
EXPLOITATION OF DEEP LEARNING IN THE AUTOMATIC DETECTION OF

CRACKS ON PAVED ROADS

WON MO JUNG

A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL

FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF

SCIENCE

GRADUATE PROGRAM IN EARTH AND SPACE SCIENCE

YORK UNIVERSITY

TORONTO, ONTARIO

JULY 2020

© WON MO JUNG, 2020

ii

Abstract

Information on the severity of pavement cracks is critical for pavement

repair services. This study aimed to exploit the applications of deep learning

networks to improve the detection and classification of pavement cracks. An

improved Convolution Neural Network (CNN) with structured prediction was

proposed. Also, Fully Convolutional Network (FCN), U-Net, and attention U-

Net were implemented and explored with different optimizers and loss

functions. The developed networks were tested on the data collected in

Ontario, Canada with the purpose of localizing the cracks and identifying their

severity levels based on three categories (low, medium, and high). The results

showed that the improved CNN approach performed better than its original

version with the F1-score increased from (5.21%, 30.85%, 83.51%) to

(19.63%, 55.60%, 85.89%) for the detection of the cracks with the three

severities. Furthermore, FCN, U-Net, and attention U-Net achieved slightly

better results than the improved CNN approach with the F1-scores of (32.08%,

68.82%, 89.89%), (40.06%, 69.97%, 89.07%), and (40.53%, 71.27%, 89.95%),

respectively.

iii

Acknowledgements

I would like to express my deep gratitude to my supervisor, Dr. Baoxin

Hu, for her patient guidance and meaningful critiques of this research. Without

her support and guidance, it would have been difficult for me to complete this

research in the field of deep learning.

I would like to express great appreciation to Dr. Jian-Guo Wang, Dr.

Gunho Sohn, and Dr. Ruth Urner for their valuable suggestions on this

research. Their expertise in Image Processing, Computer Vision and Machine

learning guided me with different perspectives.

Furthermore, I would like to thank Natural Sciences and Engineering

Research Council (NSERC) and Ministry of Transportation Ontario (MTO)

for their financial support. Special thanks to Gideon Gumisiriza at MTO for

providing the necessary data for training and testing purposes.

Finally, I would like to extend my gratitude to my friends and lab

colleagues for their enthusiastic encouragements and moral supports.

iv

Achievements

1. AOLS (Association of Ontario Land Sueyveyors) 2019 Graduate

Poster Competition Award. The poster titled “Automatic Road Crack

Detection and Localization with Identification of Pavement Distress

Levels using Laser Ranges“ by “Won Mo Jung and Faizaan

Naveed“ was selected as 4th best graduate student poster presentation.

2. 40th Canadian Symposium on Remote Sensing & Geomatics Atlantics

(CSRS) 2019. The presentation titled “Automatic Road Crack

Detection and Localization with Identification of Pavement Distress

Levels using Laser Ranges“ by “Won Mo Jung was selected as 2019

3rd place best oral presentation award.

3. A published work in the journal Geomatica: Jung, W., F. Naveed, B.

Hu, J. Wang, and N. Li, 2019, “Exploitation of deep learning in the

automatic detection of cracks on paved roads”, Geomatica,

dx.doi.org/10.1139/geomat-2019-0008.

v

Abbreviations

2-D: 2-Dimensions

ADABOUND: Adaptive Gradient Methods with Dynamic Bound

ADAM: Adaptive Moment Estimation

AG: Attention Gates

ARAN: Automatic Road Analyzer

CNN: Convolution Neural Network

DSC: Dice Coefficient

FCN: Fully Convolution Network

FN: False Negative

FP: False Positive

FTL: Focal-Tversky Loss

LCMS: Laser Crack Measurement System

MTO: Ministry of Transportation Ontario

ReLU: Rectified Linear Unit

SGD: Stochastic Gradient Descent

Tanh: Hyperbolic Tangent

TN: True Negative

TP: True Positive

VGG: Visual Geometry Group from Oxford

vi

Table of Contents

Abstract ... ii

Acknowledgements .. iii

Achievements .. iv

Abbreviations ... v

Table of Contents ... vi

List of Tables ... viii

List of Figures ... ix

Chapter One: Introduction ... 1

Chapter Two: Background.. 8

2.1 Fundamentals to deep learning networks ... 8

2.2 Convolutional Neural Network (CNN) .. 21

2.3 Fully Convolutional Network (FCN) .. 25

2.4 U-Net.. 30

2.5 Attention U-Net .. 34

Chapter Three: Methodology .. 39

3.1 Dataset .. 39

3.2 Improved CNN with A Structured Prediction .. 45

3.3 Implementation of FCN, U-Net & Attention U-Net in crack detection 51

3.4 Performance Evaluation ... 58

Chapter Four: Results ... 60

4.1 Results from different networks ... 60

vii

Chapter Five: Discussions ... 64

5.1 The effect of loss functions and optimizers on the improved CNN with a structured

prediction ... 64

5.2 The effect of optimizers on FCN .. 73

5.3 The effect of optimizers and loss functions on U-Net .. 76

5.4 The effect of activation functions and optimizers on Attention U-Net 79

Chapter Six: Conclusion ... 84

Bibliography .. 90

viii

List of Tables

Table 3.2.1 CNN data structure ... 48

Table 4.1.1 Evaluation for CNN, FCN, U-Net and Attention U-Net 63

Table 5.1.1 ADAM with bivariate normal distribution weights .. 67

Table 5.1.2 ADABOUND with bivariate normal distribution weights 67

Table 5.1.3 ADAM with fixed weights ... 69

Table 5.1.4 ADABOUND with fixed weights ... 71

Table 5.2.1 FCN with SGD optimizer and ADAM optimizer ... 75

Table 5.3.1 U-Net trained with ADAM optimizer and cross-entropy loss function; ADAM

optimizer and focal Tversky loss function; ADABOUND optimizer and focal Tversky loss

function .. 77

Table 5.4.1 Attention U-Net trained with ADAM optimizer and softmax function;

ADABOUND optimizer and softmax function; ADABOUND optimizer and sigmoid

function .. 81

ix

List of Figures

Figure 2.1.1 Sigmoid function and derivative of the sigmoid function 10

Figure 2.1.2 Hyperbolic Tangent function ... 12

Figure 2.1.3 Rectified Linear Unit (ReLU) ... 13

Figure 2.1.4 The focal Tversky loss non-linearly focuses training on hard examples (where

Tversky Index < 0.5) and suppresses easy examples from contributing to the loss function

(Image Credit: Abraham et al., 2019) .. 18

Figure 2.2.1 An illustration of the original CNN with a structured prediction (Image Credit:

Fan et al., 2018) ... 24

Figure 2.3.1 Transforming fully connected layers into convolution layers enabled a

classification net to output a heatmap. Adding layers and a spatial loss produced an efficient

machine for end-to-end dense learning (Image Credit: Long et al., 2015) 27

Figure 2.3.2 FCN combining coarse, high layer information with fine, low layer information.

Pooling and prediction layers are shown as grids that reveal relative spatial coarseness, while

intermediate layers are shown as vertical lines. First row (FCN-32s). Second row (FCN-16s):

Combining predictions from both the final layer and the pool4 layer, at stride 16, lets our net

predict finer details while retaining high-level semantic information. Third row (FCN-8s):

Additional predictions from pool3, at stride 8, provide further precision (Credit: Long et al.,

2015) .. 29

Figure 2.4.1 Original U-Net Architecture (Ronneberger et al., 2015) 31

Figure 2.4.2 (a) raw image. (b) overlay with ground truth segmentation. Different colors

indicate different instances of the HeLa cells. (c) generated segmentation mask (white:

foreground, black: background). (d) map with a pixel-wise loss weight to force the network

(Image Credit: Ronneberger et al., 2015) .. 34

Figure 2.5.1 A block diagram of the proposed Attention U-Net segmentation model. The

input image was progressively filtered and down-sampled by a factor of 2 at each scale in the

encoding part of the network. Nc represented the number of classes. Attention gates (AGs)

filter the features propagated through the skip connections. Feature selectivity in AGs was

x

achieved by the use of contextual information (gating) extracted in coarser scales. (Image

Credit: Oktay et al., 2018).. 36

Figure 2.5.2 Schematic of the proposed additive attention gate (AG). Input features (xl) were

scaled with attention coefficients (α) computed in AG. Spatial regions were selected by

analyzing both the activations and contextual information provided by the gating signal (g)

which was collected from a coarser scale. Grid resampling of attention coefficients was done

using trilinear interpolation. (Image Credit: Oktay et al., 2018) ... 38

Figure 3.1.1 Sample pavement image .. 41

Figure 3.1.2 Results obtained by LCMS and Vision: (a) Original pavement image, (b) cracks

detected by LCMS, and (c) cracks detected by Vision (Low: Cyan, Medium: Green, High:

Orange) .. 43

Figure 3.2.1 Modified CNN with Structured Prediction Architecture..................................... 47

Figure 3.2.2 5x5 Output Window (outermost pixels have a smaller correlation than the inner

pixels) ... 49

Figure 3.3.1 VGG-16 based FCN Architecture ... 54

Figure 3.3.2 U-Net Architecture .. 55

Figure 3.3.3 Attention U-Net Architecture .. 56

Figure 4.1.1(a) Pavement Image, (b) Given Ground Truth from MTO, (c) Prediction from

CNN with ADABOUND optimizer and weight (5, 3, 1) (d) Prediction from FCN with

ADAM optimizer (e) Prediction from U-Net with ADABOUND optimizer and Focal Tversky

loss (f) Prediction from Attention U-Net with ADABOUND optimizer and Focal Tversky

loss (Low: Cyan, Medium: Green, High: Orange) .. 61

Figure 5.1.1 Bivariate Normal Distribution with a standard deviation of 0.75 65

Figure 5.1.2 Bivariate Normal Distribution with a standard deviation of 0.5 66

Figure 5.1.3 Bivariate Normal Distribution with a standard deviation of 0.25 66

xi

Figure 5.1.4 (1,1,1) Weights (left) and (5,3,1) Weights (right) assigned to loss function 71

Figure 5.1.5 (a) Pavement Image, (b) Given Ground Truth from MTO, (c) Prediction from

CNN with ADABOUND optimizer and weight (1, 1, 1), (d) Prediction from CNN with

ADABOUND optimizer and weight (5, 3, 1) (Low: Cyan, Medium: Green, High: Orange) 73

Figure 5.2.1 (a) Pavement Image, (b) Given Ground Truth from MTO, (c) Prediction from

FCN with SGD optimizer (d) Prediction from FCN with ADAM optimizer (Low: Cyan,

Medium: Green, High: Orange) ... 74

Figure 5.3.1 (a) Pavement Image, (b) Given Ground Truth from MTO, (c) Prediction from U-

Net with ADAM optimizer and Cross-Entropy loss, (d) Prediction from U-Net with ADAM

optimizer and Focal-Tversky loss (e) Prediction from U-Net with ADABOUND optimizer

and Focal-Tversky loss (Low: Cyan, Medium: Green, High: Orange) 79

Figure 5.4.1 (a) Pavement Image, (b) Given Ground Truth from MTO, (c) Prediction from

Attention U-Net with ADAM optimizer and softmax function, (d) Prediction from Attention

U-Net with ADABOUND optimizer and softmax function (e) Prediction from Attention U-

Net with ADABOUND optimizer and sigmoid function (Low: Cyan, Medium: Green, High:

Orange) .. 82

Figure 5.4.2 (a) Given Ground Truth from MTO, (b) Prediction from Attention U-Net with

ADAM optimizer and softmax function, (c) Prediction from Attention U-Net with

ADABOUND optimizer and softmax function (Low: Cyan, Medium: Green, High: Orange)

.. 83

1

Chapter One: Introduction

Due to traffic, environmental factors, and aging, road pavements

usually experience different types of distress and deterioration that include

cracks, surface defects, and profile deformation (McGhee, 2004; Miller et al.,

2003; Bennett et al., 2007). The qualities of pavements are usually

characterized by distress type, severity, and extent. Effective and accurate

monitoring of the pavement condition is paramount to determine if it provides

a comfortable, safe, and efficient service to the public. It also assists the road

management authority to make decisions on appropriate maintenance and

rehabilitation. Traditionally, pavement surveys involve observing and

recording surface defects and degradation through walking or slowly driving

over pavements (asphalt or concrete) by certified professionals. The manual

inspection is usually time-consuming, and the collected pavement information

is subject to the individual surveyor’s level of experience and knowledge (Jing

et al., 2010). Manual techniques are generally considered labor-intensive, slow,

expensive, and sometimes unsafe due to the traffic. The early efforts to

develop automatic or semi-automatic systems for pavement assessment are

mainly image-based. The qualities of the images and software for data

processing and analysis limit their operational employment (Cafiso et al., 2006;

2

Teomete et al., 2005; Yu et al., 2007; Jing et al., 2010).

