IMPROVING THE LOGGING PRACTICES IN DEVOPS

BOYUAN CHEN

A DISSERTATION SUBMITTED TO THE FACULTY OF GRADUATE STUDIES
IN PARTIAL FULFILMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

GRADUATE PROGRAM IN ELECTRICAL ENGINEERING AND COMPUTER
SCIENCE
YORK UNIVERSITY
TORONTO, ONTARIO

OCTOBER 2020

© BOYUAN CHEN, 2020

Abstract

DevOps refers to a set of practices dedicated to accelerating modern software engineering
process. It breaks the barriers between software development and I'T operations and aims
to produce and maintain high quality software systems. Software logging is widely used in
DevOps. However, there are few guidelines and tool support for composing high quality
logging code and current application context of log analysis is very limited with respect to
feedback for developers and correlations among other telemetry data.

In this thesis, we first conduct a systematic survey on the instrumentation techniques used
in software logging. Then we propose automated approaches to improving software logging
practices in DevOps by leveraging various types of software repositories (e.g., historical,
communication, bug, and runtime repositories). We aim to support the software development
side by providing guidelines and tools on developing and maintaining high quality logging
code. In particular, we study historical issues in logging code and their fixes from six popular
Java-based open source projects. We found that existing state-of-the-art techniques on
detecting logging code issues cannot detect a majority of the issues in logging code. We
also study the use of Java logging utilities in the wild. We find the complexity of the use of
logging utilities increases as the project size increases. We aim to support the I'T operation
side by enriching the log analysis context. In particular, we propose a technique, LogCoCo,
to systematically estimate code coverage via executing logs. The results of LogCoCo are
highly accurate under a variety of testing activities. Case studies show that our techniques
and findings can provide useful software logging suggestions to both developers and operators
in open source and commercial systems.

i

To my mother, my father, and Rita.

il

Acknowledgements

This thesis would not be completed without the help and support from the extraordianry
people to whom I am deeply grateful.

I would like to thank my parents and my family. No matter where I am, they are always
there to support me. They always tell me not to worry about anything but only to pursue
what I really love to do. Thank you for being there for me at every stage of my life.

I would like to thank my supervisor, Professor Zhen Ming (Jack) Jiang for his constant
guidance, support, and encouragement through these years. He provides me invaluable help
both in academic and personal life during this journey. He is not only a supervisor but also a
life-long friend to me. I feel very lucky to work with him.

I would like to thank my PhD supervisory committee: Dr. Marin Litoiu and Dr Song
Wang. Their continued guidance, critique, and support are very valuable to my work.

I am very lucky to work with many of the talented and diligent researchers during my PhD
research. I would like to express my gratitude to my collegues and collaborators, including
Ruoyu Gao, Yangguang Li, and Minke Xiu.

I am grateful to be able to have the opportunity to apply my research in practice. I would
like to thank the Baidu company and members of Baidu Cloud Testing team. They provide
me many help when I was doing the internship in Beijing. In particular, I want to thank
Jian Song, Peng Xu, and Xing Hu for providing me with valuable feedback and critique.
The environment gives me a lot of confidence in seeking to apply my research outcomes to
industry practice.

During this journey, I received much love from my friends and their families, including
Feihong Liu, Ruoxin Pan, Jeff Wang, Shinnosuke Okada, Jingbo Zhao, Jinfu Chen, Anni
Siren, Yiming Yin, Shanshan Li, Dongliang Liao, Rui Zheng, Pengcheng Wang, Jianwei Hu,
Xirui Tang, Sinan Zhang, and their families. Thank you for making my PhD journey so
enjoyable.

v

Related Publications

The following publications are related to this thesis:

1. Boyuan Chen. Improving the software logging practices in DevOps. In Proceedings
of the 41st International Conference on Software Engineering: Companion Proceedings
(ICSE-Companion), pages 194-197. Montreal, Canada. May, 2019. [Chapter 1]

2. Boyuan Chen and Zhen Ming (Jack) Jiang. Fztracting and studying the Logging-Code-
Issue-Introducing changes in Java-based large-scale open source software systems. In
Empirical Software Engineering (EMSE), pages 2285-2322. August, 2019. [Chapter 3|

3. Boyuan Chen and Zhen Ming (Jack) Jiang. Studying the Use of Java Logging
Utilities in the Wild. In Proceedings of the 42nd International Conference on Software
Engineering (ICSE), July 2020. [Chapter 4]

4. Boyuan Chen, Jian Song, Peng Xu, Xing Hu and Zhen Ming (Jack) Jiang. An
Automated Approach to Estimating Code Coverage Measures via Fxecution Logs. In
Proceedings of the 33rd ACM/IEEE International Conference on Automated Software
Engineering (ASE), pages 305-316. September, 2018. [Chapter 5|

Table of Contents

Abstract

Acknowledgements

Related Publications

Table of Contents

List of Tables

List of Figures

1 Introduction

2

1.1
1.2
1.3
1.4
1.5

Motivation
Research Hypothesis
Thesis overview e e e
Thesis Contribution e
Thesis Organization

Literature Review

2.1
2.2
2.3

24

2.5

Introduction
Background Lo
Overview e
2.3.1 OurProcess
2.3.2 Summary
2.3.3 Comparing Against Existing Surveys
Logging Approach
2.4.1 An Overview of Three General Logging Approaches
2.4.2 Challenges and Proposed Solutions
2.4.3 Summary and Open Problems
LU Integration
2.5.1 What-to-Adopt
2.5.2 How-to-Configure

vi

ii

v

vi

2.5.3 Summary and Open Problems 22

2.6 LC Composition. e 22
2.6.1 Usability - Performance Overhead 24
2.6.2 Diagnosability 24
2.6.3 LCQuality 28
2.6.4 Security Compliance 32
2.6.5 Summary and Open Problems 32

2.7 Conclusion 33

Logging Code Issue 34

3.1 Introduction 34

3.2 Overviewo 37

3.3 Phasel 38
3.3.1 Studied Projects 38
3.3.2 Logging Code Changes 39
3.3.3 Issue Reports 39

3.4 Phase2 39
3.4.1 Extracting Fixes to the LCII Changes from the Co-changed Logging

Code Changes 40
3.4.2 Extracting Fixes to the LCII Changes from the Independently Changed
Logging Code Changes 41

3.5 Phase3d 42
3.5.1 Our Approach to Extracting the LCII Changes 42
3.5.2 Evaluation 44

3.6 Preliminary Studies 49
3.6.1 RQ1: What are the intentions behind the fixes to the LCII changes? . 49
3.6.2 RQ2: Are the fixes to the LCII changes more complex than other

logging code changes? 56
3.6.3 RQ3: How long does it take to fix an LCII change? 60
3.6.4 RQ4: Are state-of-the-art code detectors able to detect logging code

with issues?o 67

3.7 Related Work 70
3.7.1 Empirical Studies on Software Logging 70
3.7.2 Research on Automated Suggestions on the Logging Code 70
3.7.3 Research on Identifying the Bug Introducing Changes 71

3.8 Threats to Validity oo 72
3.8.1 Imternal Validity 72
3.8.2 External Validity oL 72
3.8.3 Construct Validity oL 72

3.9 Conclusions and Future Work 0L 73

Vil

4 Studying Logging Utilities

4.1
4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

Introduction Lo
Overview e
4.2.1 Our Approach
4.2.2 Studied Projectso
Quantitative Study
4.3.1 Identifying LUs in Each Project
4.3.2 Measuring the Adoptions of LUs
4.3.3 Comparing the Use of LUs Among Projects
Qualitative Study
4.4.1 RQ1: What are the external LUs being used in the wild?
4.4.2 RQ2: Why do developers implement ILUs in their projects?
4.4.3 RQ3: How are multiple LUs used in the wild?
Evaluation o
4.5.1 Setup
452 Findings
Discussions
4.6.1 Complex Useof LUs
4.6.2 Beyond LUs
Related Work oo
4.7.1 Empirical Studies on Logging Practices
4.7.2 Improving the Quality of the Logging Code
Threats to Validity
4.8.1 External Validity 0oL
4.8.2 Internal Validity
4.8.3 Construct Validity oo
Conclusion L

5 Estimating Code Coverage

5.1
5.2

5.3

5.4
5.5

Introduction
Coverage in Practice
5.2.1 The HBase Experiment,
5.2.2 Engineering Challenges
5.2.3 Performance Overhead
5.2.4 Incomplete Results
LogCoCo
5.3.1 Phase 1 - Program Analysis
5.3.2 Phase 2 - Log Analysis
5.3.3 Phase 3 - Path Analysis
Casesetup
RQ1: Accuracy
5.5.1 Experiment

viil

5.5.2 Data Analysis 108

5.5.3 Discussion on Method-Level Coverage 110
5.5.4 Discussion on the Statement and Branch Coverage 111
5.5.5 Feedback from the QA Engineers 111
5.6 RQ2: Usefulness. 112
5.7 Related work 114
5.7.1 Code Coverage e 115
5.7.2 Software Logging 116
5.8 Threats e 116
5.8.1 Imternal Validity 116
5.8.2 External Validity o 116
5.8.3 Construct Validity 117
5.9 Conclusions L 117
Conclusions and Future work 118
6.1 Contributions 118
6.2 Future Work 120
6.3 Closing Remarkso 121

1X

List of Tables

2.1
2.2

3.1
3.2
3.3

3.4
3.5
3.6

3.7

3.8
3.9
3.10
3.11
3.12

3.13

3.14

4.1
4.2

5.1
5.2

Comparison among three logging approaches.
The challenges and the proposed solutions in LC composition step.

Studied projects.
Difference ratio of computed introducing versions by SZZ and LCC-SZZ.

Comparing the time from the earliest bug appearance and the LCII code
commit timestamp.
Consistency compared to manual oracles.
Summary of the fixes to LCII changes.
Our manual characterization results on intentions behind the fixes to LCII
changes
Our manual characterization results on the intentions behind the fixes to the
LCII changes
Number of individual logging component changes.
The complexity of logging code changes grouped by each project.
Component changes for the “1 type” changes
Component changes for the “2 types” changes
The number of fixes to the LCII changes and the number of bug reports in
each project. L

Comparing the resolution time between the LCII changes and regular bugs.

The unit of resolution time for both the LCII changes and regular bugs are in

Comparing the resolution time between the co-changed LCII changes and
independently changed LCII changes. The unit of resolution time for both the
co-changed and independently changed changes are in days.

Measuring the adoptions of LUs among the Java-based GitHub projects.
Comparing the complexity of the uses of LUs among projects.

Information about the six studied projects.
Comparing the performance of LogCoCo against JaCoCo under various testing

activities. The numbers above shows the amount of overlap between LogCoCo
and JaCoCo. e

List of Figures

1.1

2.1
2.2
2.3
24

3.1
3.2
3.3

3.4
3.5
3.6
3.7
3.8
3.9

3.10

3.11
3.12
3.13
3.14
3.15

4.1

4.2
4.3
4.4

Overview of the thesis.

The overall process of software logging.
Software log instrumentation papers from 1997 to 2019.
Paper distribution classified by associated challenges.
An example of user authentication scenario instrumented with three general
logging approaches.

An example of an issue in the logging code [124].
Overall process.
An example of the co-changed logging code, which is linked to a log-related
bug report. However, it is not a fix to an LCII change.
An example of the printing format change.
Algorithm 1 - The pseudo code of the LCC-SZZ algorithm
The resulting component chains. 0L
An example of the logging code changes.
Examples of both SZZ and LCC-SZZ failed.
The intentions behind various fixes to the LCII changes, which are related to

what-to-log. For each intention, we have included real-world code examples.

The intentions behind various fixes to the LCII changes, which are related to
how-to-log. For each intention, we have included real-world code examples.
An example of fixes to LCII changes due to other reasons.
Comparing the resolution time of LCII and regular bugs.
Comparing the resolution time of different types of LCII changes.
Comparing the recall of the detection results for the two studies techniques. .
Examples of the detected issues in the logging code from the two studied
techniques. L

The distritbutions of the number of adopted LUs in each project grouped by
the size of the projects. L
The rationales behind the use of Top-100 most used ELUs.
The rationales behind why ILUs are implemented.

The usage context behind the Top-100 projects, which contain the most LUs.

x1

02

o4
o6
64
66
68

69

80
81
85
87

4.5

4.6
4.7

0.1
5.2
5.3
5.4

An example of using multiple LUs for interaction with LUs from the imported

PACkages. 88
An example of using multiple LUs for managing the logging contents. 89
An example of using multiple LUs for developer convenience. 89
The JaCoCo overhead for the HBase experiment. 100
An overview of LogCoCo. 101
The code snippet of our running example. 102
Log file snippets for our running example. 104

X11

Chapter 1

Introduction

1.1 Motivation

DevOps is a software development methodology that intends to automate the process between
software development and IT operations. The goal is to reduce the time between committing a
change to a system and placing it to production, while ensuring high quality [1]. Compared to
traditional software development process, DevOps provides faster feedback between software
development and IT operations so that new features and bug fixes can be released faster
to the customers. To ensure the quality and the health of the deployed systems, software
logging plays a central role.

Software logging in the context of DevOps refers to the practices of developing and
maintaining logging code and analyzing the resulting execution logs. Logging code refers
to the code snippets that developers inserted into source code (e.g., LOG.info("User " +
userName + " logged in")) to monitor the behavior of systems during runtime. There
are typically four types of components in a snippet of logging code: a logging object, a
verbosity level, static texts, and dynamic contents. In the above example, the logging object
is LOG, the verbosity level is info, the static texts are User and logged in, and the dynamic
content is userName. Execution logs (a.k.a., logs), which are generated by logging code during
runtime, are readily available in large-scale software systems for many purposes like system
monitoring |2|, problem debugging [3], workload characterization [4], and business decision
making [5]. Stale or incorrect logging code may cause confusion [6] or even more serious
issues like system crash [7]. In particular, there are three major challenges associated with
the software logging practices in DevOps:

e (11 No existing guidelines on producing high quality logging code. Recent
empirical studies show that there are no existing logging guidelines for commercial [§]
and open source systems |9, 10]. Developers write logging code solely based on domain
expertise and revise them in an ad-hoc fashion [9, 10]. Unlike feature code, which can
be examined through testing, it is very challenging to verify the correctness of logging
code.

1.2. RESEARCH HYPOTHESIS CHAPTER 1. INTRODUCTION

e (5: Difficulty in maintaining and evolving logging code. As logging code tangles
with source code, it is very challenging to maintain and update logging code along with
feature code for constantly evolving systems. Although there are language extensions
(e.g., AspectJ [11]) to support better management of logging code, many industrial and
open source systems still choose to inter-mix logging code with feature code [9, 10].

e ('3: Limited mechanism for quality feedback. In the context of DevOps, the
software testing process is completely changed compared to traditional software devel-
opment process, as many testing activities are automated and occur in the field [12].
There is limited mechanism for quality feedback from the IT operation to the software
development. This problem becomes even more serious, as in DevOps code base evolves
more rapidly with usage scenarios being constantly added or modified.

Motivated by the importance and challenges, throughout the thesis, we propose systematic
approaches to improving the logging practices to aid software development and IT operations
by leveraging various types of software repositories. To note, the resulting techniques and
findings are especially useful for systems that adopt DevOps practices, but they can be useful
for other types of systems as well.

1.2 Research Hypothesis

Research Hypothesis: Software repositories (e.g., code repositories, communication
repositories, runtime repositories, and bug repositories) which are readily available
and contain rich information about software development and system behavior during
runtime, can be leveraged to improve the logging practices by understanding the current
logging practices of software systems.

We mainly rely on four types of repositories to tackle challenges in software logging
practices. The historical repositories refer to the source code version control systems like
GitHub and SVN. The communication repositories refer to the online communication data
from StackOverflow and developer mailing list. The runtime repositories refer to the telemetry
data generated in various scenarios. The bug repositories refer to the issue tracking systems
such as JIRA and BugZilla. In the thesis, we attempt to improve logging practices from
two dimensions: software development and IT operation. For the aforementioned three
challenges (C} - Cj3), we propose corresponding research outcomes (O; - O3), which address
these challenges. O; and Oy address the first two challenges which are on the development
side. O3 address the last challenge which is on the IT operation side.

e (O7): We mine the historical and bug repositories to extract a benchmark dataset
which contains real-world issues in logging code so that interested researchers could
develop and evaluate their techniques of automated detection of logging code issues.

1.3. THESIS OVERVIEW CHAPTER 1. INTRODUCTION

Chapter 1

Motivating the
importance of
software logging

A

Chapter 2

C1: No existing C3: Limited feedback
Guidelines for testing

C2: Difficult to

v maintain LC

Chapter 3 Chapter 4 Chapter 5

L)

\f Summarizing findings
and proposing future
work

Chapter 6

Figure 1.1: Overview of the thesis.

e (O2): We mine the communication and historical repositories to explore the rationle
behind various types of logging utilities (e.g., general-purpose, LU interaction, interna-
tionalization, and modularization).

e (O3): We propose automated techniques to estimate code coverage measures(e.g.,
statement coverage, branch coverage) by correlating source code with the logs stored in
the runtime repositories.

1.3 Thesis overview

In this section, we provide an overview of the presented work in this thesis. This thesis has
four main chapters. As every chapter tackles a specific problem, we ensure that the contents
of each chapter is self-contained. Hence, repetitions could be found among different chapters.
In addition, for each chapter, the related work are summarized for the specific objective. The
overview is shown in Figure 1.1. In Chapter 1(this chapter), we describe the motivation of
this thesis. In Chapter 2, we survey the current practice of software log instrumentation and
summarize three challenges. In Chapter 3, 4,and 5, we conduct studies for each challenge. At
last, in chapter 6, we summarize our findings and propose future work.

e Chapter 2: A Survey of the Instrumentation Techniques Used in Software Logging

Execution logs have been used widely for many software systems for a variety of
purposes (e.g., monitoring, debugging, and security compliances). There are two phases
in software logging: log instrumentation and log management. Log instrumentation

1.3.

THESIS OVERVIEW CHAPTER 1. INTRODUCTION

refers to the practice that developers insert logging code into source code to record
runtime information. Log management refers to the practice that operators collect
the generated log messages and conduct data analysis techniques to provide valuable
insights of runtime behavior. Unlike log management, which is supported by many open
source and commerical tools, there are no well-defined guidelines on log instrumentation.
The quality of instrumented logging code snippets plays a vital role in software logging,
as it impacts the quality of generated log messages, which will be used for different
objectives. Hence, we conducted a systematic survey on state-of-the-art research on
software log instrumentation by studying 69 papers over 23 years. In particular, we
have focused on the problems and proposed solutions used in the three steps of log
instrumentation: (1) logging approach; (2) logging utility integration; and (3) logging
code composition. This survey will be useful to DevOps engineers and researchers who
are interested in software logging.

Chapter 3: Extracting and Studying the Logging-Code-Issue-Introducing Changes in
Java-based Large-Scale Open Source Software Systems

Execution logs, which are generated by logging code, are widely used in modern software
projects for tasks like monitoring, debugging, and remote issue resolution. Ineffective
logging would cause confusion, lack of information during problem diagnosis, or even
system crash. However, it is challenging to develop and maintain logging code, as
it inter-mixes with the feature code. Furthermore, unlike feature code, it is very
challenging to verify the correctness of logging code. Currently developers usually rely
on their intuition when performing their logging activities. There are no well established
logging guidelines in research and practice.

In this chapter, we intend to derive such guidelines through mining the historical logging
code changes. In particular, we have extracted and studied the Logging-Code-Issue-
Introducing (LCII) changes in six popular large-scale Java-based open source software
systems. Preliminary studies on this dataset show that: (1) both co-changed and
independently changed logging code changes can contain fixes to the LCII changes; (2)
the complexity of fixes to LCII changes are similar to regular logging code updates; (3)
it takes longer for developers to fix logging code issues than regular bugs; and (4) the
state-of-the-art logging code issue detection tools can only detect a small fraction (3%)
of the LCII changes. This highlights the urgent need for this area of research and the
importance of such a dataset.

Chapter 4: Studying the Use of Java Logging Utilities in the Wild

Software logging is widely used in practice. Execution Logs have been used for a variety
of purposes like debugging, monitoring, security compliance, and business analytics.
Instead of directly invoking the standard output functions, developers usually prefer to
use logging utilities (LUs) (e.g., SLF4J), which provide additional functionalities like
thread-safety and verbosity level support, to instrument their source code. Many of the
previous research work on software logging are focused on the log printing code. There

1.4. THESIS CONTRIBUTION CHAPTER 1. INTRODUCTION

are very few work studying the use of LUs, although new LUs are constantly being
introduced by companies and researchers. In this chapter, we conducted a large-scale
empirical study on the use of Java LUs in the wild. We analyzed the use of 3,856 LUs
from 11,194 projects in GitHub and found that many projects have complex usage
patterns for LUs. For example, 75.8% of the large-sized projects have implemented
their own LUs in their projects. More than 50% of these projects use at least three
LUs. We conducted further qualitative studies to better understand and characterize
the complex use of LUs. Our findings show that different LUs are used for a variety of
reasons (e.g., internationalization of the log messages). Some projects develop their
own LUs to satisfy project-specific logging needs (e.g., defining the logging format).
Multiple uses of LUs in one project are pretty common for large and very large-sized
projects mainly for context like enabling and configuring the logging behavior for the
imported packages. The findings and the implications presented in this chapter will be
useful for developers and researchers who are interested in developing and maintaining

LUs.

e Chapter 5: An Automated Approach to Estimating Code Coverage Measures via
Execution Logs

Software testing is a widely used technique to ensure the quality of software systems.
Code coverage measures are commonly used to evaluate and improve the existing
test suites. Based on our industrial and open source studies, existing state-of-the-
art code coverage tools are only used during unit and integration testing due to
issues like engineering challenges, performance overhead, and incomplete results. To
resolve these issues, in this chapter we have proposed an automated approach, called
LogCoCo, to estimating code coverage measures using the readily available execution
logs. Using program analysis techniques, LogCoCo matches the execution logs with
their corresponding code paths and estimates three different code coverage criteria:
method coverage, statement coverage, and branch coverage. Case studies on one open
source system (HBase) and five commercial systems from Baidu and systems show
that: (1) the results of LogCoCo are highly accurate (> 96% in seven out of nine
experiments) under a variety of testing activities (unit testing, integration testing, and
benchmarking); and (2) the results of LogCoCo can be used to evaluate and improve
the existing test suites. Our collaborators at Baidu are currently considering adopting
LogCoCo and use it on a daily basis.

1.4 Thesis Contribution

This thesis makes the following contributions:

1. We conduct the first survey that systematically covers the techniques used in all
three software log instrumentation approaches: (1) conventional logging, (2) rule-based

1.5. THESIS ORGANIZATION CHAPTER 1. INTRODUCTION

logging, and (3) distributed tracing. The replication package for this chapter is provided
in [13] (Chapter 2).

2. We provide the first dataset (to the best of our knowledge) on logging code issue
introducing changes, combining both co-changed logging code changes, and independent
logging code changes. We conduct a comprehensive study on evaluation of state-of-art
logging suggestion tools. It includes machine learning models, static code rules, and
code clone. Study shows that they are complementary to each other while future
improvements can be explored. The replication package for this chapter is provided
in [14] (Chapter 3).

3. We conduct the first large-scale and comprehensive study on characterizing the use of
logging utility in Java-based open source projects. We show that as the complexity of
projects increase, the problem of designing logging utilities become more challenging.
We also extracted the most popular logging utilities based on the usages of open source
projects. The replication package for this chapter is provided in [15] (Chapter 4).

4. We conduct the first work to leverage execution logs to estimate code coverage. We
propose a research prototype, LogCoCo. Results show that LogCoCo achieves satisfying
performance. (Chapter 5)

1.5 Thesis Organization

This thesis is organized as follows. Chapter 2 presents our literature review on software log
instrumentation. Chapter 3 describes our study on Logging-Code-Issue-Introducing changes.
Chapter 4 presents our study on the use of logging utilities in the wild. Chapter 5 explains
our technique to estimate code coverage using execution logs. Chapter 6 concludes this thesis
and discusses future research directions.

Chapter 2

A Survey of the Instrumentation
Techniques Used in Software Logging

2.1 Introduction

Software logging is a common programming practice that developers use to track and record
the runtime behavior of software systems. Software logging has been used extensively for
monitoring [3, 16|, failure diagnosis [17, 18|, performance analysis [19, 20, 21, 22|, test
analysis [23, 24|, security and legal compliance [25, 26, 27|, and business analytics |5, 28].

As shown in Figure 2.1, software logging [29] consists of two phases: (1) Log Instru-
mentation, and (2) Log Management. The log instrumentation phase, which concerns
about the development of the logging code, consists of three steps: Logging Approach, Logging
Utility (LU) Integration, and Logging Code (LC) Composition. The log management phase,
which focuses on processing the generated log messages once the system deploys, consists of
three steps: Log Generation, Log Collection, and Log Analysis.

On one hand, many industrial-strength tools (e.g., LogStash [30] and Splunk [31]) are
available already to aid effective log management. On the other hand, there are no well-defined

Log Instrumentation Log Management
N AN
4 N 7 N
Logging LU LC Log Log Log
Approach Integration Composition Generation Collection Analysis

Figure 2.1: The overall process of software logging.

2.2. BACKGROUND CHAPTER 2. LITERATURE REVIEW

guidelines or tooling support for systematic log instrumentation [32, 5, 8|. Compared to code
instrumentation in general, there are three differences from log instrumentation which makes
the process more challenging : (1) existing process for log instrumentation is ad-hoc and often
relies on developers’ intuitions and domain expertise [10]; (2) many tools levearging code
instrumentation such as Jacoco [33] are at bytecode/binary level, while log instrumentation
is mainly done at source code level, which is more intrusive and difficult to maintain; (3)
while code instrumentation at bytecode/binary level mostly record machine readable data,
log instrumentation also needs to consider the human aspect. For example, JBoss logging [34]
provides utilities for translating log messages to multiple human languages.

Low quality logging code may cause various issues in problem diagnosis [35], high mainte-
nance efforts [36, 37, 38|, performance slow-down [21], or even system crashes [7]. As more
systems are migrating to the cloud [39] with increasing layers of complexity [40], new software
development paradigms like Observability-Driven Development (ODD) [41] are introduced.
ODD, in which log instrumentation plays a key role, emphasizes the exposure of the state
and the behavior of a System Under Study (SUS) during runtime. Hence, in this chapter, we
have conducted a systematic survey [42] on the instrumentation techniques used in software
logging.

The contributions of this chapter are:

e This is the first survey that systematically covers the techniques used in all three
software log instrumentation approaches: conventional logging, rule-based logging, and
distributed tracing.

e Through the process of systematic survey (|43|), we have identified four main challenges
associated with software log instrumentation and described their proposed solutions
throughout the three steps in the log instrumentation phase. We have also discussed the
limitations and future work associated with these state-of-the-art solutions if applicable.
The challenges, the solutions, and the discussions will be useful for both practitioners
and researchers who are interested in developing and maintaining software logging
solutions.

Chapter Organization

The structure of this chapter is organized as follows: Section 2.2 provides some background
regarding software log instrumentation. Section 2.3 describes the overview of our systematic
survey process and the summary of studied papers. Section 2.4 discusses three approaches to
software log instrumentation. Section 2.5 discusses studies on LU integration. Section 2.6
presents studies on LC composition. Section 2.7 concludes this survey.

2.2 Background on Software Log Instrumentation

In this section, we will provide some background information regarding software log in-
strumentation. Software logging consists of two phases: (1) Log Instrumentation, which

8

2.3. OVERVIEW CHAPTER 2. LITERATURE REVIEW

concerns about the development of the logging code, and (2) Log Management, which
concerns about the collection and the analysis of the generated log messages. Here we further
explain the three steps in the log instrumenation phase, which is the focus of this survey:

1. Logging Approach: Logging is a cross-cutting concern, as the LC snippets are scattered
across the entire system and tangled with the feature code [44]. In addition, logging
incurs performance overhead [21| and if not careful may slow down the system execution
and impact user experience. Hence, additional logging approaches have been proposed
to resovle some of these issues. However, they also introduce additional problem(s). For
example, although Aspect-Oriented Programming (AOP) improves the modularity of
the LC snippets, it introduces steep learning curves of different programming paradigms
and is difficult to generalize individual logging concerns into rules [45]. Developers have
to first decide which logging approach to adopt for their SUS before instrumenting their
SUS with LC.

2. LU Integration: Instead of directly invoking the standard output functions like System. o
ut.print, developers prefer to instrument their systems using LUs like SLF4J [46]
for Java and spdlog [47] for C++ for additional functionalities like thread-safety
(synchronized logging in multi-threaded systems) and verbosity levels (controlling the
amount of logs outputted). While integrating LUs, developers have to address the
following two concerns: what-to-adopt: different LUs provide different functionalities [45].
Depending on the actual usage context, developers may integrate existing third party
LUs or develop their own; and how-to-configure: each project may contain one or
more LU(s), each of which has many different configuration options. It is important
to configure LUs effectively, so that the SUS can produce high quality log messages
during runtime.

3. LC Composition: Once the developers integrate the LU(s), they need to insert LC into
the SUS in order to expose various state and behavior of the SUS during runtime. While
composing LC, developers have to address the following three concerns: where-to-log:
determining the approprite logging points; what-to-log: providing sufficient information
in the LC; and how-to-log: developing and maintaining high quality LC.

2.3 An Overview of Our Systematic Survey

In this section, we will first describe our systematic survey process in Section 2.3.1. Then we
will summarize our survey results in Section 2.3.2. Finally, we will explain the differences of
our survey against existing work in Section 2.3.3.

2.3.1 Our Process

A systematic survey is a type of literature review, which uses systematic approaches to
identifying and analyzing the primary studies related to a particular research topic [43]. The

9

2.3. OVERVIEW CHAPTER 2. LITERATURE REVIEW

main benefits of conducting a systematic survey are : (1) the results of selected studies are
less likely to be biased, since it applies a pre-defined search strategy; (2) the search process is
documented so that the study could be easily replicated.

Here we briefly describe our systematic survey process. In addition to “logging” and
“instrumentation”, we also include the word “tracing” as our search keywords, as “logging”
and “tracing” are used interchangeably in the research literature and practice. For example,
“trace” is usually a common verbosity level defined in many LUs to capture information flow
through the SUS [48, 49|. In addition, many tracing frameworks [50, 51, 22| also use the
term “logging” to record various runtime behavior of the SUS. Hence, in order to capture all
the possible related work, we search IEEE Xplore, ACM, and DBLP publication repositories
with the root form of these three words: log, trace, and instrument. We then manually check
the search results by employing the following inclusion and exclusion critera:

1. We exclude all the papers that only study the issues in the log management phase. For
example, there are many studies focusing on log analysis (e.g., [52, 53, 19]) and log
abstraction (e.g., [54, 55]), which are not relevant to this survey.

2. We only include the papers that are published in software engineering or computer
systems related venues, as our target audience is software practitioners or researchers.

3. Since we are only foucusing on SUS, which sits on top of operating systems and are
connected by computer networks, we will exclude papers that focus on the logging at
the kernel (e.g., [56]) or network levels (e.g., [57]).

After we gather the first batch of papers, we further apply the snowballing method [58]
from the references of these papers as well as looking through the papers which cite them. This
process results in a total of 69 papers, which match our criteria. To verify the completeness
of the surveyed papers, the final results include all the papers we knew beforehand that are
related to software log instrumentation (e.g., [10, 36, §]).

2.3.2 Summary

We performed our paper collection process on October 30, 2019. Figure 2.2 illustrates the
number of related papers between these 23 years (1997 - 2019), as the first research paper
in this area [59] appears in 1997. There is a clear increasing trend in terms of number of
research papers over the years on this topic. In particular, the research interests in this area
spiked after 2012, as 62% (43) of the studied papers have been published since then.

After carefully studying each paper, we have identified nine challenges, which are further
grouped into the following four major categories. Note that some papers may touch on
multiple challenges.

1. Usability refers to the log instrumentation techniques that facilitate the adoption of
various logging techniques. There are two specific challenges in this category:

10

2.3. OVERVIEW CHAPTER 2. LITERATURE REVIEW

11

10

Number of papers

071997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
Year

Figure 2.2: Software log instrumentation papers from 1997 to 2019.

(a) Configurability (2 papers) refers to the challenge on whether the studied paper
provides support to ease the configuration process of various log instrumentation
techniques.

(b) Performance Overhead (4 papers) refers to the challenge on whether the study
aims to minimize the slowdown caused by logging.

2. LC Quality refers to the log instrumentation techniques that improve various develop-
ment aspects of LC. This category consists of the following three challenges:

(a) Clarity (3 papers) refers to the challenge on making LC easy to understand and
less ambiguous to both developers and operators.

(b) Maintainability (17 papers) refers to the challenge on supporting the maintenance
and evolution of LC, as LC is scattered across the entire system and tangled with
the constant evolving feature code.

(c) Consistency (10 papers) refers to the challenges on ensuring uniform styles of
logging across different components of SUS.

3. Diagnosability refers to the log instrumentation techniques that support the analysis
and debugging tasks of various functional and non-functional problems. This category
consists of the following two challenges:

(a) Failure Diagnosis (12 papers) refers to the challenges associated with providing
sufficient logging information to diagnose functional failures.

11

2.3. OVERVIEW CHAPTER 2. LITERATURE REVIEW

m Configurability u Performance Overhead Clarity
Consistency B Maintainability ® Failure Diagnosis
Performance Analysis u Auditing m Forensic Analysis

35

30

25

19

20

15

10

5
3 -
0

Usability LC Quality Diagnosability Security Compliance

Figure 2.3: Paper distribution classified by associated challenges.

(b) Performance Analysis (19 papers) refers to the challenges associated with providing
sufficient logging information to detect and debug performance problems.

4. Security Compliance refers to the log instrumentation techniques that address the
safety or legal concerns of SUS. This category consists of the following two challenges:

(a) Auditing (2 papers) refers to the challenge on recording a serial of security relevent
events in order to meet various legal regulations like Sarbanes-Oxley Act of
2002 [25)].

(b) Forensic Analysis (2 papers) refers to the challenges on recording the user activities
to support investigations on criminal activities like intrusion or fraud detection.

Figure 2.3 shows the distribution of studied papers by the challenges they tackle. Note
that they do not add up to 69, as some papers tackle multiple challenges. Majority of
them focus on the diagnosability (45%) or LC quality (43%) aspects. Few papers tackle the
usability (9%) or security (6%) challenges associated with logging.

In the next three sections (Section 2.4,2.5, and 2.6), we will explain the proposed solutions
and discuss their limitations throughout the three steps of the log instrumentation phase.

2.3.3 Comparing Against Existing Surveys

There are three existing work [60, 61, 62] which are related to our survey.
Rong et al. [60] conducted a systematic review on the log instrumentation practices of
conventional logging. However, they did not cover other logging approaches or discuss the

12

2.4. LOGGING APPROACH CHAPTER 2. LITERATURE REVIEW

Table 2.1: Comparison among three logging approaches.

Conventional Logging Rule-based Logging Distributed Tracing

Who SUS developers SUS developers Library developers
Filtering Verbosity level Verbosity level Sampling

Format Free form Free form Structured
Domain Genearl General Distributed systems
Flexibility High Low Medium
Scattering High Low Low

techniques in LU intergration. Furthermore, compared to [60], we have placed each studied
paper in the context of associated challenges so that practitioners or researchers can easily
locate the relevant techniques to adopt and understand their limitations if any.

Sambasivan et al. [61] conducted a survey on distributed tracing systems, which are logging
frameworks to support monitoring and diagnose problems for distributed systems. They
examined the features of 15 frameworks (e.g., preserving causal relationships or visualization)
and focused on the diagnosability aspect of the log instrumentation techniques. Our survey
covers all the general logging approaches, which include distributed tracing. In addition, on
top of diagnosability, we have identified and examined additional challenges (e.g., usability
and security) associated with logging.

Candido et al. [62] conducted a systematic review on logging techniques for contemporary
software monitoring. They have mainly discussed four dimensions: log engineering, log
infrastructure, log analysis, and log platforms. Log engineering is only focusing on logging
code composition of conventional logging, while our survey not only discusses other logging
approaches, but also covers LU integration. The rest of the three studied dimensions are all
related to the phase of log management, which is not the focus of this survey. Furthermore,
monitoring is only one task that logging deals with, while we examined other challenges such
as configurability and clarity.

2.4 Logging Approach

There are three general logging approaches: conventional logging, rule-based logging, and
distributed tracing. Section 2.4.1 provides an overview of these three approaches. Section 2.4.2
discusses the proposed solutions from these logging approaches that address various logging
challenges. Section 2.4.3 summarizes our findings and presents some open problems associated
with logging approaches.

2.4.1 An Overview of Three General Logging Approaches

Table 2.1 compares these approaches among the following six dimensions:

13

2.4. LOGGING APPROACH CHAPTER 2. LITERATURE REVIEW

e Who refers to the type of developers responsible for performing the log instrumentation
tasks. The SUS developers are mainly responsible for the log instrumtation tasks if
they adopt the conventional or rule-based logging approaches. If the SUS imports third
party libraries, they may need to configure the LLUs within these libraries in order to
gain the full picture of the SUS behavior during runtime. Please refer to Section 2.5
for details. On the contrary, third-party library developers are the ones responsible for
most of the log instrumenation tasks if they adopt distributed tracing approach. Only
if needed, SUS developers may add additional LC in the SUS.

e Filtering refers to the process of removing the unwanted log messages during runtime
in order to reduce overhead. The verbosity level is used in conventional and rule-based
logging to indicate the severity of LC. While in distributed tracing, sampling is adopted
to filter log messages. The sampling decision can be controlled by pre-defined probability,
rate or even adaptive. Please refer to Section 2.5.2 for details.

e [ormat refers to the requirements on the structure and the contents of the generated log
messages. Instrumenting free form LC is mostly adopted in conventional and rule-based
logging. On the other hand, distributed tracing utilities record the information in a
more structured way. For example, key-value pair is a popular paradigm to structure
the generated log messages.

e Domain refers to the categories of applicable SUS for each logging approach. Con-
ventional and rule-based logging can be applied in almost any types of SUS, while
distributed tracing is mostly adopted in distributed systems.

o Flexibility refers to the feasibility and the effort needed for a particular logging approach
to be applied under various instrumentation scenarios. Conducting conventional logging
is most flexible, as SUS developers can insert LC in any program points. Instrumenting
LC in distributed tracing is less flexible, as most of the L.C snippets are in the boundaries
of software components. Rule-based logging is the least flexible, because the locations
of LC snippets need to follow pre-defined rules.

e Scattering refers to the spread of the instrumented LC snippets across the code base by
adopting a particular logging approach. The degree of scattering of LC in conventional
logging is high, because of its high flexibility. On the other hand, L.C snippets in rule-
based logging and distributed tracing is less scattered, as its locations follow designated
rules(e.g., beginning of a method) or certain patterns (e.g., before an RPC call).

To better describe the three logging approaches, we will explain them by going through a
running example. The log instrumentation scenario is to record the behvior of a web server
while trying to authenticate users. We have realized this logging concern with all three
approaches as illustrated in Figure 2.4.

