g).
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Since

χN =
∑

M∈A(S):
N⊆M

χM
•
,

we conclude that

fK
◦ =

∑
N∈A(S):
N⊆K

 |N ||G| ∑
M∈A(S):
N⊆M

µ(N,K)χM•

 .
Therefore,

C-Span{χN• : N ∈ A(S)} = C-Span{fN◦ : N ∈ A(S)}.

Note that

|X | = dim
(
C-Span{χN• : N ∈ A(S)}

)
= dim

(
C-Span{fN◦ : N ∈ A(S)}

)
= |K|.

We can see that (2) holds.

Since

χN =
∑

M∈A(S):
N⊆M

χM
•
,

by the dual of Möbius inversion formula (Lemma bbc1.2.2) we have

χN
• =

∑
M∈A(S):
N⊆M

µ(N,M)χM .

Note that

χM(g) = ρG/M(gM) =


|G|
|M | if g ∈M,

0 Otherwise.
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It follows that

χN
•(g) =

∑
M∈A(S):
g∈M,N⊆M

µ(N,M) |G|
|M |

.

Let h, h1 ∈ H◦ ∈ K. Then for every normal subgroup M of G, h ∈ M if and

only if H◦ ⊆ M if and only if h1 ∈ M . So χN
•(h) = χN

•(h1). Thus, χN• is

integral and constant on each part of K. Therefore, (3) holds.

In the following theorem we give a recursive formula for supercharacter χN•

of the normal supercharacter theory generated by S ⊆ Norm(G).

Theorem 3.2.4. Let G be a group and let S be an arbitrary subset of Norm(G).

Then for any normal subgroup N ∈ A(S)

χN
•(g) =



∑
ψ∈XN•

ψ(1)2 g ∈ N,

−
∑

K∈A(S):
N⊂K

χK
•(g) g 6∈ N.

Proof. Let N ∈ A(S). Consider the following two cases.

Case 1. g ∈ N . We have

χN
•(g) =

∑
ψ∈XN•

ψ(1)ψ(g).

For every ψ ∈ XN• , we see that N ⊆ ker ψ. Thus, ψ(g) = ψ(1). Therefore,

χN
•(g) =

∑
ψ∈XN•

ψ(1)2.

57



Case 2. g 6∈ N . Note that

Irr (G/N) = {ψ : ψ ∈ XN} =
⋃

K∈A(S):
N⊆K

{ψ : ψ ∈ XK•}.

Therefore,

ρG/N =
∑

K∈A(S):
N⊆K

∑
ψ∈XK•

ψ(N)ψ.

Thus,

0 = ρG/N(gN) =
∑

K∈A(S):
N⊆K

∑
ψ∈XK•

ψ(N)ψ(gN) =

∑
ψ∈XK• :

N⊂K∈A(S)

ψ(1)ψ(gN) +
∑

ψ∈XN•
ψ(1)ψ(gN) =

∑
ψ∈XK• :

N⊂K∈A(S)

ψ(1)ψ(g) +
∑

ψ∈XN•
ψ(1)ψ(g) =

∑
ψ∈XK• :

N⊂K∈A(S)

ψ(1)ψ(g) + χN
•(g).

It follows that

χN
•(g) = −

∑
ψ∈XK• :

N⊂K∈A(S)

ψ(1)ψ(g).

Also,
∑

ψ∈XK• :
N⊂K∈A(S)

ψ(1)ψ(g) =
∑

N⊂K∈A(S)
χK

•(g).
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Thus,

χN
•(g) = −

∑
N⊂K∈A(S)

χK
•(g).

We can conclude from Cases 1 and 2 that

=



∑
ψ∈XN•

χ(1)2 g ∈ N,

−
∑

N⊂K∈A(S)
χK

•(g) g 6∈ N.

Example 3.2.5. Let G = C4 × C4 = 〈a〉 × 〈b〉. The following is the character

table of G.

1 b b2 b3 a ab ab2 ab3 a2 a2b a2b2 a2b3 a3 a3b a3b2 a3b3

11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

χ1 1 −1 1 −1 −1 1 −1 1 1 −1 1 −1 −1 1 −1 1

χ2 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1

χ3 1 1 1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1

χ4 1 −1 1 −1 −ζ4 ζ4 −ζ4 ζ4 −1 1 −1 1 ζ4 −ζ4 ζ4 −ζ4

χ5 1 −1 1 −1 ζ4 −ζ4 ζ4 −ζ4 −1 1 −1 1 −ζ4 ζ4 −ζ4 ζ4

χ6 1 1 1 1 −ζ4 −ζ4 −ζ4 −ζ4 −1 −1 −1 −1 ζ4 ζ4 ζ4 ζ4

χ7 1 1 1 1 ζ4 ζ4 ζ4 ζ4 −1 −1 −1 −1 −ζ4 −ζ4 −ζ4 −ζ4

χ8 1 −ζ4 −1 ζ4 −1 ζ4 1 −ζ4 1 −ζ4 −1 ζ4 −1 ζ4 1 −ζ4

χ9 1 ζ4 −1 −ζ4 −1 −ζ4 1 ζ4 1 ζ4 −1 −ζ4 −1 −ζ4 1 ζ4

χ10 1 −ζ4 −1 ζ4 1 −ζ4 −1 ζ4 1 −ζ4 −1 ζ44 1 −ζ4 −1 ζ4

χ11 1 ζ4 −1 −ζ4 1 ζ4 −1 −ζ4 1 ζ4 −1 −ζ4 1 ζ4 −1 −ζ4

χ12 1 −ζ4 −1 ζ4 −ζ4 −1 ζ4 1 −1 ζ4 1 −ζ4 ζ4 1 −ζ4 −1

χ13 1 ζ4 −1 −ζ4 ζ4 −1 −ζ4 1 −1 −ζ4 1 ζ4 −ζ4 1 ζ4 −1

χ14 1 −ζ4 −1 ζ4 ζ4 1 −ζ4 −1 −1 ζ4 1 −ζ4 −ζ4 −1 ζ4 1

χ15 1 ζ4 −1 −ζ4 −ζ4 1 ζ4 −1 −1 −ζ4 1 ζ4 ζ4 −1 −ζ4 1
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The following is the supercharacter table of the normal supercharacter theory

generated by

S = {〈a2〉 × 〈b2〉, 〈a2〉 × 1, 1× 〈b2〉}.

For the lattice of A(S) see Example 1.2.3. Let χi1,...,ik := χi1 + . . .+ χik .

{1} {a2} {b2} {a2b2} G \ 〈a2〉 × 〈b2〉

11 1 1 1 1 1

χ1,2,3 3 3 3 3 −1

χ4,5,6,7 4 −4 4 −4 0

χ8,9,10,11 4 4 −4 −4 0

χ12,13,14,15 4 −4 −4 4 0

3.3 Primitive Central Idempotents, Faithful Irreducible

Characters, and The Finest Normal Supercharacter

Theory

In this section we investigate the connection between primitive central idem-

potents, faithful irreducible characters, and the finest normal supercharacter

theory.
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3.3.1 Primitive Central Idempotents and The Finest Normal Super-

character Theory

Let Cg be the conjugacy class of group G containing g. For every subset K ⊆ G,

let K̂ = ∑
k∈K k. By (Lam 1991, Proposition 8.15 (1)) every character χ ∈ Irr(G)

has a corresponding primitive central idempotent in the group algebra CG

eχ = χ(1)
|G|

∑
g∈G

χ(g−1)g.

These idempotents are orthogonal, i.e. eχeψ = 0 when χ, ψ ∈ Irr(G) and χ 6= ψ.

Also by (Lam 1991, Proposition 8.15 (2))

Ĉg =
∑
i

|Cg|
χi(1)χi(g)eχi .

Therefore,

|Cg|1− Ĉg = |Cg|1−
∑
i

|Cg|
χi(1)χi(g)eχi = |Cg|

(
1−

∑
i

1
χi(1)χi(g)eχi

)
=

|Cg|
(∑

i

eχi −
∑
i

1
χi(1)χi(g)eχi

)
= |Cg|

(∑
i

(
1− 1

χi(1)χi(g)
)
eχi

)
.

Thus,

1− 1
|Cg|

Ĉg =
∑
i

(
1− χi(g)

χi(1)

)
eχi =

∑
i

(
1− χi(g)

χi(1)

)
eχi .
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Using the last equation i.e., 1− 1
|Cg |Ĉg = ∑

i

(
1− χi(g)

χi(1)

)
eχi , we will produce some

subsets of primitive irreducible characters of G. Define for an element g ∈ G,

Eg :=
{
eχi : 1− χi(g)

χi(1) 6= 0
}

and Kg :=
⋃

Eg=Eh
Ch.

