
Single-View 3D Object Shape
Estimation

Yiming QIAN

A DISSERTATION SUBMITTED TO
THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Graduate Program in
Computer Science
York University
Toronto, Ontario

November 2020

©Yiming Qian, 2020

Abstract

An accurate single-view 3D reconstruction algorithm would allow researchers to develop
better systems in robotics and VR/AR applications. However, single-view 3D reconstruc-
tion is an ill-posed problem and thus solvable only for scenes that satisfy strong regularity
conditions. Features such as texture variations, haze, colour, shading, known object size
and occlusion can provide information about 3D structures. Further, the built environment
has repeated patterns and orthogonal straight lines that contain structured information with
strong regularities. In this report, I will introduce the research I have done for my PhD on
the single-view reconstruction problem in two parts. Part 1 will detail the three research
projects I have completed on single-view 3D reconstruction of the built environment: 1)
line segment detection [4], 2) single-view geometry-driven road segmentation [5], and 3)
single-view 3D reconstruction of Manhattan buildings [158]. Part 2 will detail the research
I have done on reconstructing the 3D shape of more general objects from their bounding
contours.

ii

Acknowledgement

Throughout the writing of this dissertation I have received a great deal of support and
assistance.

I would first like to thank my supervisor, Professor James H. Elder, whose expertise
was invaluable in formulating the research questions and methodology. Your insightful
feedback pushed me to sharpen my thinking and brought my work to a higher level.

I would also like to thank Karen Englander and Laura Muntean, for their valuable help
on proofreading my dissertation.

In addition, I would like to thank my parents for their wise counsel and sympathetic
ear. You are always there for me. Finally, I could not have completed this dissertation
without the support of my friends who provided stimulating discussions as well as happy
distractions to rest my mind outside of my research.

iii

Table of Contents

Abstract ii

Acknowledgement iii

Table of Contents iv

List of Tables ix

List of Figures xi

A List of Acronyms xxi

1 Introduction 1

I Single-View 3D Estimation of Piecewise-Planar Shapes 6

2 Literature Review 7
2.1 Introduction . 7
2.2 The Geometry of Single-View 3D Reconstruction 9

2.2.1 Camera Model . 9
2.2.2 3D Worlds . 10
2.2.3 Discussion . 16

2.3 List of 3D Datasets . 19
2.4 Geometric Methods for Single-View 3D Reconstruction 21

2.4.1 Edge and Line Segment Detection 21
2.4.2 Manhattan Frame Estimation . 29

iv

2.4.3 Box Room Estimation . 31
2.4.4 Manhattan 3D Reconstruction with Junctions 33
2.4.5 Photo Pop-up . 39
2.4.6 Discussion . 42

2.5 Machine Learning Methods for Single-View 3D Reconstruction 43
2.5.1 Graph Models . 43
2.5.2 End-to-End Deep Networks . 45
2.5.3 Multi-View Supervised Learning 48
2.5.4 Discussion . 52

2.6 Conclusion . 53

3 MCMLSD: Line Segment Detection 54
3.1 Project Description . 54
3.2 Introduction . 55

3.2.1 The Perceptual Grouping Approach 55
3.2.2 The Hough Approach . 56

3.3 Our Approach . 57
3.4 The Deep Learning Approach . 58
3.5 Prior Evaluation Methodology . 59
3.6 Algorithm . 60

3.6.1 Line Detection . 60
3.6.2 Line Segment Detection . 60

3.7 Ranking . 65
3.8 Evaluation Methodology . 66

3.8.1 Recall as a Function of the Number of Segments 67
3.8.2 Recall as a Function of Total Segment Length 68
3.8.3 Precision-Recall . 68
3.8.4 Limitations of Precision-Based Measures of Performance 69

3.9 Results . 69
3.9.1 Ranking . 69
3.9.2 Hough Resolution . 70
3.9.3 Algorithms Evaluated . 72

v

3.9.4 Qualitative Results . 73
3.9.5 Quantitative Results . 75
3.9.6 Reconciling with Recent Evaluations 80
3.9.7 Summary of Quantitative Results 83

3.10 Image Resolution . 85
3.11 Run Time . 85
3.12 Failure Mode Analysis . 86
3.13 Conclusion . 87

4 Road Segmentation From Geometry 89
4.1 Project Description . 89
4.2 Introduction . 90
4.3 Prior Work . 92

4.3.1 Road Segmentation . 92
4.3.2 Road Weather Classification . 93
4.3.3 Dataset . 93

4.4 Road Segmentation . 94
4.4.1 Vanishing Point Estimation . 94
4.4.2 Horizon Estimation . 97
4.4.3 Region of Interest . 99

4.5 Road Condition Classification . 101
4.6 Performance Evaluation . 102
4.7 Summary . 103

5 LS3D: Building Reconstruction From A Single Image 104
5.1 Project Description . 104
5.2 Introduction . 105
5.3 Prior Work . 108
5.4 The LS3D Algorithm . 111

5.4.1 Manhattan Line Segment Detection 111
5.4.2 Manhattan Tree Construction . 112
5.4.3 Lifting 2D MTs to 3D . 113

vi

5.4.4 From Line Segments to Surfaces 113
5.4.5 Constrained L1-Minimization for Manhattan Building Reconstruc-

tion . 115
5.5 Evaluation Dataset . 117
5.6 Evaluation . 118
5.7 Failure Mode Analysis . 123
5.8 Conclusion & Future Work . 124

6 Discussion and Future Work 126
6.1 MCMLSD: Line Segment Detection . 126
6.2 Road Segmentation . 126
6.3 LS3D: Building Reconstruction From A Single Image 127

II Single-View 3D Estimation of General Objects 129

7 Introduction 130

8 Literature Review 132
8.1 Introduction . 132

8.1.1 Puffball . 133
8.1.2 Probabilistic Learning Based Approach 133
8.1.3 Deep Learning Approaches . 136
8.1.4 Conclusion . 139

9 3D Object Rim Reconstruction from 2D Occluding Contour 140
9.1 Introduction . 140

9.1.1 Estimating the 3D Rim from the 2D Occluding Contour 141
9.1.2 Estimating the Surface Shape from the 3D Rim 142
9.1.3 Summary of Contributions . 143

9.2 Datasets . 143
9.3 Estimating the 3D Rim from the 2D Occluding Contour 145

9.3.1 Eccentricity Model . 145
9.3.2 Normal Models . 146

vii

9.3.3 Auto-Encoder Model . 147
9.4 Estimating the Surface Shape from the 3D Rim 148
9.5 Evaluation . 149

9.5.1 Estimating the 3D Rim from the 2D Occluding Contour 149
9.5.2 Estimating the Surface Shape from the 3D Rim 153

9.6 Conclusion . 155

10 Discussion and Future Work 157

III Conclusion 158

Bibliography 160

viii

List of Tables

2.1 Line segment datasets . 19
2.2 3D scene datasets . 20
2.3 Manhattan frame estimation algorithm comparison 30
2.4 Algorithm evaluation comparison on Hedau et al’s dataset[70]. OM is

orientation maps[100], GC is geometric context[73]. 32
2.5 Comparison of surface layout estimation algorithms on Geometric Context

dataset [73]. 40
2.6 Performance comparison of graph based depth prediction methods evalu-

ated on the NYU v2 dataset [149]. The Make3D algorithm was trained on
the Make3D dataset and evaluated on the NYU v2. 45

2.7 A comparison of different end-to-end depth prediction networks.The RMS
errors were evaluated on the NYU v2 dataset [149]. 47

2.8 Performance comparison of depth estimation algorithms on the KITTI
dataset [54]. 50

3.1 Prior marginal probabilities p (xi) and conditional transition probabilities
p (xi|xi−1) for the hidden segment state xi, derived from the YorkUrbanDB
training dataset. 64

3.2 Average number of segments returned and run time per image for the six
systems evaluated. 86

ix

5.1 Quantitative results using the intersection method of evaluation. Errors
are computed only for pixels where the LS3D method returns a range es-
timate. p-values for matched-sample t-tests of the LS3D method (with oc-
clusion constraint) against competing deep network algorithms are reported.121

5.2 Quantitative results using the diffusion method of evaluation. Errors are
computed for all pixels projecting from the 3DBM model. p-values for
matched-sample t-tests of the LS3D method (with occlusion constraint)
against competing deep network algorithms are reported. 122

8.1 Comparison of GenRe and MarrNet mean error on ShapeNet. 137

9.1 Within-dataset Pearson correlation between the ground truth depth values
Z and the estimated depth values Ẑ over all points on the rim, mean±std.
err. over test objects, for 64 deg FOV. 152

9.2 Between-dataset Pearson correlation between the ground truth depth val-
uesZ and the estimated depth values Ẑ over all points on the rim, mean±std.
err. over test objects, for 64 deg FOV. ShapeNet→Mehrani: Train on
ShapeNet training set, test on Mehrani test set. Mehrani→ShapeNet: Train
on Mehrani training set, test on ShapeNet test set. 152

9.3 Pearson correlation and RMS error between the ground truth surface depth
values and the estimated depth values over all pixels of the shape, mean±std.
err. over test objects, for 64 deg FOV. 154

x

List of Figures

1.1 View from Robin Hood’s Hut, Somerset (A3), drawing pen, water wash,
Conte crayons and pencils by Sara Waterer [173]. 2

1.2 (Above, left to right) Renaissance examples of perspective, including Leonardo
da Vinci’s “The Last Supper”(1494) and Pietro Perugino’s “Delivery of the
Keys”(1482). (Below, left to right) More recent examples including An-
drew Wyeth’s “Wind from the Sea”(1947), Camille Pissarro’s “Avenue de
L’Opera, Paris”(1898), and Mary Cassatt’s “The Child’s Bath”(1893). . . 3

2.1 A pinhole camera where a 3D point C is projected onto image plane c. O
is the camera centre and o is the principle point on the image plane. f is
the focal length of the camera. 10

2.2 (a) A blocks world. Figure taken from [136]. (b) A polyhedral world.
Figure taken from [139]. (c) A trihedral object. Figure taken from [152].
(d) An origami crane. Figure taken from [15]. (e) A Manhattan world
scene. Figure taken from [40]. (f) An illustration of Atlanta world scene.
(g) The box world in which each pixel is assigned to one of five faces(Left
wall, Middle wall, Right wall, Floor and Ceiling) in a box. 12

2.3 A Venn diagram shows the relationships between different world assump-
tions. 13

2.4 Y junction(left) and W junction(right). In a Y junction, three angles (red,
green, and blue) are all less than π. In a W junction, one of the three angles
(green) is greater than π. 14

2.5 Different types of line labelling. Visible lines are drawn as solid lines,
invisible lines are drawn as dashed lines. Figure taken from [152]. 15

xi

2.6 Labelling in (a) natural and (b) hidden-part-drawn line drawings. Figure
taken from [152]. 18

2.7 An object and its origami world surface connection graph. (a) A 3D pro-
jection to a 2D image. (b) The origami world surface connection graph
(a). R1-R6 are surfaces, and edges are labelled line segments shared by
surfaces. Figure taken from [83]. 18

2.8 Canny edge detector process. (a) Original image. (b) Smoothed with
Gaussian filter. (c) Map of intensity gradient. (d) Non-maximum sup-
pressed "thin" version of edge map. (e) Edge map after hysteresis threshold. 22

2.9 An example of local scale control. (a) Map of minimum reliable scale for
gradient estimation. (b) Map of minimum reliable scale for second deriva-
tive estimation. (c) Detected edges. Six scales were used (0.5,1,2,4,8,16)
and the shade of grey indicates the smallest scale at which gradient esti-
mates are reliable. Black indicates scale at 0.5 pixel, lighter shades indi-
cates higher scales, and white indicates that no reliable estimates could be
made. 23

2.10 Examples of edge detection algorithms (a) Original image (b) Canny Edge
Detector [22] (c) Elder and Zucker Edge Detector [50] (d) Holistically-
Nested Edge Detector [176]. 24

2.11 Hough parameters of a line. 25
2.12 Each edge votes according to a BVN kernel. Figure taken from [154]. . . 26

xii

2.13 Performance of many line segment detection algorithms. (a) Recall as a
function of the number of segments returned. (b) Recall as a function of
the total length of segments returned. (c) Precision-Recall. 27

2.14 Examples of line segment detection algorithm output (a) Original image
(b)MCMLSD [4] (c) LSD [166] (d)Linelet [29] (e)Wireframe [75] (f)Atrous [182] 28

2.15 (a) A line in the image can be represented in the Gauss sphere by its in-
terpretation plane normal. (b) Error model for a line in the Gauss sphere.
Figures taken from [154]. 29

2.16 (a) The red, green, blue are Manhattan line segments, the yellow line seg-
ments are background. The black lines are vanishing lines. The circles
with number 1 and 2 in the centre are two sample points. (b) An ori-
entation map where red represents horizontal planes, and blue and green
represent vertical planes. Figure taken from [100]. 32

2.17 Line reconstruction results. The first column shows the Manhattan lines
overlaying the original images. The second and third columns show per-
spective 3D views of the 3D line structures. Figure taken from [130]. . . . 34

2.18 A living room with several junctions of types L, T, Y, X, W. Figure taken
from [131]. 35

2.19 Lines at a junction point p. From p there are 6 orientation regions with
respect to the vanishing point. Inside each orientation region, there may
be several Manhattan line segments of different lengths. The total line seg-
ment length inside each orientation region is used to classify the junction
type. Figure taken from [131]. 35

2.20 (a) There are 6 possible directions at point p based on the three vanishing
points. (b) Binary templates for 5 junction types. Figure taken from [131]. 36

2.21 (a) 4 line segments (l1, l2, l3, l4) connected by incidences and junctions
where l14 is an incidence connection node and I12, I13 and I23 are junction
nodes. (b) A graph structure representing connections in (a). In this graph
each vertex is a line segment and each edge is an incidence or junction. [130] 36

2.22 Line segments li and lj intersect in the image domain. sij indicates the 3D
distance between line li and lj . λi and λj are adjusted to minimize sij and
thus to recover the 3D coordinates of li and lj . [130] 37

xiii

2.23 T junctions in a built environment. The T junction on the left is caused
by occlusion. The T junction on the right is caused by a planar reflectance
pattern. 38

2.24 A pop-up illustration in a children’s book [93] 39
2.25 Pop-up 3D reconstruction. Pixels in the input image are labelled as sup-

port, vertical or sky classes. The second column shows the labelling result.
The third and fourth columns show the 3D reconstruction from two differ-
ent view angles. Figure taken from [73]. 40

2.26 Qualitative comparisons of surface layout estimation. From left to right:
Ground truth; Hoiem et al. [73]; Gupta et al. [62]; Pan CRF [124]; Pan
without CRF [124]. Surface layout colour code: Magenta - planar right;
Cyan - planar left; Red - planar centre; Green - nonplanar porous; Yellow
- nonplanar solid; Blue - sky; Grey - support. Figure taken from [124]. . . 41

2.27 Relationships between geometry based reconstruction methods. 42
2.28 The multiscale MRF model for modelling relations between features and

depths, the relation between depths at the same scale, and the relation be-
tween depths at different scales. [141] 44

2.29 An image segmented into super-pixels. Figure taken from [142]. 44
2.30 The network structure used in [46] consists of a global coarse-scale net-

work and a local fine-scale network. In the global network, the first five
layers are convolutional layers with max-pooling and rectified linear units
as activation functions. The latter two layers are fully connected layers.
The local network is a relatively shallow convolutional network. Its fea-
tures are concatenated with the global depth map followed by two convo-
lutional layers. Figure taken from [46]. 46

2.31 The stereopsis based auto-encoder: Component 1 is a convolutional neural
network encoder, which generates an inverse range mapD(x). Component
2 uses the inverse range map and the right image to generate a synthesized
version of the left image. Component 3 calculates the reconstruction error
between the real left image and the synthesized image. Figure taken from
[57]. 49

xiv

2.32 Overview of the view synthesis algorithm. The depth network takes It as
input to generate a depth map D̂t. The pose network generates two camera
poses (T̂t−1 and T̂t+1) from It−1 and It+1 relative to It. The image It is
used to generate a synthesized version of It−1 and It+1 using camera poses
and the depth map. [187] . 50

3.1 Orthogonal projections (thin black lines) of all pixels within two pixels
of a detected line (thick black line) define an ordinal sampling of the line
i ∈ [1 . . . N]. Pixels within this band occupied by edges (shown red on
grey) with orientations similar to the line support the assignment of the
ON state for the associated segment variable xi at sampled line locations. 61

3.2 Likelihoods for line segment extraction, learned from the YorkUrbanDB
training dataset [40]. (a-b) Likelihood p (ei|xi, di) for distance di of obser-
vations from line for (a) ON (xi = 1) and (b) OFF (xi = 0) states. (c-d)
Probability p (θi|xi, ei) for the angular deviation θi of observed edges from
the line for (c) ON (xi = 1) and (d) OFF (xi = 0) states. 63

3.3 The sequence of segment state variables xi are assumed to form a Markov
chain. To compute the MAP solution we build a trellis table from the
first line position i = 1 to the last line position i = N that identifies the
minimum cost (negative log probability) to reach either possible state (ON
or OFF) at each position i. The selected MAP path is shown in red, and
the resulting ON/OFF states are indicated by the solid/dashed line above
the trellis. 65

3.4 10 top-ranked segments for four ranking methods on example image. . . . 70
3.5 Performance of the four ranking methods described in section 3.7, as mea-

sured by recall vs number of segments returned, on the YorkUrbanDB
training dataset. 71

xv

3.6 Performance and run-time analysis of Hough map resolution. (a) Mean re-
call over number of segments k = 1, . . . , 500 returned. (b) Mean precision
over number of segments k = 1, . . . , 30 returned. (c) Corresponding run
time of MCMLSD algorithm per image (sec). 72

3.7 Top 90 segments returned by the six algorithms under evaluation, together
with hand-labelled ground truth, for four example test images drawn from
the YorkUrbanDB dataset. 74

xvi

3.8 Mean length of ranked line segments returned by each algorithm for (a)
YorkUrbanDB and (b) Wireframe test sets, as a function of the number of
segments returned. Ground truth line segments are ranked from longest to
shortest. 75

3.9 Performance of the six algorithms under evaluation on the YorkUrban
Dataset. (a) Recall as a function of number of segments returned. (b)
Recall as a function of the total length of segments returned. (c) Precision-
Recall. 76

3.10 Performance of the proposed MCMLSD methods compared with the state
of the art on the Wireframe dataset[75]. (a) Recall as a function of num-
ber of segments returned. (b) Recall as a function of the total length of
segments returned. (c) Precision-Recall. 77

3.11 Performance on the YorkUrbanDB dataset when an oracle is used to rank
the segments by their precision. (a) Recall as a function of number of
segments returned. (b) Recall as a function of the total length of segments
returned. (c) Precision-Recall. 78

3.12 Results including MCMLSD2, which uses the structured forests edge de-
tector [43] to incorporate local appearance cues when ranking segments.
(a) Recall as a function of number of segments returned. (b) Recall as a
function of the total length of segments returned. (c) Precision-Recall. . . 79

3.13 Crop of example YorkUrbanDB test result for the (a) Attraction Field and
(b) MCMLSD algorithms. Observe the alignment errors of some of the
segments returned by the Attraction Field algorithm. 80

3.14 Evaluation on the YorkUrbanDB dataset using the looser distance thresh-
old of 8 pixels employed in the Wireframe [75] and Attraction Field [182]
papers. (a) Recall as a function of number of segments returned. (b) Recall
as a function of the total length of segments returned. (c) Precision-Recall. 81

3.15 Performance of MCMLSD compared with the state of the art on the YorkUr-
ban Dataset using pixel level evaluation. (a) Recall as a function of number
of segments returned. (b) Recall as a function of the total length of seg-
ments returned. (c) Precision-Recall. 83

3.16 Performance of MCMLSD methods compared with the state of the art on
the Wireframe dataset using pixel level evaluation. (a) Recall as a function
of number of segments returned. (b) Recall as a function of the total length
of segments returned. (c) Precision-Recall. 83

3.17 Summary of results. (a) Recall as a function of number of segments re-
turned. (b) Recall as a function of the total length of segments returned.
(c) Precision-Recall. 84

3.18 Top 90 segments for MCMLSD on an example image at low and high
resolutions. 85

3.19 The three images with the lowest f-scores in the test set of the YorkUDB.
The first row shows the top 90 line segments from the MCMLSD algorithm.
The second row is ground truth. 87

4.1 Example images from training dataset, and the number n in each class. . 91

xvii

4.2 Likelihood distributions for the three line features (ρ, θ and l). 95
4.3 (a) Vanishing point prior distribution plotted on a sample image from the

dataset. The red ellipse indicates the 95% confidence interval for the van-
ishing point. (b) Likelihood distribution for the distance of the top-ranked
20 detected lines from the vanishing point. 96

4.4 (a) Average Euclidean error of the estimated vanishing point as a function
of the number n of lines employed. (b) Mean error and standard error of
the mean, collapsing over n. 96

4.5 Examples of automatically estimated vanishing points. 97
4.6 The error graph of different combinations of threshold t and top k lines. . 97
4.7 (a) Mean normalized luminance of horizon training images as a function of

vertical displacement from horizon. (b) First three principal components
of vertical luminance distribution around horizon location. 98

4.8 Mean vertical location error in horizon estimate over training data, as a
function of the length n and number m of principal components filters. . . 99

4.9 (a) Prior spatial distribution of road pixels, in absolute image coordinates.
(b) Prior horizontally and vertically registered to vanishing point. (c) Prior
vertically registered to horizon. (d) Proportion of correctly labelled image
pixels for the test set, as a function of the probability threshold p0. 100

4.10 Example road segmentations on the test dataset. Results are evaluated
based on proportion of correctly labelled pixels (road/non-road). (a)-(c)
show best, median and worst-case (failure mode) examples for cases where
a vanishing point could be estimated. (d)-(f) show best, median and worst-
case examples for cases where the vanishing point was deemed unreliable
and a horizon estimator was used. 101

4.11 Results comparison for 2, 3 and 5 classification using manual, Proposed
Segmentation, Fixed prior segmentation against random guesses. 102

xviii

5.1 LS3D processing stages. (a) Detected Manhattan line segments. (b) Graph-
ical structure of identified Manhattan spanning trees (MTs). Each vertex
represents a line segment endpoint, and each edge represents either a real
line segment or a junction between orthogonal segments. (c) MTs local-
ized in the image (d) MTs lifted to 3D. Note that the relative depth of each
MT remains unknown. (e) Minimal spanning cuboid/rectangle models. (f)
Compound 3D models of connected structures. (g) Final model of visible
surfaces. (h) Range map. 107

5.2 The 32 unique classes of Manhattan three-junctions and three-paths shown
on the four classes of generic Manhattan cuboid poses. 114

5.3 Some examples of 3DBM models in our dataset. 117
5.4 Example results for Make3D [143], Eigen [46], FCRN [99], DORN [55],

PlaneNet [105], and the proposed LS3D method, with and without diffusion.120
5.5 (a) Best, median and worst case LS3D performance on the 3DBM dataset.

(b) LS3D parameter sensitivity analysis. 123
5.6 An example of texture mapped 3D model generated from LS3D. 123
5.7 Examples with highest error (a) 37.2m (b) 30.8m (c)23.8m. First row is

original image, second row is line segments overlaying on image, third
row is estimated depth map, fourth row is ground truth. 125

7.1 Volumetric shape from the bounding contour. 131

8.1 Puffball reconstruction (taken from [163]). 133
8.2 An example of SIRFS and puffball algorithm output. The color bar rep-

resents the Z coordinate (increasing toward the eye). (a) original input
image, (b) surface normal from SIRFS, (c) depth map from SIRFS. (d)
depth map from puffball. 134

8.3 Schema of a basic Autoencoder . 137

xix

9.1 (a) The occluding contour can evoke a strong sense of solid shape. (b)
Puffball reconstruction [77, 163]. 141

9.2 Example 3D objects from (a) the Mehrani dataset [114] and (b) the ShapeNet
Core dataset [24]. 144

9.3 Viewing geometry. Objects are centred on the optical axis, with centroids
at a distance of Z̄ = 1, and scaled so that the maximum angular eccentric-
ity is half the prescribed field of view. 145

9.4 The eccentricity model for estimating distance Z(s) from the image plane.
(a) The cue is the squared distance r(s)2 of the occluding contour from the
centre of mass of the contour in the image. (b-c) Histogram models for the
Mehrani and ShapeNet datasets. 146

9.5 Optimized auto-encoder models for the Mehrani dataset. The model for
ShapeNet is identical but with 16 hidden units. 147

9.6 Spherical surface completion. 148
9.7 Pearson correlation between the ground truth depth values Z and the es-

timated depth values Ẑ over all points on the rim, averaged over objects
in the Mehrani test dataset. Models were trained on the Mehrani training
dataset. 150

9.8 Best, median and worst case estimates (as measured by correlation of the
3D rim depth estimates Ẑ with ground truth Z) for the augmented normal
model on the Mehrani dataset. The last two columns show the estimated
depth of the visible surface inferred by spherical completion from the es-
timated rim, and ground truth depth, respectively. 151

9.9 Categorical evaluation on Augmented normal. (a)Trained on all data. (b)
Trained and evaluated on each category independently. (c)Leave one out
evaluation on each category. 153

9.10 Examples of the three easiest (left) and three hardest (right) ShapeNet cat-
egories, in terms of 3D rim estimation from the occluding contour. 153

9.11 Correlation of estimated and ground-truth surface depth for (a) Mehrani
and (b) ShapeNet datasets, as a function of the maximum turning angle of
the occluding contour. 155

xx

A List of Acronyms

3DBM 3D Manhattan Building Dataset
CRF Conditional Random Field
CNN Convolutional Neural Network
DNN Deep Neural Network
DORN Deep Ordinal Regression Network
FCRN Fully Convolutional Residual Network
FOV Field of View
LS3D Line-Segment-to-3D
LSD Line Segment Detector
MAE Mean Absolute Error
MAP Maximum A Posteriori
MCMLSD Markov Chain Marginal Line Segment Detector
MT Manhattan Tree
PPHT Progressive Probabilistic Hough Transform
RMS Rooted Mean Square
ROI Region of Interest
SIRFS Shape, Illumination and Reflectance from Shading
SSWMS Slice Sampling Weighted Mean Shift
SVM Support Vector Machine
VP Vanishing Point

xxi

Chapter 1

Introduction

When you are wandering around an art gallery, you can see beautiful landscapes that
are created from brushes and paint on a canvas. For example you can see in Figure 1.1
mountains in the background, and a farm field that connects you to the mountain range.
Tall trees grow on the side of the field. It is so peaceful in the arms of nature away from the
city. You may lose yourself in thought while admiring the painting and imagine yourself
walking around in this beautiful landscape.

Have you ever thought about how you perceive that the mountains are far away in such
a simple 2D painting?

Centuries of art work (some perspective painting examples are shown in Figure 1.2)
reveal that human minds have the ability to see things in 3D from a 2D image.

Inspired by human vision, computer scientists have started to explore the possibilities
of reconstructing a 3D world from a single 2D image. Single-view reconstruction has sig-
nificant cost/range advantages over direct depth sensors such as LiDAR, Kinect or stereo
systems. It has a wide range of applications such as:

1. Self-driving cars

2. Unmanned aerial vehicles

3. Driver assistance systems

4. Road surveys

1

Figure 1.1: View from Robin Hood’s Hut, Somerset (A3), drawing pen, water wash, Conte crayons
and pencils by Sara Waterer [173].

5. Building surveys

6. VR/AR

7. 3D movie production

8. Assistive devices for the visually impaired

9. Indoor/outdoor surveillance

My PhD thesis consists of two parts. The first part focuses on the 3D reconstruction of
rectilinear, piecewise planar surfaces in a built environment. The second part focuses on
3D reconstruction of more general shapes from their bounding contours. I will detail my
specific contributions to each project in subsequent chapters.

In the first part, I have completed three projects: 1) MCMLSD line segment detec-
tion [4, 48], 2) single-view geometry driven road segmentation [27, 5, 157], and 3) single-
view 3D reconstruction of Manhattan buildings [158].

2

Figure 1.2: (Above, left to right) Renaissance examples of perspective, including Leonardo da
Vinci’s “The Last Supper”(1494) and Pietro Perugino’s “Delivery of the Keys”(1482). (Below,
left to right) More recent examples including Andrew Wyeth’s “Wind from the Sea”(1947), Camille
Pissarro’s “Avenue de L’Opera, Paris”(1898), and Mary Cassatt’s “The Child’s Bath”(1893).

The first project is titled "MCMLSD: A Dynamic Programming Approach to Line Seg-
ment Detection". In this project, I was involved in the development of a line segment
detection algorithm that provided the foundation for later projects. Projection to the im-
age distorts properties such as angles, distance, and the ratios of distance. However, one
property that is preserved during the projective transformation is straightness. The straight
line in 3D is always straight in 2D. Since the 3D built environment contains many straight
lines, detection of the projections of these lines in the image is an important early step in
3D reconstruction.

The second and third projects are applications that took advantage of this line segment
detector. The second project is titled "Single-View Geometry-Driven Road Segmentation",
uses line segments to estimate the road vanishing point and horizon line.

The third project is titled "LS3D: Single-view 3D Reconstruction of Manhattan Build-
ings". In the built environment, 3D scenes are often dominated by lines in three mutually
orthogonal directions [33]. This regularity can be used to transform the 2D line segments

3

into a 3D CAD model from a single image.
In the second part of my thesis, I have completed a project titled "3D Object Rim

Reconstruction from 2D Occluding Contour". Surface cues such as shading and texture
provide local constraints on shape, but recovery of global object pose and depth is no-
toriously difficult. The visual boundary of the object provides a potentially important
constraint on this global computation. While the image contour bounding the projection
of the 3D object is planar, the back-projection of this contour to the surface of the object
(the 3D ‘rim’) is a more general space curve - non-planar and oblique to the line of sight.
Here we explore a novel method for estimating the 3D rim given only the 2D bounding
contour of the object.

4

A list of related publications:

• G. Cheng, Y. Wang, Y. Qian, and J. H. Elder. Geometry-guided adaptation for road
segmentation. In 2020 17th Conference on Computer and Robot Vision (CRV), pages
46–53, 2020

• Y. Qian, S. Ramalingham, and J. Elder. LS3D: Single-view Gestalt 3D surface re-
construction from manhattan line segments. In Proceedings of the Asian Conference
on Computer Vision (ACCV), pages 399–416, 2018

• E. J. Almazàn, R. Tal, Y. Qian, and J. H. Elder. MCMLSD: A dynamic programming
approach to line segment detection. In 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 5854–5862, July 2017

• J. H. Elder, E. J. Almazàn, Y. Qian, and R. Tal. MCMLSD: A probabilistic algorithm
and evaluation framework for line segment detection, 2020 (In preparation)

• G. Cheng, Qian, Y., and J. H. Elder. Fusing geometry and appearance for road
segmentation. In Proceedings of the IEEE International Conference on Computer
Vision Workshops, pages 166–173, 2017

• E. J. Almazan, Qian, Y., and J. H. Elder. Road segmentation for classification of
road weather conditions. In G. Hua and H. Jégou, editors, Computer Vision – ECCV
2016 Workshops, pages 96–108, Cham, 2016. Springer International Publishing

• Qian, Y., E. J. Almazan, and J. H. Elder. Evaluating features and classifiers for
road weather condition analysis. In International Conference on Image Processing
(ICIP), 2016 IEEE. IEEE, 2016

5

Part I

Single-View 3D Estimation of
Piecewise-Planar Shapes

6

Chapter 2

Literature Review

2.1 Introduction

To reconstruct 3D representations, there are two popular approaches: geometric methods
and machine learning methods. Geometric methods study the relationship between lines,
junctions and surfaces in an image, then use such relations to model 3D scenes through,
for example, a line model [130], box model [70, 169, 135, 131], or Photo Pop-up [72,
73, 66, 124, 10]. The line model consists only of line segments. The box model targets
simple indoor room scene environments in which a maximum of 5 major planar surfaces
(typically floor, ceiling and three walls) are visible to the observer. The Photo Pop-up
model categorizes image pixels into simple geometric classes (eg. horizontal, vertical)
to form a Photo Pop-up visualization. Machine learning methods learn statistical models
between the 2D image and 3D world to produce a range map [140, 141, 143, 107, 102,
171, 178, 46, 45, 26, 57, 187], or CAD model [78] representation. This latter approach is
used by the real estate industry to build virtual show rooms [78].

Different types of single-view 3D reconstruction algorithms are built for different pur-
poses. The line and box models are designed to reconstruct man-made environments. The
Photo Pop-up model is more general and can be applied to man-made as well as natural
scenes. Machine learning methods generate a range map. Unlike geometric methods ma-
chine learning methods, which are used primarily for the built environment, can be applied
to any environment as long as there is sufficient data to train the system.

7

This chapter is organized as follows. In section 2.2, I will review the fundamental back-
ground knowledge of geometry required for single-view 3D reconstruction algorithms. In
section 2.3, I will present a list of 3D datasets that can be used for 3D reconstruction
training and evaluation. Finally, in sections 2.4 and 2.5, I will review the single-view 3D
reconstruction algorithms that use geometric methods and machine learning methods.

8

2.2 The Geometry of Single-View 3D Reconstruction

An image captured by a camera is a two-dimensional representation of the three-dimensional
world. In this section, I will first review the basic pinhole camera model [67]. Then I will
review 3D world assumptions which may be imposed to allow for reconstruction of the
3D world from a single image.

2.2.1 Camera Model

The pinhole camera model (Figure 2.1) maps a 3D point C in the world to a 2D point c in
the image via a 3× 4 projection matrix P as:

c = PX = K[R|t]C (2.1)

where c and C are homogeneous vectors in the form: c = (x, y, w)ᵀ, C = (X, Y, Z,W)ᵀ.
P is the projection matrix, which can be decomposed into an intrinsic matrix K, a rotation
matrix R = Rx(α)Ry(β)Rz(γ) and a translation vector t = [vx, vy, vz]

T , where

K =

fku 0 u0

0 fkv v0

0 0 1

 (2.2)

Rx(α) =

1 0 u0

0 cosα sinα

0 −sinα cosα

 Ry(β) =

cosβ 0 −sinβ
0 1 0

sinβ 0 cosβ

 Rz(γ) =

 cosγ sinγ 0

−sinγ cosγ 0

0 0 0


(2.3)

Here f is the focal length, and ku, kv are scale factors relating to pixel size. Rx(α), Ry(β),
Rz(γ) are the rotation matrices that rotate around x, y and z axis by α, β and γ angle. The
principle point [u0, v0] is the location of the camera centre projected to the image plane.

Homogeneous coordinates, introduced by August Ferdinan Möbius in 1827, are a way
to represent N-dimensional coordinates with N+1 numbers. They have three benefits:

1. Affine transformations (including translation) can be represented by linear matrix
multiplications.

9

2. Points at∞ can be represented by setting W = 0 and w = 0.

3. 3D to 2D projection can be represented as linear matrix multiplications.

Image Plane

x

y

O
Camera Centre

f

c

C
World Point

o

x
y

z

Figure 2.1: A pinhole camera where a 3D point C is projected onto image plane c. O is the camera
centre and o is the principle point on the image plane. f is the focal length of the camera.

2.2.2 3D Worlds

Single-view 3D reconstruction is ill-posed and only solvable for scenes that satisfy strong
regularity conditions. In the traditional 3D reconstruction literature, there are many world
assumptions that provide additional constraints to help in the 3D reconstruction process.
In chronological order they are:

1. Blocks World(1963) [136]: A world that is built of cubes, wedges, and hexagonal
prisms (Figure 2.2 (a)).

2. Polyhedral World(1968) [65]: A world where all the objects are made with three-
dimensional solid bodies bounded by a finite number of planar faces (Figure 2.2
(b)).

3. Trihedral World(1971) [76]: A world that contains only plane-bounded solid ob-
jects where every vertex is shared by exactly three faces (Figure 2.2 (c)).

10

4. Origami World(1980) [83]: A world built of stand-alone 2D piecewise planar sur-
faces in 3D space (Figure 2.2 (d)).

5. Manhattan World(1999) [33]: A world consisting of three mutually orthogonal
directions of lines and surfaces. (Figure 2.2 (e)).