With the development of laser line projectors and custom optics

(Cafiso et al., 2017), the quality of collected data has been improved, but the

costs of the systems and their operations limit their usage. As an example, the

Ministry of Transportation of Ontario (MTO) currently owns such systems to

inspect the pavement conditions, but due to their high cost, these systems are

mainly operated on major highways and roads with lots of traffic. Hence, the

recent advance in imaging technologies and artificial intelligence provides a

good opportunity to improve the performance of the image-based system for

the assessment of pavement conditions.

Several attempts have been made in the past decade for automatic

crack detection based on machine learning techniques (Ouyang et al., 2010;

Davis, 2011; Oliveira et al., 2013; Kapela et al., 2015; Shi et al., 2016). In

general, these existing techniques require extensive pre-processing due to

irregularities on the crack surface, variations in crack texture, and non-uniform

illuminations. Although reasonable results are obtained through machine

learning techniques (Kapela et al., 2015), they are very dependent on the

radiometric and geometric qualities of the original images and the

corresponding pre-processing techniques. Moreover, traditional machine

learning techniques do not always achieve high accuracies in the localization

3

of cracks (approximately 60% accuracy) and tend to over-estimate the widths

of cracks (Oliveira et al., 2013). In addition, many methods are not able to

distinguish cracks with different levels of severity, which prevent the detection

results from being used in an automated system for road repair services (Davis,

2011).

Recent advance in deep learning provides a good opportunity to

improve the detection of pavement cracks. Fundamentally, deep learning is a

subset of machine learning that functions similarly but has different

capabilities. In general, traditional machine learning models require some

human interactions to return an accurate prediction, whereas deep learning

models are designed to logically comprehend the data on its own as to how a

human would understand the data. There are various types of deep learning

models that are designed for specific tasks. Hence, designing a new deep

learning architecture requires an exetensive knowledge about both deep

learning and traditional machine learning to fully construct an appropriate

network. Similarly, even the users need prior knowledge to choose the

appropriate deep learning models to properly accomplish the desired tasks.

The most trending type of neural network in image recognition tasks is the

convolution-based neural networks. Convolution-based neural networks take

advantage of local spatial coherence of images to reduce the number of

4

operations needed to process an image by using convolution operation on

patches of adjacent pixels. Based on the aspect of convolution operations,

different types of convolution-based networks such as Convolution Neural

Network (CNN), Fully Convolution Network (FCN) (Long et al., 2015), U-

Net (Ronneberger et al., 2015), and Attention U-Net (Oktay et al., 2018) are

introduced in recent years. Although all these networks use convolution layers

to extract features, their capabilities vary depending on the structure of the

network. For instance, a basic CNN is designed to simply classify an image

into different categories, but other networks, such as FCN and U-Net can not

only classify, but also localize the objects within the image. Therefore, FCN

and U-Net are often referred to as segmentation neural networks. However,

these networks that can perform segmentation of an image are often

computationally intensive to be trained.

In recent years, more and more open-source packages are becoming

available for designing and building a deep neural network for various

classification tasks. Nowadays, graphic cards that are currently available to the

public have enough computing power to construct and train a neural network.

In the context of the detection of pavement cracks, Yusof et al. (2018) applied

a CNN to detect cracks; the whole image was divided into a series of grids

and the detection was done on individual grids. However, the resulting binary

5

image was very coarse and inadequate for pixel-level evaluation. Likewise,

Fan et al. (2018) developed CNN with a structured prediction for crack

detection. To my best knowledge, this network is the state-of-art of deep

learning networks in pavement crack localization. Instead of using the whole

image as the input, Fan et al. (2018) employed a small image patch of size

27x27 as the input to predict a 5x5 binary map of the corresponding center of

the input image patch. By repeating this procedure with a sliding window, a

binary map of the whole pavement image was acquired. Even though CNN

with a structured prediction proposed by Fan et al. (2018) performed

extremely well on localizing the cracks on pavement images, it did not

distinguish cracks with different severities.

The goal of this research was to fully exploit various convolution-

based deep learning networks to improve the detection of cracks on paved

roads and classify different levels of severity on the localized cracks. To

achieve this goal, the following two objectives were fulfilled in this thesis

research:

(1) Improve the CNN with a structured prediction

CNN with a structured prediction proposed by Fan et al (2018) was improved

6

in this study in the following two aspects. As mentioned earlier, the network

by Fan et al. (2018) was only able to distinguish crack and non-crack pixels,

hence it was improved in this study to classify cracks with three levels of

severities. In addition, even though the structured prediction proposed by Fan

et al. (2018) accounted for the spatial correlation between the center pixel and

its surrounding pixels in an image patch, these pixels were treated with equal

weights in the loss function. In this study, a weighted loss function was

proposed to effectively distribute the weights with respect to the spatial

location of the pixels.

(2) Exploit FCN, U-Net, and attention U-Net in crack detection

Although the improved CNN with a structured prediction can produce a

segmentation map of a pavement image, there were few limitations. Since the

output from this network was a small image patch, these patches had to be

stitched together to form a whole pavement image, which slowed down the

prediction process by a huge factor. To overcome this, convolution-based

segmentation approaches such as FCN (Long et al., 2015), U-Net

(Ronneberger et al., 2015), and Attention U-Net (Oktay et al., 2018) were

implemented in this study to detect pavement cracks for the first time.

7

This thesis consists of six chapters. After the current introduction, the

second chapter describes the background of deep learning approaches

including the fundamentals of deep learning networks, such as optimizers, loss

functions, and the commonly used networks, such as CNN, FCN, U-Net, and

attention U-Net. Methodologies developed in this research and the results

obtained are provided in Chapters three and four, respectively. Chapter five

discusses the developed methods in detail. Conclusion and future work are

summarized in Chapter six.

8

Chapter Two: Background

2.1 Fundamentals to deep learning networks

Within the past decade, deep learning techniques have become one of

the most trending methods in classification tasks, due to a large amount of data

and publicly available open-source code packages. Unlike traditional machine

learning approaches, deep learning techniques are data-driven. In a typical

machine learning algorithm, the explicit extraction and selection of features

are needed for a given task. However, in the deep learning algorithms, features

are automatically extracted and selected based on the provided data and the

corresponding labels during the training stage. In addition, one of the biggest

reasons that deep networks have recently become so popular is that the current

GPUs now have enough computational capability to implement effective

feature extraction such as 2-dimension (2D) convolutions within the neural

network. Consequently, large datasets can be handled, which directly leads to

better-trained networks.

Most of the networks including the commonly used convolution-based

networks are known as the feed-forward neural network, because the output of

a layer becomes the input of the following layer, and the output from a layer is

never fed back into the previous layer. The feed-forward neural networks are

9

generally composed of an input layer, hidden layers, and an output layer. The

input layer and output layer are where the data is input to the network, and the

result is output from the network. The hidden layer is a new concept

introduced in neural networks. In neural networks, the layers between the

input layer and the output layer are referred to as hidden layers. These hidden

layers are responsible for manipulating the data to get the desired output.

These layers are called hidden layers because they are implicitly available and

are private to the network. Likewise, CNN is also composed of the input layer,

hidden layers, and the output layer. In CNN, the convolution layers are

considered as the hidden layers between the input layer and the output layer.

Furthermore, the neural networks are generally trained through a

process called backpropagation. Backpropagation is an algorithm that traces

back from the output of the model, through the different neurons which were

involved in generating that output, back to the original weight applied to each

neuron. Backpropagation adjusts the weight for each neuron to minimize the

difference between the true label and the predicted label.

Each hidden layer is equipped with an activation function. Activation

functions are mathematical equations that determine the output of the layer. It

determines whether the corresponding input should be activated or not. In

deep learning networks, sigmoid, hyperbolic tangent, Rectified Linear Unit

10

(ReLU), and softmax functions are commonly used as an activation function.

One of the most popular ways to model a neuron’s output as a function of its

input 𝑥 is with the sigmoid function defined in (2.1.1).

𝑓(𝑥) = (1 + 𝑒−𝑥)−1

(2.1.1)

The output of the sigmoid function ranges from 0 to 1, which is shown in

Figure 2.1.1.

Figure 2.1.1 Sigmoid function and derivative of the sigmoid function

Due to its simplicity, this function has become one of the widely used

11

activation functions. However, the sigmoid function has a disadvantage of

having a vanishing gradient problem. A gradient is produced during the

backpropagation phase of the network and it accumulates throughout the

network by multiplying the derivatives of each layer. Therefore, the vanishing

gradient problem occurs when the derivative of the layer’s output with respect

to its input is too small. As shown in Figure 2.1.1, the derivative of the

sigmoid function with respect to its input results in a small output value when

the input value is big. Thus, the gradient ends up being a small value and when

these small gradients are stacked, the resulting gradient gets exponentially

smaller. Therefore, the network does not update its weights properly and leads

to a non-convergence. Since the sigmoid function has an output value ranging

within [0,1], it can potentially lead the gradient updates to vary in different

directions. Thus, this range of output makes the optimization harder as it does

not compensate for the other directions. Additionally, the sigmoid function has

a slower convergence than other activation functions.

To accommodate the optimization issue on sigmoid, the hyperbolic

tangent function shown in (2.1.2) is often used as a replacement.

𝑓(𝑥) = tanh⁡(𝑥)

(2.1.2)

Unlike the sigmoid function, the hyperbolic tangent function’s output is

centered at zero and its value ranges from -1 to 1. The hyperbolic function is

12

shown in Figure 2.1.2. Since the output ranges from -1 to 1, the optimization is

more stable and much easier than a sigmoid function. However, the hyperbolic

tangent function also suffers from the vanishing gradient problem.

Figure 2.1.2 Hyperbolic Tangent function

Therefore, many researchers use ReLU (Nair et al., 2010) to avoid the

vanishing gradient problem. Just like any other activation functions, ReLU is

also differentiable and introduces non-linearity to the feature maps. ReLU is

defined in (2.1.3).

𝑓(𝑥) = max⁡(0, 𝑥)

(2.1.3)

ReLU simply defines if input 𝑥 < 0, then 𝑓(𝑥) = 0 and if 𝑥 ≥ 0, then 𝑓(𝑥) =

𝑥 . The ReLU function is shown in Figure 2.1.3. Aside from solving the

vanishing gradient problem, ReLU trains the network several times faster than

13

the hyperbolic tangent function (Krizhevsky et al., 2012). Consequently,

researchers generally use ReLU as an activation function after each set of

convolution layers. Since the output from ReLU is not scaled, ReLU can only

be used within hidden layers.

Figure 2.1.3 Rectified Linear Unit (ReLU)

Unlike the other activation functions, softmax function is applied at the

last hidden layer for classification tasks. In multi-class classification tasks, the

softmax function defined in (2.1.4) is used.

 𝜎(𝑥)𝑖 =
𝑒𝑥𝑝(𝑥𝑖)

∑ 𝑒𝑥𝑝(𝑥𝑗)
𝐾
𝑗=1

 (2.1.4)

14

A softmax function is a form of logistic function that normalizes an input

value into a vector of values that follows a probability distribution that sums

up to 1. Similar to the sigmoid function, the output values are between the

range of 0 and 1. Therefore, the softmax function is suitable for multi-class

classification tasks. However, the sigmoid function is rather preferred in multi-

label classification tasks, because the softmax function is not designed to

output multiple positive predictions.

During the training phase, neural networks are trained to find an

appropriate weight for each activated neuron through weight updates. The

neural network uses a loss function to measure the discrepancy between the

model’s prediction and the ground truth. Then, the network adjusts the weight

for each neuron to predict the correct label. The network urges to minimize the

loss function and through backpropagation, the network adjusts the weight

assigned to each neuron to generate a prediction that is close to the ground

truth. Depending on the dataset and the application, the choice of loss function

varies. In this study, cross-entropy, dice, and Tversky loss function is

exploited.

In a multi-class classification problem, a cross-entropy loss function is

generally used to penalize the deviation of predicted probability 𝑝𝑐 of class c

15

from the ground truth y of class c. The cross-entropy loss function is defined

by (2.1.5):

𝐿 = −∑𝑦𝑐 log(𝑝𝑐)

𝑀

𝑐=1

(2.1.5)

Cross-entropy loss function performs well on most of the classification tasks,

but it does not have any variables to control the class imbalance dataset.

If the dataset suffers from a class imbalance problem like in medical

image analysis, where the region of interest is usually found in a very small

fraction of the full image, the network often has trouble generalizing the data.

A common method to reduce the effects of class imbalance is to use the dice

coefficient (DSC) defined in (2.1.6). The DSC is a measure of overlap that is

widely used to evaluate segmentation performance (Sudre et al., 2017).

𝐷𝑆𝐶𝑐 =

∑ 𝑝𝑖𝑐𝑔𝑖𝑐 + 𝜖𝑁
𝑖=1

∑ 𝑝𝑖𝑐 + 𝑔𝑖𝑐 + 𝜖𝑁
𝑖=1

(2.1.6)

 𝐷𝐿𝑐 =∑1− 𝐷𝑆𝐶𝑐
𝑐

 (2.1.7)

(2.1.6) indicates the dice score coefficient where 𝑝𝑖𝑐 and 𝑔𝑖𝑐 represents

predicted label and ground truth label for each class 𝑐. The 𝜖 simply provides

numerical stability to prevent division by zero. By subtracting the dice score

16

coefficient from 1 for each class, dice loss is acquired as shown in (2.1.7).