In other words, Kg is corresponding to all elements |Cg|1 − Ĉg with the same

annihilator in CG.

Since each irreducible character has a corresponding primitive central idem-

potent, we will see that some subsets of the primitive central idempotents gives a

supercharacter theory. But every partition of primitive central idempotents does

not corresponded to a supercharacter theory and it is not clear when a partition

of primitive central idempotents is related to a supercharacter theory. We show

that the set {Eg : g ∈ G} corresponds to the finest normal supercharacter theory

which is the one generated by S = Norm(G).

Example 3.3.1. Let D8 = 〈a, x|a4 = x2 = 1, xax = a3〉. The following is the
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character table of D8.

{1} {ax, a3x} {x, ax} {a, a3} {a2}

11 1 1 1 1 1

χ1 1 −1 −1 1 1

χ2 1 −1 1 −1 1

χ3 1 1 −1 −1 1

χ4 2 0 0 0 −2

We have E1 = {}, Eax = Ea3x = {χ1, χ2, χ4}, Ex = Eax = {χ1, χ3, χ4}, Ea =

Ea3 = {χ2, χ3, χ4}, and Ea2 = {χ4}. Also, K1 = {1}, Kax = Ka3x = {ax, a3x},

Kx = Kax = {x, ax}, Ka = Ka3 = {a, a3}, and Ka2 = {a2}.

Lemma 3.3.2. Let G be a group and let S be the set of all normal subgroups of

G and let g ∈ G. If

N =
⋂

χ∈Irr(G)\{χi:eχi∈Eg}
kerχ,

then Kg = N◦A(S).

Proof. Let k ∈ Kg. Then Ek = Eg, and so k ∈ kerχ for every χ ∈ Irr(G) \ {χi :

eχi ∈ Eg}. Therefore, k ∈ N . Let H be a normal subgroup of G such that

H ⊂ N . Then at least there is an irreducible character ψ ∈ Irr(G) such that

H ⊆ kerψ, but N 6⊆ kerψ. If k ∈ H, then

k ∈
⋂

χ∈Irr(G)\{χi:eχi∈Eg}
kerχ ∩ kerψ,
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and so Ek 6= Eg. Thus, k 6∈ Kg, yielding a contradiction. Therefore, k is in N ,

but k is not in any normal subgroup of G such that H ⊂ N , i.e., k ∈ N◦. So

Kg ⊆ N◦.

Let h ∈ N◦. Then Eh ⊆ Eg. If Eg 6= Eh, there is an irreducible character

ψ ∈ {χi : eχi ∈ Eg} such that h ∈ kerψ. Let H = N ∩ kerψ. Then h 6∈

N \ (N ∩ kerψ). Therefore, h 6∈ N◦, yielding a contradiction. We can conclude

that Eg = Eh, and so h ∈ Kg. Thus, N◦ ⊆ Kg.

Theorem 3.3.3. Let G be a group and let S be the set of all normal subgroups

of G.

1. For every g ∈ G, there is a normal subgroup N of G such that Kg = N◦.

2. Let N be a normal subgroup of G. If N◦A(S) 6= ∅, then for every g ∈ N◦A(S),

Kg = N◦A(S).

Proof. (1) Let

N =
⋂

χ∈Irr(G)\{χi:eχi∈Eg}
kerχ.

Then by Lemma 3.3.2, Kg = N◦.

(2) Let N be a normal subgroup of G such that N◦ 6= ∅. Let g ∈ N◦. We show

that Kg = N◦. Assume that N = ⋂
i∈I kerχi. If there is an irreducible character

χ ∈ Irr(G) \ {χi : i ∈ I} such that g ∈ kerχ, then g ∈ H = ⋂
i∈I kerχi ∩ kerχ.
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Thus, g ∈ H ⊂ N , and so g 6∈ N◦, yielding a contradiction. Therefore, Eg =

{eχ : χ ∈ Irr(G) \ {χi : i ∈ I}}. By Lemma 3.3.2, Kg = N◦.

As a result of Theorem 3.3.3 we have the following corollary.

Corollary 3.3.4. Let G be a group. Then the finest normal supercharacter

theory of G has

{Kg : g ∈ G}

as the set of superclasses.

Let G be a group. Then for every subset X of G we define the normal

closure or conjugate closure of X by

NG(X) := 〈gxg−1 : x ∈ X, g ∈ G〉 =
⋂

N∈Norm(G):
X⊆N

N.

When X = {g} for some g ∈ G, we denote by gG the normal closure of X. For

every element g ∈ G, let [g] = {h ∈ G : gG = hG}.

Lemma 3.3.5. Let G be a group and S be the set of all normal subgroups of

G. Let N be a normal subgroup of G. If N◦A(S) 6= ∅, then for every g ∈ N◦A(S),

[g] = N◦A(S).

Proof. Let g ∈ N◦ 6= ∅. Then gG ⊆ N . Assume that h ∈ [g] but h 6∈ N◦. Then

there exists a normal subgroup H of G such that h ∈ H, and so hG ⊆ H. Thus

gG = hG ⊆ H, i.e, g 6∈ N◦, a contradiction. Therefore, [g] ⊆ N◦.
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We now show that N◦ ⊆ [g]. Let h ∈ N◦. If hG 6= gG, then hG is a normal

subgroup of G such that hG ⊂ N . Thus h 6∈ N◦, a contradiction. Therefore,

N◦ ⊆ [g] for every g ∈ N◦.

Theorem 3.3.6. Let G be a group. Then the finest normal supercharacter theory

of G has

{[g] : g ∈ G}

as the set of superclasses.

Proof. Note that {N◦ 6= ∅ : N ∈ Norm(G)} is a partition of G and also by

Lemma 3.3.5 every N◦ 6= ∅ is equal to [g] for some g ∈ G. We can conclude that

{[g] : g ∈ G} = {N◦ 6= ∅ : N ∈ Norm(G)},

which is the set of superclasses of the finest normal supercharacter theory of

G.

3.3.2 Faithful Irreducible Characters and The Finest Normal Super-

character Theory

A character ψ of a group G is called faithful if ker ψ is trivial. In this subsection,

we investigate the connection between faithful irreducible characters and the

finest normal supercharacter theory.
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For a normal subgroup N of G, define

XN := {ψ ∈ Irr(G) : ψ is a faithful irreducible character of G/N}

and

χN =
∑
ψ∈XN

ψ(1)ψ.

Proposition 3.3.7. Let G be a group. Then the set of supercharacters for the

finest normal supercharacter theory is

{χN 6= 0 : N ∈ Norm(G)}.

Proof. It is enough to show that

{XN 6= ∅ : N ∈ Norm(G)} = {XN• 6= ∅ : N ∈ Norm(G)}.

For an arbitrary normal subgroup of N , let ψ ∈ XN• . By the definition of

XN• , we have N ⊆ kerψ but K 6⊆ kerψ for any normal subgroup K of G with

N ⊂ K. Since kerψ is a normal subgroup, we can conclude that kerψ = N .

Therefore, we have ψ is a faithful irreducible character of G/N , and so ψ ∈ XN .

Now, let ψ ∈ XN . Then N = kerψ, and so ψ ∈ XN• . We can conclude that

XN = XN• .
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3.3.3 Constructing the Supercharacter Table of the Finest Normal

Supercharacter Theory From the Character Table

For a n× n matrix T = (tij) define

Tj = {(k, j) : tkj = 1} and T i = {(i, k) : tik = 1}.

The following steps constructs the finest normal supercharacter theory of a given

group G from its character table.

1. Divide each row i of the character table T of G by χi(1). Denote the new

table by A.

2. Rearrange the columns of A such that two columns i and j are consecutive

if Ai = Aj. Denote the new table by B.

3. Draw some vertical lines in B to distinguish the classification of conjugacy

classes with the same Ai. This lines make a partition of G, and this par-

tition is the set of superclasses of the finest normal supercharacter theory

of G.

4. Rearrange the rows of B such that two rows i and j are consecutive if

Bi = Bj. Denote the new table by C.

5. Draw some horizontal lines in C to distinguish the classification of ir-

reducible characters with the same Bi. These lines make a partition of
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Irr(G). This partition is the partition of irreducible characters of the finest

normal supercharacter theory of G.

Note that this algorithm works since the first three steps give us the parti-

tion {Kg : g ∈ G} and the last three steps give us the partition {XN : N ∈

Norm(G)}.

Example 3.3.8. (1) Let G = C3×C3 = 〈a〉 × 〈b〉. We construct the superchar-

acter table for the finest normal supercharacter theory of G.