6. Atlanta World(2004) [144]: A mixture of Manhattan worlds (Figure 2.2 (f)).

7. Box World(2009) [70]: A world in an indoor room environment which could be
approximated as a box made with five walls - left wall, middle wall, right wall, floor
and ceiling (Figure 2.2 (g)).

The relationship between these worlds is illustrated in Figure 2.3. A polyhedral world
assumes all the objects are three-dimensional solid polyhedrons. A trihedral world is a
polyhedral world in which each vertex is shared by exactly three faces. A blocks world is
a world that is built of cubes, wedges, and hexagonal prisms. An origami world assumes a
three-dimensional world that is built from connected 2D piecewise planar surfaces. Atlanta
world can be considered a subset of a block world and an origami world in which each
object consists of three families of mutually orthogonal surfaces. In a Manhattan world,
all objects are aligned to a common 3D orthogonal coordinate frame. The box world is a
special case of Manhattan world that assumes a single box viewed from inside with five
visible walls.

11

(a) (b)

(c) (d) (e)

(f)

RML

C

F

(g)

Figure 2.2: (a) A blocks world. Figure taken from [136]. (b) A polyhedral world. Figure taken
from [139]. (c) A trihedral object. Figure taken from [152]. (d) An origami crane. Figure taken
from [15]. (e) A Manhattan world scene. Figure taken from [40]. (f) An illustration of Atlanta
world scene. (g) The box world in which each pixel is assigned to one of five faces(Left wall,
Middle wall, Right wall, Floor and Ceiling) in a box.

12

Trihedral World

Polyhedral World

Blocks World Origami World

Manhattan World

Box
World

Atlanta World

Figure 2.3: A Venn diagram shows the relationships between different world assumptions.

13

2.2.2.1 Blocks World

Roberts [136] assumed a blocks world built of cubes, wedges, and hexagonal prisms. His
algorithm was constructive, working from edges to line segments, to 2D polygons and
then to 3D blocks models. He was able to demonstrate a system that worked for simple
combinations of model blocks under ideal laboratory imaging conditions.

2.2.2.2 Trihedral World

A trihedral scene [76] is an environment that contains an assortment of solid polyhedra
which have exactly three planar surfaces at each of the vertices and two surfaces associated
with each edge. All junctions in trihedral scenes can be labelled as either L, Y, W or T
[31, 168]. The L junction consists of 2 non-collinear lines. The Y junction consists of
three non-collinear lines where the three mutual angles are all less than π (Figure 2.4).
The W junction consists of three non-collinear lines where one of the three mutual angles
is greater than π (Figure 2.4). The T junction is made with three lines: two of them are
collinear. These labelled junctions provide some information about the trihedral scenes.
The Y and W junctions appear at the corners of scenes where the 3 surfaces meeting at the
junction are visible to the observer. The L junction appears when only one of these surface
is visible.

Figure 2.4: Y junction(left) and W junction(right). In a Y junction, three angles (red, green, and
blue) are all less than π. In a W junction, one of the three angles (green) is greater than π.

14

2.2.2.3 Polyhedral World

The polyhedral world generalized trihedral world to arbitrary polyhedra[152]. The poly-
hedral objects are made with three-dimensional solid bodies bounded by a finite number
of planar faces. To identify the polyhedral scene elements for spatial interpretation, two
assumptions are applied:

1. For every face, one side is occupied with material, the other side is an empty space
and each edge is shared by exactly two faces.

2. The observer is not coplanar with any face or any pair of non-collinear edges.

The line segments in the polyhedral scenes can be classified into four labels: the plus label
+, the minus label−, and the arrow label ↑ in two directions. The plus label indicates con-
vex lines (Figure 2.5 (a,e)), and the minus label indicates concave lines (Figure 2.5 (d,h)).
The arrow label indicates that the plane on the right side of the arrow is the occluding
plane (Figure 2.5 (b,c,f,g)). These line segment labels (Figure 2.6) can be used in the 3D

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.5: Different types of line labelling. Visible lines are drawn as solid lines, invisible lines
are drawn as dashed lines. Figure taken from [152].

reconstruction process.

15

2.2.2.4 Origami World

In a polyhedral world, objects are assumed to be solid, but Kanade[83] suggested objects
can also be made of a collection of open surfaces similar to origami. In this world, each
object can be expressed as a graph structure where each vertex is a surface, and graph
edges represent the boundary edges between pairs of surfaces. An example of an object
and its origami world surface connection graph is shown in Figure 2.7.

2.2.2.5 Manhattan World

In the built environment, 3D scenes are often dominated by lines in three mutually orthog-
onal directions[33]. This is known as the Manhattan Assumption. By estimating these
three mutually orthogonal directions, we can estimate the rotation of the camera relative
to the world. (I will review this process in more detail in Section 2.4.2.) This Manhat-
tan Assumption is widely used in 3D reconstruction tasks on man-made structures[39, 70,
169, 131, 135, 130]. The accuracy of estimated Manhattan line directions can be evaluated
on the York Urban Database[40].

2.2.2.6 Atlanta World

In urban scenes, structures in the scene might contain multiple groups of orthogonal van-
ishing directions. In such scenes, instead of recovering one Manhattan world, multiple
Manhattan worlds can be recovered. This is known as Atlanta world [144].

2.2.2.7 Box World

Hedau et al. [70] suggested that many indoor Manhattan scenes could be approximated as
boxes made of five visible walls - left wall, middle wall, right wall, floor and ceiling.

2.2.3 Discussion

An image is a perspective projection of the 3D world. This perspective projection distorts
many 3D properties such as angles, distance and ratios of distance, but one property is al-
ways preserved - line straightness. This invariance has been utilized in 3D world assump-

16

tions [136, 65, 76, 83, 33, 144, 70] as a constraint in the single-view 3D reconstruction
task.

Among all of these world assumptions, the Manhattan world assumption [33] is one
of the strongest. It assumes a world consisting of three mutually orthogonal directions
of lines and surfaces, which is applicable to a large portion of modern architecture and
indoor room environments [70]. I will review Manhattan world 3D reconstruction research
in more detail in Section 4. However, before I review the geometric 3D reconstruction
methods, I will review the 3D datasets that have been widely used for this task.

17

(a) (b)

Figure 2.6: Labelling in (a) natural and (b) hidden-part-drawn line drawings. Figure taken from
[152].

(a) (b)

Figure 2.7: An object and its origami world surface connection graph. (a) A 3D projection to a
2D image. (b) The origami world surface connection graph (a). R1-R6 are surfaces, and edges are
labelled line segments shared by surfaces. Figure taken from [83].

18

2.3 List of 3D Datasets

Public datasets have been a crucial resource in the 3D reconstruction field. They allow re-
searchers to estimate parameters, and train, evaluate and compare algorithm performance.
Table 2.1 lists three publicly available line segment datasets. The York Urban DB [40] is
a dataset that contains line segment labels and their Manhattan orientation label. Later,
Cho [29] enhanced this dataset by annotating much finer line segment labelling which
increased the average number of line segment labels per image from its original 118.8 to
676.7. Unlike the original York Urban DB that only labels the Manhattan lines, this dataset
labels both Manhattan and non-Manhattan lines. Furthermore, the curves in the image are
labelled as multiple short straight line segments.

Table 2.2 lists the publicly available 3D scene datasets. The NYU v2 [149], Make3D [143],
ScanNet [36], ETH 3D [146], KITTI [164], SYNS [1] and SUN RGB-D [151] are range
map datasets constructed using 3D scanners. LS3D [158] is constructed using 3D CAD
models of buildings.

Table 2.1: Line segment datasets

Dataset Num. of Images Ave. Seg. Per Image Manhattan Label Junction Label

YorkUDB [40] 102 118.8 Yes No

YorkUDB+ [29] 102 676.7 No No

Wireframe [75] 5462 104.8 No Yes

19

Table 2.2: 3D scene datasets

Dataset Num. of Images Resolution Semantic Label Indoor Outdoor

Make3D [143] 534 55x305 No No Yes

NYU v2 [149] 1449 640x480 Yes Yes No

ScanNet [36] 2.5M 640x480 Yes Yes No

ETH 3D [146] 454
6048x4032
752x480

No Yes Yes

KITTI [164] 92,750 375x1242 No No Yes

SYNS [1]
88

Panoramic
Panoramic

10,054x3,771
No Yes Yes

SUN RGB-D [151] 10,335
628x468
640x480
512x424

Yes Yes No

LS3D [158] 118 4912x3264 No No Yes

20

2.4 Geometric Methods for Single-View 3D Reconstruc-
tion

World assumptions provide constraints to estimate 3D structures from 2D images. One of
the strongest constraints is perhaps the Manhattan world assumption, which is applicable
in many built environments. Given the Manhattan world assumption, we can use a linear
perspective to classify the lines or surfaces into three mutually orthogonal directions, and
this classification can then be used to estimate 3D structures in the scene.

2.4.1 Edge and Line Segment Detection

The first stage of a geometric single-view algorithm is typically to detect the edges and
lines in the image. In this section (Part 1), I will review three popular edge detection
algorithms. Part 2 will review how edge information can be used to find straight lines in
the image. Part 3 will focus on how line segments can be detected.

2.4.1.1 Edge Detection

Edges are points in the image where intensity changes abruptly. Processing edges instead
of the whole image reduces the size of the data while preserving the important structural
information. There are many edge detection methods such as Canny [22] and Elder&
Zucker [50] that have been widely applied. More recently, deep learning edge detection
algorithms (eg. [176]) have emerged.
Canny Edge Detector [22]: Early edge detection algorithms suffered many problems
such as inaccurate edge point localization, duplicate edge marking, and false edges. To
solve this problem, Canny [22] developed an algorithm with four stages:

1. Noise reduction with Gaussian filters

2. Intensity gradient identification

3. Non-maximum suppression

4. Hysteresis threshold

21

In the first stage, a Gaussian filter is applied to smooth the image which reduces the
noise in the image (Figure 2.8 (b)). This reduces the number of false edges. Then this
smoothed image is filtered with a local intensity gradient filter to find the luminance gra-
dient magnitude and direction at each pixel (Figure 2.8 (c)). The next stage is to scan
through the edge map to remove any unwanted edges. This is done by a non-maximum
suppression which suppresses all the gradient values in the direction normal to the edge
except the local maximum (Figure 2.8 (d)), resulting in a thin version of the edge map. The
last hysteresis threshold stage decides which edges are high quality edges. Two thresholds
minVal and maxVal are used in this process. Any edges with an intensity gradient more
than maxVal are labelled as high quality edges and those below minVal are labelled as
non-edges. Edges that lie between the two thresholds are classified as edge or non-edge
based on their connectivity. If connected to high quality edge pixels, they are labelled as
high quality edges. Otherwise, they are removed (see Figure 2.8 (e)).

(a) (b) (c) (d) (e)

Figure 2.8: Canny edge detector process. (a) Original image. (b) Smoothed with Gaussian filter.
(c) Map of intensity gradient. (d) Non-maximum suppressed "thin" version of edge map. (e) Edge
map after hysteresis threshold.

Elder & Zucker Edge Detector [50]: Discriminating true edges from noise is difficult
for blurred or low contrast edges, which generate smaller gradients. Elder & Zucker [50]
solved this problem by applying a multi-scale approach and finding the minimum reliable
scale for gradient and second derivative estimation. The edges are localized using both
gradient and second derivative information. Local estimation at the minimum reliable
scale guarantees that the sign of the second derivative is reliable. It was used to localize the
edge estimated from the gradient map. An example of the gradient and second derivative
computation using local scale control for a test image is shown in Figure 2.9.

22

(a) (b) (c)

Figure 2.9: An example of local scale control. (a) Map of minimum reliable scale for gradient
estimation. (b) Map of minimum reliable scale for second derivative estimation. (c) Detected
edges. Six scales were used (0.5,1,2,4,8,16) and the shade of grey indicates the smallest scale at
which gradient estimates are reliable. Black indicates scale at 0.5 pixel, lighter shades indicates
higher scales, and white indicates that no reliable estimates could be made.

Holistically-Nested Edge Detector [176]: The recent development of deep learning algo-
rithms enables more data driven methods for edge detection. Xie & Tu [176] introduced
an end-to-end convolutional neural network to detect edges. An example output from the
Holistically-Nested Edge Detector is shown in Figure 2.10(c).

Discussion: In terms of run time, the Canny edge detector (Figure 2.10(b)) is fast, taking
0.01 seconds to process a 512 × 512 image on an i7 CPU. It is one of the best candidates
for real-time applications. On the other hand, the Elder & Zucker edge detector (Fig-
ure 2.10(c)) takes 0.5 seconds to process the same image on the same CPU. It delivers a
finer edge detail for shadow and blurry parts, making it a good candidate for applications
that do not require real-time performance. The holistically-nested edge detector (Figure
2.10(d)) is the most computationally intensive algorithm of the three, taking 12 seconds on
an i7 CPU and 0.4 seconds on an Nvidia K40 GPU. It utilizes a data driven deep learning
approach to deliver high quality edge estimation. Due to its high computational require-
ments, it is more feasible for high performance computers or cloud clusters.

23

(a) (b)

(c) (d)

Figure 2.10: Examples of edge detection algorithms (a) Original image (b) Canny Edge Detec-
tor [22] (c) Elder and Zucker Edge Detector [50] (d) Holistically-Nested Edge Detector [176].

2.4.1.2 Line Detection

Once edges are detected, they can be used to detect lines in the image. A common ap-
proach is the Hough Transform [74, 44], which uses the normal parametrization of a line
in polar coordinates (Figure 2.11),

ρ = xcos(θ) + ysin(θ) (2.4)

where ρ denotes the signed distance of the line from the origin, and θ ∈ [−π/2, π/2)

denotes the angle of the orthogonal projection from the origin to the line. Each edge
has position and orientation information which can be written as a point (ρ, θ) in polar
coordinates. The map H(ρ, θ) that counts the occurrences of these points is called the
Hough map. It represents the image evidence for all possible lines passing through the
image.

24

!
"

x

y

Figure 2.11: Hough parameters of a line.

Ideally, all edges associated with a line would map to the same bin in the Hough map
H(ρ, θ). However, due to noise in the image, that is not generally the case, leading to
missing peaks or false peaks in the Hough map, causing missing lines or false lines. One
way to mitigate the problem is to accurately model the uncertainty in the location and
orientation of each edge, mapping this uncertainty to a smooth local distribution over the
Hough parameters. Tal. et al. [154] modelled the edge position and orientation informa-
tion through a bivariate normal (BVN) kernel (Figure 2.12) in the Hough map using image
statistics. Lines in the Hough map can then be extracted in a greedy fashion and probabilis-
tically subtracted from the Hough map. At each iteration, the global maximum of H(ρ, θ)

is detected to identify the position and orientation of the dominant line not yet extracted.
All edges are identified that fall within a 3σ boundary in terms of both distance from the
line and angular deviation. These identified edges are then subtracted from the Hough
map H(ρ, θ). Using statistical measurements of edges in the YorkUrbanDB dataset [40],
Gaussian likelihood models of the edge uncertainties were estimated: σx, σy = 0.49 pixels,

25

error σθ = 5.3 degrees.

584 R. Tal and J .H. Elder

these kernels can easily be precomputed and stored, making the voting process
efficient. Unlike [11,16] weusea normal model rather than amixturemodel for
each conditional observation, and accumulate the sum of the likelihood as op-
posed to thelog likelihood, so that theHoughmap encodestheestimated length
of hypothesized lines.

3 P roposed Framework

3.1 P ropagating Observation Uncertainty to the Hough Domain

Edgedetectorsprovidebothpositionandorientation information. Thus, it makes
sense to model the uncertainty of each observation with respect to both. That
way, each edge can contribute a single bivariate normal (BVN) kernel to the
Hough map (Fig. 2).

ρ(pixels)

θ(
ra

d)

−100 −50 0 50 100

0.5

1

1.5

2

X

Y

−200 −100 0 100 200

-200

-100

0

100

Edge Map Hough Map

F ig. 2. Each edge votes according to a BVN kernel

We detect edges using a multiscale edge detector[17] that provides accurate
sub-pixel edgeposition andorientationestimates, thoughour analysis isapplica-
bletoanyedgedetectionalgorithmsuchasCanny[18]. Wemodel theuncertainty
of edge observation by examining the statistics of image edges with respect to
ground-truth lines[3]. Fig. 3 shows empirical densities for thedisplacement and
orientation deviation of edges within one pixel of each line. Wemodel each as
a mixture of a normal distribution generated by the line and a uniform distri-
bution generated by a background process. We assume isotropic displacement
error, so that thedata in Fig. 3providesufficient statistics to estimatethethree
key uncertainties σx, σy and σθ, i.e., the space constants of the normal models
for horizontal and vertical displacement and angular error. Themaximum like-
lihood estimates are: σx = σy = 0.49 pixels and σθ = 5.3 deg. For comparison,
wehavealso computed thesamestatistics for thepopular Canny edgedetector
(MATLAB implementation with default parameters) and the space constants
are: σx = σy =1.3pixels and σθ =3.9 deg.

Figure 2.12: Each edge votes according to a BVN kernel. Figure taken from [154].

2.4.1.3 Line Segment Detection

Peaks in the Hough map can only identify lines of infinite extent; they do not identify the
endpoints of the line segments. The endpoints of line segments can be estimated by line
segment detection algorithms [166, 4, 29, 182, 75]. There are three main line segment
detection methods:

1. Perceptual grouping methods

2. Hough transform methods

3. Deep learning methods

Perceptual grouping methods [166, 29]: These use geometric grouping cues to cluster
edges that are close to each other and roughly collinear. Each cluster is cleaned and then
analysed [42, 166] to obtain high quality line segments.
Hough transform methods [4]: The edge map of an image identifies the lines of infinite
extent. Then each detected line in the image domain is analysed to localize the line seg-
ments in it. The Hough transform method has the advantage of accumulating the global
edge information in the image domain.
Deep learning methods [75, 182]: Deep learning methods use images labelled with major
line segments to train a network to extract line segments directly from image pixels.

26

A comparison of these five algorithms is shown below. LSD [166] and linelet [29]
are perceptual grouping methods. MCMLSD [4] is a Hough transform method. Wire-
frame [75] and atrous [182] are deep learning methods. Quantitative evaluation is shown
in Figure 2.13, and a visual comparison is shown in Figure 2.14. The MCMLSD algorithm
tends to identify long continuous line segments in the image, while the LSD and linelet
algorithms generate more disconnected line fragments and fail to identify the faint line
segments on the ground. The Wireframe and Atrous algorithms are deep learning based
methods generate very fragmented segments and tend to miss a lot of texture details.

0 100 200 300 400 500
Number of line segments

0

0.2

0.4

0.6

0.8

1

R
ec

al
l

(a)

0 0.5 1 1.5 2
Total line segment length (pixels) 104

0

0.2

0.4

0.6

0.8

1

R
ec

al
l

LSD
Linelet
WireframeParser
Atrous
MCMLSD

(b)

0 0.2 0.4 0.6 0.8 1
Recall

0

0.2

0.4

0.6

0.8

1

P
re

ci
si

on
(c)

Figure 2.13: Performance of many line segment detection algorithms. (a) Recall as a function of
the number of segments returned. (b) Recall as a function of the total length of segments returned.
(c) Precision-Recall.

Discussion: From the qualitative and quantitative evaluation above, we can see that the
MCMLSD algorithm outperformed the other four algorithms on the York Urban Database.
The MCMLSD algorithm is able to detect a greater number of connected segments and
its ability to extract long continuous segments may be an advantage for single-view 3D
reconstruction.

27

(a) (b)

(c) (d)

(e) (f)

Figure 2.14: Examples of line segment detection algorithm output (a) Original image
(b)MCMLSD [4] (c) LSD [166] (d)Linelet [29] (e)Wireframe [75] (f)Atrous [182]

28

2.4.2 Manhattan Frame Estimation

A line in the image together with the camera centre forms an interpretation plane that can
be represented by its normal vector l (Figure 2.15) [154]. Lines with the same 3D orienta-
tion will produce interpretation plane normals that are coplanar and orthogonal to the 3D
orientation of the lines. The error ∆θi of a line with respect to a hypothesized 3D Manhat-
tan orientation vector is measured by the angular deviation between the line interpretation
plane normal and the plane π perpendicular to the hypothesized 3D Manhattan orientation.

O

(a)

Manhattan
 Deviation

(b)

Figure 2.15: (a) A line in the image can be represented in the Gauss sphere by its interpretation
plane normal. (b) Error model for a line in the Gauss sphere. Figures taken from [154].

In [154] each observed line li is assumed to be generated by a latent Manhattan vari-
ablemli that belongs to one of four classes: horizontal(1), horizontal(2), vertical and back-
ground. The Euler angles Ψ describe the rotation of the camera relative to the Manhattan
frame. The probability of each observed line is a mixture of the four models.

p(li|Ψ) =
∑
mli

p(li|Ψ,mli)p(mli) (2.5)

The Euler angles Ψ can be estimated by maximizing the probability using all lines.

Ψ̂ = arg max
Ψ

∑
i

log p(li|Ψ) (2.6)

29

The likelihood p(li|Ψ,mli) and prior probability p(mli) are estimated from hand-labelled
ground-truth lines in the YorkUrbanDB Dataset [40].

p(li|Ψ,mli) =
1

2b
e
−|∆θmli

|

b (2.7)

where b=0.80 for horizontal lines and b=0.57 for vertical lines. The likelihood for back-
ground p(li|mli = B) is uniform, independent of orientation.

A comparison between three Manhattan frame estimation algorithms on the YorkUr-
banDB Dataset [40] is shown in Table 2.3. The line based estimation algorithm achieved
the best result with an average error of 1.7 degrees.

Table 2.3: Manhattan frame estimation algorithm comparison

Method Mean Error (degrees) Run Time (Sec)
Line based estimation [154] 1.7 8
Gradient based method [33] 9.6 22
Edge based method [40] 4 5

Discussion: Manhattan frame estimation identifies the orientation of three mutually or-
thogonal directions of the 3D world. Accurate estimation of the Manhattan frame is im-
portant for 3D reconstruction. Line based estimation as proposed by Tal and Elder [154]
delivers the best accuracy at 8 seconds runtime.

30

2.4.3 Box Room Estimation

Hedau et al. [70] suggested that many indoor Manhattan scenes could be approximated as
boxes (Section 2.2). Under this assumption, each pixel in the indoor scene is classified
into one of five faces - left wall, middle wall, right wall, floor and ceiling. Using this pixel
assignment, a box is generated to represent the room layout. This simple box room layout
representation provides an easy solution for VR/AR applications such as placing virtual
furniture in the room [78].

The box world assumption is a strong constraint. There are many attempts [70, 169,
101, 147, 131] to use this constraint to generate the 3D layout of indoor room scenes. Fea-
tures such as line segments, orientation maps (OM) [100], and geometric context (GC) [73]
are captured and a classifier is then applied to pick the best layout hypothesis based on
these features.
Orientation Maps(OM)[100]: The orientation map (Figure 2.16 (b)) is a map that indi-
cates the Manhattan orientation of pixels in the image. Each pair of nearby line segments
of orthogonal orientation defines a quadrilateral in the image. Pixels within the quadri-
lateral are labelled with its 3D orientation. For example in Figure 2.16 (a), pixel (1) is
supported by the green line above and a blue line to the right which indicates pixel (1) is
in a horizontal plane. Similarly, pixel (2) is supported by the green lines above and below,
and the red line to the left. So this pixel (2) is on a vertical surface with a normal vector
perpendicular to the red and green lines.
Geometric context (GC)[73]: The geometric context feature defines each pixel into one
of two classes: vertical and support. The input image is first broken up into super-pixels,
then surface cues are extracted from each super-pixel to form feature vectors. A binary
classifier is trained to categorise each super-pixel into one of these two classes.

A quantitative comparison of state of the art room layout estimation algorithms is
shown in Table 2.4. From the comparison, we can see Ramalingam et al.’s[131] system
using junctions, GC and OM under the Conditional Random Field (CRF) framework de-
livered the best performance.

The box assumption is not perfect. It only works for enclosed box room environments
and is not applicable to irregular rooms. Irregularly shaped furniture will also have a
negative impact on layout estimation.

31

(1)

(2)

(a) (b)

Figure 2.16: (a) The red, green, blue are Manhattan line segments, the yellow line segments are
background. The black lines are vanishing lines. The circles with number 1 and 2 in the centre are
two sample points. (b) An orientation map where red represents horizontal planes, and blue and
green represent vertical planes. Figure taken from [100].

Table 2.4: Algorithm evaluation comparison on Hedau et al’s dataset[70]. OM is orientation
maps[100], GC is geometric context[73].

Method Features Pixel Error
Hedau[70] Line Segments+VP 21.2%
Wang[169] OM 22.2%
Lee[101] OM+GC 16.2%
Schwing [147] OM+GC 13.6%
Ramalingam [131] Junction+GC+OM+Pairwise+Triple 13.3%

32

2.4.4 Manhattan 3D Reconstruction with Junctions

In Section 2.2.2.2, we learned that intersections of line segments form various types of
junctions. These junctions can be used to infer 3D geometry from a 2D image. Rama-
lingam et al. [131] used this approach to reconstruct 3D line drawings of Manhattan build-
ings. Visualizations of this junction based Manhattan line 3D reconstruction are shown in
Figure 2.17. His approach consists of three steps:

1. Detecting Manhattan line segments

2. Connecting the Manhattan line segments into a graph

3. Lifting the line graph into 3D

The connectivities between two line segments are of two types:

1. Two collinear lines meet at a point (incidence)

2. Two or three orthogonal lines intersect at a point to form a junction

As I explained in section 2.2.2.2, in polyhedral scenes, junctions can be classified into
Y, W, L, X, T categories [76, 31, 168] (Figure 2.18 and 2.20(b)). The Y and W junctions
indicate convex or concave corners; L indicates corners; X usually indicates translucency;
T junctions provide evidence of occlusion between two surfaces.

Ramalingam et al. [131] proposed an algorithm that uses Manhattan lines to catego-
rize junctions in the image into L,T,W,Y, and X types. Each point pi in the image has 6
possible orientation regions with respect to the vanishing point (Figure 2.19) denoted as
r ∈ {−→x ,←−x ,−→y ,←−y ,−→z ,←−z }.

These orientations represent the direction toward or away from vanishing points in x,
y, and z directions. Inside each orientation region from point pi, there may be several line
segments. The total length of the line segments in each orientation region within a 60 pixel
radius of point pi is stored as a 6-cell feature vector array Vj(pi) where each cell represents
an orientation. Vj(pi) is then converted into a binary vector by a threshold h. This binary
vector is matched with one of five binary templates (see illustration of 5 binary templates
in Figure 2.20) to classify point p into one of L, T, W, Y, X or null junction types.

33

Figure 9. Line Reconstruction Results. The first column displays
the original images with the Manhattan lines marked. The second
and third columns show perspective views of the 3D lines. During
the visualization of the 3D lines, we used the same color as they
appear on the image.

using the nearby lines. We take a more global approach

Figure 10. Failure cases in the line reconstru
missing lines along the z direction led to th
parallel planes to a single plane. In the seco
from the reflections on the shiny floor are
structure in the scene. In the third row, mi
on the background building deprives the LP
a separate structure. In the last row, incor
mation using the vanishing points led to sm
depth parameters.

by considering all plausible connectiv
tween lines and try to find a consistent
scene. Such an approach can improv
niques for orientation maps by giving
cluding boundaries. In the case of scen
Manhattan lines, the algorithm either
mates them using Manhattan ones as sh
of the main advantages of our algorithm
reconstruction shown in Fig. 12. On a
we can also see a second door on a para
right wall. The line reconstruction can
tially hidden structures. Due to planari
the opaqueness assumptions typically
approaches, existing techniques will fin
derstand such structures.

Acknowledgments: We thank J. Tho
Yedidia, P. Torr, K. Alahari, A. Jain, J
P. Varley, ACs and anonymous reviewe

503503

Figure 9. Line Reconstruction Results. The first column displays
the original images with the Manhattan lines marked. The second
and third columns show perspective views of the 3D lines. During
the visualization of the 3D lines, we used the same color as they
appear on the image.

using the nearby lines. We take a more global approach

Figure 10. Failure cases in the line reconstru
missing lines along the z direction led to th
parallel planes to a single plane. In the seco
from the reflections on the shiny floor are
structure in the scene. In the third row, mi
on the background building deprives the LP
a separate structure. In the last row, incor
mation using the vanishing points led to sm
depth parameters.

by considering all plausible connectiv
tween lines and try to find a consistent
scene. Such an approach can improv
niques for orientation maps by giving
cluding boundaries. In the case of scen
Manhattan lines, the algorithm either
mates them using Manhattan ones as sh
of the main advantages of our algorithm
reconstruction shown in Fig. 12. On a
we can also see a second door on a para
right wall. The line reconstruction can
tially hidden structures. Due to planari
the opaqueness assumptions typically
approaches, existing techniques will fin
derstand such structures.

Acknowledgments: We thank J. Tho
Yedidia, P. Torr, K. Alahari, A. Jain, J
P. Varley, ACs and anonymous reviewe

503503

Figure 9. Line Reconstruction Results. The first column displays
the original images with the Manhattan lines marked. The second
and third columns show perspective views of the 3D lines. During
the visualization of the 3D lines, we used the same color as they
appear on the image.

using the nearby lines. We take a more global approach

Figure 10. Failure cases in the line reconstru
missing lines along the z direction led to th
parallel planes to a single plane. In the seco
from the reflections on the shiny floor are
structure in the scene. In the third row, mi
on the background building deprives the LP
a separate structure. In the last row, incor
mation using the vanishing points led to sm
depth parameters.

by considering all plausible connectiv
tween lines and try to find a consistent
scene. Such an approach can improv
niques for orientation maps by giving
cluding boundaries. In the case of scen
Manhattan lines, the algorithm either
mates them using Manhattan ones as sh
of the main advantages of our algorithm
reconstruction shown in Fig. 12. On a
we can also see a second door on a para
right wall. The line reconstruction can
tially hidden structures. Due to planari
the opaqueness assumptions typically
approaches, existing techniques will fin
derstand such structures.

Acknowledgments: We thank J. Tho
Yedidia, P. Torr, K. Alahari, A. Jain, J
P. Varley, ACs and anonymous reviewe

503503

Figure 2.17: Line reconstruction results. The first column shows the Manhattan lines overlaying
the original images. The second and third columns show perspective 3D views of the 3D line
structures. Figure taken from [130].

The incidences and junctions connect lines together into a line graph structure G =

(V, ε), where the vertices V = 1, 2, . . . , n represents the lines, and edges ε ∈ (i, j) rep-
resent intersections or incidences between lines li and lj . An example of a line graph is
shown in Figure 2.21.

In the graph G = (V, ε), each vertex is a Manhattan line segment. Let the 3D coor-
dinate of one of the end points on line Vi be pi = λidi, where λi is an unknown depth

34

Figure 2.18: A living room with several junctions of types L, T, Y, X, W. Figure taken from [131].

Figure 2.19: Lines at a junction point p. From p there are 6 orientation regions with respect to the
vanishing point. Inside each orientation region, there may be several Manhattan line segments of
different lengths. The total line segment length inside each orientation region is used to classify the
junction type. Figure taken from [131].

35

Figure 2.20: (a) There are 6 possible directions at point p based on the three vanishing points. (b)
Binary templates for 5 junction types. Figure taken from [131].

(a) (b)

Figure 3. (a) We consider four lines in the image space denoted by
l1,l2,l3 and l4 that produce three intersection points I 12, I 13 and
I 23. For a pair of nearby collinear lines, we use a point that is
collinear to both the lines as a point of incidence I 14. (b) We build
a constraint graph where all the lines in the image are the vertices
and all the intersections and incidences are edges.

Figure 4. We show the intersection of two lines li and lj . The
projection rays for two image pixels pi and pj , lying on lines li
and lj respectively, are also shown. The 3D points corresponding
to these image pixels can slide anywhere on its projection rays
and the two unknown parameters (λi ,λj) denote the distances of
these points from the camera center (O). The directions of these
two points are given by di and dj . We parametrize a 3D line using
one of the end points. As this point moves along the projection ray,
the corresponding 3D line slides while maintaining its Manhattan
orientation Di . The distance between the two 3D lines is given by
si j .

is an unknown depth parameter that is equal to the distance
of the 3D point from the camera center. In general, to lift an
image line, we require two parameters to reconstruct both
its end points in 3D space. However, reconstructing one
point is sufficient to recover the other one under Manhattan
world assumption. Let pi be the pixel corresponding to one
of the end points of the line li . We use a single depth pa-
rameter λi to denote the distance of this end point from the
camera center. Accordingly, the 3D point λi di encodes the
position of the 3D line corresponding to line li . In Fig. 4,
we show two lines li and lj that intersect. Let the Manhattan
direction of a line li be given by Di where Di ∈ {x,y,z}.
One can see that by varying the λi parameter we can slide
the 3D line along the projection ray using one of its end
points while maintaining the Manhattan direction Di . With
respect to the constraint graph G = (V,E), we have one
unknown λi parameter for every vertex i ∈V. Every inter-
section or incidence relationship indicates that the two lines

should intersect or be collinear. Each edge in the graph rep-
resents a potential constraint between two lines. Our goal is
to find the unknown depth parameters, such that we satisfy
the maximum number of such constraints as shown in the
following optimization problem:

min
λ i

(i ,j)∈E
(||si j ||0)

s.t |λi dia −λj dj a|≤ si j ,a∈{x,y,z}\ {Di ,Dj }

λi ≥ 1, i ∈V.
(1)

From a single image, the reconstruction is only possible
up to an unknown global scale. The constraints λi ≥ 1 en-
sures that the line segments are at least unit distance from
the camera and also in front of the camera. We have two
inequalities for every collinearity constraint because the set
{x,y,z}\ {Di ,Dj }has two elements given Di = Dj . Ac-
cordingly, we have one inequality for the orthogonality con-
straint since Di = Dj . We have one slack variable si j for
every constraint. As shown in Fig. 4, minimizing the L0
norm of the slack variable si j is equivalent to depth-shifting
and depth-bridging the smallest subset of 3D lines to make
the scene graph connected and consistent in 3D.
Since this L0 norm minimization is NP-hard, we relax

the problem to a sparsity-promoting L1 norm and solve
for a minimum-weight set of depth shifts and bridges that
makes the scene graph 3D-consistent:

min
λ i

(i ,j)∈E
(||wij si j ||1)

s.t |λi dia −λj dj a|≤ si j ,a∈{x,y,z}\ {Di ,Dj }

λi ≥ 1, i ∈V.
(2)

The weight parameterswij in the objective function present
an opportunity to incorporate more evidence from the im-
age, which is obtained from junction features and will be
explained in Sec. 3.4. The LP provides a solution for all
slack variables si j . For every edge (i, j) the slack vari-
ables si j give us the minimum depth separation between
line i and line j needed to obtain the lowest-cost globally
consistent 3D interpretation of the scene. To then extract a
minimal-cost fully-connected 3D structure from the LP so-
lution, we use each slack value si j as the edge cost and com-
pute the minimal spanning tree (MST) as shown in Fig. 5(c).
The depth parameters λi can be computed directly from the
linear system that corresponds to the tree-structured graph.
The various stages of the algorithm are shown in Fig. 5.

3.4. Junction-breaking Costs
Under the Manhattan world assumption, an efficient vot-

ing scheme was introduced recently for computing the junc-

500500

(a)(a) (b)

Figure 3. (a) We consider four lines in the image space denoted by
l1,l2,l3 and l4 that produce three intersection points I 12, I 13 and
I 23. For a pair of nearby collinear lines, we use a point that is
collinear to both the lines as a point of incidence I 14. (b) We build
a constraint graph where all the lines in the image are the vertices
and all the intersections and incidences are edges.