14

2.4. LOGGING APPROACH

CHAPTER 2. LITERATURE REVIEW

'
B Logging Object Verbosity Level Static Texts Dynamic Content :
. 1 import org.apache.logging.log4j.LogManager; : Apr 02, 2020 12:22:41 PM mycompany.MyServer Receive from client alice
2 import org.apache.logging.log4j.Logger; . P feee
@ 3 clzss MySEr‘er‘ { seine. “oem 8 MyServer.java I |Apr 02, 2020 12:22:42 PM mycompany.MyServer Send response to 192.168.0.1
4 Logger logger = Logger.getLogger(MyServer.class); :
Application | 5 void authentication(Request req, ...) { 1 |Apr 02, 2020 12:22:50 PM mycompany.MyServer Receive from client bob
Developers | 6 IBBE8R . info(['Receive from client " + req.userName); :
// actual authentication process ... | |Apr 02, 2020 12:22:52 PM mycompany.MyServer Send response to 192.168.0.2
10 reply(response, ...) [
11 logger.info("Send response to " + req.IP); : Apr 02, 2020 12:23:01 PM mycompany.MyServer Receive from client tom
12} e
13 private void start() { | | Apr 02, 2020 12:23:02 PM mycompany.MyServer Send response to 192.168.0.2
14 Server server = new Server(); :
15} 1
1
(a) Using conventional logging for log instrumentation 1 (d) Outputted logs
1
1 import org.apache.logging.log4j.LogManager; LogAspect.java I | Apr 02, 2020 12:22:41 PM mycompany.MyServer Receive from client alice
2 import org.apache.logging.log4j.Logger; :
1 |Apr 02, 2020 12:22:42 PM mycompany.MyServer Send response to 192.168.0.1
. 5 @Around("execution(* MyServer.authentication(..)")) :
m 6 public Object logAround(ProceedinglointPoint pjp, Request req) { | |Apr 02, 2020 12:22:50 PM mycompany.MyServer Receive from client bob
m 7 .info("Receive from client " |+ req.userName); [
Application 8 pjp.proceed() : Apr 02, 2020 12:22:52 PM mycompany.MyServer Send response to 192.168.0.2
Developers | 9 logger.info("Send response to " + req.IP) Ve
10 } : Apr 02, 2020 12:23:01 PM mycompany.MyServer Receive from client tom
3 class MyServer { MyServer_java : Apr 02, 2020 12:23:02 PM mycompany.MyServer Send response to 192.168.0.2
4 void authentication(Request req, ...) { L .
// actual authentication process ...
10 1
1
(b) Using rule-based logging for log instrumentation : (e) Outputted logs
]
(c) Use distributed tracing for log instrumentation : (f) Outputted traces
1 import io.opentracing.* . I | "data" : [
2 cla?ss MySer‘\fer‘ { ¢ MyServer.java :
3 Tracer [BEBE - GlobalTracer.get(); | "traceID": "1242029787ec9011"
. 4 private start() { : "spans": [
ﬁl 5 Server server = new TracedServer(tracer); |
! {
Application | 5 } ! "traceID": "1242029787ec9011",
Developers | 57 yoid authentication(Request req, ...) { : "spanID": "lad81c39c9e66ac6”,
// actual authentication process ! "parentSpanID": "c53ac490f028963a",
25 reply(response, ...) : "duration": 277146,
26 1 vee
T 1 " - » : "logs":[
import io.opentracing. .
2 class TracedServer extends Server { Tracedserver'java : Etimestamp": 1585844561219000,
o ! "Client": "bob",
8 @verride ' "Message": "Receive from client"
. 9 public void onReceive() { I 1,
m 10 SpanContext parentSpan = tracer.extract(HTTP_HEADERS, headers); | ! {
n 11 spanBuilder = spanBuilder.asChildOf(parentSpan); : "timestamp": 1585844561230000,
Library |12 span = spanBuilder.start(); 1 "IP": "192.168.0.1",
Developers | 13 BB - 1og(Map.put(“"Client", FequuserName) ! "Message": "Send Response”
14 .put("Message", "Receive from client")) | Y,
e 1
20} i i
21 @0verride 1 }
22 public void onSend(Response response) { :]
32 span.log(Map.put("IP", req.IP) : })
33 .put("Message", "Send response")); :]
e 1
1
[l Tracing Object Key Value :

Figure 2.4: An example of user authentication scenario instrumented with three general

logging approaches.

15

2.4. LOGGING APPROACH CHAPTER 2. LITERATURE REVIEW

Conventional Logging

The code snippet using the conventional logging approach is shown in Figure 2.4(a). Before
we can instrument the system with LC snippets, we have to first import the LU(s), which
provides functionalities of conventional logging. As shown from line 1 and 2 of the code
snippet, we use LogdJ 2 library [63], a popular LU for Java-based systems. Then a logging
object, which is responsible for performing the log instrumentation in the rest of this example,
is created at line 4. Line 6 and 11 show two lines of LC snippets, which record the user names
and their IP addresses before and after the authentication process. Similar to standard I/O
methods like System.out.println or System.err, an LC snippet contains static texts and
dynamic contents. In addition, it also contains a logging object as well as a verbosity level to
control the amount of outputted log messages. Take the LC snippet at line 6 as an example.
The four components are highlighted in different colors: the logging object (logger) in red,
the verbosity level (info) in yellow, the static texts ("Received from client") in green,
and the dynamic contents (req.userName) in grey.

A sample snippet of the generated log messages are shown in Figure 2.4(d). In addition
to the static texts and dynamic contents, each log message also contains basic information
like timestamp and the location of the logging code. Similar to the natural language text,
the resulting log messages are usually loosely formatted and cannot be easily parsed by the
computer programs [64].

Conventional logging is very easy to setup and the resulting LC snippets can be placed in
almost anywhere in the SUS. However, there are two main issues concerning conventional
logging: (1) Cross-cutting Concerns: the resulting LC snippets are scattered across the entire
system and tangled with the feature code |65, 66, 67, 44]. This results in challenges on
developing and maintaining high quality LC, while the SUS evolves. To resolve this issue,
rule-based logging approach is introduced (Section 2.4.1). (2) Lack of Ezxecution Context: It
is very challenging to correlate log messages from different processes or even machines [68].
This is especially the case for large-scale distributed systems. Hence, distributed tracing is
introduced (Section 2.4.1).

Rule-based Logging

Different from the conventional logging approach, in which the LC inter-mixes with the
feature code, the rule-based logging approach generalizes the logging behavior by specifying
a set of rules. This greatly improves the modularity of the LC and hence provides a much
better support for developers to track and maintain their LC while the SUS evolves.
Aspect-Oriented Progamming(AOP)-based logging is one of the most commonly used
rule-based logging techniques. AOP is a programming paradigm, which is designed to improve
modularity by reducing the amount of cross-cutting concerns [44], one of which is software
logging. AOP-based logging has been used to support diagnosing functional failures |65, 67].
Developers define rules through aspect files. A typical aspect file consists of pointcuts and
advice. A pointcut is to define the point of execution where the cross-cutting concern (e.g.
logging) needs to be applied. An advice is the additional code (e.g. LC) instrumented.

16

2.4. LOGGING APPROACH CHAPTER 2. LITERATURE REVIEW

Figure 2.4(b) continues our running example by using the AspectJ LU, which is a very
popular AOP-based approach for Java-based systems. The file LogAspect. java acts as the
aspect file. The rules (a.k.a., instrumented points) are defined through the Java annotation
at line 5. In this example, the annotation @Around means both the beginning and the end of
the methods will be instrumented. The value within the brackets specify the instrumented
methods. In this example, the method with name authentication within class MyServer
will be instrumented. The instrumented code is defined at line 7 and line 9, which outputs
the same log messages as the conventional logging example. The file Server. java does not
include any LC, as all the LC is modularized and specified in the aspect files. As shown in
Figure 2.4(e), the same log messages will be outputted during runtime.

On one hand, rule-based logging enables developers to separate rules with actual in-
strumentation. Updating LC is easy, as developers only need to revise the rules without
modifying code at multiple locations. This improves the modularity of the LC. On the other
hand, rule-based logging lacks flexbility, as LC cannot be instrumented at anywhere due to
the implementation limitation |45, 69, 70].

Distributed Tracing

Although it’s flexible and easy to perform conventional logging, the resulting log messages
are free-formed text, which cannot be easily cross-linked across different process or even
machines. This will be a major problem for distributed systems, in which one scenario
may be executed on mulitple machines. To cope with this challenge, distributed tracing is
introduced. Different from conventional logging, in which developers of SUS mainly perform
the log instrumentation activities, library developers are mainly responsible for the task of log
instrumentation. Although developers of SUS can perform additional log instrumentations,
their main task is to import the tracing library and perform some setup actions. As a result,
the generated log messages are structured and can be connected by a set of common variables.
In the context of distributed tracing, these structured log messages are connected together
also referred as an end-to-end trace. For brevity, we call this as trace in the rest of this
section.

Figure 2.4(c) continues our running example by using distributed tracing as our log
instrumentation approach. This example uses OpenTracing, a very popular LU supporting
distributed tracing-based logging approach [71]. For the code snippet at the top of Fig-
ure 2.4(c), a tracer object and a traced server instance are created at line 3 and line 5,
respectively. Other than this, there are no additional log instrumentation efforts required
from SUS developers. The actual LC composition is done by the library developers whose
code snippet is shown at the bottom of Figure 2.4(c). They implement TracedServer, which
extends the original Server class and overrides two important methods: onReceive and
onSend. These two methods will be invoked when receiving a request and sending a reply,
respectively.

A typical trace in the context of distributed tracing consists of multiple log messages which
are connected together. These connected log messages form a complete request workflow. In

17

2.4. LOGGING APPROACH CHAPTER 2. LITERATURE REVIEW

OpenTracing, such log messages are called spans. In both the client side and the server side,
library developers compose the span log using APIs like span.log. These spans are passed
from the client side to the server side by certain communication protocols (e.g., HTTP),
so that spans from both ends can be connected. In this way, a complete trace recording
information from both ends can be generated. In our example, we only show the code at the
server side because the tracing code at the client side is similar. To notice, inside method
onReceive, where we receive the client’s request, we extract the context data that is sent
from the client at line 10. At line 11, we create the span as a child of the span that we extract
from the client. At line 13, we store the same message as the example in conventional and
rule-based logging. After the request is processed, inside the onSend method, the span log at
line 32 will be sent to the client.

The generated traces are shown in Figure 2.4(f). As we can see, the traces are structured
in JSON format. JSON stores information in a key-value fashion. For example, the recorded
information of the LC snippet at line 13 has two keys: Client and Message. The key
(Client) corresponds to the runtime information: the userName of the request, and the
key (Message) corresponds to the static texts describing the logging context. Compared to
conventional and rule-based logging, log messages generated by distributed tracing are more
structured. The related log messages can easily be linked across different machines by the
associated tracelD.

2.4.2 Challenges and Proposed Solutions

Below we present various challenges and their proposed solutions during the logging approach
step:

e Usability - Performance Overhead To reduce the I/O cost associated with con-
ventional logging, techniques have been proposed to delay the output of log messages
only when needed. NanoLog [72] is a nanosecond scale logging system implemented in
C++. It first statically analyzes the source code during compilation time and generates
a compression function for each LC snippet. During runtime, only the compact log
messages would be generated. The full textual version of the log messages will only be
generated during the post-processing time. In this way, NanoLog can achieve 1-2 order
of magnitude faster than conventional logging libraries (e.g., Log4J 2 [63], spdlog [47]).
Similarly, Log++ is a logging system which optimizes the logging performance for the
Node.js platform by postponing log generation offline.

e LC Quality - Maintainability One of the main issues associated with rule-based
logging is the steep-learning curve associated with the supporting LUs [45]. To cope
with this issue, two techniques have been proposed:

— Rule Generalization: Cinque et al. [73, 74] summarize eight general rules for log

instrumentation by studying system design artifacts such as architectural models
and UML diagrams. They abstract these artifacts into a system representation

18

2.5. LU INTEGRATION CHAPTER 2. LITERATURE REVIEW

model, which consists of the interactions among a set of entities in the system.
Then they propose a set of rules to log key interactions which could cover the
needed data for failure diagnosis. These rules are proposed to meet the needs of
diagnosing four types of functional failures: (1) service error, (2) service complaint,
(3) interaction error, and (4) crash error. For instance, service errors refer to
errors that a service is unable to reach an exit point. To handle such kind of
errors, the event of service start and end must be logged. Crash errors refer to any
abnormal stop of an entity. To handle such errors, a heartbeat log needs to be
periodically invoked to monitor the service execution. Such rules can be used to
guide developers to perform their their rule-based log instrumentation activities.

— Specifying Logging Concerns: In order to ease the migration for conventional
logging to rule-based logging approach, Bruntink et al. [75] and Mohammadian et
al. [76] propose frameworks to easily express logging concerns in a moduralized
manner.

2.4.3 Summary and Open Problems

In this section, we have presented three logging approaches: conventional logging, rule-based
logging, and distributed tracing. In addition, we also describe serveral proposed solutions
to address the usability and maintainability related challenges. Below we present two open
problems in this area:

e Best Practices: There are no well documented guidelines on suggesting the appropriate
logging approaches under specific scenarios. It is worthwhile to extract and generalize
all the logging needs by studying the existing commerical and open source projects.
Different logging approaches can be evaluated under these different logging needs in
order to provide a systematic guideline on the best practices of using different logging
approaches.

e Migration: Although rule-based and distributed tracing-based logging bring additional
benefits compared to conventional logging, a study [45] shows that majority of the
software projects still adopt the conventional logging approaches. The key issue is
associated with steep learning curve and high migration effort [70, 69]. It is worthwhile
to investigate the issues and concerns associated with migrating of logging approaches
so that researchers and logging framework developers can provide better tool support
for the migration process.

2.5 LU Integration
Instead of directly invoking the standard output functions like System.out.print, developers

prefer to instrument their SUS using LUs (e.g., SLF4J [46] for Java and spdlog [47] for C++)
due to additional functionalities like thread-safety (synchronized logging in multi-threaded

19

2.5. LU INTEGRATION CHAPTER 2. LITERATURE REVIEW

systems), data archival configuration (automated rotation of the log files), and verbosity
levels (controlling the amount of log messages outputted). There are generally two concerns
associated with LU integration:

e what-to-adopt: There are many LUs available in the wild. Developers need to decide
which or whether existing LU(s) are need for their SUS. Furthermore, for projects with
LU(s) integrated already, developers have to determine if they would like to migrate to
other or newer LU(s).

e how-to-configure: Each LU contains a set of configuration options ranging from
controlling the amount of output to the location of the log files. Developers need to
properly configure LUs for their SUS in order to gather enough logging data while
minimizing the performance overhead and storage requirements.

In the rest of this section, we present the challenges and their proposed solutions associated
with each of the two concerns in the LU intergration step.

2.5.1 What-to-Adopt

With the increasing amount of LUs available in the wild [45], integrating appropriate LUs
according to the requirements of individual SUS is important. The problem of what-to-adopt
focuses on this matter with regard to the maintainability and security compliance of LUs.
After that, it is also important to configure these LUs to increase their usability.

Modern software often leverage the functionalities provided by the LUs to instrument
their SUS. A study [45] on 11,194 Java-based GitHub projects shows that there are more than
3,000 LUs being adopted in the wild. For example, many developers adopt LUs like Log4j [77]
and Apache Commons Logging [78] to instrument their Java-based SUS [79]|. Furthermore,
many of these projects adopt multiple LUs or even implement their own LUs in order to
address one or more of the following challenges:

e Usability - Configurability: One of the main reasons behind the adoption of multiple
LUs in many large-sized projects is due to the import of third party libraries, which
internally use LUs [45]. Additional LUs are developed in order to configure and control
the logging behavior from third party libraries when using conventional and rule-based
logging. In distributed tracing, the third-party libraries are pre-instrumented with LUs.
Developers only need to import the instrumented versions of third-party libraries to
enable logging, which is easy to configure because all the traced libraries can adopt the
same interface [71]. It also works well within an industry environment. As illustrated in
[50], almost all of the applications in Google use the same threading model, control flow
and RPC libraries, which makes the instrumentation applicable to every SUS which
adopts these libraries.

e LC Quality - Maintainability: Although many projects use general-purpose LUs,
some LUs are used specifically for improving the maintainability of the LC. For example,

20

2.5. LU INTEGRATION CHAPTER 2. LITERATURE REVIEW

LUs like AspectJ [44], which realizes the rule-based logging approaches, support better
modularization of the LC. Other LUs like JBoss logging [34] that enables the SUSs to
easily support multiple human readable languages in the log messages. LU migration [80]
is quite common in open source projects. Developers migrate the LUs for better
flexibility, performance, and maintenance. However, 28.6% of the LU migration attempts
are aborted due to various reasons. Over 70% of the successfully migrated projects may
suffer from post-migration bugs.

e Security - Auditing: Some projects (e.g., Hadoop) develop their own LUs to better
support auditing. Auditing log messages are generally more structured compared to
the regular log messages.

2.5.2 How-to-Configure

LUs contain many different configuration options. They can be related to controlling the
amount of log messages outputted, or the location of the log files, and the size of the log files.
Solutions are proposed for the following challenges:

e Usability - Configurability: Zhi et al. [81] anazlye the evolution of logging configura-
tions of 10 open source Java-based projects in GitHub and 10 industrial projects. They
find that the names of loggers are changed frequently due to inconsistencies. Inspired
by this finding, they propose a static checking technique to identify inconsistent loggers
by comparing the contents of the loggers in the configuration files and in the source
code files.

e Usability - Performance Overhead: One of the main issues associated with logging
is the performance overhead incurred to the SUS. Many LUs (e.g., Google’s Dapper [50]
or Facebook’s Canopy [51]) implementing distributed tracing-based logging approaches
usually support sampling, which is a technique to selectively generate and preserve log
messages in order to reduce the runtime overhead. There are three types of sampling
techniques: head-based sampling; tail-based sampling; and unitary sampling [82, 61]:

1. Head-based Sampling: The sampling decision is made at the beginning of every
trace. It either preserves the whole trace (including every trace point), or no trace
at all. Head-based sampling techniques can be further divided into:

— Probability sampling makes the sampling decision based on a pre-defined
probability. For example, the rate of 0.1% means one out of one thousand
traces are preserved. This is the most basic sampling technique, which is used
by many distributed tracing-based LUs.

— Rate-limit sampling makes sampling decision based on a pre-defined sampling
rate. For example, if the sampling rate is 100 traces per minute, only 100
traces will be preseved per minute regardless of the current throughput.

21

2.6. LC COMPOSITION CHAPTER 2. LITERATURE REVIEW

— Adaptive sampling dynamically adjusts the sampling decisions during runtime.
For example, Dapper [50] is able to tune the probability of sampling for each
individual service based on the workload traffic.

2. Tuail-based sampling makes the sampling decision at the end of each trace. Com-
pared to head-based sampling, it can make a more informed decision after all
the collected traces are available. Hence, developers can pay more attention to
the traces that may contain anomalies, and discard the normal traces. How-
ever, tail-based sampling is not supported by many LUs due to its high resource
requirements on memory /disks for temporarily storing all the generated traces.

3. Unitary sampling makes the sampling decision at every trace point. Hence, a
complete trace cannot be recovered through this approach. This technique only
has very limited usage scenarios.

2.5.3 Summary and Open Problems

In this section, we have discussed the challenges and proposed solutions associated with two
common aspects on LU integration: what-to-adopt and how-to-configure. Below we present
two open problems for this area:

e LU Recommendation: There are many LUs available in the wild, which provides
various functionalities about software logging. In addition, new LUs are also constantly
introduced. It is very important to provide developers’ suggestions on the appropriate
LU(s) for the SUS in order to ensure all the logging needs are satisfied. Furthermore, as
the SUS evolves over time, more suggestions are also needed on incorporating additional
LUs or LU migrations.

e LU Management: Many large-scale projects use third party packages, in which
imports LUs. It is necessary to effectively configure the LUs for the SUS as well as the
LUs for their imported packages in order to gain full observability of the entire systems.
Further research is urgently needed to develop tools or techniques to automatically
manage the logging behavior across mutliple LUs in one SUS.

2.6 LC Composition

The last step of log instrumentation is LC composition. There are three sub-steps in LC
composition:

1. The step of where-to-log is about deciding the appropriate logging points. Various
studies [10, 9, 83, 32, 8| have shown that logging is pervasive in software development
process. Developers usually rely on their experience or gut feelings when deciding on
the logging points in the source code. On one hand, logging too little will hinder the
diagnosability of log messages. For example, missing logging statements in exception

22

2.6. LC COMPOSITION CHAPTER 2. LITERATURE REVIEW

blocks will cause incomplete information of failures, making failure diagnosis more
difficult [18]. Incomplete LC snippets also hinder developers’ understanding, hurting
LC quality, since they can only recover ambigious execution paths from the execution
log messages [2]. On the other hand, although excessive logging, in which LC snippets
are inserted everywhere in the source code, will provide rich runtime information, it will
bring in huge performance overhead and high storage cost associated with the generated
log messages. In addition, it is very challenging to diagnose problems by analyzing large
volumes of log messages, most of which are not related to the problematic scenarios [84].

2. The step of what-to-log is about providing sufficient information in the three compo-
nents of each LC snippet:

o Verbosity level specifies whether an LC snippet should be outputted during the
execution of SUS. Choosing an appropriate verbosity level for an LC snippet is
important. For example, if an LC snippet records information about a failed execu-
tion, the verbosity level should be set as error or fatal. If it is mistakenly set as
debug, such log messages may not be outputted or even if they do, developers may
neglect them. Such neglection could impact customer experience and negatively
impact the product quality.

e Static texts describe the logging context in a human readable manner. Currently,
developers are responsible for manually composing the static texts in the LC
snippets. Poorly written or outdated static texts may cause confusion of the
DevOps engineers and impact their various log analysis tasks.

o Dynamic contents reflect the state of SUSs during runtime. They are the results
of executing variables and method invocations included in each LC snippet. It is
important to record the necessary runtime information in order to satisfy various
logging needs from the developers and operators.

3. The step of how-to-log is about developing and maintaining high quality LC, which
is scattered across the entire system and tangled with the feature code. Although the
rule-based logging approach provides better management of LLC, many industrial and
open source systems still choose to inter-mix LC with feature code [36, 85]. A study [37]
shows that 20% - 45% of the LC has been changed at least once during their lifetime.
The median number of days between an LC snippet is introduced and its first change
ranges from 1 to 17 days. Unlike feature code, whose quality can be verified via testing,
the correctness of LC is very difficult to verify. This can hinder program understanding
or even cause runtime issues like crashes [7].

Many solutions have been proposed to address various challenges in these three sub-
steps. Each solution focuses on a different type of challenge. We demonstrate all the
proposed solutions, their associated challenges, and their applicable steps in Table 2.2.
For example, to improve failure diagnosis, which is a type of usability challenge, program

23

2.6. LC COMPOSITION CHAPTER 2. LITERATURE REVIEW

analysis techniques are proposed during the where-to-log and what-to-log sub-steps. The
research papers that propose these techniques are |18, 86, 87, 35]. In the rest of this section
(Section 2.6.1, 2.6.2, 2.6.3, and 2.6.4), we will discuss each challenge and their associated
solution(s) in details.

2.6.1 Usability - Performance Overhead

The main challenges associated with usability during the LC composition step is performance
overhead. Various cost optimization-based techniques have been proposed to determine the
optimal logging points (a.k.a., where-to-log) in the SUSs:

e Information Theory: To better recover execution paths using log messages, Zhao et
al. [88, 2| propose Log20, which is a technique to automatically insert LC snippets. In
order to evaluate such capability, the concept of entropy is used. Entropy is originated
from Shannon’s information theory, The higher entropy, the more uncertain execution
paths exist in a code block. At the same time, the performance costs of the instrumented
LC snippets should not exceed a customized threshold to minimize performance overhead.
The best logging points are those that resolve the most uncertainty during problem
diagnosis within an acceptable range of performance overhead.

e Constraint Solving: To dynamically control the performance overhead, Ding et al. 21|
propose a constraint solving method to determine the optimal logging points which
incur minimum performance overhead with maximum amount of runtime information.
This approach provides a configuration, which dynamically adjusts the types of log
messages outputted during runtime based on the performance of SUS.

e Statistical Modeling: To better monitor the performance of SUS, Yao et al. propose
Log4Perf [89] to suggest logging points. They first build performance models by
running performance tests. Through these models, source code snippets that are
performance influencing are identified. For all the methods in the source code, the entry
points and the exit points are instrumented with LC snippets. After re-executing the
performance tests, the methods that cost constant execution time are identified and
their corresponding LC snippets are removed. The remaining set of LC snippets will
assist developers for diagnosing and optimizing system performance by increasing the
visibility of performance issues.

2.6.2 Diagnosability

There are two objectives within the diagnosability challenge: failure diagnosis and performance
analysis. Program analysis-based solutions are proposed to address the challenges of improving
failure diagnosis, whereas end-to-end based solutions are used for better performance analysis.
Both types of proposed solutions are used during the where-to-log and what-to-log sub-steps.

24

CHAPTER 2. LITERATURE REVIEW

2.6. LC COMPOSITION

lo1T ‘cTT1] 30[-03-1eyM SOTISLINS] SISATeue OI1SUAIO @duRI[dUWIO)AILINIOG
[v11 ‘o1 80[-03-mo1|
leTT ‘21T ‘87l Fo[-03-yerm
[TTT ‘01T suruor) /TN £5U03sISU0))
‘60T ‘80T ‘LOT ‘8] 8o1-03-0107 M £nrend) o1
[90T ‘8¢ ‘9¢] 80[-03-m0[poseq-£103STH Ayiqeurejure\
0T ‘po1] dor-o3-yeym uoryezirensip /JIN Aprer)
€0t ‘16
'2¢ ‘201 ‘0T 0%
TOT 00T 66 86 8o[-03-yeym Furspery Ljesne ssApeue
[q 2| T D
‘26 ‘96 ‘G6 ‘T6 S0[-04-010T QOURULIOLID] Ayiqesouserq
‘€6 ‘26 ‘16 ‘64 L .
l06 ‘cgl Sor-03-yeyM s1sougerp
Fw ‘98 ”wz S0[-03-010T M SISATeUR WRISOI] oan[rey
(12 ‘68 ‘Z ‘S8 8o[-03-o10yM woryeziwydo 3500 PROYIDAO 9OURULIONOJ Aiqesn
SERIEREIEPY | sdelg senbruyoay, saA1309[q A10393e)

"dogs woryisoduroo) ur suornjos pesodord o) pue saSud[[RYD O, 7' O[qRL

25

2.6. LC COMPOSITION CHAPTER 2. LITERATURE REVIEW

Failure Diagnosis

Program analysis is a technique, which analyzes the behavior of SUSs automatically through
static or dynamic analysis [117, 118]. Both types of program analysis techniques have been
used to support better diagnosis of functional failures:

e Static analysis-based solutions analyze source code without executing the SUSs. There
are many program analysis tools, which automatically scan through the source code of
SUS, output abstract representations like ASTs (abstract syntax trees) and call graphs,
and reveal deficiencies in the source code. For example, call graphs can be analyzed
further in order to identify logging points which are suitable for failure diagnosis.

Yuan et al. have conducted two prior work to improve failure diagnosis by leveraging
static analysis [18, 35]. For example, they investigate 250 bug reports and characterize
exception patterns that need additional logging [18]. A static checking tool, Errlog, is
proposed to scan the code base for these types of exception blocks and automatically
instrument LC snippets to record the error locations and error context. They also
propose LogEnhancer [18], to instrument additional variables in the exsiting LC snippets.
These variables are extracted by statically analyzing the control flow and data flow of the
source code of SUS, so that log messages can contain complete runtime information to
closely replay and diagnose the failure context. Different from the above approaches, in
which the logging points are suggested manually one-by-one. SmartLog [119] is proposed
to automatically instrument LC snippets by leveraging the data mining techniques
on the static analysis results. The context (e.g., residing functions) of LC snippets
are analyzed to generate log intention models. The log intention models represent the
logging descisions (a.k.a., whether this LC snippet is logged or not logged) of a code
snippet. Data mining models are then trained on such dataset and used subsequently
to suggest program points for log instrumentation.

Static analysis-based solutions can improve the diagnosability of the generated log
messages. The advantage is that they can be applied off-line without running SUS. It
is also easier for developers to understand the reasons behind each logging point. The
disadvantage is that it requires great manual efforts in terms of deriving the patterns.

e Dynamic Analysis-based solutions suggest logging points by analyzing the runtime
behavior of SUSs. Compared to static analysis-based solutions, dynamic analysis-based
solutions need to execute the SUS. The output data generated by the execution is then
analyzed for various tasks. The ambiguous and missing information in the outputs lead
back to logging suggestions. Hence, dynamic analysis-based solution usually consists of
three steps:

1. Running SUS under different settings: Developers can inject customized faults
into the SUS, or just run with common workloads. The goal of this step is to
collect output data, such as log messages, stack traces, and memory dumps.

26

2.6. LC COMPOSITION CHAPTER 2. LITERATURE REVIEW

2. Log analysis: The goal of this step is to check whether the current output data
is capable of diagnosing failures. If not, the missing information indicates the
potential logging points and what key variables need to be recorded.

3. Update instrumentation: Additional instrumentation will be performed on the
SUS. Then the same experiments from step 1 will be executed again. The goal
of this step is to evaluate if the newly instrumented LC can improve the failure
diagnosis process.

There are three proposed techinques that leverage dynamic analysis-based solutions to
suggest additional logging points. For example, Cinque et al. [86] propose a technique
to increase the failure diagnosability of log messages. They first inject faults into three
popular open source systems and execute the SUS to collect log messages and memory
dumps. Analyzing the output data, they summarize the top 10 frequent executed
functions from halt failures and silent failures. Additional LC snippets are inserted into
these functions. Crameri et al. [87] also propose similar techniques to suggest which
branches to log. They first repeatedly execute the SUS with different inputs using
a symbolic engine. After each run terminates, they record the constraints between
the symbolic variables and the executed branches. Additional log instrumentation is
performed by identifying the associations of executed branches and variables. Jia et
al. |90] propose an approach to inserting LC snippets to ease fault localization. They
first run the SUS with injected faults. Then they compare the log messages between
successful runs and failed runs to identify key variables to log.

Performance Analysis

Modern software systems are complex, consisting of multiple software components across
various layers. With the increasing popularity of cloud native applications and microservices,
one system could contain hundreds or thousands of small services, many of which are developed
by different engineering teams. Conducting performance analysis through conventional or
rule-based logging on this type of software system is very hard, as the resulting log messages
may lack contextual information to build the causality among the logged events. Hence,
to enable thorough end-to-end performance analysis, the causality tracking technique is
proposed. In particular, causality tracking is conducted in two ways [82, 61]:

e Schema-based techniques: Schema-based techniques correlate the related log messages
based on manually designed rules [91, 93, 94, 92]. Developers need to design event
schemas to join individual event to recover a complete request. For example, event A
and event B shares the same value of variable x, event B and event C share the same
value of variable y, then event AB, and C will be joined. The causality is decided by
the timestamp of the events.

e Propagation-based techniques: Propagation-based techniques track the causality within
a request by passing the context metadata between instrumented components. A

27

2.6. LC COMPOSITION CHAPTER 2. LITERATURE REVIEW

complete trace of a request can be comprised of multiple log messages linked by the
metadata. The metadata contains a unique global trace ID. The metadata is propagated
as the request flows from one component to another one. Apart from the global trace
ID, it usually records the necessary information such as parent ID to keep the causality
relations between individual trace. The format of metadata needs to follow a certain
standard or protocol so that both the senders and receivers can pack and unpack the
information.

Most of the modern distributed tracing frameworks adopt propagation-based techniques
instead of schema-based techniques. The reasons are three folds:

e Performance Overhead: Schema-based techniques do not support sampling, because
they cannot decide which log messages to be discarded without compromising the ability
to conduct the join operations. Hence, for SUS that generates a large volumes of log
messages every day, it would be too expensive to adopt schema-based techniques.

e Generalizability: Propagation-based techniques are general across different SUSs. On
the contrary, for schema-based techniques, developers need to implement the join schema
for every different SUS based on its characteristics, which can be time consuming and
error-prone.

e Real-time feedback: Schema-based techniques are mostly conducted offline after all the
log messages have been collected. For systems that need monitoring or online analysis
and detection, propagation-based techniques are more appropriate.

2.6.3 LC Quality

Various solutions have been proposed at different sub-steps to address the three specific
challenges (clarity, maintainability, and consistency) associated with LC quality:

Clarity

The static texts in LC act as descriptions for developers and operators when they read log
messages for understanding what is going on under the hood. Hence, it is important to clearly
describe the context of specific logging scenarios in each LC snippet to avoid confusion.

e Natural Language Processing (NLP): He et al. [104] conduct a study on characterizing
the static texts of logging code. They use n-gram language model to calculate the
repetitiveness of static texts. They find that static texts in logging code are endemic,
i.e., LC within the same file or in the same context tend to use similar static texts to
describe the program behavior. Inspired by this finding, they propose a technique to
automatically generate static texts in each LC snippet. They first extract the code
snippet that contains the LC snippet. Then they search for the most similar code
snippet in the code base by comparing the edit distances. The static texts of the LC
snippet in that code snippet is then used as the texts of the candidate LC snippet.

28

2.6. LC COMPOSITION CHAPTER 2. LITERATURE REVIEW

e Visualization: Other than misleading static texts, missing variables can also cause

difficulty in understanding runtime behavior. As many post analysis, manual or
automated, require that log messages can be correlated through a set of variables. A
technique [105] has been proposed to add missing variables of LC snippets by analyzing
the visualization of log messages. The first step is to create a graphical representation
of log messages, i.e., the identifier graph, since each log message may contain various
identifiers. The log messages with same identifers are correlated. As the identifiers can
be missing, inconsistent, or ambiguous, the identifier graph [105] is used to visualize
the deficiencies. For example, a log message with insufficient identifiers will lead to
missing edges in the graph, where the semantics of the source code show that the edge
should exist. Based on the observation, suggestions can be proposed to improve the
quality of LC snippets.

Maintainability

Outdated LC exists for a variety of reasons. First, as LC is mostly done manually, human
errors (e.g., typos in the static texts) can happen. Furthermore, as LC scatters across the
entire code base and cross-cuts with the feature code, it is hard to keep track of them efficiently.
As the SUS evolves rapidly, developers may forget to update the LC accordingly along with
feature code. Hence, techniques to automatically maintain LC are needed. Existing work |36,
38, 106] mainly rely on the past development history to guide the maintenance of LC. They
usually consist of the following steps:

1.
2.
3.

Examine the development history, e.g., code changes and issue reports.
Characterize the code changes that are fixing logging code issues.

Extract anti-patterns (a.k.a., common problems) from the previous step and implement
automated tools to detect them.

Depending on the type of studied development artifacts, there are three kinds of techniques:

e Commit-based: Chen and Jiang [36] propose the first work on characterizing and

detecting anti-patterns in the logging code. They find six anti-patterns in the logging
code by carefully studying the code commits of popular and well maintained open
source projects. Their anti-patterns are implemented inside LCAnalyzer, which is a
static analyzer to flag outdated LC snippets.

Source code-based: Li et al. [38] focus on a specific type of anti-patterns in LC: duplicate
logging code smells. They uncover five types of duplicate logging code smells by studying
the source code of four popular open source projects. They propose a tool, DLFinder,
to detect the instances of duplicate logging code smells.

Issue report-based: Instead of analyzing the commit history or the source code releases,
Hassani et al. [106] study log-related issue reports and propose seven root causes of
these issues. They subsequently implement a tool to detect these issues.

29

2.6. LC COMPOSITION CHAPTER 2. LITERATURE REVIEW

Consistency

Another method to maintain the quality of LC is to ensure the consistency between the
existing and the newly added LC snippets. The rationale is that many mature projects with
long history tend to have high quality of LC, as their resulting log messages are extensively
used and examined already. There are two approaches proposed to ensure the consistency of
the LC:

e Machine Learning: Recently, machine learning techniques become widely adopted in
software engineering tasks [120]. It makes suggestions or predictions based on data [121].
As logging is pervasive in software [10, 9|, datasets are readily available for applying
machine learning techniques to automatically make decisions.

Depending on the objectives of tasks, there are two common types of ML: supervised
learning and unsupervised learning. Supervised learning requires the training data to
have readily available labels and predicts the labels of new data. On the other hand,
unsupervised learning does not require the training data. It is mostly used for deriving
patterns in a dataset.

— Supervised learning techniques are adopted for assisting LC composition, as the
objectives are labelling if a code snippet should be logged (where-to-log) or if a
particular variable/verbosity level should be used for logging (what-to-log). The
general process usually consists of the following four steps: (1) Data gathering:
This step is to collect training data for performing the tasks. The training data
consists of a set of instances with labels; (2) Feature engineering: This step is to
extract features that are to describe the instances. These features are the input
for the machine learning models; (3) Model building: This step is to build machine
learning models from the labeled training data. The parameters are tuned in this
step to improve the model performance; and (4) Making predictions: This step is
to apply the model on new data to predict the labels. This step is the final output
of the supervised learning process.

Supervised learning techniques have been applied in the following two sub-steps in
the LC composition phase:

« Predicting where-to-log: Fu et al. [8] propose a technique to predict if a code
snippet should be logged. In particular, they focus on two types of code
snippets: catch blocks and return-value-check blocks. Each logged or
unlogged code snippets are collected and labeled. Contextual keywords, such
as the residing function name, are then collected as the features. A decision
tree model is built for the task based on the collected features. Zhu et al. [107]
propose LogAdviosr, which improves the previous technique by collecting more
types of features. Their features include structural features, which are the
contextual keywords, the textual features, which are generated by transforming
the code snippet into stemmed words, and the syntactic features, which are

30

2.6. LC COMPOSITION CHAPTER 2. LITERATURE REVIEW

the properties of the code snippets such as the total lines of the code snippet.
Lal et al. also propose a technique with a different feature set to predict
addition of LC snippets in the catch blocks [108] and if code blocks [109].
Li et al. [110] propose a technique to infer if a method needs to be logged.
They first extract the topic of a method using topic models. The topics are
automatically created using the co-occurances of words in code snippets. They
then find that the topic of a method is an important feature for the model,
which provides additional explanatory power for ML models, improving both
AUC and accuracy. They [111] also propose similar techniques to infer if a
commit need just-in-time change for LC snippets.

x Predicting what-to-log: Other than being used for predicting if a code snippet
should be logged, supervised learning techniques can also be used to predict
the content of a LC snippet at the step of what-to-log. There are two areas of
work depending on the types of logging components:

- Verbosity levels: Li et al. [48] propose to recommend the most appropriate
verbosity level for newly-added LC snippet. Since there are more than
two verbosity levels for an LC snippets, they build an ordinal regression
model for this task. They gather the training data from development
histories. File metrics, change metrics, and historical metrics are used
for features. Results show that the model performs better than random
guessing. Important features that impact the verbosity levels include
the characteristics of the containing block of a newly-added LC snippet
and the number of existing LC snippets in the containing file. Kim et al.
[113] also propose a classifier to validate verbosity levels. They use the
word2vec model to generate the feature vectors.

- Dynamic Contents: Liu et al. [112] propose a technique to recommend
variables in LC snippets. Different from predicting a verbosity level, which
have a fixed set of labels, variables in LLC snippets are dynamic. This
means that for each instance, the set of possible labels are not the same.
To solve this issue, they first use neural networks to learn the proper
representation of each program token, and then use a binary classifier to
predict if the program token should be logged.

— Unsupervised learning is applied to assist the modification of LC snippets during
the sub-step of how-to-log. Li et al. [114] propose that LC snippets with similar
context tend to share similar modifications. Driven by this assumption, they
implement LogTracker, a tool to automatically learn log revision rules. For each
instance, the features are generated from the semantics of context. Then they
apply agglomerative hierarchical clustering algorithm to group similar LC snippets.
If a new instance’s features are similar to the features of instances within a cluster,
a similar modification is then suggested.

e Code Cloning: The idea of the code cloning-based approach is to validate the quality of

31

2.6. LC COMPOSITION CHAPTER 2. LITERATURE REVIEW

LC by searching for similar LC snippets. For example, Yuan et al. [10] propose a code
cloning-based technique to fix inconsistent verbosity levels in LC snippets. They first
extract all the groups of code clones and identify the LC snippets within. If within the
same clone group the LC snippets have inconsistent verbosity levels, at least one of them
is incorrect. However, although straightforward and easy to implement, the capability
of code cloning-based approaches is limited, as not every code snippet containing L.C
snippets has clones.

