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Abstract 

 

Information on the severity of pavement cracks is critical for pavement 

repair services. This study aimed to exploit the applications of deep learning 

networks to improve the detection and classification of pavement cracks. An 

improved Convolution Neural Network (CNN) with structured prediction was 

proposed. Also, Fully Convolutional Network (FCN), U-Net, and attention U-

Net were implemented and explored with different optimizers and loss 

functions. The developed networks were tested on the data collected in 

Ontario, Canada with the purpose of localizing the cracks and identifying their 

severity levels based on three categories (low, medium, and high). The results 

showed that the improved CNN approach performed better than its original 

version with the F1-score increased from (5.21%, 30.85%, 83.51%) to 

(19.63%, 55.60%, 85.89%) for the detection of the cracks with the three 

severities. Furthermore, FCN, U-Net, and attention U-Net achieved slightly 

better results than the improved CNN approach with the F1-scores of (32.08%, 

68.82%, 89.89%), (40.06%, 69.97%, 89.07%), and (40.53%, 71.27%, 89.95%), 

respectively.  
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Chapter One: Introduction 

 

Due to traffic, environmental factors, and aging, road pavements 

usually experience different types of distress and deterioration that include 

cracks, surface defects, and profile deformation (McGhee, 2004; Miller et al., 

2003; Bennett et al., 2007). The qualities of pavements are usually 

characterized by distress type, severity, and extent. Effective and accurate 

monitoring of the pavement condition is paramount to determine if it provides 

a comfortable, safe, and efficient service to the public. It also assists the road 

management authority to make decisions on appropriate maintenance and 

rehabilitation. Traditionally, pavement surveys involve observing and 

recording surface defects and degradation through walking or slowly driving 

over pavements (asphalt or concrete) by certified professionals. The manual 

inspection is usually time-consuming, and the collected pavement information 

is subject to the individual surveyor’s level of experience and knowledge (Jing 

et al., 2010). Manual techniques are generally considered labor-intensive, slow, 

expensive, and sometimes unsafe due to the traffic. The early efforts to 

develop automatic or semi-automatic systems for pavement assessment are 

mainly image-based. The qualities of the images and software for data 

processing and analysis limit their operational employment (Cafiso et al., 2006; 
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Teomete et al., 2005; Yu et al., 2007; Jing et al., 2010).  

With the development of laser line projectors and custom optics 

(Cafiso et al., 2017), the quality of collected data has been improved, but the 

costs of the systems and their operations limit their usage. As an example, the 

Ministry of Transportation of Ontario (MTO) currently owns such systems to 

inspect the pavement conditions, but due to their high cost, these systems are 

mainly operated on major highways and roads with lots of traffic. Hence, the 

recent advance in imaging technologies and artificial intelligence provides a 

good opportunity to improve the performance of the image-based system for 

the assessment of pavement conditions.  

Several attempts have been made in the past decade for automatic 

crack detection based on machine learning techniques (Ouyang et al., 2010; 

Davis, 2011; Oliveira et al., 2013; Kapela et al., 2015; Shi et al., 2016). In 

general, these existing techniques require extensive pre-processing due to 

irregularities on the crack surface, variations in crack texture, and non-uniform 

illuminations. Although reasonable results are obtained through machine 

learning techniques (Kapela et al., 2015), they are very dependent on the 

radiometric and geometric qualities of the original images and the 

corresponding pre-processing techniques. Moreover, traditional machine 

learning techniques do not always achieve high accuracies in the localization 
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of cracks (approximately 60% accuracy) and tend to over-estimate the widths 

of cracks (Oliveira et al., 2013). In addition, many methods are not able to 

distinguish cracks with different levels of severity, which prevent the detection 

results from being used in an automated system for road repair services (Davis, 

2011).  

Recent advance in deep learning provides a good opportunity to 

improve the detection of pavement cracks. Fundamentally, deep learning is a 

subset of machine learning that functions similarly but has different 

capabilities. In general, traditional machine learning models require some 

human interactions to return an accurate prediction, whereas deep learning 

models are designed to logically comprehend the data on its own as to how a 

human would understand the data. There are various types of deep learning 

models that are designed for specific tasks. Hence, designing a new deep 

learning architecture requires an exetensive knowledge about both deep 

learning and traditional machine learning to fully construct an appropriate 

network. Similarly, even the users need prior knowledge to choose the 

appropriate deep learning models to properly accomplish the desired tasks.  

The most trending type of neural network in image recognition tasks is the 

convolution-based neural networks. Convolution-based neural networks take 

advantage of local spatial coherence of images to reduce the number of 
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operations needed to process an image by using convolution operation on 

patches of adjacent pixels. Based on the aspect of convolution operations, 

different types of convolution-based networks such as Convolution Neural 

Network (CNN), Fully Convolution Network (FCN) (Long et al., 2015), U-

Net (Ronneberger et al., 2015), and Attention U-Net (Oktay et al., 2018) are 

introduced in recent years. Although all these networks use convolution layers 

to extract features, their capabilities vary depending on the structure of the 

network. For instance, a basic CNN is designed to simply classify an image 

into different categories, but other networks, such as FCN and U-Net can not 

only classify, but also localize the objects within the image. Therefore, FCN 

and U-Net are often referred to as segmentation neural networks. However, 

these networks that can perform segmentation of an image are often 

computationally intensive to be trained. 

In recent years, more and more open-source packages are becoming 

available for designing and building a deep neural network for various 

classification tasks. Nowadays, graphic cards that are currently available to the 

public have enough computing power to construct and train a neural network. 

In the context of the detection of pavement cracks, Yusof et al. (2018) applied 

a  CNN  to detect cracks; the whole image was divided into a series of grids 

and the detection was done on individual grids. However, the resulting binary 
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image was very coarse and inadequate for pixel-level evaluation. Likewise, 

Fan et al. (2018) developed CNN with a structured prediction for crack 

detection. To my best knowledge, this network is the state-of-art of deep 

learning networks in pavement crack localization. Instead of using the whole 

image as the input, Fan et al. (2018) employed a small image patch of size 

27x27 as the input to predict a 5x5 binary map of the corresponding center of 

the input image patch. By repeating this procedure with a sliding window, a 

binary map of the whole pavement image was acquired. Even though CNN 

with a structured prediction proposed by Fan et al. (2018) performed 

extremely well on localizing the cracks on pavement images, it did not 

distinguish cracks with different severities.  

The goal of this research was to fully exploit various convolution-

based deep learning networks to improve the detection of cracks on paved 

roads and classify different levels of severity on the localized cracks. To 

achieve this goal, the following two objectives were fulfilled in this thesis 

research: 

 

(1) Improve the CNN with a structured prediction 

 

CNN with a structured prediction proposed by Fan et al (2018) was improved 
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in this study in the following two aspects. As mentioned earlier, the network 

by Fan et al. (2018) was only able to distinguish crack and non-crack pixels, 

hence it was improved in this study to classify cracks with three levels of 

severities. In addition, even though the structured prediction proposed by Fan 

et al. (2018) accounted for the spatial correlation between the center pixel and 

its surrounding pixels in an image patch, these pixels were treated with equal 

weights in the loss function. In this study, a weighted loss function was 

proposed to effectively distribute the weights with respect to the spatial 

location of the pixels.  

 

(2) Exploit FCN, U-Net, and attention U-Net in crack detection 

 

Although the improved CNN with a structured prediction can produce a 

segmentation map of a pavement image, there were few limitations. Since the 

output from this network was a small image patch, these patches had to be 

stitched together to form a whole pavement image, which slowed down the 

prediction process by a huge factor. To overcome this, convolution-based 

segmentation approaches such as FCN (Long et al., 2015), U-Net 

(Ronneberger et al., 2015), and Attention U-Net (Oktay et al., 2018) were 

implemented in this study to detect pavement cracks for the first time.  
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This thesis consists of six chapters. After the current introduction, the 

second chapter describes the background of deep learning approaches 

including the fundamentals of deep learning networks, such as optimizers, loss 

functions, and the commonly used networks, such as CNN, FCN, U-Net, and 

attention U-Net. Methodologies developed in this research and the results 

obtained are provided in Chapters three and four, respectively. Chapter five 

discusses the developed methods in detail. Conclusion and future work are 

summarized in Chapter six.  
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Chapter Two: Background 

2.1 Fundamentals to  deep learning networks  

 

Within the past decade, deep learning techniques have become one of 

the most trending methods in classification tasks, due to a large amount of data 

and publicly available open-source code packages. Unlike traditional machine 

learning approaches, deep learning techniques are data-driven. In a typical 

machine learning algorithm, the explicit extraction and selection of features 

are needed for a given task. However, in the deep learning algorithms, features 

are automatically extracted and selected based on the provided data and the 

corresponding labels during the training stage. In addition, one of the biggest 

reasons that deep networks have recently become so popular is that the current 

GPUs now have enough computational capability to implement effective 

feature extraction such as 2-dimension (2D) convolutions within the neural 

network. Consequently, large datasets can be handled, which directly leads to 

better-trained networks.  

Most of the networks including the commonly used convolution-based 

networks are known as the feed-forward neural network, because the output of 

a layer becomes the input of the following layer, and the output from a layer is 

never fed back into the previous layer. The feed-forward neural networks are 
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generally composed of an input layer, hidden layers, and an output layer. The 

input layer and output layer are where the data is input to the network, and the 

result is output from the network. The hidden layer is a new concept 

introduced in neural networks. In neural networks, the layers between the 

input layer and the output layer are referred to as hidden layers. These hidden 

layers are responsible for manipulating the data to get the desired output. 

These layers are called hidden layers because they are implicitly available and 

are private to the network.  Likewise, CNN is also composed of the input layer, 

hidden layers, and the output layer. In CNN, the convolution layers are 

considered as the hidden layers between the input layer and the output layer.  

Furthermore, the neural networks are generally trained through a 

process called backpropagation. Backpropagation is an algorithm that traces 

back from the output of the model, through the different neurons which were 

involved in generating that output, back to the original weight applied to each 

neuron. Backpropagation adjusts the weight for each neuron to minimize the 

difference between the true label and the predicted label.  

Each hidden layer is equipped with an activation function. Activation 

functions are mathematical equations that determine the output of the layer. It 

determines whether the corresponding input should be activated or not. In 

deep learning networks, sigmoid, hyperbolic tangent, Rectified Linear Unit 
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(ReLU), and softmax functions are commonly used as an activation function. 

One of the most popular ways to model a neuron’s output as a function of its 

input 𝑥 is with the sigmoid function defined in ( 2.1.1 ). 

 
𝑓(𝑥) = (1 + 𝑒−𝑥)−1 

( 2.1.1 ) 

 

The output of the sigmoid function ranges from 0 to 1, which is shown in 

Figure 2.1.1.  

 

 

Figure 2.1.1 Sigmoid function and derivative of the sigmoid function 

 

Due to its simplicity, this function has become one of the widely used 
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activation functions. However, the sigmoid function has a disadvantage of 

having a vanishing gradient problem. A gradient is produced during the 

backpropagation phase of the network and it accumulates throughout the 

network by multiplying the derivatives of each layer. Therefore, the vanishing 

gradient problem occurs when the derivative of the layer’s output with respect 

to its input is too small. As shown in Figure 2.1.1, the derivative of the 

sigmoid function with respect to its input results in a small output value when 

the input value is big. Thus, the gradient ends up being a small value and when 

these small gradients are stacked, the resulting gradient gets exponentially 

smaller. Therefore, the network does not update its weights properly and leads 

to a non-convergence. Since the sigmoid function has an output value ranging 

within [0,1], it can potentially lead the gradient updates to vary in different 

directions. Thus, this range of output makes the optimization harder as it does 

not compensate for the other directions. Additionally, the sigmoid function has 

a slower convergence than other activation functions.  