Figure 4. We show the intersection of two lines li and lj . The
projection rays for two image pixels pi and pj , lying on lines li
and lj respectively, are also shown. The 3D points corresponding
to these image pixels can slide anywhere on its projection rays
and the two unknown parameters (λi ,λj) denote the distances of
these points from the camera center (O). The directions of these
two points are given by di and dj . We parametrize a 3D line using
one of the end points. As this point moves along the projection ray,
the corresponding 3D line slides while maintaining its Manhattan
orientation Di . The distance between the two 3D lines is given by
si j .

is an unknown depth parameter that is equal to the distance
of the 3D point from the camera center. In general, to lift an
image line, we require two parameters to reconstruct both
its end points in 3D space. However, reconstructing one
point is sufficient to recover the other one under Manhattan
world assumption. Let pi be the pixel corresponding to one
of the end points of the line li . We use a single depth pa-
rameter λi to denote the distance of this end point from the
camera center. Accordingly, the 3D point λi di encodes the
position of the 3D line corresponding to line li . In Fig. 4,
we show two lines li and lj that intersect. Let the Manhattan
direction of a line li be given by Di where Di ∈ {x,y,z}.
One can see that by varying the λi parameter we can slide
the 3D line along the projection ray using one of its end
points while maintaining the Manhattan direction Di . With
respect to the constraint graph G = (V,E), we have one
unknown λi parameter for every vertex i ∈V. Every inter-
section or incidence relationship indicates that the two lines

should intersect or be collinear. Each edge in the graph rep-
resents a potential constraint between two lines. Our goal is
to find the unknown depth parameters, such that we satisfy
the maximum number of such constraints as shown in the
following optimization problem:

min
λ i

(i ,j)∈E
(||si j ||0)

s.t |λi dia −λj dj a|≤ si j ,a∈{x,y,z}\ {Di ,Dj }

λi ≥ 1, i ∈V.
(1)

From a single image, the reconstruction is only possible
up to an unknown global scale. The constraints λi ≥ 1 en-
sures that the line segments are at least unit distance from
the camera and also in front of the camera. We have two
inequalities for every collinearity constraint because the set
{x,y,z}\ {Di ,Dj }has two elements given Di = Dj . Ac-
cordingly, we have one inequality for the orthogonality con-
straint since Di = Dj . We have one slack variable si j for
every constraint. As shown in Fig. 4, minimizing the L0
norm of the slack variable si j is equivalent to depth-shifting
and depth-bridging the smallest subset of 3D lines to make
the scene graph connected and consistent in 3D.
Since this L0 norm minimization is NP-hard, we relax

the problem to a sparsity-promoting L1 norm and solve
for a minimum-weight set of depth shifts and bridges that
makes the scene graph 3D-consistent:

min
λ i

(i ,j)∈E
(||wij si j ||1)

s.t |λi dia −λj dj a|≤ si j ,a∈{x,y,z}\ {Di ,Dj }

λi ≥ 1, i ∈V.
(2)

The weight parameterswij in the objective function present
an opportunity to incorporate more evidence from the im-
age, which is obtained from junction features and will be
explained in Sec. 3.4. The LP provides a solution for all
slack variables si j . For every edge (i, j) the slack vari-
ables si j give us the minimum depth separation between
line i and line j needed to obtain the lowest-cost globally
consistent 3D interpretation of the scene. To then extract a
minimal-cost fully-connected 3D structure from the LP so-
lution, we use each slack value si j as the edge cost and com-
pute the minimal spanning tree (MST) as shown in Fig. 5(c).
The depth parameters λi can be computed directly from the
linear system that corresponds to the tree-structured graph.
The various stages of the algorithm are shown in Fig. 5.

3.4. Junction-breaking Costs
Under the Manhattan world assumption, an efficient vot-

ing scheme was introduced recently for computing the junc-

500500

(b)

Figure 2.21: (a) 4 line segments (l1, l2, l3, l4) connected by incidences and junctions where l14

is an incidence connection node and I12, I13 and I23 are junction nodes. (b) A graph structure
representing connections in (a). In this graph each vertex is a line segment and each edge is an
incidence or junction. [130]

parameter, di = (x, y, f) represents the 3D coordinate of point pi in the image domain,
and f is the focal length of the camera. Under the Manhattan assumption, recovering the
3D location of one end node on the line is sufficient to recover the 3D coordinates for the
whole line segment. di is a constant vector which leaves the vertex Vi with 1 degree of
freedom (a linear model) in the 3D space. By optimizing the parameter λi for all the lines,
a 3D line model can be obtained. The optimization algorithm is based on the assumption
that when two lines form a junction or incidence, the 3D distance of these two lines should

36

be very small. For example, in Figure 2.22, two lines (li and lj) in the image form a junc-
tion. By adjusting the scale parameter λi and λj , the 3D distance between these two lines
Sij can be minimized. This optimization process can be handled by a linear programming
formulation that computes:

min
λi

∑
(i,j)∈ε

(‖ωijsij‖1)

s.t |λidia − λjdja| ≤ sij, a ∈ {x, y, z}\{Di, Dj}, λi ≥ 1, i ∈ ν
(2.8)

where sij is a slack variable minimizing the distance between two lines li and lj . ν is the
collection of line segments in the image. Di ∈ {x, y, z} is a Manhattan line direction for
line li. The weight parameters ωij are set to 10 for Y and W junctions, 5 for X junctions,
and 1 for L junctions and incidence junctions. T junction weights are set to 0 because
T junctions are unreliable, as they can be generated by both planar surfaces and occlud-
ing boundaries (Figure 2.23). The optimal fully-connected 3D structure is extracted by
computing the minimum spanning tree (MST) using the slack value sij as weight.

Figure 2.22: Line segments li and lj intersect in the image domain. sij indicates the 3D distance
between line li and lj . λi and λj are adjusted to minimize sij and thus to recover the 3D coordinates
of li and lj . [130]

37

Figure 2.23: T junctions in a built environment. The T junction on the left is caused by occlusion.
The T junction on the right is caused by a planar reflectance pattern.

Discussion: This approach is limited to connected Manhattan structures and will fail for
a structure that is not Manhattan or not connected. It uses LSD [166] to detect line seg-
ments, which sometimes fails to identify continuous segments. Using a more advanced
line segment detection algorithm [4, 29, 182, 75] might improve performance.

38

2.4.5 Photo Pop-up

A Photo Pop-up model [73, 62, 124] is similar to a pop-up illustration in a children’s
book (Figure 2.24). It is a 3D reconstruction that is made from 2D vertical objects on a
supporting platform.

Figure 2.24: A pop-up illustration in a children’s book [93]

In this model, each image pixel is categorized into one of three major classes: support,
vertical and sky. The support consists of surfaces parallel to the ground such as road
surfaces, table tops and lakes. The vertical class consists of surfaces such as walls, cliffs,
trees or people. The sky is simply the sky region in the image. The vertical class can
be further divided into planar surfaces and non-planar surfaces. Planar surfaces include
building walls, and cliff faces. Image pixels on vertical planar surfaces are classified into
left, centre and right categories. The non-planar surfaces includes trees, people, and cars
and are further subdivided into two sub-categories: porous surfaces and solid surfaces.
Porous surfaces are surfaces that do not have a solid continuous surface. Solid surfaces
are continuous surfaces. Supports form a platform that supports vertical surfaces. An
example of a surface Photo Pop-up visualization is shown in Figure 2.25.

There are numerous algorithms that attempt to infer such a model from a single im-
age [73, 62, 124]. A quantitative comparison of four algorithms evaluated on the Geomet-
ric Context dataset [73] is shown in Table 2.5 and a qualitative comparison is shown in
Figure 2.26 . The Pan [124] algorithm achieved the best performance. In this algorithm,
semantic segmentation [117], geometric context [73], and orientation maps [100] are uti-

39

Figure 2.25: Pop-up 3D reconstruction. Pixels in the input image are labelled as support, vertical
or sky classes. The second column shows the labelling result. The third and fourth columns show
the 3D reconstruction from two different view angles. Figure taken from [73].

Table 2.5: Comparison of surface layout estimation algorithms on Geometric Context dataset [73].

Hoiem [73] Gupta [62] Pan [124] OM [100]
Layout Accuracy 72.87% 73.59% 74.82% 71.2%

lized to detect and decompose the building region into a set of distinctive facade planes. A
distinctive facade plane is a facade plane whose orientation is different from its adjacent
facade planes. This set of distinctive facade planes together with assumptions on building
height and camera height are used to create a conditional random field (CRF) model to
estimate the surface layout.

40

Figure 2.26: Qualitative comparisons of surface layout estimation. From left to right: Ground
truth; Hoiem et al. [73]; Gupta et al. [62]; Pan CRF [124]; Pan without CRF [124]. Surface
layout colour code: Magenta - planar right; Cyan - planar left; Red - planar centre; Green -
nonplanar porous; Yellow - nonplanar solid; Blue - sky; Grey - support. Figure taken from [124].

41

2.4.6 Discussion

3D Geometry can be inferred from a 2D image through primitive features such as line
segments and appearance cues. A line segment is a powerful cue that remains a line seg-
ment after perspective transformation. It can be used to estimate advanced geometrical
features such as vanishing points, Manhattan frame orientation, orientation maps, geomet-
ric contexts, and junctions. These advanced features can be used to infer a 3D box room
layout [70, 169, 101, 147, 131] or build a 3D line drawing of Manhattan buildings [130].
Under non-Manhattan environments where line segments alone cannot provide sufficient
information for the reconstruction, appearance cues can provide additional information to
build a Photo Pop-up 3D reconstruction [73, 62, 124]. A diagram illustrating the relation
between primitive features, advanced features and 3D reconstruction is shown in Figure
2.27.

Line Segments

Vanishing
Points

Appearance
Cues

Geometric
Context Photo Pop-up

Manhattan
Lines

Orientation
Map

Junctions Manhattan 3D
Line Model

3D Cuboid Room
Reconstruction

Primitive Features Advanced Features 3D Reconstructions

Figure 2.27: Relationships between geometry based reconstruction methods.

42

2.5 Machine Learning Methods for Single-View 3D Re-
construction

Constrained piecewise planar models are appropriate for some scenes. For more gen-
eral scenes, a range map can be estimated using supervised machine learning techniques.
Make3D [140, 141, 143] was an early attempt to recover a range map from a single image.
It utilizes local edge, texture, and colour features and models these features in a Markov
Random Field (MRF). Later, this approach was improved by extracting deep learning fea-
tures [107, 102, 171, 178] as feature vectors to train graph models.

Another way to estimate depth is through an end-to-end deep neural network [46, 45,
26, 99, 55]. These deep learning approaches need a large amount of labelled data which
require a lot of resources to obtain. Recent work demonstrates that deep networks for
single-view range map estimation can be trained from multi-view data such as calibrated
stereo cameras [57] or un-calibrated video sequences [187] using reprojection error as the
supervisory signal. Details of these methods are described below.

2.5.1 Graph Models

Graph models specify a factorization of the joint distribution over a set of variables into
a product of local conditional distributions, as well as a set of conditional independence
relations [17]. Graph models have been widely applied to image de-noising, classification
and segmentation tasks. Saxena et al. [140, 141, 143] modelled the depth map estimation
problem with a multi-scale Markov Random Field (Figure 2.28). In the algorithm, hand-
crafted local and global image features were extracted to create a depth prediction model.
They showed that the depth information in an unstructured scene can be estimated by using
local edge, texture and colour features from a single image.

Local features are extracted from a set of small homogeneous regions called “super-
pixels” [51]. Each super-pixel represents a coherent region in the image in which all
pixels have similar properties(Figure 2.29). Using super-pixels reduces the computational
requirements of the algorithm.

The depth value of each super-pixel is inferred from maximum a posteriori(MAP)

43

Figure 2.28: The multiscale MRF model for modelling relations between features and depths, the
relation between depths at the same scale, and the relation between depths at different scales. [141]

Figure 2.29: An image segmented into super-pixels. Figure taken from [142].

estimation of a Gaussian model:

PG(d|X; θ, σ) =
1

ZG
exp(−

M∑
i=1

(di(1)− xTi θr)2

2σ2
1r

−
3∑
s=1

M∑
i=1

∑
j∈Ns(i)

(di(s)− dj(s))2

2σ2
2rs

)

(2.9)
where xi is the feature vector from patch i, and i and j are index numbers of two nearby
image patches. di(s) and dj(s) are the estimated depth values at patch i and patch j at
scale s = 1, 2, 3. θ and σ are parameters of the model learned from training data. Different
parameters (θr, σ1r, σ2rs) are used for each image height r. M is the total number of super-
pixel patches in the image, and ZG is the normalization constant for the model. The param-

44

eter θr is estimated by maximizing the conditional log likelihood l(d) = logP (d|X; θr).
σ1r and σ2rs are estimated by quadratic programming fitting to the expected value of vari-
ance in the training data. The algorithm was trained and tested on a dataset acquired using
a camera of fixed height, focal length, and horizontal optic axis. Consequently, height in
the image is a good predictor of depth.

More recently, hand-crafted features have been replaced with deep-learning features [102],
significantly improving the model accuracy. Furthermore, deep networks [107, 171, 178]
can be directly applied to estimate the unary potential and pairwise potential in the graph
model. A performance comparison of recent graph based depth prediction methods is
shown in Table 2.6.

Feature Model Training Methods Scale RMS Error

Make3D [143] Hand Crafted MRF Max. Likelihood + QP Multi-Scale 1.214

Liu [107] CNN CRF CNN Single-Scale 0.824

Li [102] CNN CRF Least Squares Multi-Scale 0.821

Wang [171] CNN CRF CNN Multi-Scale 0.745

Xu [178] CNN CRF CNN Multi-Scale 0.655

Table 2.6: Performance comparison of graph based depth prediction methods evaluated on the
NYU v2 dataset [149]. The Make3D algorithm was trained on the Make3D dataset and evaluated
on the NYU v2.

Discussion: The graph model is capable of processing a wide range of scenes. One weak-
ness of the graph model approach is that it requires a lot of training data. A second problem
is that it tends to overfit to the training dataset, resulting in poor generalization.

2.5.2 End-to-End Deep Networks

Another way to reconstruct a range map from a single image is to train an end-to-end
deep network. Eigen et al. [46] proposed a structure that uses two deep convolutional
neural networks: a global coarse-scale network and a local fine-scale network. The global
network predicts the overall global depth map. The upper layers are fully connected while
the lower and middle layers are convolutional layers. The global depth map is refined by
a local fine-scale network that codes more local details such as objects and wall edges

45

(Figure 2.30). The loss function of the algorithm is scale-invariant mean squared error

9x9 conv
2 stride

2x2 pool

11x11 conv
4 stride

2x2 pool

Fine 1

Coarse 1

5x5 conv
2x2 pool

Coarse 2

96

64

Coarse 5

256 256

Coarse 6

4096

63

Concatenate

384

Coarse 4

Fine 3

Coarse

Fine 4

Refined

3x3 conv full3x3 conv 3x3 conv

5x5 conv

full

1

1
64

Fine 2

5x5 conv

Input

384

Coarse 3 Coarse 7

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

Coarse Fine
Layer input 1 2,3,4 5 6 7 1,2,3,4
Size(NYUDepth) 304x228 37x27 18x13 8x6 1x1 74x55 74x55
Size(KITTI) 576x172 71x20 35x9 17x4 1x1 142x27 142x27
Ratio to input /1 /8 /16 /32 – /4 /4

Figure1: Model architecture

Figure 2.30: The network structure used in [46] consists of a global coarse-scale network and
a local fine-scale network. In the global network, the first five layers are convolutional layers
with max-pooling and rectified linear units as activation functions. The latter two layers are fully
connected layers. The local network is a relatively shallow convolutional network. Its features are
concatenated with the global depth map followed by two convolutional layers. Figure taken from
[46].

(Equation 2.10).

D(y, y∗) =
1

n

∑
i

d2
i −

1

n2
(
∑
i

di)
2

= E[(di − E[di])
2]

= E[d2
i]− (E[di])

2

= V AR(di)

(2.10)

where y and y∗ are the predicted and ground truth depth maps respectively, n is the number
of pixels indexed by i, and di = log yi

y∗i
.

Later, Eigen et al. [45] improved their algorithm by adding more layers, a new loss
function (Equation 2.11), and joint estimation of depth with surface orientation and se-

46

Eigen [46] FCRN [99] DORN [55]
Number of Layers 23 50 20
Number of Parameters 2M 63M 108M
Loss Function Error Variance berHu Ordinary Regression Loss
Framework Theano Tensorflow Caffe
RMS Error 0.871 0.573 0.509

Table 2.7: A comparison of different end-to-end depth prediction networks.The RMS errors were
evaluated on the NYU v2 dataset [149].

mantic category. They employed a new loss function given by:

D(y, y∗) =
1

n

∑
i

d2
i −

1

2n2
(
∑
i

di)
2 +

1

n

∑
i

[(5xdi)
2 + (5ydi)

2] (2.11)

where5xdi and5ydi are the horizontal and vertical image gradients of the error.
In 2016, Laina et al. [99] trained a deep ResNet [68] concatenated with up-sampling

layers on the single-view range estimation problem, showing that more layers and using re-
verse Huber(berHu) as a loss function achieves better accuracy. The reverse Huber(berHu)
is formulated as:

berHu(x) =

|x| if |x| ≤= c

x2+c2

2c
if |x| > c

(2.12)

Later, Fu et. al [55] introduced an ordinary regression loss function and a multi-scale
network structure. The new loss function improved the convergence speed and achieved
higher accuracy. The multi-scale structure avoided unnecessary spatial pooling and al-
lowed multi-scale information to be processed in parallel. A comparison of different end-
to-end depth prediction networks is shown in Table 2.7.

Discussion: End-to-end deep networks achieve better performance than the graph based
approach on the NYU v2 [149] dataset. This is due to the powerful architecture and mil-
lions of free parameters in the network model. Similar to graph based models, one of
the limitations is over fitting on the training dataset which leads to poor generalization.
Another disadvantage is that, due to computational constraints, the resolution of recon-
struction is limited(eg. 147× 109 pixels).

47

2.5.3 Multi-View Supervised Learning

Collecting RGB-D data is a long and expensive process. It requires a specialized depth
sensor and a lot of post-processing to obtain high quality depths data. There are unsuper-
vised alternatives that use stereo cameras or video stream.

2.5.3.1 Learning Single-View Estimation with a Stereo Camera

Garg et al. [57] suggested that low cost stereo camera data could be used to train a deep
network to perform depth estimation from single images. They proposed a stereopsis-
based auto-encoder to train the depth model with stereo image pairs (Figure 2.31). The
left image I1 and right image I2 are used in training, and the output is the depth map d.
This depth map is used to predict the left image IW from the right image I2. The loss
function E of this CNN model is the L2 loss between I1 and Iw with L2 regularization:

E =
N∑
i=1

Ei
recons + γEi

smooth (2.13)

Ei
recons =

∑∥∥I iw(x)− I i1(x)
∥∥2
dx (2.14)

where Ei
recons is the L2 error between left image I i1 and the reconstructed image I iw. γ is

the weight for the regularization term. x is the index of pixels in the left image. Assuming
epipolar lines fall along horizontal scan lines, the reconstructed image I iw can be synthe-
sized as I i2(x + fb/di(x)), where di(x) is the predicted depth value for pixel x, f is the
focal length of the cameras and b is the distance between the two cameras. The smoothing
term of the loss function is defined as L2 regularization on the disparity gradient:

Ei
smooth =

∥∥5Di(x)
∥∥2 (2.15)

Discussion: Unlike range map data, stereopsis data is easy to obtain from low cost stereo
cameras. With nearly unlimited data, a large variation of data can be obtained easily to
train a depth estimation model that leads to better generalizability. The disadvantage of
this method is that its accuracy is limited by the hardware to only work for nearby surfaces.
The theoretical depth resolution of a stereo camera dZc as a function of distance Z [98] is:

dZc =
Z2

fb
dpx (2.16)

48

Figure 2.31: The stereopsis based auto-encoder: Component 1 is a convolutional neural network
encoder, which generates an inverse range map D(x). Component 2 uses the inverse range map
and the right image to generate a synthesized version of the left image. Component 3 calculates
the reconstruction error between the real left image and the synthesized image. Figure taken from
[57].

where f is focal length, b is baseline and dpx is disparity accuracy.
As the distance Z increases, the depth resolution of a stereo camera increases as the

square of the distance. Thus stereo cameras are only recommended for close-range vi-
sion (e.g. 1-20m for ZED stereo camera [122]). Due to this limitation on stereo camera
hardware, the single-view 3D reconstruction model trained from stereo images only works
well for close-range environments. Also note that the method will fail for featureless or
highly reflective surfaces.

2.5.3.2 Depth Estimation Model using Video Streams

Video streams can also be used to train a depth prediction network. Zhou et al. [187]
proposed two jointly trained CNNs (Figure 2.32) that consist of a depth CNN and a pose
CNN. Training data consists of triplets of consecutive video frames (It−1, It, It+1). The
depth CNN model takes the middle frame (It) as input, and all three frames are input into
the pose CNN model to generate two relative camera poses (T̂t−1, T̂t+1). Each of these
poses together with estimated depth (D̂t) is used to generate the synthesized estimation of
It−1 and It+1 from It. Let pt denote the homogeneous coordinates of a pixel in the target
view and K denote the camera intrinsic matrix. The projection of target view point pt onto

49

source view point psis:
ps ∼ KT̂t→sD̂t(pt)K

−1pt (2.17)

where T̂t→s is the relative camera pose matrix estimated from the pose CNN model. D̂t(pt)

is the predicted depth value at pixel coordinate pt in the input image. ps is the projected
coordinate. The depth and pose CNN networks are trained jointly by minimizing the error
between the real image and the synthesized image.

Figure 2.32: Overview of the view synthesis algorithm. The depth network takes It as input to
generate a depth map D̂t. The pose network generates two camera poses (T̂t−1 and T̂t+1) from
It−1 and It+1 relative to It. The image It is used to generate a synthesized version of It−1 and
It+1 using camera poses and the depth map. [187]

Discussion: Video streams are much easier to collect than range data. A performance
comparison of algorithms on the KITTI dataset [54] is shown in Table 2.8, where Eigen [46]
and Liu [107] are deep learning algorithms trained on range data.

Methods Eigen [46] Liu [107] Garg [57] Zhou [187]
Data Source Range Range Stereo Video
RMSE 6.307 6.523 5.104 6.565

Table 2.8: Performance comparison of depth estimation algorithms on the KITTI dataset [54].

A motion-based method can only be accurate if the camera translation is reasonably

50

large relative to the distance of the surface. It will fail for featureless or highly reflective
surfaces.

51

2.5.4 Discussion

Machine learning approaches have advantages and disadvantages. They are able to learn
3D reconstruction models from an enormous amount of range map, stereo imaging, or
video data. Given a single 2D image, these methods can generate a dense range map
which is suitable for applications such as robotics and self-driving cars. These methods
work on a large variety of scenes as long as there are sufficient data to train.

On the other hand, due to computational constraints, these methods fail to create crisp
clear representations and can only generate low resolution range maps. In these methods,
networks are less explainable. Furthermore, these methods tend to over-fit the training
data and lead to poor generalization.

52

2.6 Conclusion

A critical difference between the methods of Section 2.4 and 2.5 is the nature of the model
they produce. In section 2.4, a geometrical model is generated. In section 2.5, a range map
is generated. The geometrical model is useful for built environments, especially where the
Manhattan world assumption holds. The range maps are collections of points that are
more suitable for unstructured scenes. In terms of application, geometrical methods have
less expensive hardware costs. The geometrical methods can be deployed onto embedded
machines or micro-processors that have limited computational power and battery life. The
machine learning approach is generally more expensive. It requires an expensive GPU to
run and a large amount of disk space to store their networks. One possible solution for the
GPU requirement is to migrate the data processing onto cloud servers.

Single-view 3D reconstruction has many unsolved problems. For the geometric ap-
proaches, the reconstruction either generates a 3D line drawing [131], box layout [70,
169, 101, 147, 131, 70, 78], or Photo Pop-up [73, 62, 124]. There are limitations for those
three methods. The 3D line drawing does not have surface information. The box lay-
out has surfaces, but it is only applicable to simple indoor room scenes. The Photo Pop-up
only identifies rough categorical surface types. The next step for the geometric approach is
to develop a new way to represent precise 3D surface models for more general Manhattan
scenes.

The machine learning approaches generate low resolution range maps which fail to
create crisp clear representations. These deep networks lack explainability. Furthermore,
these methods tend to over-fit the training data which leads to poor generalization. The
future directions for machine learning based approaches are:

1. Create a way to generate high resolution crisp clear range maps.

2. Improve the explainability of the networks.

3. Improve generalization.

4. Compress the network for greater efficiency.

5. Since the geometric and deep learning approaches are complementary, a promising
research direction is to study how the two approaches can be combined.

53

Chapter 3

MCMLSD: Line Segment Detection

3.1 Project Description

The goal of this project was to develop a high quality line segment detector which forms
the foundation for later projects. When a piecewise planar scene is perspectively pro-
jected onto an image plane, properties such as angles, distances and ratios of distance are
distorted. However, one property that is preserved over the projective transformation is
straightness. The straight line in 3D remains straight when projected to 2D. These line
segments in an image provide valuable information about the 3D geometry of the scene.
In this work, we have evaluated our algorithm on YorkUrbanDB[40] and Wireframe[75]
datasets which are , to my knowledge, the only available Manhattan line datasets at the
time of writing.

My contribution to this project consists of:

1. Improving the runtime efficiency of the algorithm from 105 seconds per image to
2.8 seconds per image, on average.

2. Extending the algorithm to work on any image resolution.

3. Performing additional experiments to compare with recent deep neural network al-
gorithms.

4. A more extensive evaluation and comparison with state-of-the-art algorithms on
YorkUrbanDB[40] and Wireframe[75] datasets.

54

5. Devising an improved line segment ranking strategy.

6. Evaluating new line segment evaluation methods.

Related Publications:

• E. J. Almazàn, R. Tal, Y. Qian, and J. H. Elder. MCMLSD: A dynamic programming
approach to line segment detection. In 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 5854–5862, July 2017

• J. H. Elder, E. J. Almazàn, Y. Qian, and R. Tal. MCMLSD: A probabilistic algorithm
and evaluation framework for line segment detection, 2020 (In preparation)

3.2 Introduction

Much of our visual world can be approximated as piecewise planar, particularly in built
environments. The boundaries and creases of these piecewise planar surfaces project to
the image as line segments, and as a consequence the accurate detection of line segments
continues to be one of the most important low-level problems in the field of computer
vision. Line segments are important features for many tasks, including feature matching
across views [145], vanishing point detection [92] and 3D reconstruction [125, 185, 71].

Two frameworks have been popular for line segment detection: perceptual grouping
and global Hough analysis.

3.2.1 The Perceptual Grouping Approach

In the perceptual grouping framework, a set of heuristics typically based upon geometric
grouping cues (e.g., proximity, good continuation) is used to group roughly collinear local
features (e.g., edges or vectors tangent to isophotes) into extended line segments, which
are evaluated according to some quality of fit measure. An early example is the hierarchi-
cal heuristic framework developed by Boldt and colleagues [19]. More recent multi-stage
grouping efforts include the SSWMS approach of Nieto et al. [119], which involves an
iterative selection of image points with a strongly oriented gradient structure, followed by

55

an iterative growing process, the approach of Lu et al. [110], which involves both linking
and splitting, and the biologically inspired approach of Liu et al. [109], which employs
‘simple cell’ filters to detect local oriented structure, ‘complex cell’ mechanisms that lo-
cally integrate these responses and ‘hyper-complex’ mechanisms to detect endpoints.

An alternative to this multi-stage grouping approach is to analyze the covariance matrix
of image locations in a set of connected edges and label a set as a line segment if the
smallest eigenvalue falls below a threshold [63, 106]. While beautifully simple, these
methods are not robust to gaps or intersections in the edge map.

Another issue in this perceptual grouping framework is that some threshold on the
quality of fit measure must be applied in order to discriminate ‘true’ line segments from
false conjunctions that might arise by chance. This issue was addressed in the LSD frame-
work introduced by von Gioi et al. [166] and based on earlier work by Desolneux et al.
[41]. In this framework the so-called a-contrario approach is used to explicitly compute
the probability that inferred line segments might have occurred by chance, given a max-
imum entropy model of the edge map. (This is related to the minimum reliable scale
null hypothesis testing framework for edge detection developed by Elder & Zucker [50].)
While this approach does not eliminate the need for a threshold, it transfers the threshold
to a quantity (e.g., expected number of false positives per image) that is much easier to set
rationally. A much faster version of this method dubbed EDLines was later introduced by
Akinlar & Topal [2].

Recent work in this area has focused on trying to discriminate salient or important line
segments from less important ‘background’ segments. Kim et al. [87] used a combina-
tion of luminance and geometric features to select the most significant edges, reporting
superior performance to LSD on two test images. Brown et al. [20] used a measure of di-
vergence between colour statistics on either side of a hypothesized line segment to favour
salient segments. The method outperformed LSD and Hough methods using quantitative
measures of repeatability and registration accuracy on image pairs (see Section 3.5 below).

3.2.2 The Hough Approach

A drawback of the perceptual grouping approach is that local decisions are made before
potentially relevant global information can be brought to bear. The Hough approach avoids

56

this problem by accumulating edges over the entire image into a histogram of potential line
positions and orientations. Accuracy can be improved by modeling uncertainty in local
edges and propagating that uncertainty to the Hough map [154].

While the Hough approach to line detection has the advantage of integrating infor-
mation globally, identifying the endpoints that define the extent of the line segment in
the image is not necessarily straightforward. A number of methods scan the detected
lines in the image space looking for a maximal chain of connected or nearly-connected
edges [61, 113]. Others have attempted to identify the endpoints of each line segment by
analyzing the exact shape of a characteristic ‘butterfly’ pattern around the associated peak
in the Hough map [82, 56, 180, 181, 179]. One major limitation of this approach is that
only one segment can be found per line, whereas in built environments it is quite common
to find multiple co-linear segments.

3.3 Our Approach

The advantage of the Hough approach is that it can integrate all evidence for line hy-
potheses prior to inference. The perceptual grouping approach, on the other hand, allows
endpoints to be detected more directly, and permits the identification of multiple segments
per line.

Our two-stage method, an early version of which was published at CVPR 2017 [4],
combines the advantages of these two approaches. In the first stage we employ the prob-
abilistic Hough method of Tal & Elder [154] to identify globally optimal lines. In the
second stage we search each of these lines in the image for the segment(s) that gave rise
to it.

The key observation that recommends this approach is that narrowing the search for
segments from the 2D image to 1D lines allows the problem to be modeled as the labelling
of hidden states in a linear Markov chain model. The problem of determining the max-
imum probability (MAP) assignment of segments can then be shown to have an optimal
substructure property that leads to an exact dynamic programming solution in linear time.

The benefits of this approach are several:

1. Each of the lines identified by a peak in the Hough map results from careful accu-

57

mulation of the global evidence for the line, and thus will more accurately identify
the position and orientation (ρ, θ) parameters of the line segments than will a few
local edges.

2. The lines identified by the probabilistic Hough method have a natural order accord-
ing to their significance in the Hough map, allowing the line segment search to be
limited to the most significant lines.

3. In urban scenes, co-linear line segments are common, arising from architectural rep-
etition seen in cladding, windows, etc. Unlike many Hough methods, our approach
allows multiple segments to be recovered for each line.

4. Limiting search to a line allows the problem of determining maximum probability
segments to be solved exactly, using dynamic programming, in linear time.

3.4 The Deep Learning Approach

Most recently, two deep neural network (DNN) algorithms for line segment detection have
been reported. The Wireframe algorithm [75] is based upon a stacked hourglass net-
work [118] that takes as input a 320 × 320 pixel RGB image and produces as output a
320 × 320 pixel map encoding the estimated locations and lengths of the line segments
in the image. In particular, if a pixel is judged to lie on a segment, the pixel value indi-
cates the estimated length of that segment, while a pixel not lying on any segment should
have a value of 0. The network is trained to minimize an L2 loss and the scalar output is
thresholded to filter out shorter or lower-confidence segments.

Note that the Wireframe network delivers a raster map - essentially an edge map where
edges are constrained to lie on straight lines - rather than a vectorized description of the
locations, lengths and orientations of the line segments in the image. To obtain the latter, a
parallel network is trained to detect junctions in the image, and then a somewhat complex
process is followed to segment the edge map into line segments between junctions.

The Attraction Field algorithm [182] also employs a deep network, but in a rather
different way. The key insight is that it is easier for a deep network to map the input
image to a dense pixel grid of values than to a sparse boundary map. Thus to adapt the

58

problem of line segment detection to deep networks, each sparse ground truth line segment
map is used to generate a dense ground truth Attraction Field Map (AFM) that represents
the vector displacement to the nearest line segment point at every pixel in the image. A
network is then trained to estimate this dense AFM. At inference, the estimated dense
AFM is reduced to a sparse line segment map using a ‘squeeze module’ that accumulates
votes for line segment pixels by summing discretized displacement vectors over all pixels
in the AFM.

The authors experiment with two network architectures: A U-Net [137] and a modi-
fied U-Net, referred to by the authors as a-trous, that uses the ASSP module of DeepLab
v3+ [25] and the skip connections of ResNet [68]. An L1 loss on the AFM is employed.

As for Wireframe, the AFM approach produces a raster map of edge pixels that must
then somehow be grouped into line segments. In the case of AFM, a heuristic, iterative,
greedy region-growing approach similar to that used in LSD[166] is employed.

Both Wireframe and Attraction Field algorithms are trained on the Wireframe training
dataset.

Both Wireframe and AFM are claimed to outperform all prior non-DNN approaches to
line segment detection, including our MCMLSD approach [4]. However, we argue in this
paper that the evaluation performed in these two DNN papers is limited, and that a more
careful analysis reveals that for the problem of line segment detection (not edge detection),
MCMLSD and indeed some older non-DNN algorithms substantially outperform both of
these DNN approaches on a number of metrics. Given that these networks also involve tens
of millions of free parameters, we argue that more explainable methods such as MCMLSD
may be preferable for many applications.

3.5 Prior Evaluation Methodology

Due in part to a lack of high quality labelled ground truth, most traditional line segment
detection methods were evaluated only qualitatively on real imagery [19, 56, 166, 2, 106].
More recently, quantitative evaluations have been conducted based on datasets consisting
of pairs of images related by a known homography [20]. This is a promising method, but it
does suffer from two potential drawbacks. First, it is restricted to an analysis of co-planar
line segments. Second, the evaluation presupposes that the goal of line segment detection

59

is for the association of these segments across images for the purposes of homography or
disparity estimation. However there are many other possible applications - single view
reconstruction, for example.

While task-specific evaluation methodologies may be appropriate in some cases, it
would be preferable to have an evaluation method that is more general. In this work we
present a new methodology for quantitative evaluation of line segment detectors on real im-
ages that does not assume a specific task, using images from the YorkUrbanDB [40] (www.
elderlab.yorku.ca/YorkUrbanDB/) and Wireframe (https://github.com/
huangkuns/wireframe) datasets.

3.6 Algorithm

3.6.1 Line Detection

One problem with traditional Houghing methods is that noise in the observations tends to
cause each line to generate multiple peaks in the Hough map. To address this issue we
employ a probabilistic Hough transform method [154] (code available from elderlab.

yorku.ca/resources). The method uses edges detected by the multi-scale Elder
& Zucker edge detector [50], models uncertainty in the location and orientation of the
detected edges and propagates this uncertainty to the Hough map. This propagation of
uncertainty produces a smooth Hough map that is roughly resolution invariant and greatly
reduces the multiple response problem. The problem is mitigated further by a sequential
line extraction step in which each peak in the Hough map is visited in descending order of
significance, and edges contributing to the peak are subtracted from the Hough map when
it is visited.

3.6.2 Line Segment Detection

Each selected peak in the Hough map identifies a line that extends from one of the image
borders to another. In general, this line is only partially occupied by line segments in the
image. The goal is now to find these segments, based on the location and orientation of
nearby edges.

60

Prior work [40] suggests that most edges generated by a line and detected by the Elder
& Zucker edge detector lie within one pixel of the line. To ensure we capture all edges
related to a line we extend our search to all pixels within two pixels of the line (Fig. 3.1).
The orthogonal projections of these pixel locations onto the line then define an ordinal
sampling i ∈ [1, . . . , N] of the line. We let xi represent the binary hidden segment state
(ON or OFF) indicating whether a visible segment is present at position i on the line, di
the distance from the line to the associated pixel and yi the associated image observation
at that pixel. Each observation yi consists of 1-2 features:

1. A binary variable ei indicating whether an edge exists at this pixel.

2. The angular deviation θi of the edge from the line, if the edge exists.

Figure 3.1: Orthogonal projections (thin black lines) of all pixels within two pixels of a detected
line (thick black line) define an ordinal sampling of the line i ∈ [1 . . . N]. Pixels within this band
occupied by edges (shown red on grey) with orientations similar to the line support the assignment
of the ON state for the associated segment variable xi at sampled line locations.