Although the dice loss function is commonly used for an imbalanced

dataset, it still does not differentiate the weights given between false positive

and false negative detections. Consequently, the segmentation maps result in

high precision with low recall. When the region of interest is extremely small

with highly imbalanced data, assigning more weights on the false negative

detections than false positive detections improve the recall rate. Therefore, the

Tversky similarity index (Abraham et al., 2019) is introduced to generalize the

dice score, which allows flexibility between false positive and false negative,

as shown in (2.1.8).

𝑇𝐼𝑐 =

∑ 𝑝𝑖𝑐𝑔𝑖𝑐 + 𝜖𝑁
𝑖=1

∑ 𝑝𝑖𝑐𝑔𝑖𝑐 + 𝛼∑ 𝑝𝑖𝑐̅𝑔𝑖𝑐
𝑁
𝑖=1 + 𝛽∑ 𝑝𝑖𝑐𝑔𝑖𝑐̅

𝑁
𝑖=1 + 𝜖𝑁

𝑖=1

(2.1.8)

From (2.1.8), 𝑝𝑖𝑐 indicates the probability that pixel 𝑖 being true positive and

𝑝𝑖𝑐̅ is the probability pixel 𝑖 being the false positive. The same is true for 𝑔𝑖𝑐

and 𝑔𝑖𝑐̅, respectively. Hyperparameters 𝛼 and 𝛽 are used to shift the emphasis

to improve recall in the case of large class imbalance. Similar to dice loss, the

Tversky loss function is used by minimizing (2.1.9).

 𝑇𝐿𝑐 =∑1− 𝑇𝐼𝑐
𝑐

 (2.1.9)

As the small region of interest does not contribute to the loss function

17

significantly, the dice loss function is not always suitable for segmentation

tasks. To avoid this issue, researchers use a focal loss function (Lin et al.,

2017), which reshapes the cross-entropy loss function with a modulating

exponent to down-weight errors assigned to well-classified examples. The

main advantage of using focal loss is to prevent the vast number of easily

defined negative examples from dominating the gradient to alleviate class

imbalance effect. Hence, the focal Tversky loss function (Abraham et al., 2019)

is used in segmentation tasks, where it is parameterized by 𝛾 to control

between easy background and hard region of interest from training examples.

The Focal Tversky Loss (FTL) is defined in (2.1.10).

 𝐹𝑇𝐿𝑐 =∑(1 − 𝑇𝐼𝑐)
1
𝛾

𝑐

 (2.1.10)

If a pixel is misclassified with a high Tversky index, the FTL is unaffected,

but if a pixel is misclassified with a small Tversky index, FTL is decreased

significantly. When 𝛾 > 1, the loss function concentrates more on the less

accurate prediction that has been misclassified. The increasing values of the

Tversky index are mapped to flatter regions of the FTL curve with increasing

values of 𝛾 and shown in Figure 2.1.4. As shown from Figure 2.1.4, the over-

suppression of the FTL is observed when the class accuracy is high and as the

model becomes close to convergence. Thus, Abraham et al. (2019) concludes

18

that the best performance is achieved when 𝛾 =
4

3
.

Figure 2.1.4 The focal Tversky loss non-linearly focuses training on hard

examples (where Tversky Index < 0.5) and suppresses easy examples from

contributing to the loss function (Image Credit: Abraham et al., 2019)

Aside from loss functions, there are different optimizers designed to

serve different purposes. In this study, some of the famous optimizers are

introduced: Stochastic Gradient Descent (SGD) (Robbins & Monro, 1951),

Adaptive Moment Estimation (ADAM) (Kingma & Ba, 2015), AMSGRAD

(Reddi et al., 2018), and Adaptive Gradient Methods with Dynamic Bound of

Learning Rate (ADABOUND) (Luo et al., 2019).

SGD (Robbins & Monro, 1951) is one of the most dominant

algorithms that perform well across many applications. Due to its rapid

19

training time and reasonable outcome, it is considered as the default optimizer

in many networks. However, its characteristic of scaling the gradients

uniformly in all directions potentially leads to poor performance. Also, the

training speed is limited when the training data points are scattered. To

address this issue, recent works have proposed a variety of adaptive methods

that scale the gradients by square roots and averaging the squared values of

past gradients. As a result, an adaptive optimization method called ADAM

(Kingma & Ba, 2015) is proposed to achieve a rapid training process with an

element-wise scaling term on learning rates.

Among the adaptive optimizers, ADAM has become one of the most

popular optimizers across many deep learning frameworks due to its rapid

training speed (Wilson et al., 2017). From (2.1.11), an exponentially

decaying average of past squared gradients 𝑚𝑡 is computed, and from

(2.1.12), an exponentially decaying average of past squared gradients 𝑣𝑡 is

computed. Then, the average of the gradients is multiplied by the initial

learning rate 𝜂 , and divided by square root of the exponential average of

squared gradients in (2.1.13). Finally, in (2.1.14), the weight change ∆𝜔𝑡, is

added to update the weight 𝜔𝑡. Moreover, the authors of ADAM (Kingma &

Ba, 2015) proposes the hyperparameters 𝛽1, 𝛽2 , and 𝜖 to be 0.9, 0.999 and

10−8, respectively.

20

 𝑚𝑡 = 𝛽1 ∗ 𝑣𝑡−1 − (1 − 𝛽1) ∗ 𝑔𝑡 (2.1.11)

 𝑣𝑡 = 𝛽2 ∗ 𝑠𝑡−1 − (1 − 𝛽2) ∗ 𝑔𝑡
2 (2.1.12)

 ∆𝜔𝑡 = −𝜂 (
𝑚𝑡

√𝑣𝑡 + 𝜖
) ∗ 𝑔𝑡 (2.1.13)

 𝜔𝑡+1 = 𝜔𝑡 + ∆𝜔𝑡 (2.1.14)

Adaptive methods often display faster progress in the initial portion of

the training, but their performance quickly plateau on unseen data such as test

dataset. Since the model performance heavily depends on the type of the

dataset, non-adaptive optimizers such as SGD performs better in some cases.

For instance, SGD performs better than adaptive methods in natural language

processing and certain computer vision applications (Luo et al., 2019; Wu &

He, 2018).

For further improvement, a variant of ADAM called AMSGRAD is

proposed by Reddi et al. (2018) to overcome the issue of the generalization

ability and out of sample behavior of these adaptive methods. However,

AMSGRAD shows better performance on training data, but the generalization

ability on test data is found to be similar to ADAM. Luo et al. (2019) report

that both extremely large and small learning rates exist by the end of training

on ADAM, which indicates that the lack of generalization performance of

adaptive methods stemmed from unstable and extreme learning rates. To

21

remediate this issue, AMSGRAD is introduced with non-increasing learning

rates, which helps to abate the impact of huge learning rates. Though,

neglecting the possible effects of small learning rates may lead to undesirable

non-convergence.

Moreover, another variant of ADAM, named ADABOUND (Luo et al.,

2019) is proposed. Unlike ADAM, ADABOUND does not suffer from the

negative impact of extreme learning rates. It employs dynamic bounds on

learning rates in ADAM, where the lower and upper bounds are initialized as

zero and infinity respectively, and eventually converges to constant final step

size. Furthermore, ADABOUND is regarded as an adaptive method at the

beginning of training and it gradually and smoothly transforms to SGD as the

time step increases. By having both aspects from SGD and an adaptive method,

the advantage of a rapid initial training process and good final generalization

ability is taken (Luo et al., 2019).

2.2 Convolutional Neural Network (CNN)

In the early 1960s, Hubel et al. (1963) discover the concept behind the

locally sensitive, and orientation-selective neurons in the cat’s visual system

and realize that small regions of cells from the visual cortex are sensitive to

22

specific regions of the visual field. Furthermore, certain individual neuronal

cells in the brain respond only in the presence of edges of a certain orientation.

For instance, certain neurons respond when exposed to edges with particular

orientations. Hubel et al. (1963) notice that these neurons are organized to

produce visual perception. The fact that neuronal cells in the visual cortex

look for specific characteristics, the fundamental basis behind the neural

network are formed from this concept. Thus, local connections have been

reused many times in neural models of visual learning (LeCun et al., 1995).

With the support of local receptive fields, neurons can extract elementary

visual features such as oriented edges, endpoints, corners, etc. Additionally,

these receptive fields are applied by forcing a set of units at different places on

the image to have identical weight vectors (Rumelhart et al., 1986). Thence,

these outputs of such a set of neurons are known as a “feature map”.

Depending on the corresponding receptive fields, different types of feature

maps are collected. This operation is well known as “convolution” and the

receptive field is referred to as the “kernel” (LeCun et al., 1995). A

convolution layer produces multiple feature maps at each location with

different weight vectors. These extracted features prioritize their approximate

position relative to other features than their original location. Additionally,

pooling layers can be applied after a convolutional layer to reduce the

23

resolution of the feature map and reduce the sensitivity of the output to shifts

and distortions (LeCun et al., 1995).

In the field of machine learning, CNN is the most trending image

classification technique to classify objects in an image. CNN is mainly

composed of the input layer, hidden layers, and output layer, where the hidden

layers are usually composed of convolution layers and pooling layers. In the

past few years, the capabilities of CNN have proved its ability to work with all

kinds of different image classification tasks. Ever since CNN became so

popular, various versions of CNN are developed to handle more complicated

tasks than a simple classification. For instance, Fan et al. (2018) designed a

CNN based architecture that successfully segments cracks from a pavement

image. This network is called the CNN with structured prediction. Unlike a

typical CNN, the CNN with structured prediction performs pixel-level

classification, which results in a binary segmentation map of the pavement

image. This network consists of 4 convolution layers with 2 max-pooling

layers, followed by 3 fully connected layers (Fan et al., 2018). Every

convolutional layer is applied with a 3x3 kernel and a stride of 1 pixel.

Additionally, zero paddings are applied to the boundary of each input image

before the convolution filters are applied to preserve the spatial resolution of

the feature map. After each pair of convolutional layers, max-pooling is

24

applied with a stride of 2 over 2x2 kernel. Towards the end of the network,

two consecutive fully connected layers with 64 neurons are used, followed by

another fully connected layer with 25 neurons. The final outputs of 25 neurons

are then reshaped into a 5x5 binary prediction, 1 being a crack pixel, and 0

being a non-crack pixel (Fan et al., 2018). An overview of the network is

described in Figure 2.2.1.

Figure 2.2.1 An illustration of the original CNN with a structured prediction

(Image Credit: Fan et al., 2018)

Alternatively, Fan et al. explore different output sizes, ranging from one single

pixel, which is essentially identical to the traditional CNN output, and a 7x7

output patch. Using a single pixel results extensive prediction time and a 7x7

pixels results in coarse output. Upon experimenting with different output sizes,

Fan et al. report that the output with a 5x5 image patch achieves the best result.

Additionally, in a natural pavement image, there are far more non-crack pixels

25

than crack pixels in a pavement image. Therefore, balancing the data size

between these two classes is fundamentally correlated to the final accuracy.

Hence, the effect of ratio between the numbers of crack and non-crack image

patches is an important factor. Consequently, Fan et al. conclude that a 1:3

ratio of crack to non-crack patches results in the best outcome.

Even though Fan et al.’s work achieves a good precision of ~91%, this

network is not able to either determine the severity of cracks or identify the

type of cracks. In practice, this additional information is known to be essential

in prioritizing repair schedules. Additionally, the output from this network is

restricted to tiny image patches that require post-processing of stitching these

predicted patches to reconstruct an image. Thus, in this research, a variant of

CNN with a structured prediction network was implemented to add a crack

severity classification.

2.3 Fully Convolutional Network (FCN)

In general, a typical CNN ends with a fully connected layer to employ

the extracted features from the convolution layers and classify the input image

into different classes. The biggest advantage of having fully connected layers

is that these layers learn features from all the combinations of the features of

26

the previous layer. However, not only fully connected layers are

computationally expensive, spatial sizes are restricted to the dimension of the

input. Thus, Long et al. (2015) propose a network called a fully convolutional

network (FCN) that is trained end-to-end, pixels-to-pixels on semantic

segmentation. Semantic segmentation is mainly divided into global

information, which deals with classifying the object, and local information

deals with localizing the object in the image. Deep feature hierarchies encode

location and semantics in a non-linear local to a global pyramid. Consequently,

this approach does not require any pre-processing or post-processing

complications.

As mentioned earlier, convolutional networks’ basic components

include convolution and pooling layers. These operations work on local input

regions and depend on relative spatial coordinates. Thus, CNN and FCN both

take advantage of convolution layers to extract features, and these

convolutional networks are built on translation invariance. Due to the fully

connected layers at the end of these networks, the input dimensions are fixed,

and spatial coordinates are lost along the way. Typical classification neural

networks including LeNet (LeCun et al., 1989), and AlexNet (Krizhevsky et

al., 2012) feed the input with a fixed size and produce non-spatial outputs.