1 b b2 a ab ab2 a2 a2b a2b2

11 1 1 1 1 1 1 1 1 1

χ2 1 1 1 −ζ3 − 1 −ζ3 − 1 −ζ3 − 1 ζ3 ζ3 ζ3

χ3 1 1 1 ζ3 ζ3 ζ3 −ζ3 − 1 −ζ3 − 1 −ζ3 − 1

χ4 1 −ζ3 − 1 ζ3 1 −ζ3 − 1 ζ3 1 −ζ3 − 1 ζ3

χ5 1 ζ3 −ζ3 − 1 1 ζ3 −ζ3 − 1 1 ζ3 −ζ3 − 1

χ6 1 −ζ3 − 1 ζ3 −ζ3 − 1 ζ3 1 ζ3 1 −ζ3 − 1

χ7 1 ζ3 −ζ3 − 1 ζ3 −ζ3 − 1 1 −ζ3 − 1 1 ζ3

χ8 1 −ζ3 − 1 ζ3 ζ3 1 −ζ3 − 1 −ζ3 − 1 ζ3 1

χ9 1 ζ3 −ζ3 − 1 −ζ3 − 1 1 ζ3 ζ3 −ζ3 − 1 1

⇓
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1 b b2 a a2 ab2 a2b ab a2b2

11 1 1 1 1 1 1 1 1 1

χ2 1 1 1 −ζ3 − 1 ζ3 −ζ3 − 1 ζ3 ζ3 −ζ3 − 1

χ3 1 1 1 ζ3 −ζ3 − 1 ζ3 −ζ3 − 1 −ζ3 − 1 ζ3

χ4 1 −ζ3 − 1 ζ3 1 1 ζ3 −ζ3 − 1 −ζ3 − 1 ζ3

χ5 1 ζ3 −ζ3 − 1 1 1 −ζ3 − 1 ζ3 − 1 ζ3 −ζ3 − 1

χ6 1 −ζ3 − 1 ζ3 −ζ3 − 1 ζ3 1 1 ζ3 −ζ3 − 1

χ7 1 ζ3 −ζ3 − 1 ζ3 −ζ3 − 1 1 1 −ζ3 − 1 ζ3

χ8 1 −ζ3 − 1 ζ3 ζ3 −ζ3 − 1 −ζ3 − 1 ζ3 1 1

χ9 1 ζ3 −ζ3 − 1 −ζ3 − 1 ζ3 ζ3 −ζ3 − 1 1 1

⇓

1 b b2 a a2 ab2 a2b ab a2b2

11 1 1 1 1 1 1 1 1 1

χ2 1 1 1 −ζ3 − 1 ζ3 −ζ3 − 1 ζ3 ζ3 −ζ3 − 1

χ3 1 1 1 ζ3 −ζ3 − 1 ζ3 −ζ3 − 1 −ζ3 − 1 ζ3

χ4 1 −ζ3 − 1 ζ3 1 1 ζ3 −ζ3 − 1 −ζ3 − 1 ζ3

χ5 1 ζ3 −ζ3 − 1 1 1 −ζ3 − 1 ζ3 − 1 ζ3 −ζ3 − 1

χ6 1 −ζ3 − 1 ζ3 −ζ3 − 1 ζ3 1 1 ζ3 −ζ3 − 1

χ7 1 ζ3 −ζ3 − 1 ζ3 −ζ3 − 1 1 1 −ζ3 − 1 ζ3

χ8 1 −ζ3 − 1 ζ3 ζ3 −ζ3 − 1 −ζ3 − 1 ζ3 1 1

χ9 1 ζ3 −ζ3 − 1 −ζ3 − 1 ζ3 ζ3 −ζ3 − 1 1 1

⇓

The set of supercharacters of the finest normal supercharacter theory is

{{11}, {χ2, χ3}, {χ4, χ5}, {χ6, χ7}, {χ8, χ9}}
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The set of superclasses of the finest normal supercharacter theory is

{{1}, {a, a2}, {b, b2}, {ab2, a2b}, {ab, a2b2}}.

⇓

Here is the supercharacter table for the finest normal supercharacter theory of

G.
{1} {b, b2} {a, a2} {ab2, a2b} {ab, a2b2}

11 1 1 1 1 1

χ2 + χ3 2 2 −1 −1 −1

χ4 + χ5 2 −1 2 −1 −1

χ6 + χ7 2 −1 −1 2 −1

χ8 + χ9 2 −1 −1 −1 2

(2) We construct the supercharacter table for the finest normal supercharacter

theory of S3.

e (12) (123)

11 1 1 1

χ1 1 −1 1

χ2 2 0 −1

⇓

71



e (12) (123)

11 1 1 1

χ1 1 −1 1

χ2 2 0 −1

⇓

e (12) (123)

11 1 1 1

χ1 1 −1 1

χ2 2 0 −1

This shows that the finest normal supercharacter theory is the same as the char-

acter theory of S3.

(3) We construct the supercharacter table for the finest normal supercharacter

theory of S4.

e (12) (12)(34) (123) (1234)

11 1 1 1 1 1

χ1 1 −1 1 1 −1

χ2 3 1 −1 0 −1

χ3 3 −1 −1 0 1

χ4 2 0 2 −1 0

72



⇓

e (12)(34) (123) (12) (1234)

11 1 1 1 1 1

χ1 1 1 1 −1 −1

χ2 3 −1 0 1 −1

χ3 3 −1 0 −1 1

χ4 2 2 −1 0 0

⇓

e (12)(34) (123) (12) (1234)

11 1 1 1 1 1

χ1 1 1 1 −1 −1

χ2 3 −1 0 1 −1

χ3 3 −1 0 −1 1

χ4 2 2 −1 0 0

⇓

The set of supercharacters of the finest normal supercharacter theory is

{{11}, {χ2}, {χ2, χ3}, {χ4}}

The set of superclasses of the finest normal supercharacter theory is

{{e}, C(12)(34), C(123), C(12) ∪ C(1234)}.
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⇓

Here is the supercharacter table for the finest normal supercharacter theory of

S4.

{e} C(12)(34) C(123) C(12) ∪ C(1234)

11 1 1 1 1

χ1 1 1 1 −1

3χ2 + 3χ3 18 −6 0 0

2χ4 4 4 −2 0

3.4 NSup(G) is not a subset of the union of AutSup(G),

ACSup(G), and Sup∗(G)

In the following example we show that there is a normal supercharacter theory

which is not in the union of AutSup(G), ACSup(G), and Sup∗(G). Since two

different supercharacter theories have different sets of superclasses, we only work

with the set of superclasses. A superclass theory for a group G is the set of

superclasses of a supercharacter theory of G.

Example 3.4.1. Let G = C3 × C4 = 〈a〉 × 〈b〉. Define

K1 :=
{
{1}, {a}, {a2}, {b}, {b3}, {ab}, {ab3}, {a2b}, {a2b3}, {b2}, {ab2}, {a2b2}

}
,

K2 :=
{
{1}, {a, a2}, {b}, {b3}, {ab, a2b}, {ab3, a2b3}, {b2}, {ab2, a2b2}

}
,
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K3 :=
{
{1}, {a}, {a2}, {b, b3}, {ab, ab3}, {a2b, a2b3}, {b2}, {ab2}, {a2b2}

}
,

K4 :=
{
{1}, {a, a2}, {b, b3}, {ab, a2b3}, {a2b, ab3}, {b2}, {ab2, a2b2}

}
.