These features provide information about the probable state of the line at the associated
position:
p(yi|xi) ∝ p(ei = 1|xi, di)p(θi|xi, ei = 1) for edge pixels.
p(yi|xi) ∝ p(ei = 0|xi, di) for non-edge pixels.
(Note that we have assumed that the angular deviation θi is independent of the distance di
of the pixel from the line.)

61

We learned these distributions from the 640×480 pixel images and hand-labelled ground
truth lines from the YorkUrbanDB training dataset [40]. Figs. 3.2(a-b) show the likeli-
hoods p(ei = 1|xi = ON, di) and p(ei = 1|xi = OFF, di) as functions of di for ON and
OFF states respectively. We represent these distributions as histograms. (The likelihoods
for non-edge observations p(ei = 0|xi = ON, di) and p(ei = 0|xi = OFF, di) are the
complements of the edge likelihoods.)

Figs. 3.2(c-d) show the probability p(θi|xi, ei = 1) as a function of the angular de-
viation θi for ON (xi = 1) and OFF (xi = 0) states, respectively. For the ON state we
approximate the heavy-tailed distribution as a mixture of a uniform and a Gaussian distri-
bution (shown in red). For the OFF state we employ a histogram representation.

Given these observations, we wish to determine the sequence of hidden states x1, ..., xN

that maximizes

p(x1, . . . , xN |y1, . . . , yN) ∝ p(y1, . . . , yN |x1, . . . , xN)p(x1, . . . , xN) (3.1)

We assume that, when conditioned on the hidden states xi, the observations yi are
mutually independent and independent of all xj , j 6= i. We further assume that the hidden
states are first order Markov so that Eqn. 3.1 becomes

p(x1, . . . , xN |y1, . . . , yN) ∝ p(y1|x1)p(x1)
N∏
i=2

p(yi|xi)p(xi|xi−1) (3.2)

The Markov assumption implies an exponential distribution of segment lengths; for the
YorkUrbanDB training dataset we have verified that this distribution is indeed very close
to exponential for segments down to ∼ 15 pixels in length. (For smaller segments the
density falls off, possibly due to difficulties in hand-labelling shorter segments.)

Table 3.1 shows values for the priors p(x1) and p(xi|xi−1), estimated from the 51
640×480 pixel images from the YorkUrbanDB labeled training dataset [40]. (Note that
since the probabilities for ON and OFF states sum to 1 there are only 3 free parameters.)
We make the approximation that p(xi|xi−1) is independent of the variation in spacing
between points on the line. Since the average segment in the YorkUrbanDB generates
more than 500 point samples, errors due to this approximation tend to average out.

The standard errors for these parameter estimates are relatively small, and we have
verified that variation within this range has negligible effect on results. While these pa-
rameters are specific to the YorkUrbanDB dataset and may therefore be sub-optimal for

62

0 0.8 1.6
0

Distance (pixels)

p(
y i)

(a)

0 0.8 1.6
0

Distance (pixels)
p(

y i)
(b)

−90 −60 −30 0 30 60 90
Angular Error (deg)

(c)

-90 -60 -30 0 30 60 90

Angular Error (deg)

(d)

Figure 3.2: Likelihoods for line segment extraction, learned from the YorkUrbanDB training
dataset [40]. (a-b) Likelihood p (ei|xi, di) for distance di of observations from line for (a) ON
(xi = 1) and (b) OFF (xi = 0) states. (c-d) Probability p (θi|xi, ei) for the angular deviation θi of
observed edges from the line for (c) ON (xi = 1) and (d) OFF (xi = 0) states.

63

other kinds of imagery, they can be generalized to other image resolutions. Assuming
that the number of segments per line and their relative length are functions of the scene
and not the sensor, p(OFF) and p(ON) will be resolution-invariant and the probability of
state changes will vary inversely with resolution. For example, doubling the resolution to
1280×960 pixels will halve the probability of transition from OFF to ON or ON to OFF.

Table 3.1: Prior marginal probabilities p (xi) and conditional transition probabilities p (xi|xi−1)

for the hidden segment state xi, derived from the YorkUrbanDB training dataset.

Parameter Mean Std. Err.
p(OFF) 0.75 0.0079
p(ON) 0.25 0.0079
p(OFF |OFF) 0.9986 0.0001
p(ON |OFF) 0.0014 0.0001
p(ON |ON) 0.9949 0.0004
p(OFF |ON) 0.0051 0.0004

The factoring of the global probability of the line segment configuration along the
line confers an optimal substructure property that allows a dynamic programming solu-
tion to the problem of finding the maximum a posteriori configuration. In particular, let
the cost function Ci(j) represent the minimum negative log probability of all sequences
{x1, . . . , xi} ending in state xi = j. Then the maximum probability sequence of states
over the whole line is the sequence that minimizes minj CN(j).

Defining the cost of transitioning from state j at location i − 1 to state k at location i
as

ci(j, k) = − log (p(yi|xi = k)p(xi = k|xi−1 = j)) , i = 2, . . . , N (3.3)

C1(k) = − log (p(y1|x1 = k)p(x1 = k)) (3.4)

Ci(k) = min
j

(Ci−1(j) + ci(j, k)) , i = 2, . . . , N (3.5)

Thus the cost function Ci(k) can be computed sequentially from i = 1 to i = N

in O(N) time (Fig. 3.3). In order to recover the maximum probability configuration, an

64

auxiliary data structure containing

ŝi(k) = arg min
j

(Ci−1(j) + ci(j, k)) (3.6)

is maintained, allowing the maximum probability configuration to be unwound from xN

back to x1.

ON

OFF C1(0)

1 i+1i N

C1(1) Ci(1) Ci+1(1)

Ci(0) Ci+1(0)

CN(1)
CN(1)

CN(0)
CN(0)

ci(1,1)

ci(0,1)

ci(1,0)

ci(0,0)

Figure 3.3: The sequence of segment state variables xi are assumed to form a Markov chain. To
compute the MAP solution we build a trellis table from the first line position i = 1 to the last line
position i = N that identifies the minimum cost (negative log probability) to reach either possible
state (ON or OFF) at each position i. The selected MAP path is shown in red, and the resulting
ON/OFF states are indicated by the solid/dashed line above the trellis.

Once a line segment is detected all associated edges (i.e., edges within two pixels of
the segment) are removed from the image. This serves to reduce the incidence of multiple
detections for the same segment.

3.7 Ranking

Having extracted MAP segments for each line in the image, we would like to rank their sig-
nificance. This will allow downstream applications to select only the number of segments
needed to support their application, and can serve to eliminate low-ranked noise segments.
Our Markov chain model allows us to approach the ranking problem from a probabilistic

65

perspective. In particular, we evaluate the following four probabilistic methods for ranking
a segment of length M extending from position i to position i+M :
Ranking Method 1. Posterior probability of line segment.

p(xi...i+M = ON |yi...i+M)

This ranking criterion will maximize the expected number of segments with no false
alarms.
Ranking Method 2. Posterior probability of line segment multiplied by length.

p(xi...i+M = ON |yi...i+M) ∗M

This criterion will maximize the expected total length of segments with no false alarms.
Ranking Method 3. Posterior odds for fully ON vs fully OFF configurations.

p(xi...i+M = ON |yi...i+M)

p(xi...i+M = OFF |yi...i+M)

Ranking Method 4. Sum of marginal posterior probabilities for ON states. The forward-
backward algorithm is used to compute the posterior probability at each location.

i+M∑
j=i

p(xj = ON |yi:i+M)

This measure reflects the expected number of ON samples on the segment, and thus will
maximize the expected number of correctly labelled locations within the segment.

3.8 Evaluation Methodology

It is important to evaluate line segment detection algorithms on real, complex images. Prior
evaluations have generally been qualitative (i.e., visual). Recent efforts to quantify the
evaluation require pairs of images related by a known homography, and are perhaps thus
best suited for matching tasks [20]. Here we propose an alternative quantitative evaluation
methodology that does not assume the existence of image pairs or known homographies
and thus could be applicable for a broader range of tasks.

66

Our proposed evaluation method does require an image dataset in which important
segments have been labelled. Here we employ two. The YorkUrbanDB dataset [40],
which consists of 102 images of urban scenes, randomly divided into training and test
subsets of 51 images each. In each image, major line segments that conform to one of the
three so-called Manhattan directions [34] (i.e., vertical or horizontal and conforming to
the main directions of orthogonal walls, streets, etc.) have been identified and labelled by
hand. This database has been used widely to train and evaluate algorithms for vanishing
point detection [156], line detection [11] and Manhattan frame estimation [40, 154]. We
also evaluate the more recent and much larger Wireframe dataset [75], which consists of
5,462 images (5,000 for training, 462 for test) of man-made scenes.

We assume that the line segment detector under evaluation returns a list of line seg-
ments in ranked order. We sample each ground truth and detector segment uniformly with
a sample spacing of one pixel and use these point samples to evaluate the detector as a
function of the number k of top-ranked segments selected, varying k from 10 to 500.

For each value of k we first identify potential point matches as those (ground truth,
detector) point pairs lying within a threshold distance of 2

√
2 pixels of each other. This

threshold was selected to associate any pair of lines that could potentially appear in the
image with less than a one-pixel intervening gap. We then sort these candidate matches
by Euclidean distance and accept matches in greedy fashion starting with the smallest
distance, matching each point at most once, and thus arriving at a near-optimal bipartite
match. Having associated ground truth and detector points, we employ the Hungarian
algorithm [96] to identify the optimal bipartite match between ground truth and detector
segments that maximizes the total number of points matched.

Now that we have a 1:1 association between ground truth and detector segments, it
remains to evaluate the quality of this association. We propose three evaluative measures.

3.8.1 Recall as a Function of the Number of Segments

We can compute a measure of recall as the number of ground truth point samples matched
to detector samples, divided by the total number of ground truth point samples. This
measure of recall is problematic if we allow matches without regard to the segments on
which the points lie, as it does not penalize under-segmentation (joining multiple short

67

segments into a single long segment) or over-segmentation (breaking up a long segment
into multiple short segments).

However, constraining matches to lie on 1:1 associated segments solves both of these
problems. In the case of under-segmentation, only one of the shorter ground truth segments
is matched, leading to a high penalty. In the case of over-segmentation, only one of the
detector segments is matched, again generating a high penalty.

Without additional constraints, using recall by itself is still problematic, as it is biased
toward detectors that report a larger number of segments, thereby maximizing the proba-
bility of detecting ground truth points. We address this by comparing recall as a function
of the same number k of segments reported.

3.8.2 Recall as a Function of Total Segment Length

There is still a potential bias in this recall-vs-k measure. Neglecting co-linear ground truth
segments, the method can be biased toward detectors that report segments of maximal
length (i.e., global lines) as this minimizes the risk of missing ground truth points. To
address this potential bias, our second performance measure reports recall as a function
of the sum L of the lengths of detected segments. This severely penalizes detectors that
report over-long segments.

3.8.3 Precision-Recall

Our third and final performance measure is conventional precision-recall. We can take
as a measure of precision the number of ground truth point samples matched to detector
samples, divided by the total number of detector point samples. Again, by enforcing a
1:1 matching at the segment level, both under-segmentation and over-segmentation are
penalized.

To facilitate future comparisons, the code that performs these evaluations as well as
the code for the MCMLSD algorithm is available online at elderlab.yorku.ca/
resources.

68

3.8.4 Limitations of Precision-Based Measures of Performance

Since the YorkUrbanDB dataset does not provide a complete labelling of all segments in
an image, detection of a segment that is not in the dataset does not necessarily represent
an error. For this reason, the absolute precision values reported here should be interpreted
with caution. Nevertheless, since the segments labelled in the YorkUrbanDB dataset are
highly-visible Manhattan features projecting from prominent structures in the scene, it is
reasonable to expect a superior detector to rank these highly, and therefore attain higher
relative precision values compared to inferior detectors.

The creators of the Wireframe dataset attempted to label all the line segments associ-
ated with the scene structures. Unlike the YorkUrbanDB dataset, these are not restricted
to Manhattan lines, and so one expects the dataset to contain a more complete labelling,
potentially allowing for higher precision. However, the authors also avoided labelling line
segments in what they considered ‘texture’. This includes straight line segments project-
ing from regular tiling and cladding patterns on horizontal and vertical surfaces, which are
very common in the built environment. Since these can be quite useful in establishing sur-
face orientation for both human and computer vision systems, for many applications one
would want a line segment detector to detect these, yet such detectors will tend to generate
lower precision on the Wireframe dataset.

Given the limitations of precision measures for these two datasets, we feel it is impor-
tant to consider multiple different measures of performance when evaluating and compar-
ing algorithms, and so we report performance using all three measures in what follows.

3.9 Results

3.9.1 Ranking

Our first goal is to evaluate the four candidate ranking methods discussed in Section 3.7.
Using the default Hough resolution recommended by Tal & Elder [154] (∆ρ = 0.2 pixels,
∆θ = 0.1 deg), we find that our MCMLSD algorithm generates an average of 414 lines
and 488 line segments for each 640×480-pixel image from the YorkUrbanDB training
dataset. Note that not all lines generate a segment and some generate several segments.

69

Fig. 3.4 shows the 10 top-ranked segments produced by each of our four ranking meth-
ods on an example image. We find that the multiplicative nature of the first criterion
favours short high-confidence segments. This problem can be addressed by multiplying
by segment length (Method 2), forming a contrast between purely ON and purely OFF
configurations (Method 3), or summing the ON point marginals (Method 4) to estimate
the number of correctly labeled points.

(a) Method 1 (b) Method 2 (c) Method 3 (d) Method 4

Figure 3.4: 10 top-ranked segments for four ranking methods on example image.

Figure 3.5 shows the recall for each of these ranking methods as a function of the
number of segments returned, on the YorkUrbanDB training dataset. Note that ranking
methods 1-3 are all based upon the probability that the segment is exactly correct, i.e., all
points on the segment have the ON state. However, our method of evaluation measures the
recall, which is the proportion of ground truth segment points successfully detected. Thus
what we really care about are the marginal probabilities, not the configuration probability,
since the expected recall is the sum of the marginal probabilities of the ON state over the
segment, which is exactly the quantity computed by Method 4, which we adopt as our
ranking method of choice. We call the resulting algorithm the Markov Chain Marginal
Line Segment Detector (MCMLSD) to capture the importance of the Markov chain model
of the line as well as the probabilistic ranking that maximizes the expected number of
correctly labelled points on the segment.

3.9.2 Hough Resolution

Having selected the ranking method, we fine-tune the Hough resolution parameters (∆ρ,∆θ)
on the YorkUrbanDB training data, computing recall for the top 100 lines over a range of
parameter values and then using kernel regression with bandwidths selected by leave-

70

0 100 200 300 400 500
Number of line segments

0

0.2

0.4

0.6

0.8

1

R
e
c
a
ll

Method 1
Method 2
Method 3
Method 4

Figure 3.5: Performance of the four ranking methods described in section 3.7, as measured by
recall vs number of segments returned, on the YorkUrbanDB training dataset.

71

one-out cross-validation to generate a smooth objective surface (Figure 3.6). The optimal
parameter values using this approach were found to be ∆ρ= 0.4 pixels and ∆θ= 0.46 deg.
We adopt these parameter values for all subsequent experiments on both the YorkUrbanDB
and Wireframe datasets.

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55
 (deg)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 (
pi

xe
ls

)

0.68

0.682

0.684

0.686

0.688

0.69

0.692

0.694

0.696

0.698

(a)

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55
 (deg)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 (
pi

xe
ls

)

0.46

0.465

0.47

0.475

0.48

0.485

(b)

0.
1

0.
15 0.
2

0.
25 0.
3

0.
35 0.
4

0.
45 0.
5

0.
55

 (deg)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 (
pi

xe
ls

)

5.14

4.11

6.58

4.23

5.61 4.96 4.57 4.38.54

3.62

3.35

3.1

3.02

2.97

2.9

2.88

3.51

3.15

2.92

2.77

2.73

2.7

2.65

2.76

3.81

3.19

2.88

2.72

2.6

2.6

2.56

2.54

2.67

3.47

2.95

2.76

2.6

2.51

2.52

2.46

2.48

2.53

3.27

2.83

2.65

2.53

2.46

2.44

2.43

2.45

2.4

3.11

2.74

2.6

2.48

2.39

2.43

2.4

2.38

2.38

4.04

3

2.7

2.54

2.44

2.41

2.42

2.37

2.38

2.36

3.89

2.93

2.67

2.51

2.44

2.37

2.41

2.34

2.36

2.36

3.74

2.89

2.7

2.48

2.44

2.38

2.41

2.37

2.37

2.35

3.72

2.89

2.64

2.52

2.45

2.43

2.43

2.38

2.39

2.39
3

4

5

6

7

8

(c)

Figure 3.6: Performance and run-time analysis of Hough map resolution. (a) Mean recall over
number of segments k = 1, . . . , 500 returned. (b) Mean precision over number of segments k =

1, . . . , 30 returned. (c) Corresponding run time of MCMLSD algorithm per image (sec).

3.9.3 Algorithms Evaluated

We compare the proposed MCMLSD method against five leading methods:

1. The Slice Sampling Weighted Mean Shift (SSWMS) method of Nieto et al. [119]

2. The widely-used Line Segment Detector (LSD) method of Grompone von Gioi et
al. [166]

3. The linelet-based method (linelet) of Nam-Gyu et al. [29]

4. The deep-learning Wireframe Parser method of Huang et al. [75]

5. The deep-learning Attraction Field method of Xue et al. [182], with a-trous archi-
tecture.

SSWMS. We obtained the code for the SSWMS method from sourceforge.net/

projects/lswms. (The authors renamed the method LSWMS there.) There are two
parameters and we used the author-recommended default values for both:

72

• orientation threshold ∆θ = 22.5 deg

• mean shift bandwidth = 3 pixels

The SSWMS algorithm is designed to output segments in descending order of salience -
we therefore use this order to rank the segments.
LSD. We obtained the code for LSD from www.ipol.im/pub/art/2012/gjmr-lsd/.
We rank segments using the criterion recommended by the authors and employed in later
work [20], namely in increasing order of the number of expected false alarms, which is
one of the outputs of the LSD detector.
Linelet. We obtained the code for the Linelet[29] algorithm from https://github.

com/NamgyuCho/Linelet-code-and-YorkUrban-LineSegment-DB. We rank
segments using the criterion recommended by the authors.
Wireframe Parser. Xue et al. [182] provide the segments generated by the Wireframe
Parser for both YorkUrbanDB and Wireframe test sets; we use these to compute per-
formance. Since the authors do not specify a ranking method, we rank the segments in
descending order of segment length.
Attraction Field. As for the Wireframe Parser, Xue et al. [182] provide the segments
generated by the Attraction Field method for both YorkUrbanDB and Wireframe test sets,
so we use these to compute performance. We rank the segments using the criterion recom-
mended by the authors.

3.9.4 Qualitative Results

Fig. 3.7 shows the top-ranked 90 segments returned by each algorithm on four example im-
ages from the YorkUrbanDB test dataset. To our eyes, the Attraction Field and MCMLSD
results look strongest, but in complementary ways. While the Attraction Field method
appears more adept at picking out short segments (e.g., the windows in the first example),
MCMLSD is more successful at recovering the longer segments (e.g., the lines on the
ground plane in the first three examples).

Interestingly, in the second example the Attraction Field method succeeds in detecting
some of the line segments projecting from the tiling pattern on the floor, despite being
trained (on the Wireframe dataset) to ignore these.

73

SS
W

M
S

L
SD

L
in

el
et

W
ir

ef
ra

m
e

A
ttr

ac
tio

n
Fi

el
d

M
C

M
L

SD
G

ro
un

d
Tr

ut
h

Figure 3.7: Top 90 segments returned by the six algorithms under evaluation, together with hand-
labelled ground truth, for four example test images drawn from the YorkUrbanDB dataset.

74

3.9.5 Quantitative Results

3.9.5.1 YorkUrbanDB Test Set

Fig. 3.8(a) shows the mean length of ranked line segments returned by each of the six
algorithms, compared to the ground truth line segment lengths. Although the algorithms
generally rank longer segments higher, all ultimately return segments that are on average
shorter than the ground truth segments. Consistent with the qualitative observations above,
MCMLSD tends to return longer segments than the other approaches.

0 200 400 600 800 1000
Number of line segments

0

50

100

150

200

250

300

350

M
ea

n
lin

e
se

gm
en

t l
en

gt
h SSWMS

LSD
Linelet
WireframeParser
Attraction Field
MCMLSD
Ground Truth

(a)

0 200 400 600 800 1000
Number of line segments

0

50

100

150

200

250

M
ea

n
lin

e
se

gm
en

t l
en

gt
h SSWMS

LSD
Linelet
WireframeParser
Attraction Field
MCMLSD
Ground Truth

(b)

Figure 3.8: Mean length of ranked line segments returned by each algorithm for (a) YorkUrbanDB
and (b) Wireframe test sets, as a function of the number of segments returned. Ground truth line
segments are ranked from longest to shortest.

Fig. 3.9 provides a quantitative comparison of all six algorithms on the YorkUrbanDB
test set. MCMLSD achieves a maximum recall of 0.8, roughly 45% better than the LSD
and Linelet methods. Interestingly, MCMLSD outperforms the more recent deep learning
algorithms by an even larger margin - maximum recall for MCMLSD is roughly 140%
higher than for the Wireframe Parser algorithm and 90% higher than for the Attraction
Field algorithm.

Analysis of each of the three performance measures yields additional insights. Fig. 3.9(a)
shows that if a constraint is placed on the number of segments returned, e.g., to limit com-
plexity for downstream analysis, MCMLSD consistently achieves higher recall. While the
deep Attraction Field algorithm is competitive with the traditional LSD and Linelet algo-
rithms for very tight constraints (fewer than 100 segments), it falls behind as this constraint
is relaxed.

75

0 200 400 600 800 1000
Number of line segments

0

0.2

0.4

0.6

0.8

1

R
ec

al
l

(a)

0 0.5 1 1.5 2 2.5
Total line segment length (pixels) 104

0

0.2

0.4

0.6

0.8

1

R
ec

al
l

(b)

0 0.2 0.4 0.6 0.8 1
Recall

0

0.2

0.4

0.6

0.8

1

P
re

ci
si

on

SSWMS
LSD
Linelet
WireframeParser
Attraction Field
MCMLSD

(c)

Figure 3.9: Performance of the six algorithms under evaluation on the YorkUrban Dataset. (a)
Recall as a function of number of segments returned. (b) Recall as a function of the total length of
segments returned. (c) Precision-Recall.

The story is a little different if the constraint is placed on the total segment length rather
than the total number of segments (Fig. 3.9(b)). Here we see that while MCMLSD vastly
outperforms the other methods for more relaxed constraints (more than 104 pixels), for
tighter constraints, the Attraction Field, LSD and Linelet algorithms become slightly su-
perior. This can be accounted for by the tendency of MCMLSD to extract longer segments
than the Attraction Field, LSD and Linelet algorithms.

Finally, Fig. 3.9(c) shows that the algorithm of choice very much depends upon the
relative value of precision and recall for a particular application. If recall greater than
0.4 is required, MCMLSD is clearly preferred. However, if precision greater than 0.45 is
required, then recall must be sacrificed and the Attraction Field or Linelet algorithms are
preferred. It should be remembered, however, that since the YorkUrbanDB ground truth
is incomplete, lower precision may be due to detection of useful segments that just do not
happen to be labelled in the ground truth.

3.9.5.2 Wireframe Test Set

Fig. 3.10 shows the same evaluation on the Wireframe test set. The maximum recall
achieved by MCMLSD is 0.75, almost as high as for YorkUrbanDB, even without fine-
tuning of parameters or distributions, indicating good generalizability. The performance
advantage is smaller than for YorkUrbanDB, but MCMLSD is still 26% better than its

76

closest competitors. In terms of maximum recall, the Attraction Field algorithm is now
competitive with the LSD and Linelet algorithms. MCMLSD still leads the pack when the
number of line segments is constrained (Fig. 3.10(a)). As for the YorkUrbanDB dataset,
when total line segment length is constrained, MCMLSD dominates in the high-recall
regime. However, for the Wireframe dataset, the Attraction Field algorithm now dominates
in the low-recall regime. Fig. 3.10(c) tells a similar story for precision-recall: MCMLSD
dominates in the high-recall regime, but the Attraction Field method is superior in the low-
recall (high-precision) regime. The improved performance of the Attraction Field method
for the Wireframe dataset relative to the YorkUrbanDB dataset is not surprising, as it was
trained on the Wireframe training partition.

0 200 400 600 800 1000
Number of line segments

0

0.2

0.4

0.6

0.8

1

R
ec

al
l

(a)

0 0.5 1 1.5 2
Total line segment length (pixels) 104

0

0.2

0.4

0.6

0.8

1

R
ec

al
l

SSWMS
LSD
Linelet
WireframeParser
Attraction Field
MCMLSD

(b)

0 0.2 0.4 0.6 0.8 1
Recall

0

0.2

0.4

0.6

0.8

1

P
re

ci
si

on

(c)

Figure 3.10: Performance of the proposed MCMLSD methods compared with the state of the art
on the Wireframe dataset[75]. (a) Recall as a function of number of segments returned. (b) Recall
as a function of the total length of segments returned. (c) Precision-Recall.

3.9.5.3 Ranking Revisited

What accounts for the superiority of MCMLSD in the high-recall regime, and the supe-
riority of the Attraction Field algorithm (and, for YorkUrbanDB, the LSD and Linelet
algorithms) in the low-recall regime? One possible factor is the quality of the line seg-
ments they return. But another possible factor is the ranking employed by each method.
To dissociate these two factors, we employed an oracle to rank the segments returned by
each algorithm for the YorkUrbanDB dataset according to ground truth precision. Specifi-
cally, after 1:1 association with ground truth segments, the algorithm segments are ranked

77

in terms of the proportion of their points that have a 1:1 ground truth match. Ties are
resolved by length, with longer segments ranked first.

The results are illuminating (Fig. 3.11). While MCMLSD necessarily still achieves
highest recall, and still dominates when the number of line segments is constrained, the
precision advantage of the Attraction Field method in the low-recall regime has evapo-
rated. This indicates that the advantage of the Attraction Field algorithm in the low-recall
regime derives not from superior line segments but from superior ranking. This in turn sug-
gests that the performance of other methods such as MCMLSD in the low-recall regime
might be improved by adopting a revised ranking strategy.

0 200 400 600 800 1000
Number of line segments

0

0.2

0.4

0.6

0.8

1

R
ec

al
l

(a)

0 5000 10000 15000
Total line segment length (pixels)

0

0.2

0.4

0.6

0.8

1

R
ec

al
l

SSWMS
LSD
Linelet
WireframeParser
Attraction Field
MCMLSD

(b)

0 0.2 0.4 0.6 0.8 1
Recall

0

0.2

0.4

0.6

0.8

1

P
re

ci
si

on

(c)

Figure 3.11: Performance on the YorkUrbanDB dataset when an oracle is used to rank the segments
by their precision. (a) Recall as a function of number of segments returned. (b) Recall as a function
of the total length of segments returned. (c) Precision-Recall.

One limitation of the ranking strategy adopted in our original CVPR paper [4] is that
it considers only the location and orientation of edges detected by the Elder & Zucker
multiscale edge detector [50], which employs a signal detection approach based only on
the local luminance contrast. This ignores local colour and texture cues that can signal the
relative importance of these edges.

To incorporate this appearance information, we employ the structured forests edge
detector of Dollár and Lawrence [43] (code obtained from https://github.com/

pdollar/edges), which was trained on the BSDS 500 dataset to use the local pattern
of colours and textures to identify edges delineating “distinguished things", as judged
by human observers [112]. Our hypothesis is that the output of the structured forests

78

edge detector will thus carry appearance cues complementary to our probabilistic ranking
measure, which is based solely on the geometry of the edges.

To test this hypothesis, we construct a logistic regressor that takes both of these cues
as input to predict the precision of each segment, train the regressor on the YorkUrbanDB
training set, and then use it to rank segments in the test set. Since we are interested in
improving the precision of the detector, we employ a modified version of Ranking Method
4 (Section 3.7), using the mean of the marginal probabilities along the segment instead of
the sum. To form the appearance cue we average the scalar responses of the structured
forests edge detector at the locations of the Elder & Zucker edges within a 2-pixel distance
of the line segment.

Fig. 3.12 shows results of the MCMLSD algorithm using this revised ranking strategy
(dubbed MCMLSD2), alongside the original MCMLSD algorithm and the five competi-
tors. We see that with this revised ranking strategy, MCMLSD2 loses some recall perfor-
mance when the number of line segments is constrained (Fig. 3.12(a)), but is still vastly
superior to the other methods. At the same time, the precision of MCMLSD2 matches that
of the Attraction Field, LSD and Linelet algorithms in the low-recall regime, and is far
superior in the high-recall regime (Fig. 3.12(c)).

0 200 400 600 800 1000
Number of line segments

0

0.2

0.4

0.6

0.8

1

R
ec

al
l

(a)

0 0.5 1 1.5 2 2.5
Total line segment length (pixels) 104

0

0.2

0.4

0.6

0.8

1

R
ec

al
l

(b)

0 0.2 0.4 0.6 0.8 1
Recall

0

0.2

0.4

0.6

0.8

1

P
re

ci
si

on

SSWMS
LSD
Linelet
WireframeParser
Attraction Field
MCMLSD
MCMLSD2

(c)

Figure 3.12: Results including MCMLSD2, which uses the structured forests edge detector [43] to
incorporate local appearance cues when ranking segments. (a) Recall as a function of number of
segments returned. (b) Recall as a function of the total length of segments returned. (c) Precision-
Recall.

79

3.9.6 Reconciling with Recent Evaluations

The results above may at first seem puzzling, since they seem to contradict the evaluations
reported in recent papers that claim superiority of the deep Wireframe Parser and Attrac-
tion Field methods [75, 182]. This contradiction is due to differences in how algorithms
were evaluated. We laid out our evaluation methods in Section 3.8 of this paper and in our
original CVPR paper [4]. There are two key deviations between our evaluation approach
and the approach employed in the Wireframe and Attraction Field papers that account for
this contradiction.

3.9.6.1 Distance Threshold

In our evaluations, we employ a distance threshold of 2
√

2 pixels, to associate any pair
of lines that could potentially appear in the image with less than a one-pixel intervening
gap. This seems like a reasonable threshold, able to account for small localization errors
in edge detection due to pixel discretization. However, in the deep network papers, a
threshold of 1% of diagonal image size was employed, which for the YorkUrbanDB results
in a threshold of 8 pixels, 2.8 times the threshold we employed. This looser threshold is
convenient for the deep networks, which by necessity use sub-sampled images and struggle
to localize segments with precision. Fig. 3.13 shows an example.

(a) (b)

Figure 3.13: Crop of example YorkUrbanDB test result for the (a) Attraction Field and (b)
MCMLSD algorithms. Observe the alignment errors of some of the segments returned by the
Attraction Field algorithm.

To assess the importance of this threshold, we re-evaluated all algorithms using the
looser threshold of 8 pixels. Fig. 3.14 shows the results for the YorkUrbanDB dataset. We

80

see that as we loosen the threshold, performance rises for all algorithms, but the perfor-
mance of the deep algorithms (Attraction Field and Wireframe Parser) rises disproportion-
ately, confirming the poorer localization performance of these methods.

0 200 400 600 800 1000
Number of line segments

0

0.2

0.4

0.6

0.8

1

R
ec

al
l

(a)

0 0.5 1 1.5 2 2.5
Total line segment length (pixels) 104

0

0.2

0.4

0.6

0.8

1

R
ec

al
l

SSWMS
LSD
Linelet
WireframeParser
Attraction Field
MCMLSD

(b)

0 0.2 0.4 0.6 0.8 1
Recall

0

0.2

0.4

0.6

0.8

1

P
re

ci
si

on

(c)

Figure 3.14: Evaluation on the YorkUrbanDB dataset using the looser distance threshold of 8
pixels employed in the Wireframe [75] and Attraction Field [182] papers. (a) Recall as a function
of number of segments returned. (b) Recall as a function of the total length of segments returned.
(c) Precision-Recall.

3.9.6.2 Enforcing 1:1 Matches

While the looser distance threshold clearly helps the deep algorithms, Fig. 3.14 makes
clear that this alone cannot fully account for the claim that deep networks uniformly per-
form better than MCMLSD and earlier algorithms such as LSD and Linelet. Here we
address a more serious issue that gets to the heart of what we mean by line segment detec-
tion.

In both the Wireframe and Attraction Field papers, a very simple method is employed
to match algorithm segments and ground truth: points on detected segments that lie within
8 pixels of a ground truth segment are identified as hits. Normalizing by the total length
of the detected segments and the ground truth segments forms the precision and recall
measures, respectively.

In Section 3.8 of this paper and in our original CVPR paper [4], we were careful to
articulate the problems with this simplistic approach. First, when matching points on de-
tected segments with points on ground truth segments, it is important that these matches

81

be 1:1. In other words, the same ground truth point should not be used to generate hits
for multiple points on detected segments. Similarly, the same point on a detected segment
should not be matched to multiple ground truth points. Importantly, this constraint pe-
nalizes algorithms that generate multiple detections for a single ground truth segment, or
that confuse two neighbouring ground truth segments as a single segment. Note that not
enforcing this constraint leads to pathological results. For example, an algorithm that gen-
erates dense, 16-pixel wide regions of filled pixels centred on the ground truth segments
will be evaluated to have perfect precision and perfect recall.

However, enforcing 1:1 matches between points is not enough. The problem of line
segment detection is not to detect isolated edges but to recover the continuous line seg-
ments present in an image. The output line segments can be coded in various ways, e.g.,
by the 2D locations of their endpoints. Critically, the output is more than an edge map:
each line segment is a higher-level organization of edge points into a more global repre-
sentation.

This means that to fairly evaluate a line segment detector, the 1:1 constraint must be
applied at the segment level, not at the pixel level. As articulated in Section 3.8 of this
paper and in our original CVPR paper [4], this is critical in order to penalize under- and
over-segmentation. Again, not imposing this constraint will lead to pathological results.
For example, an algorithm that returns a scatter of tiny line segments that are all only one
pixel long but lie within the distance threshold of ground truth and account for all ground
truth points will generate perfect precision and recall scores.

To assess the importance of this segment-level 1:1 matching constraint, we re-evaluated
all algorithms without this constraint, i.e., using the simple matching method employed in
the Wireframe Parser [75] and Attraction Field [182] papers, and also using the looser
distance threshold employed in these papers. As shown in Figs. 3.15 and 3.16, despite
this relaxation in the evaluation criteria, MCMLSD still outperforms the deep learning
algorithms in terms of maximum recall and recall as a function of the number of line seg-
ments returned. However, the authors of these deep learning papers did not report these
measures of performance but only the precision-recall curves shown in Figs. 3.15(c) and
3.16(c). Here we see that removing the 1:1 matching constraint particularly advantages the
deep Wireframe and Attraction Field algorithms, leading to clear superiority of the Attrac-
tion Field method in the low-recall regime, although MCMLSD and Linelet methods still

82

achieve much higher recall. But again, we remind the reader of the limitations of precision
measures for these incomplete datasets (Section 3.8).

0 200 400 600 800 1000
Number of line segments

0

0.2

0.4

0.6

0.8

1

R
ec

al
l

(a)

0 0.5 1 1.5 2 2.5
Total line segment length (pixels) 104

0

0.2

0.4

0.6

0.8

1

R
ec

al
l

SSWMS
LSD
Linelet
WireframeParser
Attraction Field
MCMLSD

(b)

0 0.2 0.4 0.6 0.8 1
Recall

0

0.2

0.4

0.6

0.8

1

P
re

ci
si

on

(c)

Figure 3.15: Performance of MCMLSD compared with the state of the art on the YorkUrban
Dataset using pixel level evaluation. (a) Recall as a function of number of segments returned.
(b) Recall as a function of the total length of segments returned. (c) Precision-Recall.