To accommodate the optimization issue on sigmoid, the hyperbolic 

tangent function shown in ( 2.1.2 ) is often used as a replacement.  

 
𝑓(𝑥) = tanh⁡(𝑥) 

( 2.1.2 ) 

Unlike the sigmoid function, the hyperbolic tangent function’s output is 

centered at zero and its value ranges from -1 to 1. The hyperbolic function is 
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shown in Figure 2.1.2. Since the output ranges from -1 to 1, the optimization is 

more stable and much easier than a sigmoid function. However, the hyperbolic 

tangent function also suffers from the vanishing gradient problem.  

 

 

Figure 2.1.2 Hyperbolic Tangent function 

 

Therefore, many researchers use ReLU (Nair et al., 2010) to avoid the 

vanishing gradient problem. Just like any other activation functions, ReLU is 

also differentiable and introduces non-linearity to the feature maps. ReLU is 

defined in ( 2.1.3 ). 

 
𝑓(𝑥) = max⁡(0, 𝑥) 

( 2.1.3 ) 

ReLU simply defines if input 𝑥 < 0, then 𝑓(𝑥) = 0 and if 𝑥 ≥ 0, then 𝑓(𝑥) =

𝑥 . The ReLU function is shown in Figure 2.1.3. Aside from solving the 

vanishing gradient problem, ReLU trains the network several times faster than 
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the hyperbolic tangent function (Krizhevsky et al., 2012). Consequently, 

researchers generally use ReLU as an activation function after each set of 

convolution layers. Since the output from ReLU is not scaled, ReLU can only 

be used within hidden layers. 

 

 

Figure 2.1.3 Rectified Linear Unit (ReLU) 

 

Unlike the other activation functions, softmax function is applied at the 

last hidden layer for classification tasks. In multi-class classification tasks, the 

softmax function defined in ( 2.1.4 ) is used.  

 𝜎(𝑥)𝑖 =
𝑒𝑥𝑝(𝑥𝑖)

∑ 𝑒𝑥𝑝(𝑥𝑗)
𝐾
𝑗=1

 ( 2.1.4 ) 
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A softmax function is a form of logistic function that normalizes an input 

value into a vector of values that follows a probability distribution that sums 

up to 1. Similar to the sigmoid function, the output values are between the 

range of 0 and 1. Therefore, the softmax function is suitable for multi-class 

classification tasks. However, the sigmoid function is rather preferred in multi-

label classification tasks, because the softmax function is not designed to 

output multiple positive predictions. 

During the training phase, neural networks are trained to find an 

appropriate weight for each activated neuron through weight updates. The 

neural network uses a loss function to measure the discrepancy between the 

model’s prediction and the ground truth. Then, the network adjusts the weight 

for each neuron to predict the correct label. The network urges to minimize the 

loss function and through backpropagation, the network adjusts the weight 

assigned to each neuron to generate a prediction that is close to the ground 

truth. Depending on the dataset and the application, the choice of loss function 

varies. In this study, cross-entropy, dice, and Tversky loss function is 

exploited.  

In a multi-class classification problem, a cross-entropy loss function is 

generally used to penalize the deviation of predicted probability 𝑝𝑐 of class c 
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from the ground truth y of class c. The cross-entropy loss function is defined 

by ( 2.1.5 ): 

 
𝐿 = −∑𝑦𝑐 log(𝑝𝑐)

𝑀

𝑐=1

 
( 2.1.5 ) 

Cross-entropy loss function performs well on most of the classification tasks, 

but it does not have any variables to control the class imbalance dataset.  

If the dataset suffers from a class imbalance problem like in medical 

image analysis, where the region of interest is usually found in a very small 

fraction of the full image, the network often has trouble generalizing the data. 

A common method to reduce the effects of class imbalance is to use the dice 

coefficient (DSC) defined in ( 2.1.6 ). The DSC is a measure of overlap that is 

widely used to evaluate segmentation performance (Sudre et al., 2017). 

 
𝐷𝑆𝐶𝑐 =

∑ 𝑝𝑖𝑐𝑔𝑖𝑐 + 𝜖𝑁
𝑖=1

∑ 𝑝𝑖𝑐 + 𝑔𝑖𝑐 + 𝜖𝑁
𝑖=1

 
( 2.1.6 ) 

 𝐷𝐿𝑐 =∑1− 𝐷𝑆𝐶𝑐
𝑐

 ( 2.1.7 ) 

( 2.1.6 ) indicates the dice score coefficient where 𝑝𝑖𝑐  and 𝑔𝑖𝑐  represents 

predicted label and ground truth label for each class 𝑐. The 𝜖 simply provides 

numerical stability to prevent division by zero. By subtracting the dice score 
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coefficient from 1 for each class, dice loss is acquired as shown in ( 2.1.7 ). 

Although the dice loss function is commonly used for an imbalanced 

dataset, it still does not differentiate the weights given between false positive 

and false negative detections. Consequently, the segmentation maps result in 

high precision with low recall. When the region of interest is extremely small 

with highly imbalanced data, assigning more weights on the false negative 

detections than false positive detections improve the recall rate. Therefore, the 

Tversky similarity index (Abraham et al., 2019) is introduced to generalize the 

dice score, which allows flexibility between false positive and false negative, 

as shown in ( 2.1.8 ). 

 
𝑇𝐼𝑐 =

∑ 𝑝𝑖𝑐𝑔𝑖𝑐 + 𝜖𝑁
𝑖=1

∑ 𝑝𝑖𝑐𝑔𝑖𝑐 + 𝛼∑ 𝑝𝑖𝑐̅𝑔𝑖𝑐
𝑁
𝑖=1 + 𝛽∑ 𝑝𝑖𝑐𝑔𝑖𝑐̅

𝑁
𝑖=1 + 𝜖𝑁

𝑖=1

 
( 2.1.8 ) 

From ( 2.1.8 ), 𝑝𝑖𝑐 indicates the probability that pixel 𝑖 being true positive and 

𝑝𝑖𝑐̅ is the probability pixel 𝑖 being the false positive. The same is true for 𝑔𝑖𝑐 

and 𝑔𝑖𝑐̅, respectively. Hyperparameters 𝛼 and 𝛽 are used to shift the emphasis 

to improve recall in the case of large class imbalance. Similar to dice loss, the 

Tversky loss function is used by minimizing ( 2.1.9 ). 

 𝑇𝐿𝑐 =∑1− 𝑇𝐼𝑐
𝑐

 ( 2.1.9 ) 

As the small region of interest does not contribute to the loss function 
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significantly, the dice loss function is not always suitable for segmentation 

tasks. To avoid this issue, researchers use a focal loss function (Lin et al., 

2017), which reshapes the cross-entropy loss function with a modulating 

exponent to down-weight errors assigned to well-classified examples. The 

main advantage of using focal loss is to prevent the vast number of easily 

defined negative examples from dominating the gradient to alleviate class 

imbalance effect. Hence, the focal Tversky loss function (Abraham et al., 2019) 

is used in segmentation tasks, where it is parameterized by 𝛾  to control 

between easy background and hard region of interest from training examples. 

The Focal Tversky Loss (FTL) is defined in ( 2.1.10 ). 

 𝐹𝑇𝐿𝑐 =∑(1 − 𝑇𝐼𝑐)
1
𝛾

𝑐

 ( 2.1.10 ) 

If a pixel is misclassified with a high Tversky index, the FTL is unaffected, 

but if a pixel is misclassified with a small Tversky index, FTL is decreased 

significantly. When 𝛾 > 1, the loss function concentrates more on the less 

accurate prediction that has been misclassified. The increasing values of the 

Tversky index are mapped to flatter regions of the FTL curve with increasing 

values of 𝛾 and shown in Figure 2.1.4. As shown from Figure 2.1.4, the over-

suppression of the FTL is observed when the class accuracy is high and as the 

model becomes close to convergence. Thus, Abraham et al. (2019) concludes 
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that the best performance is achieved when 𝛾 =
4

3
. 

 

 

Figure 2.1.4 The focal Tversky loss non-linearly focuses training on hard 

examples (where Tversky Index < 0.5) and suppresses easy examples from 

contributing to the loss function (Image Credit: Abraham et al., 2019) 

 

Aside from loss functions, there are different optimizers designed to 

serve different purposes. In this study, some of the famous optimizers are 

introduced: Stochastic Gradient Descent (SGD) (Robbins & Monro, 1951), 

Adaptive Moment Estimation (ADAM) (Kingma & Ba, 2015), AMSGRAD 

(Reddi et al., 2018), and Adaptive Gradient Methods with Dynamic Bound of 

Learning Rate (ADABOUND) (Luo et al., 2019).  

SGD (Robbins & Monro, 1951) is one of the most dominant 

algorithms that perform well across many applications. Due to its rapid 
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training time and reasonable outcome, it is considered as the default optimizer 

in many networks. However, its characteristic of scaling the gradients 

uniformly in all directions potentially leads to poor performance. Also, the 

training speed is limited when the training data points are scattered. To 

address this issue, recent works have proposed a variety of adaptive methods 

that scale the gradients by square roots and averaging the squared values of 

past gradients. As a result, an adaptive optimization method called ADAM 

(Kingma & Ba, 2015) is proposed to achieve a rapid training process with an 

element-wise scaling term on learning rates.  

Among the adaptive optimizers, ADAM has become one of the most 

popular optimizers across many deep learning frameworks due to its rapid 

training speed (Wilson et al., 2017). From ( 2.1.11 ), an exponentially 

decaying average of past squared gradients 𝑚𝑡  is computed, and from 

( 2.1.12 ), an exponentially decaying average of past squared gradients 𝑣𝑡 is 

computed. Then, the average of the gradients is multiplied by the initial 

learning rate 𝜂 , and divided by square root of the exponential average of 

squared gradients in ( 2.1.13 ). Finally, in ( 2.1.14 ), the weight change ∆𝜔𝑡, is 

added to update the weight 𝜔𝑡. Moreover, the authors of ADAM (Kingma & 

Ba, 2015) proposes the hyperparameters 𝛽1, 𝛽2 , and 𝜖  to be 0.9, 0.999 and 

10−8, respectively. 
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 𝑚𝑡 = 𝛽1 ∗ 𝑣𝑡−1 − (1 − 𝛽1) ∗ 𝑔𝑡 ( 2.1.11 ) 

 𝑣𝑡 = 𝛽2 ∗ 𝑠𝑡−1 − (1 − 𝛽2) ∗ 𝑔𝑡
2 ( 2.1.12 ) 

 ∆𝜔𝑡 = −𝜂 (
𝑚𝑡

√𝑣𝑡 + 𝜖
) ∗ 𝑔𝑡 ( 2.1.13 ) 

 𝜔𝑡+1 = 𝜔𝑡 + ∆𝜔𝑡 ( 2.1.14 ) 

Adaptive methods often display faster progress in the initial portion of 

the training, but their performance quickly plateau on unseen data such as test 

dataset. Since the model performance heavily depends on the type of the 

dataset, non-adaptive optimizers such as SGD performs better in some cases. 

For instance, SGD performs better than adaptive methods in natural language 

processing and certain computer vision applications (Luo et al., 2019; Wu & 

He, 2018).  