2.6.4 Security Compliance

King et al. [115] propose a heuristics-driven technique to identify whether a user event should
be logged or not from the forensic perspective. Computer forensic is the practice of collecting
data for legal purposes. These data is further exploited for investigation of crimes. Log
messages are one of the important sources of the evidence [122]. They first extract verb-object
pairs from natural-language artifacts such as specifications and requirement documents. Then
they propose 12 heuristics-driven rules to identify the mandatory logging events (MLEs) from
these verb-object pairs. They follow up by evaluating three methods [116] to identify MLEs:
standards-driven, resource-driven, and heuristics-driven methods. A controlled experiment is
conducted on 103 computer science students. Unfortunately, their results show that there is no
recommended method, which out-performs the other two methods in a statistical significant
level. Their study shows that more research is needed towards identifying correct MLEs.

2.6.5 Summary and Open Problems

There are various solutions proposed to address the challenges in the three sub-steps of
LC composition: where-to-log, what-to-log, and how-to-log. Below we describe a few open
problems in this area:

o Can we effectively bootstrap logging practices? So far, many studies aiming to improve
logging practices are dependent on the existing logging practices of the studied projects.
However, there are many software projects with few or even no LC snippets. It remains
a challenge how to bootstrap logging in these projects.

e Can we evaluate the effectiveness of logging practices? Currently, there are no standards
in evaluating the effectiveness of logging practics. Defining metrics, such as test coverage
to testing effectiveness, should be developed to evaluate logging practices from different
dimensions such as usability, diagnosability, etc. Such metrics can shed lights on
identifying opportunities to improve the quality of logging.

e Can we provide benchmarks for improving logging code composition? Chen et al. [123|
have conducted the first attempt to extract the Logging-Code-Issue-Introducing(LCII)
changes by mining the projects’ historical data. Every LCII change corresponds to a
potential logging issue. Such a dataset can be very useful for interested researchers

32

2.7. CONCLUSION CHAPTER 2. LITERATURE REVIEW

to develop new techniques in the area of how-to-log. However, more benchmarks are
needed for evaluating solutions in the other two sub-steps of LC composition solutions.

2.7 Conclusion

Software logging is used widely by developers for a variety of purposes. Log instrumentation
is about the development and maintenance of logging code. This is the first phase in software
logging and happens before log management. Unfortunately, unlike log management, which
has extensive tool support, there are little research and practice done in the area of log
instrumentation. This survey aims to summarize the challenges that developers face when
conducting log instrumentation. In particular, for each step (logging approach, LU interaction,
and LC composition) in the log instrumentation phase, we describe their challenges and the
proposed solution techniques. To ease replicability and further study on this survey, we have
provided our dataset at [13].

33

Chapter 3

Extracting and Studying the
Logging-Code-Issue-Introducing Changes
in Java-based Large-Scale Open Source
Software Systems

3.1 Introduction

Execution logs, which are usually readily available for large-scale software systems, have
been widely used in practice for a variety of tasks (e.g., system monitoring [16], problem
debugging [18], remote issue resolution [3], test analysis [19], and business decision making [5]).
Execution logs are generated by executing the logging code (e.g., Logger.info("User " +
userName + " logged in")) that developers have inserted into the source code. There are
typically four types of components in a snippet of logging code: a logging object, a verbosity
level, static texts, and dynamic contents. In the above example, the logging object is Logger,
the verbosity level is info, the static texts are User and logged in, and the dynamic content
is userName.

It is very challenging to develop and maintain high quality logging code for constantly
evolving systems for the following two reasons: (1) Management: software logging is a
cross-cutting concern, which tangles with the feature code [44]. Although there are language
extensions (e.g., AspectJ [11]) to support better management of logging code, many industrial
and open source systems still choose to inter-mix logging code with feature code [9, 32, 10].
(2) Verification: unlike feature code or other types of cross-cutting concerns (e.g., exception
handling or configuration), whose correctness can be verified via software testing; it is very
challenging to verify the correctness of the logging code. Figure 3.1 shows one such issue in
the logging code. In the Hadoop DFSClient source code, the variable name was changed
from LEASE_SOFTLIMIT_PERIOD to LEASE_HARDLIMIT_PERIOD in version 4078. However, the
developer forgot to update the static text from soft-1limit to hard-1limit. Such issues are
very hard to be detected using existing software verification techniques, except conducting

34

3.1. INTRODUCTION CHAPTER 3. LOGGING CODE ISSUE

careful manual code reviews. Developers have to rely on their intuition to compose, review,
and update logging code. Most of the existing issues in logging code (e.g., inconsistent or
out-dated static texts, and wrong verbosity levels) are discovered and fixed manually [9, 10].

DFSClient.java from Hadoop (HDFS-5800)

LOG.warn("Failed to renew lease for " + clientName + " for "+ (elapsed / 1000)+ "
V 4078: |seconds (>= soft-limit ="+ (HdfsConstants.LEASE_HARDLIMIT_PERIOD / 1000)+ " seconds.)
"+ "Closing all files being written ...",e)

LOG.warn("Failed to renew lease for " + clientName + " for "+ (elapsed / 1000)+ "
V 5956: |[seconds (>= hard-limit ="+ (HdfsConstants.LEASE_HARDLIMIT_PERIOD / 1000)+ " seconds.)
"+ "Closing all files being written ...",e)

Figure 3.1: An example of an issue in the logging code [124].

Most of the existing research on logging code focuses on “where-to-log” (a.k.a., suggest-
ing where to add logging code) |21, 8, 107| and “what-to-log” (a.k.a., providing sufficient
information in the logging code) [80, 6, 35|. There are very few work tackling the problem
of “how-to-log” (a.k.a., developing and maintaining high quality logging code). Low quality
logging code can hinder program understanding [6], cause performance slow-down [125], or
even system crashes [7]. Unlike other software engineering processes (e.g., refactoring [126]
and release management [127]), there are no well-established logging practices in industry [8,
32|. Our previous work [36] is the first study, which characterizes and detects anti-patterns
(common issues) in logging code by manually examining a sample of the logging code changes
from three open source projects. Six anti-patterns in the logging code (ALC) were identified.
The majority (72%) of the reported ALC instances, on the most recent releases of the ten open
source systems, have been accepted or fixed by their developers. This clearly demonstrates
the need for this area of research. However, one of the main obstacles facing researchers is
the lack of the available dataset, which contains the Logging-Code-Issue-Introducing (LCII)
changes, as many issues in the logging code are generally not documented in the commit
logs or in the bug reports. An LCII change is analogous to a bug introducing change [128].
It is a type of code change, which will lead to future changes (e.g., changing the static
texts for clarification or lowering the verbosity levels to reduce the runtime overhead) to the
corresponding logging code. For example, in Figure 3.1, the logging code change at version
4078 is the LCII change. This change introduced a bug in the logging code. The fix to this
LCII change is at version 5956. Logging code changes which are co-evolved with feature code
are not included as LCII changes.

In this chapter, we have developed a general approach to extracting the LCII changes
by mining the projects’ historical data. Our approach analyzes the development history
(historical code changes and bug reports) of a software system and outputs a list of LCII
changes for further analysis. We have performed a few preliminary studies on the resulting
LCII change dataset and presented some open problems in this area. The contributions of

35

3.1. INTRODUCTION CHAPTER 3. LOGGING CODE ISSUE

this chapter are as follows:

1. Compared to [36], using our new approach, the resulting LCII changes are more
complete. In [36], the authors assumed that only the independently changed logging
code changes (a.k.a., the logging code changes which are not co-changed with any
feature code changes) may contain fixes to the LCII changes. In this chapter, we have
found that this assumption is invalid, as some fixes to the LCII changes may require
feature code changes as well. Thus, rather than only focusing on the independently
changed logging code, we extract the LCII changes from all the logging code changes.

2. Instead of manually identifying LCII changes as in [36], we have developed an adapted
version of the SZZ algorithm [129], called LCC-SZZ (Logging Code Change-based SZZ),
to automatically locate the LCII changes from their fixes. By leveraging this algorithm,
we can extract the LCII changes among various code revisions.

3. To ease replication and encourage further research in the area of “how-to-log”, we have
provided a large-scale benchmarking dataset, which contains 8, 748 LCII changes from
six large-scale open source systems, each consisting of six to ten years of development
history [13]. Such a dataset, which is the first of its kind to the authors’ knowledge,
can be very useful for interested researchers to develop new techniques to characterize
and detect ALCs or to derive coding guidelines on effective software logging.

4. We have conducted some preliminary studies on the extracted LCII change dataset and
reported four main findings: (1) both co-changed and independently changed logging
code can contain fixes to LCII changes; (2) the complexity of the LCII changes and other
logging code changes are similar; (3) it takes significantly longer to fix a logging code
issue than a regular bug, and (4) although none of the existing techniques on detecting
logging code issues perform well (< 3% recall), their detection results complement each
other. Our findings clearly indicate the need in this area of research and demonstrate
the usefulness of our approach and the provided dataset.

Chapter Organization

The rest of the chapter is organized as follows. Section 3.2 gives an overview about the
extraction process for the LCII changes. Section 3.3, 3.4, and 3.5 illustrate the three phases
of our extraction approach. Section 3.6 describes our preliminary studies on the extracted
dataset. Section 3.7 presents the related work. Section 3.8 discusses the threats to validity.
Section 3.9 concludes the chapter and describes some of the future work.

36

3.2. OVERVIEW CHAPTER 3. LOGGING CODE ISSUE

3.2 An Overview of Our Approach to Extracting the LCII
Changes

In this section, we will explain our approach to extracting the LCII changes from the software
development history. As shown in Figure 3.2, our approach consists of the following three
phases:

Phase 2 - Extraction of the fixes to the LCII changes

; : Integrate Phase 3 - Extraction of the
Phasel - Data gathering and data preparation with issue LCII changes
Co-changed

reports

- Historical logging code
istorical undates
version | |Change- -, Deaper;de_nc pd Fixes o th Lce-szZ
Code |extractiop| Evolutionary |||Distiller | Fine grained | Heuristics || ogging code||| 2M2MSS Lo ehnies LCII changes
repository data code changes changes 9
- X Indept. changed
logging code
updates Manual

verification

Figure 3.2: Overall process.

1. Phase 1 - Data gathering and data preparation (Section 3.3): this is the data
gathering and pre-processing phase. First, the versions of each source file are extracted
from the source code repositories. Then, all the bug reports are downloaded for the
studied project. Fine-grained code changes (e.g., function update, variable renaming,
etc.) are identified between adjacent versions of the same files. Finally, heuristics are
applied to automatically identify the changes which are related to the logging code.

2. Phase 2 - Extraction of the fixes to the LCII changes (Section 3.4): in order to
identify the LCII changes, we first need to identify their fixes among all the logging code
changes. In this phase, we extract the fixes to the LCII changes by carefully examining
both the independently changed and co-changed logging code changes.

3. Phase 3 - Extraction of the LCII changes (Section 3.5): unlike the feature code
changes in which each changed line can be traced back to a previous version, the process
of identifying the LCII changes is different. As the logging code is tangled with the
feature code, one line of logging code changes can be related to multiple feature code
changes. For example, in one code commit, developers may update the static texts
(due to method renaming) as well as the method invocations (due to changes in the
method signatures) in one single line of the logging code. Hence, in this phase, we have
developed an adapted version of the SZZ algorithm, called LCC-SZZ, to automatically
identify LCII changes.

The next three sections (Section 3.3, 3.4, and 3.5) will explain the above three phases in
details.

37

3.3. PHASE 1 CHAPTER 3. LOGGING CODE ISSUE

Table 3.1: Studied projects.

Project Description Bug Repository Code History LCC

Elasticsearch Distributed GitHub (2010-02-08, 2017-03-30) 2,781
analysis engine

Hadoop Distributed Jira (2009-05-19, 2017-08-22) 2,652
compute plat-
form

HBase Distributed Jira (2007-04-03, 2017-05-05) 3,638
database

Hibernate ORM frame- Jira (2007-06-29, 2017-07-25) 2,619
work

Geronimo Server runtime Jira (2003-08-07, 2013-03-21) 1,019

Wildfly Application Jira, GitHub ~ (2010-05-28, 2017-03-30) 3,401
server

3.3 Phase 1 - Data Gathering and Data Preparation

We will first briefly describe the studied projects. Then we will explain our process to extract
the logging code changes and bug reports.

3.3.1 Studied Projects

In this chapter, we focus our study on six popular Java-based open source software projects:
Elasticsearch, Hadoop, HBase, Hibernate, Geronimo, and Wildfly. Table 3.1 provides an
overview of the studied projects. These projects are from different application domains.
The selected projects are either server-side or supporting component-based projects, since
the previous study [9] showed that software logging is more pervasive and more actively
maintained in these two categories than in client-side projects. Each studied project has
one or more bug repositories (GitHub or Jira) as shown in the third column of Table 3.1.
As shown in the fourth column of the table, all the selected projects have a relatively long
development history: ranging between six to ten years. The fifth column (LCC) shows the
total number of logging code changes throughout the development history. LCC stands
for the Logging Code Changes. It refers to the code changes which are directly related to
software logging. Additional /replacement/removal of a variable inside a debug statement,
changes to the verbosity levels, or adding and removing the static texts are three examples of
LCCs. Here we only focus on the direct changes to the logging code. For example, if only
the condition outside a logging statement is changed, such change is not considered as an
LCC, as the changes may related to some feature code changes. As we can see the logging
code from all six projects are actively maintained: each containing thousands of logging code
changes.

38

3.4. PHASE 2 CHAPTER 3. LOGGING CODE ISSUE

There are two different types of data that we need to extract from the historical repositories
in order to identify the LCII changes: the logging code changes, and the issue reports.

3.3.2 Logging Code Changes

All six studied projects use GitHub as their source code repositories. We wrote a script to
automatically extract the code version history from the master branch. We only focused on
the code changes committed to the master branch, as the logging code changes committed
there had been carefully reviewed. The extracted data includes every version of every source
code file , along with the meta information of each code version (e.g., the commit hash,
the commit date, the authors, etc.). For every file, we then sorted these code versions by
their commit timestamps. For example, if the file Foo. java was changed in two commits
(hash:f4b214 and hash:a7cc6b), which correspond to the first and the second commits, it
would result in two extracted versions named Foo_v1.java and Foo_v2. java.

We ran ChangeDistiller (CD) [130] to get the source code level changes between two
adjacent versions. CD parses two adjacent versions (e.g., Foo_v1.java and Foo_v2.java) of
the same the file into Abstract Syntax Trees (ASTs) and compares the ASTs using a tree
differencing algorithm. The output of CD contains a list of fine-grained code changes from
four categories: insertion, deletion, update, and move. Since our focus is on the changes
to the existing logging code, we only analyzed the updated code changes like update to a
particular method invocation or update to a variable assignment.

Once we obtained the source code level changes, we applied keyword-based heuris-
tics to filter out the non-logging code changes. We searched for commit messages which
include the words like “log”, “trace”, and “debug”. We ruled out the changes which con-
tained the mismatched words like “dialog”, “login”, etc. We also excluded the logging
code which did not print any messages (e.g., logging verbosity level setting statement like
log.setLevel (org.apache.logdj.Level.toLevel(level))). Such keyword-based heuris-
tics have been used in many of the previous studies (e.g., |9, 36, 8, 131, 10]) to identify
logging code changes with high precision.

3.3.3 Issue Reports

The studied projects use two kinds of bug tracking systems: Jira and GitHub. For Jira-based
projects (Hadoop, HBase, Hibernate, Geronimo, and Wildfly), we followed a similar approach
in [9] to crawl the Jira reports using the provided Jira APIs. For Elasticsearch and Wildfly,
their issues are managed through GitHub in the form of pull requests and GitHub issues. We
used the public APIs to crawl the related GitHub data.

3.4 Phase 2 - Extraction of the Fixes to the LCII Changes

We have categorized the logging code changes into the following two categories:

39

3.4. PHASE 2 CHAPTER 3. LOGGING CODE ISSUE

e co-changed logging code, in which the logging code is updated together with the
corresponding feature code. In [36], there is an assumption that the fixes to the
LCII changes only exist in the independently changed logging code. It is not clear
whether such an assumption is valid or not.

e independently changed logging code, refers to the logging code changes which are not
classified as co-changed logging code changes. Unlike the co-changed logging code
changes, which are generally updated along with the feature code, independently
changed logging code is usually about fixing LCII changes. However, it is not clear
whether all the independently changed logging code is actually used to fix the LCII
changes.

In the previous study [9], we have identified the following eight scenarios of the co-changed
logging code changes: (1) co-change with condition expressions, (2) co-change with variable
declarations, (3) co-change with feature methods, (4) co-change with class attributes, (5)
co-change with variable assignment, (6) co-change with string method invocations, (7) co-
change with method parameters, and (8) co-change with exception conditions. We encoded
these rules to automatically identify the co-changed logging code changes. The remaining
logging code changes belong to the independently changed logging code changes.

In the rest of this section, we will explain our process to extract fixes to the LCII changes
by mining the independently changed and co-changed logging code changes. During this
process, we will validate the above two assumptions.

3.4.1 Extracting Fixes to the LCII Changes from the Co-changed
Logging Code Changes

We extract fixes to the LCII changes from the co-change logging code changes by leveraging
the information contained in the filed bug reports. Usually, developers would include the
bug report IDs in the commit logs for traceability [132] and code review [133|. For example,
in Hadoop, there is a commit with the commit log stating the following: “HADOOP-15198.
Correct the spelling in CopyFilter.java. Contributed by Mukul Kumar Singh.”. This commit
refers to the bug ID HADOOP-15198, whose details can be found by searching this Jira ID
online (https://issues.apache.org/jira/browse/HADOOP-15198). Hence, we extracted
the bug IDs mentioned in the commit logs to link to the corresponding Jira issues. Then
we performed keyword-based filtering to only include the bug reports which addressed the
logging issues by searching the subject of the issue reports with keywords like “logging”, “logs”,
and “logging code”.

We did not search the same keywords in the bug description and the comments sections.
Many of the reported issues include logs or logging code in their bug descriptions or comments
as an artifact to help facilitate developers to understand or reproduce the reported issues.
Thus, searching through these two sections would cause too much noise in the resulting
dataset. For example, Hadoop issue HADOOP-12666 [134] is about “Support Microsoft Azure
Data Lake” and in the discussion, someone pasted a code snippet which contained logging

40

3.4. PHASE 2 CHAPTER 3. LOGGING CODE ISSUE

code. However, this issue report is obviously not related to the issues in logging code. Hence,
to avoid too many false positives, we chose to only match those keywords in the title of the
bug reports.

The six studied projects contain a total of 7,092 co-changed logging code changes. There
are 553 (8%) co-changed logging code changes which are linked to the log-related issue
reports. For each of these changes, we manually categorized their change types based on their
intentions and whether they belong to the fixes to the LCII changes. There are 130 logging
code changes, which are not related to the LCII changes. Figure 3.3 shows one such example
from the Server. java file in the Hadoop project. This code change is linked to the Hadoop
issue HADOOP-7358 [135]. The attribute of the call object was changed from id to callld.
However, the bug report was about improving “log levels when exceptions caught in RPC
handler”, which is not related to this logging code changes. After filtering such irreverent
changes, we ended up with 423 co-changed logging code changes, which are fixes to the LCII
changes.

Server.java from Hadoop (HADOOP-7358)

V 1413: |LOG.debug(getName() + ": responding to #" + call.callld + " from " + call.connection);

V 1630 LOG.debug(getName() + ": responding to #" + call.id + " from " + call.connection);

Figure 3.3: An example of the co-changed logging code, which is linked to a log-related bug
report. However, it is not a fix to an LCII change.

3.4.2 Extracting Fixes to the LCII Changes from the Independently
Changed Logging Code Changes

There are a total of 9,018 independently changed logging code changes. Due to its sheer
size, we can only manually examine a few sampled instances. We randomly selected 369
independently changed logging code changes for manual investigation. This corresponds to a
confidence level of 95% with a confidence interval of 5%.

During our analysis, we found one scenario of the independently changed logging code
changes, which are not fixes to the LCII changes. This type of logging code changes modifies
the printing format (e.g., adding or removing spaces) without changing the actual contents.
Figure 3.4 shows one such example. The only change for that logging statement in the new
revision was adding a space after the word client in the static texts. There were no changes
in any of the four logging components (logging library, verbosity level, static texts, or dynamic
information). Hence, we automatically filtered out all the printing format changes from all
the independently changed logging code changes using a script. We ended up with 8,325
(92%) independently changed logging code changes, which are fixes to the LCII changes.

We have further investigated the relation between the independently changed logging
code changes and the reported log-related issues. We have located the issue IDs referenced in

41

3.5. PHASE 3 CHAPTER 3. LOGGING CODE ISSUE

the commit logs of these changes and tried to verify if these issue reports contained any log
related keywords in their titles. It turns out that only 10.4% of the independently changed
logging code changes have corresponding log-related issue reports. This verified our argument
in Section 5.1 that many issues in the logging code are generally not documented in the
commit logs or in the bug reports.

RpcProgramNfs3.java from Hadoop (HDFS-7423)

V 8351: [LOG.debug("GETATTR for fileId: " + handle.getFileId() + " client:"+ remoteAddress);

vV 8428: LOG.debug("GETATTR for fileId: " + handle.getFileId() + " client:JJ"+ remoteAddress);

Figure 3.4: An example of the printing format change.

3.5 Phase 3 - Extraction of the LCII Changes

In the previous phase, we have generated a dataset which contains the fixes to the LCII
changes. In this phase, we will extract the code commits containing the LCII changes.

3.5.1 Our Approach to Extracting the LCII Changes

We used an adapted approach of the SZZ algorithm [129] to automatically identify the
LCII changes from their fixes. The SZZ algorithm [129] is an approach which automatically
identifies the bug introducing changes from their fixes. It first tags code changes to bug
fixing changes by searching for bug reports. Then it traces through the code revision history
to find when the changed code was introduced (bug introducing changes). There are many
follow-up work to further enhance the effectiveness of this approach [136, 128, 129]. However,
all these approaches are focused on identifying bugs in the feature code, directly applying
these approaches on the fixes to LCII changes may lead to incomplete or incorrect results.
Different from the feature code changes, one line of logging code changes can be related to
multiple previous lines of the logging code changes.

We will illustrate the problem of using the SZZ algorithm to locate the LCII changes using
an example shown in Figure 3.7. V), represents the version of the file. The file was changed
through V; to Vjy while the logging code was introduced at 1V} and subsequently was changed
at Voo and V. The change at Vjg is a fix to the LCII change since it corrected the verbosity
level from info to fatal in order to be consistent with the text Fatal error. In addition,
in the same change, the developer corrected a typo from adddress to address in the static
texts. By using the SZZ algorithm, we find out that the problematic logging code (at Vag)
was introduced at V5. Therefore, we considered the LCII change to be at V5. However, after
examining the entire code revision history related to this logging code snippet, we noticed
that the logging code at V5 is not the only LCII change. There are two problems associated

42

3.5. PHASE 3 CHAPTER 3. LOGGING CODE ISSUE

with the logging code at V3g: the verbosity level and the static texts. The typo of the static
texts was introduced in (Vag), and the verbosity level info was introduced when the logging
code was initially added (V7). Hence, for fix version Vjg, there are two LCII change versions:
Vi and Vayg.

The main problem with the original SZZ algorithm is that it would consider logging code
as one entity instead of treating the various components (logging object, verbosity level, static
texts, and dynamic contents) of the logging code separately. To cope with this problem, we
have developed an adapted version of the SZZ algorithm, called LCC-SZZ. There are two
inputs for the LCC-SZZ algorithm: (1) a list containing the historical revisions of a particular
snippet of the logging code, and (2) the versions at which the logging code are fixed to resolve
the LCII change. The output of the LCC-SZZ algorithm is the version(s) of LCII change(s).
The pseudo code of this algorithm is shown in Figure 3.5.

The whole process contains two steps: (1) formulating a list of component chains; and (2)
finding the version(s) of the LCII change(s) for each fixed component.

In step 1, LCC-SZZ breaks down each version of that logging code snippet into various
components. Each component has a type and a string representation. The type could be
logging library, verbosity level, static texts, or dynamic information (e.g. variables, method
invocations, etc.). The string representation is the value of that component. For example, the
string representation of a variable is the variable name. We then track the historical changes
for each component and formalize them as component chains. Therefore, for a list of logging
code, we have multiple component chains and grouop them together as the component chain
list. This step is done by the procedure CHAIN_FORMULATION. In the beginning, the component
chain list is created as an empty list on line 2. From line 3 to 6, the components for each
version of that logging code snippet are extracted. Then this extracted data is transformed
through the CHAIN_FORMULATION procedure. The inputs for CHAIN_FORMULATION are the
extracted components from the logging code and the component chain list. The for loop
on line 15 is used to iterate through all components to match with the existing component
chains. The for loop on line 17 is used to iterate through all the component chains to see if
the current component can be matched to any of them. As shown on line 18, the component
needs to have the same type with the component chain. If the component type is logging
library or verbosity level, it will be put into the corresponding component chain (shown from
line 19 to 22); as each logging code snippet only contains one logging library and one verbosity
level. For other types of components, they are analyzed using their string representations.
The old and the new string representations of the component are checked to see if they are
similar from line 24 to 29 based on the two following criteria: (1) if the string edit distance
between the two component string representations is less than 3; or (2) if the length of the
longest substring from the two component string representations are larger than 3. We choose
threshold value to be 3 based on a trial and error process. If either one of the above criteria
is true, they are considered to be similar, and the current component is inserted to this chain
as a new node. If there is no match found, we will initialize a new component chain with
this component to be the head of the chain. This process is implemented on line 33. This
component chain is then added to the component chain list. In the end, for a list of logging

43

3.5. PHASE 3 CHAPTER 3. LOGGING CODE ISSUE

code, we have formulated a list of component chains (i.e., the component_chain_list). In
our example shown in Figure 3.7, the logging code list contains three lines of logging code:
Vi, Voo, and Vyg. There are two fix versions: Voo and V9. There are four component chains
in the component chain list for this example. The component chain for the verbosity level is:
“info(V1) < info(Vag) < fatal(Vyg)”. The component chain for the variable is: “ipAddress(V;)
+ ipComplexAddress(Vag) < ipComplexAddress(Vyy)”. All four resulting component chains
are shown in Figure 3.6.

After the formulation of the component chain list, the next step (a.k.a., step 2) is to find
the issue introducing version given a specified fix version. This process is explained in the
procedure EXTRACT_ISSUE_INTRODUCING_VERSION starting from line 38. All the components
which are changed in the fix version are retrieved. Then the components from the previous
version of the fix version are picked, as they contain these issues. This step is implemented
from line 40 to 43. For the components with issues in the previous version, the search
continues until the first version when the issue appears is found. This process is implemented
through the while loop on line 44. In our example, the fix versions are Vyy and V5. In fix
version Vg, both the verbosity level, and the static texts are changed. Hence, the previous
version (Vo) is examined. In Vi, the verbosity level is info whose first appearance is in the
initial version of this logging code snippet, V;. Similarly, at Vjg, the spelling of adddress is
changed to address, and the first appearance of this issue is at V5y. Therefore, for fix version
Vio, there are two issue introducing versions: V; and V5. In fix version Va, the variable
ipAddress is changed to ipComplexAddress. The issue introducing version is V;. Hence,
the LCII change versions for fix version Vjo are Vi and V5. The LCII change version for fix
version Voo is V.

3.5.2 Evaluation

To evaluate and compare the effectiveness of the LCC-SZZ and the SZZ algorithms, we
used an approach similar to [137]. First, we applied both algorithms on the fixes to the
LCII changes. Then we compared the results of the two algorithms from the following three
dimensions: (1) disagreement ratio between the results from the two algorithms; (2) the
earliest appearance of the LCII changes; and (3) manual verification. The first dimension is a
general estimation of how these two algorithms differ. The second dimension is concerned
with the discrepancies between the two algorithms when compared to the estimates given
by the development team. The third dimension is to estimate the accuracy by comparing
against a human oracle.

The disagreement ratio between SZZ and LCC-SZZ

We calculated the disagreement ratio between the introducing versions generated by SZZ and
LCC-SZZ. The results are shown in Table 3.2. In total, 12.7% of the results are different.
Among the six studied projects, HBase has the largest difference ratio (16.8%) and Geronimo
has the lowest difference ratio (8.8%).

44

3.5. PHASE 3 CHAPTER 3. LOGGING CODE ISSUE

Algorithm 1 The pseudo code of the LCC-SZZ algorithm.

Input: logging_code_list, fix_version_list

: procedure LCC_SZZ(logging_code_list, fix_version_list)
component_chain_list + []
for logging_code in logging_code_list do
extracted_components < extract_components(logging-_code)
CHAIN_FORMULATION (extracted _components,component_chain_list)
end for
for fix_version in fix_version_list do
for component_chain in component_chain_list do
EXTRACT _ISSUE_INTRODUCING_VERSION(fiz _version, component_chain)
end for
11: end for
12: end procedure

._.

13:

14: procedure CHAIN_FORMULATION(extracted_components, component_chain_list)
15: for component in extracted_components do

16: find_chain < false

17: for component_chain in component_chain_list do

18: if component.type=component_chain.type then

19: if component.type = LEVEL or component.type = LIB then
20: component_chain.add(component)

21: find_chain <+ true

22: break

23: end if

24: latest_component + latest_component(component_chain)
25: if similar_string(component,latest_component) = true then
26: component_chain.add(component)

27: find_chain < true

28: break

29: end if

30: end if

31: end for

32: if find_chain = false then

33: init_new_chain(component, component_chain_list)

34: end if

35: end for
36: end procedure

37:

38: procedure EXTRACT_ISSUE_INTRODUCING_VERSION(fix_version, component_chain)
39: for component in component_chain do

40: if component.version = fix_version then

41: i1ssue_component <— component.previous

42: issue_component_content <— component.previous.content

43: if issue_component_content != component.content then

44: while issue_component.content = issue_component_content do
45: if issue_component.previous = null then

46: break

47: end if

48: issue_component < issue_component.previous

49: end while

50: end if

51: print issue_component.version

52: end if

53: end for
54: end procedure

Figure 3.5: Algorithm 1 - The pseudo code of the LCC-SZZ algorithm

45

3.5. PHASE 3 CHAPTER 3. LOGGING CODE ISSUE

V40 V20 V1

Logging

X Lo > Lo > Lo

library g 9 9
Verbosity fatal > info > info

level

Static “Fatal error R “Fatal error | “Fatal error

texts address” adddress”
Dynamic | ipComplex | ipComplex o
contents Address "] Address >| ipAddress

Figure 3.6: The resulting component chains.

A\'A! :Logr_iﬁ_f__ci("Fatal error occur in execution: " + ipAddress);

(Logging code first introduced)

V 20: Log.info("Fatal error occur in execution, adddress: " + ipComplexAddress);
(Update info and typo introduced)

V 40: LogL@TC_aT_]:(“Fatal error occur in execution, address: " + ipComplexAddress);
(Fix level and typo)

Figure 3.7: An example of the logging code changes.

Table 3.2: Difference ratio of computed introducing versions by SZZ and LCC-SZZ.

Project Same Different Total
Elasticsearch 758 (90.5%) 80 (9.5%) 838
Hadoop 905 (87.8%) 125 (12.2%) 1,030
HBase 1,276 (83.2%) 257 (16.8%) 1,533
Hibernate 1,657 (83.5%) 328 (16.5%) 1,985
Geronimo 489 (91.2%) 47 (8.8%) 536
Wildfly 2,553 (90.3%) 273 (9.7%) 2,826
Total 7,638 (87.3%) 1,110 (12.7%) 8,748

46

3.5. PHASE 3 CHAPTER 3. LOGGING CODE ISSUE

Table 3.3: Comparing the time from the earliest bug appearance and the LCII code commit
timestamp.

Project After affected After affected Bug reports with # of
version (SZZ) version (LCC-SZZ) affected version bug report

Hadoop 41 29 286 407
HBase 27 25 &7 397
Hibernate 2 2 141 332
Geronimo 0 0 21 32
Total 70 (13%) 56 (10%) 535 1,168

The earliest appearance of the LCII changes

The evaluation on the earliest LCII changes is to compare the results from the SZZ and
LCC-SZZ algorithms with the estimates provided by the development community. This
evaluation dimension is not meant to tell whether SZZ /LLCC-SZZ is absolutely correct. Rather,
it aims to point out the obviously incorrectly outputted changes. Within each bug report,
there is a field called “affected-version” showing the versions of the project that the logging
issue impacted. For example, in HDFS, a component of the Hadoop system, the Jira issue
HDFS-4122 [138| shows the affected HDFS versions are 1.0.0 and 2.0.0-alpha. As the issue
introducing date cannot be after the earliest affected version, we can use such a dataset
to evaluate the SZZ/LCC-SZZ results. We consider the results from SZZ/LCC-SZZ to be
incorrect if the resulting date reported by either algorithm is after the earliest affected version
date. To notice, if the LCC-SZZ yields multiple version results, we use the date of the earliest
version. For example, if the date of the earliest affected version is January 1, 2012 and the
LCII changes outputted by the SZZ algorithm is October 1, 2012, we consider this output
by the SZZ algorithm to be incorrect. However, if the resulting date is before the earliest
affected version, we cannot judge the correctness of the outputted changes. Table 3.3 shows
the details.

For Hadoop, HBase, Hibernate, and Geronimo, less than half (% x 100% = 46%) of the
bug reports have valid data in the “affected-version” field. Using the SZZ algorithm, 13% of
the computed versions are after the earliest affected versions (a.k.a., incorrectly identified
LCII changes). Using the LCC-SZZ algorithm, this number reduces to 10%, which is a 30%
improvement compared to the original SZZ algorithm. The majority of these improvements
come from Hadoop, which also happens to contain the largest number of bug reports with
valid data in the “affected-version” field.

Manual verification

To further evaluate the results, we did a stratified sampling on all the fixes to the LCII
changes, and went through the logging code change history to find the commits where the

47

3.5. PHASE 3 CHAPTER 3. LOGGING CODE ISSUE

Table 3.4: Consistency compared to manual oracles.

Project SZ7Z L.CC-SZZ Total

Elasticsearch 25 29 35
Hadoop 37 41 43
HBase 53 60 64
Hibernate 75 76 84
Geronimo 20 22 23
Wildfly 105 115 119
Total 315 343 368

V 658: logger.debug("Index [" + index + "]: Update mapping ["+ type+ "]
(dynamic) with source ["+ updatedMappingSource+ "]")

V715: logger.debug("index [" + index + "]: Update mapping ["+ type+ "]
(dynamic) with source ["+ updatedMappingSource+ "]")

V 736: logger.debug("[{}] update mapping [{}] (dynamic) with source

[{}]",index,type,updatedMappingSource)

MetaDataService.java in ElasticSearch

Figure 3.8: Examples of both SZZ and LCC-SZZ failed.

logging code snippets became issues. In this way, we generated a manually verified oracle
dataset for the correctly identified LCII changes.

We calculated the difference ratio between the oracle and results from the SZZ/LCC-SZZ
algorithms. The results are shown in Table 3.4. In total, we manually examined 368 fixes to
the LCII changes and derived the oracle for code commits containing the LCII changes. 85%
of the SZZ detecting results agree with the oracle while 93% of the LCC-SZZ results agree
with the oracle. All of the LCII changes correctly identified by the SZZ algorithm are also
correctly identified in the LCC-SZZ results.

For the case that both LCC-SZZ and SZZ failed, we manually examined a few of them. We
found that the misclassified instances are mainly related to logging style changes. Figure 3.8
shows an example. The logging code style was changed to format printing from string
concatenation. The logging code applied string concatenation style since introduction at
version 658. Therefore, version 658 should be the LCII change version. However, there is
a change from “Index ” to “index” (fixing typos) from version 658 to 715. Both SZZ and
LCC-SZZ mistakenly label 715 as the version containing the LCII changes.

48

3.6. PRELIMINARY STUDIES CHAPTER 3. LOGGING CODE ISSUE

Summary: our evaluation results show that: (1) 13.6% of the identified LCII changes
obtained from the LCC-SZZ algorithm are different from the original SZZ algorithm;
(2) when evaluating under the earliest appearance of the LCII changes, there are
more incorrectly flagged results (3%) by the SZZ algorithm compared to the LCC-SZZ
algorithm; (3) the LCC-SZZ algorithm achieves 93% accuracy when compared to the
oracle, which is an 8% improvement compared to results from the SZZ algorithm.

3.6 Preliminary Studies

In the previous sections (Sections 3.3, 3.4, 3.5), we have explained our approach to extracting
the LCII changes and evaluated the quality of the resulting dataset (93% accuracy based
on manual verification). In this section, we will perform a few preliminary studies on this
dataset to highlight the usefulness of such data and discuss some of the open problems. We
want to study the characteristics of LCII changes by characterizing the intentions behind the
fixes to the LCII changes (RQ1), studying the complexity of their fixes (RQ2), the duration
to address these issues (RQ3), and the effectiveness of existing automated approaches to
detecting logging code issues (RQ4). For each of the research question, we will describe our
extraction process for the required dataset, explaining the data analysis process, and discuss
its findings and implications.

3.6.1 RQ1: What are the intentions behind the fixes to the LCII
changes?

In this RQ, we will characterize the intentions behind the fixes to the LCII changes. We
intend to do this based on the two types of logging code changes from two dimensions:(1)
what-to-log vs. how-to-log, and (2) co-changed logging code changes vs. independently
changed logging code changes.

Data Extraction

Table 3.5 shows the break down of the total number of logging code changes and the number
of fixes to the LCII changes. TL shows the total number of logging code changes; IND shows
the number of independently changed logging code changes; IND FIX shows the number
of IND which are fixes to LCII changes; CO shows the number of co-changed logging code
changes; CO_FIX shows the number of CO which are fixes to the LCII changes; and T FIX
shows the total number of fixes to LCII changes. For example, in Hadoop, out of 2,652
logging code changes, 1,030 (38.8%) are fixes to the logging code changes. Out of these
1,030 fixes, 913 (88.6%) are independently changed logging code changes and 117 (11.4%) are
co-changed logging code changes. Most of the independently changed logging code changes
(92.3%) are fixes to the LCII changes. However, when we look at the co-changed logging code
changes, majority of them (94.0%) are co-changes with the features code instead of fixes to

49

3.6. PRELIMINARY STUDIES CHAPTER 3. LOGGING CODE ISSUE

Project TL IND IND_ FIX CO CO_FIX T FIX
Elasticsearch 2,781 1,004 818 1,777 20 838
Hadoop 2,652 1,121 913 1,531 117 1,030
HBase 3,638 1,497 1,413 2,141 120 1,533
Hibernate 2,619 1,958 1,921 661 64 1,985
Geronimo 1,019 652 527 367 9 536
Wildfly 3,401 2,786 2,733 615 93 2,826
Total 16,110 9,018 8,325 7,092 423 8,748

Table 3.5: Summary of the fixes to LCII changes.

the LCII changes. Among the total 8,748 fixes to LCII changes, majority of which (95.0%)
are independently changed logging code changes.

An Overview of the Data Analysis Process

Since there are only 423 co-changed logging code changes, which are fixes to the LCII changes,
we manually studied all of them. On the other hand, there are much more independently
changed logging code changes than the co-changed logging code changes (8,325 vs. 423).
It would take too much time for us to examine all the instances manually. Hence, we only
examined 367 randomly sampled instances. This sample size corresponds to a confidence level
of 95% with a confidence interval of 5%. When selecting the sample instances for manual
inspection, we applied the stratified sampling technique [9] to ensure the representative
samples are selected and studied from each project. Using the stratified sampling approach,
the portion of sampled logging code changes from each project is equal to the relative
weight of the total number of independently changed logging code changes. For example,
among the total 8,325 independently changed logging code changes from the six studied
projects, 913 of them are from Hadoop. Thus, 40 (a.k.a., 367 x %) of the manually studied
independently changed code changes were selected from Hadoop. The detailed breakdown of
our characterization results is shown in Table 3.6.