K5 :=
{
{1}, {a, a2}, {b, b3}, {ab, ab3, a2b, a2b3}, {b2}, {ab2, a2b2}

}
,

K6 :=
{
{1}, {a}, {a2}, {b, ba, ba2}, {b2, b2a, b2a2}, {b3, b3a, b3a2}

}

K7 :=
{
{1}, {a}, {a2}, {b, ba, ba2, b2, b2a, b2a2, b3, b3a, b3a2}

}
,

K8 :=
{
{1}, {a}, {a2}, {b, ba, ba2, b3, b3a, b3a2}, {b2, b2a, b2a2}

}
,

K9 :=
{
{1}, {a, a2}, {b, ba, ba2}, {b2, b2a, b2a2}, {b3, b3a, b3a2}

}
,

K10 :=
{
{1}, {a, a2}, {b, ba, ba2, b2, b2a, b2a2, b3, b3a, b3a2}

}
,

K11 :=
{
{1}, {a, a2}, {b, ba, ba2, b3, b3a, b3a2}, {b2, b2a, b2a2}

}
,

K12 :=
{
{1}, {b2}, {b, b3}, {a, ab2, ab, ab3}, {a2, a2b2, a2b, a2b3}

}
,

K13 :=
{
{1}, {b2}, {a, ab2, a2, a2b2}, {b, b3, ab, ab3, a2b, a2b3}

}
,

K14 :=
{
{1}, {b2}, {b, b3}, {a, ab2, a2, a2, a2b2, ab, ab3, a2b, a2b3}

}
,

K15 :=
{
{1}, {b2}, {b, b3}, {a, ab2, a2, a2b2}, {ab, ab3, a2b, a2b3}

}
,

K16 :=
{
{1}, {b}, {b2}, {b3}, {a, ab, ab2, ab3}, {a2, a2b, a2b2, a2b3}

}
,

K17 :=
{
{1}, {b}, {b2}, {b3}, {a, ab, ab2, ab3, a2, a2b, a2b2, a2b3}

}
,

K18 :=
{
{1}, {b, b2, b3}, {a, ab, ab2, ab3}, {a2, a2b, a2b2, a2b3}

}
,

K19 :=
{
{1}, {b, b2, b3}, {a, ab, ab2, ab3, a2, a2b, a2b2, a2b3}

}
,
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K20 :=
{
{1}, {b2}, {a, a2}, {ab2, a2b2}, {b, ba, ba2, b3, b3a, b3a2}

}
,

K21 :=
{
{1}, {b, b2, b3}, {a, a2}, {ab2, a2b2, ba, ba2, b3a, b3a2}

}
,

K22 :=
{
{1}, {b2}, {b, b3}, {a, a2}, {ab2, a2b2}, {ba, ba2, b3a, b3a2}

}
.

K23 :=
{
{1}, {b2}, {b, b3, a, a2, ab2, a2b2, ba, ba2, b3a, b3a2}

}
.

K24 :=
{
{1}, {b2, a, a2, ab2, a2b2}, {b, b3, ba, ba2, b3a, b3a2}

}
.

The group of automorphisms of G is the set of the following four automor-

phisms.

α1 =


a 7→ a

b 7→ b

, α2 =


a 7→ a2

b 7→ b

, α3 =


a 7→ a

b 7→ b3

,

α4 =


a 7→ a2

b 7→ b3.

Therefore, Aut(G) has five subgroups

{α1}, {α1, α2}, {α1, α3}, {α1, α4}, and {α1, α2, α3, α4}.

Let A act by automorphisms on G, and α : A → Aut(G) be the corresponding

group homomorphism.
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If the image of α is {α1}, {α1, α2}, {α1, α3}, {α1, α4}, or {α1, α2, α3, α4}

then the set of superclasses theories coming from these actions are K1, K2, K3,

K4, or K5, respectively. Therefore, the set of superclass theories in AutSup(G)

is

{K1,K2,K3,K4,K5} .

To have the list of all superclass theories coming from ∗-product, we need to

choose a subgroup.

If we choose 〈a〉 × 1. Then we have the following set of superclass theories,

{K6,K7,K8,K9,K10,K11} .

If we choose 1× 〈b2〉. Then we have the following set of superclass theories,

{K12,K13,K14,K15,K23} .

If we choose 1× 〈b〉. Then we have the following set of superclass theories,

{K12,K14,K16,K17,K18,K19} .

If we choose 〈a〉 × 〈b2〉. Then we have the following set of superclass theories,

{K8,K11,K13,K20,K24} .

Therefore, the set of superclass theories in Sup∗(G) is

{Ki : 6 ≤ i ≤ 20, 23 ≤ i ≤ 24} .
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We now want to classify all supercharacter theories coming from the action

of a group of automorphism of Q[ζ12], where ζ12 is a 12th primitive root of unity.

We have

Aut(Q[ζ12]) = {β1, β2, β3, β3}

where

β1(ζ12) = ζ12, β1(ζ12) = ζ5
12, β1(ζ12) = ζ7

12, and β1(ζ12) = ζ11
12 .

If we have A1 = {β1}, A2 = {β1, β2}, A3 = {β1, β3}, A4 = {β1, β4} and A5 =

{β1, β2, β3, β4}, then the set of superclass theories coming from these actions are

K1,K2,K3,K4 and K5, respectively. Therefore, the set of superclass theories in

ACSup(G) is

{K1,K2,K3,K4,K5} .

Now we show that K21 is a superclass theory in NSup(G), and so NSup(G)

is not a subset of the union of AutSup(G), ACSup(G), and Sup∗(G).

Here is the lattice of normal subgroups of 〈a〉 × 〈b〉.
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{1}

〈a〉 × 1

1× 〈b2〉

1× 〈b〉

〈a〉 × 〈b2〉

G

If we choose the whole lattice, then the set of superclasses of the superchar-

acter theory coming from this sublattice is K22.

If we choose the following sublattice

{1}

〈a〉 × 1 1× 〈b〉

G

79



then the set of superclasses of the supercharacter theory coming from this sublat-

tice is K21.

If we choose the following sublattice

1× 〈b2〉

〈a〉 × 〈b2〉 1× 〈b〉

G

{1}

then the set of superclasses of the supercharacter theory coming from this sublat-

tice is K15.

If we choose the following sublattice
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{1}

〈a〉 × 1 1× 〈b2〉

〈a〉 × 〈b2〉

G

then the set of superclasses of the supercharacter theory coming from this sublat-

tice is K20.

If we choose the following sublattice

{1}

〈a〉 × 1

〈a〉 × 〈b2〉

G
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then the set of superclasses of the supercharacter theory coming from this sublat-

tice is K11.

If we choose the following sublattice

{1}

1× 〈b2〉

〈a〉 × 〈b2〉

G

then the set of superclasses of the supercharacter theory coming from this sublat-

tice is K13.

If we choose the following sublattice
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{1}

1× 〈b2〉

1× 〈b〉

G

then the set of superclasses of the supercharacter theory coming from this sublat-

tice is K15.

If we choose the following sublattice

{1}

1× 〈b2〉

G

then the set of superclasses of the supercharacter theory coming from this sublat-

tice is K23.

If we choose the following sublattice
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{1}

1× 〈b〉

G

then the set of superclasses of the supercharacter theory coming from this sublat-

tice is K19.

If we choose the following sublattice

{1}

〈a〉 × 1

G

then the set of superclasses of the supercharacter theory coming from this sublat-

tice is K10.

If we choose the following sublattice
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{1}

〈a〉 × 〈b2〉

G

then the set of superclasses of the supercharacter theory coming from this sublat-

tice is K24.

Therefore, the set of superclass theories in NSup(G) is

{K10,K11,K13,K15,K19,K20,K21,K22,K23,K24} .

We can see that K21 and K22 is not in the union of ACSup(G), AutSup(G), and

Sup∗(G).

We now classify the supercharacter theories for S4 to show that when we do

not have many normal subgroups, we do not have many supercharacter theories.
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Example 3.4.2. Let G = S5. Here is the character table of S5.

1 (12) (12)(34) (123) (123)(45) (1234) (12345)

11 1 1 1 1 1 1 1

χ1 1 −1 1 1 −1 −1 1

χ2 4 −2 0 1 1 0 −1

χ3 5 −1 1 −1 −1 1 0

χ4 6 0 −2 0 0 0 1

χ5 5 1 1 −1 1 −1 0

χ6 4 2 0 1 −1 0 −1

Define

K1 := {{1}, {(12)}, {(123)(45)}, {(1234)}, {(12)(34)}, {(123)}, {(12345)}} ,

K2 := {{1}, {(12), (123)(45), (1234)}, {(12)(34)}, {(123)}, {(12345)}} ,

K3 := {{1}, {(12), (123)(45), (1234)}, {(12)(34), (123), (12345)}} ,

K4 := {{1}, {(12), (123)(45), (1234), (12)(34), (123), (12345)}} .

Every automorphism of Sn maps every conjugacy class to itself so the only su-

percharacter theory that comes from actions of automorphisms is K1.

Given α in a group A of automorphisms of the cyclotomic field Q[ζ5!], α

carries out the class of the permutation σ to itself since the cycle type of σ

and σr, where r and the order of σ are coprime, are the same. Therefore, the
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only supercharacter theory that comes from the action of automorphisms of the

cyclotomic field Q[ζ5!] is K1.

We know list the superclass theories in Sup∗(S5). The character table of the

unique non-trivial normal subgroup of S5, i.e., A5, is as follows.