For further improvement, a variant of ADAM called AMSGRAD is 

proposed by Reddi et al. (2018) to overcome the issue of the generalization 

ability and out of sample behavior of these adaptive methods. However, 

AMSGRAD shows better performance on training data, but the generalization 

ability on test data is found to be similar to ADAM. Luo et al. (2019) report 

that both extremely large and small learning rates exist by the end of training 

on ADAM, which indicates that the lack of generalization performance of 

adaptive methods stemmed from unstable and extreme learning rates. To 
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remediate this issue, AMSGRAD is introduced with non-increasing learning 

rates, which helps to abate the impact of huge learning rates. Though, 

neglecting the possible effects of small learning rates may lead to undesirable 

non-convergence.  

Moreover, another variant of ADAM, named ADABOUND (Luo et al., 

2019) is proposed. Unlike ADAM, ADABOUND does not suffer from the 

negative impact of extreme learning rates. It employs dynamic bounds on 

learning rates in ADAM, where the lower and upper bounds are initialized as 

zero and infinity respectively, and eventually converges to constant final step 

size. Furthermore, ADABOUND is regarded as an adaptive method at the 

beginning of training and it gradually and smoothly transforms to SGD as the 

time step increases. By having both aspects from SGD and an adaptive method, 

the advantage of a rapid initial training process and good final generalization 

ability is taken (Luo et al., 2019). 

 

2.2 Convolutional Neural Network (CNN) 

 

In the early 1960s, Hubel et al. (1963) discover the concept behind the 

locally sensitive, and orientation-selective neurons in the cat’s visual system 

and realize that small regions of cells from the visual cortex are sensitive to 



 

 

22 

 

specific regions of the visual field. Furthermore, certain individual neuronal 

cells in the brain respond only in the presence of edges of a certain orientation. 

For instance, certain neurons respond when exposed to edges with particular 

orientations. Hubel et al. (1963) notice that these neurons are organized to 

produce visual perception. The fact that neuronal cells in the visual cortex 

look for specific characteristics, the fundamental basis behind the neural 

network are formed from this concept. Thus, local connections have been 

reused many times in neural models of visual learning (LeCun et al., 1995). 

With the support of local receptive fields, neurons can extract elementary 

visual features such as oriented edges, endpoints, corners, etc. Additionally, 

these receptive fields are applied by forcing a set of units at different places on 

the image to have identical weight vectors (Rumelhart et al., 1986). Thence, 

these outputs of such a set of neurons are known as a “feature map”. 

Depending on the corresponding receptive fields, different types of feature 

maps are collected. This operation is well known as “convolution” and the 

receptive field is referred to as the “kernel” (LeCun et al., 1995). A 

convolution layer produces multiple feature maps at each location with 

different weight vectors. These extracted features prioritize their approximate 

position relative to other features than their original location. Additionally, 

pooling layers can be applied after a convolutional layer to reduce the 
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resolution of the feature map and reduce the sensitivity of the output to shifts 

and distortions (LeCun et al., 1995). 

In the field of machine learning, CNN is the most trending image 

classification technique to classify objects in an image. CNN is mainly 

composed of the input layer, hidden layers, and output layer, where the hidden 

layers are usually composed of convolution layers and pooling layers. In the 

past few years, the capabilities of CNN have proved its ability to work with all 

kinds of different image classification tasks. Ever since CNN became so 

popular, various versions of CNN are developed to handle more complicated 

tasks than a simple classification. For instance, Fan et al. (2018) designed a 

CNN based architecture that successfully segments cracks from a pavement 

image. This network is called the CNN with structured prediction. Unlike a 

typical CNN, the CNN with structured prediction performs pixel-level 

classification, which results in a binary segmentation map of the pavement 

image. This network consists of 4 convolution layers with 2 max-pooling 

layers, followed by 3 fully connected layers (Fan et al., 2018). Every 

convolutional layer is applied with a 3x3 kernel and a stride of 1 pixel. 

Additionally, zero paddings are applied to the boundary of each input image 

before the convolution filters are applied to preserve the spatial resolution of 

the feature map. After each pair of convolutional layers, max-pooling is 
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applied with a stride of 2 over 2x2 kernel. Towards the end of the network, 

two consecutive fully connected layers with 64 neurons are used, followed by 

another fully connected layer with 25 neurons. The final outputs of 25 neurons 

are then reshaped into a 5x5 binary prediction, 1 being a crack pixel, and 0 

being a non-crack pixel (Fan et al., 2018). An overview of the network is 

described in Figure 2.2.1. 

 

 

Figure 2.2.1 An illustration of the original CNN with a structured prediction 

(Image Credit: Fan et al., 2018) 

 

Alternatively, Fan et al. explore different output sizes, ranging from one single 

pixel, which is essentially identical to the traditional CNN output, and a 7x7 

output patch. Using a single pixel results extensive prediction time and a 7x7 

pixels results in coarse output. Upon experimenting with different output sizes, 

Fan et al. report that the output with a 5x5 image patch achieves the best result. 

Additionally, in a natural pavement image, there are far more non-crack pixels 
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than crack pixels in a pavement image. Therefore, balancing the data size 

between these two classes is fundamentally correlated to the final accuracy. 

Hence, the effect of ratio between the numbers of crack and non-crack image 

patches is an important factor. Consequently, Fan et al. conclude that a 1:3 

ratio of crack to non-crack patches results in the best outcome.  

Even though Fan et al.’s work achieves a good precision of ~91%, this 

network is not able to either determine the severity of cracks or identify the 

type of cracks. In practice, this additional information is known to be essential 

in prioritizing repair schedules. Additionally, the output from this network is 

restricted to tiny image patches that require post-processing of stitching these 

predicted patches to reconstruct an image. Thus, in this research, a variant of 

CNN with a structured prediction network was implemented to add a crack 

severity classification. 

 

2.3  Fully Convolutional Network (FCN) 

 

In general, a typical CNN ends with a fully connected layer to employ 

the extracted features from the convolution layers and classify the input image 

into different classes. The biggest advantage of having fully connected layers 

is that these layers learn features from all the combinations of the features of 
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the previous layer. However, not only fully connected layers are 

computationally expensive, spatial sizes are restricted to the dimension of the 

input. Thus, Long et al. (2015) propose a network called a fully convolutional 

network (FCN) that is trained end-to-end, pixels-to-pixels on semantic 

segmentation. Semantic segmentation is mainly divided into global 

information, which deals with classifying the object, and local information 

deals with localizing the object in the image. Deep feature hierarchies encode 

location and semantics in a non-linear local to a global pyramid. Consequently, 

this approach does not require any pre-processing or post-processing 

complications. 

As mentioned earlier, convolutional networks’ basic components 

include convolution and pooling layers. These operations work on local input 

regions and depend on relative spatial coordinates. Thus, CNN and FCN both 

take advantage of convolution layers to extract features, and these 

convolutional networks are built on translation invariance. Due to the fully 

connected layers at the end of these networks, the input dimensions are fixed, 

and spatial coordinates are lost along the way. Typical classification neural 

networks including LeNet (LeCun et al., 1989), and AlexNet (Krizhevsky et 

al., 2012) feed the input with a fixed size and produce non-spatial outputs. 

Although these fully connected layers disregard the spatial coordinates, they 
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are viewed as convolutions with kernels that cover their entire input regions. 

Hence, as shown in Figure 2.3.1, these layers are transformed into convolution 

layers to enable a simple classification network to output a heatmap. 

 

Figure 2.3.1 Transforming fully connected layers into convolution layers 

enabled a classification net to output a heatmap. Adding layers and a spatial 

loss produced an efficient machine for end-to-end dense learning (Image 

Credit: Long et al., 2015) 

 

The spatial output maps of these convolutionalized models make them a 

natural choice for dense problems like semantic segmentation. However, 

interpolation is necessary to connect coarse outputs to dense pixels. Hence, 

Long et al. (2015) utilize backward convolution (a.k.a. deconvolution) to use 

simple bilinear interpolation to compute each output from the nearest four 
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inputs by a linear map that depends only on the relative positions of the input 

and output pixels. Thus, up-sampling is performed within the network to 

achieve end-to-end learning by backpropagation from pixel-wise loss. 

Moreover, these deconvolution filters along with its activation functions are 

capable of learning a non-linear up-sampling as well. 

To take advantage of the feature spectrum that combines deep, coarse, 

semantic information and shallow, fine, appearance information, FCN is 

proposed with a skip architecture (Long et al., 2015). The summary of skip 

connections is shown in Figure 2.3.2. As shown in Figure 2.3.2, adding skip 

connections between layers to fuse coarse, semantic, and local, appearance 

information is one of the highlights from FCN. Skip architecture learns end-to-

end to refine the semantics and spatial precision of the output.  
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Figure 2.3.2 FCN combining coarse, high layer information with fine, low 

layer information. Pooling and prediction layers are shown as grids that 

reveal relative spatial coarseness, while intermediate layers are shown as 

vertical lines. First row (FCN-32s). Second row (FCN-16s): Combining 

predictions from both the final layer and the pool4 layer, at stride 16, lets our 

net predict finer details while retaining high-level semantic information. Third 

row (FCN-8s): Additional predictions from pool3, at stride 8, provide further 

precision (Credit: Long et al., 2015) 

 

Multiple proven classification architectures including AlexNet (Krizhevsky et 

al., 2012), VGG net (Simonyan et al., 2014), and GoogLeNet (Szegedy et al., 

2015) are convolutionalized as FCN, and Long et al. (2015) claim that fine-

tuning from classification to segmentation gave the best result with the VGG-

16 network. Without the use of skip connections, the final predictions are very 

coarse, due to the limitation of 32-pixel stride at the final prediction layer. 

Thus, combining fine layers and coarse layers make local predictions that 

consider global structure. To generate FCN-16, output stride is divided in half 
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to predict using a 16-pixel stride layer. Then, a 1×1 convolution layer is added 

on top of pool4 to produce additional class predictions. This output is then 

fused with the predictions computed on top of conv7 at stride 32 by adding a 

2× up-sampling layer and these predictions are summed up. Additionally, the 

up-sampling process is done with the bilinear interpolation. Finally, the stride 

16 predictions are up-sampled back to the original image size. This process is 

visualized in Figure 2.3.2. Similar steps are followed to generate FCN-8, 

which generates the finest segmentation map. By fusing predictions from 

pool3 with a 2× up-sampling of predictions fused from pool4 and conv7, 

FCN-8 is generated. In this fashion, decreasing the stride of pooling layers 

does result in finer predictions but having smaller stride of pooling layers than 

FCN-8 is problematic for the VGG-16 network due to its receptive field size 

and expensive computational cost. With FCN-8, Long et al. achieve 56.0 mean 

intersection over union on the validation set of PASCAL VOC 2011. 

 

2.4 U-Net 

 

The fundamental structure of the U-Net is similar to the FCN. U-Net 

uses learnable weight filters instead of fixed bilinear interpolation for up-
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sampling. U-Net utilizes transposed convolution to up-sample the feature 

maps. Also, the skip connections are applied differently in U-Net. Hence, U-

Net is known as a modified version of FCN that yields a more precise 

segmentation map (Ronneberger et al., 2015). The structure of U-Net is shown 

in Figure 2.4.1, where it is composed of contraction, bottleneck, and extraction 

section.  