In total, we have characterized 4 intentions and 7 intentions behind the what-to-log vs.
how-to-log dimension. Among co-changed logging code changes, 27% (133 x 100%) are “Add
Logging Guards (ALG)”, which is the most common intention. Among independently changed
logging code changes, the majority of the fixes (% x 100% = 70%) are for “Updating Logging
Style (ULS)”. There are also other intentions. However, since the number of these intentions
is small, we just grouped them into a category called “Others”. We will explain below using

real-world code examples for each characterized intention.

20

3.6. PRELIMINARY STUDIES CHAPTER 3. LOGGING CODE ISSUE

Category Rationale Co-changed Independently
Adding More Information (AMI) 64 24

CLArification (CLA) 84 25

What-to-log Fixing Language Problems (FLP) 14 38
Avoid Excessive Logging (AEL) 38 15

Checking Nullable Variables(CNV) 0 1

Changing Object Casting (COC) 0 1

Refactoring Logging Code (RLC) 0 1

How-to-log Changing Output Format (COF) 0 1
Updating Logging Style (ULS) 82 255

Adding Logging Guards (ALG) 114 0

Mess-up Commits in VCS (MCV) 0 6

Others - 27 0
Total - 423 367

Table 3.6: Our manual characterization results on intentions behind the fixes to LCII changes

Detailed Characterization of the Intentions behind the LCII changes

Here we will explain our detailed characterization of the intentions behind the LCII changes
from the following three categories: what-to-log, how-to-log, and others.

Figure 3.9 shows the real world code examples for each intention for the fixes of the LCII
changes behind the what-to-log category:

e Adding More Information (AMI): extra information is added to the logging code
for the purpose of providing additional contextual information. Both co-changed and
independently changed logging code changes can have this intention. Figure 3.9(a) shows
an example for co-changed logging code changes. A method getClientIdAuditPrefix
is added in the newer version in order to provide additional runtime context [139]: “this
(client IP /port of the balancer invoker) is a critical piece of admin functionality, we
should log the IP for it at least ...”. An independently changed logging code changes,
as shown in Figure 3.9(b), this.serverName was added to provide more information
about the SplitLogWorker.

e CLArification (CLA): to clarify the runtime context, some of the outdated or imprecise
dynamic information (e.g., local variables or class attributes) is fixed. Both co-changed
and independently changed logging code changes can have this intention. Figure 3.9(c)
shows an example of the co-changed logging code changes. The variable numEdits is
updated to numEditsThisLog to output a more accurate number of edits required for
this logging context [140]. Figure 3.9(d) shows an example for the independently changed

o1

3.6. PRELIMINARY STUDIES CHAPTER 3. LOGGING CODE ISSUE

. Change
Intention Example
Type
LOG.debug("Submitting snapshot request for:" +
ClientSnapshotDescriptionUtils.toString(request.getSnapshot()));
String getClientIdAuditPrefix() {
return "Client=" + RequestContext.getRequestUserName() + "/" +
Co RequestContext.get().getRemoteAddress(); }
LOG.info(getClientIdAuditPrefix() + " snapshot request for:" +
AMI ClientSnapshotDescriptionUtils.toString(request.getSnapshot()));}
(a) HMaster.java in HBase
|LOG.info("SplitLogworker starting");
Ind |LOG.info("SplitLogworker " + this.serverName + " starting");
(b) SplitLogWorker.java in HBase
int numEdits = new FSEditLoglLoader(namesystem).loadFSEdits(new EditLogFileInputStream(editFile));
System.out.println("Number of edits: " + numEdits);
Co int numEditsThisLog = loader.loadFSEdits(new EditLogFileInputStream(editFile), startTxId);
System.out.println("Number of edits: " + numEditsThislLog);
CLA
(c) TestEditLogRace.java in Hadoop
|LOG.error("Can't make a speculator -- check " + AMConstants.SPECULATOR_CLASS + " " + ex);
Ind |LOG.error("Can't make a speculator -- check " + MRJobConfig.MR_AM_JOB_SPECULATOR, ex);
(d) MRAppMaster.java in Hadoop
private static final String AUTHZ_SUCCESSFULL_FOR = "Authorization successfull for ";
JAUDITLOG.info(AUTHZ_SUCCESSFULL_FOR + user + " for protocol="+protocol);
Co private static final String AUTHZ_SUCCESSFUL_FOR = "Authorization successful for ";
FLP JAUDITLOG.info(AUTHZ_SUCCESSFUL_FOR + user + " for protocol="+protocol);
(e) ServiceAuthorizationManager.java in Hadoop
MetricsUtil.LOG.error("Unexpected attrubute suffix");
Ind MetricsUtil.LOG.error("Unexpected attribute suffix");
(f) MetricsDynamicMBeanBase.java in Hadoop
LOG.error("Couldn't verify if the referenced file still exists, keep it just in case")
if (LOG.isDebugEnabled()) {
Co LOG.debug("Couldn't verify if the referenced file still exists, keep it just in case: " +
hfilePath)
HFileLinkCleaner.java in HBase
AEL (€3] J
LOG.info("Attempt #" + numAttempt + "/" + numTries + " failed all ops, trying resubmit," +
" tableName=" + tableName + ", location=" + location);
Ind LOG.info("Attempt #" + numAttempt + "/" + numTries + " failed all ops, trying resubmit," +
location);
(h) AsyncProcess.java in HBase

Figure 3.9: The intentions behind various fixes to the LCII changes, which are related to
what-to-log. For each intention, we have included real-world code examples.

02

3.6. PRELIMINARY STUDIES CHAPTER 3. LOGGING CODE ISSUE

logging code change. The variable AMConstants.SPECULATOR_CLASS was replaced by
MRJobConfig.MR_AM_JOB_SPECULATOR to better reflect the reported error.

e Fizing Language Problems (FLP): the logging code is updated to fix typos or grammar
mistakes in texts or dynamic information (e.g., class attributes, local variables, method
names, and class names). Both co-changed and independently changed logging code
changes can have this intention. Figure 3.9(e) shows an example for the co-changed
logging code changes. The class attribute AUTHZ_SUCCESSFULL_FOR was misspelled,
as reported in [141], and was corrected in the next revision. Figure 3.9(f) shows an
example for the independently changed logging code changes. The word attrubute in
the static texts was misspelled and corrected to attribute in the next version.

o Avoid Excessive Logging (AEL): the logging code is updated to avoid excessive logging
to reduce the runtime overhead. Both co-changed and independently changed logging
code changes can have this intention. Figure 3.9(f) shows an example for the co-changed
logging code changes. The verbosity level of the logging code was changed from error
to debug and the logging guard was also added. This was to reduce the amount of
logging to lessen the runtime overhead and the effort to analyze the log files [142].
Figure 3.9(h) shows an example for the independently changed logging code changes.
The variable and the text tableName were deleted since the variable location already
contained this information.

Figure 3.10 shows the real world code examples for each intention for the fixes of the LCII
changes behind the how-to-log category:

e Adding Log Guards (ALG): the condition statements are added to ensure that the logs
are only generated for some scenarios. Only co-changed logging code changes have this in-
tention. Figure 3.10(a) shows one such example. The log guard LOG.isTraceEnabled ()
is added to ensure the corresponding generated logs got printed when the trace level
logging is enabled in the configuration settings [143]. Such logging code changes are
considered as fixes to the LCII changes, since these changes can improve software
performance by preventing unnecessary creation of strings.

e Updating Logging Style (ULS): the logging code is updated due to the changes in the
logging library /method /API. Both co-changed and independently changed logging
code changes can have this intention. Figure 3.10(b) shows an example for the co-
changed logging code changes. The new version of the logging code uses log-specific API
(methodInvocationFailed) to generate logs as explained in the pull request [144] of the
Wildfly project. This style is commonly used in some of the third-party logging libraries
like JBoss [34]. Figure 3.10(c) shows an example for the independently changed logging
code changes. The invoked method was changed from trace to tracev. The latter
method requires the parameter to be formatted as {0} instead of string concatenation.
Such changes can improve the readability of logging code and therefore ease the future
maintenance activities on the logging code.

23

3.6. PRELIMINARY STUDIES

Intention

Change
Type

Example

ALG

Co

CHAPTER 3. LOGGING CODE ISSUE

"

LOG.trace("Add sequence generator with name: + idGen.getName());

if (LOG.isTraceEnabled()) {
LOG.tracev("Add sequence generator with name: {@}", idGen.getName()); }

(a) AnnotationBinder.java in Hibernate

ULS

Co

log.error(MESSAGES.methodInvocationFailed(t.getLocalizedMessage()),t)

WSLogger.ROOT_LOGGER.methodInvocationFailed(t,t.getLocalizedMessage())

(b) AbstractinvocationHandler.java in Wildfly

Ind

LOG.trace("Returning null as column " + names[@]);

LOG.tracev("Returning null as column {0}", names[@]);

(c) EnumType.java in Hibernate

CNV

Ind

w " "

|LOG.in-Fo("Reassigning + hris.size() + " region(s) that " + serverName + ..);

" " "

|LOG.in-Fo("Reassigning + (hris==null?@:hris.size()) + " region(s) that " + serverName + ..);

(d) EnumType.java in HBase

CcOoC

Ind

|logger.debug("binding server bootstrap to: {}", addresses);

|logger.debug("binding server bootstrap to: {}", (Object)addresses);

(e) NettyTransport.java in Elasticsearch

RLC

Ind

|LOG.warn("Error executing shell command " + Arrays.toString(shexec.getExecString()) + ioe);

|LOG.warn("Error executing shell command " + shexec.toString() + ioe);

(f) ProcessTree.java in Hadoop

COF

Ind

"

LOG.debug("removing meta region " + info.getRegionName() +
" from online meta regions");

LOG.debug("removing meta region " + Bytes.toString(info.getRegionName()) +
" from online meta regions");

(g) ProcessServerShutdown.java in HBase

MCV

Ind

|LOG.info("Timed out on waiting for region:" + hri.getEncodedName() + " to be assigned.")

"

|LOG.info("Timed out on waiting for" + hri.getEncodedName() + " to be assigned.")

|LOG.info("Timed out on waiting for region:" + hri.getEncodedName() + " to be assigned.")

(h) AssignmentManager.java in HBase

Figure 3.10:

The intentions behind various fixes to the LCII changes, which are related to

how-to-log. For each intention, we have included real-world code examples.

o4

3.6. PRELIMINARY STUDIES CHAPTER 3. LOGGING CODE ISSUE

Checking Null Variable (CNV): the logging code is updated to check if the variable
is null to prevent runtime failure. Only independently changed logging code changes
have this intention. Figure 3.10(d) shows one such example. The null check of the
variable hris was added to avoid the null pointer exception. Such changes improve the
robustness of the logging code by preventing runtime failures caused by null pointer
exceptions.

Changing Object Cast (COC):

the logging code is updated to change the object cast of a variable. Only independently
changed logging code changes have this intention. Figure 3.10(e) shows one such example.
An explicit cast was added to the variable addresses to improve the formatting of the
output string. Such changes can improve the readability of logging code and therefore
ease the future maintenance activities on the logging code.

Refactoring Logging Code (RLC): the logging code is updated for refactoring purposes.
Only independently changed logging code changes have this intention. Figure 3.10(f)
shows one such example. For the variable shexec, both Arrays.toString(shexec.getE
xecString()) and shexec.toString() would output the same string. Similar as the
above fixes, such changes can improve the readability of logging code and therefore ease
the future maintenance activities on the logging code.

Changing Output Format (COF): the logging code is updated to correct the malformed
output. Only independently changed logging code changes have this intention. Fig-
ure 3.10(g) shows one such example. The type of return value of info.getRegionName ()
is Byte. If it is outputted directly, it will not be human readable. Hence, it was wrapped
by the method Bytes.toString() to improve the readability and maintainability of
the logging code.

Mess-up Commits in VCS (MCV): the logging code is updated due to mess-up commits
in version control systems (VCS). Only independently changed logging code changes
have this intention. Figure 3.10(h) shows one such example. The static text region was
deleted at first and then added back. This is because developers first merged commits
from another branch and later reverted the change. Such changes are mainly logging
code maintenance activities. They may or may not improve the quality of the logging
code.

Some fixes to the LCII changes are due to other reasons. Figure 3.11 shows one such
example. The system functionality has been changed from renaming to moving as stated in
the bug report [145]. Thus, the logging texts are updated as well. However, the numbers
for these intentions are very small. Hence, we grouped these together into one category
(“Others”).

95

3.6. PRELIMINARY STUDIES CHAPTER 3. LOGGING CODE ISSUE

Intention | Change Example
Type

LOG.error("The endTxId of the temporary file is not less than the " +
"last committed transaction id. Aborting renaming to final file" + finalFile)

Files.move(tmpFile.toPath(), finalFile.toPath(), StandardCopyOption.ATOMIC_MOVE);
OTH Co LOG.error("The endTxId of the temporary file is not less than the " +
"last committed transaction id. Aborting move to final file" + finalFile)

(a) Journal.java in Hadoop (HDFS-11448)

Figure 3.11: An example of fixes to LCII changes due to other reasons.

Breakdown for fixes to LCII changes per project

We further break down the characterization of the fixes to the LCII changes for each of the
studied project. The results are shown in Table 3.7.

In general, ULS is the biggest group in three out of six projects (Hibernate, Geronimo,
Wildfly). CLA is the biggest group in Elasticsearch (27%) and HBase (24%). In Hadoop,
the biggest group is ALG. When we look among the intentions in the what-to-log category,
CLA is the biggest category in five out of the six studies projects and AMI is the second
biggest. This shows that developers tend to clarify or add additional information when they
fix logging code issues related to what-to-log. In how-to-log, ULS is the biggest category in
four out of six projects. The second biggest intention is ALG. There are less than 1% MCV
instances due to the merging issue in the version control systems.

Summary

Findings: Contrary to our previous study [36], both co-changed and independently
changed logging code changes can contain fixes to the LCII changes. The majority of
the fixes to the LCII changes are from the independently changed logging code changes.
In total, there are ten different intentions behind the fixes to the LCII changes: four are
related to what-to-log, and seven are related to how-to-log. Among them, “Clarification”
and “Updating Logging Style” are the top two intentions.

Implications: Our current approach to characterizing the fixes to the LCII changes is
done manually. This is very time consuming and prevents us from studying larger datasets.
Advanced text analysis approaches like topic modeling or natural language processing
can be helpful to automatically cluster related code fixes and provide summarizations.

3.6.2 RQ2: Are the fixes to the LCII changes more complex than
other logging code changes?

In the previous RQ, we have characterized the intentions behind different fixes to the LCII
changes. In this RQ, we intend to compare the complexity between the fixes to the LCII

o6

CHAPTER 3. LOGGING CODE ISSUE

3.6. PRELIMINARY STUDIES

V1G 4% 971 GRT LGT 9¢ - [el0q,
0 0 0 GG q 0 - SI™{Y1I0
T 0 T G 4 0 ADOIN
0 G LG L1 8¢ 0 DIV
66T 61 L2 ¢l 1% 01 SN
0 0 0 T 0 0 HOD S0[-03-MOF]
0 0 0 0 T 0 DT
0 0 0 0 0 T 00y
0 0 0 T 0 0 AND
T T 0 Ve a1 Gl THV
9 T 14 61 14! 0T dTd
8o7-01-7e
0T T 6 4% 0¢ ar VIO oM
T 8 0 (47 6¢ 8 TNV
APPIIAA OWIUOISY) djeurdqlil oseqH doopel yodaeosdljse[l o[euoljey A10397e)

saSuet [N 93 0} SOXIj 9} PUIYeq SUOTJUIUT 9} UO $P[NSI UOIJRZIIDIORIRYD [eNURW IN())¢ d[qe],

57

3.6. PRELIMINARY STUDIES CHAPTER 3. LOGGING CODE ISSUE

changes and other logging code changes. Since there are no existing metrics available to
quantify the logging code change complexity, we have defined a complexity metric (the number
of changed components of the logging code) to characterize how complex a logging code change
is. Fach logging code snippet contains four components: the logging library, the verbosity
level, statics texts, and dynamic invocations. A logging code change is more complex, if there
are more types of components changed together. The most complex logging code change is
that all the components of a logging code snippet have been changed. On the other hand,
some logging code changes only involve component position changes without actual content
changes. For example, the following logging code snippet log.info("text" + var); could
be changed to log.info("text", var);, since none of the components’ contents have been
changed. For such changes, the value of the complexity metric is “0”.

Data Extraction

For each logging code change, we tracked whether any logging components have been changed
using the heuristics similar to our previous work [9, 36| and calculated their change complexity
metrics defined above.

Data Analysis

Table 3.8 shows the breakdown of different components for the fixes to the LCII changes
and other logging code changes. Generally, there are large differences in three out of four
components. 27.5% of the fixes to LCII changes contain logging library changes, while only
5.1% of the other logging code changes contain logging library changes. The portion of
verbosity level changes in the fixes to the LCII changes and other logging code changes are
46.4% versus 8.2%. While the fixes to LCII changes contain more logging library changes
and verbosity level changes, only 14.4% of them contain dynamic content changes. On the
other hand, 78.6% of other logging code changes contain dynamic content changes. For static
text changes, fixes to the LCII changes and other logging code changes are similar (42.9%
versus 47.1%). For fixes to the LCII changes, the verbosity level changes rank first while
dynamic content changes rank first in other logging code changes. Static text changes are
ranked second in both types of logging code changes.

Table 3.9 shows the complexity of the logging code changes for each project. The majority
of logging code changes are “1 type” changes (72.9% in the fixes to the LCII changes and
66.8% in other logging code changes). The second largest category is “2 types” logging code
changes, 21.9% and 27.9% for the fixes to the LCII changes and other logging code changes,
respectively. For “3 types” and “4 types” logging code changes, they only make up 4.8% and
5.3% of the fixes to the LCII changes and other logging code changes. There are 0.5% fixes
to the LCII changes categorized as “0 type” changes. Hence, in terms of change complexity,
fixes to the LCII changes and other logging code changes are similar.

Here we further examined the top two most types of most frequently occurred complexity
changes: “1 type” and ‘2 types” changes. The results for the “1 type change” are shown in
Table 3.10. For each component, there are two columns. The column on the left shows the

o8

3.6. PRELIMINARY STUDIES

CHAPTER 3. LOGGING CODE ISSUE

Table 3.8: Number of individual logging component changes.

Project Lib Level Static Dynamic Total
Elasticscarch LCIT 35 (4.2%) 132 (15.8%) 603 (72.0%) 236 (28.2%) 838
Elasticsearch Other 18 (0.9%) 47 (2.4%) 933 (48.0%) 1,633 (84.0%) 1,943
Hadoop_LCII 182 (17.7%) 360 (35.0%) 479 (46.5%) 240 (23.3%) 1,030
Hadoop_Other 8 (1.7%) 53 (3.3%) 738 (45.5%) 1,253 (77.3%) 1,622
HBase LCII 122 (8.0%) 407 (26.5%) 875 (57.1%) 461 (30.1%) 1,533
HBase_Other 1(0.5%) 48 (2.3%) 847 (40.2%) 1,858 (88.3%) 2,105
Hibernate LCII 742 (37.4%) 1,292 (65.1%) 1,089 (54.9%) 84 (4.2%) 1,985
Hibernate Other 251 (30.6%) 346 (54.6%) 443 (69.9%) 296 (46.7%) 634
Geronimo_ LCII 123 (22.9%) 291 (54.3%) 141 (26.3%) 63 (11.8%) 536
Geronimo_ Other 18 (3.7%) 24 (5.0%) 269 (55.7%) 293 (60.7%) 483
Wildfly LCII 1,206 (42.7%) 1,575 (55.7%) 565 (20.0%) 177 (6.3%) 2,826
Wildfly _Other 48 (8.3%) 87 (15.1%) 236 (41.0%) 453 (78.8%) 575
Total LCII 2,410 (27.5%) 4,057 (46.4%) 3,752 (42.9%) 1,261 (14.4%) 8,748
Total _Other 374 (5.1%) 605 (8.2%) 3,466 (47.1%) 5,786 (78.6%) 7,362

Table 3.9: The complexity of logging code changes grouped by each project.

Project 0 type 1 type 2 types 3 types 4 types Total
Elasticsearch LCII 1 (0.1%) 668 (79.7%) 169 (20.2%) 0 (0.0%) 0(0.0%) 838
Elasticsearch Other 0 (0.0%) 1,287 (66.2%) 625 (32.2%) 30 (1.5%) 1 (0.1%) 1,943
Hadoop LCII 9 (0.9%) 799 (77.6%) 205 (19.9%) 16 (1.6%) 1 (0.1%) 1,030
Hadoop Other 0 (0.0%) 1,209 (74.5%) 381 (23.5%) 27 (1.7%) 5 (0.3%) 1,622
HBase LCII 1(0.1%) 1,217 (79.4%) 298 (19.4%) 16 (1.0%) 1 (0.1%) 1,533
HBase Other 0 (0.0%) 1,477 (70.2%) 598 (28.4%) 29 (1.4%) 1 (0.0%) 2,105
Hibernate LCII 3(0.2%) 952 (48.0%) 838 (42.2%) 189 (9.5%) 3 (0.2%) 1,985
Hibernate Other 0 (0.0%) 181 (28.5%) 219 (34.5%) 219 (34 5%) 15 (2.4%) 634
Geronimo_ LCII 15 (2.8%) 431 (80.4%) 84 (15.7%) 5(0.9%) 1(0.2%) 536
Geronimo _Other 0 (0.0%) 372 (77.0%) 104 (21.5%) 4 (0.8%) 3(0.6%) 483
Wildfly LCII 13 (0.5%) 2,307 (81.6%) 318 (11.3%) 1 (6.1%) 16 (0.6%) 2,826
Wildfly Other 0 (0.0%) 393 (68.3%) 125 (21.7%) 47 (8.2%) 10 (1.7%) 575
Total LCII 42 (0.5%) 6,374 (72.9%) 1,912 (21.9%) 398 (4.5%) 22 (0.3%) 8,748
Total Other 0 (0.0%) 4,919 (66.8%) 2,052 (27.9%) 356 (4.8%) 35 (0.5%) 7,362

29

3.6. PRELIMINARY STUDIES CHAPTER 3. LOGGING CODE ISSUE

counts of co-changed logging code changes which change that component. The column on
the right shows the counts of independently changed logging code changes which change
that component. For example, there are 58 “1 type”co-changed logging code changes which
changes static texts and 1661 for independently changed logging code changes. Among all
components, changes related to verbosity levels are the most, accounting for 36.8%. None of
the co-changed logging code changes are related to logging library and verbosity level, which
is a big difference from indpendently changed logging code changes. The detail results for
the “2 types” changes are shown in Table 3.11. Changes related to static texts and verbosity
levels are the two most common changes. 84.5% of the changes modify texts and 68.1% of
the changes modify verbosity levels. The independently changed logging code and co-changed
logging code changes have the similar distribution.

Summary

Findings: the majority of the fixes to the LCII changes are changing the verbosity level,
while the majority of the other logging code changes are changing dynamic contents. The
two types of logging code changes (LCII changes and co-evolving logging code changes)
are similar in terms of change complexity. The majority of both types of logging code
changes only have one or two component changes (a.k.a., “1 type” and “2 types”’ logging
code changes). Among the “1 type” logging code changes, the most common changes are
about verbosity level changes, followed by the logging library and static text changes tied
at the second place. Among the “2 types” logging code changes, the top two most common
changes are changes in the verbosity level and static texts.

Implications: correcting logging code issues just needs to change one or two components
in most of the cases with particular focuses on the verbosity levels and the static texts.
Although there are existing automated approaches (e.g., [36, 35]) to helping developers
determine the appropriate verbosity levels for each logging code snippet, there are no
techniques focusing on detecting and improving the static texts component.

3.6.3 RQ3: How long does it take to fix an LCII change?

In this RQ, we will measure how long it takes to resolve a LCII change. We are going to
compare the resolution time between LCII changes and reported bugs.

Data Extraction

We first extracted the bug creation date and the bug resolution date from the bug reports in
order to compute the bug resolution time. To compute the resolution time for each LCII
change, we computed the time differences between the LCII changes and their fixes.

60

CHAPTER 3. LOGGING CODE ISSUE

3.6. PRELIMINARY STUDIES

L[(BT L)PeT (%12)eeT[(%T°92)199°T (%6°0)8¢| (%0°8€)8FEG 0 |(%0°28)61LT 0 | [e107,
208217 ey 6L1 I PRT'T 0 |668 0 APPIIM
167 |92 g L6 ¢ 1€2 0 |12 0 | ooy
256 |09 i 0L I 162 0 |0gg 0 | ovewnqiy
LTET|GLT 05 109 0t eIe 0 |69 0 osedH
66L |08 €z €Lz 4z 192 0 |0zt 0 doopey
809 |78 8 1844 Z €0l 0 |og 0 |uoressonysery
pu oD pu] oD puJ op |pur 0D
[®107, OTWRUA(] 1X9], [oAdT qr jooloag

sosueyo odAy 1, o) 10} seSuryd jueuodwo)) (O)T°¢ 9[qR],

61

CHAPTER 3. LOGGING CODE ISSUE

3.6. PRELIMINARY STUDIES

TI6'T|(%0°92)L67 (%E7)E8|(%T9L)9GH T (%€'8)6ST|(%F'€9)TTT T (%L 7)68|(%99T)L1E (%9°0)TT| [®307,
s1e |ve g1 cs1 i 162 Z 4! 11 APPIIM
78 |62 0 o¢ 0 7 0 67 0 OTIIOI0Y)
€8 |t I gLL 7 87 gg ee 0 oyeTIOqIH
6Z | 68T o€ €0z it g9 p 1g 0 osedH
60T |16 8¢ 60T 8¢ 69 8T Gg 0 doopery
69T |geT 6 161 6 62 0 g 0 [OIBISOIISET
pu oD pu] oD pu] oD pu] 0D
[®107, OTWRUA(] o19RIG [oAdT qry 1o0lo1g

sasueyo sodAy g,, oY) 10J seSueyd juouoduio)) :T1°¢ 9[qR],

62

3.6. PRELIMINARY STUDIES CHAPTER 3. LOGGING CODE ISSUE

Project # of LCII fixes # of bug reports
Elasticsearch 838 N/A
Hadoop 1,030 31,420
HBase 1,533 15,486
Hibernate 1,985 9,009
Geronimo 536 5,594
Wildfly 2,826 14,469

Table 3.12: The number of fixes to the LCII changes and the number of bug reports in each
project.

Data Analysis

Table 3.12 shows the numbers of fixes to LCII changes and regular bug reports for each
studied project. There are much more reported bugs than fixes to LCII changes. For example,
in Hadoop, there are 1,030 fixes to LCII changes while there are 31,420 bug reports (almost
30 times more). Elasticsearch does not have an issue tracking system, so we only show the
number of fixes to LCII changes.

Table 3.13 shows the median resolution time for both LCII and regular bugs in each
project. For example, in Hadoop, the median resolution time for LCII changes is 210.9 days
and it is 15.5 days for regular bugs. For all five studied projects, the median resolution time
of the LCII changes is longer than that of regular bugs. In particular, the resolution time can
be as long as 379 days for the fixes to the LCII changes (Wildfly) while the longest median
resolution time for regular bugs is only 30.9 days (Hibernate).

Figure 3.12 visually compares the distribution of the resolution time for the fixes to the
LCII changes, and the duration for fixing regular bugs. Each plot is a beanplot [146]. The
left part of the plot shows the distributions of the durations for fixing the LCII changes, while
the right part of the plot shows the distribution of the bug resolution time. The vertical scale
is shown under the unit of the natural logarithm of days. Among the five studied projects,
the left part of the plots are always higher (a.k.a., containing higher extreme points) than
the right part.

To statistically compare the resolution time for LCII changes and regular bugs across all
five projects, we performed the non-parametric Wilcoxon rank-sum test (WRS). Table 3.13
shows our results. The two-sided WRS test shows that the resolution time of LCII changes is
significantly different from that of regular bugs (p < 0.001) in all five projects. To assess
the magnitude of the differences between the resolution time for LCIIs and regular bugs,
we have also calculated the effect sizes using Clift’s Delta for all five projects in Table 3.13.
The strength of the effects and the corresponding range of Cliff’s Delta (d) values [147] are
defined as follows:

63

3.6. PRELIMINARY STUDIES CHAPTER 3. LOGGING CODE ISSUE

Hadoop HBase Hibernate

15
1
15
1
15
1

I
10
I
10
I

In(Days)
In(Days)
In(Days)

I
-10
I
-10
I

T T T
LCll vs. Bug LCll vs. Bug LCll vs. Bug

Geronimo Wildfly

15
1
15
1

10
I
10
I

In(Days)
In(Days)

-10

T T
LCll vs. Bug LCll vs. Bug

Figure 3.12: Comparing the resolution time of LCII and regular bugs.

negligible if |d| < 0.147
small if 0.147 < |d| < 0.33
medium if 0.33 < |d| < 0.474
large if 0.474 < |d|

effect size =

Our results show that the effect sizes for three out of five projects (Hadoop, HBase, and
Wildfly) are large, whereas the other projects have negligible (Hibernate) or small (Geronimo)
effect sizes. However, the actual rationales behind the longer resolution time for logging code
issues are not clear, as there are both high priority and low priority issues in regular bugs
and logging code issues. In the future, we plan to investigate this further by surveying the
developers or the domain experts of these projects.

We further compared the resolution time between the LCII changes from co-changed
logging code changes and the independently changed logging code changes using the similar
method as described above. The results are shown in Table 3.14. Each row corresponds

64

3.6. PRELIMINARY STUDIES CHAPTER 3. LOGGING CODE ISSUE

Table 3.13: Comparing the resolution time between the LCII changes and regular bugs. The
unit of resolution time for both the LCII changes and regular bugs are in days.

Project LCII Bugs p-values for WRS Cliff’s Delta(d)

Hadoop 2109 15.5 <0.001 -0.54 (large)
HBase 1286 6.5 <0.001 -0.5 (large)
Hibernate 80.4 30.9 <0.001 -0.13 (negligible)
Geronimo 96.9 14.0 <0.001 -0.33 (small)
Wildfly 379.2 18.9 <0.001 -0.63 (large)

Table 3.14: Comparing the resolution time between the co-changed LCII changes and
independently changed LCII changes. The unit of resolution time for both the co-changed
and independently changed changes are in days.

Project Co-changed Independently p-values for WRS Cliff’s Delta(d)

Elasticserach 103.9 84.1 0.04 -0.3 (small)
Hadoop 210.9 216.8 0.73 0.02 (negligible)
HBase 183.5 126.1 0.14 -0.08 (negligible)
Hibernate 163.2 80.3 <0.001 -0.72 (large)
Geronimo 21.3 96.9 0.27 0.22(small)
Wildfly 219.3 397.3 <0.001 0.20 (small)

to one projet. For example, in Hadoop, the median resolution time of fixes by co-changed
LCII changes is 210.9 days and it is 216.8 days for independently changed LCII changes.
For Elasticsearch, HBase and Hibernate, the median resolution time of the co-changed LCII
changes is longer. The differences between the two types of LCII changes are only statistically
significant in Hibernate and Wildfly (p < 0.001). The magnitude of differences is either small
or negligible for five out of six projects.

We also studied the distribution of the resolution time with respect to the complexity of
the LCII changes. The results are visualized in Figure 3.13. Each plot contains 2 to 5 violin
plots for each project. Some plots are missing because there are not enough instances. Take
Elasticsearch for example, there are no enough instances for “0 type”, “3 types” and “4 types”
changes. Hence, there are no corresponding plots for this project. The vertical scale for all
the plots is in the unit of the natural logarithm of days. As we can see across the violin plots,
the distribution differs from project to project. It demonstrates that the complexity of the
fixes to the LCII changes do not necessarily impact the resolution time.

65

3.6. PRELIMINARY STUDIES CHAPTER 3. LOGGING CODE ISSUE

Elasticsearch Hadoop HBase

o

Bug Resolution Time(In(days))

Bug Resolution Time(In(days))

Bug Resolution Time(In(days))
o

-10

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4
Type Type Type

Hibernate Geronimo Wildfly

75
m ; 1 ;

25

0.0

Bug Resolution Time(In(days))
Bug Resolution Time(In(days))
Bug Resolution Time(In(days))

-25

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4
Type Type Type

Figure 3.13: Comparing the resolution time of different types of LCII changes.

Summary

Findings: the resolution time of the LCII changes and regular bugs are statistically different
in all studied projects. The median resolution time of the LCII changes is much longer
than that of regular bugs and the magnitude of differences is large in three out of the five
studied projects. Within the LCII changes, there is no clear statistical difference between
the types of changes (co-changed vs. independently changed) or the complexity (1 type vs.
2 types vs. 3 types vs. 4 types) of the changes.

Implications: although software logging is used widely in many contexts (e.g., debugging,
runtime monitoring, business decision making, and security), the correctness of the logging
code cannot be easily verified using conventional software verification techniques. The
issues in the logging code changes can take much longer to be detected and fixed than
regular bugs, as most of the existing issues in the logging code can only be detected and
fixed manually. Simple logging code changes may take as much time as complex logging
code changes. Automated approaches to validating and improving the quality of the logging
code is becoming an increasingly important research area.

66

3.6. PRELIMINARY STUDIES CHAPTER 3. LOGGING CODE ISSUE

3.6.4 RQ4: Are state-of-the-art code detectors able to detect log-
ging code with issues?

In this RQ, we want to study the effectiveness of the state-of-the-art techniques on detecting
issues in the logging code. There are two techniques in the existing research literature
attempting to flag issues in the logging code:

e Rule-based Static Analysis (LCAnalyzer): this technique is proposed by Chen et
al [36]. It scans through source code searching for six anti-pattern instances using a set
of rules.

e Code Clones (Cloning): this technique is proposed by Yuan et al [10]. It uses a
code clone detection tool to find all the clone groups and checks if the logging code in
the clone groups have the same verbosity levels. If the levels are inconsistent, at least
one of them have incorrect verbosity levels.

Data Extraction

Our extracted dataset contains all the LCII changes and their fixes throughout the entire
development history. However, both techniques listed above need to be applied on the
entire source code from one release of each project, since LCAnalyzer needs to extract code
dependency information and Cloning needs to scan all the source code to find code clones.
Therefore, we selected bi-monthly snapshots of the studied projects and ran both techniques
on them.

We extracted bi-monthly snapshots for all the studied projects. For each snapshot, we
computed the number of existing logging code issues using our dataset. For each logging code
issue, we kept track of the issue introduction and fixed time/version, so that we can track
the number of logging code issues in each snapshot by checking its timestamp against various
commits: a logging code issue exists in a snapshot if it is introduced before the release time
of the snapshot and fixed after the release time of the snapshot.

To avoid repeated counts, we counted each unique logging code issue once. For example,
if a piece of logging code with issue exists in two snapshots, and is detected by the above
techniques, we only count it once. Across all the snapshots, we computed the total number
of unique logging code issues and aggregated the total number of detected ones from the two
approaches.

In order to further characterize the capability of these two detecting techniques, we
classified the logging code with issues into four categories: (1) issues in the logging library,
(2) issues in the verbosity level, (3) issues in the static text, and (4) issues in the dynamic
contents. Note that Cloning can only detect issues in the verbosity level. We obtained the
LCAnalyzer from [148] and implemented the Cloning technique by ourselves.

67

3.6. PRELIMINARY STUDIES CHAPTER 3. LOGGING CODE ISSUE

Data Analysis

The detected results of LCAnalyzer and Cloning are shown in Figure 3.14. We calculated the

: Number of unique LCII detected
recall of the detection results as === of all wmique LOTT < 100%. In total, only 2.1% of

the logging code issues have been detected by LCAnalyzer, and only 0.1% of them have been
detected by Cloning technique. We then split the issues based on its problematic components.
For example, 0.3% of verbosity level related issues are detected by Cloning technique while
1.5% of them are detected by LCAnalyzer.

In general, LCAnalyzer performs the best on issues related to dynamic contents, while it
is only able to detect 5.1% of all issues in the total 60 snapshots. The worst performance of
LCAnalyzer is 1.0% recall, when the issues are related to the logging library. On the other
hand, Cloning technique can only detect verbosity level related issues due to its design, yet it
is still outperformed by LCAnalyzer (0.3% vs. 1.5%).

10.0° L] LCAnalyzer @A Cloning

9.0%
8.0%

7.0%

6.0%

5.0%

4.0%

3.0%

2.0%

1.0% !
0.0% ! ¥771

Lib Level Text Dynamic Total

Figure 3.14: Comparing the recall of the detection results for the two studies techniques.

When we compared the correctly detected instances from the two studied tools, we found
that the two techniques complement each other. We noticed that all the logging code with
issues found by the Cloning techniques are not detected by the LCAnalyzer, and vice versa.
To demonstrate the differences of these two approaches, we show two real world examples
in Figure 3.15. LCAnalyzer can only detect the issue in the top, whereas Cloning can only
detect the issue in the bottom. The reason that LCAnalyzer can detect the logging code
issue in the top is because the verbosity level and the static content are inconsistent. In the

68

3.6. PRELIMINARY STUDIES CHAPTER 3. LOGGING CODE ISSUE

static text, it shows that the logging code is for debugging purpose while the verbosity level
is info. In the fix version, the verbosity level is changed to debug and the text DEBUG is
deleted. For the issue in the bottom, two pieces of logging code snippets (highlighted in red)
are considered as clones. The verbosity level of one logging code is debug whereas the other
one is info. Therefore, the info level should be changed to debug. However, even combining
the power of these two techniques, most of the issues in logging code are still undetected.

Tool Code Example

V 1255: LOG.info("DEBUG --- getStagingAreaDir: dir=" + path);
LCAnalzyer | V 1256: LOG.debug("getStagingAreaDir: dir=" + path);
ResourceMgrDelegate.java in Hadoop

if (currentSplitSize + srcFileStatus.getLen() > nBytesPerSplit
&& lastPosition != 0) {

if (LOG.isDebugEnabled())
Code Clone LOG.debug("Creating split : " + split +

, bytes in split: +

currentSplitSize);

if (LOG.isDebugEnabled())
LOG.info("Creating split :

, bytes in split: +

+ split +

currentSplitSize);

UniformSizelnputFormat.java in Hadoop

Figure 3.15: Examples of the detected issues in the logging code from the two studied
techniques.

Summary

Findings: both the LCAnalyzer and the Cloning technique can only detect a small fraction
(< 3%) of the issues in logging code. The results outputted by the two techniques complement
each other.

Implications: there are still many logging code issues, which cannot be detected by
existing automated techniques. Leveraging our provided dataset, researchers can develop
and benchmark their new techniques on automatically detecting issues in the logging code
and deriving effective logging guidelines. As shown in RQ2, the majority of the LCII
changes are related to verbosity level changes and static texts, researchers are recommended
to prioritize their effort on detecting and improving the issues in these two categories.

69

3.7. RELATED WORK CHAPTER 3. LOGGING CODE ISSUE

3.7 Related Work

In this section, we will discuss three areas of related research: (1) empirical studies on software
logging, (2) research on automated suggestions on the logging code, and (3) research on
identifying the bug introducing changes.

3.7.1 Empirical Studies on Software Logging

Empirical studies show that there are no well-established logging practices used in industry [8,
32] as well as open source projects [9, 10]. Although most of the logging code has been actively
maintained, some of the existing logging code can be confusing and difficult to understand [6].
Various studies have been conducted to study the relationship between software logging and
code quality. Shang et al. [131] found that the amount of logging code is correlated with the
amount of post-release bugs. Kabinna et al. [80] studied the migration of logging libraries and
its rationales. Over 70% of the migrated systems have been found buggy afterwards. In [2],
the authors analyzed the logging code changes from three open source systems (Hadoop,
HBase, and ZooKeeper). They found that the majority of the logging code changes are due
to adding logging statements. Many modifications to the exsting logging code are related to
the verbosity level changes.