1 (12)(34) (123) (12345) (12354)

11 1 1 1 1 1

χ1 3 −1 0 ζ3
5 + ζ2

5 + 1 −ζ3
5 − ζ2

5

χ2 3 −1 0 −ζ3
5 − ζ2

5 ζ3
5 + ζ2

5 + 1

χ3 4 0 1 −1 −1

χ4 5 1 −1 0 0

Let CA5
g denote the conjugacy class of A5 containing g. The normal subgroup

A5, has three superclass theories as follows,

L1 =
{
{1}, CA5

(12)(34), C
A5
(123), C

A5
(12345), C

A5
(12354)

}
,

L2 =
{
{1}, CA5

(12)(34), C
A5
(123), C

A5
(12345) ∪ C

A5
(12354)

}
,

and

L3 =
{
{1}, CA5

(12)(34) ∪ C
A5
(123) ∪ C

A5
(12345) ∪ C

A5
(12354)

}
.

Only superclasses in L2 and L3 are union of conjugacy classes of S5. Therefore,

they can be used to build supercharacter theories for S5.
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If we choose L2 for A5, then we can build K2 by ∗-product, and if we choose

L3, then we can build K3 by ∗-product. It follows that the superclass theories

coming from ∗-product are

{K2,K3,K4}.

Now, we will classify all supercharacter theories in NSup(G). Here is the

lattice of normal subgroups of S5.

{1}

A5

S5

We have two sublattices containing the trivial subgroup and S5. The first sublat-

tice is the whole lattice of normal subgroups of S5, so the set of superclasses of

the supercharacter theory coming from this sublattice is K3. The other sublattice

is the following,

{1}

S5
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The set of superclasses of the supercharacter theory coming from this sublattice

is K4.

Therefore, the set of superclass theories in NSup(S5) is

{K3,K4}.

3.5 Star Product and Normal Supercharacter Theories

We now investigate the relation between normal supercharacter theories and star

product. Moreover we show that normal supercharacter theories are a join of

some star products.

3.5.1 Star-Normal Supercharacter Theories

Let S be a set of normal subgroups of a group G. Assume that in the lattice of

A(S) we have vertices N and M such that the only vertex right below M is N

and the only vertex right above N is M .

For example in the following lattice we can have N = 〈a, b〉 and M = 〈a, b, c〉
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(|a| = 4, |b| = 4, |c| = 4).

e

〈b2〉

〈a, b2〉 〈b〉

〈a, b〉

〈a, b, c〉

Now let (Y ,L) be a supercharacter theory for M/N such that

Y =
⋃

yN∈Y
yN

is a union of conjugacy classes of G (we usually say that (Y ,L) is G-invariant).

For every subset X of G, denote by X̂, the sum of all elements in X.

Let

K = {H◦, Y : H ∈ A(S) \ {M}, Y ∈ Y \ {N}}

and

V = C-span{K̂ : K ∈ K}.

It is easy to see that K is a partition of G, and {1} ∈ K. So if we show that V

is a subalgebra of Z(C[G]), then K is the set of superclasses of a supercharacter
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theory (See Proposition 2.4 of Hendrickson (2012)).

Lemma 3.5.1. The subspace V is a subalgebra of Z(C[G]).

Proof. We only need to show that for arbitrary H,K ∈ A(S) \ {M}, and

Y,W ∈ Y \ {N}, we have

(1) ĤK̂ ∈ V.

(2) ĤŶ ∈ V.

(3) Ŷ Ŵ ∈ V.

Note that ĤK̂ ∈ C-span{N̂◦ : N ∈ A(S)}. Since M̂◦ = ∑
Y ∈Y\{N} Ŷ , we

have C-span{N̂◦ : N ∈ A(S)} ⊆ V. Therefore, ĤK̂ ∈ V. This completes the

proof of (1).

It is clear that

Ŷ =
∑
yN∈Y

yN̂.

Thus,

ĤŶ = Ĥ
∑
yN∈Y

yN̂ =
∑
yN∈Y

yN̂Ĥ.

Since the only vertex above N is M in the lattice of A(S), we have two cases:
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Case 1. M ⊆ NH. Then if yN ∈ Y , y ∈ M ⊆ NH. Therefore, yN̂Ĥ =

nyN̂Ĥ for some positive integer ny. Thus,

ĤŶ =
∑
yN∈Y

nyN̂Ĥ ∈ C-span{N̂◦ : N ∈ A(S)} ⊆ V.

Case 2. NH ⊂ M . Note that the only vertex above N is M in the lattice

of A(S), so we must have H ⊆ N . Therefore, yN̂Ĥ = nHyN̂ for some positive

integer nH . Thus

ĤŶ = nH
∑
yN∈Y

yN̂ ∈ C-span{Ŷ } ⊆ V.

So (2) holds.

We have

Ŷ Ŵ ∈ Cspan-{Ŷ : Y ∈ Y}.

Also, when Y = {N}, then

Ŷ =
∑

L∈A(S):L⊆N
L◦.

We can conclude that

Ŷ Ŵ ∈ V.

Thus, (3) holds.
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The following theorem follows from the lemma above.

Theorem 3.5.2. Let L be a sublattice of the lattice of normal subgroups of G

containing the trivial subgroup and G. Assume that L has two vertices M and

N such that the only vertex right below M is N and the only vertex right above

N is M . Now let (Y ,L) be a supercharacter theory for M/N such that

Y =
⋃

yN∈Y
yN

is a union of conjugacy classes of G. Then

K = {H◦, Y : H ∈ L \ {M}, Y ∈ Y \ {N}}

is a superclass theory for G.

3.5.2 Connection Between Normal Supercharacter Theories and Star

Products

If we have a set S, then there is a natural way to make Part(S), the set

of all partitions of S, a lattice in which p ≤ q whenever blocks of q be a

union of blocks of p. Let Sup(G) be the set of all supercharacter theories of

G. We define the following ordering on Sup(G). Let (X ,K) and (Y ,L) ∈

Sup(G). Then (X ,K) ≤ (Y ,L) if K ⊆ L, or equivalently X ⊆ Y . How-

ever, Sup(G) is not a lattice by defining (X ,K) ∨ (Y ,L) := (X ∨ Y ,K ∨ L)
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and (X ,K) ∧ (Y ,L) := (X ∧ Y ,K ∧ L), because although (X ∨ Y ,K ∨ L) is

a supercharacter theory, (X ∧ Y ,K ∧ L) is not (see (Hendrickson 2012, Sec-

tion 3)). However, the meet of arbitrary supercharacter theories of the form

(XN ,KN) = ({Irr(N)\1, 1}, {{1}, N \1})∗ ({Irr(G/N)\1, 1}, {{1}, G/N \1}),

where N is a normal subgroups of G, is a supercharacter theory. More espe-

cially we have the following theorem. Also, this theorem has independently been

proved by Shawn Burkett, a Ph.D student under the supervision of Professor

Nat Thiem from University of Colorado at Boulder. His result builds upon some

of the earlier work of the thesis.

Theorem 3.5.3. Let A be a set of arbitrary normal subgroups. Then

∧
N∈A

(XN ,KN)

is a supercharacter theory. Moreover, if (X ,K) is the normal supercharacter

theory generated by S, then

(X ,K) =
∧

N∈A(S)
(XN ,KN).

Proof. It is enough to show that

∧
N∈A(S)

(XN ,KN)
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has the same superclasses as (X ,K) the normal supercharacter theory generated

by S. Precisely, the set of ∧N∈A(S)(XN ,KN) is

∧
N∈A(S)

{{1}, N \ {1}, G \N}.

Let p ∈ ∧N∈A(S){{1}, N\{1}, G\N}. Then there is a normal subgroup N ∈ A(S)

such that p ∩N◦ 6= ∅. It is easy to see that N◦ = p. Thus,

∧
N∈A(S)

(XN ,KN) ⊆ {N◦ 6= ∅ : N ∈ A(S)} = K.

Now let N◦ ∈ K. Assume that p ∈ ∧
N∈A(S){{1}, N \ {1}, G \ N} such that

p ∩N◦ 6= ∅. Then it is easy to see that p = N◦. Therefore,

∧
N∈A(S)

(XN ,KN) = {N◦ 6= ∅ : N ∈ A(S)} = K.
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4 Normal Supercharacter Theories and

Non-Nesting Partitions

It’s a hard task to classify all the irreducible characters of an algebra group,

as we mentioned before the classification of irreducible characters of the fam-

ily of unipotent upper-triangular matrices is wild. In this chapter we construct

a supercharacter theory for unipotent-upper triangular matrices by using the

normal pattern subgroups. The supercharacters we obtain for unipotent upper-

triangular matrices are indexed by Dyck paths. Andrews (2015) constructed a

supercharacter theory for upper-triangular matrices in which superclasses and

supercharacters are indexed by Fq-set partitions (for details see section 2.7). The

torus group acts on the superclasses and supercharacters of Andrews’ construc-

tion. We show that the orbits of this action gives a supercharacter theory that

is identical with the normal supercharacter theory generated by normal pattern

subgroups.
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4.1 Background and Definitions

In this section we present some examples of algebra groups.