 

Figure 2.4.1 Original U-Net Architecture (Ronneberger et al., 2015) 

 

The training images are passed to the contracting section of the network by 

successive layers, and high-resolution features from this contracting section 
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are combined with the up-sampled outputs. One of the major modifications 

from FCN is in the up-sampling path. A large number of feature channels in 

the up-sampling path allow the network to propagate context information to 

higher resolution layers and consequently, the expansion path becomes 

symmetric to the contraction path, which yields an u-shaped architecture. U-

Net is originally designed to perform cell segmentation, and the biggest 

challenge in this application is to separate the touching objects of the same 

class. Hence, Ronneberger et al. (2015) include weights to the loss function by 

assigning a large weight on the border of background labels and touching cells. 

As shown in Figure 2.4.1, the contraction path of U-Net is composed 

of repeated application of two 3x3 convolution layers, each followed by a 

ReLU activation function and a 2x2 max pooling operation with stride 2 for 

down-sampling. The number of convolutional filters is doubled at each down-

sampling step. Consequently, the expansion path is composed of 2x2 

deconvolution layers, which up-sample the feature maps passed on from the 

contraction path. Similar to the contraction path, the expansion path also 

consists of two 3x3 convolution layers, each followed by a ReLU activation 

function. Additionally, the corresponding feature maps from the contraction 

path are concatenated to the feature maps at the expansion path. Unlike the 

contraction path, the number of convolutional filters is halved in the expansion 
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path. Finally, in the last layer, a 1x1 convolution is employed to map the 

feature vector to the number of classes to classify. 

Additionally, U-Net is trained with an SGD optimizer and the cost 

function is computed by a pixel-wise softmax over the final feature map 

combined with the cross-entropy loss function. With this network architecture, 

the U-Net aims for training on the medical dataset, where there are not many 

labeled images available as training data. As mentioned earlier, Ronneberger 

et al. (2015) use a pre-computed weight map for each ground truth to support 

the network to prioritize learning the ambiguous borders between touching 

cells. Thus, the weight maps are computed by ( 2.4.1 ): 

 
𝑤(𝑥) = 𝑤𝑐(𝑥) + 𝑤0 ∗ 𝑒𝑥𝑝 (−

(𝑑1(𝑥) + 𝑑2(𝑥))
2

2𝜎2
) 

( 2.4.1 ) 

where 𝑤𝑐 is the weight map to balance the class frequencies, 𝑑1 and 𝑑2 is the 

distance to the border of the first nearest cell and the second nearest cell, 

respectively. The initial weight 𝑤0 is set to 10 and 𝜎⁡is set to 5 pixels.  

 
𝐸 =∑𝑤(𝑥) log(𝑝𝑙(𝑥)(𝑥)) 

( 2.4.2 ) 

Moreover, the weight maps computed from ( 2.4.1 ) are added to the cross-

entropy loss function defined in ( 2.4.2 ). As shown in Figure 2.4.2, the ground 



 

 

34 

 

truth label is binarized to compute the distance between each cluster of cells 

and rank them into different weights. More weights are assigned towards cells 

with smaller gaps in between them and fewer weights are assigned to the cells 

that have larger gaps between them. Ultimately, U-Net is applied to cell 

segmentation tasks in light microscopic images from the ISBI cell tracking 

challenge 2014 and 2015. From these datasets, U-Net achieves an average 

intersection over the union of 92% and 77.5%, respectively. 

 

Figure 2.4.2 (a) raw image. (b) overlay with ground truth segmentation. 

Different colors indicate different instances of the HeLa cells. (c) generated 

segmentation mask (white: foreground, black: background). (d) map with a 

pixel-wise loss weight to force the network (Image Credit: Ronneberger et al., 

2015)  

 

2.5 Attention U-Net  

 

Despite the good representational power from FCN and U-Net, these 

architectures rely on multi-stage cascaded CNNs when the target varies in 

shape and size. These cascaded frameworks are used to extract a specific 
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region of interest and make corresponding dense predictions on that particular 

region of interest. However, this cascaded process leads to excessive and 

redundant use of computational resources and model parameters. For instance, 

multiple similar low-level features are repeatedly extracted by all models 

within the cascade. Therefore, Oktay et al. (2018) introduce Attention Gates 

(AGs) to the U-Net. By employing AGs to a CNN model, the model is trained 

from scratch in a standard way, but AGs automatically learn to focus on target 

structures without additional supervision. These gates generate soft region 

proposals implicitly and highlight salient features useful for the specific task. 

Most importantly, these gates do not increase significant computational cost. 

The proposed AGs improve model sensitivity and accuracy for dense label 

predictions by suppressing feature activations in irrelevant regions. Hence, 

attention U-Net focuses on image-grid based gating that allows attention 

coefficients to be specific to local regions. When AGs are implemented to U-

Net, the image features are extracted at multiple image scales and coarse 

feature maps capture contextual information. Then, the category and location 

of foreground objects are highlighted from these coarse feature maps. These 

extracted feature maps at multiple scales are merged through skip connections 

to combine coarse and fine level dense predictions. The overview of the 

attention U-Net is shown in Figure 2.5.1. As shown in Figure 2.5.1, the feature 
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maps extracted at the coarse-scale are input through gating to disambiguate 

irrelevant and noisy responses in skip connections. Then, the output from AG 

is concatenated to merge relevant activations.  In addition, AGs filter the 

neuron activations during the forward and backward pass. Consequently, 

gradients originated from background regions are down-weighted during the 

backward pass. Hence, model parameters in shallower layers are updated 

based on spatial regions that are relevant to a given task. 

 

Figure 2.5.1 A block diagram of the proposed Attention U-Net segmentation 

model. The input image was progressively filtered and down-sampled by a 

factor of 2 at each scale in the encoding part of the network. Nc represented 

the number of classes. Attention gates (AGs) filter the features propagated 

through the skip connections. Feature selectivity in AGs was achieved by the 

use of contextual information (gating) extracted in coarser scales. (Image 

Credit: Oktay et al., 2018) 

 

Schematic of the additive attention gate is shown in Figure 2.5.2. As 
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shown in Figure 2.5.2, Oktay et al. (2018) use additive attention (Bahdanau et 

al., 2014) to obtain the gating coefficient, over multiplicative attention (Luong 

et al., 2015). Although additive attention is computationally more expensive, it 

achieves s higher accuracy. Additive attention is formulated as: 

 
𝑞𝑎𝑡𝑡
𝑙 = 𝜓𝑇 (𝜎1(𝑊𝑥

𝑇𝑥𝑖
𝑙 +𝑊𝑔

𝑇𝑔𝑖 + 𝑏𝑔)) + 𝑏𝜓 
( 2.5.1 ) 

 
𝛼𝑖
𝑙 = 𝜎2 (𝑞𝑎𝑡𝑡

𝑙 (𝑥𝑖
𝑙 , 𝑔𝑖; Θ𝑎𝑡𝑡)) 

( 2.5.2 ) 

where 𝜎2  indicates the sigmoid function. AG is characterized by a set of 

parameters Θ𝑎𝑡𝑡, which consists of a linear transformation and bias term. The 

linear transformations are computed using 1x1x1 convolutions for the input 

tensors. Softmax function is typically used in image captioning and 

classification tasks to normalize the attention coefficients, but sequential use 

of softmax function yields sparser activations at the output. Hence, the 

sigmoid function is used instead. These gating signals for each skip connection 

aggregate information from multiple imaging scales, which increase the grid-

resolution of the query signal and achieve optimal results. Ultimately, the 

attention U-Net becomes the state-of-art for a single model in CT pancreas 

segmentation, which achieves 81.48 ± 6.23 Dice similarity coefficients for 

pancreas labels (Oktay et al., 2018). 
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Figure 2.5.2 Schematic of the proposed additive attention gate (AG). Input 

features (xl) were scaled with attention coefficients (α) computed in AG. 

Spatial regions were selected by analyzing both the activations and contextual 

information provided by the gating signal (g) which was collected from a 

coarser scale. Grid resampling of attention coefficients was done using 

trilinear interpolation. (Image Credit: Oktay et al., 2018)  
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Chapter Three: Methodology 

3.1 Dataset 

 

At MTO, the pavement data are collected by Automatic Road Analyzer 

(ARAN) 9000 system developed by Fugro Roadware (Mississauga, ON, 

Canada). ARAN 9000 is an advanced pavement data collection vehicle 

equipped with precision survey systems including video cameras, optical 

sensors, laser line projectors, ultrasonic sensors, and accelerometers (Cafiso et 

al., 2017; Gkovedarou, 2019). Due to its high cost, ARAN 9000 is mainly 

used to collect data on some of the major highways in Ontario, Canada. 

During data collection, ARAN 9000 saves data every 10 m of the highway. 

The collected raw data are processed by two software packages, namely, 

“Laser Crack Measurement System (LCMS) road-inspect”, developed by 

Pavemetrics (Québec, QC, Canada) and “Vision”, developed by Fugro 

Roadware.  

Since these software packages utilize the raw data from ARAN 9000, 

the depth measurements are also taken into consideration when detecting the 

cracks, but the width of the cracks are mainly used to classify the cracks. 

Based on the standard of MTO, the different levels of severity of cracks are 

defined as follows: longitudinal wheel-track cracks with less than 3mm are 
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classified as very slight level; cracks from 3mm to 12mm are considered slight 

level; single cracks with 13mm to 19mm width or multiple cracks starting is 

categorized as moderate level; cracks with 20-25mm width for single cracks or 

multiple cracks, beginning of spalling are deemed as severe level; and cracks 

greater than 25mm wide for single cracks or multiple cracks with developed 

spalling are considered very severe level (MTO, 2016).   

Based on these standards, LCMS road-inspect and Vision software 

detect the cracks from the laser data collected by ARAN 9000. Although 

ARAN 9000 comes with video cameras, these cameras are facing forward and 

sideways to record the surrounding environments rather than facing down on 

the pavement to capture the pavement conditions. Therefore, the range of the 

laser data was saved as single-channel images through LCMS road-inspect 

software and these images were used as the training images in this study. A 

sample of the pavement image is shown in Figure 3.1.1.  
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Figure 3.1.1 Sample pavement image 

 

Even though both the LCMS road-inspect and Vision software package was 

capable of processing and analyzing the raw data from ARAN 9000, they used 

different criteria to detect and determine the severity of the distress levels on 

the pavement. In general, the LCMS road-inspect software had a lower 

localization accuracy than the Vision software. LCMS road-inspect algorithm 

was set up with a lenient threshold. Hence, there were false positive cracks 

detected along with the true positive cracks. Meanwhile, the Vision software 

was set up with a stricter threshold than the LCMS road-inspect software. 

Hence, it yielded a relatively fewer number of false positive cracks detected 

than the LCMS road-inspect software. However, a stricter threshold resulted in 

misclassifying some of the small cracks as non-cracks. Moreover, the Vision 
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software often had trouble distinguishing between the low and medium 

severity cracks. Nonetheless, its outcome was more precise in localizing the 

cracks on the pavement than the outcome from the LCMS road-inspect 

software. Consequently, the resulted labels from these two software packages 

were not necessarily identical. Although the Vision software localized the 

cracks better than the LCMS road-inspect software, it did not provide accurate 

severity labels. Undoubtedly, the cracks at the higher severity levels were easy 

to be detected by both software packages, but there were discrepancies in the 

detection of cracks at the low and medium severity levels. As an example, the 

difference in the resulted labels between the two software packages is shown 

in Figure 3.1.2. 
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(a)  

(b)  

(c)  

Figure 3.1.2 Results obtained by LCMS and Vision: (a) Original pavement 

image, (b) cracks detected by LCMS, and (c) cracks detected by Vision (Low: 

Cyan, Medium: Green, High: Orange) 
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To generate the best ground truth, the labels created from both 

software packages were merged to take advantage of the accurate crack 

localization with properly labeled severity levels. Thus, only crack labels that 

appeared on both software packages were used as the true positive crack pixels 

and their corresponding severity levels were adapted after the LCMS road-

inspect software. It is worth mentioning that even though the labeled images 

from two different software packages were merged, it still did not fully 

capture all the cracks on the pavement images. In this study, a total of 3,332 

pavement images with corresponding merged ground truth images were used 

to train and test the convolution-based neural networks. Each image 

represented a 10 m segment of the highway and had a dimension of 

2500x1037x1 pixels.  