In this chapter, we studied the historical logging code changes from six open source
systems. We have performed three empirical studies on the commits with a focus on the issues
in the logging code and their fixes. First, we compared the change characteristics between the
fixes to the logging code and regular logging code changes. Second, we studied the resolution
time for fixing logging code issues and compared the duration against the resolution time for
bugs. Finally, we assessed the effectiveness of the state-of-the-art techniques on detecting
issues in the logging code. All the above three research questions, which had never been
studied before, leveraged our extracted dataset presented in this chapter.

3.7.2 Research on Automated Suggestions on the Logging Code

Orthogonal with the feature code, the logging code is considered as a cross-cutting concern.
Adding and maintaining high quality logging code is very challenging and usually requires a
large amount of manual effort. Various research has been conducted in the area of automated
suggestions of the logging code:

e where-to-log focuses on the problem of providing automated suggestions on adding
logging code. Yuan et al. [18] leveraged program-analysis techniques to suggest code
locations to add logging code for debugging purposes. Zhu et al. [107] learned common
logging patterns from existing code and made automated suggestions based on the
resulting learned models. Zhao et al. [2] introduced Log20, which can automate the
placement of logging code under certain overhead threshold.

e what-to-log is related to the problem of adding sufficient information into the logging
code. Yuan et al. [35] proposed a program analysis-based approach to suggesting adding

70

3.7. RELATED WORK CHAPTER 3. LOGGING CODE ISSUE

additional variables into the existing logging code to improve the diagnosability of
software systems. Li et al. [111] learned from the development history to automatically
suggest the most appropriate level for each newly-added logging code.

e how-to-log is about maintaining high quality logging code. Li et al. [48]| learned
from the code level changes to predict whether the logging code is a particular code
commit requiring updates (a.k.a., just-in-time logging code changes). However, their
technique did not pin-point the exact logging code snippets to be updated within each
code commit. Yuan et al. [10] leveraged code cloning techniques to detect inconsistent
verbosity levels among similar feature code segments. Chen et al. [36] inferred six
anti-patterns in the logging code by manually sampling a few hundred logging code
changes.

This chapter fits in the area of “how-to-log” and is close to [36]. However, the technique
to extract issues in the logging code and their fixes have been improved in this chapter so
that the resulting dataset is more complete and more accurate. Furthermore, instead of only
focusing on a small set of sampled instances, this chapter provided a dataset containing all the
historical issues in the logging code for six popular open source projects. In addition, we have
also conducted three empirical studies on the resulting dataset to demonstrate the usefulness
of this dataset and presented some open research problems in the area of “how-to-log”.

3.7.3 Research on Identifying the Bug Introducing Changes

It is important to identify bug introducing changes so that developers and researchers can
learn from them and develop tools to detect and fix them automatically. There are generally
two steps in identifying bug introducing changes:

e Step 1 - Identifying bug fixing commits: keyword heuristics based approaches
have been used to identify bug fixing commits by searching through relevant keywords
(e.g., “Fixed 42233” or “Bug 23444”, etc.) in the code commit logs [132, 149].

e Step 2 - Identifying bug introducing commits based on their fixes: Sliwerski
et al. [129] were the first to develop an automatic algorithm to identify bug introducing
changes based on their fixes. Their algorithm, called the SZZ algorithm, initially
started at the code commits which fixes these issues, then tracks backward to the
previous commits which touched those source code lines. Afterwards, there are various
modifications to the SZZ algorithms [128, 150, 151] to improve its precision and to
evaluate its effectiveness [137].

This chapter is different from the above, as it aims to extract and study the LCII changes
instead of the software bugs. Software bugs are usually reported to the bug tracking systems
and their fixes are logged in the code commit messages. However, issues in the logging code
are usually undocumented. Thus, in this chapter, we have proposed an approach to first
identifying fixes to the LCII changes and then automatically identifying the LCII changes

71

3.8. THREATS TO VALIDITY CHAPTER 3. LOGGING CODE ISSUE

based on their fixes. We have analyzed both of the co-changed and independently changed
logging code changes to flag fixes to the LCII changes. Since there are multiple components
(e.g., logging library, verbosity level, static texts, and dynamic contents) in each logging code
snippets related to more than one line of feature code, there can be multiple issues from
different code commits in one line of the logging code. Hence, we have developed an adapted
SZ7 algorithm (LCC-SZZ) to identify issues in the logging code changes.

3.8 Threats to Validity

In this section, we will discuss the threats to validity.

3.8.1 Internal Validity

There are two general types of logging code changes: independently and co-changed logging
code changes. We have identified the fixes to the LCII changes by carefully analyzing the
contents of both types of changes. For analysis of co-changed logging code changes, we
manually examined 533 instances. We inspected the source code files which contain those
co-changed logging code changes, and examined the context to verify whether these are fixes
to LCII changes. The resulting outputs were compared and discussed to generate a reconciled
dataset in the end. The resulting LCII changes identified using the LCC-SZZ algorithm have
also been verified to be highly accurate (93% accuracy).

3.8.2 External Validity

In this chapter, we extracted the LCII changes from six Java-based systems. We do feel our
approach is generic and can be applied to identify LCII changes for systems implemented in
other programming languages (e.g., C, C#, and Python).

We have conducted three empirical studies on the resulting dataset extracted from the
development history of six Java-based projects (Elasticsearch, Hadoop, HBase, Hibernate,
Geronimo, and Wildfly), which come from different domains (big data platform, web server,
database, middleware, etc.). All of these projects have relatively long development history
and are actively maintained. However, our findings in the research questions may not be
generalizable to other programming languages.

3.8.3 Construct Validity

We have used ChangeDistiller [130]|to extract the fine-grained code changes across different
code versions. ChangeDistiller has been used in many of the previous work [9, 36| and is
proven to be highly accurate and very robust.

We have demonstrated that LCC-SZZ is more effective than SZZ in terms of identifying
LCII changes across the following three dimensions: (1) the disagreement ratio between the
extraction results from the two algorithms; (2) comparing the earliest appearance of the

72

3.9. CONCLUSIONS AND FUTURE WORK CHAPTER 3. LOGGING CODE ISSUE

LCII changes against the bug reporting time; and (3) manual verification. Our evaluation
approaches are similar to many of the existing studies in this area (e.g. [137, 152, 153, 154]).

3.9 Conclusions and Future Work

Software logging has been used widely in large-scale software systems for a variety of purposes.
It is hard to develop and maintain high quality logging code, as it is very challenging to
verify the correctness of a particular logging code snippet. To aid effective maintenance of
logging code, in this chapter we have extracted and studied the historical issues in logging
code and their fixes from six popular Java-based open source projects. To demonstrate the
effectiveness of our dataset, we have conducted four preliminary case studies. We have found
that both the co-changed and the independently changed logging code changes can contain
fixes to the LCII changes. The change complexity metrics between the fixes to the LCII
changes and other logging code changes are similar. It usually takes much longer to address
an LCII change than a regular bug. Existing state-of-the-art techniques on detecting logging
code issues cannot detect a majority of the issues in logging code. In the future, we plan to
further leverage our derived dataset to: (1) develop better techniques to automatically detect
issues in logging code, and (2) derive best practices in terms of developing and maintaining
high quality logging code.

73

Chapter 4

Studying the Use of Java Logging
Utilities in the Wild

4.1 Introduction

Execution logs (a.k.a., logs) have been used widely in practice for a variety of purposes (e.g.,
system monitoring [3, 16], failure diagnosis [17, 18], and business analytics [5, 28]). Logs are
generated during runtime by the output statements that developers insert into the source code.
Instead of directly invoking the standard output functions like System.out.print, developers
prefer to instrument their systems using logging utilities (LUs) (e.g., SLF4J [46] for Java
and spdlog [47] for C++) due to additional functionalities like thread-safety (synchronized
logging in multi-threaded systems), data archival configuration (automated rotation of the
log files), and verbosity levels (controlling the amount of logs outputted).

Unlike many of the software engineering tasks (e.g., code refactoring [126] and release
management [127]), there are no well-defined guidelines for software logging. Recently, there
have been many research work devoted to the area of where-to-log (deciding the appropriate
logging points) [18, 8, 21, 107, 2|, what-to-log (providing sufficient execution context in the
logging code) [35, 48, 104], and how-to-log (developing and maintaining high quality logging
code) [10, 111, 36, 38, 123]. However, all of these work focus on improving the quality of
log printing code (e.g., LOG.info("User " + username + " authenticated")). There are
only two research work on the migration [80] and the configuration [81] of the LUs. It is
important to study the use of LUs due to these three reasons:

Measuring the Adoptions of the LUs: Although there are already many LUs available
(e.g., |77, 46, 63, 78]), new LUs are continuously introduced by companies (e.g., Flogger from
Google [155]) and researchers (e.g., NanoLog |72] and Log++ [156]). It is not clear whether
these LUs are adopted and used in the wild.

Understanding the Complex Use of the LUs: Incorporating multiple LUs in one
project may cause various issues during compilation [157, 158, deployment [159, 160],
and runtime [161, 162|). However, many software systems still use more than one LUs in
their projects [163]. For example, Hadoop, which is a very well-maintained popular open

74

4.1. INTRODUCTION CHAPTER 4. STUDYING LOGGING UTILITIES

source Big Data platform, contains not only six external LUs (Apache Commons Logging,
java.util.logging, Logdj 1.x, Logdj 2, SLF4J, Jetty logging) and implements their
own LU in their project. IntelliJ Idea, which is a very popular IDE, uses 12 LUs in their
project. It is important to study this phenomena in order to suggest best practices for the
system developers and to identify future directions for the LU designers and researchers.
Assessing the Impact of LUs on the Logging Code: On one hand, the structure of
logging code is a result of adopting certain LUs. For example, it is generally recommended to
specify the logging needs as rules via Aspect Oriented-Programming (AOP) constructs to
improve system modularity [44] and use centralized logging [34] to support internationalization
(a.k.a., outputting the log messages in different human lanaguages). On the other hand, extra
care are needed in order to cope with the complex use of LUs in one project. For example,
many projects nowadays reuse existing functionalities by importing third-party packages,
which also use LUs. However, there is no empirical study to assess the impact of the logging
code due to the use of the LUs.

In this chapter, we have performed a large-scale empirical study on the use of Java LUs in
the wild. We focus on Java, because it is currently ranked as the most popular programming
language in the world based on the TIOBE index [164]. Many popular software systems
(e.g., Android-based mobile applications [165, 166, IDEs [167, 168|, web servers [169, 170],
and Big Data platforms [171, 172]) are implemented in Java and logging is prelevant in
these systems |9, 83]. We have examined 11,194 open source Java-based projects in GitHub,
which uses 3,856 LUs. We have uncovered four important findings and implications. To
ensure the usefulness and generalizability of our findings from open source systems, we also
interviewed 13 industrial developers on the use of LUs. We summarize our main contributions
and findings as follows:

e This is the first empirical study on the complex use of LUs in the wild.

e 3,856 LUs are currently being used by 11,194 projects in GitHub. The number of
used LUs increases as the systems grow bigger, as larger-sized projects usually reuse
existing functionalities by importing third-party packages, which also use LUs. Many
projects also implement their own LUs to satisfy project-specific needs. Our findings
raise developers’ awareness on the complexity of the LUs in their systems as well as the
need to manage these LUs to better monitor and debug systems’ runtime behavior.

e In addition to the quantitative study, we have also conducted a qualitative study to
understand and characterize the rationales behind the complex use of LUs for different
projects. Such results can guide researchers to propose more general logging solutions
for various logging context.

e To support independent verification or further research on the use of Java LUs, we
have provided a replication package [13] in this chapter. This package can be useful for
other researchers who are interested in studying and improving the logging practices.

75

4.2. OVERVIEW CHAPTER 4. STUDYING LOGGING UTILITIES

Chapter Organization. The rest of this chapter is organized as follows. Section 4.2
provides an overview of our approach and describes our studied projects. Section 4.3 and 4.4
quantitatively and qualitatively study the use of the LLUs in the wild. Section 4.5 explains our
interview process and describes our observations. Section 4.6 discusses the significance of our
findings and presents some future work. Section 4.7 describes the related work. Section 4.8
explains the threats to validity and Section 4.9 concludes the chapter.

4.2 Overview

In this section, we will provide an overview of our approach to empirically studying the use
of Java LUs in the wild and describe our studied projects.

4.2.1 Our Approach

We followed a mixed-methods approach characterized by a sequential explanatory strat-
egy [173| to analyze the use of LUs. We first extracted the source code from popular
Java-based GitHub projects (Section 4.2). Then we performed a quantitative study on
measuring the degree of adoption of different LUs as well as comparing the number of used
LUs across different projects (Section 4.3). We also tracked the number of projects which
also implement their own LUs. Afterwards, we performed a qualitative study (Section 4.4)
by manually studying the use of LUs among different projects. Since our study is performed
on open source projects, we also cross-validated our findings by interviewing 13 experienced
developers who work on commerical systems (Section 4.5).

4.2.2 Studied Projects

To study the use of Java LUs in the wild, we focused on analyzing Java-based projects
from GitHub. GitHub is currently the largest code hosting site with more than 100 million
projects as of April 2019 [174]. We built a local GHTorrent [175] database from the MySQL
dump. This database, which was last updated on 2019-06-01, contains the meta information
of a project such as the corresponding GitHub URL, the project name, and the main
programming language(s). We extracted a list of GitHub URLs for all the Java-based projects
for post-processing.

We further filtered the list of GitHub projects to avoid potential perils in our analysis [176].
One GitHub project may be forked or cloned by others, whose source code can be identical
or very similar to the orignal one. This would introduce noise into our study. Hence, we
only selected projects which are neither a fork nor a clone of other projects. Furthermore,
the number of stars that a project has indicates its popularity. Similar to prior work [177,
178, 179], we further filterd the list of projects to ensure they have at least 30 or more stars.
We ended up with 25,611 Java projects. We downloaded the soure code for the most recent
releases of these projects by invoking the GitHub APIs.

76

4.3. QUANTITATIVE STUDY CHAPTER 4. STUDYING LOGGING UTILITIES

4.3 Quantitative Study

In this section, we first analyzed the selected projects to identify the list of LUs that are used.
Then we measured the degree of LUs which are adopted and used. Finally, we compared the
use of LUs among different projects.

4.3.1 Identifying LUs in Each Project

We developed a heuristic-based technique to identify LUs in each project. First, we excluded
Java files, which were either in a test folder or containing the keyword of “test” in their
file names, as they are probably not related to the core features of the projects under study.
Then we used JDT [180] to parse the remaining Java files to identify a list of imported
statements and function invocations for each Java class. We made sure these imported classes
are used by checking if there is one or more methods been invoked in that class. We further
filtered the list of import statements in each Java class, so that only packages or Java classes
whose names contain patterns like “logging”, “logger” or “.log.” were kept. These packages
or classes are considered as LUs. For logging in Aspect-Oriented Programming (AOP), we
first identified Java files with import statements that contain “aspectj”’. Since AspectJ can
do more than logging, we subsequently parsed the Java files to check whether they use any of
the LUs identified by the above rules.

If a project used more than one LUs and their package names were similar, we merged
them as one LU. For example, if the following two LUs, Foo.Bar.Baz.ConsoleLogger and
Foo.Bar.Baz.FileLogger, were identified in one project, we merged them into one LU
(Foo.Bar.Baz).

To verify the correctness of our heuristic-based technique, we randomly sampled 441
files and manually examined the identified LUs. Our technique yield an precision of 96%.
Some of the Java classes are misclassified as LUs as the identified log-related Java classes
did not implement log printing functions. For example, LoggerProvider. java in the Ninja
framework [181] was not considered as an LU, since this class did not provide any log printing
functions other than a utility function that returns an SLF4J logging object.

4.3.2 Measuring the Adoptions of LUs

We further classified the size of these projects into the following five bins based on their
number of Java classes using the definitions from [182|. Table 4.1 shows the results. For
example, there are a total of 761 large-sized projects, whose number of Java classes is between
1,000 and 5,000. Among them, 728 projects (a.k.a., 95.7%) adopt one or more LUs. There is
a clear trend of increasing adoptions of LUs as the size of the projects get bigger.

For the subsequent studies, we removed all the projects which did not use any LUs, since
they are not relevant to this chapter. We also excluded the projects whose size was very small,
as many of them are not considered as useful projects (e.g., trial projects for self-studying,
and collections of code snippets). After filtering, there were 11,194 Java projects remaining,

7

4.3. QUANTITATIVE STUDY CHAPTER 4. STUDYING LOGGING UTILITIES

which used 3, 856 distinct LUs.

Table 4.1: Measuring the adoptions of LUs among the Java-based GitHub projects.

Bins Total # of % of Projects

(# of classes) Projects Used LUs
Very Small [0, 20) 11,390 43.2%
Small [20,100) 7,781 72.5%
Medium [100, 1000) 5,576 84.3%
Large [1000,5000) 761 95.7%
Very Large [5000, o) 103 97.1%
Total 25,611 63.1%

4.3.3 Comparing the Use of LUs Among Projects

Depending on where these LUs were implemented, we further classified the list of used
LUs in each project as External LU (ELU)s or Internal LU (ILU)s. It is an ELU, if the
implementation of this LU is not inside the project under study. Otherwise, it is an ILU. For
example, Hadoop uses five different ELUs: Apache Commons Logging, java.util.logging,
Log4j 1.x, Log4j 2, SLF4J, Jetty logging and implements its own ILU, which is mainly
used for auditing purposes. Table 4.2 shows the results of the percentage of projects that use
ELUs, ILUs, or both. For example, among all the 728 Large-sized projects that used LUs,
95.3% of them are ELUs, 75.8% of them implemented their own ILUs in their projects, and
71.2% used both types of LUs. Overall, there are 866 ELUs used by 11,194 projects. 26.7%
of the studied projects have implemented their own ILUs.

The percentage of projects that adopted ELUs and ILUs shown in the second and the
third columns increases as the size of projects increases. When comparing the LUs within
the same bins, there are always more projects using ELUs than ILUs. However, almost all of
the very large-sized projects implemented their own LUs. The combined use of ILUs and
ELUs also increase dramatically as project sizes become large or very large.

We further examined the number of LUs that were used in each project. For each project,
we counted the number of LUs, which included both ELUs and ILUs. We grouped projects
based on their sizes and visualized their distributions using boxplots in Figure 4.1. The width
of the boxplot is proportional to the number of projects in that group. Since there are much
more small-sized projects in our study, it is the widest. The red dashed line connects the
median points for each bin. The median usage for the small-sized projects is one. It increases
as the size of the project increases. For the very large-sized projects, the median number of
LUs used is four. The project that adopts the biggest number of LUs is within the group of
very large-sized projects. It is an enterprise web platform ([183]), in which 21 LUs are used!

We conducted a Kruskal-Wallis test [184] to statistically check if their distributions are
identical. The p-value was smaller than 0.05, which indicated statistically signficant differences

78

4.4. QUALITATIVE STUDY CHAPTER 4. STUDYING LOGGING UTILITIES

Table 4.2: Comparing the complexity of the uses of LUs among projects.

Project % of Projects Using
Size (ELU ILU Both)

Small 97.2% 12.7% 9.9%)
Medium (95.3% 34.6% 29.9%)
Large (95.3% 75.8% 71.2%)
Very Large (97.0% 92.0% 89.0%)
Total (96.3% 26.7% 23.0%)

among the distributions of LUs across different project sizes. This clearly demonstrates the
complexity of the use of LUs in our studied projects.

The findings in our quantitative studies motivated us to conduct the subsequent qualitative
studies (Section 4.4) to figure out the rationales behind them.

Findings: (1) There are 3,856 LUs, of which 866 are ELUs, being used by over 11,000
projects. (2) 96.3% of the studied projects adopt at least one ELU and 26.7% adopt at
least one ILU. (3) As the project size becomes larger, more LUs will be integrated into
the project. This is especially the case for large and very large-sized projects.
Implications: The LUs are used widely among different Java projects. However, as the
size of the project increases, the complexitity of the use of LUs also increases. Multiple
LUs are used in many of the medium to very large-sized projects. This is contradictive to
the common understanding of developers [185, 186, 163, 187] and researchers [80], as only
a handful of popular Java LUs (e.g., Log4j 1.x, Logdj 2, and SLF4J) are compared
and discussed.

4.4 Qualitative Study

In this section, we conducted a qualitative study on the use of the LUs. We manually
examined their source code in order to answer the following RQs:

e RQ1: What are the external LUs being used in the wild? As shown in
Section 4.3, there were 866 ELUs being used by 11,194 projects. The goal of this RQ is
to characterize the rationales of different ELUs.

e RQ2: Why do developers implement ILUs in their projects? 26.7% of the
studied projects have implemented their own internal LUs. This is especially the case
for the large or very large-sized projects, in which 75.8% and 92.0% of them contain
ILUs. The goal of this RQ is to extract the project-specific logging needs by studying
the use of ILUs.

¢ RQ3: How are multiple LUs used in the wild? Many of the studied projects,
especially for the large or very large-sized projects, use multiple LUs. The goal of this

79

4.4. QUALITATIVE STUDY CHAPTER 4. STUDYING LOGGING UTILITIES

20
©
(3]
o
o
<)
815 .
L
£ *
o L]
(0] .
(2]
S (] L]
310 .
-
S . .
@ .
Q
IS . .
2 5 . .
) . -
|] *
31 |
0

Small Medium Ldrge Ve'ry Large
Size of the Project

Figure 4.1: The distritbutions of the number of adopted LUs in each project grouped by the
size of the projects.

RQ is to characterize the usage context associated with using multiple LUs in one
project.

4.4.1 RQ1: What are the external LUs being used in the wild?

In this RQ, we will characterize the rationales behind the use of individual ELUs. For
each ELU, we calculated the number of projects that adopted it. We sorted ELUs by their
popularities (a.k.a., the number of projects that used them) and selected the top-100 most
popular ELUs, which are used by 95% of the studied projects.

For each of these 100 ELUs, we manually examined the online documentation, release
notes, and blog posts for these ELUs to understand their features and capabilities. Then we
studied the source code of the projects which used them to extract their usage context. Our
findings are summarized in Figure 4.2. Generally, there are four reasons behind the use of
ELUs: (1) General-purpose logging, (2) LU interactions, (3) Internationalization, and (4)
Modularization.

General-purpose Logging

General-purpose logging refers to the most common logging usage context, which requires: (1)
verbosity levels, which are to control the amount of log message outputted; (2) configurations,
which are used to specify various options and policies to format and output the logs; and
(3) thread safety, which is to ensure the logs are recorded in sequence for a multi-threaded
system.

80

4.4. QUALITATIVE STUDY CHAPTER 4. STUDYING LOGGING UTILITIES

% of Top- % of Top 2 LUs
Rationales . . Code Examples
100 ELUs | Projects (where applicable) P
android.util.Log (1) static final Logger LOG = LoggerFactory.getlLogger(Configuration.class);
General- 12% 9.9 .
Purpose ° e L0G.debug("parsing File " + file);
SLF4J(2) . -
Coniguration.java (Hadoop, using SLF4J)
okhttp3.logging.HttpLog - - -
gingInterceptor (8) HttpLoggingInterceptor loggingInterceptor = new HttpLoggingInterceptor();
LU Interactions 83% 143% | .) final OkHttpClient.Builder httpClientBuilder = new OkHttpClient.Builder();
io.netty.handler.logging. cee .)
LoggingHandler (11) httpClientBuilder.addInterceptor(loggingInterceptor);
Constants.java (bitcoin-wallet, using okhttp3.logging.HttpLoggingInterceptor)
@LogMessage(level = WARN)
@Vessage(value = "I/0 reported cached file could not be found : %s : %s",
JBoss Logwi 15 id = 23)
oss Logging (15) void cachedFileNotFound(String path, FileNotFoundException error);
Internzzi::naliza 4% 1.0% org.glassﬁsh.jersey, CoreMessageLogger.java (Hibernate-ORM, using JBoss Logging)
logging (29) catch (FileNotFoundException e) {
log.cachedFileNotFound(serFile.getName(), e);
CacheableFileXmlSource. java (Hibernate-ORM, using JBoss Logging)
@Around("execution(x org.unitedinternet.cosmo.service.
ContentService.getRootItem(..)) &&" + "args(user)")
public Object checkGetRootItem(ProceedingJoinPoint pjp, User user)
throws Throwable {
LOG.debug("in checkGetRootItem(user)");
Modularization 19 1.79 AOP Logging (1
odularizatio % % 0 oggmg(0 SecurityAdvice.java (cosmo using AOP Logging)
public class StandardContentService implements ContentService {
public HomeCollectionItem getRootItem(User user) ...
StandardContentService.java (cosmo using AOP Logging)

Figure 4.2: The rationales behind the use of Top-100 most used ELUs.

81

4.4. QUALITATIVE STUDY CHAPTER 4. STUDYING LOGGING UTILITIES

Among the top-10 most popular LUs, 8 are for general-purpose logging. Six ELUs (SLF4J,
Logdj 1.x, Log4j 2, java.util.logging, Apache Commons Logging, and LogBack) are
considered as general-purpose LUs for desktop or server-based systems and two ELUs
(android.util.Log and Timber [188]) are general-purpose LUs for Android-based systems.
As shown in Figure 4.2, a log printing function from a general-purpose ELU generally consists
of four parts: the logging object (LOG), the verbosity level (debug), the static texts describing
the logging context ("parsing File"), and the dynamic contents revealing the runtime
information (file).

Among all the desktop or server-based ELUs, SLF4J is the most popular ELU due to its
improved performance and compatibility with other LUs [185, 186, 163|. There are many
Android projects (4,477) in our study. Most of them are small-sized projects that used the
default ELU from Android SDK (i.e., android.util.Log).

LU Interactions

LU interactions concerns about configurating and controlling the logging behavior for the
imported packages. Many Java-based projects are built on top of existing packages, many of
which contain ILUs. In order to configure and control the logging behavior for one imported
package, developers have to invoke the logging APIs from this package. For example, 161
projects use the okhttp3 [189] to send and receive data from network. In order to enable
logging for the okhttp3 package, developers of the bitcoin-wallet project [190], which is a
Bitcoin payment app for Android, invokes the addInterceptor method from okhttp3’s ILU
as shown in Figure 4.2. 83 out of the top-100 ELUs in this study are used for this reason.
Hence, LU interactions is the main reason why there are so many ELUs used in the wild.

Internationalization

Internationalization concerns about adapting the logs to other human languages (e.g., German
or Chinese). In order to support internationalization, developers first need to create a
centralized file, which stores a list of pre-defined log message templates. Each of the log
message template comprises four parts: the verbosity level, the parameterized string, the
logging methods, and the message ID.

The third row of Figure 4.2 shows one such example. This code snipeet is from
Hibernate-0RM, which is a popular Object-Relational Mapping (ORM) framework. In-
side the centralized file, CoreMessageLogger . java, there are two annotations (@LogMessage
and @Message) for each logging method and the message ID. @LogMessage contains a key /-
value pair, which defines the verbosity level (level = WARN) of this log message. @Message
provides the parameterized string, which contains the static texts (I/0 reported cached
file could not be found) and placeholders for parameters %s. The message ID is an
integer, that can be used to uniquely identify this log message. The logging method which
implements this log message is cachedFileNotFound. It takes in two parameters: the file
path and the error message. In order to output this log message, the cachedFileNotFound
method needs to be invoked. The code snippet in CacheableFileXmlSource. java shows

82

4.4. QUALITATIVE STUDY CHAPTER 4. STUDYING LOGGING UTILITIES

one example of how this log message can be invoked during runtime. It is used within a catch
block to handle an exception.

To translate the log messages into different human languages, developers need to create a
translation property file and define internationalized labels for each log message. For example,
the property file log_en_FR.properties would contain all the French labels for all of the
above English log messages.

The most common ELU for Internationalization is JBoss Logging [34]. Although there
are three other ELUs, which also support this usage context, they are just wrappers of the
JBoss Logging.

Modularization

Modularization concerns about improving the modularity of the logging code. Logging code
is a cross-cutting concern, as it inter-mixes with the feature code. Only one ELU, AOP-based
logging, is used for this reason. AOP is a programming paradigm, which is designed to improve
modularity by reducing the amount of cross-cutting concerns [44|. Logging is considered as
one of its common use cases.

In order to perform AOP-based logging, developers need to provide rules through aspect
files. A typical aspect file consists of pointcuts and advice. A pointcut is to define the point
of execution where the cross-cutting concern (e.g. logging) needs to be applied. An advice is
the additional code (e.g. logging code) instrumented.

Figure 4.2 shows a real-world example from cosmo, a calendar server that implements
CalDAV protocol. The file SecurityAdvice. java is the aspect file. The instrumented
points (pointcuts) are defined through the annotation. In this example, the annotation
@Around means both the beginning and the end of the methods will be instrumented.
The value within the brackets specify the instrumented methods. In this example, any
methods with the name getRootItem within package org.unitedinternet.cosmo.serv
ice.ContentService and parameter type as user will be instrumented. The instrumented
code (advice) is defined via method checkGetRootItem. It contains a log printing state-
ment with the message in checkGetRootItem and the user name. The code snippet in
StandardContentService. java shows how a log message is actually generated. This class
implements the interface ContenService, which is within the specified package. It contains
a method getRootItem, of which the parameter is user. Therefore, this method qualifies
the pre-defined instrumented rule above. Hence, during runtime, the above logging statment
will be executed while entering and exiting this method. In general, only 2% of our studied
projects adopted AOP-based logging. This matches with previous empirical studies [69, 70],
which indicated the very limited use of AOP in the wild.

83

4.4. QUALITATIVE STUDY CHAPTER 4. STUDYING LOGGING UTILITIES

Findings: There are four main reasons behind the use of ELUs: (1) General-purpose
logging, (2) LU interactions, (3) Internationalization, and (4) Modularization. Majority
of the projects use ELU for general-purpose logging. 83 out of the top-100 mostly
used ELUs are used for LU interactions. Some ELUs provide unique features like
internationalization and modularization, but they are only used by a very small number
of projects.

Implications: Many ELUs are used, as developers need to enable and configure the
logging behavior for the imported packages. It is important to manage these LUs to
better monitor and debug systems’ runtime behavior. An existing study [106] shows
that log configurations are one of the main source of errors for Java-based projects.
Unfortunately, only one tool [81] is developed to detect invalid loggers in the configuration
files. To effectively monitor and debug systems’ behavior, developers need to figure out
how to configure the logging behavior for the imported packages and how to interact
these LUs with the LUs in their own projects. Hence, techniques to recover the logging
architecture and conduct automatic configuration are needed.

4.4.2 RQ2: Why do developers implement ILUs in their projects?

It is not clear why many projects have still implemented their ILUs even there are 866 ELUs
available in the wild. To investigate the rationales behind this, out of 2,990 projects which
have implemented ILUs, we randomly selected 341 of them for close manual examination.
This corresponds to a confidence level of 95% with a confidence interval of +5%. We used the
stratified sampling technique [191] to ensure representative samples are selected from projects
of different sizes. The portion of the sampled projects within different sized projects is equal
to the relative weight of the total number of the projects with that size. For example, there
are a total of 721 small-sized projects which contain ILUs. Hence 82 (gm55 x 341) small-sized
projects are selected.

For each selected project, we carefully studied how their ILUs are being used by reading
through the source code. We also examined the relevant commit logs, issue reports, and pull
requests [192] to look for the rationales on why ILUs are implemented. In the end, we have
identified three project-specific logging needs as shown in Figure 4.3: (1) Defining the logging
format, (2) Compatibility with other LUs, and (3) Ease of configuration and dependency
management. Note that the percentage of projects with different sizes do not add up to 100%
because: (1) one project could contain multiple ILUs; (2) few ILUs (< 4%) are mislabeled.

Defining the Logging Format

Log messages are generally loosely structured, which contain free formed texts. Many projects
define their own format of the log messages, so that they can be automatically parsed and
analyzed. For example, the Hadoop project introduces audit logging in order to satisfy the
security compliance requirements. The format of the auditing logs vary across different
Hadoop components. For example, in hadoop-common component shown in Figure 4.3, an
interface (KMSAuditLogger) is first defined with a method logAuditEvent, which defines the

84

4.4. QUALITATIVE STUDY

Very Large (27.3%)

Rationales % of Projects Code Examples
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
Small (64.6%) | | class SimpleKMSAuditLogger implements KMSAuditLogger {
final private Logger auditLog = LoggerFactory.getLogger(KMS_LOGGER_NAME) ;
. Medium (53.5%) public void logAuditEvent(final OpStatus status, final AuditEvent event) {
Defining the switch (status) {
Logging o case OK:
Format Large (47.6%) auditLog.info("{}[op={}, key={}, user={}, accessCount={}, interval={}ms] {}",
status, event.getOp(), event.getKeyName(), event.getUser(),
Very Large (72.7%) event.getAccessCount().get(),
(event.getEndTime() - event.getStartTime()), event.getExtraMsg());
break;
SimpleKMSAuditLogger.java (Hadoop)
public interface LogDelegate {
void error(Object message);
0,
Small (7.3%) LogDelegate.java (vert.x)
Medium (18.4%) public class JULLogDelegate implements LogDelegate {
Compatibilit private final java.util.logging.Logger logger;
-omp Y o JULLogDelegate(final String name) {
with other LUs Large (25.4%) logger = java.util.logging.Logger.getLogger(name);

b

public void error(final Object message) {
log(Level.SEVERE, message);

JULLogDelegate.java (vert.x)

Ease of
Configuration
and
Dependency
Management

Small (24.4%)
Medium (30.3%)
Large (33.3%)

Very Large (27.3%)

public class DefaultLogSystem implements LogSystem {
public static PrintStream out = System.out;

public void error(Throwable e) {
out.println(new Date()+" ERROR:" +e.getMessage());
e.printStackTrace(out);

DefaultLogSystem.java (Slick2D)

Figure 4.3:

The rationales behind why ILUs are implemented.

85

CHAPTER 4. STUDYING LOGGING UTILITIES

4.4. QUALITATIVE STUDY CHAPTER 4. STUDYING LOGGING UTILITIES

auditing methods to be invoked. To facilitate code reuse, SimpleKMSAuditLogger implements
this interface by using the adapter pattern. It implements the logAuditEvent method by
invoking the info method from an SLF4J logger object. The logAuditEvent method contains
a switch statement, in which depending on the actual event, different audit logs will be
outputted. The resulting audit logs are much more structured compared to the regular loosely
defined log messages. Other ILUs like Cassandra’s StatusLogger also fall into this case.

Compatibility with other LUs

Many of the studied projects can be packaged and used by other projects. For reusable
packages, it is preferred to be flexible and compatible with different ELUs, as developers
always want to use the most up-to-date LUs in their projects. Since LU migrations require
high manual efforts and are error-prone [80], developers usually implement their ILUs to
separate the coupling of their logging code with the LUs.

Vert.x [193] is a popular tool-kit for building reactive applications on the JVM. It re-
ceives more than 10,000 stars on GitHub. It suppports four general purpose Java ELUs:
java.util.logging, Log4j 1.x, Log4j 2, and SLF4J. This functionality is realized by im-
plementing the strategy design pattern to unify the APIs among these four ELUs. These
four ELUs do not share the same set of verbosity levels. Therefore, the ILU needs to
provide a unified interface (LogDelegate) for their logging methods. The LogDelegate
interface defines a set of common logging APIs (e.g., info, error). Separate implemen-
tation classes are introduced to wrap around the four popular general purpose ELUs:
java.util.logging, Log4j 1.x, Log4j 2, and SLF4J. Figure 4.3 shows a code snippet for
JULLogDel
egate, which adapts the functionalities of java.util.logging to the common interface
defined by LogDelegate. To implement the error method, it calls the log method along
with the verbosity level SEVERE and the variable message from java.util.logging.

Ease of Configuration and Dependency Management

One of the common errors associated with logging is the configuration of LUs [106]. The
main cause of this is due to complex dependency structures [157, 158, 159, 160, 161,
162]. Hence, about 29.3% of the ILUs are implemented to ease the configuration and
dependency management issues. They are usually built from the ground up using only
the standard JDK libraries and are not dependent on any ELUs to minimize the effort
to manage dependencies. Figure 4.3 shows one example. This code snippet is from
Slick2D, which is a 2D Java game library. This ILU is designed to be lightweighted
and easy to use. It logs the complete error information with timestamps to the console.

86

4.4. QUALITATIVE STUDY CHAPTER 4. STUDYING LOGGING UTILITIES

100%

80%

60%

40%

20%

)
o
uus!

e)
. s
Ol t L uu

0%
Interaction Managing Formatting Convenience

“Medium - Large # Very Large

Figure 4.4: The usage context behind the Top-100 projects, which contain the most LUs.

Findings: There are three project specific needs, which lead to the implementation of
ILUs: (1) defining the logging format, (2) compatibility with other LUs, and (3) ease
of configuration and dependency management. Among these three needs, defining the
logging format is the most common one. 55.3% of the sampled projects implemented ILUs
for this specific need. As the size of the projects grow larger, more projects implement
ILUs to satisfy the needs of compatability with other LUs.

Implications: Although more than 20% of the sampled projects implemented their own
ILUs from the ground up. These ILUs are mainly used internally for debugging purposes.
They are usually not intended to be used by other projects, since they might not satisfy
the general logging needs (e.g., not thread-safe). Additional tools and techniques need to
be developed to automatically warn developers who imported packages which implement
ILUs.

4.4.3 RQ3: How are multiple LUs used in the wild?

The goal of this RQ is to understand and characterize the uses of multiple LUs in one project.
We sorted our studied projects by the number of LUs that are used. Then we selected the top-
100 projects, which used the most LUs, for close manual examinations. The number of LUs
for these projects ranges from 7 (Hadoop) to 21 (Liferay-portal). Figure 4.4 summarizes
our findings. There are generally four usage context behind the use of multiple LUs: (1)
Interaction with LUs from the imported packages; (2) Managing the logging contents; (3)
Formatting logging messages across different components; and (4) Developer convenience. As
the project sizes grow bigger, the usage context of multiple LLUs also become more complex.
Note that there is no small-sized projects among them, as they generally use much fewer

LUs.

87

4.4. QUALITATIVE STUDY CHAPTER 4. STUDYING LOGGING UTILITIES

| pipeline.addLast("logger", new LoggingHandler(LogLevel.INFOQ));

(a) InboundConnectionlnitiator.java(Cassandra, using Netty LoggingHandler)

KieRuntimelLogger logger=KieServices.Factory.get().
getLoggers().newFileLogger(session,"log/correlation");

(b) CorrelationExample.java (OpenNMS, using KieRuntimeLogger)

Figure 4.5: An example of using multiple LUs for interaction with LUs from the imported
packages.

Interaction with LUs from the imported packages

Many Java-based software systems use third party packages, which also contain LUs. In
order to have full observability of the resulting systems, it is important to enable logging
across all the components. Figure 4.5 shows two different examples on how to configure or
enable logging for the imported packages. However, due to the API variabilitiy of these LUs,
different techniques are needed in order to enable or configure their logging behavior. For
example, Netty uses event-based programming. To enable the logging of the Netty package,
the Cassandra developer needs to add the LoggingHandler. In order to enable logging for
Kie, the OpenNMS developer needs to create a new logger to output the logs to a file. The
more third party packages are used, the more interactions there are with the LUs from these
imported packages. This is one of the main reasons why many large or very Large-sized
projects use more LUs than the smaller sized projects.

Managing the logging contents

In addition to configuring and enabling the logging behavior for the imported packages,
sometimes the studied projects also use the LUs from the imported packages for additional
logging. This is mainly to ensure the relevant logging contents are stored in the same location.
Maven is a popular tool to build and manage Java projects. The core of Maven consists of a
set of plugins. Each plugin is reponsible for a particular functionality. For example, clean,
which is used to clean up the build artificats, and compiler, which is used to compile Java
sources, are two default plugins. During execution, the logs generated from these plugins
will be redirected to the same storage location. If other projects intend to develop Maven
plugins, they are advised to use the LUs from Maven to generate build related logs [194], so
that Maven-related information can be aggregated to one centralized location, which is easy
to analyze and archive. Figure 4.6 shows one such example. On one hand, karaf uses their
own LU to record system-specific information. On other hand, it uses the LU from Maven to
record build related logs.