Although these fully connected layers disregard the spatial coordinates, they

27

are viewed as convolutions with kernels that cover their entire input regions.

Hence, as shown in Figure 2.3.1, these layers are transformed into convolution

layers to enable a simple classification network to output a heatmap.

Figure 2.3.1 Transforming fully connected layers into convolution layers

enabled a classification net to output a heatmap. Adding layers and a spatial

loss produced an efficient machine for end-to-end dense learning (Image

Credit: Long et al., 2015)

The spatial output maps of these convolutionalized models make them a

natural choice for dense problems like semantic segmentation. However,

interpolation is necessary to connect coarse outputs to dense pixels. Hence,

Long et al. (2015) utilize backward convolution (a.k.a. deconvolution) to use

simple bilinear interpolation to compute each output from the nearest four

28

inputs by a linear map that depends only on the relative positions of the input

and output pixels. Thus, up-sampling is performed within the network to

achieve end-to-end learning by backpropagation from pixel-wise loss.

Moreover, these deconvolution filters along with its activation functions are

capable of learning a non-linear up-sampling as well.

To take advantage of the feature spectrum that combines deep, coarse,

semantic information and shallow, fine, appearance information, FCN is

proposed with a skip architecture (Long et al., 2015). The summary of skip

connections is shown in Figure 2.3.2. As shown in Figure 2.3.2, adding skip

connections between layers to fuse coarse, semantic, and local, appearance

information is one of the highlights from FCN. Skip architecture learns end-to-

end to refine the semantics and spatial precision of the output.

29

Figure 2.3.2 FCN combining coarse, high layer information with fine, low

layer information. Pooling and prediction layers are shown as grids that

reveal relative spatial coarseness, while intermediate layers are shown as

vertical lines. First row (FCN-32s). Second row (FCN-16s): Combining

predictions from both the final layer and the pool4 layer, at stride 16, lets our

net predict finer details while retaining high-level semantic information. Third

row (FCN-8s): Additional predictions from pool3, at stride 8, provide further

precision (Credit: Long et al., 2015)

Multiple proven classification architectures including AlexNet (Krizhevsky et

al., 2012), VGG net (Simonyan et al., 2014), and GoogLeNet (Szegedy et al.,

2015) are convolutionalized as FCN, and Long et al. (2015) claim that fine-

tuning from classification to segmentation gave the best result with the VGG-

16 network. Without the use of skip connections, the final predictions are very

coarse, due to the limitation of 32-pixel stride at the final prediction layer.

Thus, combining fine layers and coarse layers make local predictions that

consider global structure. To generate FCN-16, output stride is divided in half

30

to predict using a 16-pixel stride layer. Then, a 1×1 convolution layer is added

on top of pool4 to produce additional class predictions. This output is then

fused with the predictions computed on top of conv7 at stride 32 by adding a

2× up-sampling layer and these predictions are summed up. Additionally, the

up-sampling process is done with the bilinear interpolation. Finally, the stride

16 predictions are up-sampled back to the original image size. This process is

visualized in Figure 2.3.2. Similar steps are followed to generate FCN-8,

which generates the finest segmentation map. By fusing predictions from

pool3 with a 2× up-sampling of predictions fused from pool4 and conv7,

FCN-8 is generated. In this fashion, decreasing the stride of pooling layers

does result in finer predictions but having smaller stride of pooling layers than

FCN-8 is problematic for the VGG-16 network due to its receptive field size

and expensive computational cost. With FCN-8, Long et al. achieve 56.0 mean

intersection over union on the validation set of PASCAL VOC 2011.

2.4 U-Net

The fundamental structure of the U-Net is similar to the FCN. U-Net

uses learnable weight filters instead of fixed bilinear interpolation for up-

31

sampling. U-Net utilizes transposed convolution to up-sample the feature

maps. Also, the skip connections are applied differently in U-Net. Hence, U-

Net is known as a modified version of FCN that yields a more precise

segmentation map (Ronneberger et al., 2015). The structure of U-Net is shown

in Figure 2.4.1, where it is composed of contraction, bottleneck, and extraction

section.

Figure 2.4.1 Original U-Net Architecture (Ronneberger et al., 2015)

The training images are passed to the contracting section of the network by

successive layers, and high-resolution features from this contracting section

32

are combined with the up-sampled outputs. One of the major modifications

from FCN is in the up-sampling path. A large number of feature channels in

the up-sampling path allow the network to propagate context information to

higher resolution layers and consequently, the expansion path becomes

symmetric to the contraction path, which yields an u-shaped architecture. U-

Net is originally designed to perform cell segmentation, and the biggest

challenge in this application is to separate the touching objects of the same

class. Hence, Ronneberger et al. (2015) include weights to the loss function by

assigning a large weight on the border of background labels and touching cells.

As shown in Figure 2.4.1, the contraction path of U-Net is composed

of repeated application of two 3x3 convolution layers, each followed by a

ReLU activation function and a 2x2 max pooling operation with stride 2 for

down-sampling. The number of convolutional filters is doubled at each down-

sampling step. Consequently, the expansion path is composed of 2x2

deconvolution layers, which up-sample the feature maps passed on from the

contraction path. Similar to the contraction path, the expansion path also

consists of two 3x3 convolution layers, each followed by a ReLU activation

function. Additionally, the corresponding feature maps from the contraction

path are concatenated to the feature maps at the expansion path. Unlike the

contraction path, the number of convolutional filters is halved in the expansion

33

path. Finally, in the last layer, a 1x1 convolution is employed to map the

feature vector to the number of classes to classify.

Additionally, U-Net is trained with an SGD optimizer and the cost

function is computed by a pixel-wise softmax over the final feature map

combined with the cross-entropy loss function. With this network architecture,

the U-Net aims for training on the medical dataset, where there are not many

labeled images available as training data. As mentioned earlier, Ronneberger

et al. (2015) use a pre-computed weight map for each ground truth to support

the network to prioritize learning the ambiguous borders between touching

cells. Thus, the weight maps are computed by (2.4.1):

𝑤(𝑥) = 𝑤𝑐(𝑥) + 𝑤0 ∗ 𝑒𝑥𝑝 (−

(𝑑1(𝑥) + 𝑑2(𝑥))
2

2𝜎2
)

(2.4.1)

where 𝑤𝑐 is the weight map to balance the class frequencies, 𝑑1 and 𝑑2 is the

distance to the border of the first nearest cell and the second nearest cell,

respectively. The initial weight 𝑤0 is set to 10 and 𝜎⁡is set to 5 pixels.

𝐸 =∑𝑤(𝑥) log(𝑝𝑙(𝑥)(𝑥))

(2.4.2)

Moreover, the weight maps computed from (2.4.1) are added to the cross-

entropy loss function defined in (2.4.2). As shown in Figure 2.4.2, the ground

34

truth label is binarized to compute the distance between each cluster of cells

and rank them into different weights. More weights are assigned towards cells

with smaller gaps in between them and fewer weights are assigned to the cells

that have larger gaps between them. Ultimately, U-Net is applied to cell

segmentation tasks in light microscopic images from the ISBI cell tracking

challenge 2014 and 2015. From these datasets, U-Net achieves an average

intersection over the union of 92% and 77.5%, respectively.

Figure 2.4.2 (a) raw image. (b) overlay with ground truth segmentation.

Different colors indicate different instances of the HeLa cells. (c) generated

segmentation mask (white: foreground, black: background). (d) map with a

pixel-wise loss weight to force the network (Image Credit: Ronneberger et al.,

2015)

2.5 Attention U-Net

Despite the good representational power from FCN and U-Net, these

architectures rely on multi-stage cascaded CNNs when the target varies in

shape and size. These cascaded frameworks are used to extract a specific

35

region of interest and make corresponding dense predictions on that particular

region of interest. However, this cascaded process leads to excessive and

redundant use of computational resources and model parameters. For instance,

multiple similar low-level features are repeatedly extracted by all models

within the cascade. Therefore, Oktay et al. (2018) introduce Attention Gates

(AGs) to the U-Net. By employing AGs to a CNN model, the model is trained

from scratch in a standard way, but AGs automatically learn to focus on target

structures without additional supervision. These gates generate soft region

proposals implicitly and highlight salient features useful for the specific task.

Most importantly, these gates do not increase significant computational cost.

The proposed AGs improve model sensitivity and accuracy for dense label

predictions by suppressing feature activations in irrelevant regions. Hence,

attention U-Net focuses on image-grid based gating that allows attention

coefficients to be specific to local regions. When AGs are implemented to U-

Net, the image features are extracted at multiple image scales and coarse

feature maps capture contextual information. Then, the category and location

of foreground objects are highlighted from these coarse feature maps. These

extracted feature maps at multiple scales are merged through skip connections

to combine coarse and fine level dense predictions. The overview of the

attention U-Net is shown in Figure 2.5.1. As shown in Figure 2.5.1, the feature

36

maps extracted at the coarse-scale are input through gating to disambiguate

irrelevant and noisy responses in skip connections. Then, the output from AG

is concatenated to merge relevant activations. In addition, AGs filter the

neuron activations during the forward and backward pass. Consequently,

gradients originated from background regions are down-weighted during the

backward pass. Hence, model parameters in shallower layers are updated

based on spatial regions that are relevant to a given task.

Figure 2.5.1 A block diagram of the proposed Attention U-Net segmentation

model. The input image was progressively filtered and down-sampled by a

factor of 2 at each scale in the encoding part of the network. Nc represented

the number of classes. Attention gates (AGs) filter the features propagated

through the skip connections. Feature selectivity in AGs was achieved by the

use of contextual information (gating) extracted in coarser scales. (Image

Credit: Oktay et al., 2018)

Schematic of the additive attention gate is shown in Figure 2.5.2. As

37

shown in Figure 2.5.2, Oktay et al. (2018) use additive attention (Bahdanau et

al., 2014) to obtain the gating coefficient, over multiplicative attention (Luong

et al., 2015). Although additive attention is computationally more expensive, it

achieves s higher accuracy. Additive attention is formulated as:

𝑞𝑎𝑡𝑡
𝑙 = 𝜓𝑇 (𝜎1(𝑊𝑥

𝑇𝑥𝑖
𝑙 +𝑊𝑔

𝑇𝑔𝑖 + 𝑏𝑔)) + 𝑏𝜓
(2.5.1)

𝛼𝑖
𝑙 = 𝜎2 (𝑞𝑎𝑡𝑡

𝑙 (𝑥𝑖
𝑙 , 𝑔𝑖; Θ𝑎𝑡𝑡))

(2.5.2)

where 𝜎2 indicates the sigmoid function. AG is characterized by a set of

parameters Θ𝑎𝑡𝑡, which consists of a linear transformation and bias term. The

linear transformations are computed using 1x1x1 convolutions for the input

tensors. Softmax function is typically used in image captioning and

classification tasks to normalize the attention coefficients, but sequential use

of softmax function yields sparser activations at the output. Hence, the

sigmoid function is used instead. These gating signals for each skip connection

aggregate information from multiple imaging scales, which increase the grid-

resolution of the query signal and achieve optimal results. Ultimately, the

attention U-Net becomes the state-of-art for a single model in CT pancreas

segmentation, which achieves 81.48 ± 6.23 Dice similarity coefficients for

pancreas labels (Oktay et al., 2018).

38

Figure 2.5.2 Schematic of the proposed additive attention gate (AG). Input

features (xl) were scaled with attention coefficients (α) computed in AG.

Spatial regions were selected by analyzing both the activations and contextual

information provided by the gating signal (g) which was collected from a

coarser scale. Grid resampling of attention coefficients was done using

trilinear interpolation. (Image Credit: Oktay et al., 2018)

39

Chapter Three: Methodology

3.1 Dataset

At MTO, the pavement data are collected by Automatic Road Analyzer

(ARAN) 9000 system developed by Fugro Roadware (Mississauga, ON,

Canada). ARAN 9000 is an advanced pavement data collection vehicle

equipped with precision survey systems including video cameras, optical

sensors, laser line projectors, ultrasonic sensors, and accelerometers (Cafiso et

al., 2017; Gkovedarou, 2019). Due to its high cost, ARAN 9000 is mainly

used to collect data on some of the major highways in Ontario, Canada.

During data collection, ARAN 9000 saves data every 10 m of the highway.

The collected raw data are processed by two software packages, namely,

“Laser Crack Measurement System (LCMS) road-inspect”, developed by

Pavemetrics (Québec, QC, Canada) and “Vision”, developed by Fugro

Roadware.

Since these software packages utilize the raw data from ARAN 9000,

the depth measurements are also taken into consideration when detecting the

cracks, but the width of the cracks are mainly used to classify the cracks.

Based on the standard of MTO, the different levels of severity of cracks are

defined as follows: longitudinal wheel-track cracks with less than 3mm are

40

classified as very slight level; cracks from 3mm to 12mm are considered slight

level; single cracks with 13mm to 19mm width or multiple cracks starting is

categorized as moderate level; cracks with 20-25mm width for single cracks or

multiple cracks, beginning of spalling are deemed as severe level; and cracks

greater than 25mm wide for single cracks or multiple cracks with developed

spalling are considered very severe level (MTO, 2016).