For data augmentation, the images were subdivided into 160x578 

pixels with an overlap of 75%. Since the ground truth labels were imperfect, 

the road lines were often misclassified as cracks. Therefore, when the images 

were subdivided into smaller images, a region of interest was set to collect the 

images within the road lines.  As a result, ~65,000 images were available for 

training and validation, with additional ~400 images for testing purposes. 

Hence, ~65,000 images were randomly split into 70% of training data and 30% 

of validation data to train the neural networks in this research. Then, ~400 
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unseen test images were used to evaluate the performance of the models. 

 

3.2 Improved CNN with A Structured Prediction 

 

Fundamentally, CNN with a structured prediction proposed by Fan et 

al. (2018) had its basis on a typical CNN; the only difference was that the 

network resulted in a patch-wise prediction instead of a single prediction. 

Similar to a typical CNN architecture, CNN with a structured prediction 

proposed by Fan et al. (2018) was composed of an input layer, hidden layers, 

and output layer. Using this network, Fan et al. (2018) successfully predicted a 

binary map of cracks on paved roads. Thus, CNN with a structure prediction 

proposed by Fan et al. (2018) was improved in the following aspects in this 

study:  

 

(1) CNN with a structured prediction proposed by Fan et al. (2018) 

was adapted to classify cracks with different levels of severity. 

(2) Weighted loss function was proposed to effectively train the 

network. 

(3) ADABOUND optimizer was employed instead of the ADAM 

optimizer used in Fan’s network. 
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In order to adapt the CNN with a structured prediction proposed by Fan et al. 

(2018) to classify cracks with different levels of severity, the overall number 

of layers in the network was increased to extract more features, and the 

number of output units in the output layer was increased. Hence, by preserving 

the same output size of 5x5 from the original Fan’s network, the network 

proposed in this study required 25 neurons per class, resulting in 75 neurons in 

the final output layer. The architecture of the improved CNN with a structured 

prediction proposed in this study was shown in Figure 3.2.1. As shown in 

Figure 3.2.1, the number of convolutional layers was increased to 6; the 

number of max-pooling layers was increased to 3, and the number of fully 

connected layers remained the same but the number of neurons within each 

fully connected layer was increased. All convolutional layers were equipped 

with kernels of 3x3 and stride of 1. Additionally, each convolutional layer was 

applied with zero paddings on the boundary to preserve the spatial resolution 

of the resulting feature map. Moreover, max-pooling with kernels of 2x2 and 

stride of 2 was applied on the feature map after the convolutions. Since the 

expected output can have multiple identical labels with different classes, this 

structured prediction problem was modeled as a multi-label, multi-class 

problem. 
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Figure 3.2.1 Modified CNN with Structured Prediction Architecture 

Within each original training image, approximately 300 image patches 

of size 27x27 were extracted. The corresponding label patches of 5x5 were 

also collected based on the center location of the image patch. To sustain the 

equal ratio of patches collected over different severity levels, an equal number 

of patches were collected for each severity level. Moreover, twice the number 

of non-crack patches were collected than the number of crack patches to 

simulate the natural ratio of crack and non-crack pixels on a pavement image. 

In a natural pavement image, there are far more non-crack pixels than crack 

pixels. Hence, the proportion of positive and negative samples has a huge 

impact on the performance of the network. To be fair, all samples were 

randomly extracted from the image, with the ratio of positive to negative 

samples set to 1:2. As shown in Table 3.2.1, the positive samples consisted of 

approximately 0.33 ratio of each severity level. In total, 398,925 training 
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samples were used to train the network. A common practice to optimize the 

input image was normalizing the input pixel range of [0, 255] to [0, 1], but this 

pre-processing procedure was not applied directly to the input data. Instead, 

this procedure was included at the beginning of the network to avoid extra pre-

processing procedures outside the network. 

Table 3.2.1 CNN data structure 

 Positive Samples Negative Samples 

 Low Medium High Non-Crack 

Number of Samples 44,325 44,325 44,325 265,950 

 

Since this network’s prediction was multi-label and multi-class output, 

every output unit was not mutually exclusive, and multiple positive 

predictions were possible. Therefore, weighted binary cross-entropy was used 

as the loss function, which is defined in ( 3.2.1 ): 

 𝐿 = −∑𝑤 ∗ (𝑦𝑖 log 𝑦̂𝑖 + (1 − 𝑦𝑖) log(1 − 𝑦̂𝑖))

𝑠

𝑖=1

 ( 3.2.1 ) 

Where 𝑦𝑖 and 𝑦̂𝑖⁡is the label and prediction of the 𝑖th output unit, respectively; 

𝑤 indicates weight for each corresponding location of the pixels; 𝑠 represents 

the number of output units. On top of a regular binary cross-entropy loss 

function that Fan et al. employed, the weights w was added to focus on the 

center of the image patch. The nature of structured prediction had its basis on 
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the central pixels. For instance, if the pixel at the center of a window was a 

crack pixel, it was very likely for the pixels around it to be crack pixels. The 

pixels that were directly touching the pixel at the center of a window have a 

much higher correlation than the pixels that were not in direct contact with the 

pixel at the center of a window. The level of correlations with respect to the 

center pixel is shown in Figure 3.2.2.  

 

 

Figure 3.2.2 5x5 Output Window (outermost pixels have a smaller correlation 

than the inner pixels) 

 

By proposing weights based on the location of the pixels, the 

prediction accuracy was improved. During the initial experiments, the weights 

were assigned by the multivariate normal distribution. Specifically, bivariate 

normal distribution was employed instead of the univariate normal distribution, 

because the weights were given for both row and column-wise. By varying the 
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mean value and the standard deviation value, the overall shape of the 

distribution altered. However, the mean value was fixed to zero for this 

experiment, because the distribution had to be centered at zero for consistency. 

Thus, the change in standard deviation values was tested. Upon testing with a 

large standard deviation value, the resulting weights were more fairly 

distributed rather than having a high weight at the center pixel, but when a 

small standard deviation value was used, more weights were given towards the 

center pixel than the surrounding pixels. This experiment was held with a 

standard deviation value of 0.25, 0.5, and 0.75. As expected, assigning 

different weights on the loss function changed the resulting prediction 

accuracy. The effect of different weights on the loss function is further 

discussed in the “Discussion”.  

Since the network was designed to input a 27x27 image patch, the test 

images had to be subdivided into small image patches. Hence, the overlaps 

between image patches were tested, and the decision within the overlapping 

prediction pixels was ambiguous and did not improve the results either. 

Additionally, the prediction time of a test image was greatly affected by the 

overlaps between the image patches. Having a large overlap between the 

image patches resulted in more number of input image patches to cover the 

whole test image. Hence, the input patches were generated every 5 pixels. 
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Hence, there were overlaps between the input patches but not on the predicted 

output patches. The final prediction of 75 output units was reconstructed into a 

dimension of width, length, and depth. Depth was composed of three severity 

levels: low, medium, and high severity. Since the sigmoid activation function 

was used to compute the probability, each output unit ranged from 0 to 1. 

Then, the decision probability was set to 0.5 to disregard the pixels with low 

probability as crack pixels. Finally, the predicted segmentation map was color-

coded depending on the severity level: low severity was represented by cyan 

color; medium severity was represented by green color; high severity was 

represented by orange color. 

 

3.3  Implementation of FCN, U-Net & Attention U-Net in crack 

detection 

 

In this study, the following neural networks including FCN (Long et al., 

2015), U-Net (Ronneberger et al., 2015), and Attention U-Net (Oktay et al., 

2018) were re-designed to correctly segment the cracks from the pavement 

images and classify the segmented cracks into corresponding severity levels. 

Fundamentally, FCN, U-Net, and attention U-Net architectures utilized skip 

connections to combine spatial information from the down-sampling path and 



 

 

52 

 

the up-sampling path, but these skip connections were applied differently 

depending on the network. FCN utilized the addition operator to apply the skip 

connections to the corresponding layers in the up-sampling path, whereas U-

Net employed a concatenator operator. While FCN and U-Net were proven to 

work well in segmentation tasks, they accompanied many redundant low-level 

feature extractions, despite that the feature representation is poor in the initial 

layers. Hence, attention U-Net was introduced with Attention Gates (AGs).  

AGs were used to only highlight relevant activations during the training phase. 

The additive soft attention used in attention U-Net was implemented at the 

skip connections to suppress activations in irrelevant regions and reduce the 

number of redundant features. Detail of these network’s backgrounds was 

discussed in Chapter 2. 

Unlike the input from CNN with structured prediction, FCN and U-Net 

were capable of employing the whole image without subsampling small image 

patches. In total, ~65,000 images of size 160x578 pixels were used to train and 

validate the network. Prior to the training phase, the dataset was randomly 

split into 70% of training data and 30% of validation data. Furthermore, an 

overlap of 75% was allowed between the extracted images to increase the 

number of training images. While pre-processing the input pixel range of [0, 

255] to [0, 1] was a common practice to optimize the image in machine 
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learning, this normalization procedure was not applied directly to the input 

data. Instead, this normalization was included within the network to skip this 

procedure when testing on unseen data.  

The weights and model structure from VGG-16 was imported to 

construct FCN for pavement crack detection. Since the pre-existing model 

structure was used to construct FCN, there were not too many settings to be 

altered for experiments. Among different FCN architectures, FCN-8 was 

employed, because Long et al. (2015) verified that it produces the finest 

segmentation map. Considering that FCN-8 was designed to surpass FCN-16 

and FCN-32, only FCN-8 was exploited in this research. The overview of the 

FCN architecture was shown in Figure 3.3.1. Figure 3.3.1 described which 

layers were combined to construct FCN-32, FCN-16, and FCN-8. In this 

architecture, the number of outputs was set to 4 classes: no crack, crack with 

low severity, medium severity, and high severity.  
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Figure 3.3.1 VGG-16 based FCN Architecture 

 

Segmentation maps from FCN-32 were directly produced from the last 

convolution layer by using a transposed convolution layer with a stride of 32. 

However, the resulting segmentation map from FCN-32 was too coarse. Hence, 

the finer version of the segmentation maps was produced by FCN-16. The up-

sampled prediction from the last convolution layer was summed up with the 

prediction from pool4 shown in Figure 3.3.1, and by using a transposed 

convolution layer with a stride of 16, FCN-16 was constructed. Similarly, the 

result from the up-sampled version of the last convolution layer was summed 

up with pool4 shown in Figure 3.3.1, and this result was once again up-

sampled then summed up with pool3 to produce the FCN-8 by using a 

transposed convolution layer with stride 8.  