88

4.4. QUALITATIVE STUDY CHAPTER 4. STUDYING LOGGING UTILITIES

import org.apache.maven.plugin.logging.LlLog;

public File resolveById(String id, Log log)
throws MojoFailureException {

log.debug("Resolving artifact " + id + " from ”
+ projectRepositories);

Dependency3 1Helper.java (karaf)

Figure 4.6: An example of using multiple LUs for managing the logging contents.

for (InstanceStatus status : instanceStatusList) {
if (INSTANCE_RUNNING !=
status.getInstanceState().getCode()){
LOGGER.debug("Instances are up but not
all of them are in running state.");
return false;
}
}

ASGroupStatusCheckerTask.java (cloudbreak)

Figure 4.7: An example of using multiple LUs for developer convenience.

Formatting logging messages across different components

In some cases, one LU may not satisfy all the logging needs for one project. For example,
as shown in Figure 4.3, Hadoop uses SLF4J for generating execution logs, which are used for
debugging and monitoring purposes. It also uses ILU to generate audit logs to satisfy security
requirements.

Developer convenience

Some of the top-100 projects use AOP-based logging. However, the developers also include
logging code, which is instrumented using general-purpose ELUs. This is mainly due to
developer convenience. For example, cloudbreak uses AOP-based logging, but it also uses
SLF4J. Figure 4.7 shows one such example. Since checking the instance state is a very
localized concern, it is much faster to instrument with the general purpose LU than AOP-
based logging. Similar cases also apply to LUs, which are used for internationalization. For
example, Hibernate uses the JBoss logging to support internationalization. However, instead
of putting the log messages into the centralized file, the developer chose to place their log
message along with the feature code for debugging purposes.

89

4.5. EVALUATION CHAPTER 4. STUDYING LOGGING UTILITIES

Findings: There are four usage contexts behind the use of multiple LUs in one project: (1)
interaction with LUs from the imported packages; (2) managing the logging contents; (3)
formatting logging messages across different components; and (4) developer convenience.
Except for developer convenience, the percentage of these usage contexts increases as
the project sizes increase.

Implications: Logging is considered as a cross-cutting concern, as the logging code
scatters across the entire system and inter-mixes with the feature code. To cope with
this challenge, AOP is introduced. However, AOP cannot be used to satisfy the current
logging needs, due to their inconvenience on specifying localized logging context. More
importantly, for large-scale projects which use many third party packages, it is necessary
to enable and configure the logging behavior for these imported packages in order to
gain full observability of the entire systems. The management of the logging behavior for
these packages is rather complex and introduces another form of cross-cutting concerns.
Further research is urgently needed to develop tools or techniques to automatically
manage and modularize such concerns.

4.5 FEvaluation

Although we have analyzed 425 Java-based projects, our study focuses on Java-based open-
source projects in GitHub. In order to assess the generalizability of our findings, we conducted
a semi-structured inteview with 13 experienced industrial developers. We decided to conduct
semi-structured interviews instead of surveys so that we can interact with the participants in
a more flexible way. For example, we have prepared a set of questions before-hand. During
the interview, we sometime asked follow-up questions based on participants’ answers on the
fly [195].

4.5.1 Setup

Similar to [58], the participants are from the authors’ personal contacts. All of them are
working at large-scale software companies. The development experience of the participants
ranges from one to eight years. The types of projects that participants are working on vary
from server-side projects (9), frameworks (3), and client application (1). All these projects
have been widely used by millions of users worldwide. The programming languages that the
participants use daily include Java, PHP, C+-+, C#, Python, and Go.

4.5.2 Findings

All of the participants have inserted, deleted, updated logging code in their development
activities. It reaffirms that software logging is a pervasive practice [9)].

90

4.5. EVALUATION CHAPTER 4. STUDYING LOGGING UTILITIES

Cross-validation of our findings

We presented our findings on the rationales behind the use of ELUs and ILUs, as well as the
usage context for multiple LUs. Then we asked the participants: (1) whether their projects
adopt one or more of the studied LUs; (2) whether our characterized usage context and the
logging needs would be useful for them; and (3) if there are any additional information to
add or comment on.

Some participants mentioned that they did adopt one or more of the studied LUs in this
chapter. However, the rationales (e.g., JBoss-style logging) is a bit different. All participants
felt that the findings and code examples from this study can help them better configure and
manage the logging behavior for their projects.

e ELUs: All participants acknowledged that the general-purpose logging is the most
commonly used logging need. However, they also acknowledge the challenges on co-
evolving the logging code with the rapidly changed feature code, as the logging code
is inter-mixed with the feature code. Although the participants aggreed that AOP-
based logging is a great idea, only two of the interviewed participants used AOP-based
logging in their projects. This is mainly due to (1) high learning curve of a different
programming paradigm, (2) difficult to translate logging concerns into rules (a.k.a.,
advice), and (3) lack of automated support for legacy logging code.

Compared to open-source projects, there is a much higher portion of industrial projects
(7/13) that adopted the LUs that centralize the log messages (a.k.a., JBoss-style logging).
One participant mentioned that in addition to internationalization, the centralized
logging-style can: (1) improve the accuracy and the speed of the log processing task [64];
and (2) attach additional meta information (e.g., issue resolution strategies) with the
message [D for better field support.

e ILUs: The participants mentioned that the choice of LUs were decided by the software
architects or senior developers. Once the LUs were set up, only under very rare cases
that they will migrate or modify LUs. None of them have directly modified the existing
LUs. We asked the participants what type of LUs were used in their projects. Three of
them said they directly use open source LUs such as Log4j [77] (Java) and log4net [196]
(C#). The rest of them use ILUs included in their project. The rationales behind
implementing IL.Us are similar to our findings from the open source projects.

e The use of Multiple LUs: The participants are surprised about the use of multiple
LUs. Five of them did not realize the need to do this until we presented our findings.
They complained about the challenges on debugging and monitoring their projects,
which use many third-party packages. By leveraging our findings and code examples,
they can enable and manage the logging behavior from these imported packages, which
will greatly improve the observability of the overall systems.

91

4.6. DISCUSSIONS CHAPTER 4. STUDYING LOGGING UTILITIES

Beyond Logging

Five participants mentioned that they have integrated tracing tools (e.g., opentracing [71]) or
Application Performance Monitoring (APM) tools (sentry [197], Google firebase [198], etc.)
into their systems. They applied these tools to replace some of the logging functionalities
such as crash reporting and collection of the profiling data. Unlike logging, most of these
tools do not need developers to arbitrarily write code to record the desired information. For
example, one participant mentioned that they adopted Spring-sleuth [199]. It is a distributed
tracing tool which can automatically record the interactions between multiple Sprint Boot
microservices. These tools pre-instrument output statements to record information such as
RPC calls and stack traces, and they need minimum configuration efforts. The participants
also mentioned that although these tools are useful, they still cannot completely replace the
needs for software logging in their projects.

4.6 Discussions

Logs have been used extensively in practice. Instead of invoking output functions like
System.out.println, developers prefer to use logging utilities (LU) to instrument their systems.
This chapter categorizes the complex use of LLUs in the wild and presents multiple implications
which are useful for developers and researchers. In this section, we will discuss the significance
of our findings and present some future work.

4.6.1 Complex Use of LUs

There are generally four reasons to use LUs: (1) general-purpose logging, (2) LU interactions
with imported packages, (3) internationalization of the log messages, and (4) modularization
of the logging code. Larger projects tend to use multiple LUs in one project to satisfy one
or more of the following usage context: (1) interaction with LUs from various imported
packages, (2) managing the logging contents, (3) formatting logging messages across different
components, and (4) developer convenience. Many projects also implement their own LUs
to satisfy project specific needs like defining the logging format, compatibility, and ease of
configuration and dependency management. Such findings would be useful for developers
and researchers who are interested in developing and maintaining LUs:

e Our findings raise developers’ awareness that their systems can contain multiple LUs
due to the imported packages. It is important to manage these LUs to better monitor
and debug systems’ runtime behavior.

e To effectively monitor and debug systems’ behavior, developers need to figure out how
to configure the logging behavior for the imported packages and how to interact these
LUs with the LUs in their own projects. Hence, techniques to recover the logging
architecture are needed.

92

4.7. RELATED WORK CHAPTER 4. STUDYING LOGGING UTILITIES

e To ensure QoS, best practices and anti-patterns for managing LUs are needed, particu-
larly in the following areas: (1) selecting the appropriate default verbosity levels for
LUs for good observability with low overhead; and (2) correlating logging information
across different LUs in one project.

e In addition to common LUs (e.g., Log4j or SLF4J), many projects also use additional
ELUs or implement ILUs. These LUs are project-dependent and require implementa-
tion /maintenance effort. The findings in the chapter can guide researchers to propose
more general techniques to satisfy such logging needs.

4.6.2 Beyond LUs

Certain findings in this chapter may be applicable to other utilities. It is important to study
the use of different utilities in the wild due to: (a) multiple utilities (e.g., database/testing
frameworks and ad libraries) with same/similar functionalities can be used in one project;
and (b) cross-cutting concerns (e.g., logging, analytics and security) are implemented not
only in the projects’ code but also in the imported packages. Effectively managing such
concerns is an open problem, which is important for development and maintenance of such
systems [200, 201].

4.7 Related Work

In this section, we discuss two realted research areas.

4.7.1 Empirical Studies on Logging Practices

There are no well-established logging guidelines in neither industrial [8, 32| nor open source
systems [10, 9, 131]. Hence, it is important to derive best practices and common mistakes by
studying the current logging practices. Shang et al. [131] found that the amount of logging
code is correlated with the amount of post-release bugs. Kabinna et al. [80] studied the
logging library migrations for 33 Apache-based Java projects. They found that migrating
logging libraries requires high manual efforts and is error-prone. Zhi et al. [81] conducted an
exploratory study on the configuration aspects of the LUs.

Our work is different from the above studies in the following three aspects: (1) this chapter
is the first study on the use of LUs, which includes both ELUs (a.k.a., logging libraries) as
well as ILUs. (2) The scale of our study is much bigger than the previous ones, as we have
studied over 11,194 Java-based GitHub projects, which uses 3,856 LUs. (3) Different from
all of the above work, which are mainly quantitative studies, we have performed both the
quantitative and the qualitative studies on the use of Java-based LUs.

93

4.8. THREATS TO VALIDITY CHAPTER 4. STUDYING LOGGING UTILITIES

4.7.2 Improving the Quality of the Logging Code

This area can be further divided into three parts: (1) where-to-log, (2) what-to-log, and (3)
how-to-log.

e where-to-log is related to the problem of selecting appropriate logging points in the
source code. Fu et al. [8] proposed a data-mining based approach to automatically
extract the important attributes which affect the locations of the logging points. Zhu
et al. [107| proposed a machine-learning based technique to learn common logging
points based on the code structures. Yuan et al. [18] proposed a program-analysis
based method to add logging points for debugging purposes. Ding et al. [21] proposed
a constraint solving based method to select the optimal logging points which incur
minimum performance overhead while keeping the maxmium runtime information. Zhao
et al. [2] came up with a tool Log20, which automatically places the logging points
under certain overhead threshold.

e what-to-log is related to the problem of providing complete runtime information in
the logging code. Yuan et al. [35] proposed a program analysis based approach to add
additional variables into existing logging statements so that more complete execution
paths can be recovered, thus improving the diagnosability. He et al. [104] characterized
the static texts inside logging statements for 10 Java and 7 C# projects. They provided
an NLP-based description generation tool to automatically generate static texts in
logging statements.

e how-to-log is related to the problem of designing and maintaining high quality logging
code. Yuan et al. [10] partially studied the inconsistent verbosity level problem through
a clone based approach. Li et al. learned from code changes in history to predict just-in-
time logging code changes [111] and to suggest the most approapriate verbosity levels [48]
through machine learning-based approaches. Chen et al. [36] summarized six types of
anti-patterns within logging statements and proposed a tool to automatically detect
them. Li et al. [38] proposed an automated tool to detect duplicate logging code smells.
Chen et al. [123] proposed an approach to extract the Logging-Code-Issue-Introducing
changes.

Our study lies within the category of how-to-log, but differs with the above work in the
sense that our focus is on the LUs instead of the log printing code.

4.8 Threats to Validity

In this section, we will discuss the threats to validity.

94

4.9. CONCLUSION CHAPTER 4. STUDYING LOGGING UTILITIES

4.8.1 External Validity

We conducted our study only on 11,194 Java-based open source projects. We cross-validated
our findings by interviewing with industrial developers. Although our approach can be easily
adapted to another study on the use of LUs, our finding may not be generalizable to projects
written in other programming languages.

4.8.2 Internal Validity

In our study, we removed all of the very small-sized projects, since only a small fraction of
them use LUs and most of them are trial projects for self-studying and collections of code
snippets. We also removed forked projects, since they are likely duplications of the base ones.
We also removed unpopular projects which contain few stars. This practice is similar to many
of the previous empirical studies on GitHub-based proejcts [177, 178, 179|.

4.8.3 Construct Validity

In our study, we used a heuristics-based approach to count the adoptions of LUs. We made
our best efforts to avoid bringing in any false positives. Through manual verification of the
randomly selected samples, our approach yields an precision of 96%.

4.9 Conclusion

In this chapter, we conducted a large-scale empirical study on the use of Java LUs in the wild.
We studied 11,194 Java-based projects in the GitHub. These projects use 3,856 LUs. Our
findings suggest that the complexity of the use of LUs increases as the project size increases.
Although many projects only use LUs for general-purpose logging, the actual logging needs
vary from project to project. The main reason behind multiple use of LUs is to enable or
manage the logging behavior of the imported packages. Many projects choose to implement
their own ILU mainly for defining the project-specific format of their logging code. The
findings and the implications presented in this chapter will be useful for LU designers and
researchers as well as system developers.

95

Chapter 5

An Automated Approach to Estimating
Code Coverage Measures via Execution
Logs

5.1 Introduction

A recent report by Tricentis shows that software failure caused $1.7 trillion in financial losses
in 2017 [202]. Therefore, software testing, which verifies a system’s behavior under a set of
inputs, is a required process to ensure the system quality. Unfortunately, as software testing
can only show the presence of bugs but not their absence [203|, complete testing (a.k.a.,
revealing all the faults) is often not feasible [204, 205]. Thus, it is important to develop high
quality test suites, which systematically examine a system’s behavior.

Code coverage measures the amount of executed source code, when the system is running
under various scenarios [206]. There are various code coverage criteria (e.g., statement
coverage, condition coverage, and decision coverage) proposed to measure how well the test
suite exercises the system’s source code. For example, the statement coverage measures the
amount of executed statements, whereas the condition coverage measures the amount of
true/false decisions taken from each conditional statement. Although there are mixed results
between the relationship of code coverage and test suite effectiveness [207, 208], code coverage
is still widely used in research [209, 210, 211] and industry [212, 213, 214] to evaluate and
improve the quality of existing test suites.

There are quite a few commercial (e.g., [215, 216]) and open source (e.g., [33, 217])
tools already available to automatically measure the code coverage. All these tools rely on
instrumentation at various code locations (e.g., method entry/exit points and conditional
branches) either at source code [218| or at binary/bytecode levels [217, 219|. There are three
main issues associated with these tools when used in practice: (1) Engineering challenges:
for real-world large-scale distributed systems, it is not straight-forward to configure and
deploy such tools, and collect the resulting data [220, 221]. (2) Performance overhead:
the heavy instrumentation process can introduce performance overhead and slow down the

96

5.1. INTRODUCTION CHAPTER 5. ESTIMATING CODE COVERAGE

system execution [222, 223, 224|. (3) Incomplete results: due to various issues associated
with code instrumentation, the coverage results from these tools do not agree with each other
and are sometimes incomplete [23|. Hence, the application context of these tools is generally
very limited (e.g., during unit and integration testing). It is very challenging to measure the
coverage for the system under test (SUT) in a field-like environment to answer questions like
evaluating the representativeness of in-house test suites [225]. Such problem is going to be
increasingly important, as more and more systems are adopting the rapid deployment process
like DevOps [226].

Execution logs are generated by the output statements (e.g., Log.info (‘User’’ + user
+ ‘““checked out”)) that developers insert into the source code. Studies have shown that
execution logs have been actively maintained for many open source [10, 9] and commercial
software systems [8, 32| and have been used extensively in practice for a variety of tasks (e.g.,
system monitoring [16], problem debugging [18, 3|, and business decision making [5]). In
this chapter, we have proposed an approach, called LogCoCo (Log-based Code Coverage),
which automatically estimates the code coverage criteria by analyzing the readily available
execution logs. We first leverage program analysis techniques to extract a set of possible
code paths from the SUT. Then we traverse through these code paths to derive the list of
corresponding log sequences, represented using regular expressions. We match the readily
available execution logs, either from testing or in the field, with these regular expressions.
Based on the matched results, we label the code regions as Must (definitely covered), May
(maybe covered, maybe not), and Must-not (definitely not covered) and use these labels to
infer three types of code coverage criteria: method coverage, statement coverage, and branch
coverage. The contributions of this chapter are:

1. This work systematically assesses the use of the code coverage tools in a practical
setting. It is the first work, to the authors’ knowledge, to automatically estimate code
coverage measures from execution logs.

2. Case studies on one open source and five commercial systems (from Baidu) show that
the code coverage measures inferred by LogCoCo is highly accurate: achieving higher
than 96% accuracy in seven out of nine experiments. Using LogCoCo, we can evaluate
and improve the quality of various test suites (unit testing, integration testing, and
benchmarking) by comparing and studying their code coverage measures.

3. This project is done in collaboration with Baidu, a large scale software company whose
services are used by hundreds of millions of users. Our industrial collaborators are
currently considering adopting and using LogCoCo on a daily basis. This clearly
demonstrates the usefulness and the practical impact of our approach.

Chapter Organization: the rest of this chapter is structured as follows. Section 5.2
explains issues when applying code coverage tools in practice. Section 5.3 explains LogCoCo
by using a running example. Section 5.4 describes our experiment setup. Section 5.5 and 5.6
study two research questions, respectively. Section 5.7 introduces the related work. Section 5.8
discusses the threats to validity. Section 5.9 concludes the chapter.

97

5.2. COVERAGE IN PRACTICE CHAPTER 5. ESTIMATING CODE COVERAGE

5.2 Applying Code Coverage Tools in Practice

We interviewed a few QA engineers at Baidu regarding their experience on the use of the code
coverage tools. They regularly used code coverage tools like JaCoCo [33] and Cobertura [217].
However, they apply these tools only during the unit and integration testing. It turned out
that there are some general issues associated with these state-of-the-art code coverage tools,
which limit their application contexts (e.g., during performance testing and in the field).
We summarized them into the following three main issues, which are also problematic for
other companies [220, 221]: (1) Engineering challenges: depending on the instrumentation
techniques, configuring and deploying these tools along with the SUT can be tedious (e.g.,
involving recompilation of source code) and error-prone (e.g., changing runtime options). (2)
Performance overhead: although these tools can provide various code coverage measures (e.g.,
statement, branch, and method coverage), they introduce additional performance overhead.
Such overhead can be very apparent, when the SUT is processing hundreds or thousands of
concurrent requests. Therefore, they are not suitable to be running during non-functional
testing (e.g., performance or user acceptance testing) or in the field (e.g., to evaluate and
improve the representativeness of the in-house test suites). (3) Incomplete results: the code
coverage results from these tools are sometimes incomplete.

In this section, we will illustrate the three issues mentioned above through our experience
in applying the state-of-the-art code coverage tools on HBase [172] in a field-like environment.

5.2.1 The HBase Experiment

HBase, which is an open source distributed NoSQL database, has been used by many
companies (e.g., Facebook [227|, Twitter, and Yahoo! [228]) serving millions of users everyday.
It is important to assess its behavior under load (a.k.a., collecting code coverage measures)
and ensure the representativeness of the in-house test suites (a.k.a., covering the behavior in
the field).

YCSB [229] is a popular benchmark suite, originally developed by Yahoo!, to evaluate the
performance of various cloud-based systems (e.g., Cassandra, Hadoop, HBase, and MongoDB).
YCSB contains six core benchmark workloads (A, B, C, D, E, and F') which are derived by
examining a wide range of workload characteristics from real-world applications [230]. Hence,
we use this benchmark suite to simulate the field behavior of HBase.

Our HBase experiment was conducted on a three-machine-cluster with one master node
and two region server nodes. These three machines have the same hardware specifications:
Intel i7-4790 CPU, 16 GB memory, and 2 TB hard-drive. We picked HBase version 1.2.6 for
this experiment, since it was the most current stable release by the time of our study. We
configured the number of operations to be 10 million for each benchmark workload. Each
benchmark test exercised all the benchmark workloads under one of the following three YCSB
thread number configurations: 5, 10, and 15. Different number of YCSB threads indicates
different load levels: the higher the number of threads, the higher the benchmark load.

98

5.2. COVERAGE IN PRACTICE CHAPTER 5. ESTIMATING CODE COVERAGE

5.2.2 Engineering Challenges

Since HBase is implemented in Java, we experimented with two Java-based state-of-the-art
code coverage tools: JaCoCo [33] and Clover [231]. Both tools have been used widely in
research (e.g., |23, 232, 233]) and practice (e.g., [220, 221]). These two tools use different
instrumentation approaches to collecting the code coverage measures. Clover [231] instruments
the SUT and injects its monitoring probes at the source code level, while JaCoCo [219] uses
the bytecode instrumentation technique and injects its probes during runtime.

Overall, we found the configuration and the deployment processes for both tools to be
quite tedious and error-prone. For example, to enable the code coverage measurement by
JaCoCo, we had to examine various HBase scripts to figure out the command line options to
startup HBase and its required jar files. This process was non-trivial and required manual
effort, as the command line options could differ from systems to systems and even different
versions of the same systems. The process for Clover was even more complicated, as we had
to reconfigure the Maven build system to produce a new set of instrumented jar files. In
addition, we could not simply copy and replace the newly instrumented jar files into the
test environment due to dependency changes. It required a thorough cleanup of the test
environment before re-deploying SUT and running any tests. We considered such efforts to
be non-trivial, as we had to repeat this process on all three target machines. This effort
could be much higher if the experiments were done on tens or hundreds of machines, which is
considered as a normal deployment size for HBase [234].

We decided to proceed with JaCoCo. Its instrumentation and deployment process were
less intrusive, as the behavior of HBase needed to be assessed in a field like environment.

5.2.3 Performance Overhead

We ran each benchmark test twice: once with JaCoCo enabled, and once without. We
gathered the response time statistics for each benchmark run and estimated the performance
overhead introduced by JaCoCo. Figure 5.1 shows the performance overhead for the six
different workloads (workload A, ..., F'). Within each workload, the figure shows the average
performance overhead (in percentages) as well as the confidence intervals across different
YCSB thread numbers. For example, the average performance overhead for workload A is
16%, but can vary from 10% to 22% depending on the number of threads.

Depending on the workload, the performance impact of JaCoCo varies. Workload B
has the highest impact (79% to 106%) with JaCoCo enabled, whereas workload E has the
smallest impact (4% to 13%). Overall, JaCoCo does have a negative impact on the SUT with
a noticeable performance overhead (> 8% on average) across all benchmark tests. Hence, it is
not feasible to deploy JaCoCo in a field-like environment with the SUT, as it can significantly
degrade the user experience.

99

5.3. LOGCOCO CHAPTER 5. ESTIMATING CODE COVERAGE

120

110

100

90

80

70

60

50

Overhead (%)

40

30
20 I
10 T I

A B C) E F
Workload

Figure 5.1: The JaCoCo overhead for the HBase experiment.

5.2.4 Incomplete Results

We sampled some of the code coverage data produced by JaCoCo for manual verification. We
found that JaCoCo did not report the code coverage measures for some modules. JaCoCo
only instrumented the HBase modules (a.k.a., the hbase-server module) in which the YCSB
benchmark suite directly invoked. If the hbase-server module invokes another module (e.g.,
client) not specified during the HBase startup, the client module will not be instrumented
by JaCoCo and will not have any coverage data reported. For example, during our experiment,
the logging statement from the method setTableState in ZKTableStateManager.java
was outputted. Hence, setTableState should be covered. Since setTableState calls
setTableStateInZK, which calls joinZNode in ZKUtil. java, the method joinZNode should
also be covered. However, the joinZNode method was marked as not covered by JaCoCo. A
similar problem was also reported in [23].

To resolve the three issues mentioned above, we have proposed a new approach to
automatically estimating the code coverage measures by leveraging the readily available
execution logs. Our approach estimates the code coverage by correlating information in the
source code and the log files, once the tests are completed. It imposes little performance
overhead to the SUT, and requires no additional setup or configuration actions from the QA
engineers.

100

5.3. LOGCOCO

CHAPTER 5. ESTIMATING CODE COVERAGE

Program

Source Code | Analysis | Code Path &

(1) LogRE Pairs

Path Code Coverage
Analysis Labeled Estimation | Coverage
Log Source Code 4) Results
Log Files | Analysis | Log
) Sequences

Figure 5.2: An overview of LogCoCo.

5.3 LogCoCo

In this section, we will describe LogCoCo, which is an automated approach to estimating
code coverage measures using execution logs. As illustrated in Figure 5.2, our approach
consists of the following four phases: (1) during the program analysis phase, we analyze
the SUT’s source code and derive a list of possible code paths and their corresponding log
sequences expressed in regular expressions (LogRE). (2) During the log analysis phase, we
analyze the execution log files and recover the log sequences based on their execution context.
(3) During the path analysis phase, we match each log sequence with one of the derived
LogRE and highlight the corresponding code paths with three kinds of labels: May, Must,
and Must-not. (4) Based on the labels, we estimate the values for the following three code
coverage criteria: method coverage, statement coverage, and branch coverage. In the rest of
this section, we will explain the aforementioned four phases in details with a running example
shown in Figure 5.3.

5.3.1 Phase 1 - Program Analysis

Different sequences of log lines will be generated if the SUT executes different scenarios.
Hence, the goal of this phase is to derive the matching pairs between the list of possible code
paths and their corresponding log sequences. This phase is further divided into three steps:

Step 1 - Deriving AST for Each Method

we derive the per method Abstract Syntax Tree (AST) using a static analysis tool called
Java Development Tools (JDT) [180] from the Eclipse Foundation. JDT is a very robust and
accurate program analysis tool, which has been used in many software engineering research
papers (e.g., bug prediction [149], logging code analysis [36], and software evolution [235]).
Consider our running example shown on the left part of Figure 5.3. This step will generate
two ASTs for the two methods: computation and process. Each node in the resulting AST
is marked with the corresponding line number and the statement type. For example, at line
3, there is a logging statement and at line 4 there is an if statement. There are also edges

101

5.3. LOGCOCO

CHAPTER 5. ESTIMATING CODE COVERAGE

Log Sequences Seq 1 Seq 2
Branch selection set [if@4:true,for@]12:true,if@]16: false] | [if@4:false,for@12:true,if@16: false) Final Code
LogRE (Log@3)(Log@51)(Log@14)+ (Log@3)(Log@14)+ Coverage
Code Snippets Intermediate Code Coverage
1 void computation(int a, int b) { Must Must Must
2 int a = randomInt(); Must Must Must
3 log.info("Random No: " + a); Must Must Must
4 if (a < 10) { Must Must Must
5 a = process(a); Must Must-not Must
6 } else { Must-not Must Must
7 a=a+ 10; Must-not Must Must
8 } - - -
9 if (a% 2 =0) { Must Must Must
10 a ++; May May May
11 } - - -
12 for (b < 3; b++) { Must Must Must
13 a ++; Must Must Must
14 log.info("Loop: " + a); Must Must Must
15 } - - -
16 if (a > 20) { Must Must Must
17 log.info("Check: " + a); Must-not Must-not Must-not
18 } - - -
19 } - - -
50 int process(int num) { Must Must Must
51 log.info("Process: " + (++num)); Must Must Must
52 return num; Must Must Must
53 } - - -

Figure 5.3: The code snippet of our running example.

102

5.3. LOGCOCO CHAPTER 5. ESTIMATING CODE COVERAGE

connecting two nodes if one node is the parent of the other node.

Step 2 - Deriving Call Graphs

the resulting ASTs from the previous step only contain the control flow information at the
method level. In order to derive a list of possible code paths, we need to form call graphs by
chaining the ASTs of different methods. We have developed a script, which automatically
detects method invocations in the ASTs, and links them with the corresponding method
body. In the running example, our script will connect the method invocation of the process
method at line 5 with the corresponding method body starting at line 50.

Step 3 - Deriving Code Paths and LogRE Pairs

based on the resulting call graphs, we will derive a list of possible code paths. The number of
resulting code paths depends on the number and the type of control flow nodes (e.g., if, else,
for, and while), which may contain multiple branching choices. Consider the if statement at
line 4 in our running example: depending on the true/false values for the conditional variable
a, there can be two call paths generated: [4, 5, 50, 51, 52] and [4, 6, 7].

We leverage the Breadth-First-Search (BFS) algorithm to traverse through the call graphs
in order to derive the list of possible code paths and their corresponding LogREs. When
visiting each control flow node, we pick one of the decision outcomes for that node and go to
the corresponding branches. During this process, we also keep track of the resulting LogREs.
Each time when a logging statement is visited, we add it to our resulting LogRE. If a logging
statement is inside a loop, a “+” sign will be appended to it indicating that this logging
statement could be printed more than once. For the logging statement, which is inside a
conditional branch within a loop, it will be appended with a “?” followed by a “+”. In the end,
we will generate a branch selection set for this particular code path and its corresponding
LogRE. There can be some control flow nodes, under which there is no logging statement
node. In this case, we cannot be certain if any code under these control flow nodes will be
executed. For scalability concerns, we do not visit the subtrees under these control flow
nodes.

In our running example, there are four control flow nodes: line 4 (if), 9 (if), 12 (for),
and 16 (if). If the conditions are true for line 4 and 12, and false for line 16, the branch
selection set is represented as [if@4:true, for@12:true, if@16: false]. The value
for the if condition node at line 9 is irrelevant, as there is no logging statement under
it. We will not visit its subtree, as no changes will be made to the resulting LogRE. The
resulting code path for this branch selection is 1,2,3,4,5,50,51,52,9,(10),12,13,14,16.
The corresponding LogRE is (Log@3) (Log@51) (Log@14)+. Line 10 in the resulting code
path is shown in brackets, because there is no logging statement under the if condition node
at line 9. Thus, we cannot tell if line 10 is executed based on the generated log lines.

103

5.3. LOGCOCO CHAPTER 5. ESTIMATING CODE COVERAGE

2018-01-18 15:42:18,158 INFO [Thread-1]
2018-01-18 15:42:18,159 INFO [Thread-2]
2018-01-18 15:42:18,159 INFO [Thread-1]
2018-01-18 15:42:18,162 INFO [Thread-2]
2018-01-18 15:42:18,163 INFO [Thread-1]
2018-01-18 15:42:18,163 INFO [Thread-1]

Test.java:3] Random No: 2
Test.java:3] Random No: 4
Test.java:51] Process: 3

Test.java:14] Loop: 6

AN D AN W N~
— o/ /.

]
Test.java:14] Loop: 4
Test.java:14] Loop: 5

Figure 5.4: Log file snippets for our running example.

5.3.2 Phase 2 - Log Analysis

Execution logs are generated when logging statements are executed. However, since there can
be multiple scenarios executed concurrently, logs related to the different scenario executions
may be inter-mixed. Hence, in this phase, we will recover the related logs into sequences
by analyzing the log files. Suppose after executing some test cases for our running example,
a set of log lines, shown in Figure 5.4, is generated. This phase is further divided into the
following three steps:

Step 1 - Abstracting Log Lines

each log line contains static texts, which describe the particular logging context, and dynamic
contents, which reveal the SUT’s runtime states. Logs generated by modern logging frame-
works like Log4j [77] can be configured to contain information such as file name and line
number. Hence, we can easily map the generated log lines to the corresponding logging state-
ments. In our example, each log line contains the file name Test. java and the line number.
In other cases, if the file name and the line number is not printed, we can leverage existing
log abstraction techniques (e.g., [JiangJSMEOQ8, 236]), which automatically recognize the
dynamically generated contents and map log lines into the corresponding logging statements.

Step 2 - Grouping Related Log Lines

each log line contains some execution contexts (e.g., thread or session or user IDs). In this
step, we group the related log lines into sequences by leveraging these execution contexts. In
our running example, we group the related log lines by their thread IDs. There are in total
two log sequences in our running example, which correspond to Thread-1 and Thread-2.

Step 3 - Forming Log Sequences

in this step, we replace the grouped log line sequences into sequences of logging statements.
For example, the log line sequence of line 1,3,5,6 grouped under Thread-1 becomes Log@3,
Log@51, Log@14, Log@l4.

104

5.3. LOGCOCO CHAPTER 5. ESTIMATING CODE COVERAGE

5.3.3 Phase 3 - Path Analysis

Based on the obtained log line sequences from the previous phase, we intend to estimate the
covered code paths in this phase using a four-step process.

Step 1 - Matching Log Sequences with LogREs

we match the sequences of logging statements obtained in Phase 2 with the LogREs obtained
in Phase 1. The two recovered log sequences are matched with the two LogREs, which are
shown on the third row in Figure 5.3. The sequence of logging statement in our running
example Log@3, Log@51, Log@l4, Log@ld (a.k.a., Seq 1) will be matched with LogRE
(Log@3) (Log@51) (Log@14)+.

Step 2 - Labeling Statements

in the second step, based on each of the matched LogRE, we apply three types of labels to
the corresponding source code based on their estimated coverage: Must, May, and Must-Not.
The lower part of Figure 5.3 shows the results for our working example. For Seq 1, we label
lines 1,2,3,4,5,9,12,13,14,16,50,51,52 as Must, as these lines are definitely covered if
the above log sequence is generated. Line 10 is marked as May, because we are uncertain if
the condition of the if statement at line 9 is satisfied. Lines 6,7,17 are marked as Must-Not,
because the branch choice is true at line 4 and false at line 17. Due to the page limit, we do
not explain the source code labeling process for Seq 2.

Step 3 - Reconciling Statement-level Labels

as one line of source code may be assigned with multiple different labels from different log
sequences, in the third step, we reconcile the labels obtained from different log sequences and
assign one final resulting label to each line of source code. We use the following criteria for
our assignment:

e At least one Must label: since a particular line of source code is considered as
“covered”, when it has been executed at least once. Hence, if there is at least one Must
label assigned to that line of source code, regardless of other scenarios, it is considered
as covered (a.k.a., assigning Must labels as the final resulting label). In our running
example, line 5 is marked as Must in Seq 1 and Must-not in Seq 2. Therefore, it will
be marked as Must in the final label.

e No Must labels, and at least one May label: in this particular case, we may have
a specific line of source code assigned with all May labels, or a mixture of May and
Must-not labels. As there is a possibility that this particular line of source code can
be covered by some test cases, we assigned it to be May in the final resulting label. In
our running example, line 10 is marked May.

105

5.3. LOGCOCO CHAPTER 5. ESTIMATING CODE COVERAGE

e All Must-not labels: in this particular case, since there are no existing test cases
covering this line of source code, we assigned it to be Must-not in the final resulting
label. In our running example, line 17 is marked Must-not in both Seq 1 and Seq 2. It
will be marked as Must-not in the final label.

Step 4 - Inferring Labels at the Method Levels

based on the line-level labels, we assign one final label to each method using the following
criteria:

e for a particular method, if there is at least one line of source code labeled as Must, this
method will be assigned with a Must label. In our running examples, both methods
will be labeled as Must.

e for methods without Must labeled statements, we apply the following process:

— Initial Labeling: all of the logging statements under such methods should already
be labeled as Must-not, since none of these logging statements are executed. If
there is at least one logging statement which is not under any control flow statement
nodes in the call graph, this method will be labeled as Must-not.

— Callee Labeling: starting from the initial set of the Must-not labeled methods,
we search for methods that will only be called by these methods, and assign them
with the Must-not labels. We iteratively repeat this process until no more methods
can be added to the set.

— Remaining Labeling: we assign the May labels to the remaining set of unlabeled
methods.

Similarly, each branch will be assigned with one final resulting label based on the statement-
level labels. Due to space constraints, we will not explain the process here.

Phase 4 - Code Coverage Estimation

In this phase, we estimate the method/branch/statement-level code coverage measures
using the labels obtained from the previous phase. As logging statements are not instru-
mented everywhere, there are code regions labeled as May, which indicates uncertainty of
coverage. Hence, when estimating the code coverage measures, we provide two values: a
minimum and a maximum value for the above three coverage criteria. The minimum value

of statement coverage is calculated as Z-of Must labels "o\ q the maximum value is calculated

Total# of labels’
of Must labels+# of May labels
as Total% of Tabels . In our running example, the numbers of Must, May, and

Must-not statements are 15 1, and 1, respectively. Therefore, the range of the statement

coverage is from 88% (gz75 X 100%) to 94% (3245 x 100%).

15+1+1

106

5.4. CASE SETUP CHAPTER 5. ESTIMATING CODE COVERAGE

Similarly, since the number of Must, May, and Must-not branches is 5, 1, and 2 in our
running example, the range of branch coverage is from 62.5% (ﬁ x 100%) to 87.5%
(5255 x 100%).

The number of Must, May, and Must-not methods are 2, 0, and 0. Hence, the method

level coverage is 100%.

5.4 Case setup

To evaluate the effectiveness of our approach, we have selected five commercial projects from
Baidu and one large-scale open-source project in our case study. Table 5.1 shows the general
information about these projects in terms of their project name, project descriptions, and
their sizes. All six projects are implemented in Java and their domains span widely from web
services, to application platforms and NoSQL databases. The main reason why we picked
commercial projects to study is that we can easily get hold of QA engineers for questions
and feedback. The five commercial projects (Cy, Cy, C3, Cy, and Cs) were carefully selected
based on consultations with Baidu’s QA engineers. We also picked one large-scale popular
open source project, HBase [172], because we can freely discuss about the details. We focus
on HBase version 1.2.6 in this study, since it is the most recent stable release by the time
of the study. All six studied projects are actively maintained and being used by millions or
hundreds of millions of users worldwide. We proposed the following two research questions
(RQs), which will be discussed in the next two sections:

Table 5.1: Information about the six studied projects.

Projet Descriptions LOC
C, Internal APT library 24K
C, Platform 80K
C, Cloud service 12K
C, Video streaming service 35K
C. Distributed file system 228K

HB;se Distributed NoSQL Database 453K

e RQ1: (Accuracy) How accurate is LogCoCo compared to the state-of-the-art code
coverage tools? The goal of this RQ is to evaluate the quality of the code coverage
measures derived from LogCoCo against the state-of-the-art code coverage tools. We
intend to conduct this study using data from various testing activities.

e RQ2: (Usefulness) Can we evaluate and improve the existing test suites by comparing
the LogCoCo results derived from various execution contexts? The goal of this RQ is to
check if the existing test suites can be improved by comparing the estimated coverage
measures using LogCoCo from various system execution contexts.

107

5.5. RQ1: ACCURACY CHAPTER 5. ESTIMATING CODE COVERAGE

5.5 RQ1: Accuracy

On one hand, existing state-of-the-art code coverage tools (e.g., Jacoco [33], Cobertura [217])
collect the code coverage measures by excessively instrumenting the SUT either at the
source code [218] or at the binary/bytecode levels [217, 219]. The excessive instrumentation
(e.g., for every method entry/exit, and for every conditional and loop branch) ensures
accurate measurements of code coverage, but imposes problems like deployment challenges
and performance overhead (Section 5.2), which limit their application context. On the other
hand, LogCoCo is easy to setup and imposes little performance overhead by analyzing the
readily available execution logs. However, the estimated code coverage measures may be
inaccurate or incomplete, as developers only selectively instrument certain parts of the source
code by adding logging statements. Hence, in this RQ, we want to assess the quality of the
estimated code coverage measures produced by LogCoCo.