4.1.1 Some Examples of Algebra Groups

Algebra group is a group of the form 1 +J where J is a finite dimensional nilpo-

tent associative algebra over a finite field Fq. Let I(J) be the set of all two-sided

ideals of J .

Example 1. Let

UTn(q) =





1 a12 a13 · · · a1(n−2) a1(n−1) a1n

0 1 a23 · · · a2(n−2) a2(n−1) a2n

0 0 1 · · · a3(n−2) a3(n−1) a3n

... ... ... ... ... ... ...

0 0 0 · · · 0 1 a(n−1)n

0 0 0 · · · 0 0 1



: aij ∈ Fq



.
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Then UTn(q) = 1 + J where

J =





0 a12 a13 · · · a1(n−2) a1(n−1) a1n

0 0 a23 · · · a2(n−2) a2(n−1) a2n

0 0 0 · · · a3(n−2) a3(n−1) a3n

... ... ... ... ... ... ...

0 0 0 · · · 0 0 a(n−1)n

0 0 0 · · · 0 0 0



: aij ∈ Fq



.

4.1.2 Pattern Groups

Pattern groups are some algebra groups which can be defined in terms of par-

tial ordering. Fix a positive integer n and let P be a partial order on [n] =

{1, 2, . . . , n}, i.e.,

P ⊆ JnK = {(i, j) : 1 ≤ i < j ≤ n}.

We can depict Hasse diagram of P , which is the diagram whose vertices are

1, 2, . . . , n and if (i, j) ∈ P , then a line is drawn upward from i to j. For example

let

P =

4

3

21

where n = 4. Then P = {(1, 3), (1, 4), (2, 3), (2, 4), (3, 4)}.
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The pattern group UP is the subgroup of UTn(q) given by

UP := {g ∈ UTn(q) : gij = 0 if (i, j) 6∈ P}.

Note that UTn is the pattern group correspond to the poset P = JnK.

Another example is coming from the local rings. Let (R,m) be a Artinian

local ring such that |R/m| < ∞. Then m is a finite dimensional nilpotent

associative algebra over a finite field, and so 1 +m is an algebra group. Diaconis

and Thiem (2009) used the poset structure to describe a variety of group theoretic

structures such as the center, the Frattini subgroups, etc.

4.2 A Normal Supercharacter Theory Corresponding to

Dyck Paths

In this section we construct a supercharacter theory in which every superclass

and supercharacter is correspond to a Dyck path.
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4.2.1 Normal Pattern Subgroups of UTn(q)

Fix a positive integer n and let [n] = {1, 2, . . . , n}. Given a labeled poset P on

JnK, we say that P is normal in JnK and write P C JnK if

(i, l) 6∈ P imlies (j, k) 6∈ P , for all 1 ≤ i ≤ j < k ≤ l ≤ n. (4.2.1)

or equivalently, P C JnK if and only if (j, k) ∈ P implies (i, l) ∈ P for all

1 ≤ i ≤ j < k ≤ l ≤ n. Also, we define normal pattern subgroup UP of

UTn(q) by

UP = {X ∈ UTn(q) : Xij = 0 if i < j and (i, j) 6∈ P}.

This lemma shows when normal pattern subgroups are correspond to normal

posets.

Lemma 4.2.1. (Marberg 2011, Lemma 4.1) If P is a poset on JnK, then UP C

UTn(q) if and only if P C JnK.

Let UP ⊆ UR be pattern groups with corresponding posets P and R. Let RP

be the set of pairs given by

(i, j) ∈ R
P
, if (i, j) ∈ R and (i, j) 6∈ P .

Note that RP is not necessarily a poset.
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Lemma 4.2.2. (Marberg and Thiem 2009, Lemma 2.1) Let UP ⊆ UR be pattern

groups. Then

UR/UP = {u ∈ UR : uij 6= 0 implies (i, j) ∈ R
P
}

is a set of left coset representatives for UR/UP and a set of right coset represen-

tatives for UP\UR.

Now by using the above lemma we show that the product and intersection of

normal pattern subgroups of UTn(q) are normal pattern subgroups of UTn(q).

Lemma 4.2.3. The product and intersection of any two normal pattern sub-

groups of UTn(q) are normal pattern subgroups of UTn(q).

Proof. Let UP and UR be normal pattern subgroups with corresponding normal

posets P and R. We show that R∪P is a normal poset and also URUP = UP∪R.

Assume that (i, j), (j, k) ∈ P∪R, then we have either (without loss of generality)

(i, j) ∈ P and (j, k) ∈ R or (i, j) and (j, k) are in the same poset. In the former

case (i, k) ∈ P ∪ R since 1 ≤ i < j ≤ k and P is a normal poset. In the

latter case it is clear that (i, k) ∈ P ∪ R because both P and R are posets.

Therefore, P ∪R is a poset. To show that P ∪R is normal, given an arbitrary

pair (i, j) ∈ P ∪ R, we have (i, j) is in one of the normal posets, thus for every

1 ≤ l ≤ i < j ≤ k ≤ n, we have (l, k) ∈ P ∪ R. Therefore, P ∪ R is a normal

poset.

101



Since UP , UR ⊆ UP∪R, we have UPUR ⊆ UP∪R. By Lemma 4.2.2,

|UR∪P | = |UR∪P/UP | |UP |

and also

|URUP | =
|UR||UP |
|UR ∩ UP |

.

Note that (R ∪ P)/P is {(i, j) ∈ R ∪ P : (i, j) 6∈ P} which is same as {(i, j) ∈

R : (i, j) 6∈ P}. Therefore

|UR∪P/UP | =
|UR|

|UR ∩ UP |
.

This implies that |UR∪P | = |URUP | and so UR∪P = URUP . Since P and R are

two arbitrary normal posets, the product of any two normal pattern subgroups

of UTn(q) is a normal pattern subgroup of UTn(q).

Also, it is clear from the definitions that UP∩UR = UP∩R is a normal pattern

subgroup since P ∩R is a normal poset on JnK.

Example 4.2.4. Here is the lattice of A({UP : P C J3K}).
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As a result of (Marberg 2011, Corollary 4.1) and (Shapiro 1975, Proposition

2) we have the following corollary.

Corollary 4.2.5. The number of normal subposets P C JnK is the nth Catalan

number Cn = 1
n+1

(
2n
n

)
.

Corollary 4.2.6. The normal supercharacter theory generated by

{UP : P C JnK}

has Cn superclasses and supercharacter which are

{U◦P : P C JnK} and {χU•P : P C JnK}

respectively.
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Proof. Construct the normal supercharacter theory generated by

{UP : P C JnK}.

Since by Lemma 4.2.3 the product and intersection of two normal pattern sub-

groups are normal pattern subgroups, we have

A(UP : P C JnK) = {UP : P C JnK}.

We show that the normal supercharacter theory generated by

{UP : P C JnK}

has Cn supercharacters and superclasses. We know that

{U◦P : P C JnK}

is the set of superclasses of the normal supercharacter theory generated by

{UP : P C JnK}.

This is true that U◦P 6= ∅ since the matrix X ∈ UTn(q) with Xij 6= 0 if (i, j) ∈ P ,

is in UP , but not in any UQ where Q is a normal poset with UQ ⊂ UP . By

Corollary 4.2.5,

|{U◦P : P C JnK}| = Cn.
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By the diagonal of a n × n gird we mean the line from upper left corner

to lower right corner of the gird. Every normal pattern subgroup of UTn(q) is

correspond to a path above the diagonal of a n × n gird, for more details see

(Marberg 2011, Section 4). For example,

UP =





1 ∗ ∗ ∗

1 0 ∗

1 ∗

1




corresponds to

• • · · ·

· • • • ·

· · · • ·

· · · • •

· · · · •

As a result of Theorems 3.2.3 and 3.2.4, we have the following Proposition.

Proposition 4.2.7. Let x ∈ U◦Q

χU
•
P (x) =



∑
RCJnK:
UQ≤UR

µ(UQ, UR) |UTn(q)|
|UR|

UQ ⊆ UP ,

−
∑
RCJnK:
UQ<UR

 ∑
T CJnK:

UQ≤UT ,UR≤UT

µ(UR, UT ) |UTn(q)|
|UT |

 UQ 6⊆ UP ,

and

χU
•
P (x) =

∑
RCJnK:

UP ,UQ⊆UR

µ(UP , UR) |UTn(q)|
|UR|

. (4.2.2)
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Example 4.2.8. The Hasse diagram of A(S), where S is the set of all normal

pattern subgroups of UT4(q).