Based on these standards, LCMS road-inspect and Vision software

detect the cracks from the laser data collected by ARAN 9000. Although

ARAN 9000 comes with video cameras, these cameras are facing forward and

sideways to record the surrounding environments rather than facing down on

the pavement to capture the pavement conditions. Therefore, the range of the

laser data was saved as single-channel images through LCMS road-inspect

software and these images were used as the training images in this study. A

sample of the pavement image is shown in Figure 3.1.1.

41

Figure 3.1.1 Sample pavement image

Even though both the LCMS road-inspect and Vision software package was

capable of processing and analyzing the raw data from ARAN 9000, they used

different criteria to detect and determine the severity of the distress levels on

the pavement. In general, the LCMS road-inspect software had a lower

localization accuracy than the Vision software. LCMS road-inspect algorithm

was set up with a lenient threshold. Hence, there were false positive cracks

detected along with the true positive cracks. Meanwhile, the Vision software

was set up with a stricter threshold than the LCMS road-inspect software.

Hence, it yielded a relatively fewer number of false positive cracks detected

than the LCMS road-inspect software. However, a stricter threshold resulted in

misclassifying some of the small cracks as non-cracks. Moreover, the Vision

42

software often had trouble distinguishing between the low and medium

severity cracks. Nonetheless, its outcome was more precise in localizing the

cracks on the pavement than the outcome from the LCMS road-inspect

software. Consequently, the resulted labels from these two software packages

were not necessarily identical. Although the Vision software localized the

cracks better than the LCMS road-inspect software, it did not provide accurate

severity labels. Undoubtedly, the cracks at the higher severity levels were easy

to be detected by both software packages, but there were discrepancies in the

detection of cracks at the low and medium severity levels. As an example, the

difference in the resulted labels between the two software packages is shown

in Figure 3.1.2.

43

(a)

(b)

(c)

Figure 3.1.2 Results obtained by LCMS and Vision: (a) Original pavement

image, (b) cracks detected by LCMS, and (c) cracks detected by Vision (Low:

Cyan, Medium: Green, High: Orange)

44

To generate the best ground truth, the labels created from both

software packages were merged to take advantage of the accurate crack

localization with properly labeled severity levels. Thus, only crack labels that

appeared on both software packages were used as the true positive crack pixels

and their corresponding severity levels were adapted after the LCMS road-

inspect software. It is worth mentioning that even though the labeled images

from two different software packages were merged, it still did not fully

capture all the cracks on the pavement images. In this study, a total of 3,332

pavement images with corresponding merged ground truth images were used

to train and test the convolution-based neural networks. Each image

represented a 10 m segment of the highway and had a dimension of

2500x1037x1 pixels.

For data augmentation, the images were subdivided into 160x578

pixels with an overlap of 75%. Since the ground truth labels were imperfect,

the road lines were often misclassified as cracks. Therefore, when the images

were subdivided into smaller images, a region of interest was set to collect the

images within the road lines. As a result, ~65,000 images were available for

training and validation, with additional ~400 images for testing purposes.

Hence, ~65,000 images were randomly split into 70% of training data and 30%

of validation data to train the neural networks in this research. Then, ~400

45

unseen test images were used to evaluate the performance of the models.

3.2 Improved CNN with A Structured Prediction

Fundamentally, CNN with a structured prediction proposed by Fan et

al. (2018) had its basis on a typical CNN; the only difference was that the

network resulted in a patch-wise prediction instead of a single prediction.

Similar to a typical CNN architecture, CNN with a structured prediction

proposed by Fan et al. (2018) was composed of an input layer, hidden layers,

and output layer. Using this network, Fan et al. (2018) successfully predicted a

binary map of cracks on paved roads. Thus, CNN with a structure prediction

proposed by Fan et al. (2018) was improved in the following aspects in this

study:

(1) CNN with a structured prediction proposed by Fan et al. (2018)

was adapted to classify cracks with different levels of severity.

(2) Weighted loss function was proposed to effectively train the

network.

(3) ADABOUND optimizer was employed instead of the ADAM

optimizer used in Fan’s network.

46

In order to adapt the CNN with a structured prediction proposed by Fan et al.

(2018) to classify cracks with different levels of severity, the overall number

of layers in the network was increased to extract more features, and the

number of output units in the output layer was increased. Hence, by preserving

the same output size of 5x5 from the original Fan’s network, the network

proposed in this study required 25 neurons per class, resulting in 75 neurons in

the final output layer. The architecture of the improved CNN with a structured

prediction proposed in this study was shown in Figure 3.2.1. As shown in

Figure 3.2.1, the number of convolutional layers was increased to 6; the

number of max-pooling layers was increased to 3, and the number of fully

connected layers remained the same but the number of neurons within each

fully connected layer was increased. All convolutional layers were equipped

with kernels of 3x3 and stride of 1. Additionally, each convolutional layer was

applied with zero paddings on the boundary to preserve the spatial resolution

of the resulting feature map. Moreover, max-pooling with kernels of 2x2 and

stride of 2 was applied on the feature map after the convolutions. Since the

expected output can have multiple identical labels with different classes, this

structured prediction problem was modeled as a multi-label, multi-class

problem.

47

Figure 3.2.1 Modified CNN with Structured Prediction Architecture

Within each original training image, approximately 300 image patches

of size 27x27 were extracted. The corresponding label patches of 5x5 were

also collected based on the center location of the image patch. To sustain the

equal ratio of patches collected over different severity levels, an equal number

of patches were collected for each severity level. Moreover, twice the number

of non-crack patches were collected than the number of crack patches to

simulate the natural ratio of crack and non-crack pixels on a pavement image.

In a natural pavement image, there are far more non-crack pixels than crack

pixels. Hence, the proportion of positive and negative samples has a huge

impact on the performance of the network. To be fair, all samples were

randomly extracted from the image, with the ratio of positive to negative

samples set to 1:2. As shown in Table 3.2.1, the positive samples consisted of

approximately 0.33 ratio of each severity level. In total, 398,925 training

48

samples were used to train the network. A common practice to optimize the

input image was normalizing the input pixel range of [0, 255] to [0, 1], but this

pre-processing procedure was not applied directly to the input data. Instead,

this procedure was included at the beginning of the network to avoid extra pre-

processing procedures outside the network.

Table 3.2.1 CNN data structure

 Positive Samples Negative Samples

 Low Medium High Non-Crack

Number of Samples 44,325 44,325 44,325 265,950

Since this network’s prediction was multi-label and multi-class output,

every output unit was not mutually exclusive, and multiple positive

predictions were possible. Therefore, weighted binary cross-entropy was used

as the loss function, which is defined in (3.2.1):

 𝐿 = −∑𝑤 ∗ (𝑦𝑖 log 𝑦̂𝑖 + (1 − 𝑦𝑖) log(1 − 𝑦̂𝑖))

𝑠

𝑖=1

 (3.2.1)

Where 𝑦𝑖 and 𝑦̂𝑖⁡is the label and prediction of the 𝑖th output unit, respectively;

𝑤 indicates weight for each corresponding location of the pixels; 𝑠 represents

the number of output units. On top of a regular binary cross-entropy loss

function that Fan et al. employed, the weights w was added to focus on the

center of the image patch. The nature of structured prediction had its basis on

49

the central pixels. For instance, if the pixel at the center of a window was a

crack pixel, it was very likely for the pixels around it to be crack pixels. The

pixels that were directly touching the pixel at the center of a window have a

much higher correlation than the pixels that were not in direct contact with the

pixel at the center of a window. The level of correlations with respect to the

center pixel is shown in Figure 3.2.2.

Figure 3.2.2 5x5 Output Window (outermost pixels have a smaller correlation

than the inner pixels)

By proposing weights based on the location of the pixels, the

prediction accuracy was improved. During the initial experiments, the weights

were assigned by the multivariate normal distribution. Specifically, bivariate

normal distribution was employed instead of the univariate normal distribution,

because the weights were given for both row and column-wise. By varying the

50

mean value and the standard deviation value, the overall shape of the

distribution altered. However, the mean value was fixed to zero for this

experiment, because the distribution had to be centered at zero for consistency.

Thus, the change in standard deviation values was tested. Upon testing with a

large standard deviation value, the resulting weights were more fairly

distributed rather than having a high weight at the center pixel, but when a

small standard deviation value was used, more weights were given towards the

center pixel than the surrounding pixels. This experiment was held with a

standard deviation value of 0.25, 0.5, and 0.75. As expected, assigning

different weights on the loss function changed the resulting prediction

accuracy. The effect of different weights on the loss function is further

discussed in the “Discussion”.

Since the network was designed to input a 27x27 image patch, the test

images had to be subdivided into small image patches. Hence, the overlaps

between image patches were tested, and the decision within the overlapping

prediction pixels was ambiguous and did not improve the results either.

Additionally, the prediction time of a test image was greatly affected by the

overlaps between the image patches. Having a large overlap between the

image patches resulted in more number of input image patches to cover the

whole test image. Hence, the input patches were generated every 5 pixels.

51

Hence, there were overlaps between the input patches but not on the predicted

output patches. The final prediction of 75 output units was reconstructed into a

dimension of width, length, and depth. Depth was composed of three severity

levels: low, medium, and high severity. Since the sigmoid activation function

was used to compute the probability, each output unit ranged from 0 to 1.

Then, the decision probability was set to 0.5 to disregard the pixels with low

probability as crack pixels. Finally, the predicted segmentation map was color-

coded depending on the severity level: low severity was represented by cyan

color; medium severity was represented by green color; high severity was

represented by orange color.

3.3 Implementation of FCN, U-Net & Attention U-Net in crack

detection

In this study, the following neural networks including FCN (Long et al.,

2015), U-Net (Ronneberger et al., 2015), and Attention U-Net (Oktay et al.,

2018) were re-designed to correctly segment the cracks from the pavement

images and classify the segmented cracks into corresponding severity levels.

Fundamentally, FCN, U-Net, and attention U-Net architectures utilized skip

connections to combine spatial information from the down-sampling path and

52

the up-sampling path, but these skip connections were applied differently

depending on the network. FCN utilized the addition operator to apply the skip

connections to the corresponding layers in the up-sampling path, whereas U-

Net employed a concatenator operator. While FCN and U-Net were proven to

work well in segmentation tasks, they accompanied many redundant low-level

feature extractions, despite that the feature representation is poor in the initial

layers. Hence, attention U-Net was introduced with Attention Gates (AGs).

AGs were used to only highlight relevant activations during the training phase.

The additive soft attention used in attention U-Net was implemented at the

skip connections to suppress activations in irrelevant regions and reduce the

number of redundant features. Detail of these network’s backgrounds was

discussed in Chapter 2.

Unlike the input from CNN with structured prediction, FCN and U-Net

were capable of employing the whole image without subsampling small image

patches. In total, ~65,000 images of size 160x578 pixels were used to train and

validate the network. Prior to the training phase, the dataset was randomly

split into 70% of training data and 30% of validation data. Furthermore, an

overlap of 75% was allowed between the extracted images to increase the

number of training images. While pre-processing the input pixel range of [0,

255] to [0, 1] was a common practice to optimize the image in machine

53

learning, this normalization procedure was not applied directly to the input

data. Instead, this normalization was included within the network to skip this

procedure when testing on unseen data.

The weights and model structure from VGG-16 was imported to

construct FCN for pavement crack detection. Since the pre-existing model

structure was used to construct FCN, there were not too many settings to be

altered for experiments. Among different FCN architectures, FCN-8 was

employed, because Long et al. (2015) verified that it produces the finest

segmentation map. Considering that FCN-8 was designed to surpass FCN-16

and FCN-32, only FCN-8 was exploited in this research. The overview of the

FCN architecture was shown in Figure 3.3.1. Figure 3.3.1 described which

layers were combined to construct FCN-32, FCN-16, and FCN-8. In this

architecture, the number of outputs was set to 4 classes: no crack, crack with

low severity, medium severity, and high severity.

54

Figure 3.3.1 VGG-16 based FCN Architecture

Segmentation maps from FCN-32 were directly produced from the last

convolution layer by using a transposed convolution layer with a stride of 32.

However, the resulting segmentation map from FCN-32 was too coarse. Hence,

the finer version of the segmentation maps was produced by FCN-16. The up-

sampled prediction from the last convolution layer was summed up with the

prediction from pool4 shown in Figure 3.3.1, and by using a transposed

convolution layer with a stride of 16, FCN-16 was constructed. Similarly, the

result from the up-sampled version of the last convolution layer was summed

up with pool4 shown in Figure 3.3.1, and this result was once again up-

sampled then summed up with pool3 to produce the FCN-8 by using a

transposed convolution layer with stride 8.

In order to properly adapt the U-Net for pavement crack application,

U-Net architecture was re-designed in this study, and the architecture is shown

in Figure 3.3.2.