In order to properly adapt the U-Net for pavement crack application, 

U-Net architecture was re-designed in this study, and the architecture is shown 

in Figure 3.3.2. 
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Figure 3.3.2 U-Net Architecture 

 

The major change from the original U-Net (Ronneberger et al., 2015) was 

reducing the number of convolution filters by a factor of 4. Since the 

pavement cracks required mostly low-level features such as lines, edges, and 

curves, having too many convolution filters was unnecessary. Also, the model 

with a reduced number of convolution filters trained and predicted faster than 

the original U-Net architecture. The input and output of the image were 

identical to FCN. Unlike FCN, the skip connections were applied on to the 
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expansion path by concatenation operator, instead of the addition operator. 

The original U-Net used an SGD optimizer with a cross-entropy loss function, 

but in this study, ADAM optimizer and ADABOUND optimizer with cross-

entropy and focal Tversky loss function were investigated. The detailed 

analysis of these experiments was discussed in “Discussion”. 

Furthermore, attention U-Net was explored to reduce the effect of class 

imbalance. As shown in Figure 3.3.3, the attention U-Net was designed with 

the same number of neurons and layers as U-Net described in Figure 3.3.2.  

 

 

Figure 3.3.3 Attention U-Net Architecture 
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The major difference from U-Net architecture was the addition of attention 

gates before the concatenation operation. Similar to medical applications, the 

images from the pavement crack application consisted of a majority of 

negative pixels (non-crack pixels) and a small portion of positive pixels (crack 

pixels). Essentially, when the feature maps from the down-sampling path and 

up-sampling path were combined, the aligning weights were amplified while 

unaligned weights became relatively smaller. In the case of crack applications, 

the extracted features of the crack segments were highlighted with higher 

weights, and the surrounding non-crack regions were trained with lower 

weights. By prioritizing the salient features, attention U-Net was trained more 

efficiently than U-Net. The attention gate and the gating signal was 

implemented the same way as the original attention U-Net proposed by Oktay 

et al. (2019). In addition, focal Tversky loss was experimented on this 

attention U-Net to further filter out the unnecessary portion of the pavement 

image (Abraham et al., 2019). Moreover, the attention U-Net was explored 

with both ADAM and ADABOUND optimizer. 

FCN, U-Net, and attention U-Net were trained for 50 epochs with a 

batch size of 23 training images per batch. Due to the limitation of GPU 

memory, 23 training images were the maximum number of images per each 
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batch. Unlike the CNN with a structured prediction approach, FCN, U-Net, 

and attention U-Net did not require any image stitching or post-processing 

after the prediction. Once the input test images were predicted through these 

approaches, predicted images were evaluated in the same fashion as the CNN 

approach. Identical test images were used to be consistent with the evaluation 

results.  

 

3.4 Performance Evaluation 

 

The network was trained with Intel core i7-8700 3.20GHz CPU, 16GB 

RAM, and Nvidia GeForce RTX 2070 GPU. The code was written under 

python with Tensorflow and Keras. The performance of the network was 

determined by the test results. For evaluations, precision, recall, and F1-score 

were used for classification tasks, as shown in ( 3.4.1 ), ( 3.4.2 ), and ( 3.4.3 ):  

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 ( 3.4.1 ) 

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 ( 3.4.2 ) 

 𝐹1⁡𝑠𝑐𝑜𝑟𝑒 =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 ( 3.4.3 ) 

where 𝑇𝑃, 𝐹𝑃, 𝐹𝑁 are the number of true positive, false positive, and false 
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negative, respectively. Due to the representation of different severity levels, 

the ground truth was not generated manually. As mentioned earlier, the labels 

used in this research did not perfectly detect all the cracks or in worst cases, 

cracks were not detected at all. Most importantly, the detected cracks were not 

labeled with respect to the actual width of the cracks. Considering that the 

crack labels had an equal size of width regardless of the actual width of the 

cracks, this became a problem when evaluating the results on a pixel-level 

basis. Due to the nature of these labels, thin cracks ended up having labels that 

were larger than the actual width and thick cracks ended up having labels that 

were smaller than the actual width. Thus, when the prediction map was 

evaluated, numerous true positives were then considered as false positive. In 

order to minimize this effect, the 5-pixel distance between the predicted label 

and the true label was set as the threshold. Besides, the transitional areas 

between crack pixels and non-crack pixels were ambiguous in some cases. 

Hence, a minimum of 2 pixels or 5 pixels of the threshold in crack detection 

application was necessary (Amhaz et al., 2016; Fan et al., 2018). 
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Chapter Four: Results 
 

4.1 Results from different networks 

 

 A couple of predicted images from improved CNN with structured 

prediction, FCN, U-Net, and attention U-Net methods are shown in Figure 

4.1.1 as examples. 

 

a)   

b)   

c)   

d)   
 

e)   
 

f)   
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Figure 4.1.1(a) Pavement Image, (b) Given Ground Truth from MTO, (c) 

Prediction from CNN with ADABOUND optimizer and weight (5, 3, 1) (d) 

Prediction from FCN with ADAM optimizer (e) Prediction from U-Net with 

ADABOUND optimizer and Focal Tversky loss (f) Prediction from Attention 

U-Net with ADABOUND optimizer and Focal Tversky loss (Low: Cyan, 

Medium: Green, High: Orange) 

 

Amongst all the approaches attempted in this study, the improved CNN with a 

structured prediction resulted in the most number of false positive pixels. As 

shown in the left column of Figure 4.1.1, the crack segment located in the 

middle of the image was extremely thin, and the improved CNN with a 

structured prediction did not fully detect such a thin crack segment. Although 

it captured some portion of the crack segment, the detected crack segments 

had discontinuities in between, whereas other approaches successfully capture 

the entire crack segment properly. Additionally, the improved CNN with a 

structured prediction failed to detect the thin cracks on the left side of the 

image. Furthermore, the improved CNN with a structured prediction resulted 

in many false positive pixels around the alligator crack shown in the right 

column of Figure 4.1.1. However, it did capture the overall shape of the crack 

on the image.  

Generally, FCN performed better than the improved CNN with a 

structured prediction approach. FCN also resulted in some false positive pixels, 

but it detected low severity cracks much better than the improved CNN with a 
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structured prediction. Likewise, U-Net showed similar performance as FCN, 

but it detected the thin cracks slightly better than FCN. Ultimately, the 

attention U-Net produced the finest-grade prediction result with minimal 

misclassifications.  

Once the networks were trained, the prediction time also varied 

depending on the network architecture. On average, the improved CNN with a 

structured prediction took ~80 s, FCN took ~1 s, U-Net, and attention U-Net 

took ~0.1 s to predict a single image of size 160x576. Undoubtedly, the 

improved CNN with a structured prediction took the longest time to predict a 

single image, because it required pre-processing of sub-dividing the input 

image and post-processing of stitching the predicted patches. In contrast, FCN, 

U-Net, and attention U-Net did not require any pre-processing or post-

processing that slowed down the prediction time. Also, the whole image was 

directly inputted to these networks and the corresponding prediction map was 

acquired. 

The numerical evaluation results recorded for each network’s best 

setting was shown in Table 4.1.1. Conclusively, attention U-Net showed the 

highest precision among all the networks attempted. Attention U-Net achieved 

a higher precision of ~24% than the improved CNN with a structured 

prediction in low-level severity and ~18% higher precision in medium-level 
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severity. Not only the attention U-Net was superior on lower level severities, 

but it also performed better or at least equivalent to other networks on medium 

and high-level severities. Since attention U-Net was trained with a focal 

Tversky loss function, which filters out the easy background to focus on the 

region of interest, it was expected to perform better than other networks. 

Although these neural networks had an outstanding result, having some of the 

falsely labeled cracks from the ground truth resulted in lowering the numerical 

evaluation. Moreover, the falsely labeled cracks often existed in low-level 

severities because cracks with medium or high-level severities were generally 

easy to be distinguished. Consequently, cracks with low-level severity resulted 

in the lowest accuracy than any other severity levels. 

 

Table 4.1.1 Evaluation for CNN, FCN, U-Net and Attention U-Net 

 Precision (%) Recall (%) F1-Score (%) 

 Low Med High Low Med High Low Med High 

CNN 12.02 42.28 79.76 86.52 97.44 96.07 19.63 55.60 85.89 

FCN 27.50 59.59 84.23 49.08 89.53 98.63 32.08 68.82 89.89 

U-Net 34.12 61.31 82.60 61.42 87.62 98.70 40.06 69.97 89.07 

Att. U-Net 36.03 60.39 84.58 54.89 94.11 98.14 40.53 71.27 89.95 
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Chapter Five: Discussions 

 

For each network architecture, different settings of the networks were 

explored to find the optimal configuration that produced the best outcome. 

Even with the identical network structures, they converged at different stages 

depending on the optimizer and loss function used. The effects of the loss 

function and optimizers for each of the networks were investigated in this 

study.  

 

5.1 The effect of loss functions and optimizers on the improved CNN 

with a structured prediction  

 

Although CNN with a structured prediction produced a reasonable 

outcome with a typical cross-entropy loss function and ADAM optimizer 

(Jung et al., 2019), the strength of spatial correlation between the pixels can be 

boosted with the weighted cross-entropy loss function and ADABOUND 

optimizer. As expected, depending on the assigned weights on the loss 

function, the network resulted in different accuracies. Before assigning fixed 

values to the weights, bivariate normal distribution was used to set the weights 

on the loss function. The weights assigned by bivariate normal distribution 
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were shown in Figure 5.1.1, Figure 5.1.2, and Figure 5.1.3. In a bivariate 

normal distribution, smaller standard deviation values resulted in more weight 

towards the center pixel. However, when the standard deviation was too small, 

the outermost pixels ended up having extremely small weights. Consequently, 

the cells located away from the center pixel barely had any contribution to the 

loss function as their weights were too small. As shown in Figure 5.1.1, and 

Figure 5.1.2, having a standard deviation of 0.75 and 0.5 allocated the weights 

more evenly than the standard deviation of 0.25, which ignored the outermost 

cells.  

Along with these weights assigned by the bivariate normal distribution, 

the network was trained with ADAM and ADABOUND optimizer. Once the 

network had been trained, the trained network was tested on ~400 test images 

to evaluate precision, recall, and F1 score. 

 

 

Figure 5.1.1 Bivariate Normal Distribution with a standard deviation of 0.75 
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Figure 5.1.2 Bivariate Normal Distribution with a standard deviation of 0.5 

 

 

Figure 5.1.3 Bivariate Normal Distribution with a standard deviation of 0.25 

 

The evaluation results are described in Table 5.1.1 and Table 5.1.2 

when trained with ADAM optimizer and ADABOUND optimizer, 

respectively. When the evaluation results were analyzed, the results on 

medium and high severity was prioritized rather than low severity, because the 

crack segments with medium or high severity were the potential danger to the 
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public. The main purpose of crack detections was to prevent the cracks from 

developing into a bigger crack by repairing them beforehand. Therefore, it was 

more meaningful to have higher accuracy in medium and high severity levels 

than low severity level.  