0 200 400 600 800 1000
Number of line segments

0

0.2

0.4

0.6

0.8

1

R
ec

al
l

(a)

0 0.5 1 1.5 2
Total line segment length (pixels) 104

0

0.2

0.4

0.6

0.8

1

R
ec

al
l

SSWMS
LSD
Linelet
WireframeParser
Attraction Field
MCMLSD

(b)

0 0.2 0.4 0.6 0.8 1
Recall

0

0.2

0.4

0.6

0.8

1
P

re
ci

si
on

(c)

Figure 3.16: Performance of MCMLSD methods compared with the state of the art on the Wire-
frame dataset using pixel level evaluation. (a) Recall as a function of number of segments returned.
(b) Recall as a function of the total length of segments returned. (c) Precision-Recall.

3.9.7 Summary of Quantitative Results

To summarize, the relative performance of line segment detection algorithms very much
depends on how performance is measured. Recent deep learning papers have loosened

83

distance thresholds and not enforced 1:1 matching constraints, and under these conditions
they achieve higher precision, although still inferior recall. It is possible that there are
some applications for which this measure of performance is appropriate. For example,
one may attempt to use only a pixel-level Hausdorff distance to register two images or
to register an image to a CAD model. However, for most downstream applications, e.g.,
single-view 3D reconstruction [130, 158], an organization of points into accurate line
segments is desirable, and to evaluate this one must impose 1:1 matching constraints.

Fig. 3.17 (copied from Fig. 3.12 for convenience) summarizes performance relevant to
these requirements, specifically for a distance threshold of 2

√
2 to ensure accuracy, and a

1:1 matching constraint imposed at the segment level. Here we see that by any of the three
measures of performance, one of the two versions of MCMLSD is recommended. If the
number of output lines is to be restricted and recall is the priority, the original MCMLSD
algorithm vastly outperforms other methods. However, if precision-recall performance is
the priority, then MCMLSD2 is recommended, as it matches or surpasses the performance
of all other methods in the low-recall regime while vastly outperforming in the high-recall
regime.

0 200 400 600 800 1000
Number of line segments

0

0.2

0.4

0.6

0.8

1

R
ec

al
l

(a)

0 0.5 1 1.5 2 2.5
Total line segment length (pixels) 104

0

0.2

0.4

0.6

0.8

1

R
ec

al
l

(b)

0 0.2 0.4 0.6 0.8 1
Recall

0

0.2

0.4

0.6

0.8

1

P
re

ci
si

on

SSWMS
LSD
Linelet
WireframeParser
Attraction Field
MCMLSD
MCMLSD2

(c)

Figure 3.17: Summary of results. (a) Recall as a function of number of segments returned. (b)
Recall as a function of the total length of segments returned. (c) Precision-Recall.

84

3.10 Image Resolution

One limitation of current deep learning methods is that the computational load for learn-
ing and inference may become untenable for higher image resolutions. In contrast, the
MCMLSD algorithm adapts well to different image resolutions without fine-tuning as long
as the transition probabilities are scaled appropriately (Section 3.6.2). For example, dou-
bling the resolution requires that the transition probabilities from OFF to ON and from ON
to OFF be halved.

As an example, Fig. 3.18 shows the top 90 segments returned for an image from the
York UrbanDB dataset at normal (640×480 pixel) and high (1280×960 pixel) resolutions.
Note that the algorithm is able to take advantage of the higher resolution to deliver more
complete and accurate segments.

(a) 640×480 pixels (b) 1280×960 pixels

Figure 3.18: Top 90 segments for MCMLSD on an example image at low and high resolutions.

3.11 Run Time

The dynamic programming solution for line segment detection runs in O (N) = O (
√
n)

time, where N is the number of point samples on the line and n is the number of pixels
in the image. Given a set of m detected lines, the total time complexity of line segment
extraction is O (m

√
n).

85

Table 3.2 shows the average run time for the six algorithms tested here on the 640×480

pixel images from the YorkUrbanDB training dataset. The SSWMS, LSD, Linelet and
MCMLSD algorithm were tested using a 3.4 GHz Intel Core i7 with 8GB RAM. The deep
network Wireframe and Attraction Field algorithms were tested using an NVIDIA Titan X
GPU with Xeon E5-2620 2.10GHz CPU.

The MATLAB implementation of our MCMLSD algorithm has an average run time
of 2.81 sec per image. Aside from the Linelet algorithm, which is very slow, the other
algorithms are optimized and implemented in C++, returning results within a few hundred
milliseconds.

About 63% of our run time is taken by the probabilistic Hough method for line ex-
traction [154], which we believe could be sped up considerably with more efficient coding
practices and implementation in C or C++. There are also many opportunities for mapping
to parallel hardware, as edge detection is dominated by convolutions and in the dynamic
programming line segment detection stage, lines separated by more than 4 pixels are pro-
cessed independently.

Table 3.2: Average number of segments returned and run time per image for the six systems evalu-
ated.

Algorithm # Segments Run Time (sec)
SSWMS 391 0.30

LSD 537 0.27
Linelet 967 34.5

Wireframe 228 0.446
Attraction Field 303 0.152

MCMLSD 488 2.81

3.12 Failure Mode Analysis

The Fig. 3.19 shows the three images in the YorkUDB test set with lowest f-scores. From
these images we can make the following observations:

86

1. Our algorithm tend to detect line segments on the ground and these are often ranked
pretty high by our ranking method. While these line segments are real, the YorkUr-
banDB ground truth often does not include them.

2. Our algorithm detects segments on smaller objects like lamp posts and traffic signals,
whereas the YorkUrbanDB tends to focus more on line segments on architecture.

(a) (b) (c)

(d) (e) (f)

Figure 3.19: The three images with the lowest f-scores in the test set of the YorkUDB. The first row
shows the top 90 line segments from the MCMLSD algorithm. The second row is ground truth.

3.13 Conclusion

We have developed and evaluated a novel method for line segment detection called MCMLSD
that combines the advantages of global probabilistic Hough methods for line detection with

87

spatial analysis in the image domain to identify segments. The key insight is that limit-
ing segment search to Hough-detected lines leads naturally to a Markov chain formulation
that allows maximum probability solutions to be computed exactly in linear time. Our
method also has the advantage that it can detect multiple segments lying on the same line,
a common scenario for images of the built environment. This formulation leads to a natu-
ral probabilistic measure for ranking segments based upon the sum over point marginals,
which maximizes the expected number of correctly labelled points on detected lines.

A second contribution is our new methodology for evaluating line segment detectors
on an incomplete labelled dataset. By constraining matches between ground truth and de-
tector output to be 1:1 at the segment level, we show that under- and over-segmentation are
penalized appropriately. Using this new evaluation methodology we find that MCMLSD
outperforms the state-of-the-art by a substantial margin. The code for MCMLSD and our
evaluation method is available at www.elderlab.yorku.ca/resources.

88

Chapter 4

Road Segmentation From Geometry

4.1 Project Description

The goal of this project was to apply a geometry-driven approach to identify a road region
in a dash cam image given various view angles and different lighting conditions. This al-
gorithm utilized the line segment detector from my first project to estimate road vanishing
points and horizon lines. These vanishing points and horizon lines were our prime indica-
tors of the location of the road region. The dataset we used in the project was designed to
include extremely challenging weather conditions. At the time of writing, at least, there
were no existing public datasets that provided this diversity.

My contribution to this project was:

1. Improving the vanishing point reliability evaluation algorithm.

2. Developing a new horizon estimation algorithm.

3. Implementing a texton-based texture classification algorithm.

4. Re-labelling the dataset.

5. Developing new algorithms to generate region of interest (ROI) masks.

6. Cross-validation experiments to find optimal parameters.

89

Related Publications:

• G. Cheng, Y. Wang, Y. Qian, and J. H. Elder. Geometry-guided adaptation for road
segmentation. In 2020 17th Conference on Computer and Robot Vision (CRV), pages
46–53, 2020

• G. Cheng, Qian, Y., and J. H. Elder. Fusing geometry and appearance for road
segmentation. In Proceedings of the IEEE International Conference on Computer
Vision Workshops, pages 166–173, 2017

• E. J. Almazan, Qian, Y., and J. H. Elder. Road segmentation for classification of
road weather conditions. In G. Hua and H. Jégou, editors, Computer Vision – ECCV
2016 Workshops, pages 96–108, Cham, 2016. Springer International Publishing

• Qian, Y., E. J. Almazan, and J. H. Elder. Evaluating features and classifiers for
road weather condition analysis. In International Conference on Image Processing
(ICIP), 2016 IEEE. IEEE, 2016

4.2 Introduction

Automatic assessment of road weather conditions using vehicle camera data can be used
to inform the human driver, driver-assist controls and autonomous control systems. More-
over, the information can be shared across connected vehicles, alerting following vehicles
to conditions ahead. Another application is automatic dispatch and verification of snow
ploughs and service vehicles. Given their typically wide geographic distribution, these ser-
vice vehicles can provide real-time data on road conditions to central management, which
can then use the data to verify maintenance and optimize dispatch.

While future generations of service vehicles may be manufactured with appropriate
built-in cameras, in the meantime there is interest in retrofitting existing vehicles with re-
movable dash cams that can be used for multiple purposes. This poses a challenge for
video analytics, as the pose of the camera relative to the road surface may vary consider-
ably. Since the cameras are mounted inside the vehicle, imagery may be partially occluded

90

by the hood of the vehicle. For snow ploughs, the road surface may also be occluded fur-
ther by the plough, depending on its position (Fig. 4.1).

Bare Covered
Bare dry Bare wet Iced covered Snow covered Snow packed
n = 32 n = 14 n = 8 n = 16 n = 30

Figure 4.1: Example images from training dataset, and the number n in each class.

To address these challenges a reliable algorithm for segmenting the road surface from
the imagery is required. This method must be able to handle variations in the position and
pose of the camera as well as geometry of the road surface. Using appearance features
of the road surface (e.g., texture) for segmentation is unlikely to be reliable across diverse
weather conditions, since the road appearance will vary considerably and sometimes may
strongly resemble other surfaces in the scene. For these reasons, we focus here on geo-
metric methods for identifying the road surface and show that by fusing a combination of
these methods we can significantly improve road weather classification performance.

In particular we develop a novel method for estimating the road vanishing point, which
yields a triangular road segmentation hypothesis. This vanishing point method also deliv-
ers a measure of reliability, which can be used to identify when the vanishing point is

91

ill-defined (in a parking lot, for example). Under these conditions we revert to a weaker
segmentation based upon detection of the horizon line. Combining these with a spatial
prior then delivers an estimated road segmentation tailored to each image.

This paper is organized as follows: Section 4.3 reviews prior work, Section 4.4 details
our road segmentation algorithm, Section 4.5 describes our classification process, Section
4.6 reports results and finally Section 4.7 presents our conclusions and plans for future
work.

4.3 Prior Work

4.3.1 Road Segmentation

One might initially imagine using surface appearance properties to distinguish the road
pavement surface from other surfaces in the scene [8, 7]. However, this approach is prob-
lematic here for at least three reasons: 1) pavement appearance varies depending upon
the exact road materials employed and age of the road; 2) other nearby surfaces (e.g.,
sidewalks, driveways, buildings) may be constructed from similar materials; 3) the road
surface may be partially or completed covered by snow and/or ice.

For these reasons, we use geometric methods to estimate the road segmentation. This
is still non-trivial due to diversity in camera pose and road geometry. Roads vary in shape,
are sometimes relatively unstructured, non-homogeneous and vary in appearance under
varying weather and illumination conditions.

Previous approaches have estimated the vanishing point [133, 90, 134], horizon [6]
and/or border lines of the road [91]. The vanishing point is typically detected using texture
information from Gabor wavelet filters [133, 90, 6], using a Hough transform [172] or with
a line segment voting scheme [153]. In this work we adapt recent work on Hough-based
vanishing point detection [154] that has proven effective for Manhattan frame estimation.

The horizon line is often estimated as the line that partitions the image into two regions
that differs maximally in appearance [38, 35], however more elaborate approaches based
on gist descriptors [120, 6] have also been employed. Here we identify the horizon as the
vertical location that maximizes the RMS first derivative in the vertical direction across all
horizontal locations and colour channels.

92

4.3.2 Road Weather Classification

Since the focus of this paper is on road segmentation, we will review the literature on road
weather classification only briefly.

Much of the prior work on road condition classification has focused on the use of po-
larization and infrared cameras [104, 184, 79, 23, 80, 81], which can be expensive and
installation can be complex. However, there are also a number of efforts employing stan-
dard RGB cameras. Omer & Fu [121] used an SVM with RGB and gradient histogram
features to classify conditions as bare, covered or covered with bare tire tracks. However
their approach required manual cropping of each image to extract the image region pro-
jecting from the ground surface, which is impractical for a real system. Kauai et al [86]
used colour cues to add some degree of illumination invariance, however their approach
depends on detecting white line markings to identify the road area, which will fail under
snowy conditions or for roads that are poorly marked. In a very recent paper, Amthor
et al. [9] proposed a spatiotemporal approach that integrates over many frames to detect
specular reflections indicative of wet conditions. While their method improves on prior
approaches, it requires integration over many frames, increasing computational load and
delay.

For the present paper we employ the classifier reported recently by Qian et al [157],
which uses a naive Bayes classifier over texton and luminance features. Please see Section
4.5 for more details.

4.3.3 Dataset

To train and evaluate our algorithm, we employ the challenging dataset of 100 2048 ×
1536 pixel images (Fig. 4.1) introduced by Qian et al. [157], obtained directly from the
authors. The dataset contains roads under different weather conditions, from bare dry to
snow packed. Each of the five classes was randomly and evenly split between training and
test datasets, each consisting of 50 images.

The pictures were taken at different times of the day, thus covering a wide range of
illumination conditions and the camera pose varied considerably. The road condition class
was identified manually by our industrial partner. For training and evaluation purposes,
we manually segmented the road surface from the background. Running our classifier

93

on the manually segmented imagery allows us to estimate the potential for increasing
classification performance through further improvements in segmentation.

4.4 Road Segmentation

The main challenge for segmenting the road surface is the variability of the road appear-
ance under different weather conditions, which limits the utility of appearance features
such as luminance, colour, texture and detailed road markings. We therefore propose a
method that relies on contextual information to define the vanishing point of the road and
horizon line. The process consists of four stages: 1) estimation of the vanishing point of
the road; 2) assessment of the reliability of this vanishing point estimate; 3) direct esti-
mation of the horizon line, for vanishing points assessed to be unreliable; 4) fusion with a
spatial prior to identify the region of the image corresponding to the road surface.

4.4.1 Vanishing Point Estimation

A vanishing point is defined as a point in the image plane where parallel lines converge.
We use the line detector algorithm of Tal & Elder, 2012 [154] (code obtained directly
from authors). The detector returns betwen 122 and 746 lines for each of the images in
the training dataset. It also returns the estimated total length l of the line segments along
each detected line. As revealed in Fig. 4.2, the geometry (position ρ, orientation θ, length
l) of each line provides some information about the likelihood that it is generated by the
vanishing point (ON) versus a background process (OFF). We therefore rerank the lines
using a naive Bayes model to approximate the likelihood ratio Li for each line i:

Li =
p(ρi, θi, li|ON)

p(ρi, θi, li|OFF)
≈ p(ρi|ON)p(θi|ON)p(li|ON)

p(ρi|OFF)p(θi|OFF)p(li|OFF)
. (4.1)

We estimate the vanishing point as the point in the image that minimizes the distance
to the top-ranked n lines. Specifically, we adopt a naive Bayes approach and choose the
point v that maximizes

p(v|L) ∝
n∏
i

p(di|v)p(v) (4.2)

94

On Off

; (pixels)
-400 -200 0 200 400

P
ro

ba
bi

lit
y

0

0.005

0.01

; (pixels)
-400 -200 0 200 400

P
ro

ba
bi

lit
y

#10-3

0

1

2

3

4

3 (degr.)
0 50 100 150

P
ro

ba
bi

lit
y

0

0.005

0.01

0.015

0.02

3 (degr.)
0 50 100 150

P
ro

ba
bi

lit
y

0

0.005

0.01

0.015

l (pixels)
0 200 400 600

P
ro

ba
bi

lit
y

#10-3

0

2

4

6

l (pixels)
0 200 400 600

P
ro

ba
bi

lit
y

0

0.005

0.01

0.015

0.02

0.025

Figure 4.2: Likelihood distributions for the three line features (ρ, θ and l).

where D = (d1, d2, ..., dn) are the distances to the detected lines. The spatial prior p(v) is
modelled as a Gaussian distribution, and the likelihoods p(di|v) are determined from the
training data as shown in Fig. 4.3.

Eqn. 4.2 is not convex in general; to maximize we select the optimal solution from 50
gradient descent solutions (MATLAB fminsearch), initialized by randomly sampling from
the prior p(v).

Figure 4.4 compares performance of the vanishing point algorithm on the training
dataset with and without the re-ranking step. We find that generally the re-ranking im-
proves results and that error is minimized by using the top-ranked 20 lines. Note also that
using the lines to estimate the vanishing point yields a much lower error than using the
centroid of vanishing points from the training set (Prior model). Fig. 4.5 shows examples
of automatically estimated vanishing points.

95

(a) Prior

Distance (pixels)
0 200 400 600 800

P
ro

ba
bi

lit
y

0

0.01

0.02

(b) Likelihood

Figure 4.3: (a) Vanishing point prior distribution plotted on a sample image from the dataset. The
red ellipse indicates the 95% confidence interval for the vanishing point. (b) Likelihood distribution
for the distance of the top-ranked 20 detected lines from the vanishing point.

Num. lines
10 20 30 40 50

E
rr

or
 (

pi
xe

ls
)

0

50

100

150

200

Non-ranked
Ranked

(a) Number of lines

0

100

200

300

Non
-ra

nk
ed

Ran
ke

d
Prio

r

M
ea

n
er

ro
r

(p
ix

.)

(b) Mean error

Figure 4.4: (a) Average Euclidean error of the estimated vanishing point as a function of the
number n of lines employed. (b) Mean error and standard error of the mean, collapsing over n.

There are some situations where the vanishing point of the road is not readily apparent,
such as in parking lots or intersections (Fig. 4.10 (c-f)). Our vanishing point algorithm will
tend to produce large errors for these cases, which could in turn lead to large errors in the
road segmentation. To prevent this, we assess the reliability of vanishing point estimates
as the average distance D̄k of the top k lines closest to the estimated vanishing point. If D̄k

exceeds a threshold t, we reject the vanishing point estimate and use an alternate method
to determine the horizon line (see below). There are two free parameters for this reliability
measure: the number k of lines and the threshold t. We optimize using the training data
based on the ultimate error in estimating the horizon line, assessed as the average absolute

96

Lines
Line Segments
Estimated VP
Ground truth VP

(a)

Lines
Line Segments
Estimated VP
Ground truth VP

(b)

Lines
Line Segments
Estimated VP
Ground truth VP

(c)

Figure 4.5: Examples of automatically estimated vanishing points.

error at left and right image boundaries (Fig. 4.6): values of k = 12 and t = 21 were
found to be optimal.

Threshold t
10 15 20 25 30

To
p

k
lin

es

5

10

15

20

70

80

90

100

110

120

Figure 4.6: The error graph of different combinations of threshold t and top k lines.

4.4.2 Horizon Estimation

When vanishing point estimation fails it may still be possible to constrain the road location
using the horizon line. The horizon line can be defined by two parameters, such as its
vertical location and orientation for example. For our dataset, however, we found that
orientation estimation could be quite unreliable. We therefore fixed the orientation to
horizontal.

To estimate the vertical location of the horizon, we used the training images for which
our vanishing point estimates were judged (automatically) to be unreliable as a horizon
training dataset (k = 23 images in all). We then 1) normalized each image to have zero

97

mean and unit variance, 2) registered them vertically so that their horizons aligned, 3)
extracted the luminance channel from each image, 4) averaged over the horizontal position
(see Fig. 4.7a) and 5) cropped to extract a luminance vector li of length n centred at the
horizon. Finally, we computed the first m principal components ui (see Fig. 4.7b) of
length n over these k vectors.

0 100 200 300 400 500

-1

-0.5

0

0.5

1 Mean Luminance
Horizon Location

0 100 200 300 400 500
-0.1

-0.05

0

0.05

0.1

1st Principal Component
2nd Principal Component
3rd Principal Component
Horizon Location

(a)

0 100 200 300 400 500

-1

-0.5

0

0.5

1 Mean Luminance
Horizon Location

0 100 200 300 400 500
-0.1

-0.05

0

0.05

0.1

1st Principal Component
2nd Principal Component
3rd Principal Component
Horizon Location

(b)

Figure 4.7: (a) Mean normalized luminance of horizon training images as a function of vertical
displacement from horizon. (b) First three principal components of vertical luminance distribution
around horizon location.

To estimate the vertical position yh of the horizon for a target image, we 1) normalize
the image to have zero mean and unit variance, 2) extract the luminance channel, 3) av-
erage over the horizontal position and 4) convolve the resulting vector l with each of the
m principal component vectors to generate m projection vectors l̃i. Approximating the
training data as multivariate normal, the log probability that the horizon lies at the vertical
location y can be estimated as:

log p (yh = y) ∝ −
m∑
i=1

(
l̃i(y)− l̄Tui

)2

/λi, (4.3)

where l̄ is the mean over the training vectors li and λi is the ith eigenvalue. The horizon is
then estimated by maximizing this log probability over y.

The two free parameters of this method are the length n of the principal component
filters and the number m of these filters to employ. We optimized these parameters by grid

98

search over the training data (Fig. 4.8), finding n = 300 pixels and m = 6 to be optimal.
Examples of horizon lines estimated on the test dataset are shown in Fig. 4.10(c-f).

Number of Principal Components
1 2 3 4 5 6 7 8 9 10

Fi
lte

r S
iz

e
(P

ix
el

s)

100

200

300

400

500
100

150

200

250

300

Figure 4.8: Mean vertical location error in horizon estimate over training data, as a function of
the length n and number m of principal components filters.

4.4.3 Region of Interest

The road vanishing point and horizon line provide crucial geometric constraints on the
location of the road surface. To turn these constraints into an approximate segmentation
of the road, we fuse them with a spatial prior that has been conditioned on the estimated
vanishing point or horizon. Fig. 4.9(a) shows the spatial prior, learned over the training
dataset, without conditioning. The prior is quite diffused, due not only to the variability
in road geometry but also to the variation in camera placement. Figs. 4.9(b-c) show the
same prior, computed relative to the vanishing point location for images where a vanishing
point can be identified (a) and relative to the horizon line for images where it cannot (c).
Note that conditioning on the geometry leads to a more focused and accurate indicator of
the road surface location.

In order to segment the road for a novel image, we first estimate the vanishing point.
If the estimate is judged to be reliable, we register the associated prior (Fig. 4.9(b)) with
the estimated vanishing point and label all pixels above a threshold probability p0 to be
road pixels. If the vanishing point is judged to be unreliable we follow the same procedure

99

for the estimated horizon line and prior. If our vanishing point and horizon line estimates
were perfectly accurate, a threshold of p0 = 0.5 would maximize the proportion of correct
pixel labelling rate (road/non-road). Fig. 4.9(d) shows that our road segmentation algo-
rithm performs substantially better than the method of Qian et al. [157], which involved
simply thresholding the spatial prior, with no estimation of road geometry. This figure also
confirms that a threshold of 0.5 works well in practice and is the value we adopt for road
weather classification.

500 1000 1500 2000 2500

200
400
600
800
1000
1200
1400

(a)

500 1000 1500 2000 2500

200
400
600
800
1000
1200
1400

(b)

500 1000 1500 2000 2500

200
400
600
800
1000
1200
1400

(c)

Threshold
0 0.2 0.4 0.6 0.8 1

Pr
op

ot
io

n
Co

rre
ct

0.5

0.6

0.7

0.8

0.9

1

(d)

Figure 4.9: (a) Prior spatial distribution of road pixels, in absolute image coordinates. (b) Prior
horizontally and vertically registered to vanishing point. (c) Prior vertically registered to horizon.
(d) Proportion of correctly labelled image pixels for the test set, as a function of the probability
threshold p0.

Fig. 4.10 shows representative road segmentation results on the test dataset. There
remain some failure modes for both road vanishing point and horizon detection, but gen-
erally speaking the results are good, as indicated by the median examples (b).

100

(a) (b) (c)

(d) (e) (f)

Figure 4.10: Example road segmentations on the test dataset. Results are evaluated based on
proportion of correctly labelled pixels (road/non-road). (a)-(c) show best, median and worst-case
(failure mode) examples for cases where a vanishing point could be estimated. (d)-(f) show best,
median and worst-case examples for cases where the vanishing point was deemed unreliable and
a horizon estimator was used.

4.5 Road Condition Classification

To assess the utility of the improved road segmentation, we use it to define the region
of interest (ROI) for road weather classification. In particular, we use an adaptation of
the method of Qian et al. [157], which employs scale- and orientation-invariant MR8 fil-
ters [165]. These filters produce an 8-dimensional feature vector at each pixel in the ROI.
Each ground truth ROI in the training set is divided into 8 × 8 pixel non-overlapping
patches, each of which is then represented by an 8×8×8 = 512-dimensional feature vec-
tor. K-means is then used to cluster the feature vectors from the training data into k = 74

textons.
While MR8 is roughly luminance-invariant, luminance can carry information about

weather (snow is bright, wet roads tend to be darker). Qian et al. therefore augmented this
texton descriptor with a 20-bin histogram of grey level deviations from the mean image

101

luminance.
Qian et al based their classifier on a naive Bayes model of exponential-χ2 distances of

input vectors from their class-conditional means. Here we take a simpler approach, using
an SVM with RBF kernel in a one-versus-all design (the SVM implementation provided
in the MATLAB Statistics and Machine Learning Toolbox). We found this to yield very
similar results.

4.6 Performance Evaluation

Classification results on the test set for two classes (bare vs snow/ice covered), three
classes (dry, wet, snow/ice covered) and five classes (dry, wet, snow, ice, packed) are
shown in Fig. 4.11. We evaluate results using three different methods to define the ROI:
1) manual segmentation; 2) the automatic segmentation method proposed here; 3) auto-
matic segmentation using the fixed prior of Fig. 4.9(a)) [157]. As a baseline we also show
performance for a classifier that simply selects the highest a priori probability. Note that
the manual segmentation provides an upper bound on the possible payoff from further
improvements to segmentation.

2 Class 3 Class 5 Class

Cl
as

sif
ic

at
io

n
A

cc
ur

ac
y(

%
)

40

60

80

100 Manual Segmentation
Proposed Segmentation
Fixed Prior Segmentation
Baseline

Figure 4.11: Results comparison for 2, 3 and 5 classification using manual, Proposed Segmenta-
tion, Fixed prior segmentation against random guesses.

Our proposed segmentation method achieved an accuracy of 86% for two-classes, 80%
for three-classes, and 52% for 5 classes. Given the challenging nature of the dataset, these
are promising results.

102

The proposed segmentation method improves classification accuracy over the fixed
segmentation method used by Qian et al. [157] in all cases. Statistical significance of this
improvement can be assessed by computing the posterior probability that the underlying
probability of correct classification is greater for our proposed method, assuming a flat
prior over the performance for the two methods. This yields a posterior probability of 0.81
for the 2-class case, 0.99 for the 3-class case and 0.90 for the 5-class case, corresponding
to p-values of .19, .01 and .10 in the language of null-hypothesis testing.

4.7 Summary

In this paper we have proposed a novel algorithm for road segmentation from uncali-
brated dash cameras, to support road weather analysis. The algorithm was designed to
operate robustly over a diverse range of camera poses on both structured (highway/local
road) and unstructured roads (parking lots). The approach consists of finding the vanish
point, or horizon and fusing with a registered spatial prior. Classification performance on
a challenging dataset was 86% and 80% for two- and three-class problems, respectively,
representing a significant improvement over prior work [157]. Our analysis reveals that
further improvements in performance will likely depend on improvements in both the seg-
mentation and classification stages. The vanishing point from image could be used as
a reference point to guild segmentation process. Currently, we are using simple Texton
features, where deep learning algorithm could potentially deployed in the classification
tasks.

In recent years concern has been raised regarding the lack of generalization of tradi-
tional supervised road segmentation techniques, which tend to fail when facing situations
not covered in the training set. To overcome this issue, attempts have been made to use on-
line learning methods to adapt the parameters of the algorithm to the image data [155, 6].
These methods typically assume that the bottom of the image projects from the road sur-
face [38, 7, 155, 6], which unfortunately is not the case for our dataset (Figure 4.1). Never-
theless, this is an important issue, and we hope to increase the adaptiveness of our method
in the near future.

103

Chapter 5

LS3D: Building Reconstruction From A
Single Image

5.1 Project Description

In the built environment, 3D scenes are often dominated by lines in three mutually orthog-
onal directions [33]. This regularity can be used to transform the 2D line segments into a
3D CAD model. We built our own dataset (3DBM) because there was no similar dataset
available. We used depth maps for evaluation benchmarks because other 3D reconstruc-
tion algorithms use depth maps in their evaluation, and we wish to compare against these
algorithms.

My contribution to this project is as follows:

1. With guidance from Professor James Elder and Professor Srikumar Ramalingam, I
have developed a novel, explainable, single-view 3D reconstruction algorithm called
LS3D that infers the 3D Euclidean surface layout of Manhattan buildings, up to an
unknown scaling factor.

2. I built a new 3DBM ground truth dataset of 3D Manhattan building models and
a novel evaluation framework that allows single-view methods for 3D Manhattan
building reconstruction to be evaluated and compared.

3. I evaluated the LS3D algorithm against state-of-the-art deep learning algorithms on

104

the 3DBM dataset.

Related Publications:

• Y. Qian, S. Ramalingham, and J. Elder. LS3D: Single-view Gestalt 3D surface re-
construction from manhattan line segments. In Proceedings of the Asian Conference
on Computer Vision (ACCV), pages 399–416, 2018

5.2 Introduction
Most 3D computer vision research focuses on multi-view algorithms or direct ranging
methods (e.g., LiDAR, structured light). However, the human ability to appreciate the 3D
layout of a scene from a photograph shows that our brains also make use of single-view
cues, which complement multi-view analysis by providing instantaneous estimates, even
for distant surfaces, where stereoscopic disparity signals are weak.

Recent work on single-view 3D reconstruction has focused on supervised deep learn-
ing to directly estimate depth from pixels. Here we take a different approach, focusing
instead on identifying a small set of principles that together lead to a simple, unsupervised
method for estimating 3D surface geometry for buildings that conform to a Manhattan
constraint [33].

This approach has three advantages. First, it provides an interpretable scientific theory
with a clear set of assumptions and domain of validity. Second, it leads to a well-specified
hierarchical solid model 3D representation that may be more useful for downstream appli-
cations than a range map. Finally, as we will show, it generates results that are qualitatively
and quantitatively superior to state-of-the-art deep learning methods for the domain of 3D
Manhattan building reconstruction.

Single-view 3D reconstruction is ill-posed and thus solvable only for scenes that sat-
isfy strong regularity conditions. Meanwhile, using the linear perspective - the assumption
that features of the 3D scene are arranged over systems of parallel lines - is perhaps the
most powerful of these constraints: its discovery is often cited as a defining achievement of
the Early Renaissance. The linear perspective is a particularly valuable cue for urban en-
vironments, which abound with piecewise planar and often parallel surfaces that generate
families of parallel 3D line segments in the scene.

105

A stronger constraint than the linear perspective is the so-called Manhattan constraint [34],
which demands that there be three dominant and mutually orthogonal families of parallel
line segments. Application of this additional regularity allows line segments to be labelled
with their 3D orientation, but does not directly provide an estimate of the 3D surfaces or
solid shapes in the scene.

To bridge this gap, we appeal to a long history of research in Gestalt psychology that
identifies a principle of proximity and related cues of connectedness and common region
as dominant factors in the perceptual organization of visual information [95, 94, 49, 167].
We use this principle of proximity repeatedly to construct successively more global and
three-dimensional representations of the visual scene.

The proposed approach is anchored on a sparse line segment representation - Fig. 5.1
provides an overview of our Line-Segment-to-3D (LS3D) algorithm. Principles of proxim-
ity and good continuation are used to group local image edges into line segments, which
are then labelled according to their Manhattan directions (Fig. 5.1(a)). A principle of
proximity is then again employed to optimally group neighbouring orthogonal segments,
forming local 2D minimal spanning Manhattan trees (MTs, Figs. 5.1(b-c)). Each of these
local trees is then constructed into 3D using the Manhattan constraints. Note, however,
that the relative depth of each 3D MT remains undetermined (Fig. 5.1(d)).

One of our main contributions is to show that each of these 3D Manhattan trees can
be decomposed into a maximal set of non-subsuming 3D 3-junctions, 3-paths and L-
junctions. Each of the 3-junctions and 3-paths defines a unique minimal covering cuboid,
and each L-junction defines a unique minimal covering rectangle. The union of these
cuboids and rectangles defines the 3D surface model for the tree (Fig. 5.1(e)).

The definition of these surfaces now allows the relative depth of these local 3D mod-
els to be resolved through a two-stage constrained optimization procedure. We first apply
a principal of common region [167], minimizing the L1 distance between parallel planes
from different models that overlap in the image, forming sets of compound 3D models cor-
responding to connected regions in the image (Fig. 5.1(f)). Finally, we apply a principle
of proximity to resolve the relative depth of these disjoint compound 3D models, mini-
mizing the L1 distance between parallel planes from distinct models, weighted by their
inverse separation in the image. For both stages, occlusion constraints [62] play a crucial
role in preventing physically unrealizable solutions. The resulting 3D scale model (Fig.

106

(a) (b) (c) (d)

(e) (f)
(g) 0m 50m 100m 150m

(h)
Figure 5.1: LS3D processing stages. (a) Detected Manhattan line segments. (b) Graphical structure
of identified Manhattan spanning trees (MTs). Each vertex represents a line segment endpoint, and
each edge represents either a real line segment or a junction between orthogonal segments. (c)
MTs localized in the image (d) MTs lifted to 3D. Note that the relative depth of each MT remains
unknown. (e) Minimal spanning cuboid/rectangle models. (f) Compound 3D models of connected
structures. (g) Final model of visible surfaces. (h) Range map.

5.1(g)) can be used to generate a range map (Fig. 5.1(h)) for comparison with competing
approaches.

Unlike deep learning methods, LS3D is not designed to recover an estimate of absolute
depth for every pixel in the image, but rather an estimate of the Euclidean 3D layout of the
Manhattan structures in the scene, up to a single unknown scaling factor. We therefore in-
troduce a new 3D ground-truth dataset of solid massing building models and an evaluation
framework suitable for the evaluation of such algorithms.

To summarize, our contributions are three: 1) We introduce a novel, explainable single-
view 3D reconstruction algorithm called LS3D that infers the 3D Euclidean surface lay-
out of Manhattan buildings, up to an unknown scaling factor, 2) We introduce a new
3DBM ground truth dataset of 3D Manhattan building models and a novel evaluation
framework that allows single-view methods for 3D Manhattan building reconstruction to
be evaluated and compared, and 3) Using this dataset and framework, we find that the
LS3D method outperforms state-of-the-art deep-learning algorithms, both qualitatively

107

and quantitatively. The goal of this work is not to reconstruct general scenes. This is
consistent with the computer vision tradition of focusing on important sub-problems, and
making use of domain constraints. As we argue here, Manhattan structures are extremely
common in our built environment and many non-Manhattan scenes can be modelled as a
mixture of Manhattan frames. Thus it makes sense to have a specialized module for their
reconstruction. Any system that does not take explicit advantage of Manhattan regularity
will, we expect, fail to reconstruct a crisp orthogonal structure (See DNN output in Fig.
5.4)

5.3 Prior Work
Single-view 3D reconstruction is a classical computer vision problem that goes back to
Roberts’ PhD thesis [136, 64, 168, 83, 152]. More recent work has attempted to recon-
struct piecewise planar 3D models of real scenes but under somewhat stronger assump-
tions. In their Photo Pop-up work, Hoiem et al. [73] modeled scenes as comprising three
types of surfaces: ground, vertical and sky. Boosted decision tree classifiers were used to
label superpixels from the image into one of these three semantic classes using a feature
descriptor that includes appearance and geometric cues. The set of polylines defining the
ground/vertical boundary was identified to estimate the 3D orientations of the vertical sur-
faces in the scene. Subsequent work globally optimizes the ground/vertical boundary [10]
and generalizes to a larger range of camera poses and more fine-grained surface estima-
tion [66].