55

Figure 3.3.2 U-Net Architecture

The major change from the original U-Net (Ronneberger et al., 2015) was

reducing the number of convolution filters by a factor of 4. Since the

pavement cracks required mostly low-level features such as lines, edges, and

curves, having too many convolution filters was unnecessary. Also, the model

with a reduced number of convolution filters trained and predicted faster than

the original U-Net architecture. The input and output of the image were

identical to FCN. Unlike FCN, the skip connections were applied on to the

56

expansion path by concatenation operator, instead of the addition operator.

The original U-Net used an SGD optimizer with a cross-entropy loss function,

but in this study, ADAM optimizer and ADABOUND optimizer with cross-

entropy and focal Tversky loss function were investigated. The detailed

analysis of these experiments was discussed in “Discussion”.

Furthermore, attention U-Net was explored to reduce the effect of class

imbalance. As shown in Figure 3.3.3, the attention U-Net was designed with

the same number of neurons and layers as U-Net described in Figure 3.3.2.

Figure 3.3.3 Attention U-Net Architecture

57

The major difference from U-Net architecture was the addition of attention

gates before the concatenation operation. Similar to medical applications, the

images from the pavement crack application consisted of a majority of

negative pixels (non-crack pixels) and a small portion of positive pixels (crack

pixels). Essentially, when the feature maps from the down-sampling path and

up-sampling path were combined, the aligning weights were amplified while

unaligned weights became relatively smaller. In the case of crack applications,

the extracted features of the crack segments were highlighted with higher

weights, and the surrounding non-crack regions were trained with lower

weights. By prioritizing the salient features, attention U-Net was trained more

efficiently than U-Net. The attention gate and the gating signal was

implemented the same way as the original attention U-Net proposed by Oktay

et al. (2019). In addition, focal Tversky loss was experimented on this

attention U-Net to further filter out the unnecessary portion of the pavement

image (Abraham et al., 2019). Moreover, the attention U-Net was explored

with both ADAM and ADABOUND optimizer.

FCN, U-Net, and attention U-Net were trained for 50 epochs with a

batch size of 23 training images per batch. Due to the limitation of GPU

memory, 23 training images were the maximum number of images per each

58

batch. Unlike the CNN with a structured prediction approach, FCN, U-Net,

and attention U-Net did not require any image stitching or post-processing

after the prediction. Once the input test images were predicted through these

approaches, predicted images were evaluated in the same fashion as the CNN

approach. Identical test images were used to be consistent with the evaluation

results.

3.4 Performance Evaluation

The network was trained with Intel core i7-8700 3.20GHz CPU, 16GB

RAM, and Nvidia GeForce RTX 2070 GPU. The code was written under

python with Tensorflow and Keras. The performance of the network was

determined by the test results. For evaluations, precision, recall, and F1-score

were used for classification tasks, as shown in (3.4.1), (3.4.2), and (3.4.3):

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (3.4.1)

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (3.4.2)

 𝐹1⁡𝑠𝑐𝑜𝑟𝑒 =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (3.4.3)

where 𝑇𝑃, 𝐹𝑃, 𝐹𝑁 are the number of true positive, false positive, and false

59

negative, respectively. Due to the representation of different severity levels,

the ground truth was not generated manually. As mentioned earlier, the labels

used in this research did not perfectly detect all the cracks or in worst cases,

cracks were not detected at all. Most importantly, the detected cracks were not

labeled with respect to the actual width of the cracks. Considering that the

crack labels had an equal size of width regardless of the actual width of the

cracks, this became a problem when evaluating the results on a pixel-level

basis. Due to the nature of these labels, thin cracks ended up having labels that

were larger than the actual width and thick cracks ended up having labels that

were smaller than the actual width. Thus, when the prediction map was

evaluated, numerous true positives were then considered as false positive. In

order to minimize this effect, the 5-pixel distance between the predicted label

and the true label was set as the threshold. Besides, the transitional areas

between crack pixels and non-crack pixels were ambiguous in some cases.

Hence, a minimum of 2 pixels or 5 pixels of the threshold in crack detection

application was necessary (Amhaz et al., 2016; Fan et al., 2018).

60

Chapter Four: Results

4.1 Results from different networks

 A couple of predicted images from improved CNN with structured

prediction, FCN, U-Net, and attention U-Net methods are shown in Figure

4.1.1 as examples.

a)

b)

c)

d)

e)

f)

61

Figure 4.1.1(a) Pavement Image, (b) Given Ground Truth from MTO, (c)

Prediction from CNN with ADABOUND optimizer and weight (5, 3, 1) (d)

Prediction from FCN with ADAM optimizer (e) Prediction from U-Net with

ADABOUND optimizer and Focal Tversky loss (f) Prediction from Attention

U-Net with ADABOUND optimizer and Focal Tversky loss (Low: Cyan,

Medium: Green, High: Orange)

Amongst all the approaches attempted in this study, the improved CNN with a

structured prediction resulted in the most number of false positive pixels. As

shown in the left column of Figure 4.1.1, the crack segment located in the

middle of the image was extremely thin, and the improved CNN with a

structured prediction did not fully detect such a thin crack segment. Although

it captured some portion of the crack segment, the detected crack segments

had discontinuities in between, whereas other approaches successfully capture

the entire crack segment properly. Additionally, the improved CNN with a

structured prediction failed to detect the thin cracks on the left side of the

image. Furthermore, the improved CNN with a structured prediction resulted

in many false positive pixels around the alligator crack shown in the right

column of Figure 4.1.1. However, it did capture the overall shape of the crack

on the image.

Generally, FCN performed better than the improved CNN with a

structured prediction approach. FCN also resulted in some false positive pixels,

but it detected low severity cracks much better than the improved CNN with a

62

structured prediction. Likewise, U-Net showed similar performance as FCN,

but it detected the thin cracks slightly better than FCN. Ultimately, the

attention U-Net produced the finest-grade prediction result with minimal

misclassifications.

Once the networks were trained, the prediction time also varied

depending on the network architecture. On average, the improved CNN with a

structured prediction took ~80 s, FCN took ~1 s, U-Net, and attention U-Net

took ~0.1 s to predict a single image of size 160x576. Undoubtedly, the

improved CNN with a structured prediction took the longest time to predict a

single image, because it required pre-processing of sub-dividing the input

image and post-processing of stitching the predicted patches. In contrast, FCN,

U-Net, and attention U-Net did not require any pre-processing or post-

processing that slowed down the prediction time. Also, the whole image was

directly inputted to these networks and the corresponding prediction map was

acquired.

The numerical evaluation results recorded for each network’s best

setting was shown in Table 4.1.1. Conclusively, attention U-Net showed the

highest precision among all the networks attempted. Attention U-Net achieved

a higher precision of ~24% than the improved CNN with a structured

prediction in low-level severity and ~18% higher precision in medium-level

63

severity. Not only the attention U-Net was superior on lower level severities,

but it also performed better or at least equivalent to other networks on medium

and high-level severities. Since attention U-Net was trained with a focal

Tversky loss function, which filters out the easy background to focus on the

region of interest, it was expected to perform better than other networks.

Although these neural networks had an outstanding result, having some of the

falsely labeled cracks from the ground truth resulted in lowering the numerical

evaluation. Moreover, the falsely labeled cracks often existed in low-level

severities because cracks with medium or high-level severities were generally

easy to be distinguished. Consequently, cracks with low-level severity resulted

in the lowest accuracy than any other severity levels.

Table 4.1.1 Evaluation for CNN, FCN, U-Net and Attention U-Net

 Precision (%) Recall (%) F1-Score (%)

 Low Med High Low Med High Low Med High

CNN 12.02 42.28 79.76 86.52 97.44 96.07 19.63 55.60 85.89

FCN 27.50 59.59 84.23 49.08 89.53 98.63 32.08 68.82 89.89

U-Net 34.12 61.31 82.60 61.42 87.62 98.70 40.06 69.97 89.07

Att. U-Net 36.03 60.39 84.58 54.89 94.11 98.14 40.53 71.27 89.95

64

Chapter Five: Discussions

For each network architecture, different settings of the networks were

explored to find the optimal configuration that produced the best outcome.

Even with the identical network structures, they converged at different stages

depending on the optimizer and loss function used. The effects of the loss

function and optimizers for each of the networks were investigated in this

study.

5.1 The effect of loss functions and optimizers on the improved CNN

with a structured prediction

Although CNN with a structured prediction produced a reasonable

outcome with a typical cross-entropy loss function and ADAM optimizer

(Jung et al., 2019), the strength of spatial correlation between the pixels can be

boosted with the weighted cross-entropy loss function and ADABOUND

optimizer. As expected, depending on the assigned weights on the loss

function, the network resulted in different accuracies. Before assigning fixed

values to the weights, bivariate normal distribution was used to set the weights

on the loss function. The weights assigned by bivariate normal distribution

65

were shown in Figure 5.1.1, Figure 5.1.2, and Figure 5.1.3. In a bivariate

normal distribution, smaller standard deviation values resulted in more weight

towards the center pixel. However, when the standard deviation was too small,

the outermost pixels ended up having extremely small weights. Consequently,

the cells located away from the center pixel barely had any contribution to the

loss function as their weights were too small. As shown in Figure 5.1.1, and

Figure 5.1.2, having a standard deviation of 0.75 and 0.5 allocated the weights

more evenly than the standard deviation of 0.25, which ignored the outermost

cells.

Along with these weights assigned by the bivariate normal distribution,

the network was trained with ADAM and ADABOUND optimizer. Once the

network had been trained, the trained network was tested on ~400 test images

to evaluate precision, recall, and F1 score.

Figure 5.1.1 Bivariate Normal Distribution with a standard deviation of 0.75

66

Figure 5.1.2 Bivariate Normal Distribution with a standard deviation of 0.5

Figure 5.1.3 Bivariate Normal Distribution with a standard deviation of 0.25

The evaluation results are described in Table 5.1.1 and Table 5.1.2

when trained with ADAM optimizer and ADABOUND optimizer,

respectively. When the evaluation results were analyzed, the results on

medium and high severity was prioritized rather than low severity, because the

crack segments with medium or high severity were the potential danger to the

67

public. The main purpose of crack detections was to prevent the cracks from

developing into a bigger crack by repairing them beforehand. Therefore, it was

more meaningful to have higher accuracy in medium and high severity levels

than low severity level.

Table 5.1.1 ADAM with bivariate normal distribution weights

ADAM Precision (%) Recall (%) F1-Score (%)

Weight Low Med High Low Med High Low Med High

𝜎 = 0.25 8.73 30.92 77.03 94.66 94.83 98.26 15.16 43.48 84.97

𝜎 = 0.5 10.58 31.34 74.96 96.91 96.05 99.00 18.04 44.13 83.92

𝜎 = 0.75 11.28 33.25 75.45 95.19 97.40 98.31 19.13 46.64 84.09

Table 5.1.2 ADABOUND with bivariate normal distribution weights

ADABOUND Precision (%) Recall (%) F1-Score (%)

Weight Low Med High Low Med High Low Med High

𝜎 = 0.25 3.15 5.06 13.98 99.80 99.86 99.77 6.05 9.53 23.72

𝜎 = 0.5 6.56 37.27 80.24 87.88 94.22 98.06 11.58 49.21 87.16

𝜎 = 0.75 7.72 30.79 77.49 88.35 95.67 98.33 13.37 43.22 85.40

 As shown in Table 5.1.1, when the network was trained with ADAM

optimizer, the overall precision was highest when the weights were assigned

by a bivariate normal distribution with a standard deviation of 0.75.

68

Consequently, the F1 score was also the highest in this case. As the standard

deviation was increased for each experiment, both precision and recall

improved. However, the highest precision in high severity was achieved when

the standard deviation was 0.25, but the difference was only ~1.5% and the

standard deviation of 0.75 achieved higher precision in other severity levels.

Hence, it was more beneficial to choose the weights assigned by the standard

deviation of 0.75, because there was more improvement in percentage-wise for

both low and medium severity. Hence, the ~1.5% of deterioration at high

severity precision was neglected. Along with the precision, the recall rate

improved at a standard deviation of 0.75.

 From Table 5.1.2, when the ADABOUND optimizer was used to train

the network, precision at all severity levels were very poor when the standard

deviation was set to 0.25. In this case, even the precision at high severity only

achieved ~14%. When the standard deviation was increased to 0.5, the

precision rate dramatically improved from ~5% to ~37% and ~14% to ~80%

at medium and high severity, respectively. Unexpectedly, there were no

improvements when the standard deviation was increased from 0.5 to 0.75.

Unlike the ADAM optimizer, ADAMBOUND achieved the best evaluation

results when weights were assigned by the standard deviation of 0.5.

 Ultimately, the ADAM optimizer showed the best performance with

69

bivariate normal distribution when the standard deviation was 0.75 and the

ADABOUND optimizer showed the best performance when the standard

deviation was 0.5. When these results from both optimizers were compared,

ADABOUND optimizer performed worse in low severity but showed better

performance at medium and high severity. There was an improvement of

approximately 5% of the precision rate for both medium and high severity

level. Ideally, more weights were desired at the center than the outer cells.