5.5.1 Experiment

We ran nine test suites for the six studied projects as shown in Table 5.2. The nine test
suites contained unit and integration tests. Since the unit test suites were not configured to
generate logs for C, C,, and C,, we did not include them in our study. C, and HBase are
distributed systems, so we conducted their integration tests in a field-like deployment setting.

Each test suite was run twice: once with the JaCoCo configured, and once without. We
used the code coverage data from JaCoCo as our oracle and compared it against the estimated
results from LogCoCo. For all the experiments, we collected data like generated log files and
code coverage measures from JaCoCo. JaCoCo is a widely used state-of-the-art code coverage
tool, which is used in both research [23, 232, 233] and practice [220, 221]. We picked JaCoCo
to ensure that the experiments could be done in a field-like environment. Code coverage
tools, which leverage source code-level instrumentation techniques, require recompilation and
redeployment of the SUT. Such requirements would make the SUT’s testing behavior no
longer closely resemble the field behavior. JaCoCo, a bytecode instrumentation based code
coverage tool, is less invasive and instruments the SUT during runtime. For each test, we
gathered the JaCoCo results and the log files. Depending on the tests, the sizes of the log
files range from 8 MB to 1.1 GB.

5.5.2 Data Analysis

We compared the three types of code coverage measures (method, statement, and branch
coverage) derived from LogCoCo and JaCoCo. Since LogCoCo marks the source code for each
type of coverage using the following three labels: Must, May, and Must-not, we calculated
the percentage of correctly labeled entities for three types of labels.

For the Must labeled methods, we calculated the portion of methods which are marked as
covered in the JaCoCo results. For example, if LogCoCo marked five methods as Must among
which four were reported as covered in JaCoCo, the accuracy of the LogCoCo method-level

108

CHAPTER 5. ESTIMATING CODE COVERAGE

5.5. RQI: ACCURACY

%€9 %00T %00T WIL %00T %66 %0G %68 %00T dIN €61 TOTYRIZONU] oseq]
%9.L %00T %00T %Ee8 %00T %66 %ES eS8 %00T dIN LS)

%6¢ %00T %96 %Sy %001 %L6 %9 %06 %00T gD T'T uwonemds <)
%8S %00T %00T %6V %001 %L6 %8T %66 %001 dIN 62 uoreIdauy)
%09 %00T %0S %68 %00T %€8 %ee - %001 dIN 92 uoneIsouy . 5
%04 %00T %00T WLL %001 %v8 %ST %88 %00T dIN 8)

%ES %00T %00T %06 %00T %00T %0€ %00T %00T dIN 099 TOTyRIZON] a5
%9L %001 %00T %SL %001 %00T %8L %00T %00T dIN 009 auan

%L9 %001 %00T %c9 %00T %66 %91 %00T %00T dIN 02 uoTyeIZoNU] 0
(Le 3ou-asny 9sny) (Lep aou-asny asny) (Lely aqou-asny asny) sSorf oyl SuIysay, solor

*AO)) Yourag 93RIOA0)) JUOWIdIRIS 93eIoA0)) POYIOIN Jo ozI1g Jo odAT, 1oiodd

"'0)0R[PUR 0)0)30T Usomldq de[IoA0 JO JUNOWR 3} SMOYS
9AOQR SID(UINT S], "SOI}IAIJOR SUI}S9) SNOLIBA IopUn 0)o)e[jsurede 0030 jo soueuriojrod a1} Sutredwo)) :g'G a[qe],

109

5.5. RQ1: ACCURACY CHAPTER 5. ESTIMATING CODE COVERAGE

coverage measure would be % x 100% = 80%. Similarly, for the Must-not labeled entities, we
calculated the percentage of methods which were marked as not covered by JaCoCo.

For the May labeled methods, we calculated the portion of methods which are reported
as covered by JaCoCo. Note that this calculation is not to assess the accuracy of the May
covered methods, but to assess the actual amount of methods which are indeed covered during
testing.

When calculating the accuracy of the statement and branch level coverage measures from
LogCoCo, we only focused on code blocks from the Must covered methods. This is because
all the statement and branch level coverage measures will be May or Must-not for the May or
Must-not labeled methods, respectively. It would not be meaningful to evaluate these two
cases again at the statement or branch level.

The evaluation results for the three coverage measures are shown in Table 5.2. If a cell is
marked as “-”) it means there is no source code assigned with the label. We will discuss the
results in details below.

5.5.3 Discussion on Method-Level Coverage

As shown in Table 5.2, all methods labeled with Must are 100% accurate. It means that
LogCoCo can achieve 100% accuracy when detecting covered methods. Rather than instru-
menting all the methods like the existing code coverage tools do, LogCoCo uses program
analysis techniques to infer the system execution contexts. For example, only 13% of the
methods in C, have logs printed. The remaining 87% of the Must covered methods are
inferred indirectly.

The methods labeled with Must-not are not always accurate. Three commercial projects
(C,, C,, and C;), and HBase have some methods which are actually covered in the tests but
are falsely flagged as Must-not covered methods. Except for three cases, the accuracy of
the Must-not labeled methods are all above 90%. We manually examined the misclassified
instances and found the following two main reasons: (1) we have limited the size of our
call graphs to 20 levels deep or a maximum of 100,000 paths per AST tree due to memory
constraints of our machine. Therefore, we missed some methods, which had deeper call chains.
(2) Our current technique cannot handle recursive functions properly.

The amount of May covered methods that are actually covered is highly dependent on
the type of projects and can range from 6% to 83%. In addition, this number seems to be
irrelevant of the types of testing conducted. In order to obtain a more accurate estimate of
the code coverage measures using LogCoCo, additional logging statements need to be added
into the SUT to reduce the amount of May labeled methods. However, the logging locations
should be decided strategically (e.g., leveraging techniques like |21, 2]) in order to minimize
performance overhead.

110

5.5. RQ1: ACCURACY CHAPTER 5. ESTIMATING CODE COVERAGE

5.5.4 Discussion on the Statement and Branch Coverage

For statement and branch coverage, the accuracy of the Must-not labels is 100% for all the
experiments. However, the accuracy of the Must covered labels ranges from 83% to 100%
for statement coverage and 50% to 100% for branch coverage. In seven out of the nine total
experiments, the accuracy of the Must covered statements is 97% or higher. We manually
examined the cases where the LogCoCo results are different from JaCoCo. We summarized
them as follows:

1. limitations on static analysis (LogCoCo issue): Java supports polymorphism. The
actual type of certain objects are unknown until they are being executed. LogCoCo
infers the call graphs statically and mistakenly flags some of the method invocations.

2. new programming constructs (JaCoCo issue): the lambda expression is one of the new
programming language constructs introduced in Java 8. JaCoCo mistakenly tags some
statements containing lambda expressions as not covered.

The accuracy of the Must covered branches is generally above 95%, except one case:
during the integration testing of C,, LogCoCo detected two Must covered branches being
executed, one of which was falsely labeled. The rationales for the differences of the branch
coverage measures are the same as the statement coverage measures.

The amount of May actually covered statements and branches are generally higher than
the amount of actually covered May methods. However, similar to the method-level coverage,
we cannot easily guess the actual coverage information for a May labeled statement or branch.

5.5.5 Feedback from the QA Engineers

We demonstrated LogCoCo to the QA engineers at Baidu. They agreed that LogCoCo
can be used for their daily testing activities, due to its ease of setup, wider application
context, and accurate results. In particular, instead of treating all the source code equally,
they would pay particular attention to the coverage of the methods, which have logging
statements instrumented. This was because many of the logging statements were inserted
into risky methods or methods which suffered from past field failures. Having test cases
cover these methods is considered a higher priority. LogCoCo addressed this task nicely. In
addition, they agreed that LogCoCo can also be used to speed up problem diagnosis in the
field by automatically pin-pointing the problematic code regions. Finally, they were also very
interested in the amount of May labeled entities (a.k.a., methods, statements, and branches),
as they knew little about the runtime behavior of these entities. They considered reducing the
amount of May labeled entities as one approach to improving their existing logging practices
and were very interested to collaborate further with us on this topic.

111

5.6. RQ2: USEFULNESS CHAPTER 5. ESTIMATING CODE COVERAGE

Findings: The accuracy of Must and Must-not labeled entities from LogCoCo is very
high for all three types of code coverage measures. However, one cannot easily infer
whether a May labeled entity is actually covered in a test.

Implications: To further improve the accuracy, one must reduce the amount of May
labeled entities through additional instrumentation. Researchers and practitioners can
look into existing work (e.g., [21, 2]), which improve the SUT’s logging behavior with
minimal performance overhead.

5.6 RQ2: Usefulness

Existing code coverage tools are usually applied only during unit or integration testing due
to various challenges explained in Section 5.2. LogCoCo, which analyzes the readily available
execution logs, can work on a much wider application context. In this RQ, we intend to
check if we can leverage the LogCoCo results from various execution contexts to improve the
existing test suites. To tackle this problem, we further split this RQ into the following two
sub-RQs:

RQ2.1: Can we improve the in-house functional test suites by the
comparison among each other?

In this sub-RQ, we will focus on unit and integration testing, as they have different testing
purposes. Unit testing examines the SUT’s behavior with respect to the implementation of
individual classes, whereas integration testing examines whether individual units can work
correctly when they are connected to each other. We intend to check if one can leverage the

coverage differences to improve the existing unit or integration test suites using data from
LogCoCo.

Experiment

To study this sub-RQ, we reused the data obtained from RQ1’s experiments. In particular,
we selected the data from two commercial projects: Cy and Cj3, as they contain data from
both unit and integration test suites. The main reason we focused on the commercial projects
in this sub-R(Q was because we can easily get hold of the QA engineers of Baidu for feedback
or surveys (e.g., whether they can evaluate and improve the unit or integration tests by
comparing the coverage data).

Data Analysis and Discussion

It would be impractical to study all the coverage differences from the two types of tests due
to their large size. We randomly sampled a subset of methods, where both types of testing
covered but their statement and branch level coverage measures differed. We presented
this dataset to QA engineers from the two commercial projects for feedback. After manual

112

5.6. RQ2: USEFULNESS CHAPTER 5. ESTIMATING CODE COVERAGE

examinations, the QA engineers agreed to add additional unit testing cases for all the cases
where unit testing did not cover. However, adding additional integration tests is harder
than adding additional unit tests. The QA engineers rejected about 85% of the cases where
unit testing covered but integration testing missed, as they were considered as hard or lower
priority. We summarized their rationales as follows:

e Defensive Programming: defensive programming is a programming style to guard
against unexpected conditions. Although it generally improves the robustness of the
SUT, there can be unnecessary code introduced to guard against errors that would be
impossible to happen. Developers insert much error checking code into the systems.
Some of these issues are rare or impossible to happen. It is very hard to come up with
an integration test case whose input values can exercise certain branches.

e Low Risk Code: some of the modules are considered as low risk based on the experience
of the QA engineers. Since they are already covered by the unit test suites, adding
additional integration test cases is considered as low priority.

RQ2.2: Can we evaluate the representativeness of in-house test suites
by comparing them against field behavior?

One of the common concerns associated with QA engineers is whether the existing in-house
test suites can properly represent field behavior. We intend to check if one can evaluate the
quality of the existing in-house test suites by comparing them against field coverage using
data from LogCoCo.

Experiment

Due to confidentiality reasons, we cannot disclose the details about the field behavior for the
commercial projects. Therefore, we studied the open source system, HBase, for RQ2.2. The
integration test suite from HBase is considered as a comprehensive test suite and is intended
for “elaborate proofing of a release candidate beyond what unit tests can do” [237]. Hence,
we consider it as HBase’s in-house test suite. There are two setup approaches to running the
HBase’s integration tests: a mini-cluster, or a distributed cluster. The mini-cluster setup
is usually run on one machine and can be integrated with the Maven build process. The
distributed cluster setup needs a real HBase cluster setup and is invoked using a separated
command. In this experiment, we ran under both setups and collected their logs.

The workloads defined in YCSB are derived by examining a wide range of workload
characteristics from real web applications [230]. We thus used the YCSB benchmark test suite
to mimic the field behavior of HBase. However, as we discovered under default settings, HBase
did not output any logs during the benchmarking process. We followed the instructions
from [238| to change the log levels for HBase from INFO to DEBUG on the fly (a.k.a.,
without server reboot). The resulting log file size is around 270 MB when running the YCSB
benchmark tests for one hour.

113

5.7. RELATED WORK CHAPTER 5. ESTIMATING CODE COVERAGE

Data Analysis and Discussion

Based on the LogCoCo results, there are 12 methods which were covered by the YCSB test
and not by the integration test under the mini-cluster setup. Most of these methods were
related to the functionalities associated with cluster setup and communications. Under the
distributed cluster setup, which is more realistic, all the covered methods in the YSCB test
were covered by the integration test.

The log verbosity level for the unit and the integration tests of HBase in RQ1 was kept as
the default INFO level. Both tests generated hundreds of megabytes of logs. However, under
the default verbosity level, the YCSB benchmarking test generated no logs except a few lines
at the beginning of the test. This is mainly because HBase does not perform logging for
their normal read, write, and scan operations for performance concerns. The integration tests
output more INFO level logs is because: (1) many of the testing methods are instrumented
with INFO or higher level logs. Such logs are not printed in practice; and (2) in addition to
the functionalities covered in the YCSB benchmark, integration tests also verify other use
cases, which can generate many logs. For example, one integration test case is about region
replications. In this test, one of the HBase component, ZooKeeper, which is responsible for
distributed configuration and naming service, generated many INFO level logs.

We further assessed the performance impact of turning on the DEBUG level logs for
HBase. We compared the response time under the DEBUG and the INFO level logging
with YCSB threads configured at 5, 10, and 15, respectively. The performance impact was
very small (< 1%) under all three YCSB settings (a.k.a., three different YCSB benchmark
runs). Thus, for HBase the impact of DEBUG level logging is much smaller than JaCoCo.
Furthermore, compared to JaCoCo, which requires server restart to enable/disable its process,
the DEBUG level logging can easily be turned on/off during runtime.

Findings: LogCoCo results can be used to evaluate and improve the existing test suites.
Multiple rationales are considered when adding a test case besides coverage.
Implications: There are mature techniques (e.g., EvoSuite [239] and Pex [240]) to
automatically generate unit test cases with high coverage. However, there are no such
techniques for other types of tests, which still require high manual effort to understand
the context and to decide on a case-by-case basis. Further research is needed in this
area.

The coverage information from LogCoCo highly depends on amount of generated logs.
Researchers or practitioners should look into system monitoring techniques (e.g., sam-
pling [50] or adaptive instrumentation [241]), which maximize the obtained information
with minimal logging overhead.

5.7 Related work

In this section, we will discuss two areas of related research: (1) code coverage, and (2)
software logging.

114

5.7. RELATED WORK CHAPTER 5. ESTIMATING CODE COVERAGE

5.7.1 Code Coverage

Code coverage measures the amount of source code executed while running SUTs under
various scenarios [206]. They have been used widely in both academia and industry to
assess and improve the effectiveness of existing test suites [211, 205, 242, 243, 244, 245|.
There are quite a few open source (e.g., [33, 217]) and commercial (e.g., [215, 216]) code
coverage tools available. All these tools leverage additional code instrumentation, either at
the source code level (e.g., [218, 231, 246|) or at the binary/bytecode (e.g., [216, 217, 219|)
level, to automatically collect the runtime system behavior in order to measure the code
coverage measures. In [224], Haubl et al. derived code coverage information from the profiling
data recorded by an the just-in-time (JIT) compiler. They also compared their coverage
information against JaCoCo. They showed their results are more accurate than JaCoCo and
yield smaller overhead. Haubl et al.’s approach is different from ours, as they relied on data
from the underlying virtual machines, whereas we focus on the logging statements from the
SUT’s source code. Recently, Horvath et al. [23] compared the results from various Java
code coverage tools and assessed the impact of their differences to test prioritization and
test suite reduction. In this chapter, we have evaluated the state-of-the-art Java-based code
coverage tools in a field like setting and proposed a new approach, which leverages the readily
available execution logs, to automatically estimating the code coverage measures.

In addition to the traditional code coverage metrics (e.g., method, branch, decision, and
MC/DC coverage), new metrics have been proposed to better assess the oracle quality [210],
to detect untested code regions [233], and to compose test cases with better abilities to
detect faults [247]. There are various empirical studies conducted to examine the relationship
between the test effectiveness and various code coverage metrics. For example, Inozemtseva
and Holmes [207] leveraged mutation testing to evaluate the fault detection effectiveness
of various code coverage measures and found that there is a low to moderate correlation
between the two. Kochhar et al. [208, 232| performed a similar study, except they used
real bugs instead. Their study reported a statistically significant correlation (moderate to
strong) between fault detection and code coverage measures. Gligoric et al. [248] compared
the effectiveness of various code coverage metrics in the context of test adequacy. The work
conducted by Wang et al. [225], which is the closest to our work, compared the coverage
between in-house test suites and field executions using invariant-based models. Our work
differs from [225] in the following two main areas: (1) they used a record-replay tool, which
instruments the SUT to collect coverage measures. Our work estimates the coverage measures
based on the existing logs without extra instrumentation. (2) While they mainly focused on
the client and desktop-based systems, our focus is on the server-based distributed systems
deployed in a field-like environment processing large volumes of concurrent requests. In our
context, extra instrumentation would not be ideal, as it will have a negative impact on the
user experience.

115

5.8. THREATS CHAPTER 5. ESTIMATING CODE COVERAGE

5.7.2 Software Logging

Software logging is a cross-cutting concern that scatters across the entire system and inter-
mixes with the feature code [44]. Unfortunately, recent empirical studies show that there
are no well-established logging practices for commercial [8, 32| and open source systems [10,
9]. Recently researchers have focused on providing automated logging suggestions based
on learning from past logging practices [8, 36, 107, 80| or program analysis [2|. Execution
logs are widely available inside large-scale software systems for anomaly detection [249, 52|,
system monitoring [16, 3|, problem debugging [250, 18, 35, 251], test analysis [19, 252], and
business decision making [5]. Our work was inspired by [35], which leveraged logs to infer
executed code paths for problem diagnosis. However, this is the first work, to the author’s
knowledge, which uses logs to automatically estimate code coverage measures.

The limitation is that we rely on that the study systems contain sufficient logging. It is
generally the case among server-side projects. For client-side or other projects with limited
logging, our approach should be complementary by other code coverage tools.

5.8 Threats to validity

In this section, we will discuss the threats to validity.

5.8.1 Internal Validity

In this chapter, we proposed an automated approach to estimating code coverage by analyzing
the readily available execution logs. The performance of our approach highly depends on the
amount of the logging and the verbosity levels. The amount of logging is not a major issue
as existing empirical studies show that software logging is pervasive in both open source [10,
9] and commercial [8, 32| systems. The logging overhead due to lower verbosity levels is
small for the HBase study. For other systems, one can choose to enable lower verbosity level
for a short period of time or use advanced logging techniques like sampling and adaptive
instrumentation.

5.8.2 External Validity

In this chapter, we focused on the server-side systems mainly because these systems use logs
extensively for a variety of tasks. All these systems are under active development and used by
millions of users worldwide. To ensure our approach is generic, we studied both commercial
and open source systems. Although our approach was evaluated on Java systems, to support
other programming languages, we just need to replace the parser for another language (e.g.,
Saturn [253] for C, and AST [254] for Python) in LogCoCo. The remaining process stays
the same. Our findings in the case studies may not be generalizable to systems and tools
which have no or very few logging statements (sometimes seen in mobile applications and
client /desktop-based systems).

116

5.9. CONCLUSIONS CHAPTER 5. ESTIMATING CODE COVERAGE

5.8.3 Construct Validity

When comparing the results between LogCoCo and the state-of-the-art code coverage tools,
we focused on JaCoCo, which collects code coverage information via bytecode instrumentation.
This is because: (1) JaCoCo is widely used in Baidu, so we can easily collect the code coverage
for the systems and gather feedback from the QA engineers; and (2) we intend to assess the
coverage measures in a field-like environment, in which the system is deployed in a distributed
environment and used by millions of users. Source-code-instrumentation-based code coverage
tools (e.g., [231]) are not ideal, as they require recompilation and redeployment of the SUT.

5.9 Conclusions and Future work

Existing code coverage tools suffer from various problems, which limit their application
context. To overcome with these problems, this chapter presents a novel approach, LogCoCo,
which automatically estimates the code coverage measures by using the readily available
execution logs. We have evaluated LogCoCo on a variety of testing activities conducted on
open source and commercial systems. Our results show that LogCoCo yields high accuracy
and can be used to evaluate and improve existing test suites.

In the future, we plan to extend LogCoCo for other programming languages. In particular,
we are interested in applying LogCoCo to systems implemented in multiple programming
languages. Furthermore, we also intend to extend LogCoCo to support other coverage criteria
(e.g., data-flow coverage and concurrency coverage). Finally, since the quality of the LogCoCo
results highly depends on the quality of logging, we will research into cost-effective techniques
to improve the existing logging code.

117

Chapter 6

Conclusions and Future work

Although software logging plays a key role in DevOps, there are various challenges associated
with it. This thesis is the first step towards tackling the challenges and improving existing
software logging practices through systematic analysis of software repositories. We derive
guidelines for developing high quality logging code and empirically evaluate various approaches
associated with logging code management. We analyze logs to provide quality feedback to
the developers and perform deeper problem analysis. The resulting findings and techniques
are beneficial for both software developers and I'T operators. This chapter is organized as
follows: first, we summarize our findings and contributions based on the presented work in
this thesis (Section 6.1). Then, we discuss some future work (Section 6.2). At last, we provide
our closing remarks (Section 6.3).

6.1 Thesis Findings and Contributions

e A Survey of the Instrumentation Techniques Used in Software Logging

We have summarized log instrumentation into three steps: (1) logging approach; (2)
logging utility integration; and (3) logging code composition. For each step, we have
surveyed related papers and provided detailed analysis and comparison. The key
findings are summarized as follows:

— Logging Approach. There are three logging approaches: conventional logging,
rule-based logging, and distributed tracing. Conventional logging is easy to setup
and LC snippets can be instrumented in anywhere of the system. Rule-based
logging is proposed to remediate the cross-cutting concern. Distributed tracing
enriches the context information in logs.

— LU Integration. There are many LUs available in the wild. Tools and support
are needed to control the behavior of different LUs. Issues are found within the
configuration process for softare logging.

118

6.1.

CONTRIBUTIONS CHAPTER 6. CONCLUSIONS AND FUTURE WORK

— LC Composition. Many techniques are proposed to solve three concerns: where-to-
log, what-to-log, and how-to-log. Examples are machine learning-based, history-
based, and program analysis-based techniques.

e Extracting and Studying the Logging-Code-Issue-Introducing Changes in

Java-based Large-Scale Open Source Software Systems

Ineffective logging would cause many issues for large-scale software systems, such as
confusion, lack of information during program diangosis, or even system crash. However,
developing and maintaining high quality logging code is very challenging, as logging code
usually inter-mixes with feature code and its correctness is hard to verify. Unfortunately,
there are no existing guidelines in research and practice on how to conduct effective
logging. We propose to derive such guidelines through mining the historical logging
code changes. In particular, we have extracted a dataset containing Logging-Code-
Issue-Introducing changes from six Java-based open source software systems. Through
this dataset, we have conducted several preliminary studies. We believe this dataset is
very valuable and can be used by many future research works. The key findings are
summarized as follows:

— Characteristics of fixes to LCII changes. Both co-changed and independently
changed logging code changes can contain fixes to the LCII changes. Ten intentions
are found behind the fixes to LCII changes. "Clarification" and "Updating Logging
Style" are the top two intentions.

— Complezity of fizes to LCII changes. The two types of logging code changes (LCII
changes and co-evolving logging code changes) are similar in terms of change
complexity.

— Resolution time of fixes to LCII changes. The resolution time of the LCII changes
and regular bugs are statistically different in all studied projects

— FEffectiveness of current techniques. Both the LCAnalyzer and Cloning technique
can only detect a small fraction(< 3%) of the issues in logging code.

e Studying the Use of Java Logging Utilities in the Wild

Instead of directly invoking the standard output functions, developers usually prefer to
use logging utilities (LUs) (e.g., SLF4J [46]), which provide additional functionalities like
thread-safety and verbosity level support, to instrument their source code. However, very
few studies discuss the use of LUs, although new LUs are constantly being introduced.
We have conducted the first large-scale empirical study on the use of Java LUs in
the wild and identified 3,856 LUs being used in the wild. In particular, there are two
types of LUs: External LUs (ELUs) and Internal LUs(ILUs). The key findings are
summarized as follows:

— ELU. ELUs are mainly used for: (1) General-purpose logging, (2) LU interactions,
(3) Internationalization, and (4) Modularization.

119

6.2. FUTURE WORK CHAPTER 6. CONCLUSIONS AND FUTURE WORK

— ILU. ILUs are mainly implemented for: (1) defining the logging format, (2)
compatibility with other LUs, and (3) ease of configuration and dependency
management.

— Multiple LUs. As the project size becomes larger, developers tend to use multiple
LUs to fulfil their needs. The common four usage context are: (1) interaction with
LUs from the imported packages; (2) managing the logging contents; (3) formatting
log- ging messages across different components; and (4) developer convenience.

e An Automated Approach to Estimating Code Coverage Measures via Exe-
cution Logs

Code coverage measures are commonly used to evaluate and improve the existing test
suites. However, existing code coverage tools suffer from various problems, which
limit their application context. To overcome with these problems, we present a novel
approach, LogCoCo, which automatically estimates the code coverage measures by
using the readily available execution logs. We have evaluated LogCoCo on a variety of
testing activities conducted on open source and commercial systems. The key findings
are summarized as follows:

— Accuracy. The accuracy of Must and Must-not labeled entities from LogCoCo
is very high. However, one cannot easily infer whether a May labeled entity is
actually covered in a test.

— Usefulness. LogCoCo results can be used to evaluate and improve the existing
test suites. Multiple rationales are considered when adding a test case besides
coverage.

6.2 Future Work

We propose the future work as follows:

e Deriving the best practice of adopting logging approaches.

There are no well documented guidelines on suggesting the appropriate logging ap-
proaches under specific scenarios. It is worthwhile to extract and generalize all the
logging needs by studying the existing commerical and open source projects. Different
logging approaches can be evaluated under these different logging needs in order to pro-
vide a systematic guideline on the best practices of using different logging approaches.
By mining historical information, we can study the practices of two other logging
approaches: rule-based logging and distributed tracing from various dimensions such as
instrumentation efforts, usage context and common issues.

e Recommending the appropriate LUs based on different needs.

There are many LUs available in the wild, which provides various functionalities about
software logging. In addition, new LUs are also constantly introduced. It is very

120

6.3.

CLOSING REMARKS CHAPTER 6. CONCLUSIONS AND FUTURE WORK

important to provide developers’ suggestions on the appropriate LU(s) for the SUS
in order to ensure all the logging needs are satisfied. Furthermore, as the SUS evolve
over time, more suggestions are also needed on incorporating additional LUs or LU
migrations. We propose to mine the development history of popular LUs and study
what are the features or issues the modifications attemp to implement or resolve. We
can then manually explore the rationle of selecting LUs in popular open source projects
by mining the communication repositories such as issue reports, pull requests, and
mailing lists.

Benchmarking existing techniques on improving logging practices.

Existing state-of-the-art techniques on detecting logging code issues cannot detect a
majority of the issues in logging code. In the future, we plan to further leverage our
benchmark dataset to: (1) evaluate more techniques such as machine learning-based
approaches to suggesting logging code modification; (2) develop better techniques to
automatically detect issues in logging code, and (3) derive best practices in terms of
developing and maintaining high quality logging code.

Correlating Telemetry Data to Aid Problem Diagnosis.

Heterogeneous and complex telemetry data. Besides execution logs, large scale dis-
tributed systems also adopt other mechanisms to monitor the health of systems. Some
examples are distributed tracing and Application Performance Monitoring (APM) tools.
Existing problem diagnosis techniques only focus on one type of telemetry data (e.g.,
logs or traces). Very few work try to enrich the analysis by correlating the information
among different types of telemetry data. For example, microservice architecture-based
projects become increasingly popular. These projects are usually deployed with one
or more distributed tracing utilities. It remains unknown what the challenges are on
analyzing the execution logs compared with traditional monolithic software systems.

6.3 Closing Remarks

DevOps is a software development methodology that intends to automate the process between
software development and IT operations. Software logging plays an essential role in both
sides of DevOps to ensure software quality. On the development side, developers need to
develop and maintain high quality logging code. On the I'T operation side, operators need
to leverage execution logs to conduct different analysis tasks. In this thesis, we provide a
benchmark dataset to aid software engineering researchers to derive the best logging practices
and develop automated techniques to flag issues in logging code. We conduct an empirical
study on the use of logging utilities in the wild. We also expand and enrich log analysis
techniques for wider application context. We hope that this thesis be useful for both software
enineering researchers and practitioners.

121

Bibliography

1]
2l

13l

4]

[5]

6]

17l

8]

9]

[10]

[11]

Len Bass, Ingo Weber, and Liming Zhu. DevOps: A Software Architect’s Perspective.
1st. Addison-Wesley Professional, 2015. 1SBN: 0134049845, 9780134049847.

Xu Zhao et al. “Log20: Fully Automated Optimal Placement of Log Printing Statements
under Specified Overhead Threshold”. In: Proceedings of the 26th Symposium on
Operating Systems Principles, Shanghai, China, October 28-31, 2017. 2017.

Adam Oliner, Archana Ganapathi, and Wei Xu. “Advances and Challenges in Log
Analysis”. In: Communications of ACM (2012).

Ahmed E. Hassan et al. “An Industrial Case Study of Customizing Operational Profiles
Using Log Compression”. In: Proceedings of the 30th International Conference on
Software Engineering (ICSE). 2008.

Titus Barik et al. “The bones of the system: a case study of logging and telemetry
at Microsoft”. In: Proceedings of the 38th International Conference on Software En-
gineering, ICSE 2016, Austin, TX, USA, May 14-22, 2016 - Companion Volume.
2016.

Weiyi Shang et al. “Understanding Log Lines Using Development Knowledge”. In:
Proceedings of the 2014 IEEE International Conference on Software Maintenance and
Evolution (ICSME). 2014.

HBASE-750: NPE caused by StoreFileScanner.updateReaders. https: //issues .
apache.org/jira/browse/HBASE-750/. Last accessed: 05/31/2020.

Qiang Fu et al. “Where do developers log? an empirical study on logging practices
in industry”. In: 36th International Conference on Software Engineering, ICSE 14,
Companion Proceedings, Hyderabad, India, May 31 - June 07, 2014. 2014.

Boyuan Chen and Zhen Ming (Jack) Jiang. “Characterizing logging practices in
Java-based open source software projects - a replication study in Apache Software
Foundation”. In: Empirical Software Engineering (2017).

Ding Yuan, Soyeon Park, and Yuanyuan Zhou. “Characterizing logging practices in
open-source software”. In: 34th International Conference on Software Engineering,
ICSE 2012, Zurich, Switzerland, June 2-9, 2012. 2012.

The Aspect] Project. https://eclipse.org/aspectj/. Last accessed: 12/20,/2019.

122

BIBLIOGRAPHY BIBLIOGRAPHY

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

21

22]

23]

[24]

Bram Adams and Shane Mclntosh. “Modern Release Engineering in a Nutshell —
Why Researchers Should Care”. In: IEEE 23rd International Conference on Software
Analysis, FEvolution, and Reengineering. 2016.

The replication package of chapter 2. https://www.eecs.yorku.ca/ chenfsd/
resources/survey.zip. Last accessed: 05/21/2020.

The replication package of chapter 3. http://www.cse.yorku.ca/ zmjiang/share/
replication_package/emse2018_chen/replication_package.zip. Last accessed:
10,/08,/2020.

The replication package of chapter 4. https://www.eecs.yorku.ca/ chenfsd/
resources/icse2020_replication.zip. Last accessed: 01/26/2020.

Weiyi Shang et al. “An exploratory study of the evolution of communicated information
about the execution of large software systems”. In: Journal of Software: Evolution and
Process (2014).

Ding Yuan et al. “SherLog: Error Diagnosis by Connecting Clues from Run-time
Logs”. In: Proceedings of the Fifteenth Edition of ASPLOS on Architectural Support
for Programming Languages and Operating Systems (2010).

Ding Yuan et al. “Be Conservative: Enhancing Failure Diagnosis with Proactive
Logging”. In: Presented as part of the 10th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 12). 2012.

Zhen Ming (Jack) Jiang et al. “Automated Performance Analysis of Load Tests”. In:
Proceedings of the 25th IEEE International Conference on Software Maintenance
(ICSM). 20009.

Raja R. Sambasivan et al. “Diagnosing Performance Changes by Comparing Request
Flows”. In: Proceedings of the 8th USENIX Symposium on Networked Systems Design
and Implementation, NSDI 2011, Boston, MA, USA, March 30 - April 1, 2011. 2011.

Rui Ding et al. “Log2: A Cost-Aware Logging Mechanism for Performance Diagnosis”.
In: 2015 USENIX Annual Technical Conference, USENIX ATC ’15, July 8-10, Santa
Clara, CA, USA. 2015.

Jonathan Mace, Ryan Roelke, and Rodrigo Fonseca. “Pivot tracing: dynamic causal
monitoring for distributed systems”. In: Proceedings of the 25th Symposium on Op-
erating Systems Principles, SOSP 2015, Monterey, CA, USA, October 4-7, 2015.
2015.

Ferenc Horvath et al. “Code coverage differences of Java bytecode and source code
instrumentation tools”. In: Software Quality Journal (2017).

Boyuan Chen et al. “An automated approach to estimating code coverage measures
via execution logs”. In: Proceedings of the 33rd ACM/IEEE International Conference
on Automated Software Engineering, ASE 2018, Montpellier, France, September 3-7,
2018. 2018.

123

BIBLIOGRAPHY BIBLIOGRAPHY

[25]

[26]
[27]

28]
29]
[30]

[31]
[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

Summary of Sarbanes-Ozley Act of 2002. http://wuw.soxlaw.com/. Last accessed
08/26/2015.

Di Ma and Gene Tsudik. “A new approach to secure logging”. In: TOS (2009).

Daniel Le Métayer, Eduardo Mazza, and Marie-Laure Potet. “Designing Log Archi-
tectures for Legal Evidence”. In: 8th IEEE International Conference on Software
Engineering and Formal Methods, SEFM 2010, Pisa, Italy, 13-18 September 2010.
2010.

Jimmy J. Lin and Dmitriy V. Ryaboy. “Scaling big data mining infrastructure: the
twitter experience”. In: SIGKDD Explorations (2012).

Anton Chuvakin, Kevin Schmidt, and Chris Phillips. Logging and Log Management.
Syngress, 2013.

logstash - open source log management. http://logstash.net/. Last accessed
04,/04/2020.

Splunk. http://www.splunk.com/. Last accessed 04/04/2020.

Antonio Pecchia et al. “Industry Practices and Event Logging: Assessment of a Critical
Software Development Process”. In: 37th IEEE/ACM International Conference on
Software Engineering, ICSE 2015, Florence, Italy, May 16-24, 2015, Volume 2. 2015.

JaCoCo. JaCoCo Java Code Coverage library. http://www.eclemma.org/jacoco/.
Last accessed: 01,/29/2018. 2018.

JBoss Logging. https://developer. jboss.org/wiki/JBossLoggingTooling. Last
accessed: 05/08/2020. 2019.

Ding Yuan et al. “Improving software diagnosability via log enhancement”. In: Proceed-
ings of the 16th International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS 2011, Newport Beach, CA, USA, March
5-11, 2011. 2011.

Boyuan Chen and Zhen Ming (Jack) Jiang. “Characterizing and detecting anti-patterns
in the logging code”. In: Proceedings of the 39th International Conference on Software
Engineering, ICSE 2017, Buenos Aires, Argentina, May 20-28, 2017. 2017.

Suhas Kabinna et al. “Examining the Stability of Logging Statements”. In: IEEFE 23rd
International Conference on Software Analysis, Evolution, and Reengineering, SANER
2016, Suita, Osaka, Japan, March 14-18, 2016 - Volume 1. 2016.

Zhenhao Li et al. “Dlfinder: characterizing and detecting duplicate logging code smells”.
In: Proceedings of the 41st International Conference on Software Engineering, ICSE
2019, Montreal, QC, Canada, May 25-31, 2019. 2019.

Rajkumar Buyya et al. “A Manifesto for Future Generation Cloud Computing: Research
Directions for the Next Decade”. In: ACM Comput. Surv. (2019).

124

BIBLIOGRAPHY BIBLIOGRAPHY

[40]

[41]
[42]

|43
|44]

[45]

[46]
[47]
48]
[49]

[50]

[51]

52|

[53]

[54]

Xiang Zhou et al. “Fault Analysis and Debugging of Microservice Systems: Industrial
Survey, Benchmark System, and Empirical Study”. In: IEEE Transactions on Software
Engineering (2018).

Cindy Sridharan. Distributed Systems Observability. O’Reilly Media, Inc., 2018.

Barbara A. Kitchenham, David Budgen, and O. Pearl Brereton. “Using mapping
studies as the basis for further research - A participant-observer case study”. In: Inf.
Softw. Technol. (2011).

Barbara Kitchenham and Stuart Charters. “Guidelines for performing Systematic
Literature Reviews in Software Engineering”. In: (2007).

Gregor Kiczales et al. “Aspect-oriented programming”. In: Proceedings of the 11th
European Conference on Object-Oriented Programming (ECOOP). 1997.

Boyuan Chen and Zhen Ming (Jack) Jiang. “Studying the Use of Java Logging
Utilities in the Wild”. In: Proceedings of the 42nd International Conference on Software
Engineering: Companion Proceedings, ICSE 2020, Seoul, South Korea, May 23-29,
2019. 2020.

Simple Logging Facade for Java (SLF4J). https://www.slf4j.org/. Last accessed:
07/23/2019.

spdlog - Very fast, header-only/compiled, C++ logging library. https://github.com/
gabime/spdlog. Last accessed: 07/23/2019.

Heng Li, Weiyi Shang, and Ahmed E. Hassan. “Which log level should developers
choose for a new logging statement?” In: Empirical Software Engineering (2017).

The JavaDoc of Log4J 2. https://logging . apache . org/logdj/2.x/logdj-
api/apidocs/org/apache/logging/log4j/Level .html. Last accessed: 04,/03/2020.

Benjamin H. Sigelman et al. Dapper, a Large-Scale Distributed Systems Tracing
Infrastructure. Tech. rep. Google, Inc., 2010. URL: https://research.google.com/
archive/papers/dapper-2010-1.pdf.

Jonathan Kaldor et al. “Canopy: An End-to-End Performance Tracing And Analysis
System”. In: Proceedings of the 26th Symposium on Operating Systems Principles,
Shanghai, China, October 28-31, 2017. 2017.

Weiyi Shang et al. “Assisting developers of big data analytics applications when de-
ploying on hadoop clouds”. In: 35th International Conference on Software Engineering,
ICSE ’13, San Francisco, CA, USA, May 18-26, 2013. 2013.

Wei Xu. “System Problem Detection by Mining Console Logs”. PhD thesis. University
of California, Berkeley, USA, 2010. URL: http://www.escholarship.org/uc/item/
6jx4w194.

Zhen Ming (Jack) Jiang et al. “An automated approach for abstracting execution logs
to execution events”. In: Journal of Software Maintenance (2008).

125

BIBLIOGRAPHY BIBLIOGRAPHY

[55]

[56]

[57]

[58]

[59]

[60]

[61]

|62]
|63]

[64]

[65]

|66]

Pinjia He et al. “An Evaluation Study on Log Parsing and Its Use in Log Mining”.
In: 46th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks, DSN 2016, Toulouse, France, June 28 - July 1, 2016. 2016.