While Hoiem et al. allowed vertical surfaces of arbitrary orientation, Coughlan and
Yuille[33] observed that in the built environment, 3D scenes are often dominated by three
mutually orthogonal directions (vertical + 2 horizontal) and developed a probabilistic ap-
proach to recover the rotation of this so-called Manhattan frame relative to the camera.
Subsequent work [40, 154] refined this model to deliver more accurate Manhattan frames
and to label the lines in the image according to their Manhattan direction.

The Manhattan constraint has been productively exploited by numerous subsequent 3D
reconstruction algorithms. Delage et al.[39] developed a Bayes net model to identify the
floor/wall boundary in indoor scenes and thus to recover the Euclidean floor/wall geome-
try. Hedau et al.[70] employed an even stronger constraint for indoor 3D room reconstruc-

108

tion, assuming that the room could be modeled as a single cuboid with intervening clutter.
Subsequent improvements to indoor reconstruction based on this cuboid constraint has
relied on novel features [101, 131, 111], physics-based constraints [62], Bayesian model-
ing [126], better inference machinery [52, 148], larger field-of-view [183], and supervised
deep learning [37].

While these indoor room scenes are highly constrained, a more recent approach re-
turns to the problem of reconstructing more general Manhattan scenes, indoors and out-
doors [130]. Line segments are first detected and labelled with their Manhattan directions,
and then a large set of potential 3D connectivities are identified between segment pairs.
While many of these potential connectivities are false, an L1 minimization framework
can identify the 3D solution that respects the maximal number of connection hypotheses,
allowing the detected 3D line segments to be backprojected into 3D space.

As an alternative to the ground/vertical and Manhattan constraints one can assume that
surfaces are linear 3D sweeps of lines or planar contours detected in the image. This con-
straint had led to interesting interactive systems, although fully automatic reconstruction
is challenging [97].

The main competing fully automatic approach to constrained piecewise planar models
attempts to recover an unconstrained range map, using supervised machine learning tech-
niques. An early example is Make3D [143], which models range as a conditional random
field (CRF) with naïve Bayes unary potentials over local edge, texture, and colour features
and a data-dependent binary smoothness term.

More recent range map approaches tend to use deep neural networks [45, 108, 99, 107,
188, 55, 177, 129, 103]. For example, Eigen et al. train and evaluate a multi-scale CNN
on their own NYU RGBD dataset of indoor scenes and the KITTI LiDAR dataset of road
scenes [58, 45], while Laina et al. train and evaluate a single-scale but deeper ResNet
concatenated with up-sampling layers [99] on Make3D [143] and NYU2 [45] datasets.
Joint estimation of depth with surface orientation and/or a semantic category has been
found to improve the accuracy of depth estimates [45, 177, 129].

One criticism of deep network approaches is the requirement for large amounts of
labelled training data, but recent work demonstrates that deep networks for single-view
range map estimation can be trained from calibrated stereo pairs [57, 103] or even uncali-
brated video sequences [187] using reprojection error as the supervisory signal.

109

Recent research has also been exploring fusion of deep networks with more traditional
computer vision approaches. The IM2CAD system [78], for example, focuses on the
modeling of room interiors, optimizing configurations of 3D CAD models of furnishings
and wall features by minimizing the projection error.

While deep networks have become the dominant approach to single-view 3D recon-
struction, this approach has limitations. First, DNN models have millions of free param-
eters and are thus not easily interpretable. Second, while deep networks can provide an
estimate of the rough scene layout, they typically fail to deliver the crisp and accurate ge-
ometry that is typical of urban environments. Third, most deep network approaches deliver
a range map, which may be appropriate for some applications (e.g., navigation), but for
applications such as construction, interior design and architecture a succinct CAD model
is more useful.

We thus return in this paper to the classical geometry-driven approach. In particular,
we ask, for the particular problem of single-view 3D Manhattan building reconstruction,
how much can be achieved by a method that uses geometry alone, without relying upon
any form of machine learning or appearance features. While the geometric approach has
been criticized as unreliable [101], we show here that by integrating several key novel ideas
with state-of-the-art line segment detection [4], reliable single-view 3D reconstruction of
Manhattan objects can be achieved. By keeping the model simple we keep it interpretable,
and by focusing on geometry, we deliver the crisp surfaces we experience in built environ-
ments, in a highly compact 3D CAD model form.

The focus on geometry and application of the Manhattan constraint links the proposed
LS3D approach most directly to the line lifting algorithm of Ramalingam & Brand [130].
However, in this prior work there was no explicit grouping of line segments into larger
structures, no inference of surfaces or solid models, and no quantitative evaluation of 3D
geometric accuracy. LS3D thus goes far beyond this prior work in delivering quantitatively-
evaluated 3D surface models. This is achieved through three key contributions:

1. While prior approaches [100, 101] use a ‘line sweeping’ heuristic to go from line
segments to independent Manhattan rectangles, here we introduce a novel, princi-
pled approach to identify more complex 3D Manhattan trees, solving a series of
three optimal bipartite matching problems to deliver spanning tree configurations

110

of orthogonal Manhattan line segments that together maximize proximity between
grouped endpoints.

2. We introduce a novel method for converting these 3D Manhattan trees to surface
models. The idea is based on decomposing each Manhattan tree into a maximal set
of non-subsuming 3D 3-junctions, 3-paths and L-junctions. Each of the 3-junctions
and 3-paths defines a unique minimal spanning cuboid, and each L-junction defines
a unique minimal spanning rectangle. The union of these cuboids and rectangles
defines the 3D surface model for the tree.

3. These 3D surface models contain multiple planes, providing stronger cues for esti-
mating the relative depth of disconnected structures. We introduce a novel two-stage
L1 minimization approach that gives precedence to the Gestalt principle of common
region [167] to first form compound 3D models of structures connected in the image,
and later resolving distances between these disjoint structures.

5.4 The LS3D Algorithm
The LS3D algorithm is summarized in Fig. 5.1 and detailed below. Line segments are first
detected and labelled according to Manhattan direction (Fig. 5.1(a), Section 5.4.1). From
these, Manhattan spanning trees (MTs) are recovered (Fig. 5.1(b-c), Section 5.4.2) and
then constructed into 3D models(Fig. 5.1(d), Section 5.4.3). A maximal set of minimal
cuboids and rectangles that span each 3D MT is then identified (Fig. 5.1(e), Section 5.4.4)
and their surfaces aligned in depth through a constrained L1 optimization first for overlap-
ping MTs (Fig. 5.1(f)) and finally for disjoint MTs (Section 5.4.5). The resulting 3D CAD
model 5.1(g)) can be rendered as a range map (Fig. 5.1(h)) to compare with algorithms
that only compute range maps.

5.4.1 Manhattan Line Segment Detection

We employ the method of Tal & Elder [154] to estimate Manhattan lines, based upon
probabilistic Houghing and optimization on the Gauss sphere, and then the MCMLSD
line segment detection algorithm [4], which employs an efficient dynamic programming

111

algorithm to estimate segment endpoints. MCMLSD produces line segment results that
are quantitatively superior to prior approaches - Fig. 5.1(a) shows an example.

The MCMLSD algorithm identifies line segments that are co-linear: LS3D groups
nearby co-linear segments into a single ‘super-segment’, but retains a record of the inter-
mediate endpoints to support later surface creation (see below). We retain only segments
over a threshold length.1

5.4.2 Manhattan Tree Construction

Prior line-based single-view 3D algorithms [100, 101] attempt to leap directly from line
segments to 3D with no intermediate stages of perceptual organization. One of our main
hypotheses is that the Gestalt principle of proximity coupled with sparsity constraints can
yield a much stronger intermediate Manhattan tree representation that will subsequently
facilitate global 3D model alignment.

First, a dense graph is formed by treating each segment as a vertex, and defining edges
between pairs of vertices representing orthogonal segments with endpoints separated by
less than a threshold distance.2 (Note that an endpoint can lie on the interior of a super-
segment.) To sparsify the graph we apply the constraint that each endpoint connects to
at most one other endpoint in each of the two orthogonal Manhattan directions. This
is achieved through a series of three optimal bipartite matchings, using a proximity-based
objective function. Specifically, we seek the bipartite matching of allX segment endpoints
to all Y segment endpoints that minimizes the total image distance between matched end-
points, and repeat for X and Z segments as well as Y and Z segments. These optimal
bipartite matches are found in cubic time using the Hungarian algorithm [116]. We further
sparsify the graph by computing the minimum spanning tree (MST) for each connected
subgraph, generating what we will call local Manhattan trees (MTs, Fig. 5.1(b-c)).

1We use a minimum segment length of 100 pixels, and maximum gap between co-linear segments of 300
pixels. Sensitivity to these threshold is studied in Section 3.8.

2We use a threshold distance of 100 pixels - sensitivity to this threshold is studied in Section 3.8.

112

5.4.3 Lifting 2D MTs to 3D

Each of the MTs can be back-projected from 2D to 3D space using Manhattan direction
constraints, up to an unknown distance/scaling constant λ. Assume a camera-centered
world coordinate frame (X, Y, Z) in which the X and Y axes are aligned with the x and
y axes of the image. Then any endpoint xi = (xi, yi)

> in the image back-projects to a 3D
point Xi = λ(xi, yi, f)> in the scene, where f is the focal length of the camera. Note that
while λ is unknown it must be the same for all endpoints in the MT.

Due to noise, Manhattan line segments will never be perfectly aligned with the Manhat-
tan directions. Lifting an MT thus entails rectifying each segment to the exact Manhattan
direction. We employ a sequential least-squares process. One of the endpoints X0 of the
MT is first randomly selected as the 3D anchor of the tree: the 3D tree is assumed to pass
exactly through X0. Then a depth-first search from X0 is executed, during which the Man-
hattan 3D location X′j of each endpoint Xj is determined from the Manhattan location X′i
of its parent on the depth-first path by X′j = X′i + αλVij , where Vij is the 3D vanishing
point direction for segment (i, j) and α is determined by minimizing ||X′i+αλVij−Xj||2.
(Note that λ factors out of this minimization.) Figs. 5.1(c-d) show the MTs for an example
image, each constructed into a 3D model up to a random scaling constant λ.

5.4.4 From Line Segments to Surfaces

A key contribution of our work is a novel method for inferring a surface structure from 3D
MTs. We define a Manhattan three-junction as a triplet of orthogonal line segments that
meet at a vertex of the MT, and a Manhattan three-path as a sequence of three orthogonal
segments meeting end-to-end (Fig. 5.2). Since each segment can radiate from a junction
in two ways, there are eight types of three-junctions, four that may be observed below the
horizon and four that may be observed above (Fig. 5.2 Columns 2-3). Each three-path
must begin at one of two endpoints of one of three segment types, and then continue to
one of two endpoints of one of the remaining two segment types, and finally one of two
endpoints of the remaining segment type. This leads to 2×3×2×2×2 = 48 three-paths,
however each of these has a metamer path that has been traversed in the opposite direction,
so there are only 24 distinct three-paths, 12 that can be observed above the horizon and 12
that can be observed below (Fig. 5.2 Columns 4-9). Our main insight is that this collection

113

of 32 three-junctions and three-paths can be viewed as the the outcome of a generative
process involving just four generic cuboid poses, two lying above the horizon and two
below (Fig. 5.2 Columns 1).

10

1

2

3

4

5

6

7

8

9

12 16

11

13

14

15 19 23

20 24

17 21

18 22

25

26

28

27 31

30

32

29

Figure 5.2: The 32 unique classes of Manhattan three-junctions and three-paths shown on the four
classes of generic Manhattan cuboid poses.

This observation leads to a simple algorithm for bridging line segments to surfaces.
We first decompose an MT into an exhaustive set of Manhattan three-junctions and three-
paths. If any segments remain these are used to form two-paths with neighbouring or-
thogonal segments. This collection of three-junctions, three-paths and two-paths spans the
MT. Three-junctions and three-paths are then used to spawn minimal spanning Manhattan
cuboids as per Fig. 5.2, and two-paths, if they exist, span minimum spanning Manhattan
rectangles. (Note that at an intermediate endpoint of a super-segment, the entire super-
segment is considered to support the generated cuboid or rectangle - this serves to com-
plete occluded surfaces.) Together, these cuboids and rectangles form a surface model for
the MT.

It is important to distinguish our approach to inferring 3D surface models from prior
work on recovering indoor scenes that ‘sweeps’ segments in orthogonal Manhattan di-
rections [100, 101]. This sweeping approach estimates the 3D orientation of Manhattan
rectangles, but not their relative depth, which must be resolved using strong constraints on
the structure of the room (single floor and single ceiling connected by ‘accordion’ Man-
hattan walls).

By first connecting proximal orthogonal line segments into minimal Manhattan span-
ning trees, we provide the connectivity constraints necessary for producing more com-
plex locally-connected 3D surface models, which generate much stronger constraints for

114

resolving relative depth (next section). This approach can be considered a quantitative
expression of the 3D reasoning philosophy advocated by Gupta et al. [62], who argued
for the use of simple solid models to make qualitative inferences about 3D scenes. While
their goal was to compute qualitative spatial relationships between independent cuboids,
we show that it is possible to recover quantitative 3D scene structures involving much
more complex compound objects composed of many cuboids and rectangular surfaces.

5.4.5 Constrained L1-Minimization for Manhattan Building Recon-
struction

A typical building generates many MTs and their relative distance/scaling must be deter-
mined. Our surface models allow us now to formulate a constrained L1 optimization that
identifies the scaling parameters minimizing separation between parallel planes while re-
specting occlusion constraints [62]. We partition the process into two stages based upon
Gestalt principles of common region and proximity [167].
Stage 1 (Common Region): Let M represent the number of MTs in the model and let
{λ1, . . . λM} represent the unknown scaling parameters for these MTs. Visible rectangular
facets from all MTs are projected to the image. The overlap in these projections defines an
undirected common region graph Gcr = (Vcr, Ecr) in which each vertex i ∈ Vcr represents
a facet and each edge (i, j) ∈ Ecr represents overlap between parallel facets from different
MTs. Fig. 5.1(f) shows the MTs within each connected component of this graph.

For each connected component c ∈ [1, . . . , C] of the graph we identify the MT mc

with the largest image projection and clamp its scaling parameter to λmc = 1. Our goal is
now to use linear programming (LP) to determine the remaining scaling parameters Λ =

{λ1, . . . , λM}\{λm1 , . . . , λmC} that minimize the weighted distance between overlapping
parallel planes from different MTs.

This minimization must, however, respect depth ordering constraints induced by the
visibility of line segments. To code these constraints, for each MT i we identify all line
segment endpoints pijk ∈ Pij that lie within a rectangular facet from another MT j. Letting
d−ijk represent the depth of endpoint pijk when λi = 1 and d+

ijk represent the distance to the
overlapping facet from MT j along the ray from the camera centre to endpoint pijk when
λj = 1, we have the depth ordering constraint λid−ijk ≤ λjd

+
ijk.

115

The resulting constrained optimization is thus:

min
Λ

∑
(i,j)∈Ecr

|Ai ∩ Aj| · |λidi − λjdj|

s.t. λid
−
ijk ≤ λjd

+
ijk, pijk ∈ Pij

(5.1)

Here |λidi − λjdj| is the distance between two parallel planes. We weigh this distance
by the area of overlap |Ai ∩ Aj| of the two planar facets in the image.
Stage 2: (Proximity) Even after the scaling parameters of MTs within each connected
component of the common region graph have been optimized to merge parallel planes in
3D, the relative scaling of each connected component will remain unknown.

To resolve these remaining degrees of freedom, we first identify a disjoint region graph
Gdr = (Vdr, Edr) in which each vertex i ∈ Vdr represents a facet and each edge (i, j) ∈ Edr
represents two parallel facets from different MTs and different components that do not
overlap in the image.

We then identify the connected component c with the largest image area and clamp
its scaling parameter to λmc = 1. We will now again use LP to determine the remaining
scaling parameters ΛC = {λm1 , . . . , λmC} \ λmc that minimize the weighted distance be-
tween non-overlapping parallel planes from different MTs and different components. We
weigh this minimization by the sum of the areas |Ai ∪Aj|, and inversely by the minimum
separation lij of the two planar facets in the image.

Note that although there is no overalap between the pairs of planar facets entered into
the minimization, there may still be overlap between one or more visible line segments
from one component and one or more facets from the other, and these must again be
encoded as ordering constraints. The resulting constrained minimization is thus:

min
ΛC

∑
(i,j)∈Edr

1

lij
|Ai ∪ Aj| · |λidi − λjdj|

s.t. λid
−
ijk ≤ λjd

+
ijk, pijk ∈ Pij

(5.2)

Fig. 5.1(g) shows the 3D surface model that results from this two-stage constrained
minimization for an example image.

116

5.5 Evaluation Dataset
To evaluate the LS3D algorithm and compare it against state-of-the-art algorithms, we
have created a new 3D ground truth dataset of 57 urban buildings that largely conform
to the Manhattan constraint. The 3D building massing models (3DBMs) were obtained
through the City of Toronto Open Data project from www.toronto.ca/city-government/

data-research-maps/open-data and were simplified in MeshLab[30] to speed
up processing. Fig. 5.3 shows some examples.

Figure 5.3: Some examples of 3DBM models in our dataset.

The number of images taken of each building depended upon access and the complex-
ity of the architecture - 118 images were taken in total. We used a Sony NEX-6 camera
with 4912×3264 pixel resolution. The camera was calibrated using the MATLAB Camera
Calibration Toolbox to determine focal length (15.7mm) and principal point. The NEX-6
corrects for barrel distortion - our calibration procedure confirmed that it is negligible.

The camera was held roughly horizontally, but no attempt was made to precisely con-
trol height, roll or tilt. We attempted to take generic views of the buildings, but the exact
viewing distance and vantage depended upon access and foreground obstructions. This
dataset will be made available at elderlab.yorku.ca/resources.

To use the 3DBM dataset to evaluate single-view 3D reconstruction algorithms, we
need to determine the rotation Ω and translation τ of the camera relative to each of the
3DBMs. To this end, we manually identified between 5-20 point correspondences (wi,xi)

117

in the 3DBM model and the 2D image, and then used a standard nonlinear optimization
method (MATLAB fmincon) to minimize the projection error.

5.6 Evaluation
Our algorithm generates a 3D CAD model which is hard to compare to other state-of-
the-art algorithms. In this case, we rendered the CAD model into a depth map for easier
comparison.

We compare LS3D against the CRF-based Make3D algorithm[143] and four state-of-
the-art deep learning approaches: the multi-scale deep network of Eigen et al. [46] (trained
on NYUv2), the fully convolutional residual network (FCRN) of Laina et al. [99] (trained
on Make3D and NYUv2), the deep ordinal regression network(DORN) of Fu et al. [55]
(trained on NYUv2 and Kitti) and the very recent PlaneNet algorithm of Liu et al.[105]
(trained on ScanNet).

The LS3D method estimates range only up to an unknown scaling factor α. Although
the FCRN and DORN algorithm are trained to estimate absolute range, the Eigen algo-
rithm is trained to minimize a partially scale-invariant loss function, and therefore should
not be expected to deliver accurate absolute range estimates. Moreover, global scaling er-
ror has been reported as a significant contributor to overall error for such methods [46]. For
these reasons we estimate a global scaling factor α for each algorithm and image indepen-
dently by fitting the range estimates to the 3DBM ground truth. In particular, we estimate
the value of α that minimizes the RMS deviation of estimated range d̂ from ground truth
range d, over all pixels that project from the 3DBM model.

The LS3D algorithm is not guaranteed to return a range estimate for every pixel that
projects from the 3DBM, particularly when foliage and other objects intervene. To account
for this, we employ two different methods to compare error between the LS3D and com-
peting methods. In the intersection method, we measure the RMS error for all algorithms
only for the intersection of the pixel set that projects from the 3DBM and the pixel set for
which LS3D returns a range estimate. In the diffusion method, we interpolate estimates of
range at 3DBM pixels for which LS3D does not return an estimate, by solving Laplace’s
equation with boundary conditions given by the LS3D range estimates at pixels where
estimates exist and there are reflection boundary conditions at the frame of the image.

118

This allows us to compare RMS error for all algorithms over all pixels projecting from the
3DBMs. The input and output resolution of each algorithm varies - our 4912×3264 pixels
images were resized to meet the input requirements of each algorithm.

Qualitative results are shown in Fig. 5.4. Make3D and the deep networks deliver range
estimates that are sometimes correlated with ground truth, but these estimates are noisy
and highly regularized. They generally fail to capture the dynamic range of depths over
the 3DBM surface (deep red to dark blue). Moreover in some cases the estimates seem
wildly inaccurate. In Column 1, for example, both versions of FCRN completely fail. In
Column 2, all competing algorithms except perhaps DORN estimate the left face of the
building as farther away than the right. In Column 3, all networks seem to fail. In Column
4 all networks fail to capture the receding depth of the left wall of the building.

The LS3D results are qualitatively different. The crisp architectural structure of each
building is captured, along with the full dynamic range of depths. As expected, where good
connectivity is achieved errors are minimal (Columns 2,4). In Column 1 and 3, however,
some limitations can be seen, stemming from the failure to extract parts of the building
occluded by vegetation.

We find that on average the LS3D method returns a range estimate for 83.3% of pixels
projecting from the 3DBM model. For quantitative evaluations, we first average the error
over all images of a particular building, and then report the mean and standard error over
the 57 buildings in the dataset. Table 5.1 shows quantitative results based on the inter-
section measure of error. Of the prior algorithms, we find that PlaneNet[105] performs
best, achieving a mean error of 9.35m (23.4%). However, LS3D beats this by a substan-
tial margin (24.6%), achieving a mean error of 7.05m (17.7%). Matched-sample t-tests
confirm that this improvement is statistically significant (Table 5.1). A comparison of the
LS3D performance with and without occlusion constraints shows that these constraints
yield a substantial improvement in performance. Mean errors are somewhat higher for all
methods when using the diffusion method to evaluate over all pixels projecting from the
3DBM model (Table 5.2). PlaneNet is again the best of the deep networks, achieving a
mean error of 10.6m (26.1%). However, LS3D beats this by 22.9%, achieving a mean
error of 8.17m (19.4%). Matched-sample t-tests again confirm that this improvement is
statistically significant (Table 5.2).

Our method is not intended to reconstruct an entire image or to operate on non-

119

R
G

B
Im

ag
e

M
ak

e3
D

E
ig

en
FC

R
N

-M
ak

e3
D

FC
R

N
-N

Y
U

D
O

R
N

Pl
an

eN
et

L
S3

D

 0m 10m 20m 30m 40m 50m 60m

L
S3

D
+

D
iff

us
.

G
ro

un
d

Tr
ut

h

 0m 50m 100m 0m 20m 40m 60m 80m 100m 0m 10m 20m 30m 40m 50m 60m 0m 50m 100m 150m

Figure 5.4: Example results for Make3D [143], Eigen [46], FCRN [99], DORN [55], PlaneNet
[105], and the proposed LS3D method, with and without diffusion.

120

Error Rate p Value

Methods RMSE(m) RMSPE(%) RMSE RMSPE

Make3D[143] 25.3 63.3 7.11E-18 4.36E-30

Eigen[46] 11.9 31.4 2.59E-07 2.74E-10

FCRN(Make3D)[99] 14.1 34.9 1.40E-10 1.32E-13

FCRN(NYU)[99] 11.0 28.1 3.91E-08 1.42E-09

DORN[55] 11.5 29.0 1.23E-08 1.05E-10

planeNet[105] 9.33 24.0 8.1E-03 1.2E-03

DenseNet[3] 10.4 26.2 7.93E-23 8.37E-35

DenseNet[3] eval. on test set 13.3 30.7 2.87E-22 4.46E-33

DenseNet[3] fine tuned eval. on test set 12.5 30.9 3.45E-22 7.78E-33

LS3D (no occlusion constraint) 8.02 20.2 5.60E-03 3.21E-02

LS3D (with occlusion constraint) 7.03 18.0 N/A N/A

Table 5.1: Quantitative results using the intersection method of evaluation. Errors are computed
only for pixels where the LS3D method returns a range estimate. p-values for matched-sample
t-tests of the LS3D method (with occlusion constraint) against competing deep network algorithms
are reported.

Manhattan structure. Nevertheless, we have evaluated its performance on the indoor
NY U2 dataset. We achieve a mean error of 1.08m on the subset of pixels for which a
range estimate is returned. This is not competitive with deep networks trained on NYU,
for which mean error is on the order of 0.5 - 0.64m over the entire image, but is better
than Make3D (1.21m). We believe the higher performance of deep networks on NYU2 is
due to deviation from Manhattan constraints and the fact that DNNs overfit to the constant
camera pose and similarity of environments in the dataset.

Additionally, in order to evaluate the impact of fine-tuning on our small dataset, we
split the dataset into 50% training and 50% testing. The training set was used to fine tune
DenseDepth model[3], which was pre-trained on the NYU2 dataset. The source code for
DenseDepth was obtained from github.com/ialhashim/DenseDepth. We found
that fine tuning led to a 6% on intersection and 5% on diffusion RMSE improvement.

Figure 5.5(a) shows best, median and worst case performance of our LS3D algorithm
on our dataset. The worst case does not look that bad qualitatively, but the algorithm

121

Error Rate p Value

Methods RMSE(m) RMSPE(%) RMSE RMSPE

Make3D[143] 27.1 65.9% 1.72E-19 7.52E-33

Eigen[46] 13.2 34.2 2.88E-08 4.21E-12

FCRN(Make3D)[99] 15.8 38.1 1.60E-12 5.76E-16

FCRN(NYU)[99] 12.3 30.7 2.01E-09 1.64E-12

DORN[55] 13.0 31.8 5.42E-12 3.60E-13

PlaneNet[105] 10.6 26.5 1.98E-05 1.49E-04

DenseNet[3] 12.0 29.8 7.91E-23 3.63E-32

DenseNet[3] eval. on test set 11.3 26.9 3.45E-22 5.74E-33

DenseNet[3] fine tuned eval. on test set 10.7 19.3 1.38E-22 3.21E-33

LS3D (with occlusion constraint) 8.11 19.7 N/A N/A

Table 5.2: Quantitative results using the diffusion method of evaluation. Errors are computed for all
pixels projecting from the 3DBM model. p-values for matched-sample t-tests of the LS3D method
(with occlusion constraint) against competing deep network algorithms are reported.

incorrectly underestimates the depth of a small part of the building in the lower right
corner of the image, and this leads to a large quantitative error.

LS3D has three main free parameters: 1) the minimum length of a line segment, 2) the
maximum endpoint separation of connected orthogonal segments, and 3) the maximum
separation of connected collinear line segments. Both 1) and 2) are currently set to 100
pixels, and 3) is set to 300 pixels. The dependence of performance on the exact value of
these parameters is shown in Fig. 5.5(b). This analysis shows that these threshold values
are reasonable, and that variation of up to ±50% in threshold values leads to at most a
10% reduction in coverage and a 7% increase in error.

Our current Matlab implementation of LS3D takes about 21 seconds to produce a 3D
model from a 640× 480 image. It could be made much faster by optimizing in C++.

The mesh surfaces generated from LS3D can be texture mapped from the input image.
Fig. 5.6 shows an example texture mapped model.

122

Lowest RMSE Median RMSE Highest RMSE

R
G

B
Im

ag
e

L
S3

D
G

ro
un

d
Tr

ut
h

 0m 20m 40m 60m 80m 100m 0m 20m 40m 60m 0m 50m 100m

40 50 60 70 80 90
Coverage (%)

7

7.5

8

8.5

R
M

SE
 (m

)

Maximum endpoint separation
20

50
100

150

200

65 70 75 80 85
Coverage (%)

7

7.5

8

8.5

R
M

SE
 (m

)

300350

100
Minimum line segment length

200

50

75 80 85 90
Coverage (%)

7

8

9

10

11

R
M

SE
 (m

)

1000

800

500

300200

Collinearity threshold

(a) (b)

Figure 5.5: (a) Best, median and worst case LS3D performance on the 3DBM dataset. (b) LS3D
parameter sensitivity analysis.

Figure 5.6: An example of texture mapped 3D model generated from LS3D.

5.7 Failure Mode Analysis

Our algorithm is sensitive to camera saturation, shadows, image noise, accidental align-
ments and occlusions. The three examples with highest error from the 3DBM dataset are
shown in Fig 5.7. From these examples we can observe two main source of error in the
reconstruction.

1. Accidental alignments.

2. Free-floating scattered structures.

Accidental alignments: line segments from different buildings sometimes align acci-
dentally to form one line segment. This can create large errors during the LS3D recon-

123

struction. Accidental alignment may be caused by texture on the building, shadows or
occluding structures.

Free-floating scatter structures: the second source of error is the scattered structures
floating in the scene. Our algorithm assumes a minimum number of planes in the scene.
When this assumption fails, free floating structure may appear. For example, a structure in
the far background may be incorrectly aligned with a surface in the foreground, creating a
huge numerical error during the evaluation.

5.8 Conclusion & Future Work
We have developed a novel algorithm called LS3D for single-view 3D Manhattan recon-
struction. This geometry-driven method uses no appearance cues or machine learning
yet outperforms state-of-the-art deep learning methods on the problem of 3D Manhattan
building reconstruction. While this algorithm is not designed to reconstruct general 3D
environments, we believe it will be useful for architectural applications.Future work will
explore a mixture-of-experts approach which fuses the LS3D approach to reconstructing
Manhattan portions of the environment with deep learning approaches for estimating the
3D layout of non-Manhattan structures.

124

(a) (b) (c)

0m 50m 100m 0m 50m 100m 150m 200m 0m 50m 100m

Figure 5.7: Examples with highest error (a) 37.2m (b) 30.8m (c)23.8m. First row is original image,
second row is line segments overlaying on image, third row is estimated depth map, fourth row is
ground truth.

125

Chapter 6

Discussion and Future Work

6.1 MCMLSD: Line Segment Detection

The MCMLSD line segment detection algorithm processes images of man-made scenes
and identifies line segments that can be used by other algorithms. MCMLSD uses an
edge detection algorithm [50] that relies upon an estimate of the standard deviation of the
noise in the image. Performance suffers if this estimate is incorrect. Thus an algorithm
that automatically estimates the noise parameter could have some benefit the line segment
detection algorithm.

6.2 Road Segmentation

Follow-up work [5, 27, 28] on the road segmentation project has shown some improved
segmentation performance. Future work will focus on application of this algorithm. One
possible application a smartphone system to monitor snowplow vehicle status that could
potentially save millions of dollars[53]. This smart phone based system powered by our
algorithm can be easily mounted on a dashboard and report the road weather condition to
a control centre in real time.

126

6.3 LS3D: Building Reconstruction From A Single Image

Lines are important features for estimating 3D geometrical information from 2D images.
Perspective projection distorts many 3D properties such as angles, distances and ratios
of distance, but one property is always preserved - line straightness. We can use lines
to find vanishing points, estimate the horizon, and estimate the 3D structure of Manhattan
buildings. Unlike deep learning based approaches, it is a computationally inexpensive way
to estimate 3D geometry from an image with high generalizability.

However, this method does have limitations. First, the low level linear features alone
contains limited semantic information about the scene. By combining it with high level
features, this drawback can be reduced. Secondly, our LS3D algorithm (Chapter 5) is
limited to Manhattan structures. Buildings with curves or oblique angles cannot be recon-
structed. Nor can objects that are not piecewise planar. Part II of this thesis will introduce
a novel algorithm to handle reconstruction of more general objects.

There are many opportunities to improve our LS3D algorithm. Ideas include:

1. Combine line cues with other features such as colour and texture.

2. Replace the Elder/Zucker edge detector [50] with a more recent detector such as
the holistically nested edge detector [176], or the structured edge detector [43] to
improve line segment detection.

3. Generalize our LS3D algorithm to other settings such as the Atlanta World assump-
tion to allow it to process more complex scenes.

4. Generalize our LS3D algorithm to process curves.

5. Combine LS3D with deep learning approaches

6. Extend the algorithm to scenes with more than 3 vanishing points.

Combining LS3D with deep learning approaches could be a great direction to take as it
would benefit from both traditional methods and the power of deep learning. Deep learning
methods provides a low-resolution depth map for the scene. There are two potential ways
to fuse Manhattan MTs with a depth map computed by a deep learning algorithm:

127

1. Use the depth map as a base, then use the MTs to refine the depth map.

2. Use the depth map as an additional constraint in the LS3D linear programming op-
timization process.

The first approach provides a way to smooth the noisy depth map surface. The second
approach aims to counter the problem of false plane alignment.

128

Part II

Single-View 3D Estimation of General
Objects

129

Chapter 7

Introduction

Multi-view methods for 3D object shape estimation such as stereopsis and motion parallax
provide direct depth cues via triangulation, however these methods have limitations. Their
accuracy is inversely proportional to the square of the distance to the object, making them
less effective for distant objects, and they can fail when surface texture is too faint to
generate features that can be tracked reliably across frames.

These limitations highlight the value of single-view cues such as shape from shading
and texture. However, these surface cues also have limitations for 3D surface reconstruc-
tion. While providing useful local information about its qualitative surface shape, global
shape estimation is subject to depth sign (convex/concave) and more general bas-relief
ambiguities [160, 14, 89, 159].

Information carried by the shape of the object boundary has the potential to constrain
these ambiguities. Here we consider in particular the problem of estimating the shape
and pose of a smooth solid object from its bounding contour. To be clear on terminology,
we follow [88] and refer to the set of surface points grazed by the view vector as the 3D
rim of the object, and the perspective projection of these points onto the image as the 2D
bounding contour.

It is well known that the bounding contour provides strong local constraints on shapes
at the rim: convex points on the bounding contour must project from convex points on
the 3D surface, while concave points on the bounding contour must project from saddle
points. Moreover, the magnitude of curvature at a point on the 2D bounding contour is

130

proportional to the transverse curvature of the surface at the corresponding point on the
3D rim [88].

Here we consider whether the 2D bounding contour can also provide useful informa-
tion about the global shape and pose of an object. We are motivated by evidence that
human judgement of surface shapes is strongly influenced by the shape of the bounding
contour [160, 159], and often even the bounding contour alone is enough to provide a
compelling sense of volumetric shape [162, 47] (Fig. 7.1). Moreover, most natural and ar-

Figure 7.1: Volumetric shape from the bounding contour.

tifactual objects possess symmetries [127, 138] that will be carried to some degree by the
3D rim, and the distortions of those symmetries induced by perspective projection should
provide cues to depth.

The 3D rim may be useful in its own right for certain applications, including free space
estimation in autonomous navigation and surface contact point selection for robotic grasp
planning. We also note that human stereoscopic 3D perception of an object is strongly
driven by disparity cues at the object boundary [59]. This suggests that accurate estimation
of the 3D rim will be crucial for 2D to 3D film conversion.

Part II of the thesis is organized as follows: Chapter 8 is a literature review, Chapter
9 will introduce my work of reconstructing 3D shapes given only the 2D contour, and
Chapter 10 concludes with a discussion and proposal of future work.

131

Chapter 8

Literature Review

8.1 Introduction

Early computer vision algorithms for single-view 3D shape estimation exploited the bound-
ing contour in conjunction with surface cues within an optimization framework. Typi-
cally, user interaction and/or some inflation term in the objective function was required
to avoid a trivial (flat) solution. Users were required to specify the depth of some sur-
face points [128], a fixed volume that the shape must fill [161], or an inflation term that
indirectly determines the volume [123]. More recent approaches have managed to avoid
user interaction or arbitrary inflation terms. Shape Collage [32] employs a non-parametric
example-based approach for local surface patch estimation within an MRF framework and
a thin-plate model to integrate the local patches into a global shape. A distinct branch of
research explores the problem of class-conditional single-view 3D object reconstruction,
which allows strong within-category regularities to be exploited [84]. The more recent
state of the art algorithms are deep auto-encoders[174, 186, 115, 170, 60].

This chapter is organized as follows: In section 8.2 I will review the puffball re-
construction algorithm, in section 8.3 I will review the probabilistic learning based ap-
proaches, in section 8.4 I will review the deep learning based approaches and section 8.5
is the conclusion.