 

Table 5.1.1 ADAM with bivariate normal distribution weights 

ADAM Precision (%) Recall (%) F1-Score (%) 

Weight Low Med High Low Med High Low Med High 

𝜎 = 0.25 8.73 30.92 77.03 94.66 94.83 98.26 15.16 43.48 84.97 

𝜎 = 0.5 10.58 31.34 74.96 96.91 96.05 99.00 18.04 44.13 83.92 

𝜎 = 0.75 11.28 33.25 75.45 95.19 97.40 98.31 19.13 46.64 84.09 

 

Table 5.1.2 ADABOUND with bivariate normal distribution weights 

ADABOUND Precision (%) Recall (%) F1-Score (%) 

Weight Low Med High Low Med High Low Med High 

𝜎 = 0.25 3.15 5.06 13.98 99.80 99.86 99.77 6.05 9.53 23.72 

𝜎 = 0.5 6.56 37.27 80.24 87.88 94.22 98.06 11.58 49.21 87.16 

𝜎 = 0.75 7.72 30.79 77.49 88.35 95.67 98.33 13.37 43.22 85.40 

 

 As shown in Table 5.1.1, when the network was trained with ADAM 

optimizer, the overall precision was highest when the weights were assigned 

by a bivariate normal distribution with a standard deviation of 0.75. 
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Consequently, the F1 score was also the highest in this case. As the standard 

deviation was increased for each experiment, both precision and recall 

improved. However, the highest precision in high severity was achieved when 

the standard deviation was 0.25, but the difference was only ~1.5% and the 

standard deviation of 0.75 achieved higher precision in other severity levels. 

Hence, it was more beneficial to choose the weights assigned by the standard 

deviation of 0.75, because there was more improvement in percentage-wise for 

both low and medium severity. Hence, the ~1.5% of deterioration at high 

severity precision was neglected. Along with the precision, the recall rate 

improved at a standard deviation of 0.75.  

 From Table 5.1.2, when the ADABOUND optimizer was used to train 

the network, precision at all severity levels were very poor when the standard 

deviation was set to 0.25. In this case, even the precision at high severity only 

achieved ~14%. When the standard deviation was increased to 0.5, the 

precision rate dramatically improved from ~5% to ~37% and ~14% to ~80% 

at medium and high severity, respectively. Unexpectedly, there were no 

improvements when the standard deviation was increased from 0.5 to 0.75. 

Unlike the ADAM optimizer, ADAMBOUND achieved the best evaluation 

results when weights were assigned by the standard deviation of 0.5. 

 Ultimately, the ADAM optimizer showed the best performance with 
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bivariate normal distribution when the standard deviation was 0.75 and the 

ADABOUND optimizer showed the best performance when the standard 

deviation was 0.5. When these results from both optimizers were compared, 

ADABOUND optimizer performed worse in low severity but showed better 

performance at medium and high severity. There was an improvement of 

approximately 5% of the precision rate for both medium and high severity 

level. Ideally, more weights were desired at the center than the outer cells. 

Therefore, assigning fixed weights, including equal weights throughout the 

cells were attempted to observe the difference from the bivariate normal 

distribution weights. The results when the network was trained with ADAM 

optimizer with fixed weights are shown in Table 5.1.3. 

 

Table 5.1.3 ADAM with fixed weights 

ADAM Precision (%) Recall (%) F1-Score (%) 

Weight Low Med High Low Med High Low Med High 

(1, 1, 1) 9.17 31.19 74.66 90.44 94.37 98.85 15.63 43.33 83.77 

(5, 3, 1) 5.84 30.64 76.90 93.50 93.36 97.80 10.55 43.09 84.80 

 

Unexpectedly, as shown from Table 5.1.3 and Table 5.1.4, the network 

trained with ADABOUND optimizer and fixed weights of (5,3,1) ended up 

having higher accuracy than the weights produced from the bivariate normal 
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distribution. The fixed weights were assigned as shown in Figure 5.1.4. Even 

without setting weights, having equal weights throughout every cell did 

perform well on the high severity, but not as well on low and medium severity. 

In terms of accuracy, it was harder to achieve high accuracy as it required both 

localization and correct severity classification to be considered as a “correctly 

classified pixel”. Thus, this type of application was more complicated than a 

simple binary localization of the cracks. Since the ground truth labels were 

“imperfect”, the transitional areas between different severity levels and the 

transition from non-crack pixels to crack pixels were very easy to be 

misclassified. Additionally, the difference in pixel intensity between the crack 

with low severity and no crack was barely distinguishable. Hence, cracks with 

low severity had the greatest number of false positives among the three 

severity levels. 
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Figure 5.1.4 (1,1,1) Weights (left) and (5,3,1) Weights (right) assigned to loss 

function 

 

Table 5.1.4 ADABOUND with fixed weights 

ADABOUND Precision (%) Recall (%) F1-Score (%) 

Weight Low Med High Low Med High Low Med High 

(1, 1, 1) 2.76 20.37 74.67 88.49 90.64 98.56 5.21 30.85 83.51 

(5, 3, 1) 12.02 42.28 79.76 86.52 97.44 96.07 19.63 55.60 85.89 

 

From Table 5.1.4 and Figure 5.1.5, the numerical evaluation and 

sample predictions of the improved CNN with a structured prediction model 

when it was trained with weights, and without weights were shown. Even 

when the network was trained without any additional weights, the results were 

reasonable. However, when the model was trained with weights, the 

performance in low and medium severity was improved and the prediction 

results had noticeably less number of misclassified pixels. This indicated that 
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the performance of the network was boosted by using a weighted loss function 

because the network not only showed a better prediction performance, it also 

showed better numerical evaluation results. 

The ground truth shown on the left column of Figure 5.1.5 had cracks 

labeled on the right end of the image but in fact, it was falsely labeled. By 

learning these wrong features, the network can be confused when predicting 

similar input pixels. Nonetheless, the network was trained with the majority of 

correct labels and the wrongly labeled cracks on the right end were not 

detected as crack pixels. Moreover, the image shown on the right column of 

Figure 5.1.5 had a dark line along the road lane and this was wrongly 

classified as a crack segment with high severity. As mentioned earlier, the 

ground truth used in this study was not manually inspected, and some of the 

labels were falsely labeled as cracks. Therefore, the network inevitably learned 

these features as a crack pixel, making the same mistake as the ground truth. 

This was unfortunately unavoidable when the network was trained with 

training data with outliers. 
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(a)   

(b)   

(c)   

(d)   

Figure 5.1.5 (a) Pavement Image, (b) Given Ground Truth from MTO, (c) 

Prediction from CNN with ADABOUND optimizer and weight (1, 1, 1), (d) 

Prediction from CNN with ADABOUND optimizer and weight (5, 3, 1)  (Low: 

Cyan, Medium: Green, High: Orange) 

 

5.2 The effect of optimizers on FCN 

 

In the re-designed FCN, both the SGD optimizer and the ADAM 

optimizer was tested with a cross-entropy loss function. Although Long et al. 

(2016) showed a reasonable result with SGD optimizer, the ADAM optimizer 

was explored in this study to observe the effect of optimizers. In terms of the 

training time, there wasn’t a remarkable difference between SGD optimizer 

and ADAM optimizer when the same number of epochs were used to train the 
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network. The sample prediction results from FCN with the SGD optimizer and 

ADAM optimizer is shown in Figure 5.2.1. As shown in Figure 5.2.1, FCN 

with either optimizer successfully captured all the crack segments that can be 

seen on the pavement image. Upon visually inspecting the predictions from 

these two optimizers, there wasn’t any noticeable difference. 

(a)   

(b)   

(c)   

(d)   

Figure 5.2.1 (a) Pavement Image, (b) Given Ground Truth from MTO, (c) 

Prediction from FCN with SGD optimizer (d) Prediction from FCN with 

ADAM optimizer (Low: Cyan, Medium: Green, High: Orange) 

 

The numerical results from FCN with SGD optimizer and ADAM 

optimizer is shown in Table 5.2.1. Although the use of the ADAM optimizer 

showed a slight deterioration of precision in medium and high-level severity 
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compared with the SGD optimizer, it showed much better precision in low-

level severity. ADAM optimizer achieved ~20% higher precision in low-level 

severity than the SGD optimizer. Additionally, recall in low-level severity 

improved by ~40%. Consequently, F1-score in low-level severity also 

improved by ~24%. However, there were no huge improvements observed in 

medium or high-level severity. Regardless of the different optimizers, the 

precision in medium-level severity remained around ~60%, and the precision 

in high-level severity remained around ~85%. This indicated that the effect of 

optimizers was minimal when the cracks were easily distinguished from the 

image. Conclusively, FCN performed better when it was trained with ADAM 

optimizer. 

 

Table 5.2.1 FCN with SGD optimizer and ADAM optimizer 

 Precision (%) Recall (%) F1-Score (%) 

 Low Med High Low Med High Low Med High 

𝑆𝐺𝐷 7.72 60.34 86.03 9.08 74.94 96.44 8.11 65.02 90.17 

𝐴𝐷𝐴𝑀 27.50 59.59 84.23 49.08 89.53 98.63 32.08 68.82 89.89 
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5.3 The effect of optimizers and loss functions on U-Net 

 

The U-Net was re-designed from scratch, and the selection of 

optimizers and loss functions were more flexible than FCN. Since the ADAM 

optimizer performed better than the SGD optimizer in FCN, the SGD 

optimizer was not tested with U-Net. Hence, U-Net was trained with the 

following combinations:  

 

1) ADAM optimizer and cross-entropy loss function  

2) ADAM optimizer and focal Tversky loss function 

3) ADABOUND optimizer and focal Tversky loss function.  

 

The numerical results of these U-Net configurations are shown in Table 5.3.1. 

As shown in Table 5.3.1, the biggest change in precision was shown from the 

cracks with low-level severities. There were minor changes in cracks with 

medium severity and cracks with high severity. Furthermore, the focal 

Tversky loss function performed better than the cross-entropy loss function 

when U-Net was trained with ADAM optimizer. Therefore, the focal Tversky 

loss function was selected to train U-Net with ADABOUND optimizer. 
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Changing the cross-entropy loss function to the focal Tversky loss function 

improved the precision of low-level severity by ~14%, but there wasn’t a 

remarkable change in medium and high-level severities. Furthermore, when 

U-Net was trained with ADABOUND optimizer and focal Tversky loss 

function, there were minor improvements on all levels of severities. 

Conclusively, altering the optimizer and loss function on U-Net did have an 

effect on the cracks with low and medium severity, but the cracks with high-

level severity stayed little above 80% in precision, regardless of different 

optimizers and loss functions. 

Table 5.3.1 U-Net trained with ADAM optimizer and cross-entropy loss 

function; ADAM optimizer and focal Tversky loss function; ADABOUND 

optimizer and focal Tversky loss function 

 

 

In Figure 5.3.1, a couple of examples were taken from the test images. 

As shown in the left column of Figure 5.3.1, there were few noise pixels found 

  Precision (%) Recall (%) F1-Score (%) 

Optimizer Loss Low Med High Low Med High Low Med High 

ADAM Cross-Entropy 18.76 54.70 84.53 29.28 79.27 98.40 20.76 61.61 90.08 

ADAM Focal-Tversky 32.61 57.68 82.04 52.46 83.95 98.48 37.21 65.65 88.45 

ADABOUND Focal-Tversky 34.12 61.31 82.60 61.42 87.62 98.70 40.06 69.97 89.07 
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when the U-Net was trained with ADAM optimizer, but there weren’t any 

noise pixels found when trained with ADABOUND optimizer. In general, U-

Net predictions had a smoother shape of the cracks than the ground truth itself. 

From the test image shown on the left column of Figure 5.3.1, there were 

some dark noisy pixels found on the left side of the image, but U-Net 

successfully neglected these noises. Similarly, the test image shown on the 

right column of Figure 5.3.1 had noises on the right side of the image and U-

Net did not classify any of these noises as crack pixels. Again, the localized 

shape of the crack segment was more naturally detected than the ground truth. 