Mohamad Gebai and Michel R. Dagenais. “Survey and Analysis of Kernel and Userspace
Tracers on Linux: Design, Implementation, and Overhead”. In: ACM Comput. Surv.
(2018).

Chuanxiong Guo et al. “Pingmesh: A Large-Scale System for Data Center Network
Latency Measurement and Analysis”. In: Proceedings of the 2015 ACM Conference on
Special Interest Group on Data Communication, SIGCOMM 2015, London, United
Kingdom, August 17-21, 2015. 2015.

Mohammed Sayagh et al. “Software Configuration Engineering in Practice: Inter-
views, Survey, and Systematic Literature Review”. In: IEEE Transactions on Software
Engineering (2018).

Michael James Katchabaw et al. “Making Distributed Applications Manageable
Through Instrumentation”. In: International Symposium on Software Engineering
for Parallel and Distributed Systems, PDSE 1997, Boston, MA, USA, May 17-18,
1997. 1997.

Guoping Rong et al. “A Systematic Review of Logging Practice in Software Engineering”.
In: 24th Asia-Pacific Software Engineering Conference, APSEC 2017, Nanjing, China,
December 4-8, 2017. 2017.

Raja R. Sambasivan et al. “Principled workflow-centric tracing of distributed systems”.
In: Proceedings of the Seventh ACM Symposium on Cloud Computing, Santa Clara,
CA, USA, October 5-7, 2016. 2016.

Jeanderson Candido, MaurAcio Aniche, and Arie van Deursen. Contemporary Software
Monitoring: A Systematic Literature Review. 2019. arXiv: 1912.05878 [cs.SE].

LOGYJ 2 Apache Log4j 2. http://logging.apache.org/logdj/2.x. Last accessed:
07/23/2019.

Jieming Zhu et al. “Tools and benchmarks for automated log parsing”. In: Proceedings

of the 41st International Conference on Software Engineering: Software Engineering
in Practice, ICSE (SEIP) 2019, Montreal, QC, Canada, May 25-31, 2019. 2019.

Lionel C. Briand, Wojciech J. Dzidek, and Yvan Labiche. “Instrumenting Contracts
with Aspect-Oriented Programming to Increase Observability and Support Debugging”.
In: 21st IEEE International Conference on Software Maintenance (ICSM 2005), 25-30
September 2005, Budapest, Hungary. 2005.

Marc Bartsch and Rachel Harrison. “An exploratory study of the effect of aspect-
oriented programming on maintainability”. In: Software Quality Journal (2008).

126

BIBLIOGRAPHY BIBLIOGRAPHY

[67]

[68]

[69]
[70]
[71]

[72]

73]

[74]

[75]

|76]

[77]
(78]

[79]

Kimmo Kiviluoma, Johannes Koskinen, and Tommi Mikkonen. “Run-time monitoring
of architecturally significant behaviors using behavioral profiles and aspects”. In:
Proceedings of the ACM/SIGSOFT International Symposium on Software Testing and
Analysis, ISSTA 2006, Portland, Maine, USA, July 17-20, 2006. 2006.

Xu Zhao et al. “Iprof: A Non-intrusive Request Flow Profiler for Distributed Systems”.
In: 11th USENIX Symposium on Operating Systems Design and Implementation, OSDI
’14, Broomfield, CO, USA, October 6-8, 2014. 2014.

Freddy Munoz et al. “Usage and Testability of AOP: An Empirical Study of AspectJ”.
In: Information and Software Technology (IST) (2013).

Sven Apel et al. “How AspectJ is used: An analysis of eleven Aspectj programs”. In:
Journal of Object Technology (JOT) (2008).

Opentracing: vendor-neutral APIs and instrumentation for distributed tracing. https:
//opentracing.io/. Last accessed: 07/23,/2019. 2019.

Stephen Yang, Seo Jin Park, and John K. Ousterhout. “NanoLog: A Nanosecond Scale
Logging System”. In: 2018 USENIX Annual Technical Conference, USENIX ATC
2018, Boston, MA, USA, July 11-13, 2018. 2018.

Marcello Cinque, Domenico Cotroneo, and Antonio Pecchia. “A Logging Approach for
Effective Dependability Evaluation of Complex Systems”. In: 2009 Second International
Conference on Dependability. 2009.

Marcello Cinque, Domenico Cotroneo, and Antonio Pecchia. “Event Logs for the
Analysis of Software Failures: A Rule-Based Approach”. In: IEEE Trans. Software
Eng. (2013).

Magiel Bruntink, Arie van Deursen, and Tom Tourwé. “Isolating Idiomatic Crosscutting
Concerns”. In: 21st IEEE International Conference on Software Maintenance (ICSM
2005), 25-30 September 2005, Budapest, Hungary. 2005.

Sepehr Amir-Mohammadian, Stephen Chong, and Christian Skalka. “Correct Audit
Logging: Theory and Practice”. In: Principles of Security and Trust - 5th International
Conference, POST 2016, Held as Part of the Furopean Joint Conferences on Theory
and Practice of Software, ETAPS 2016, Eindhoven, The Netherlands, April 2-8, 2016,
Proceedings. 2016.

Log4J. A logging library for Java. http://logging.apache.org/logdj/1.2. Last
accessed: 04,/04,/2020. 2020.

Apache Commons Logging. https : // commons . apache . org/ proper / commons -
logging/. Last accessed: 04/04/2020. 2020.

Ralf Lammel, Ekaterina Pek, and Jiirgen Starek. “Large-scale, AST-based API-usage
analysis of open-source Java projects”. In: Proceedings of the 2011 ACM Symposium
on Applied Computing (SAC), TaiChung, Taiwan, March 21 - 24, 2011. 2011.

127

BIBLIOGRAPHY BIBLIOGRAPHY

[30]

[81]

[82]
83

[84]

[85]

[36]

[87]

33

[89]

[90]

91

Suhas Kabinna et al. “Logging library migrations: a case study for the apache software
foundation projects”. In: Proceedings of the 13th International Conference on Mining
Software Repositories, MSR 2016, Austin, TX, USA, May 14-22, 2016. 2016.

Chen Zhi et al. “An Exploratory Study of Logging Configuration Practice in Java”. In:
2019 IEEFE International Conference on Software Maintenance and Evolution, ICSME
2019, Cleveland, OH, USA, September 29 - October 4, 2019. 2019.

Yuri Shkuro. Mastering Distributed Tracing: Analyzing performance in microservices
and complex systems. Packt Publishing Ltd., 2019.

Yi Zeng et al. “Studying the characteristics of logging practices in mobile apps: a case
study on F-Droid”. In: Empirical Software Engineering (2019).

Zhen Ming (Jack) Jiang et al. “Automatic identification of load testing problems”.
In: 24th IEEE International Conference on Software Maintenance (ICSM 2008),
September 28 - October 4, 2008, Beijing, China. 2008.

Boyuan Chen. “Improving the software logging practices in DevOps”. In: Proceedings
of the 41st International Conference on Software Engineering: Companion Proceedings,
ICSE 2019, Montreal, QC, Canada, May 25-31, 2019. 2019.

Marcello Cinque et al. “Assessing and improving the effectiveness of logs for the
analysis of software faults”. In: Proceedings of the 2010 IEEE/IFIP International
Conference on Dependable Systems and Networks, DSN 2010, Chicago, IL, USA, June
28 - July 1 2010. 2010.

Olivier Crameri, Ricardo Bianchini, and Willy Zwaenepoel. “Striking a new balance
between program instrumentation and debugging time”. In: Furopean Conference on
Computer Systems, Proceedings of the Sixth Furopean conference on Computer systems,
FuroSys 2011, Salzburg, Austria, April 10-13, 2011. 2011.

Xu Zhao et al. “The Game of Twenty Questions: Do You Know Where to Log?” In:
Proceedings of the 16th Workshop on Hot Topics in Operating Systems, HotOS 2017,
Whistler, BC, Canada, May 8-10, 2017. 2017.

Kundi Yao et al. “Log4Perf: Suggesting Logging Locations for Web-based Systems’
Performance Monitoring”. In: Proceedings of the 2018 ACM/SPEC International
Conference on Performance Engineering, ICPE 2018, Berlin, Germany, April 09-13,
2018. 2018.

Tong Jia et al. “Machine Deserves Better Logging: A Log Enhancement Approach
for Automatic Fault Diagnosis”. In: 2018 IEEE International Symposium on Software
Reliability Engineering Workshops, ISSRE Workshops, Memphis, TN, USA, October
15-18, 2018. 2018.

Joseph L. Hellerstein et al. “ETE: A Customizable Approach to Measuring End-to-End
Response Times and Their Components in Distributed Systems”. In: Proceedings of

the 19th International Conference on Distributed Computing Systems, Austin, TX,
USA, May 31 - June 4, 1999. 1999.

128

BIBLIOGRAPHY BIBLIOGRAPHY

[92]

193]

[94]

195]

196]

197]

98]

199]

[100]

[101]

[102]

[103]

Mike Y. Chen et al. “Pinpoint: Problem Determination in Large, Dynamic Internet
Services”. In: 2002 International Conference on Dependable Systems and Networks
(DSN 2002), 253-26 June 2002, Bethesda, MD, USA, Proceedings. 2002.

Paul Barham et al. “Magpie: Online Modelling and Performance-aware Systems”. In:
Proceedings of HotOS’03: 9th Workshop on Hot Topics in Operating Systems, May
18-21, 2003, Lihue (Kauai), Hawaii, USA. 2003.

Paul Barham et al. “Using Magpie for Request Extraction and Workload Modelling”.
In: 6th Symposium on Operating System Design and Implementation (OSDI 2004),
San Francisco, California, USA, December 6-8, 2004. 2004.

Mike Y. Chen et al. “Path-Based Failure and Evolution Management”. In: 1st Sympo-
sium on Networked Systems Design and Implementation (NSDI 2004), March 29-31,
2004, San Francisco, California, USA, Proceedings. 2004.

Patrick Reynolds et al. “Pip: Detecting the Unexpected in Distributed Systems”. In:
3rd Symposium on Networked Systems Design and Implementation (NSDI 2006), May
8-10, 2007, San Jose, California, USA, Proceedings. 2006.

Eno Thereska et al. “Stardust: tracking activity in a distributed storage system”.
In: Proceedings of the Joint International Conference on Measurement and Modeling
of Computer Systems, SIGMETRICS/Performance 2006, Saint Malo, France, June
26-30, 2006. 2006.

Anupam Chanda, Alan L. Cox, and Willy Zwaenepoel. “Whodunit: transactional
profiling for multi-tier applications”. In: Proceedings of the 2007 EuroSys Conference,
Lisbon, Portugal, March 21-23, 2007. 2007.

Rodrigo Fonseca et al. “X-Trace: A Pervasive Network Tracing Framework”. In: /th
Symposium on Networked Systems Design and Implementation (NSDI 2007), April
11-18, 2007, Cambridge, Massachusetts, USA, Proceedings. 2007.

Rodrigo Fonseca, Michael J. Freedman, and George Porter. “Experiences with Tracing
Causality in Networked Services”. In: 2010 Internet Network Management Workshop /
Workshop on Research on Enterprise Networking, San Jose, CA, USA, April, 2010.
2010.

Rodrigo Fonseca et al. “Quanto: Tracking Energy in Networked Embedded Systems”.
In: 8th USENIX Symposium on Operating Systems Design and Implementation, OSDI
2008, December 8-10, 2008, San Diego, California, USA, Proceedings. 2008.

Jingwen Zhou et al. “MTracer: A Trace-Oriented Monitoring Framework for Medium-
Scale Distributed Systems”. In: 8th IEEE International Symposium on Service Oriented
System Engineering, SOSE 2014, Ozford, United Kingdom, April 7-11, 2014. 2014.

Jhonny Mertz and Ingrid Nunes. “On the practical feasibility of software monitoring:
a framework for low-impact execution tracing”. In: Proceedings of the 14th Interna-
tional Symposium on Software Engineering for Adaptive and Self-Managing Systems,
SEAMS@ICSE 2019, Montreal, QC, Canada, May 25-31, 2019. 2019.

129

BIBLIOGRAPHY BIBLIOGRAPHY

[104]

[105]

[106]

[107]

[108]

109

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

Pinjia He et al. “Characterizing the natural language descriptions in software logging
statements”. In: Proceedings of the 33rd ACM/IEEE International Conference on
Automated Software Engineering, ASE 2018, Montpellier, France, September 3-7, 2018.
2018.

Ariel Rabkin et al. “A Graphical Representation for Identifier Structure in Logs”. In:
Workshop on Managing Systems via Log Analysis and Machine Learning Techniques,
SLAML’10, Vancouver, BC, Canada, October 3, 2010. 2010.

Mehran Hassani et al. “Studying and detecting log-related issues”. In: Empirical
Software Engineering (2018).

Jieming Zhu et al. “Learning to Log: Helping Developers Make Informed Logging
Decisions”. In: 37th IEEE/ACM International Conference on Software Engineering,
ICSE 2015, Florence, Italy, May 16-24, 2015, Volume 1. 2015.

Sangeeta Lal and Ashish Sureka. “LogOpt: Static Feature Extraction from Source
Code for Automated Catch Block Logging Prediction”. In: Proceedings of the 9th India
Software Engineering Conference, Goa, India, February 18-20, 2016. 2016.

Sangeeta Lal, Neetu Sardana, and Ashish Sureka. “LogOptPlus: Learning to Optimize
Logging in Catch and If Programming Constructs”. In: /0th IEEE Annual Computer
Software and Applications Conference, COMPSAC 2016, Atlanta, GA, USA, June
10-14, 2016. 2016.

Heng Li et al. “Studying software logging using topic models”. In: Empirical Software
Engineering (2018).

Heng Li et al. “Towards just-in-time suggestions for log changes”. In: Empirical Software
Engineering (2017).

Zhongxin Liu et al. “Which Variables Should I Log?” In: IEEE Transactions on
Software Engineering (2019).

Tae-young Kim et al. “An Automatic Approach to Validating Log Levels in Java’.
In: 25th Asia-Pacific Software Engineering Conference, APSEC 2018, Nara, Japan,
December 4-7, 2018. 2018.

Shanshan Li et al. “Guiding log revisions by learning from software evolution history”.
In: Empirical Software Engineering (2019).

Jason King, Rahul Pandita, and Laurie A. Williams. “Enabling forensics by proposing
heuristics to identify mandatory log events”. In: Proceedings of the 2015 Symposium
and Bootcamp on the Science of Security, HotSoS 2015, Urbana, IL, USA, April 21-22,
2015. 2015.

Jason King et al. “To log, or not to log: using heuristics to identify mandatory log
events - a controlled experiment”. In: Empirical Software Engineering (2017).

Flemming Nielson, Hanne R. Nielson, and Chris Hankin. Principles of Program
Analysis. Springer Publishing Company, Incorporated, 2010.

130

BIBLIOGRAPHY BIBLIOGRAPHY

[118]

[119]

[120]
[121]
[122]

[123]

[124]

[125]

[126]
[127]

[128]

[129]

[130]

[131]

[132]

Nicholas Nethercote. “Dynamic Binary Analysis and Instrumentation”. In: PhD thesis,
University of Cambridge, United Kingdom, November, 2004. 2004.

Zhouyang Jia et al. “SMARTLOG: Place error log statement by deep understanding
of log intention”. In: 25th International Conference on Software Analysis, Fvolution
and Reengineering, SANER 2018, Campobasso, Italy, March 20-23, 2018. 2018.

Jie M. Zhang et al. “Machine Learning Testing: Survey, Landscapes and Horizons”. In:
IEEE Transactions on Software Engineering (2020).

Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of Machine
Learning. The MIT Press, 2012.

Joakim Kévrestad. Fundamentals of Digital Forensics - Theory, Methods, and Real-Life
Applications. Springer, 2018.

Boyuan Chen and Zhen Ming (Jack) Jiang. “Extracting and studying the Logging-Code-
Issue- Introducing changes in Java-based large-scale open source software systems”. In:
Empirical Software Engineering (2019).

HDFS-5800: Typo: soft-limit for hard-limit in DFSClient. https://issues.apache.
org/jira/browse/HDFS-5800. Last accessed: 02/14/2018.

HBASE-10470: Import generates huge log file while importing large amounts of
data. https://issues . apache.org/jira/browse/HBASE-10470. Last accessed:
01/24/2018.

Martin Fowler et al. Refactoring: Improving the Design of Existing Code. Addison-
Wesley Longman Publishing Co., Inc., 1999.

Jez Humble and David Farley. Continuous Delivery: Reliable Software Releases Through
Build, Test, and Deployment Automation. Addison-Wesley Professional, 2010.

Sunghun Kim et al. “Automatic Identification of Bug-Introducing Changes”. In: Pro-
ceedings of the 21st IEEE/ACM International Conference on Automated Software
Engineering. 2006.

Jacek Sliwerski, Thomas Zimmermann, and Andreas Zeller. “When Do Changes
Induce Fixes?” In: Proceedings of the 2005 International Workshop on Mining Software
Repositories. 2005.

Beat Fluri et al. “Change Distilling:Tree Differencing for Fine-Grained Source Code
Change Extraction”. In: Software Engineering, IEEE Transactions on (2007).

Weiyi Shang, Meiyappan Nagappan, and Ahmed E. Hassan. “Studying the relationship
between logging characteristics and the code quality of platform software”. In: Empirical
Software Engineering (EMSE) (2015).

Christian Bird et al. “Fair and Balanced?: Bias in Bug-fix Datasets”. In: Proceedings
of the the Tth Joint Meeting of the FEuropean Software Engineering Conference and the
ACM SIGSOFT Symposium on The Foundations of Software Engineering (ESEC/FSE).
2009.

131

BIBLIOGRAPHY BIBLIOGRAPHY

133

[134]
[135]

[136]

[137]

[138]
[139]
140
[141]
[142]

[143]

[144]
(145
[146]

[147]

Peter C. Rigby, Daniel M. German, and Margaret-Anne Storey. “Open Source Software
Peer Review Practices: A Case Study of the Apache Server”. In: Proceedings of the
30th International Conference on Software Engineering (ICSE). 2008.

HADOOP-12666: Support Microsoft Azure Data Lake - as a file system in Hadoop.
https://issues.apache.org/jira/browse/HADOOP-12666. Last accessed: 02/06/2018.

HADOOP-7358: Improve log levels when exceptions caught in RPC handler. https:
//issues.apache.org/jira/browse/HADOOP-7358. Last accessed: 02/14/2018.

Steven Davies, Marc Roper, and Murray Wood. “Comparing text-based and dependence-
based approaches for determining the origins of bugs”. In: Journal of Software: Evolu-
tion and Process (2014).

Daniel Alencar da Costa et al. “A Framework for Evaluating the Results of the
SZ7 Approach for Identifying Bug-Introducing Changes”. In: IEEE Transactions on
Software Engineering (2017).

HDFS-4122: Cleanup HDFS logs and reduce the size of logged messages. https :
//issues.apache.org/jira/browse/HDFS-4122. Last accessed: 02/07/2018.

HBASE-875/: Log the client IP/port of the balancer invoker. https://issues.apache.
org/jira/browse/HBASE-8754. Last accessed: 02/14/2018.

HDFS-1073: Simpler model for Namenode’s fs Image and edit Logs. https://issues.
apache.org/jira/browse/HDFS-1073. Last accessed: 02/14/2018.

HADOOP-8347: Hadoop Common logs misspell ’successful’. https://issues.apache.
org/jira/browse/HADOOP-8347. Last accessed: 02/14/2018.

HBASE-12539: HFileLinkCleaner logs are uselessly noisy. https://issues.apache.
org/jira/browse/HBASE-12539. Last accessed: 02/14/2018.

HHH-6732: Some logging trace statements are missing guards against unneeded string
creation. https://hibernate.atlassian.net/browse/HHH-6732. Last accessed:
02/14/2018.

PR5906: Split all log messages into separate module project codes. https://github.
com/wildfly/wildfly/pull/5906. Last accessed: 02/14/2018.

HDFS-11448: JN log segment syncing should support HA upgrade. https://issues.
apache.org/jira/browse/HDFS-11448. Last accessed: 02/14/2018.

Peter Kampstra. “Beanplot: A Boxplot Alternative for Visual Comparison of Distribu-
tions”. In: Journal of Statistical Software, Code Snippets (2008).

Jeanine Romano et al. “Appropriate statistics for ordinal level data: Should we really
be using t-test and Cohen’sd for evaluating group differences on the NSSE and other
surveys?” In: Annual meeting of the Florida Association of Institutional Research.
2006.

132

BIBLIOGRAPHY BIBLIOGRAPHY

[148]

[149]

[150]

[151]

[152]
[153]

[154]

[155]

[156]

[157]
[158]

159

[160]

[161]

[162]

Replication Package for the LCAnalyzer work. http://www.cse.yorku.ca/~zmjiang/
share /replication_package/icse2017 _chen/LCAnalyzer .zip. Last accessed:
02/14/2018.

Thomas Zimmermann, Rahul Premraj, and Andreas Zeller. “Predicting Defects for
Eclipse”. In: Proceedings of the Third International Workshop on Predictor Models in
Software Engineering. 2007.

Chadd Williams and Jaime Spacco. “SZZ Revisited: Verifying when Changes Induce
Fixes”. In: Proceedings of the 2008 Workshop on Defects in Large Software Systems.
2008.

Chadd Williams and Jaime Spacco. “Branching and Merging in the Repository”.
In: Proceedings of the 2008 International Working Conference on Mining Software
Repositories. 2008.

Naouel Moha et al. “DECOR: A Method for the Specification and Detection of Code
and Design Smells”. In: IEEE Transactions on Software Engineering (TSE) (2010).

Fabio Palomba et al. “Mining Version Histories for Detecting Code Smells”. In: IEEE
Transactions on Software Engineering (TSE) (2015).

Hitesh Sajnani et al. “SourcererCC: Scaling Code Clone Detection to Big-code”. In:
Proceedings of the 38th International Conference on Software Engineering (ICSE).
2016.

Google Flogger: A Fluent Logging API for Java. https://github. com/google/
flogger. Last accessed: 07/23/2019.

Mark Marron. “Log++ logging for a cloud-native world”. In: Proceedings of the 14th
ACM SIGPLAN International Symposium on Dynamic Languages, DLS 2018, Boston,
MA, USA, November 6, 2018. 2018.

Spring Boot pull request 4341. https://github. com/spring-projects/spring-
boot/issues/4341. Last accessed: 08/21,/2019. 2019.

Logging dependency conflicts. https://cloud . tencent . com/developer /ask/
121135. Last accessed: 08/21/2019. 2019.

StackOverflow: Disable Logback in SpringBoot. https: //stackoverflow . com/
questions/23984009/disable-logback-in-springboot/23991715. Last accessed:
08/01/2019. 2019.

Multiple logging implementations found in Spring Boot. https://stackoverflow.
com/ questions /52911393 /multiple - logging - implementations - found - in -
spring-boot. Last accessed: 08/21/2019. 2019.

How to enable logging in Jetty. https://stackoverflow.com/questions/25786592/
how-to-enable-logging-in-jettyt. Last accessed: 08/21/2019.

How to enable logging in dubbo? https://blog.csdn.net/JDream314/article/
details/44620767. Last accessed: 08/21/2019.

133

BIBLIOGRAPHY BIBLIOGRAPHY

[163]
[164]
[165]
[166]

167]
168

[169]
[170]
171
172]
[173]

[174]
[175]

[176]

[177]

178
179]
[180]

[181]

What’s Up with Logging in Java? https://stackoverflow.com/questions/354837/
whats-up-with-logging-in-java. Last accessed: 07/23/2019. 2019.

TIOBE Index for August 2019. https://www.tiobe . com/tiobe - index/. Last
accessed: 07/23/2019. 2019.

Omni-Notes: note-taking application for Android. https://github.com/federicoiosue/
Omni-Notes. Last accessed: 08/21/2019. 2019.

Telegram - a cloud-based instant messaging service. https://github.com/DrKL0O/
Telegram. Last accessed: 08/21/2019. 2019.

Eclipse Java IDE. https://www.eclipse.org/ide/. Last accessed: 08/22/2019. 2019.

IntelliJ IDEA. https://www. jetbrains.com/idea/. Last accessed: 08/22/2019.
2019.

Apache Tomcat. http://tomcat.apache.org/. Last accessed: 08/22/2019. 2019.
Red Hat Wildfly. https://wildfly.org/. Last accessed: 08/22/2019. 2019.
Apache Hadoop. https://hadoop.apache.org/. Last accessed: 08/22/2019. 2019.
HBase. https://hbase.apache.org. Last accessed: 01/29/2018. 2018.

Steve Easterbrook et al. Selecting Empirical Methods for Software Engineering Research.
2008.

GitHub features. https://github.com/features. Last accessed: 07/29/2019. 2019.

Georgios Gousios. “The GHTorrent dataset and tool suite”. In: Proceedings of the 10th
Working Conference on Mining Software Repositories (MSR), 2013. 2013.

Eirini Kalliamvakou et al. “The Promises and Perils of Mining GitHub”. In: Proceedings
of the 11th Working Conference on Mining Software Repositories (MSR), 2014. 2014.

Pavneet Singh Kochhar, Dinusha Wijedasa, and David Lo. “A Large Scale Study of
Multiple Programming Languages and Code Quality”. In: Proceedings of the 23rd In-

ternational Conference on Software Analysis, Evolution, and Reengineering (SANER),
2016. 2016.

Baishakhi Ray et al. “A Large-scale Study of Programming Languages and Code
Quality in GitHub”. In: Communications of the ACM (2017).

Lingfeng Bao et al. “A Large Scale Study of Long-Time Contributor Prediction for
GitHub Projects”. In: IEEE Transactions on Software Engineering (TSE) (2019).

JDT Java Development Tools. https://eclipse.org/jdt/. Last accessed: 07/23/2019.
2019.

LogProvider in Ninja. https://github.com/ninjaframework/ninja. Last accessed:
08/22/2019.

134

BIBLIOGRAPHY BIBLIOGRAPHY

[182]

[183]
[184]
[185]
[186]
[187]

[188]

[189]
[190]
[191]

[192]

193]
[194]
[195]
[196]
[197]

198

Cristina Lopes and Joel Ossher. “How Scale Affects Structure in Java Programs”. In:
Proceedings of the 2015 ACM SIGPLAN International Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA), 2015. 2015.

Liferay Portal. Liferay Portal - an open source enterprise web platform. https :
//github.com/liferay/liferay-portal. Last accessed: 08/22/2019. 2019.

William H. Kruskal and W. Allen Wallis. “Use of Ranks in One-Criterion Variance
Analysis”. In: Journal of the American Statistical Association (JASA) (1952).

Ultimate Guide to Logging. https://www. loggly.com/ultimate-guide/ java-
logging-basics/. Last accessed: 08/21/2019. 2019.

The State of Logging in Java. https://stackify.com/logging-java/. Last accessed:
08/21/2019. 2019.

Why not use java.util.logging? https://stackoverflow.com/questions/11359187/
why-not-use-java-util-logging. Last accessed: 07/23/2019. 2019.

Timber - a logger with a small, extensible API which provides utility on top of
Android’s normal Log class. https://github . com/ JakeWharton/timber. Last
accessed: 08/23/2019. 2019.

OkHttp - an HTTP client for Android, Kotlin, and Java. https://github. com/
square/okhttp. Last accessed: 08/23,/2019.

Bitcoin Wallet. Bitcoin Wallet app for your Android device. https://github. com/
bitcoin-wallet/bitcoin-wallet. Last accessed: 08/23/2019. 2019.

Jiawei Han. Data Mining: Concepts and Techniques. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 2005. 1SBN: 1558609016.

Ahmed E. Hassan and Richard C. Holt. “Using Development History Sticky Notes to
Understand Software Architecture”. In: Proceedings of 12th International Workshop
on Program Comprehension (IWPC), 2004. 2004.

Vert.x - a tool-kit for building reactive applications on the JVM. https://github.
com/eclipse-vertx/vert.x. Last accessed: 08/23/2019. 2019.

Maven plugin development guide. http://maven . apache . org/guides/plugin/
guide-java-plugin-development.html. Last accessed: 08/23/2019. 2019.

Brittany Johnson et al. “Why Don’t Software Developers Use Static Analysis Tools
to Find Bugs?” In: Proceedings of the 35th International Conference on Software
Engineering (ICSE), 2013. 2013.

logdnet. https://logging.apache.org/logdnet/. Last accessed: 07/23/2019. 2019.

Sentry - cross-platform application monitoring, with a focus on error reporting. https:
//sentry.io. Last accessed: 08/23/2019. 2019.

Firebase - A mobile and web application development platform. https://firebase.
google.com/. Last accessed: 08/23/2019. 2019.

135

BIBLIOGRAPHY BIBLIOGRAPHY

199

200

[201]

202

[203]
[204]

205
[206]

[207]

208

209

[210]

[211]

[212]

[213]

Spring Cloud Sleuth. https://spring.io/projects/spring-cloud-sleuth. Last
accessed: 08/23/2019. 2019.

Mathieu Goeminne and Tom Mens. “Towards a survival analysis of database framework
usage in Java projects”. In: Proceedings of 31st International Conference on Software
Maintenance and Evolution (ICSME), 2015. 2015.

Ahmed Zerouali and Tom Mens. “Analyzing the evolution of testing library usage in
open source Java projects”. In: Proceedings of the 24th International Conference on
Software Analysis, Evolution and Reengineering (SANER), 2017. 2017,

Report: Software failure caused 1.7 trillion dollar in financial losses in 2017. https:
//www . techrepublic . com/article/report - software-failure- caused-1-7-
trillion-in-financial-losses-in-2017. Last accessed: 07/23/2020. 2018.

Edsger W. Dijkstra. “Notes on Structured Programming”. Apr. 1970.

Paul C. Jorgensen. Software Testing: A Craftsman’s Approach. 3rd. Boston, MA, USA:
Auerbach Publications, 2008.

Paul Ammann and Jeff Offutt. Introduction to Software Testing. 2nd. New York, NY,
USA: Cambridge University Press, 2017.

Martin Fowler. https://martinfowler . com/bliki/TestCoverage . html. Last
accessed: 01/29/2018. Apr. 2012.

Laura Inozemtseva and Reid Holmes. “Coverage is Not Strongly Correlated with Test
Suite Effectiveness”. In: Proceedings of the 36th International Conference on Software
Engineering (ICSE). 2014.

Pavneet Singh Kochhar, Ferdian Thung, and David Lo. “Code coverage and test
suite effectiveness: Empirical study with real bugs in large systems”. In: Proceedings
of the 22nd IEEE International Conference on Software Analysis, FEvolution, and
Reengineering (SANER). 2015.

Ajitha Rajan, Michael Whalen, and Mats Heimdahl. “The effect of program and model
structure on mc/dc test adequacy coverage”. In: In Proceedings of the ACM/IEEE
30th International Conference on Software Engineering (ICSE). 2008.

David Schuler and Andreas Zeller. “Assessing Oracle Quality with Checked Coverage”.
In: In Proceedings of the Fourth IEEE International Conference on Software Testing,
Verification and Validation (ICST). 2011.

Alessandro Orso and Gregg Rothermel. “Software Testing: A Research Travelogue
(2000-2014)”. In: Proceedings of the on Future of Software Engineering (FOSE). 2014.

Yoram Adler et al. “Code Coverage Analysis in Practice for Large Systems”. In:
Proceedings of the 33rd International Conference on Software Engineering (ICSE).
2011.

Code coverage goal: 80% and no less! https://testing.googleblog.com/2010/07/
code-coverage-goal-80-and-no-less.html. Last accessed: 01/29,/2018. July 2010.

136

BIBLIOGRAPHY BIBLIOGRAPHY

[214]
[215]

[216]

[217]

[218]

219]

[220]

[221]

[222]

[223]

224]

225

[226]

Alan Page and Ken Johnston. How We Test Software at Microsoft. Microsoft Press,
2008. 1SBN: 0735624259, 9780735624252.

Semantic Designs. Test Coverage tools. http://www.semdesigns . com/Products/
TestCoverage/. Last accessed: 01/29/2018. 2016.

Microsoft. Microsoft Visual Studio - Using Code Coverage to Determine How Much
Code is being Tested. https://docs.microsoft.com/en-us/visualstudio/test/

using- code- coverage-to-determine-how-much-code-is-being-tested. Last
accessed: 01/29/2018. 2016.

Cobertuna. Cobertura. http://cobertura.github.io/cobertura/. Last accessed: 01,/29/2018.
2018.

Ira Baxter. Branch Coverage for Arbitrary Languages Made FEasy. http://www .
semdesigns.com/Company/Publications/TestCoverage.pdf. Last accessed: 01/29/2018.
2002.

Jacoco. JaCoCo Implementation Design. http://www.jacoco.org/jacoco/trunk/
doc/implementation.html. Last accessed: 01,/29/2018. 2018.

Google Zurich Marko Ivankovié. Measuring Coverage at Google. https://testing.
googleblog.com/2014/07/measuring- coverage-at-google.html. Last accessed:
01/29/2018. 2014.

XWiki. XWiki Development Zone - Testing. http://dev.xwiki.org/xwiki/bin/
view/Community/Testing. Last accessed: 03/04/2018. 2018.

IBM. IBM Rational Test Realtie - Estimating Instrumentation Qverhead. https :
//www.ibm.com/support/knowledgecenter/en/SSSHUF_8.0.0/com.ibm.rational.
testrt.studio.doc/topics/tsciestimate.htm. Last accessed: 01/29/2018. 2017.

Mustafa M. Tikir and Jeffrey K. Hollingsworth. “Efficient Instrumentation for Code
Coverage Testing”. In: Proceedings of the 2002 ACM SIGSOFT International Sympo-
sium on Software Testing and Analysis (ISSTA). 2002.

Christian H&ubl, Christian Wimmer, and Hanspeter Md&ssenbock. “Deriving Code
Coverage Information from Profiling Data Recorded for a Trace-based Just-in-time
Compiler”. In: In Proceedings of the 2013 International Conference on Principles and
Practices of Programming on the Java Platform: Virtual Machines, Languages, and
Tools (PPPJ). 2013.

Wang Qiangian, Brun Yuriy, and Orso Alessandro. “Behavioral Execution Comparison:
Are Tests Representative of Field Behavior?” In: 2017 IEEE International Conference
on Software Testing, Verification and Validation (ICST). 2017.

Gene Kim et al. The DevOps Handbook: How to Create World-Class Agility, Reliability,
and Security in Technology Organizations. 2016.

137

BIBLIOGRAPHY BIBLIOGRAPHY

[227] Kannan Muthukkaruppan. The Underlying Technology of Messages. https://www.
facebook.com/note.php?note_id=454991608919. Last accessed: 03/04/2018. Nov.
2010.

[228] HBase. Powered By Apache HBase. http://hbase.apache.org/poweredbyhbase.
html. Last accessed: 03/04/2018. 2018.

[229] Yahoo. Yahoo! Cloud Serving Benchmark. https://github.com/brianfrankcooper/
YCSB/. Last accessed: 01/29/2018. 2018.

[230] Brian F. Cooper et al. “Benchmarking Cloud Serving Systems with YCSB”. In: Pro-
ceedings of the 1st ACM Symposium on Cloud Computing (SoCC). 2010.

[231] Clover. Java and Groovy code coverage. https://www.atlassian.com/software/
clover. Last accessed: 03/04/2018. 2018.

[232] Pavneet Singh Kochhar et al. “PCode Coverage and Postrelease Defects: A Large-Scale
Study on Open Source Projects”. In: IEEE Transactions on Reliability (2017).

[233] Chen Huo and James Clause. “Interpreting Coverage Information Using Direct and
Indirect Coverage”. In: Proceedings of the 2016 IEEE International Conference on
Software Testing, Verification and Validation (ICST). 2016.

[234] Tumblr. Tumblr Architecture - 15 Billion Page Views A Month And Harder To
Scale Than Twitter. http://highscalability.com/blog/2012/2/13/tumblr -
architecture-15-billion- page-views-a-month-and-harder.html. Last ac-
cessed: 03/04,/2018. 2018.

[235] Michael Wiirsch, Emanuel Giger, and Harald C. Gall. “Evaluating a Query Framework
for Software Evolution Data”. In: ACM Transactions on Software Engineering and
Methodology (TOSEM) (2013).

[236] Pinjia He et al. “Towards Automated Log Parsing for Large-Scale Log Data Analysis”.
In: IEEE Transactions on Dependable and Secure Computing (2017).

[237] HBase. Integration Tests for HBase. http://hbase.apache.org/0.94/book/hbase.tests.html.
Last accessed: 01,/29/2018. 2012.

[238] Vincent Jiang. How to change HBase log level on the fly? https://community .
hortonworks.com/content/supportkb/49499/how-to-change-hbase-log-level-
on-the-fly.html. Last accessed: 01/29/2018. 2016.

[239] M. Moein Almasi et al. “An Industrial Evaluation of Unit Test Generation: Finding
Real Faults in a Financial Application”. In: IEEE/ACM 39th International Conference
on Software Engineering: Software Engineering in Practice Track (ICSE SEIP). 2017.

[240] Tao Xie, Nikolai Tillmann, and Pratap Lakshman. “Advances in Unit Testing: Theory
and Practice”. In: Proceedings of the 38th International Conference on Software
Engineering Companion. 2016.

138

BIBLIOGRAPHY BIBLIOGRAPHY

[241]

242]

[243]

[244]
[245]
[246]
[247]

[248]

[249]

[250]

[251]

[252]

[253]

[254]

Emre Kiciman and Helen J. Wang. “Live Monitoring: Using Adaptive Instrumentation
and Analysis to Debug and Maintain Web Applications”. In: Proceedings of the 11th
USENIX Workshop on Hot Topics in Operating Systems. 2007.

Pavneet Singh Kochhar et al. “An Empirical Study on the Adequacy of Testing in
Open Source Projects”. In: 2014 21st Asia-Pacific Software Engineering Conference
(APSEC). 2014.

Hoan Anh Nguyen et al. “Interaction-Based Tracking of Program Entities for Test
Case Evolution”. In: 2017 IEEFE International Conference on Software Maintenance
and Evolution (ICSME). 2017.

Earl T. Barr et al. “The Oracle Problem in Software Testing: A Survey”. In: [EEFE
Transactions on Software Engineering (2015).

Leonardo Mariani et al. “The central role of test automation in software quality
assurance”. In: Software Quality Journal (2017).

Coverage.py. A tool for measuring code coverage of Python programs. https://
coverage.readthedocs.io/en/coverage-4.5.1/. Last accessed: 01/29/2018. 2018.

Michael Whalen et al. “Observable Modified Condition/Decision Coverage”. In: Pro-
ceedings of the 2013 International Conference on Software Engineering (ICSE). 2013.

Milos Gligoric et al. “Comparing Non-adequate Test Suites Using Coverage Criteria”.
In: In Proceedings of the 2013 International Symposium on Software Testing and
Analysis (ISSTA). 2013.

Shilin He et al. “Experience Report: System Log Analysis for Anomaly Detection”.
In: In Proceedings of the IEEE 27th International Symposium on Software Reliability
Engineering (ISSRE). 2016.

Ivan Beschastnikh et al. “Leveraging Existing Instrumentation to Automatically Infer
Invariant-constrained Models”. In: Proceedings of the 19th ACM SIGSOFT Symposium
and the 13th European Conference on Foundations of Software Engineering (FSE).
2011.

Qingwei Lin et al. “iDice: Problem Identification for Emerging Issues”. In: Proceedings
of the 38th International Conference on Software Engineering (ICSE). 2016.

Mark D. Syer et al. “Continuous validation of performance test workloads”. In: Auto-
mated Software Engineering (2017).

Yichen Xie and Alex Aiken. “Saturn: A Scalable Framework for Error Detection Using
Boolean Satisfiability”. In: ACM Trans. Program. Lang. Syst. (2007).

Python. The AST module in Python standard library. https://docs.python.org/2/
library/ast.html. Last accessed: 04/02/2018. 2018.

139