132

8.1.1 Puffball

A strategy for single-view estimation of smooth solid shapes was introduced in the inter-
active sketching interface dubbed Teddy [77] and later studied by Twarog [163] under the
name Puffball. In this approach, the solid shape is defined as the envelope of spheres cen-
tred on the interior skeleton [18] of the shape in the image, and bi-tangent to the occluding
contour (Fig. 8.1).

Figure 8.1: Puffball reconstruction (taken from [163]).

The puffball solution I for a silhouette S can be written as:

I(S) =
⋃{

B3 (p, r) |B2 (p, r) ⊂ S
}

(8.1)

whereB3 (p, r) is the spherical ball centred on pwith radius r andB2 (p, r) is the maximal
circular region centred on p with radius r contained within S.

The method is simple and can produce surprisingly reasonable results in some cases.
However, a major limitation of this approach is that the 3D rim of the object is assumed to
be planar and fronto-parallel, which in general is not true. Note also that surface normals
at the rim are orthogonal to the optic axis, consistent with orthographic, but not perspective
projection.

8.1.2 Probabilistic Learning Based Approach

In their Shape, Illumination and Reflectance from Shading (SIRFS) approach [12], Barron
and Malik adopted a probabilistic framework, employing priors over shape, reflectance

133

and illumination together with surface constraints imposed by the boundary of the object.
An example of the SIRFS algorithm output is shown in Fig. 8.2. Shapes are rendered
orthographically.

(a) (b) (c) (d)

Figure 8.2: An example of SIRFS and puffball algorithm output. The color bar represents the Z
coordinate (increasing toward the eye). (a) original input image, (b) surface normal from SIRFS,
(c) depth map from SIRFS. (d) depth map from puffball.

The SIRFS algorithm can be formulated as an unconstrained optimization problem:

min
Z,L

g(I − S(Z,L)) + f(Z) + h(L) (8.2)

where I = R+ S(Z,L) is the log intensity of the image and R is a log-reflectance image.
Z is a depth-map, L is a spherical-harmonic model of illumination, and S is a function of
Z and L to produce a log-shading image. g(R), f(Z), and h(L) are the cost function for
reflectance, shape, and illumination respectively.

Reflectance cost function: The reflectance cost function g(R) is formulated as

g(R) = λsgs(R) + λege(R) + λa(R) (8.3)

where gs(R) is smoothness prior, ge(R) is parsimony prior, and ga(R) is absolute prior.
The λ multipliers are learned through cross-validation on the training set.

Shape cost function: The shape prior consists of four components: 1) An assumption
of smoothness encoded by the variation of mean curvature. 2) An assumption of isotropy
of orientation of surface normals. 3) Given the orthographic projection, surface normals

134

must be orthogonal to the optic axis at the rim. 4) Shapes should resemble some noisy
or incomplete external observation. These four components are formulated as the cost
function:

f(Z) = λkfk(Z) + λifi(Z) + λcfc(Z) + λofo(Z, Ẑ) (8.4)

Where fk(Z) is the smoothness model, fi(Z) is the isotropy model, fc is the bounding
contour model, and fo(Z, Ẑ) encourages Z to be similar to some observation Ẑ. The λ
multipliers are learned through cross-validation on the training set.

Illumination cost function: The illumination is modelled as a multivariate Gaussian
model:

h(L) = λL(L− µL)TΣ−1
L (L− µL) (8.5)

Where µL and ΣL are the parameters of a multivariate Gaussian model of the coefficients
of a low-order spherical harmonic model. Their dimensionality is 9 for grayscale and
27 for RGB images. λL is the multiplier learned from the training set. L is a feature
vector from the spherical-harmonic model of illumination[132]. This feature vector is the
derivation for the irradiance in terms of spherical harmonic coefficients of the lighting.
The first 9 spherical harmonics were used as feature vector.

Karsch et al [85] extended this probabilistic framework to include surface normal con-
straints at internal geometric contours (self-occlusions and folds). They found that recon-
structions from the silhouette improved more with the addition of these internal contours
than with smooth shading. In fact, once internal contours were incorporated, adding shad-
ing cues was found to lower performance. This highlights the importance of contour cues
for single-view 3D reconstruction.

Self-occlusion cost function: The boundary of a self-occlusion implies a discontinuity
in depth, and thus the normal of the surface at the boundary should be aligned with the
normal to the occluding contour. An appropriate cost function can be formulated as:

fselfocc(Z) =
∑

i∈Cselfocc

√
(Nx

i (Z)− nxi)2 + (Ny
i (Z)− nyi)2 (8.6)

where N = (Nx, Ny, N z) is the surface normal and (nx, ny) is the normal of the 2D
boundary.

Internal fold cost function: An internal fold in the surface denotes a discontinuity in
surface normals across a contour along the object. It could be convex or concave. The

135

idea of the fold cost function is to constrain normals at pixels that lie across a fold to have
convex or concave orientation and to be oriented consistently in the direction of the fold.

ffold(Z) =
∑
i∈C

max(0, ε− (N l
i ×N r

i) · u) (8.7)

where u = (ux, uy, 0) is a fold’s tangent vector in the image plane, and N l
i , N

r
i is two

corresponding normals across pixel i in the fold contour C. ε is a constant and it was set
to 1√

2
.

8.1.3 Deep Learning Approaches

A distinct branch of research explores the problem of class-conditional single-view 3D ob-
ject reconstruction, which allows strong within-category regularities to be exploited [84].
The more recent state of the art algorithms are deep auto-encoders. While typically trained
and evaluated on a small number of object classes (e.g., chairs, cars, planes in Marr-
Net [174]), newer versions (GenRe) have been shown to generalize well to new object
classes [186].

Fig. 8.3 is a schema of a basic auto-encoder structure. It consists of two components,
encoder and decoder. In Wu’s work[174], the encoder is ResNet-18[69] that encodes a
256× 256 RGB image into a 8× 8× 512 feature map. The decoder contains four sets of
5 × 5 fully convolutional and ReLU layers, followed by four sets of 1 × 1 convolutional
and ReLU layers. Its outputs depth and the surface normal at a resolution of 256× 256.

Taking the depth map and the surface normal estimation as input, Wu[174, 175] used
another auto-encoder structure to generate a 3D voxel model. This voxel model can be
further refined[186] by an additional auto-encoder network (GenRe model).

The Chamfer distance (CD)[13] was used to evaluate the reconstruction quality. Both
GenRe and MarrNet were trained on chairs, cars, and airplanes.The algorithms were eval-
uated on instances from the training (seen) classes and from 10 other (unseen) categories:
bench, boat, cabin, display, lamp, phone, rifle, sofa, speaker, and table. Results are shown
in Table 8.1. The additional refinement network improves the 3D reconstruction perfor-
mance.

Drawbacks of the deep learning approach include the large quantity of training data

136

In
pu

t L
ay

er

O
ut

pu
t L

ay
er

Code

Encoder

Decoder

Figure 8.3: Schema of a basic Autoencoder

Table 8.1: Comparison of GenRe and MarrNet mean error on ShapeNet.

Models Mean Error on Seen Classes Mean Error on Unseen Classes
MarrNet 0.070 0.120
GenRe 0.064 0.106

137

required and the millions of free parameters that must be learned, which limits the ex-
plainability of the approach.

138

8.1.4 Conclusion

The puffball, probabilistic learning and deep learning approaches all have their unique
advantages. Puffball is simple. The probabilistic learning approach allows for combination
with reflectance, illumination, self-occlusion and fold cues. Instead of using handcrafted
features, the deep learning approach learns features from training data, but suffers from a
lack of explainability.

139

Chapter 9

3D Object Rim Reconstruction from 2D
Occluding Contour

9.1 Introduction

In 1984, Koenderink wrote the seminal paper "What does the occluding contour tell us
about solid shape?", in which he pointed out important qualitative relationships between
the local shape of the occluding contour in the image and the local shape of the object
surface [88]. However, this paper does not speak to whether the occluding contour can tell
us anything quantitative about solid shapes. While strict quantitative constraints relating
the occluding contour to solid shapes are unlikely, we posit here that typical regularities
of common objects and rules of projection induce dependencies that can be used to derive
statistical estimates of quantitative solid shapes from the occluding contour.

We follow Koenderink [88] and refer to the set of surface points grazed by the view
vector as the 3D rim of the object, and the perspective projection of these points onto the
image as the 2D occluding contour. Koenderink noted that the occluding contour pro-
vides strong local constraints on the qualitative surface shape at the rim: convex points on
the occluding contour must project from convex points on the 3D surface, while concave
points on the occluding contour must project from saddle points [88].

Here we consider whether the 2D occluding contour can also provide useful quanti-
tative information about the global shape and pose of an object. We are motivated by

140

evidence that human judgement of surface shape is strongly influenced by the shape of
the occluding contour [160, 159] - often the occluding contour alone is enough to provide
a compelling sense of volumetric shape [162, 47] (Fig. 9.1(a)). Moreover, most natural
and artifactual objects possess symmetries [127, 138] that will be inherited to some degree
by the 3D rim, and the distortions of those symmetries induced by perspective projection
should provide cues for depth.

(a) (b)

Figure 9.1: (a) The occluding contour can evoke a strong sense of solid shape. (b) Puffball recon-
struction [77, 163].

The topologies of both the occluding contour and 3D rim can in general be quite com-
plex; here we make two simplifications. First, we ignore self-occlusions, where the view
vector both grazes and pierces the object, restricting our attention to the boundary of the
object. One of the motivations for doing this is that self-occlusions can be trickier to detect
in real images, since the figure and ground often have similar illuminations, colours and
textures. Second, we ignore holes in the object projections, further focusing our atten-
tion on the outer boundary of the object. We leave analysis of self-occlusions and more
complex topologies for future work.

With these simplifications, we partition the problem of estimating 3D shape from the
occluding contour into two parts: 1) Estimation of the 3D rim from the 2D occluding
contour, and 2) Estimation of the visible surface shape from the estimated 3D rim.

9.1.1 Estimating the 3D Rim from the 2D Occluding Contour

In what follows we will first demonstrate a statistical link between the shape of the occlud-
ing contour and depth variation in the 3D rim through a simple intuitive model that links

141

the depth of a point on the rim to the distance of the corresponding point on the occluding
contour from the object’s centre of mass. We then explore multivariate normal and auto-
encoder models that more completely capture this statistical relationship. We show that a
statistical model that links both the position and the tangent of the occluding contour to
the depth of the rim generally yields superior results.

We note that the 3D rim may be useful in its own right for certain applications, includ-
ing free space estimation in autonomous navigation and surface contact point selection for
robotic grasp planning. We also note that human stereoscopic 3D perception of an object
is strongly driven by disparity cues at the object boundary [59]. This suggests that accurate
estimation of the 3D rim will be crucial for 2D to 3D film conversion.

9.1.2 Estimating the Surface Shape from the 3D Rim

Can the estimated 3D shape of the rim be used on its own, i.e., without direct surface cues,
to deliver information about the 3D shape of the visible object surface? To explore this
question, we develop and evaluate a generalization of the puffball approach [163]: a 3D
object is completed by the union of maximal osculating spheres tangent to the estimated
3D rim and contained within its view cone.

Here we are not trying to compete with auto-encoder methods, which make use of
many training instances of a small number of objects categories, and use all of the cues
(e.g., shading, texture, self-occlusions, part structure) afforded by the colour imagery.
Rather, we focus on the scientific question of whether the occluding contour carries quanti-
tative information about 3D object shape, and if so, how that information can be harnessed.
It is our hope that in the long run, a better understanding of the information afforded by
the occluding contour will ultimately lead to better (and more explainable) multi-cue al-
gorithms for single-view 3D object reconstruction.

Generally, prior work has focused on orthographic projection, which is unrealistic and
also ignores important 3D information available in the distortions induced by perspective
projection. A specific contribution of the present paper is to examine the 3D information
afforded by the occluding contour when viewed in perspective.

142

9.1.3 Summary of Contributions

In summary, we make five specific contributions:

1. We introduce two novel datasets consisting of 3D object rims and their 2D projec-
tions. We will make these datasets public to encourage continuing research on 3D
shapes from contours.

2. We demonstrate a statistical connection between the 3D shape of the object rim and
the observable 2D shape of its occluding contour, and capture this relationship with
a series of novel statistical models.

3. We show that these models can be used to make predictions of the depth variation
in the 3D object rim from the 2D occluding contour alone.

4. We introduce a novel spherical completion approach for reconstructing the visible
surface based solely on the estimated 3D rim.

5. We show that our approach yields more accurate estimates of the 3D object shape
and pose than competing approaches [163, 12].

9.2 Datasets

We employ two datasets of solid 3D objects. The first dataset comprises 122 scanned ob-
jects originally employed by Mehrani et al [114] and obtained directly from the authors.
(These 3D scans were originally sourced from a variety of online datasets including Big-
BIRD [150] and YCB [21]). We randomly split the Mehrani dataset into training and test
sets of 61 objects each. For each FOV we generated 1,000 random image projections for
each training object and 20 random projections for each test object.

The second dataset is the ShapeNet Core [24] dataset of 52,472 synthetic objects. We
split the ShapeNet Core dataset objects into random training (60%), validation (20%) and
20% test (20%) partitions. For each FOV we generated 20 random image projections for
each training object and 1 random projection for each test object.

143

(a) (b)

Figure 9.2: Example 3D objects from (a) the Mehrani dataset [114] and (b) the ShapeNet Core
dataset [24].

Samples from both datasets are shown in Fig. 9.2. We selected these two dataset
because, at the time of writing, they provide the highest quality 3D mesh models for the
goal of 3D object reconstruction.

Perspective projections were formed using a virtual pinhole camera with unit focal
length and field of view (FOV) ∈ (2, 4, 8, 16, 32, 64) deg (Fig. 9.3). We employ a camera-
centred coordinate frame withZ representing distance from the lens plane along the optical
axis. Objects were centred on the optic axis with centroids at a depth of Z̄ = 1. (Note
that under perspective projection, points on the rim will have an average depth Z < 1.)
The size of each object was adjusted so that the object was just contained within the field
of view, grazing the frustrum at least one point. The rim was sampled at 32 points with
equal arc-length separation, and these 32 points were projected to the image to form the
occluding contour. Each 3D rim γ3(s) = (X(s), Y (s), Z(s)) is thus a 32× 3 matrix, and
the corresponding 2D occluding contour γ2(s) = (x(s), y(s)) is a 32× 2 matrix.

To facilitate learning, we rotated all contours in the image plane to align the first prin-
cipal component with the x-axis of the image, with the taller side on the left (i.e., points
with x < 0 have greater y-variance then points with x > 0.)

144

𝑍̅ = 1

3D Rim

𝑌
𝑍

Object
Centre

(a)

Figure 9.3: Viewing geometry. Objects are centred on the optical axis, with centroids at a distance
of Z̄ = 1, and scaled so that the maximum angular eccentricity is half the prescribed field of view.

9.3 Estimating the 3D Rim from the 2D Occluding Con-
tour

9.3.1 Eccentricity Model

Why do we expect the occluding contour to carry information about depth variation in
the 3D rim? In explaining perspective projection to a child, one might start with the fact
that as objects get closer to the eye they get bigger in the image. Applying the inverse
of this logic to the bounding contour, we might predict that more eccentric points on the
occluding contour (i.e., points that are further from the centre of mass) project from points
on the rim that are closer to the eye (Fig. 9.4(a)).

To explore this idea, we examine the statistical relationship between eccentricity r(s)
of points on the occluding contour and the depth (Z(s)) values of the corresponding points
on the rim. Empirically, we find that the relationship between Z(s) and r(s)2 is nearly
linear, and so to form a model we bin the ground truth Z values from our training datasets
as a function of r(s)2. The bin width is selected to minimize leave-one-out cross-validation
error over objects for the Mehrani dataset, and error on the validation partition for the
ShapeNet Core dataset.

145

Centre of mass

r1

r2

(a)

0 0.1 0.2 0.3 0.4 0.5

Squared eccentricity r 2

0.7

0.75

0.8

0.85

0.9

0.95

Z

(b)

0 0.1 0.2 0.3 0.4 0.5

Squared eccentricity r 2

0.75

0.8

0.85

0.9

0.95

1

Z

(c)

Figure 9.4: The eccentricity model for estimating distance Z(s) from the image plane. (a) The cue
is the squared distance r(s)2 of the occluding contour from the centre of mass of the contour in the
image. (b-c) Histogram models for the Mehrani and ShapeNet datasets.

The systematic relationship between eccentricity and depth can be seen clearly in the
resulting histograms - Figs. 9.4(b-c) show the results for 64 deg FOV. This clearly demon-
strates that the occluding contour carries information about depth variation in the 3D rim.
We explore the performance of this simple model in our Evaluation section below, but
intuitively it seems unlikely that the eccentricity model captures all of the statistical in-
formation that the occluding contour can provide. We therefore turn now to more general
statistical models that we hope can more fully capture this relationship.

9.3.2 Normal Models

When exploring a statistical relationship for the first time it is natural to consider a nor-
mal model, and here we consider two. In our base model, we assume that the occluding
contour α(s) = (x(s), y(s)) is jointly normal with the unknown depth coordinate Z(s):
(α(s), Z(s)) ∼ N (α(s), Z(s);µ1,Σ1). Importantly, we model the covariance across all
pairs of points (s1, s2) on the occluding contour and rim. As a result the model consists of
a 96-dimensional mean vector µ1 and a 96× 96 covariance matrix Σ1.

We also explore a second, augmented normal model. The prevalence of orientation
regularities such as parallelism and rectilinearity, and the importance of a linear perspec-
tive in human perception, suggests that the local orientation of the occluding contour may

146

also be an important cue to depth. While the tangent vector t(s) of the occluding contour is
implicitly defined by the contour α(s) = (x(s), y(s)) itself, the linear nature of the normal
model may limit its capacity to capture the influence of the tangent on the depth of the
rim. In our second model, we therefore augment the occluding contour coordinates with
the tangent vector t(s) = (tx(s), ty(s)): (α(s), t(s), Z(s)) ∼ N (α(s), t(s), Z(s);µ2,Σ2).
This model consists of a 160-dimensional mean vector µ2 and a 160 × 160 covariance
matrix Σ2.

Maximum likelihood estimates of these parameters are estimated from the training
data. The parameterized models can then be used for inference: given a partially observed
test vector α(s) (base model) or (α(s), t(s)) (augmented model), the expectation of the un-
observed depth Z(z) can be estimated using the standard conditional expectation formula
([16], Eqn. 2.81):

µZ|u = µZ + ΣZuΣ
−1
uu (u− µu) (9.1)

where u represents α(s) = (x(s), y(s)) for the base model and (α(s), t(s)) for the aug-
mented model.

9.3.3 Auto-Encoder Model

Given the success of auto-encoders for pixel-wise single-view 3D object reconstruction, it
is natural to consider an auto-encoder for estimating depth variation in the 3D rim from
the occluding contour. We trained the auto-encoder to minimize squared error in depth
Z. For both the Mehrani and the ShapeNet datasets we found empirically that a simple
architecture with just one encoder layer and one hidden layer performs best (Fig. 9.5):
larger architectures tend to reduce performance on unseen data.

Figure 9.5: Optimized auto-encoder models for the Mehrani dataset. The model for ShapeNet is
identical but with 16 hidden units.

147

Given their difference in size, we optimize the number of units in each layer separately
for the two datasets. We perform this optimization by maximizing the Pearson correlation
between the ground truth depth and the estimated depth for a field of view of 64 deg,
using leave-one-out cross-validation on the Mehrani training dataset and the ShapeNet
validation dataset. For both datasets, we found a 128-unit encoder layer to be optimal.
For the Mehrani dataset, we found an 48-unit hidden layer to be optimal, while for the
ShapeNet dataset we found 16 hidden units to be optimal.

9.4 Estimating the Surface Shape from the 3D Rim

Can we use an estimate of the 3D rim to generate an estimate of the visible object surface?
In the puffball approach [77, 163], the solid shape is defined as the union of spheres centred
on the interior skeleton [18] of the shape in the image, and bi-tangent to the occluding
contour (Fig. 9.1(b)). A major limitation of this approach is that the 3D rim of the object
is assumed to be planar and fronto-parallel, which in general will not be the case. Here we
propose a generalization of the puffball method that can be applied to oblique non-planar
3D rims. The method produces a 3D volumetric estimate of the object (Fig. 9.6).

3D rim 𝜸𝟑(𝒔)

elliptical cone
maximal
inscribing

sphere

𝜸𝟑(𝒔𝒊)

Figure 9.6: Spherical surface completion.

For each pixel i of the image interior to the occluding contour we identify the maximal
inscribing circle centred on the pixel. This circle lies entirely within the shape, is tangent
to at least one point γ2 (si) on the occluding contour, and defines an elliptical cone with

148

an axis passing through the optical centre and the pixel i. This cone is tangent to the rim
at the corresponding rim point γ3 (si). We identify the unique maximal sphere that lies
within this cone and is tangent to the cone at γ3 (si); note that the projection of this sphere
is the inscribing circle. The union of these spheres over all pixels i in the interior of the 2D
occluding contour defines our estimate of the solid 3D shape. Note that the surface normal
of the estimated shape will be orthogonal to the view vector at each rim point, as required
for a smooth solid object.

In practice, the computation involves identifying the orthogonal projection of each of
the k 3D rim points onto each of the n interior pixel rays to define kn tangent spheres.
Then we must check the distance of all other k − 1 rim points from the centre of each
sphere, eliminating any spheres that subsume other rim points, and therefore identifying
the unique maximal inscribing sphere for each pixel. The computation thus has complexity
k2n.

Since the 3D locations and radii of the inscribing spheres tend to vary smoothly in a
local pixel neighbourhood, the spherical completion method generates smooth solid com-
pletions. This will work well for smooth objects, but less well for objects with sharp folds
at the rim.

9.5 Evaluation

9.5.1 Estimating the 3D Rim from the 2D Occluding Contour

We first evaluate our models for estimating the 3D rim from the occluding contour. As per-
spective projection cues to depth generally increase with FOV, we first train and evaluate
the accuracy of these models as a function of FOV, on the Mehrani training and test sets,
respectively. We vary the FOV over [2, 4, 8, 16, 32, 64] deg.1 As a measure of performance
we use the Pearson correlation between the ground truth depth values Z and the estimated

1Some useful points of reference: Human monocular field of view is roughly 135 deg horizontally and
180 deg vertically. The diameters of the human fovea, parafovea and perifovea are roughly 5, 8 and 18 deg,
respectively. A typical super-telephoto 400m lens will have a FOV of roughly 6 deg. A standard 50mm lens
will typically have a FOV of roughly 40 deg. A recent iPhone has a standard FOV of roughly 57.5 deg and
a telephoto FOV of roughly 31.8 deg.

149

depth values Ẑ over all points on the rim.
Fig. 9.7 shows that correlation increases monotonically for all methods as a function of

FOV. We find that the normal and auto-encoder models outperform the simple eccentricity
model by a large margin. The advantage of the augmented normal model over the base
normal model confirms our intuitions that the local orientation of the occluding contour is
informative about the depth of the rim. Interestingly, the auto-encoder model was found
to underperform the normal models.

10 20 30 40 50 60
FOV (deg.)

0

0.1

0.2

0.3

0.4
C

or
re

la
tio

n
Eccentricity
Base normal
Augmented normal
Auto-encoder

Figure 9.7: Pearson correlation between the ground truth depth values Z and the estimated depth
values Ẑ over all points on the rim, averaged over objects in the Mehrani test dataset. Models
were trained on the Mehrani training dataset.

To provide a qualitative feel the 3D rim estimates, Fig. 9.8(second column) shows best,
median and worst case estimates of the rim depth Z (as measured by correlation) for test
shapes in the Mehrani dataset. In the best case the estimate is excellent and the correlation
almost perfect, but in the worst case the algorithm flips the sign of the depth. The median
cases are most representative: the low frequency trend of the rim depth is captured, but
finer details are lost and the amplitude of depth variation is attenuated. Analogous results
for the ShapeNet dataset are shown in the supplementary material.

To explore the generality of these approaches, we also train and evaluate on the ShapeNet
dataset, focusing on a FOV of 64 deg, close to the FOV for the standard lens of a typical
smart phone camera. Table 9.1 shows performance of all models on both Mehrni and
ShapeNet test sets, trained on their respective training sets. Interestingly, we see that the
auto-encoder model performs better than the normal models on the Shapenet dataset. This
may be due to the fact that the ShapeNet objects tend to be less smooth, resulting in highly
non-linear statistical dependencies that are more easily captured by the multi-layer auto-

150

Contour Depth Z Augmented normal Ground truth

B
es

t

-0.5 0 0.5
y

-0.4

-0.2

0

0.2

x

0 10 20 30
Arclength

0.7

0.8

0.9

1

1.1

1.2

D
ep

th
 Z

Correlation = 0.994

Ground Truth
Augmented Normal

0.8

0.9

1

1.1

1.2

1.3

0.8

0.9

1

1.1

1.2

1.3

M
ed

ia
n

1

-0.5 0 0.5
y

-0.5

0

0.5

x

0 10 20 30
Arclength

0.6

0.8

1

1.2

D
ep

th
 Z

Correlation = 0.429

Ground Truth
Augmented Normal

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

M
ed

ia
n

2

-0.5 0 0.5
y

-0.6

-0.4

-0.2

0

0.2

0.4

x

0 10 20 30
Arclength

0.6

0.8

1

D
ep

th
 Z

Correlation = 0.434
Ground Truth
Augmented Normal

0.6

0.8

1

1.2

0.6

0.8

1

1.2

W
or

st

-0.5 0 0.5
y

-0.5

0

0.5

x

0 10 20 30
Arclength

0.6

0.7

0.8

0.9

1

D
ep

th
 Z

Correlation = -0.981
Ground Truth
Augmented Normal

0.6

0.7

0.8

0.9

1

1.1

0.6

0.7

0.8

0.9

1

1.1

Figure 9.8: Best, median and worst case estimates (as measured by correlation of the 3D rim depth
estimates Ẑ with ground truth Z) for the augmented normal model on the Mehrani dataset. The
last two columns show the estimated depth of the visible surface inferred by spherical completion
from the estimated rim, and ground truth depth, respectively.

encoder.
We also examine generalization across the datasets, training on one and testing on the

other (Table 9.2. While we see a drop in performance in both cases, the drop is less pro-
found when generalizing from the ShapeNet to the Mehrani dataset. This is unsurprising,
given that the ShapeNet training dataset is much larger than the Mehrani training set, one
would expect better generalization. But this difference may also be due to the greater di-
versity of the ShapeNet dataset. Since it contains both smooth and less smooth objects it
supports inference for both, whereas the Mehrani dataset, containing primarily smooth ob-

151

Table 9.1: Within-dataset Pearson correlation between the ground truth depth values Z and the
estimated depth values Ẑ over all points on the rim, mean±std. err. over test objects, for 64 deg
FOV.

Model Mehrani ShapeNet
Eccentricity 0.12± 0.008 0.16± 0.003

Base normal 0.26± 0.016 0.31± 0.004

Augmented normal 0.31± 0.015 0.33± 0.004

Autoencoder 0.27± 0.015 0.36± 0.004

jects, could be expected to fail when presented with less smooth objects from the ShapeNet
dataset.

Table 9.2: Between-dataset Pearson correlation between the ground truth depth values Z and
the estimated depth values Ẑ over all points on the rim, mean±std. err. over test objects,
for 64 deg FOV. ShapeNet→Mehrani: Train on ShapeNet training set, test on Mehrani test set.
Mehrani→ShapeNet: Train on Mehrani training set, test on ShapeNet test set.

Model ShapeNet→Mehrani Mehrani→ShapeNet
Eccentricity 0.097± 0.009 0.15± 0.003

Base normal 0.25± 0.014 0.23± 0.005

Augmented normal 0.25± 0.014 0.22± 0.005

Autoencoder 0.25± 0.014 0.23± 0.004

Finally, we make use of the ShapeNet category labels to examine how 3D rim esti-
mation accuracy may depend upon the type of object being viewed, and whether there
is generalization across categories. We focus here on the augmented normal model, and
consider three levels of generalization: (1) Train on all training data, (2) Train individually
on the training set for each category, (3) Train on all categories but the test category (leave
one out).

Fig. 9.9 shows the results ranked by performance when trained on all training data.
We see substantial variation in performance across categories. Performance is generally
better for smooth, single-part objects (e.g., clock, bottle, basket) that are more volumetric,

152

and worst for objects that contain multiple parts or are less volumetric or contain parts that
are almost 2D (e.g., bag, earphone, knife seen in Fig. 9.10). On the other hand, we see
almost no drop in performance when the test category is not included in training, indicat-
ing that the model is learning more general geometric principles rather than memorizing
categories.

cl
oc

k
bo

ttl
e

ba
sk

et
te

le
ph

on
e

m
ot

or
cy

cl
e

fil
in

g
ca

bi
ne

t
m

ic
ro

ph
on

e
di

sh
w

as
he

r
tr

ai
n

tr
es

h
ca

n
sp

ea
ke

r
bo

ok
sh

el
f

sk
at

eb
oa

rd
pi

llo
w

ta
bl

e
ro

ck
et

ai
rp

la
ne ja

r
w

as
he

r
so

fa
flo

w
er

po
t

rif
le

ke
yb

oa
rd

st
ov

e
to

w
er

ca
m

er
a

ce
llp

ho
ne

di
sp

la
y

m
ic

ro
w

av
e

m
ai

lb
ox

m
ug be
d

la
m

p
pr

in
te

r
pi

st
ol

fa
uc

et ca
r

be
nc

h
gu

ita
r

ve
ss

el
ca

n
pi

an
o

bu
s

bo
w

l
he

lm
et tu
b

ch
ai

r
ca

bi
ne

t
bi

rd
ho

us
e

la
pt

op
re

m
ot

e
co

nt
ro

l
ca

p
kn

ife
ea

rp
ho

ne ba
g

0

0.5

1

C
or

re
la

tio
n

Trained on all data
Train on one category
Leave one out

Figure 9.9: Categorical evaluation on Augmented normal. (a)Trained on all data. (b) Trained and
evaluated on each category independently. (c)Leave one out evaluation on each category.

Figure 9.10: Examples of the three easiest (left) and three hardest (right) ShapeNet categories, in
terms of 3D rim estimation from the occluding contour.

9.5.2 Estimating the Surface Shape from the 3D Rim

To evaluate the potential of using the estimated 3D rim for surface reconstruction, we
apply our spherical completion method to 3D rims estimated using the eccentricity, base
normal, augmented normal and auto-encoder models. We compare the results against
the shape-from-contour version of SIRFS SIRFS [12] and the Puffball method [77, 163].

153

We also evaluate an idealized model that applies the spherical completion method to the
ground truth 3D rim: this provides an indication of how improvements to 3D rim esti-
mation could influence the accuracy of surface completion. We evaluate all methods in
terms of the mean Pearson correlation and RMS error between ground truth and estimated
surface depth over the pixels on the object.

Table 9.3 shows the results. We find the eccentricity model to be weak. It does produce
a lower RMS error than SIRFS and Puffball, but only because it generates more conser-
vative (flatter) shape estimates: the correlations with ground truth are substantially lower
than both SIRFS and Puffball.

Table 9.3: Pearson correlation and RMS error between the ground truth surface depth values and
the estimated depth values over all pixels of the shape, mean±std. err. over test objects, for 64 deg
FOV.

Mehrani ShapeNet
Model Correlation RMS Error Correlation RMS Error
SIRFS 0.60± 0.008 0.262± 0.003 0.17± 0.003 0.238± 0.001

Puffball 0.58± 0.01 0.172± 0.003 0.27± 0.003 0.207± 0.001

Eccentricity 0.43± 0.01 0.154± 0.003 0.07± 0.003 0.222± 0.001

Base normal 0.58± 0.01 0.166± 0.002 0.26± 0.004 0.223± 0.001

Augmented normal 0.60± 0.01 0.168± 0.002 0.29± 0.01 0.225± 0.001

Auto-encoder 0.58± 0.01 0.165± 0.003 0.32± 0.004 0.224± 0.001

Ground truth rim 0.78± 0.01 0.129± 0.002 0.61± 0.003 0.187± 0.001

However, we find that the normal and auto-encoder models perform substantially better
than both SIRFS and Puffball on both Mehrani and ShapeNet datasets. The augmented
normal model performs best on the Mehrani dataset, increasing correlation with ground
truth by 8% over SIRFS and Puffball, and reducing RMS error by 52% and 29% over
SIRFS and Puffball, respectively.

For the ShapeNet dataset, we find that the normal models and auto-encoder perform
comparably, increasing correlation with ground truth by about 19% over SIRFS and Puff-
ball, and reducing RMS error by 28% and 3% over SIRFS and Puffball, respectively.

154

At the same time, we see that much higher accuracy is achieved by the spherical com-
pletion model if based upon the ground truth 3D rim. This underlines the value in contin-
uing research on the inference of 3D shape from the bounding contour.

The spherical completion method is appropriate for smooth objects, but not all objects
are smooth. Is it possible given only the occluding contour to predict whether spherical
completion should be applied? To explore this question, we analyze the accuracy of sur-
face completion as a function of the maximum turning angle of the occluding contour (Fig.
9.11). We see that for both datasets, correlation for all methods is relatively high for small
maximum turning angles but drops substantially as the maximum turning angle increases.
This suggests that the turning angle statistics can be used to help guide the selection of
surface completion methods.

50 100 150
Max turning angle (deg)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
or

re
la

tio
n

Ground truth rim + spherical completion
Augmented normal model + spherical completion
Auto-encoder + spherical completion
Puffball
SIRFS

20 40 60 80 100 120 140 160 180
Max turning angle (deg)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
or

re
la

tio
n

(a)

60 80 100 120 140 160 180
Max turning angle (deg)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

C
or

re
la

tio
n

(b)Figure 9.11: Correlation of estimated and ground-truth surface depth for (a) Mehrani and (b)
ShapeNet datasets, as a function of the maximum turning angle of the occluding contour.

Fig. 9.8 (last two columns) shows surfaces reconstructed by spherical completion from
the augmented normal 3D rim estimate for best, median and worst case estimates of the
rim depth Z (as measured by correlation) for test shapes in the Mehrani dataset.

9.6 Conclusion

In this work, we have introduced the problem of estimating the quantitative 3D shape of
the object rim from its 2D occluding contour. Our results show that the shape of the oc-
cluding contour and depth variation in the rim are statistically related, and that Gaussian

155

and auto-encoder models can capture this relationship. We have also introduced a novel
spherical completion algorithm that allows an estimate of the visible surface to be recon-
structed from the estimated 3D rim, and shown that this produces more accurate surface
estimates than prior state-of-the-art approaches. Finally, we have shown that the maximum
turning angle of the occluding contour can be used to predict the accuracy of the spherical
completion method, which we hope can be used in future work to guide model selection
for surface completion.

156

Chapter 10

Discussion and Future Work

In this work, we showed that shape of the occluding contour and depth variation in the
rim are statistically related, and that Gaussian and auto-encoder models can capture this
relationship. A spherical completion algorithm was introduced to reconstruct the visible
surface from the estimated 3D rim. It was shown that this produces more accurate surface
estimates than prior state-of-the-art approaches. To improve the algorithm there are a
few approaches we can take. In the shapeNet dataset, the objects mostly contain planar
surfaces which cannot be reconstructed by spherical completion. One possible solution
is to try to detect such objects and then use minimal surface competition techniques to
recover its surfaces.

157

Part III

Conclusion

158

Single-view 3D reconstruction is an ill-posed problem and thus solvable only for
scenes that satisfy strong regularity conditions. The first part of the thesis introduced
a method that focuses on reconstructing Manhattan structures from a single image. We
showed that line information is sufficient to recover the visible surfaces of Manhattan
structures.

The second part of the thesis introduced an algorithm to reconstruct approximate 3D
models of a general object. The goal is to reconstruct 3D models given only the occlud-
ing contour. We showed that given the occluding contour in perspective projection, an
approximation of the 3D rim can be recovered.

159

Bibliography

[1] W. J. Adams, J. H. Elder, E. W. Graf, J. Leyland, A. J. Lugtigheid, and A. Mury. The
Southampton-York natural scenes (SYNS) dataset: Statistics of Surface Attitude.
Scientific Reports, 6:35805, 2016.