Example 4.2.9. The supercharacter table of the normal supercharacter theory

generated by all normal pattern subgroups of UT4(q). Let t = q − 1.
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1 1 1 1 1 1 1 1 1 1 1 1 1 1

t t t t t −1 t −1 t t −1 −1 t −1

t t t t −1 t t t −1 t −1 t −1 −1

t t t t t t t t t −1 t −1 −1 −1

t2 t2 t2 t2 −t −t t2 −t −t t2 1 −t −t 1

t2 t2 t2 t2 t2 −t t2 −t t2 −t −t 1 −t 1

t2 t2 t2 t2 −t t2 t2 t2 −t −t −t −t 1 1

t3 t3 t3 t3 −t2 −t2 t3 −t2 −t2 −t2 t t t −1

q2t q2t q2t −q2 0 q2t −q2 −q2 0 0 0 0 0 0

q2t q2t −q2 q2t q2t 0 −q2 0 −q2 0 0 0 0 0

q2t2 q2t2 −q2t q2t2 −q2t 0 −q2t 0 q2 0 0 0 0 0

q2t2 q2t2 q2t2 −q2t 0 −q2t −q2t q2 0 0 0 0 0 0

q3t2 q3t2 −q3t −q3t 0 0 q3 0 0 0 0 0 0 0

q5t −q5 0 0 0 0 0 0 0 0 0 0 0 0

Another parametrization for superclasses and supercharacters is by non-

nesting partitions. Let λ be a non-nesting set partition define two normal pattern

subgroups Mλ and Nλ of UTn(q) as below

Mλ =

g ∈ UTn(q) :
gkl = 0 unless there exists

i _ j ∈ λ with k ≤ i < j ≤ l


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and

Nλ =
{
g ∈ UTn(Fq)

∣∣∣∣∣ gij = 0 if there exists k _ l ∈ λ such that

(i, j) 6= (k, l) and k ≤ i < j ≤ l

}
.

Also for a non-nesting Fq-set partition η we define

Uη =
{
g ∈ UTn(Fq)

∣∣∣∣∣ gij = 0 if there exists k a
_ l ∈ η such that

(i, j) 6= (k, l) and k ≤ i < j ≤ l

}
.

Lemma 4.2.10. Let λ be a non-nesting set partition. Then Mλ and Nλ are

normal pattern subgroups.

Proof. Let

P :=
{

(i, j) : i < j, ∃g ∈Mλ such that gij 6= 0
}
.

We show that P is normal in JnK and UP = Mλ. Let (k, l) and (l,m) be elements

of P . Then there exists i _ j ∈ λ such that k ≤ i < j ≤ l. And since l < m,

there is an element g ∈ Mλ such that gkm 6= 0, and so (k,m) ∈ P and P is a

poset. Also, it is clear from the definition of Mλ that P is normal, and Mλ = UP .

Similarly, we can show that there is a normal poset

Q :=
{

(i, j) : i < j, ∃g ∈ Nλ such that gij 6= 0
}

in JnK such that Nλ = UQ.
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4.3 Identification with Andrews’ construction

The Torus group Tn(q) is the group of invertible matrices with only nonzero

entries on the diagonal, i.e.,

Tn(q) = {t ∈ GLn(Fq) : tij = 0 if i 6= j}.

Define an action of UTn(q)× UTn(q)× Tn(q) on the set

{K[η] : η is a non-nesting Fq-set partition}

by

(a, b, t)K[η] =
{
t(a(u− In)b−1)t−1 : u ∈ K[η]

}

for a, b ∈ UTn(q) and t ∈ Tn(q). For every Fq-set partition λ, let δ(λ) be the set

partition obtained from omitting the labels on arcs in λ. For instance if λ is

a1 a3 a4
,

then δ(λ) is

.

Note that ⋃K∈O(K[η]) K is the union of all Kλ such that δ(λ) = η. For every set

partition λ let

Kλ :=
⋃

K∈O(K[η]):
δ(η)=λ

K.
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We aim to construct a supercharacter theory with the set of superclasses

{Kλ : λ is a non-nesting set partition}. The supercharacters are also indexed by

non-nesting set partitions, and are easiest to describe via their character formula.

For every g ∈ Kγ define

Ψλ(g) =
∑

η∈NNSn(q):
δ(η)=λ

χ[η].

Proposition 4.3.1. The pair

({Kλ : λ ∈ NNSn}, {Ψλ : λ ∈ NNSn})

is a supercharacter theory for UTn(q). Moreover, for every g ∈ Kγ,

Ψλ(g) =



cλ
∑
a,b∈Fq

∏
i_j∈λ
i_j∈γ

θ(ab)

if there are no i _ j ∈ λ and

k _ l ∈ γ with (i, j) 6= (k, l)

i ≤ k < l ≤ j

0 otherwise,

where cλ = |UTn(q) : Uη| for every η ∈ NNSn(q) with δ(η) = λ.

Proof. It is clear that {Kλ : λ ∈ NNSn} is a partition of G and {Ψλ : λ ∈

NNSn} is a set of characters which their constituents are all irreducible char-

acters of UTn(q) and each pair of these characters have no common irreducible

characters in their constituents. So it is enough to show that every Ψλ is constant

on every Kγ for λ, γ ∈ NNSn.
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Since all Fq-set partitions η with δ(η) = λ have the same shape, By Propo-

sition 2.7.2, for every g ∈ Kγ = ⋃
K∈O(K[η]):
δ(η)=γ

K, we have

Ψλ(g) =



∑
η,ω∈NNSn(q):

δ(η)=λ
δ(ω)=γ

χ[η](1)∏
i
a
_j∈η
i
b
_j∈ω

θ(ab)

if there are no i _ j ∈ λ and

k _ l ∈ γ with (i, j) 6= (k, l)

i ≤ k < l ≤ j

0 otherwise.

Remember that

χ[η](1) = |UTn(q) : Uη| = q|{(i,j):i<j and there exists k a_l∈η with (i,j)6=(k,l) and k≤i<j≤l}|

is independent from labeling. Therefore, for every η1 and η2 in NNSn(q) with

δ(η1) = δ(η2) = λ, it follows χ[η1](1) = χ[η2](1) = cλ. Therefore,

Ψλ(g) =



cλ
∑
η,ω∈NNSn(q):

δ(η)=λ
δ(ω)=γ

∏
i
a
_j∈η
i
b
_j∈ω

θ(ab)

if there are no i _ j ∈ λ and

k _ l ∈ γ with (i, j) 6= (k, l)

i ≤ k < l ≤ j

0 otherwise.
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We conclude that

Ψλ(g) =



cλ
∑
a,b∈Fq

∏
i_j∈λ
i_j∈γ

θ(ab)

if there are no i _ j ∈ λ and

k _ l ∈ γ with (i, j) 6= (k, l)

i ≤ k < l ≤ j

0 otherwise.

The last expression shows that Ψλ(g) is independent from labeling, and so we

can see that Ψλ(g) is constant for every g ∈ Kγ.

Example 4.3.2. The supercharacter table of supercharacter theory

({Kλ : λ ∈ NNS4}, {Ψλ : λ ∈ NNS4}) .
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• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

• • • • 1 1 1 1 1 1 1 1 1 1 1 1 1 1

• • • • t t t t t −1 t −1 t t −1 −1 t −1

• • • • t t t t −1 t t t −1 t −1 t −1 −1

• • • • t t t t t t t t t −1 t −1 −1 −1

• • • • t2 t2 t2 t2 −t −t t2 −t −t t2 1 −t −t 1

• • • • t2 t2 t2 t2 t2 −t t2 −t t2 −t −t 1 −t 1

• • • • t2 t2 t2 t2 −t t2 t2 t2 −t −t −t −t 1 1

• • • • t3 t3 t3 t3 −t2 −t2 t3 −t2 −t2 −t2 t t t −1

• • • • q2t q2t q2t −q2 0 q2t −q2 −q2 0 0 0 0 0 0

• • • • q2t q2t −q2 q2t q2t 0 −q2 0 −q2 0 0 0 0 0

• • • • q2t2 q2t2 −q2t q2t2 −q2t 0 −q2t 0 q2 0 0 0 0 0

• • • • q2t2 q2t2 q2t2 −q2t 0 −q2t −q2t q2 0 0 0 0 0 0

• • • • q3t2 q3t2 −q3t −q3t 0 0 q3 0 0 0 0 0 0 0

• • • • q5t −q5 0 0 0 0 0 0 0 0 0 0 0 0

Note that the above table is same as the table in Example 4.2.9 after reorder-

ing the rows. This leads us to the following theorem.