Therefore, assigning fixed weights, including equal weights throughout the

cells were attempted to observe the difference from the bivariate normal

distribution weights. The results when the network was trained with ADAM

optimizer with fixed weights are shown in Table 5.1.3.

Table 5.1.3 ADAM with fixed weights

ADAM Precision (%) Recall (%) F1-Score (%)

Weight Low Med High Low Med High Low Med High

(1, 1, 1) 9.17 31.19 74.66 90.44 94.37 98.85 15.63 43.33 83.77

(5, 3, 1) 5.84 30.64 76.90 93.50 93.36 97.80 10.55 43.09 84.80

Unexpectedly, as shown from Table 5.1.3 and Table 5.1.4, the network

trained with ADABOUND optimizer and fixed weights of (5,3,1) ended up

having higher accuracy than the weights produced from the bivariate normal

70

distribution. The fixed weights were assigned as shown in Figure 5.1.4. Even

without setting weights, having equal weights throughout every cell did

perform well on the high severity, but not as well on low and medium severity.

In terms of accuracy, it was harder to achieve high accuracy as it required both

localization and correct severity classification to be considered as a “correctly

classified pixel”. Thus, this type of application was more complicated than a

simple binary localization of the cracks. Since the ground truth labels were

“imperfect”, the transitional areas between different severity levels and the

transition from non-crack pixels to crack pixels were very easy to be

misclassified. Additionally, the difference in pixel intensity between the crack

with low severity and no crack was barely distinguishable. Hence, cracks with

low severity had the greatest number of false positives among the three

severity levels.

71

Figure 5.1.4 (1,1,1) Weights (left) and (5,3,1) Weights (right) assigned to loss

function

Table 5.1.4 ADABOUND with fixed weights

ADABOUND Precision (%) Recall (%) F1-Score (%)

Weight Low Med High Low Med High Low Med High

(1, 1, 1) 2.76 20.37 74.67 88.49 90.64 98.56 5.21 30.85 83.51

(5, 3, 1) 12.02 42.28 79.76 86.52 97.44 96.07 19.63 55.60 85.89

From Table 5.1.4 and Figure 5.1.5, the numerical evaluation and

sample predictions of the improved CNN with a structured prediction model

when it was trained with weights, and without weights were shown. Even

when the network was trained without any additional weights, the results were

reasonable. However, when the model was trained with weights, the

performance in low and medium severity was improved and the prediction

results had noticeably less number of misclassified pixels. This indicated that

72

the performance of the network was boosted by using a weighted loss function

because the network not only showed a better prediction performance, it also

showed better numerical evaluation results.

The ground truth shown on the left column of Figure 5.1.5 had cracks

labeled on the right end of the image but in fact, it was falsely labeled. By

learning these wrong features, the network can be confused when predicting

similar input pixels. Nonetheless, the network was trained with the majority of

correct labels and the wrongly labeled cracks on the right end were not

detected as crack pixels. Moreover, the image shown on the right column of

Figure 5.1.5 had a dark line along the road lane and this was wrongly

classified as a crack segment with high severity. As mentioned earlier, the

ground truth used in this study was not manually inspected, and some of the

labels were falsely labeled as cracks. Therefore, the network inevitably learned

these features as a crack pixel, making the same mistake as the ground truth.

This was unfortunately unavoidable when the network was trained with

training data with outliers.

73

(a)

(b)

(c)

(d)

Figure 5.1.5 (a) Pavement Image, (b) Given Ground Truth from MTO, (c)

Prediction from CNN with ADABOUND optimizer and weight (1, 1, 1), (d)

Prediction from CNN with ADABOUND optimizer and weight (5, 3, 1) (Low:

Cyan, Medium: Green, High: Orange)

5.2 The effect of optimizers on FCN

In the re-designed FCN, both the SGD optimizer and the ADAM

optimizer was tested with a cross-entropy loss function. Although Long et al.

(2016) showed a reasonable result with SGD optimizer, the ADAM optimizer

was explored in this study to observe the effect of optimizers. In terms of the

training time, there wasn’t a remarkable difference between SGD optimizer

and ADAM optimizer when the same number of epochs were used to train the

74

network. The sample prediction results from FCN with the SGD optimizer and

ADAM optimizer is shown in Figure 5.2.1. As shown in Figure 5.2.1, FCN

with either optimizer successfully captured all the crack segments that can be

seen on the pavement image. Upon visually inspecting the predictions from

these two optimizers, there wasn’t any noticeable difference.

(a)

(b)

(c)

(d)

Figure 5.2.1 (a) Pavement Image, (b) Given Ground Truth from MTO, (c)

Prediction from FCN with SGD optimizer (d) Prediction from FCN with

ADAM optimizer (Low: Cyan, Medium: Green, High: Orange)

The numerical results from FCN with SGD optimizer and ADAM

optimizer is shown in Table 5.2.1. Although the use of the ADAM optimizer

showed a slight deterioration of precision in medium and high-level severity

75

compared with the SGD optimizer, it showed much better precision in low-

level severity. ADAM optimizer achieved ~20% higher precision in low-level

severity than the SGD optimizer. Additionally, recall in low-level severity

improved by ~40%. Consequently, F1-score in low-level severity also

improved by ~24%. However, there were no huge improvements observed in

medium or high-level severity. Regardless of the different optimizers, the

precision in medium-level severity remained around ~60%, and the precision

in high-level severity remained around ~85%. This indicated that the effect of

optimizers was minimal when the cracks were easily distinguished from the

image. Conclusively, FCN performed better when it was trained with ADAM

optimizer.

Table 5.2.1 FCN with SGD optimizer and ADAM optimizer

 Precision (%) Recall (%) F1-Score (%)

 Low Med High Low Med High Low Med High

𝑆𝐺𝐷 7.72 60.34 86.03 9.08 74.94 96.44 8.11 65.02 90.17

𝐴𝐷𝐴𝑀 27.50 59.59 84.23 49.08 89.53 98.63 32.08 68.82 89.89

76

5.3 The effect of optimizers and loss functions on U-Net

The U-Net was re-designed from scratch, and the selection of

optimizers and loss functions were more flexible than FCN. Since the ADAM

optimizer performed better than the SGD optimizer in FCN, the SGD

optimizer was not tested with U-Net. Hence, U-Net was trained with the

following combinations:

1) ADAM optimizer and cross-entropy loss function

2) ADAM optimizer and focal Tversky loss function

3) ADABOUND optimizer and focal Tversky loss function.

The numerical results of these U-Net configurations are shown in Table 5.3.1.

As shown in Table 5.3.1, the biggest change in precision was shown from the

cracks with low-level severities. There were minor changes in cracks with

medium severity and cracks with high severity. Furthermore, the focal

Tversky loss function performed better than the cross-entropy loss function

when U-Net was trained with ADAM optimizer. Therefore, the focal Tversky

loss function was selected to train U-Net with ADABOUND optimizer.

77

Changing the cross-entropy loss function to the focal Tversky loss function

improved the precision of low-level severity by ~14%, but there wasn’t a

remarkable change in medium and high-level severities. Furthermore, when

U-Net was trained with ADABOUND optimizer and focal Tversky loss

function, there were minor improvements on all levels of severities.

Conclusively, altering the optimizer and loss function on U-Net did have an

effect on the cracks with low and medium severity, but the cracks with high-

level severity stayed little above 80% in precision, regardless of different

optimizers and loss functions.

Table 5.3.1 U-Net trained with ADAM optimizer and cross-entropy loss

function; ADAM optimizer and focal Tversky loss function; ADABOUND

optimizer and focal Tversky loss function

In Figure 5.3.1, a couple of examples were taken from the test images.

As shown in the left column of Figure 5.3.1, there were few noise pixels found

 Precision (%) Recall (%) F1-Score (%)

Optimizer Loss Low Med High Low Med High Low Med High

ADAM Cross-Entropy 18.76 54.70 84.53 29.28 79.27 98.40 20.76 61.61 90.08

ADAM Focal-Tversky 32.61 57.68 82.04 52.46 83.95 98.48 37.21 65.65 88.45

ADABOUND Focal-Tversky 34.12 61.31 82.60 61.42 87.62 98.70 40.06 69.97 89.07

78

when the U-Net was trained with ADAM optimizer, but there weren’t any

noise pixels found when trained with ADABOUND optimizer. In general, U-

Net predictions had a smoother shape of the cracks than the ground truth itself.

From the test image shown on the left column of Figure 5.3.1, there were

some dark noisy pixels found on the left side of the image, but U-Net

successfully neglected these noises. Similarly, the test image shown on the

right column of Figure 5.3.1 had noises on the right side of the image and U-

Net did not classify any of these noises as crack pixels. Again, the localized

shape of the crack segment was more naturally detected than the ground truth.

Furthermore, the ground truth often had multiple alternating severity levels

along the crack segment, especially when the crack had a curved shape. This

behavior indicates that the ground truth was very sensitive to change in

severity levels. Ultimately, U-Net prediction did classify the majority of the

crack pixels into proper severity levels, but the sensitive ground truth

restrained the precision to be higher. Conclusively, U-Net showed the best

prediction results when it was trained with ADABOUND optimizer and focal

Tversky loss function.

79

(a)

(b)

(c)

(d)

(e)

Figure 5.3.1 (a) Pavement Image, (b) Given Ground Truth from MTO, (c)

Prediction from U-Net with ADAM optimizer and Cross-Entropy loss, (d)

Prediction from U-Net with ADAM optimizer and Focal-Tversky loss (e)

Prediction from U-Net with ADABOUND optimizer and Focal-Tversky loss

(Low: Cyan, Medium: Green, High: Orange)

5.4 The effect of activation functions and optimizers on Attention U-

Net

As proven from the experiments performed on U-Net, focal Tversky

was proven to perform better than a typical cross-entropy loss function. Hence,

80

only the optimizers were changed in attention U-Net experiments to observe

the effect of optimizers. Initially, the ADAM optimizer was used to train the

attention U-Net and it produced a similar result as U-Net when it was trained

with ADABOUND and focal Tversky loss function. When U-Net and

attention U-Net was trained with identical optimizer and loss function, there

was a slight improvement shown in attention U-Net, but the improvement was

not as dramatic as expected. As observed in Table 5.4.1, different activation

functions were attempted. Commonly, segmentation approaches including

FCN and U-Net used softmax function because the last layer was a

convolution layer with a 1x1 filter size, and each pixel in the image was

convoluted once at a time. However, the use of the sigmoid function also

served its purpose, but it did not show any noticeable changes from using a

softmax function. Hence, for the sake of consistency with other segmentation

approaches, softmax was preferred over the sigmoid activation function.

81

Table 5.4.1 Attention U-Net trained with ADAM optimizer and softmax

function; ADABOUND optimizer and softmax function; ADABOUND

optimizer and sigmoid function

As mentioned earlier, the ground truth did not have precise labels for

all the crack segments. As shown in Figure 5.4.1, there were discontinuous

crack labels where it should have been continuous and vice versa. From the

test image shown on the left column of Figure 5.4.1, the bottom left crack

segment from the ground truth had labeled a part of it as high severity, but

upon inspecting the test image, it looked more like a low or medium severity

crack segment. Since the ground truth was generated using the raw data file

that was collected based on multiple sensors including laser measurement,

other aspects such as the depth of the cracks may have been deep enough to be

classified as a high severity crack segment. However, the neural networks

were only provided with a single channel camera simulated images, thus their

resources were restricted to the pixel intensity. When the attention U-Net was

 Precision (%) Recall (%) F1-Score (%)

Activation Optimizer Low Med High Low Med High Low Med High

Softmax ADAM 34.98 62.32 83.48 77.25 92.77 98.68 43.95 72.31 89.63

Softmax ADABOUND 36.03 60.39 84.58 54.89 94.11 98.14 40.53 71.27 89.95

Sigmoid ADABOUND 38.55 61.79 82.03 64.57 89.04 98.94 44.07 70.52 88.84

82

trained with ADAM optimizer and softmax function, the predictions were a

little coarser than when the network was trained with ADABOUND optimizer.

(a)

(b)

(c)

(d)

(e)

Figure 5.4.1 (a) Pavement Image, (b) Given Ground Truth from MTO, (c)

Prediction from Attention U-Net with ADAM optimizer and softmax function,

(d) Prediction from Attention U-Net with ADABOUND optimizer and softmax

function (e) Prediction from Attention U-Net with ADABOUND optimizer and

sigmoid function (Low: Cyan, Medium: Green, High: Orange)

The images shown in Figure 5.4.2 were extracted from Figure 5.4.1 to analyze

the details of the prediction results. Although the precision itself did not have a

83

huge difference between different optimizers, some details differentiated

between them. The prediction produced from the attention U-Net with ADAM

optimizer had a spike outside the boundary of the crack segment, where the

prediction produced from the attention U-Net with ADABOUND optimizer

did not have such a spike. In general, the ADABOUND optimizer produced a

more stable segmentation map than the ADAM optimizer, even though the

numerical evaluation results were similar.