[2] C. Akinlar and C. Topal. EDLines: A real-time line segment detector with a false
detection control. Pattern Recognition Letters, 32(13):1633–1642, 2011.

[3] I. Alhashim and P. Wonka. High quality monocular depth estimation via transfer
learning. arXiv e-prints, abs/1812.11941, 2018.

[4] E. J. Almazàn, R. Tal, Y. Qian, and J. H. Elder. MCMLSD: A dynamic program-
ming approach to line segment detection. In 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 5854–5862, July 2017.

[5] E. J. Almazan, Qian, Y., and J. H. Elder. Road segmentation for classification of
road weather conditions. In G. Hua and H. Jégou, editors, Computer Vision – ECCV
2016 Workshops, pages 96–108, Cham, 2016. Springer International Publishing.

[6] J. M. Alvarez, T. Gevers, and A. M. Lopez. 3d scene priors for road detection.
In Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on,
pages 57–64. IEEE, 2010.

[7] J. M. Álvarez and A. M. Ĺopez. Road detection based on illuminant invariance.
Intelligent Transportation Systems, IEEE Transactions on, 12(1):184–193, 2011.

[8] J. M. Álvarez, A. M. López, and R. Baldrich. Shadow resistant road segmentation
from a mobile monocular system. In Pattern Recognition and Image Analysis, pages
9–16. Springer, 2007.

160

[9] M. Amthor, B. Hartmann, and J. Denzler. Road condition estimation based on
spatio-temporal reflection models. In German Conference on Pattern Recognition
(GCPR), 2015 37th German Conference on, pages 3–15. Springer, 2015.

[10] O. Barinova, V. Konushin, A. Yakubenko, K. Lee, H. Lim, and A. Konushin. Fast
automatic single-view 3-D reconstruction of urban scenes. In European Conference
on Computer Vision, pages 100–113. Springer, 2008.

[11] O. Barinova, V. Lempitsky, and P. Kholi. On detection of multiple object instances
using Hough transforms. IEEE Transactions on Pattern Analysis and Machine In-
telligence, 34(9):1773–1784, 2012.

[12] J. T. Barron and J. Malik. Shape, illumination, and reflectance from shading.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(8):1670–
1687, 2015.

[13] H. G. Barrow, J. M. Tenenbaum, R. C. Bolles, and H. C. Wolf. Parametric cor-
respondence and chamfer matching: Two new techniques for image matching. In
Proceedings of the 5th International Joint Conference on Artificial Intelligence -
Volume 2, IJCAI’77, page 659–663, San Francisco, CA, USA, 1977. Morgan Kauf-
mann Publishers Inc.

[14] P. N. Belhumeur, D. J. Kriegman, and A. L. Yuille. The bas-relief ambiguity. Inter-
national Journal of Computer Vision, 35(1):33–44, 1999.

[15] Binnette. Origami crane. Wikimedia. https://commons.wikimedia.org/wiki/File-
Origami.Crane.svg.

[16] C. Bishop. Pattern Recognition and Machine Learning. Springer, New York, 2006.

[17] C. M. Bishop. Pattern Recognition and Machine Learning (Information Science
and Statistics). Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

[18] H. Blum. Biological shape and visual science (Part I). J. Theor. Biol., 38:205–287,
1973.

[19] M. Boldt, R. Weiss, and E. Riseman. Token-based extraction of straight lines. IEEE
Transactions on Systems, Man and Cybernetics, 19(6):1581–1594, 1989.

[20] M. Brown, D. Windridge, and J. Guillemaut. A generalisable framework for
saliency-based line segment detection. Pattern Recognition, 48:3993–4011, 2015.

161

[21] B. Çalli, A. Walsman, A. Singh, S. Srinivasa, P. Abbeel, and A. M. Dollar. Bench-
marking in manipulation research: The YCB object and model set and benchmark-
ing protocols. ArXiv e-prints, Feb 2015.

[22] J. Canny. A computational approach to edge detection. IEEE Transactions on
Pattern Analysis and Machine Intelligence, PAMI-8(6):679–698, Nov 1986.

[23] J. Casselgren. Road surface classification using near infrared spectroscopy. PhD
thesis.

[24] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang, Z. Li, S. Savarese,
M. Savva, S. Song, H. Su, J. Xiao, L. Yi, and F. Yu. ShapeNet: An Information-
Rich 3D Model Repository. Technical Report arXiv:1512.03012 [cs.GR], Stanford
University — Princeton University — Toyota Technological Institute at Chicago,
2015.

[25] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam. Encoder-decoder
with atrous separable convolution for semantic image segmentation. In V. Ferrari,
M. Hebert, C. Sminchisescu, and Y. Weiss, editors, European Conference on Com-
puter Vision, pages 833–851, 2018.

[26] W. Chen, Z. Fu, D. Yang, and J. Deng. Single-image depth perception in the wild.
In D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, editors,
Advances in Neural Information Processing Systems 29, pages 730–738. Curran
Associates, Inc., 2016.

[27] G. Cheng, Qian, Y., and J. H. Elder. Fusing geometry and appearance for road
segmentation. In Proceedings of the IEEE International Conference on Computer
Vision Workshops, pages 166–173, 2017.

[28] G. Cheng, Y. Wang, Y. Qian, and J. H. Elder. Geometry-guided adaptation for road
segmentation. In 2020 17th Conference on Computer and Robot Vision (CRV),
pages 46–53, 2020.

[29] N. Cho, A. Yuille, and S. Lee. A novel linelet-based representation for line seg-
ment detection. IEEE Transactions on Pattern Analysis and Machine Intelligence,
40(5):1195–1208, May 2018.

162

[30] P. Cignoni, M. Callieri, M. Corsini, M. Dellepiane, F. Ganovelli, and G. Ranzuglia.
MeshLab: an Open-Source Mesh Processing Tool. In Eurographics Italian Chapter
Conference, 2008.

[31] M. B. Clowes. On seeing things. Artificial Intelligence, 2(1):79–116, 1971.

[32] F. Cole, P. Isola, W. T. Freeman, F. Durand, and E. H. Adelson. Shapecollage:
Occlusion-aware, example-based shape interpretation. In European Conference on
Computer Vision, pages 665–678. Springer, 2012.

[33] J. M. Coughlan and A. L. Yuille. Manhattan world: compass direction from a single
image by Bayesian inference. In Proceedings of the Seventh IEEE International
Conference on Computer Vision, volume 2, pages 941–947 vol.2, 1999.

[34] J. M. Coughlan and A. L. Yuille. Manhattan World: Orientation and outlier detec-
tion by Bayesian inference. Neural Computation, 15(5):1063–1088, 2003.

[35] H. Dahlkamp, A. Kaehler, D. Stavens, S. Thrun, and G. R. Bradski. Self-supervised
monocular road detection in desert terrain. In Robotics: science and systems.
Philadelphia, 2006.

[36] A. Dai, A. X. Chang, M. Savva, M. Halber, T. Funkhouser, and M. Nießner. Scan-
net: Richly-annotated 3D reconstructions of indoor scenes. In Proc. Computer
Vision and Pattern Recognition (CVPR), IEEE, 2017.

[37] S. Dasgupta, K. Fang, K. Chen, and S. Savarese. Delay: Robust spatial layout
estimation for cluttered indoor scenes. In CVPR, pages 616–624, June 2016.

[38] P. De Cristóforis, M. A. Nitsche, T. Krajník, and M. Mejail. Real-time monocular
image-based path detection. Journal of Real-Time Image Processing, pages 1–14,
2013.

[39] E. Delage, H. Lee, and A. Y. Ng. Automatic single-image 3D reconstructions of
indoor Manhattan world scenes. In Robotics Research, pages 305–321. Springer,
2007.

[40] P. Denis, J. H. Elder, and F. J. Estrada. Efficient edge-based methods for estimating
manhattan frames in urban imagery. In European Conference on Computer Vision,
pages 197–210. Springer, 2008.

163

[41] A. Desolneux, L. Moisan, and J.-M. Morel. Meaningful alignments. International
Journal of Computer Vision, 40(1):7–23, 2000.

[42] A. Desolneux, L. Moisan, and J.-M. Morel. From Gestalt theory to image analysis:
a probabilistic approach, volume 34. Springer Science & Business Media, 2007.

[43] P. Dollár and C. L. Zitnick. Fast edge detection using structured forests. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 37(8):1558–1570,
2014.

[44] R. O. Duda and P. E. Hart. Use of the Hough transformation to detect lines and
curves in pictures. Communications of the ACM, 15(1):11–15, 1972.

[45] D. Eigen and R. Fergus. Predicting depth, surface normals and semantic labels
with a common multi-scale convolutional architecture. In Proceedings of the IEEE
International Conference on Computer Vision, pages 2650–2658, 2015.

[46] D. Eigen, C. Puhrsch, and R. Fergus. Depth map prediction from a single image
using a multi-scale deep network. In Advances in Neural Information Processing
Systems, pages 2366–2374, 2014.

[47] J. H. Elder. Bridging the dimensional gap: Perceptual organization of contour into
two-dimensional shape. In J. Wagemans, editor, Oxford Handbook of Perceptual
Organization, Oxford, UK, 2014. Oxford University Press.

[48] J. H. Elder, E. J. Almazàn, Y. Qian, and R. Tal. MCMLSD: A probabilistic algo-
rithm and evaluation framework for line segment detection, 2020 (In preparation).

[49] J. H. Elder and R. M. Goldberg. Ecological statistics of Gestalt laws for the percep-
tual organization of contours. Journal of Vision, 2(4):324–353, 2002.

[50] J. H. Elder and S. W. Zucker. Local scale control for edge detection and blur estima-
tion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(7):699–
716, Jul 1998.

[51] P. F. Felzenszwalb and D. P. Huttenlocher. Efficient graph-based image segmenta-
tion. International Journal of Computer Vision, 59(2):167–181, 2004.

[52] P. F. Felzenszwalb and O. Veksler. Tiered scene labeling with dynamic program-
ming. In CVPR, pages 3097–3104, June 2010.

164

[53] J. Freeman. Toronto wasted 31m on poorly managed snow clearing contracts since
2015: Auditor general, Oct 2020.

[54] J. Fritsch, T. Kuehnl, and A. Geiger. A new performance measure and evaluation
benchmark for road detection algorithms. In International Conference on Intelligent
Transportation Systems (ITSC), 2013.

[55] H. Fu, M. Gong, C. Wang, K. Batmanghelich, and D. Tao. Deep ordinal regression
network for monocular depth estimation. In The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2018.

[56] Y. Furukawa and Y. Shinagawa. Accurate and robust line segment extraction by
analyzing distribution around peaks in Hough space. Computer Vision and Image
Understanding, 92:1–25, 2003.

[57] R. Garg, G. Carneiro, and I. Reid. Unsupervised CNN for single view depth estima-
tion: Geometry to the rescue. In European Conference on Computer Vision, pages
740–756. Springer, 2016.

[58] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun. Vision meets robotics: The KITTI
dataset. International Journal of Robotics Research, 2013.

[59] B. Gillam and T. Flagg. Evidence for disparity change as the primary stimulus for
stereoscopic processing. Perception & Psychophysics, 36(6):559–564, 1984.

[60] T. Groueix, M. Fisher, V. G. Kim, B. Russell, and M. Aubry. AtlasNet: A Papier-
Mâché Approach to Learning 3D Surface Generation. In Proceedings IEEE Conf.
on Computer Vision and Pattern Recognition (CVPR), 2018.

[61] N. Guil, J. Villalba, and E. L. Zapata. A fast Hough transform for segment detection.
IEEE Transactions on Image Processing, 4(11):1541–1548, 1995.

[62] A. Gupta, A. A. Efros, and M. Hebert. Blocks world revisited: Image understanding
using qualitative geometry and mechanics. In European Conference on Computer
Vision, pages 482–496. Springer, 2010.

[63] D. Guru, B. Shekar, and P. Nagabhushan. A simple and robust line detection algo-
rithm based on small eigenvalue analysis. Pattern Recognition Letters, 25(1):1–13,
2004.

165

[64] A. Guzman. Computer recognition of three-dimensional objects in a visual scene.
PhD thesis, MIT, 1968.

[65] A. Guzman. Decomposition of a visual scene into three-dimensional bodies. In
Proc. of the Fall Joint Computer Conference, pages 291–304, 1968.

[66] O. Haines and A. Calway. Recognising planes in a single image. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 37(9):1849–1861, 2015.

[67] R. Hartley and A. Zisserman. Multiple view geometry in computer vision. Cam-
bridge university press, 2003.

[68] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 770–778, 2016.

[69] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition.
In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 770–778, June 2016.

[70] V. Hedau, D. Hoiem, and D. Forsyth. Recovering the spatial layout of cluttered
rooms. In 2009 IEEE 12th International Conference on Computer Vision, pages
1849–1856, Sept 2009.

[71] M. Hofer, M. Maurer, and H. Bischof. Efficient 3D scene abstraction using line
segments. Computer Vision and Image Understanding, 157:167–178, 2017.

[72] D. Hoiem, A. A. Efros, and M. Hebert. Automatic Photo Pop-up. ACM Transactions
On Graphics (TOG), 24(3):577–584, 2005.

[73] D. Hoiem, A. A. Efros, and M. Hebert. Recovering surface layout from an image.
International Journal of Computer Vision, 75(1):151–172, 2007.

[74] P. V. Hough. Method and means for recognizing complex patterns, Dec. 18 1962.
US Patent 3,069,654.

[75] K. Huang, Y. Wang, Z. Zhou, T. Ding, S. Gao, and Y. Ma. Learning to parse
wireframes in images of man-made environments. In CVPR, June 2018.

[76] D. Huffman. Impossible objects as nonsense sentences. Machine Intelligence 6,
pages 295–324, 1971.

166

[77] T. Igarashi, T. Igarashi, S. Matsuoka, and H. Tanaka. Teddy: A sketching interface
for 3D freeform design. In SIGGRAPH, pages 409–416, 1999.

[78] H. Izadinia, Q. Shan, and S. M. Seitz. IM2CAD. In 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 2422–2431. IEEE, 2017.

[79] M. Jokela, M. Kutila, and L. Le. Road condition monitoring system based on
a stereo camera. In Intelligent Computer Communication and Processing, 2009.
ICCP 2009. IEEE 5th International Conference on, pages 423–428. IEEE, 2009.

[80] P. Jonsson. Remote sensor for winter road surface status detection. In Sensors, 2011
IEEE, pages 1285–1288. IEEE, 2011.

[81] P. Jonsson, J. Casselgren, and B. Thornberg. Road surface status classification using
spectral analysis of nir camera images. Sensors Journal, IEEE, 15(3):1641–1656,
2015.

[82] V. Kamat-Sadekar and S. Ganesan. Complete description of multiple line segments
using the Hough transform. Image and Vision Computing, 16(9):597–613, 1998.

[83] T. Kanade. A theory of Origami world. Artificial Intelligence, 13(3):279–311, 1980.

[84] A. Kar, S. Tulsiani, J. Carreira, and J. Malik. Category-specific object reconstruc-
tion from a single image. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 1966–1974, 2015.

[85] K. Karsch, Z. Liao, J. Rock, J. T. Barron, and D. Hoiem. Boundary Cues for 3D
Object Shape Recovery. In Computer Vision and Pattern Recognition (CVPR), 2013
IEEE Conference on, pages 2163–2170, June 2013.

[86] S. Kawai, K. Takeuchi, K. Shibata, and Y. Horita. A method to distinguish road
surface conditions for car-mounted camera images at night-time. In ITS Telecom-
munications (ITST), 2012 12th International Conference on, pages 668–672. IEEE,
2012.

[87] J. Kim and S. Lee. Extracting major lines by recruiting zero-threshold Canny edge
links along Sobel highlights. IEEE Signal Processing Letters, 22(10):1689–1692,
2015.

[88] J. J. Koenderink. What does the occluding contour tell us about solid shape? Per-
ception, 13(3):321–330, 1984.

167

[89] J. J. Koenderink and A. J. Van Doorn. The generic bilinear calibration-estimation
problem. International Journal of Computer Vision, 23(3):217–234, Jun 1997.

[90] H. Kong, J.-Y. Audibert, and J. Ponce. Vanishing point detection for road detection.
In Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference
on, pages 96–103. IEEE, 2009.

[91] H. Kong, J.-Y. Audibert, and J. Ponce. General road detection from a single image.
Image Processing, IEEE Transactions on, 19(8):2211–2220, 2010.

[92] J. Košecká and W. Zhang. Video compass. In European Conference on Computer
Vision, pages 476–490. Springer, 2002.

[93] T. Kovar. Popup book starter kit. 2017. https://videohive.net/item/popup-book-
starter-kit/6808435.

[94] M. Kubovy, A. O. Holcombe, and J. Wagemans. On the lawfulness of grouping by
proximity. Cognitive Psychology, 35:71–98, 1998.

[95] M. Kubovy and J. Wagemans. Grouping by proximity and multistability in dot
lattices: A quantitative Gestalt theory. Psychological Science, 6(4):225–234, July
1995.

[96] H. Kuhn. The Hungarian method for the assignment problem. Naval Research
Logistics Quarterly, 2:83–97, 1955.

[97] A. Kushal and S. M. Seitz. Single view reconstruction of piecewise swept surfaces.
In 3DV, pages 239–246, June 2013.

[98] M. Kytö, M. Nuutinen, and P. Oittinen. Method for measuring stereo camera depth
accuracy based on stereoscopic vision. In Three-Dimensional Imaging, Interaction,
and Measurement, volume 7864, page 78640I. International Society for Optics and
Photonics, 2011.

[99] I. Laina, C. Rupprecht, V. Belagiannis, F. Tombari, and N. Navab. Deeper depth
prediction with fully convolutional residual networks. In 2016 Fourth International
Conference on 3D Vision (3DV), pages 239–248, Oct 2016.

[100] D. Lee, M. Hebert, and T. Kanade. Geometric reasoning for single image structure
recovery. In CVPR, pages 2136–2143. IEEE, 2009.

168

[101] D. C. Lee, A. Gupta, M. Hebert, and T. Kanade. Estimating spatial layout of rooms
using volumetric reasoning about objects and surfaces. In J. D. Lafferty, C. K. I.
Williams, J. Shawe-Taylor, R. S. Zemel, and A. Culotta, editors, Advances in Neu-
ral Information Processing Systems 23, pages 1288–1296. Curran Associates, Inc.,
2010.

[102] B. Li, C. Shen, Y. Dai, A. van den Hengel, and M. He. Depth and surface normal
estimation from monocular images using regression on deep features and hierarchi-
cal CRFs. In 2015 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 1119–1127, June 2015.

[103] Z. Li and N. Snavely. Megadepth: Learning single-view depth prediction from
internet photos. In CVPR, June 2018.

[104] S.-H. Lim, S.-K. Ryu, and Y.-H. Yoon. Image recognition of road surface conditions
using polarization and wavelet transform. Journal of The Korean Society of Civil
Engineers, 27(4D):471–477, 2007.

[105] C. Liu, J. Yang, D. Ceylan, E. Yumer, and Y. Furukawa. PlaneNet: Piece-wise
planar reconstruction from a single RGB image. In CVPR, pages 2579–2588, 2018.

[106] D. Liu, Y. Wang, Z. Tang, and X. Lu. A robust and fast line segment detector
based on top-down smaller eigenvalue analysis. In Fifth International Conference
on Graphics and Image Processing, pages 906916–906916. International Society
for Optics and Photonics, 2014.

[107] F. Liu, C. Shen, and G. Lin. Deep convolutional neural fields for depth estimation
from a single image. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 5162–5170, 2015.

[108] F. Liu, C. Shen, G. Lin, and I. Reid. Learning depth from single monocular images
using deep convolutional neural fields. IEEE TPAMI, 38(10):2024–2039, Oct 2016.

[109] X. Liu, Z. Cao, N. Gu, S. Nahavandi, C. Zhou, and M. Tan. Intelligent line segment
perception with cortex-like mechanisms. IEEE Transactions on Systems, Man, and
Cybernetics: Systems, 45(12):1522–1534, 2015.

169

[110] X. Lu, J. Yao, K. Li, and L. Li. Cannylines: A parameter-free line segment detector.
In Image Processing (ICIP), 2015 IEEE International Conference on, pages 507–
511. IEEE, 2015.

[111] A. Mallya and S. Lazebnik. Learning informative edge maps for indoor scene layout
prediction. In ICCV, pages 936–944, Dec 2015.

[112] D. Martin, C. Fowlkes, and J. Malik. Learning to detect natural image boundaries
using local brightness, color and texture cues. IEEE Trans. on Pattern Analysis and
Machine Intelligence, 26(5):530–549, May 2004.

[113] J. Matas, C. Galambos, and J. Kittler. Robust detection of lines using the progres-
sive probabilistic Hough transform. Computer Vision and Image Understanding,
78(1):119–137, 2000.

[114] P. Mehrani and J. H. Elder. Estimating coarse 3D shape and pose from the bound-
ing contour. In Proceedings of the 12th International Joint Conference on Computer
Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VIS-
APP, (VISIGRAPP 2017), pages 603–610. INSTICC, SciTePress, 2017.

[115] L. Mescheder, M. Oechsle, M. Niemeyer, S. Nowozin, and A. Geiger. Occupancy
networks: Learning 3d reconstruction in function space. In Proceedings IEEE Conf.
on Computer Vision and Pattern Recognition (CVPR), 2019.

[116] J. Munkres. Algorithms for the assignment and transportation problems. Journal of
the Society for Industrial and Applied Mathematics, 5(1):32–38, 1957.

[117] D. Munoz, J. A. Bagnell, and M. Hebert. Stacked hierarchical labeling. In European
Conference on Computer Vision, pages 57–70. Springer, 2010.

[118] A. Newell, K. Yang, and J. Deng. Stacked hourglass networks for human pose
estimation. In European Conference on Computer Vision, pages 483–499, 2016.

[119] M. Nieto, C. Cuevas, L. Salgado, and N. García. Line segment detection using
weighted mean shift procedures on a 2D slice sampling strategy. Pattern Analysis
and Applications, 14(2):149–163, 2011.

[120] A. Oliva and A. Torralba. Modeling the shape of the scene: A holistic representation
of the spatial envelope. International journal of computer vision, 42(3):145–175,
2001.

170

[121] R. Omer and L. Fu. An automatic image recognition system for winter road surface
condition classification. In Intelligent Transportation Systems (ITSC), 2010 13th
International IEEE Conference on, pages 1375–1379. IEEE, 2010.

[122] L. E. Ortiz, E. V. Cabrera, and L. M. Gonçalves. Depth data error modeling of the
ZED 3D vision sensor from stereolabs. ELCVIA: Electronic Letters on Computer
Vision and Image Analysis, 17(1):0001–15, 2018.

[123] M. R. Oswald, E. Töppe, K. Kolev, and D. Cremers. Non-parametric Single View
Reconstruction of Curved Objects Using Convex Optimization. In Pattern Recogni-
tion, volume 5748 of Lecture Notes in Computer Science, pages 171–180. Springer
Berlin Heidelberg, 2009.

[124] J. Pan, M. Hebert, and T. Kanade. Inferring 3D layout of building facades from
a single image. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 2918–2926, 2015.

[125] P. Parodi and G. Piccioli. 3D shape reconstruction by using vanishing points. Pat-
tern Analysis and Machine Intelligence, IEEE Transactions on, 18(2):211–217,
1996.

[126] L. D. Pero, J. Bowdish, D. Fried, B. Kermgard, E. Hartley, and K. Barnard.
Bayesian geometric modeling of indoor scenes. In CVPR, pages 2719–2726, June
2012.

[127] Z. Pizlo, T. Sawada, Y. Li, W. G. Kropatsch, and R. M. Steinman. New approach
to the perception of 3D shape based on veridicality, complexity, symmetry and vol-
ume. Vision Research, 50(1):1–11, 2010.

[128] M. Prasad, A. Zisserman, and A. W. Fitzgibbon. Single view reconstruction of
curved surfaces. In Computer Vision and Pattern Recognition, 2006 IEEE Computer
Society Conference on, volume 2, pages 1345–1354, 2006.

[129] X. Qi, R. Liao, Z. Liu, R. Urtasun, and J. Jia. Geonet: Geometric neural network
for joint depth and surface normal estimation. In CVPR, June 2018.

[130] S. Ramalingam and M. Brand. Lifting 3D manhattan lines from a single image.
In 2013 IEEE International Conference on Computer Vision, pages 497–504, Dec
2013.

171

[131] S. Ramalingam, J. K. Pillai, A. Jain, and Y. Taguchi. Manhattan junction catalogue
for spatial reasoning of indoor scenes. In 2013 IEEE Conference on Computer
Vision and Pattern Recognition, pages 3065–3072, June 2013.

[132] R. Ramamoorthi and P. Hanrahan. An efficient representation for irradiance envi-
ronment maps. In Proceedings of the 28th annual conference on Computer graphics
and interactive techniques, pages 497–500, 2001.

[133] C. Rasmussen. Grouping dominant orientations for ill-structured road following. In
Computer Vision and Pattern Recognition, 2004. CVPR 2004. Proceedings of the
2004 IEEE Computer Society Conference on, volume 1, pages I–470. IEEE, 2004.

[134] C. Rasmussen. Texture-based vanishing point voting for road shape estimation. In
BMVC, pages 1–10. Citeseer, 2004.

[135] Y. Ren, S. Li, C. Chen, and C.-C. J. Kuo. A coarse-to-fine indoor layout estimation
(cfile) method. In Asian Conference on Computer Vision, pages 36–51. Springer,
2016.

[136] L. G. Roberts. Machine perception of three-dimensional solids. PhD thesis, Mas-
sachusetts Institute of Technology, 1963.

[137] O. Ronneberger, P. Fischer, and T. Brox. U-Net: Convolutional networks for
biomedical image segmentation. In Medical Image Computing and Computer As-
sisted Intervention (MICCAI), volume 9351 of LNCS, pages 234–241. Springer,
2015.

[138] R. Sawada, Y. Li, and Z. Pizlo. Detecting 3D mirror symmetry in a 2D camera
image for 3D shape recovery. Proceedings of the IEEE, 102:1588–1606, 2014.

[139] T. Sawada. Visual detection of symmetry of 3D shapes. Journal of Vision, 10(6):4,
2010.

[140] A. Saxena, S. H. Chung, and A. Y. Ng. Learning depth from single monocular
images. In Advances in Neural Information Processing Systems, pages 1161–1168,
2005.

[141] A. Saxena, S. H. Chung, and A. Y. Ng. 3-D depth reconstruction from a single still
image. International Journal of Computer Vision, 76(1):53–69, 2008.

172

[142] A. Saxena, M. Sun, and A. Y. Ng. Make3D: Depth perception from a single still
image. In Proceedings of the 23rd National Conference on Artificial Intelligence -
Volume 3, AAAI’08, pages 1571–1576. AAAI Press, 2008.

[143] A. Saxena, M. Sun, and A. Y. Ng. Make3D: Learning 3D scene structure from a
single still image. Pattern Analysis and Machine Intelligence, IEEE Transactions
on, 31(5):824–840, 2009.

[144] G. Schindler and F. Dellaert. Atlanta World: An expectation maximization frame-
work for simultaneous low-level edge grouping and camera calibration in complex
man-made environments. In Proceedings of the 2004 IEEE Computer Society Con-
ference on Computer Vision and Pattern Recognition, 2004. CVPR 2004., volume 1,
pages I–203–I–209 Vol.1, June 2004.

[145] C. Schmid and A. Zisserman. Automatic line matching across views. In Proc. IEEE
Conference on Computer Vision and Pattern Recognition, pages 666–671, 1997.

[146] T. Schöps, J. L. Schönberger, S. Galliani, T. Sattler, K. Schindler, M. Pollefeys,
and A. Geiger. A multi-view stereo benchmark with high-resolution images and
multi-camera videos. In Conference on Computer Vision and Pattern Recognition
(CVPR), 2017.

[147] A. G. Schwing, T. Hazan, M. Pollefeys, and R. Urtasun. Efficient structured pre-
diction for 3d indoor scene understanding. In 2012 IEEE Conference on Computer
Vision and Pattern Recognition, pages 2815–2822. IEEE, 2012.

[148] A. G. Schwing and R. Urtasun. Efficient exact inference for 3D indoor scene un-
derstanding. In ECCV 2012, pages 299–313, 2012.

[149] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus. Indoor segmentation and sup-
port inference from RGBD images. Computer Vision–ECCV 2012, pages 746–760,
2012.

[150] A. Singh, J. Sha, K. S. Narayan, T. Achim, and P. Abbeel. Bigbird: A large-scale 3D
database of object instances. In 2014 IEEE International Conference on Robotics
and Automation (ICRA), pages 509–516, May 2014.

173

[151] S. Song, S. P. Lichtenberg, and J. Xiao. Sun RGB-D: A RGB-D scene understand-
ing benchmark suite. In 2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 567–576, June 2015.

[152] K. Sugihara. Machine interpretation of line drawings, volume 1. MIT press Cam-
bridge, 1986.

[153] T. Suttorp and T. Bucher. Robust vanishing point estimation for driver assistance. In
Intelligent Transportation Systems Conference, 2006. ITSC’06. IEEE, pages 1550–
1555. IEEE, 2006.

[154] R. Tal and J. H. Elder. An accurate method for line detection and Manhattan frame
estimation. In Asian Conference on Computer Vision, pages 580–593. Springer,
2012.

[155] C. Tan, T. Hong, T. Chang, and M. Shneier. Color model-based real-time learn-
ing for road following. In Intelligent Transportation Systems Conference, 2006.
ITSC’06. IEEE, pages 939–944. IEEE, 2006.

[156] J.-P. Tardif. Non-iterative approach for fast and accurate vanishing point detection.
In 2009 IEEE 12th International Conference on Computer Vision, pages 1250–
1257. IEEE, 2009.

[157] Qian, Y., E. J. Almazan, and J. H. Elder. Evaluating features and classifiers for
road weather condition analysis. In International Conference on Image Processing
(ICIP), 2016 IEEE. IEEE, 2016.

[158] Y. Qian, S. Ramalingham, and J. Elder. LS3D: Single-view Gestalt 3D surface re-
construction from manhattan line segments. In Proceedings of the Asian Conference
on Computer Vision (ACCV), pages 399–416, 2018.

[159] J. Todd. The visual perception of 3D shape. Trends in Cognitive Sciences, 8(3):115–
121, 2004.

[160] J. T. Todd and F. D. Reichel. Ordinal structure in the visual perception and cognition
of smoothly curved surfaces. Psychological Review, 96(4):643–657, 1989.

[161] E. Toppe, M. R. Oswald, D. Cremers, and C. Rother. Image-based 3D Modeling via
Cheeger Sets. In Proceedings of the 10th Asian Conference on Computer Vision -
Volume Part I, ACCV’10, pages 53–64, Berlin, Heidelberg, 2011. Springer-Verlag.

174

[162] P. Tse. A contour propagation approach to surface filling-in and volume formation.
Psychological Review, 109(1):91–115, 2002.

[163] N. R. Twarog, M. F. Tappen, and E. H. Adelson. Playing with puffball: Simple
scale-invariant inflation for use in vision and graphics. In Proceedings of the ACM
Symposium on Applied Perception, pages 47–54. ACM, 2012.

[164] J. Uhrig, N. Schneider, L. Schneider, U. Franke, T. Brox, and A. Geiger. Sparsity
invariant CNNs. In International Conference on 3D Vision (3DV), 2017.

[165] M. Varma and A. Zisserman. Classifying images of materials: Achieving viewpoint
and illumination independence. In Proceedings of the 7th European Conference
on Computer Vision, Copenhagen, Denmark, volume 3, pages 255–271. Springer-
Verlag, May 2002.

[166] R. G. Von Gioi, J. Jakubowicz, J.-M. Morel, and G. Randall. LSD: A fast line
segment detector with a false detection control. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 32(4):722–732, 2010.

[167] J. Wagemans, J. H. Elder, M. Kubovy, S. E. Palmer, M. A. Peterson, M. Singh, and
R. von der Heydt. A century of Gestalt psychology in visual perception: I. Percep-
tual grouping and figure–ground organization. Psychological Bulletin, 138(6):1172,
2012.

[168] D. L. Waltz. Generating semantic descriptions from drawings of scenes with shad-
ows. 1972.

[169] H. Wang, S. Gould, and D. Koller. Discriminative learning with latent variables
for cluttered indoor scene understanding. In Proceedings of the 11th European
Conference on Computer Vision: Part II, pages 435–449. Springer-Verlag, 2010.

[170] N. Wang, Y. Zhang, Z. Li, Y. Fu, W. Liu, and Y.-G. Jiang. Pixel2mesh: Generating
3d mesh models from single rgb images. In ECCV, 2018.

[171] P. Wang, X. Shen, Z. Lin, S. Cohen, B. Price, and A. Yuille. Towards unified
depth and semantic prediction from a single image. In Computer Vision and Pattern
Recognition (CVPR), 2015 IEEE Conference on, pages 2800–2809. IEEE, 2015.

[172] Y. Wang, E. K. Teoh, and D. Shen. Lane detection and tracking using b-snake.
Image and Vision computing, 22(4):269–280, 2004.

175

[173] S. Waterer. Exercise: Linear perspective. 2015.
https://learningmojo.wordpress.com/2015/01/08/exercise-linear-perspective.

[174] J. Wu, Y. Wang, T. Xue, X. Sun, B. Freeman, and J. Tenenbaum. Marrnet: 3D shape
reconstruction via 2.5D sketches. In Advances in Neural Information Processing
Systems, pages 540–550, 2017.

[175] J. Wu, C. Zhang, X. Zhang, Z. Zhang, W. T. Freeman, and J. B. Tenenbaum. Learn-
ing shape priors for single-view 3d completion and reconstruction. In Proceedings
of the European Conference on Computer Vision (ECCV), pages 646–662, 2018.

[176] S. Xie and Z. Tu. Holistically-Nested edge detection. In Proceedings of the IEEE
international Conference on Computer Vision, pages 1395–1403, 2015.

[177] D. Xu, W. Ouyang, X. Wang, and N. Sebe. Pad-net: Multi-tasks guided prediction-
and-distillation network for simultaneous depth estimation and scene parsing. In
CVPR, June 2018.

[178] D. Xu, E. Ricci, W. Ouyang, X. Wang, and N. Sebe. Multi-scale continuous CRFs as
sequential deep networks for monocular depth estimation. In The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), July 2017.

[179] Z. Xu, B. Shin, and R. Klette. A statistical method for line segment detection.
Computer Vision and Image Understanding, 138:61–73, 2015.

[180] Z. Xu, B.-S. Shin, and R. Klette. Accurate and robust line segment extraction using
minimum entropy with Hough transform. IEEE Transactions on Image Processing,
24(3):813–822, 2015.

[181] Z. Xu, B.-S. Shin, and R. Klette. Closed form line-segment extraction using the
Hough transform. Pattern Recognition, 48(12):4012–4023, 2015.

[182] N. Xue, S. Bai, F. Wang, G.-S. Xia, T. Wu, and L. Zhang. Learning attraction field
representation for robust line segment detection. In IEEE Conference on Computer
Vision and Pattern Recognition, 2019.

[183] H. Yang and H. Zhang. Efficient 3d room shape recovery from a single panorama.
In CVPR, pages 5422–5430, June 2016.

[184] H.-J. Yang, H. Jang, J.-W. Kang, and D.-S. Jeong. Classification algorithm for road
surface condition. IJCSNS, 14(1):1, 2014.

176

[185] L. Zhang and R. Koch. Structure and motion from line correspondences: repre-
sentation, projection, initialization and sparse bundle adjustment. Journal of Visual
Communication and Image Representation, 25(5):904–915, 2014.

[186] X. Zhang, Z. Zhang, C. Zhang, J. Tenenbaum, B. Freeman, and J. Wu. Learn-
ing to reconstruct shapes from unseen classes. In Advances in Neural Information
Processing Systems, pages 2263–2274, 2018.

[187] T. Zhou, M. Brown, N. Snavely, and D. G. Lowe. Unsupervised learning of depth
and ego-motion from video. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), July 2017.

[188] W. Zhuo, M. Salzmann, X. He, and M. Liu. 3d box proposals from a single monoc-
ular image of an indoor scene. In AAAI, 2018.

177