Furthermore, the ground truth often had multiple alternating severity levels 

along the crack segment, especially when the crack had a curved shape. This 

behavior indicates that the ground truth was very sensitive to change in 

severity levels. Ultimately, U-Net prediction did classify the majority of the 

crack pixels into proper severity levels, but the sensitive ground truth 

restrained the precision to be higher. Conclusively, U-Net showed the best 

prediction results when it was trained with ADABOUND optimizer and focal 

Tversky loss function. 
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(a)   

(b)   

(c)   

(d)   
 

(e)   

Figure 5.3.1 (a) Pavement Image, (b) Given Ground Truth from MTO, (c) 

Prediction from U-Net with ADAM optimizer and Cross-Entropy loss, (d) 

Prediction from U-Net with ADAM optimizer and Focal-Tversky loss (e) 

Prediction from U-Net with ADABOUND optimizer and Focal-Tversky loss 

(Low: Cyan, Medium: Green, High: Orange) 

 

5.4 The effect of activation functions and optimizers on Attention U-

Net 

 

As proven from the experiments performed on U-Net, focal Tversky 

was proven to perform better than a typical cross-entropy loss function. Hence, 
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only the optimizers were changed in attention U-Net experiments to observe 

the effect of optimizers. Initially, the ADAM optimizer was used to train the 

attention U-Net and it produced a similar result as U-Net when it was trained 

with ADABOUND and focal Tversky loss function. When U-Net and 

attention U-Net was trained with identical optimizer and loss function, there 

was a slight improvement shown in attention U-Net, but the improvement was 

not as dramatic as expected. As observed in Table 5.4.1, different activation 

functions were attempted. Commonly, segmentation approaches including 

FCN and U-Net used softmax function because the last layer was a 

convolution layer with a 1x1 filter size, and each pixel in the image was 

convoluted once at a time. However, the use of the sigmoid function also 

served its purpose, but it did not show any noticeable changes from using a 

softmax function. Hence, for the sake of consistency with other segmentation 

approaches, softmax was preferred over the sigmoid activation function. 
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Table 5.4.1 Attention U-Net trained with ADAM optimizer and softmax 

function; ADABOUND optimizer and softmax function; ADABOUND 

optimizer and sigmoid function 

 

As mentioned earlier, the ground truth did not have precise labels for 

all the crack segments. As shown in Figure 5.4.1, there were discontinuous 

crack labels where it should have been continuous and vice versa. From the 

test image shown on the left column of Figure 5.4.1, the bottom left crack 

segment from the ground truth had labeled a part of it as high severity, but 

upon inspecting the test image, it looked more like a low or medium severity 

crack segment. Since the ground truth was generated using the raw data file 

that was collected based on multiple sensors including laser measurement, 

other aspects such as the depth of the cracks may have been deep enough to be 

classified as a high severity crack segment. However, the neural networks 

were only provided with a single channel camera simulated images, thus their 

resources were restricted to the pixel intensity. When the attention U-Net was 

  Precision (%) Recall (%) F1-Score (%) 

Activation Optimizer Low Med High Low Med High Low Med High 

Softmax ADAM 34.98 62.32 83.48 77.25 92.77 98.68 43.95 72.31 89.63 

Softmax ADABOUND 36.03 60.39 84.58 54.89 94.11 98.14 40.53 71.27 89.95 

Sigmoid ADABOUND 38.55 61.79 82.03 64.57 89.04 98.94 44.07 70.52 88.84 
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trained with ADAM optimizer and softmax function, the predictions were a 

little coarser than when the network was trained with ADABOUND optimizer. 

 

(a)   

(b)   

(c)   
 

(d)   
 

(e)   

Figure 5.4.1 (a) Pavement Image, (b) Given Ground Truth from MTO, (c) 

Prediction from Attention U-Net with ADAM optimizer and softmax function, 

(d) Prediction from Attention U-Net with ADABOUND optimizer and softmax 

function (e) Prediction from Attention U-Net with ADABOUND optimizer and 

sigmoid function (Low: Cyan, Medium: Green, High: Orange) 

 

The images shown in Figure 5.4.2 were extracted from Figure 5.4.1 to analyze 

the details of the prediction results. Although the precision itself did not have a 
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huge difference between different optimizers, some details differentiated 

between them. The prediction produced from the attention U-Net with ADAM 

optimizer had a spike outside the boundary of the crack segment, where the 

prediction produced from the attention U-Net with ADABOUND optimizer 

did not have such a spike. In general, the ADABOUND optimizer produced a 

more stable segmentation map than the ADAM optimizer, even though the 

numerical evaluation results were similar. 

(a)  (b)  (c)   

Figure 5.4.2 (a) Given Ground Truth from MTO, (b) Prediction from Attention 

U-Net with ADAM optimizer and softmax function, (c) Prediction from 

Attention U-Net with ADABOUND optimizer and softmax function (Low: 

Cyan, Medium: Green, High: Orange) 
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Chapter Six: Conclusion 
 

In this research, various convolution-based deep neural networks were 

improved and re-constructed with various loss functions and optimizers to 

serve the purpose of crack detection from pavement images. To localize the 

cracks and classify their severity levels, the CNN with a structured prediction 

was improved by replacing the loss function with a weighted loss function to 

assign more weight towards the center pixel of the image patch. Moreover, the 

improved CNN with structured prediction performed multi-class classification, 

where the original approach was limited to the binary classification. With the 

weighted loss function, the network can effectively employ the spatial 

correlation between the pixels. After multiple experiments, the fixed weights 

of 5, 3, 1 showed a higher precision than the weights assigned by a bivariate 

normal distribution. The improved CNN with structured prediction showed the 

best performance when it was trained with ADABOUND optimizer and 

weighted cross-entropy loss function. Hence, the improved CNN with a 

structured prediction achieved the final precision of 12.02%, 42.28%, and 

79.76% for cracks with the severity levels of the low, medium, and high, 

respectively. Consequently, it resulted in the F1 score of 19.63%, 55.60%, 

85.89% for cracks with the severity levels of the low, medium, and high, 

respectively. 
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Although the improved version of CNN with a structured prediction 

served its purpose to fulfill the goal of this research, it had limitations of 

having false positive pixels around the actual crack segments and the average 

prediction time was as long as ~80 s to predict a single image of size 160x576 

pixels because this approach required both pre-processing and post-processing. 

To resolve these issues, deep learning segmentation approaches including 

FCN, U-Net, and attention U-Net was re-designed and implemented for the 

first time in crack detection on paved roads. Since FCN, U-Net, and attention 

U-Net takes in the entire image and directly outputs a segmentation map of the 

same size as the inputted image, there wasn’t any pre-processing or post-

processing required for these approaches. Hence, on average, FCN took ~1 s, 

U-Net, and attention U-Net took ~0.1 s to predict an image of size 160x567 

pixels. Also, there were far a smaller number of noise pixels detected through 

these approaches compared with the improved CNN with a structured 

prediction.  

The FCN was implemented based on the pre-trained VGG-16, and as 

expected, FCN showed a smaller number of misclassifications and was free 

from noise pixels compared with the improved CNN with structured 

prediction. Upon analyzing the effect of optimizers on FCN, it showed better 

performance when it was trained with ADAM optimizer than the SGD 
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optimizer. Ultimately, FCN showed good precision of 27.50%, 59.59%, and 

84.23% for cracks with the severity levels of the low, medium, and high, 

respectively. Additionally, it resulted in the F1 score of 32.08%, 68.82%, 

89.89% for cracks with the severity levels of the low, medium, and high, 

respectively. 

Furthermore, U-Net was re-designed and trained with different 

optimizers and loss functions. U-Net was trained with the following 

combinations: ADAM optimizer and cross-entropy loss function; ADAM 

optimizer and focal Tversky loss function; ADABOUND optimizer and focal 

Tversky loss function. Due to the nature of paved roads, the actual crack 

pixels only consisted of a few percentages of the entire image. Therefore, the 

focal Tversky loss function remediated the severe class imbalance issue. 

Conclusively, U-Net showed the best performance when it was trained with 

ADABOUND optimizer and focal Tversky loss function. Not only U-Net 

achieved a high precision of 34.12%, 61.31%, and 82.60% for cracks with the 

severity levels of the low, medium, and high, respectively, it also predicted the 

given test image much faster. Moreover, it resulted in the F1 score of 40.06%, 

69.97%, 89.07% for cracks with the severity levels of the low, medium, and 

high, respectively. 
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Despite the good representational power from these networks, these 

architectures relied on multi-stage cascaded CNNs when the target varied in 

shape and size. These cascaded frameworks were used to extract a specific 

region of interest and make corresponding dense predictions on that particular 

region of interest. However, this cascaded process led to excessive and 

redundant use of computational resources and model parameters. For instance, 

multiple similar low-level features were repeatedly extracted by all models 

within the cascade. Thus, attention gates were introduced to the U-Net and this 

network was known as the attention U-Net. From the attention gates, the 

network can filter out the unnecessary region of the image and focus on the 

region of interest more efficiently. Along with the attention gates, the focal 

Tversky loss function was used to support solving the class imbalance issue. 

Hence, attention U-Net was tested with the following configurations: softmax 

function and ADAM optimizer; softmax function and ADABOUND optimizer; 

sigmoid function and ADABOUND optimizer. Among these configurations, 

attention U-Net showed the best performance when it was trained with 

softmax function and ADABOUND optimizer.  

Although the attention U-Net achieved the highest precision amongst 

all the approaches attempted in this study, it did not show dramatic 

improvement from the U-Net results. The purpose of attention gates was to 
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filter out the unnecessary background and only focus on the region of interest, 

but unlike the original medical segmentation application of attention U-Net, 

the cracks are usually spread out through the entire pavement and the width of 

these cracks are usually very thin. Thus, these properties of cracks may have 

challenged the network to properly select the region of interest. Conclusively, 

attention U-Net achieved the highest precision of 36.03%, 60.39%, and 84.58% 

for cracks with the severity levels of the low, medium, and high, respectively. 

Also, it resulted in the F1 score of 40.53%, 71.27%, 89.95% for cracks with 

the severity levels of the low, medium, and high, respectively. 

Although the dataset provided for this research was limited to the 

range of laser data, the results from different neural networks showed an 

outstanding performance. Therefore, the performance of the networks would 

potentially improve if they had RGB channel camera-based images to extract 

more valuable and realistic features. As previously mentioned, there were 

some uncertainties on the ground truth labels because they were generated 

based on the traditional machine learning algorithms. These uncertainties can 

be dealt with by manually inspecting each image and minimize the 

misclassifications. Alternatively, one can use the active learning algorithm 

(Settles, 2009) to improve the quality of the labels more efficiently. 

Essentially, the active learning algorithm excludes the uncertain labels and the 



 

 

89 

 

model is trained with the labels with high confidence. Hence, the labels with 

low confidence are set aside for human annotators to manually inspect them. 

Then, these inspected ground truth data is fed back to the model to improve 

the quality of the labels. 

Furthermore, the potential for deep learning techniques in pavement 

application has been proven from this research. Hence, alternative neural 

networks can be applied for better performance. For instance, using multiple 

CNN models could potentially work better than a single CNN model. As an 

example, the concatenated multi-model CNN approaches such as 2D FCN 

(Cai et al., 2017), Holistically Nested 2D FCN Stage (Roth et al., 2018), and 

multi-model 2D FCN (Zhou et al., 2017) showed a competitive outcome in CT 

pancreas segmentation application. Thus, there are various deep learning 

architectures with different configurations that can be applied and there is no 

right answer for which network would work best for any specific applications.   
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