Theorem 4.3.3. The supercharacter theory

({Kλ : λ ∈ NNSn}, {Ψλ : λ ∈ NNSn})

is the same as the normal supercharacter theory generated by normal pattern
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subgroups. More specially

Kλ = M◦
λ and χN

•
λ = χλ.

Proof. We claim that

M◦
λ =

g ∈ UTn(q) :
gij 6= 0 for all i _ j ∈ λ, and gkl = 0 unless

there exists i _ j ∈ λ with k ≤ i < j ≤ l

 .
Let g ∈Mλ. Assume that for some i _ j ∈ λ, gij = 0. Let

λ1 =
{
k _ l ∈ λ : k _ l 6= i _ j

}
∪ A

where

A =



{i− 1 _ j, i _ j − 1} if j 6= n, i 6= 1

{i− 1 _ j} if j = n, i 6= 1

{i _ j − 1} if j 6=, i = 1

∅ if j = n, i = 1.

We can see that g ∈Mλ1 and Mλ1 ⊂Mλ, so g 6∈M◦
λ . This proves the claim.

Note that

K[η] =
{
g ∈ UTn(Fq)

∣∣∣∣∣ gij = a for all i
a
_ j ∈ η and gkl = 0 unless

there exists i a
_ j ∈ η with k ≤ i < j ≤ l

}
.

So it is easy to see that

⋃
η∈NNSn(q):
δ(η)=λ

K[η] =

g ∈ UTn(q) :
gij 6= 0 for all i _ j ∈ λ, and gkl = 0 unless

there exists i _ j ∈ λ with k ≤ i < j ≤ l

 .
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Therefore, the supercharacters of normal supercharacter theory generated by

normal pattern subgroups are a multiple constant of supercharacters of Andrews’

construction glued by two-sided torus action, i.e., {Ψλ : λ ∈ NNSn(q)}. We will

show that precisely they are same and

χN
•
λ(g) = Ψλ(g).

First we show that

χN
•
λ(1) = Ψλ(1).

Note that

χ[η](1) = |UTn(q) : Uη|,

and so

Ψλ(1) =
∑

η∈NNSn(q):
δ(η)=λ

χ[η](1) = (q − 1){#i_j∈λ}|UTn(q) : Uη|.

By Theorem 3.2.3

χN
•
λ(1) =

∑
Nλ⊆M

µ(Nλ,M)|UTn(q) : M | = (q − 1){#i_j∈λ}|UTn(q) : Nλ| (4.3.1)

Since Uη and Nλ has the same cardinality, therefore,

χN
•
λ(1) = Ψλ(1).

This shows that actually the set of two supercharacters {χN•λ : λ ∈ NNSn} and
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{Ψλ : λ ∈ NNSn} are the same. Let g ∈ Nλ. Then

χN
•
λ(g) = χN

•
λ(1) = Ψλ(1) =

∑
η∈NNSn(q):
δ(η)=λ

χ[η](1) =
∑

η∈NNSn(q)
δ(η)=λ

∑
big(ν)=η

χν(1).

As a result of (Marberg 2011, Lemma 4.5), we have

∑
η∈NNSn(q)
δ(η)=λ

∑
big(ν)=η

χν(1) =
∑

η∈NNSn(q)
δ(η)=λ

∑
big(ν)=η

χν(g) = Ψλ(g).

Therefore,

χN
•
λ(g) = χN

•
λ(1) = Ψλ(1) = Ψλ(g)

for every g ∈ Nλ. So Nλ ⊆ ker Ψλ.

From 4.3.1 we have that the supercharacters in {χN•λ : λ ∈ NNSn} and

{Ψλ : λ ∈ NNSn} with same degree are identical, i.e., for a fix positive integer

d,

{χNλ• : χNλ•(1) = d, λ ∈ NNSn} = {Ψλ : Ψλ(1) = d, λ ∈ NNSn}.

Moreover the only characters in the both sets that has Nλ in their kernels are

χNλ
• and Ψλ. Therefore,

χN
•
λ(g) = Ψλ(g)

for all g ∈ UTn(q).

116



4.3.1 Inflation of Normal Supercharacter Theory Generated by Pat-

tern Subgroups of UTn(q)

Let CSC(UTn(q)) be the vector space generated by the set of supercharacters

of normal supercharacter theory generated by normal pattern subgroups, i.e.,

CSC(UTn(q)) = C-Span{χM•λ : λ ∈ NNSn}.

Let

CSC =
⊕
n≥0

CSC(UTn(q)),

where by convention we let

CSC(UT0(q)) = C-{χM
•
∅0},

where ∅0 is the empty set partition of the set with 0 elements.

Throughout this section we identify χM•λ by χλ. Furthermore, we write λ ≤ ω

when Mλ ⊆Mω. Define a product on CSC by

χ · ψ = InfUTm+n(q)
UTm(q)×UTn(q)(χ× ψ) = (χ× ψ) ◦ π,

where χ ∈ CSC(UTm(q)), ψ ∈ CSC(UTn(q)), and Inf is the inflation functor

coming from the quotient map

π : UTm+n(q) −→

 UTm(q) 0

0 UTn(q)

 ∼= UTm(q)× UTn(q).
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Let λ ∈ NNSm and µ ∈ NNSn, denote by λ _ µ the arc diagram of seating

λ and µ side by side and adding m to the nodes of µ and then connect m and

m+ 1 by an arc.

Example 4.3.4. Let

1λ = 2 3 4
.

and

1
µ =

2 3 4 5
.

Then

1
λ _ µ =

2 3 4
.

5 6 7 8 9

Theorem 4.3.5. Let λ ∈ NNSm and µ ∈ NNSn. Then

InfUTm+n
UTm×UTn(χλ × χµ) = χλ_µ.

Proof. Let g ∈ M◦
ν and π(M◦

ν ) = M◦
ν1 ⊗ M◦

ν2 . Then π(g) = g1 ⊗ g2 where

g1 ∈M◦
νm and g2 ∈M◦

νn . Note that νm = ν|[m] and νn = ν|[m+n]\[m]. By 4.2.2,

χλ(g1) =
∑

η1∈NNSm:
νn≤η1,λ≤η1

µ(λ, η1) |UTm|
|Mη1 |

and

χµ(g2) =
∑

η2∈NNSn:
νm≤η2,µ≤η2

µ(µ, η2) |UTn|
|Mη2|

.
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Therefore,

(χλ × χµ)(g1 ⊗ g2) = χλ(g1).χµ(g2) =

∑
η1∈NNSm:
νm≤η1,λ≤η1

µ(λ, η1) |UTm|
|Mη1|

∑
η2∈NNSn:
νn≤η2,µ≤η2

µ(µ, η2) |UTn|
|Mη2|

=

∑
η1∈NNSm:
η2∈NNSn:
νm≤η1,λ≤η1
νn≤η2,µ≤η2

µ(λ, η1)µ(µ, η2) |UTm||UTn|
|Mη1||Mη2|

.

Note that
|UTm||UTn|
|Mη1||Mη2|

= |UTm+n|
|Mη1_η2|

,

λ _ µ ≤ η1 _ η2 if and only if λ ≤ η1 and µ ≤ η2,

µ(λ, η1)µ(µ, η2) = µ(λ _ µ, η1 _ η2)

, and

νm ≤ η1 and νn ≤ η2 if and only if ν ≤ η1 _ η2.

Also, λ _ ν ≤ η if and only if η can be written as η1 _ η2, where η1 ∈ NNSm

and η2 ∈ NNSn. Therefore,

(χλ × χµ)(g1 ⊗ g2) =

∑
η∈NNSm+n:
ν≤η,λ_µ≤η

µ(λ _ µ, η) |UTm+n|
|Mη|

= χλ_µ.

As our choose of M◦
ν , λ, and µ are arbitrary, we conclude that for all λ ∈ NNSm

and µ ∈ NNSn,

InfUTm+n
UTm×UTn(χλ × χµ) = χλ_µ.
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Example 4.3.6.

InfUTn+m
UTn×UTm(χ × χ ) = χ .
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C. André. Irreducible characters of finite algebra groups, in: Matrices and Group
Representations. in: Textos Mat. Sér. B, 19, 1998.

C. André. The basic character table of the unitriangular group. J. Algebra, 241,
2001.
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