(a) (b) (c)

Figure 5.4.2 (a) Given Ground Truth from MTO, (b) Prediction from Attention

U-Net with ADAM optimizer and softmax function, (c) Prediction from

Attention U-Net with ADABOUND optimizer and softmax function (Low:

Cyan, Medium: Green, High: Orange)

84

Chapter Six: Conclusion

In this research, various convolution-based deep neural networks were

improved and re-constructed with various loss functions and optimizers to

serve the purpose of crack detection from pavement images. To localize the

cracks and classify their severity levels, the CNN with a structured prediction

was improved by replacing the loss function with a weighted loss function to

assign more weight towards the center pixel of the image patch. Moreover, the

improved CNN with structured prediction performed multi-class classification,

where the original approach was limited to the binary classification. With the

weighted loss function, the network can effectively employ the spatial

correlation between the pixels. After multiple experiments, the fixed weights

of 5, 3, 1 showed a higher precision than the weights assigned by a bivariate

normal distribution. The improved CNN with structured prediction showed the

best performance when it was trained with ADABOUND optimizer and

weighted cross-entropy loss function. Hence, the improved CNN with a

structured prediction achieved the final precision of 12.02%, 42.28%, and

79.76% for cracks with the severity levels of the low, medium, and high,

respectively. Consequently, it resulted in the F1 score of 19.63%, 55.60%,

85.89% for cracks with the severity levels of the low, medium, and high,

respectively.

85

Although the improved version of CNN with a structured prediction

served its purpose to fulfill the goal of this research, it had limitations of

having false positive pixels around the actual crack segments and the average

prediction time was as long as ~80 s to predict a single image of size 160x576

pixels because this approach required both pre-processing and post-processing.

To resolve these issues, deep learning segmentation approaches including

FCN, U-Net, and attention U-Net was re-designed and implemented for the

first time in crack detection on paved roads. Since FCN, U-Net, and attention

U-Net takes in the entire image and directly outputs a segmentation map of the

same size as the inputted image, there wasn’t any pre-processing or post-

processing required for these approaches. Hence, on average, FCN took ~1 s,

U-Net, and attention U-Net took ~0.1 s to predict an image of size 160x567

pixels. Also, there were far a smaller number of noise pixels detected through

these approaches compared with the improved CNN with a structured

prediction.

The FCN was implemented based on the pre-trained VGG-16, and as

expected, FCN showed a smaller number of misclassifications and was free

from noise pixels compared with the improved CNN with structured

prediction. Upon analyzing the effect of optimizers on FCN, it showed better

performance when it was trained with ADAM optimizer than the SGD

86

optimizer. Ultimately, FCN showed good precision of 27.50%, 59.59%, and

84.23% for cracks with the severity levels of the low, medium, and high,

respectively. Additionally, it resulted in the F1 score of 32.08%, 68.82%,

89.89% for cracks with the severity levels of the low, medium, and high,

respectively.

Furthermore, U-Net was re-designed and trained with different

optimizers and loss functions. U-Net was trained with the following

combinations: ADAM optimizer and cross-entropy loss function; ADAM

optimizer and focal Tversky loss function; ADABOUND optimizer and focal

Tversky loss function. Due to the nature of paved roads, the actual crack

pixels only consisted of a few percentages of the entire image. Therefore, the

focal Tversky loss function remediated the severe class imbalance issue.

Conclusively, U-Net showed the best performance when it was trained with

ADABOUND optimizer and focal Tversky loss function. Not only U-Net

achieved a high precision of 34.12%, 61.31%, and 82.60% for cracks with the

severity levels of the low, medium, and high, respectively, it also predicted the

given test image much faster. Moreover, it resulted in the F1 score of 40.06%,

69.97%, 89.07% for cracks with the severity levels of the low, medium, and

high, respectively.

87

Despite the good representational power from these networks, these

architectures relied on multi-stage cascaded CNNs when the target varied in

shape and size. These cascaded frameworks were used to extract a specific

region of interest and make corresponding dense predictions on that particular

region of interest. However, this cascaded process led to excessive and

redundant use of computational resources and model parameters. For instance,

multiple similar low-level features were repeatedly extracted by all models

within the cascade. Thus, attention gates were introduced to the U-Net and this

network was known as the attention U-Net. From the attention gates, the

network can filter out the unnecessary region of the image and focus on the

region of interest more efficiently. Along with the attention gates, the focal

Tversky loss function was used to support solving the class imbalance issue.

Hence, attention U-Net was tested with the following configurations: softmax

function and ADAM optimizer; softmax function and ADABOUND optimizer;

sigmoid function and ADABOUND optimizer. Among these configurations,

attention U-Net showed the best performance when it was trained with

softmax function and ADABOUND optimizer.

Although the attention U-Net achieved the highest precision amongst

all the approaches attempted in this study, it did not show dramatic

improvement from the U-Net results. The purpose of attention gates was to

88

filter out the unnecessary background and only focus on the region of interest,

but unlike the original medical segmentation application of attention U-Net,

the cracks are usually spread out through the entire pavement and the width of

these cracks are usually very thin. Thus, these properties of cracks may have

challenged the network to properly select the region of interest. Conclusively,

attention U-Net achieved the highest precision of 36.03%, 60.39%, and 84.58%

for cracks with the severity levels of the low, medium, and high, respectively.

Also, it resulted in the F1 score of 40.53%, 71.27%, 89.95% for cracks with

the severity levels of the low, medium, and high, respectively.

Although the dataset provided for this research was limited to the

range of laser data, the results from different neural networks showed an

outstanding performance. Therefore, the performance of the networks would

potentially improve if they had RGB channel camera-based images to extract

more valuable and realistic features. As previously mentioned, there were

some uncertainties on the ground truth labels because they were generated

based on the traditional machine learning algorithms. These uncertainties can

be dealt with by manually inspecting each image and minimize the

misclassifications. Alternatively, one can use the active learning algorithm

(Settles, 2009) to improve the quality of the labels more efficiently.

Essentially, the active learning algorithm excludes the uncertain labels and the

89

model is trained with the labels with high confidence. Hence, the labels with

low confidence are set aside for human annotators to manually inspect them.

Then, these inspected ground truth data is fed back to the model to improve

the quality of the labels.

Furthermore, the potential for deep learning techniques in pavement

application has been proven from this research. Hence, alternative neural

networks can be applied for better performance. For instance, using multiple

CNN models could potentially work better than a single CNN model. As an

example, the concatenated multi-model CNN approaches such as 2D FCN

(Cai et al., 2017), Holistically Nested 2D FCN Stage (Roth et al., 2018), and

multi-model 2D FCN (Zhou et al., 2017) showed a competitive outcome in CT

pancreas segmentation application. Thus, there are various deep learning

architectures with different configurations that can be applied and there is no

right answer for which network would work best for any specific applications.

90

Bibliography

(1) Abraham, N., and Khan N. M. "A novel focal tversky loss function with

improved attention u-net for lesion segmentation." 2019 IEEE 16th

International Symposium on Biomedical Imaging (ISBI 2019). IEEE, 2019.

(2) Amhaz, R., et al. "Automatic crack detection on two-dimensional

pavement images: An algorithm based on minimal path selection." IEEE

Transactions on Intelligent Transportation Systems 17.10 (2016): 2718-

2729.

(3) Bahdanau, D., Cho, K., and Bengio, Y. "Neural machine translation by

jointly learning to align and translate." arXiv preprint

arXiv:1409.0473 (2014).

(4) Bennett, C., Hernán, S., and Alondra, C. “Data collection technologies for

road management.”, 2006.

(5) Cafiso, S., Alessandro, G., and Sebastiano, B. “Evaluation of pavement

surface distress using digital image collection and analysis.”, Seventh

International congress on advances in civil Engineering. 2006.

(6) Cafiso, S. et al. "From manual to automatic pavement distress detection

and classification." 2017 5th IEEE International Conference on Models

91

and Technologies for Intelligent Transportation Systems (MT-ITS). IEEE,

2017.

(7) Cai, J., Lu, L., Xie, Y., Xing, F., Yang, L. “Improving deep pancreas

segmentation in CT and MRI images via recurrent neural contextual

learning and direct loss function.”, In: MICCAI

(8) Chandra, A. L. “Perceptron: The Artificial Neuron.” Medium, Towards

Data Science, 11 Aug. 2018, towardsdatascience.com/perceptron-the-

artificial-neuron-4d8c70d5cc8d.

(9) Davis, J. "Preventing and repairing potholes and pavement

cracks." Asphalt 26.2 (2011).

(10) Fan, Z., et al. "Automatic pavement crack detection based on

structured prediction with the convolutional neural network." arXiv

preprint arXiv:1802.02208 (2018).

(11) Gkovedarou, M., and I. Brilakis. "ROAD ASSET CLASSIFICATION

SYSTEM." 2019 European Conference on Computing in Construction

(2019). DOI: 10.35490/EC3.2019.135

(12) Hubel, D., and T., W. "Shape and arrangement of columns in cat's

striate cortex." The Journal of physiology 165.3 (1963): 559-568.

http://www.doi.org/10.35490/EC3.2019.135

92

(13) Jing, L., and Zang A. "Pavement crack distress detection based on

image analysis." 2010 International Conference on Machine Vision and

Human-machine Interface. IEEE, 2010.

(14) Jung, W., et al. “Exploitation of Deep Learning in the Automatic

Detection of Cracks on Paved Roads.”, Geomatica, vol. 73, no. 2, 5 Oct.

2019, pp. 29–44., doi:10.1139/geomat-2019-0008.

(15) Kapela, R., et al. "Asphalt surfaced pavement cracks detection based

on histograms of oriented gradients." 2015 22nd International Conference

Mixed Design of Integrated Circuits & Systems (MIXDES). IEEE, 2015.

(16) Kingma, D. P., and Ba, J. "Adam: A method for stochastic

optimization." arXiv preprint arXiv:1412.6980 (2014).

(17) Krizhevsky, A, Ilya S., and Geoffrey H. "Imagenet classification with

deep convolutional neural networks." Advances in neural information

processing systems. 2012.

(18) LeCun, Y., and Yoshua B. "Convolutional networks for images,

speech, and time series." The handbook of brain theory and neural

networks 3361.10 (1995): 1995.

(19) LeCun, Y., et al. "Backpropagation applied to handwritten zip code

recognition." Neural computation 1.4 (1989): 541-551.

93

(20) Lin, T., et al. "Focal loss for dense object detection." Proceedings of

the IEEE international conference on computer vision. 2017.

(21) Luo, L., et al. "Adaptive gradient methods with dynamic bound of

learning rate." arXiv preprint arXiv:1902.09843 (2019).

(22) Luo, L., et al. "Learning personalized end-to-end goal-oriented

dialog." Proceedings of the AAAI Conference on Artificial Intelligence.

Vol. 33. 2019.

(23) Luong, M., Pham, H., and Manning, C. "Effective approaches to

attention-based neural machine translation." arXiv preprint

arXiv:1508.04025 (2015).

(24) Mao, X., et al. "Hierarchical CNN for traffic sign recognition." 2016

IEEE Intelligent Vehicles Symposium (IV). IEEE, 2016.

(25) McGhee, K. “Automated pavement distress collection techniques.”,

Vol. 334. Transportation Research Board, 2004.

(26) Miller, J., and William Y. “Distress identification manual for the long-

term pavement performance program.” No. FHWA-HRT-13-092, United

States. Federal Highway Administration. Office of Infrastructure Research

and Development, 2014.

94

(27) MTO, “Manual for Condition Rating of Flexible Pavements”, Distress

Manifestations,

http://www.ontla.on.ca/library/repository/mon/30005/334942.pdf (2016)

(28) Murakami, T., et al. “High spatial resolution LIDAR for detection of

cracks on tunnel surfaces.” CLEO: Applications and Technology. Optical

Society of America, 2018.

(29) Nair, V., and Geoffrey H. "Rectified linear units improve restricted

boltzmann machines." Proceedings of the 27th international conference on

machine learning (ICML-10). 2010.

(30) Oktay, O., et al. "Attention u-net: Learning where to look for the

pancreas." arXiv preprint arXiv:1804.03999 (2018).

(31) Oliveira, H., and Paulo C. "Automatic road crack detection and

characterization." IEEE Transactions on Intelligent Transportation

Systems 14.1 (2012): 155-168.

(32) Ouyang, A., Chagen L., and Chao Z. "Surface distresses detection of

pavement based on digital image processing." International Conference on

Computer and Computing Technologies in Agriculture. Springer, Berlin,

Heidelberg, 2010.

(33) Reddi, S. J., Kale, S., and Kumar, S. "On the convergence of adam and

beyond." arXiv preprint arXiv:1904.09237 (2019).

95

(34) Robbins, H., and Monro, S. "A stochastic approximation method." The

annals of mathematical statistics (1951): 400-407.

(35) Ronneberger, O., Fischer, P., and Brox, T. "U-Net: Convolutional

networks for biomedical image segmentation." International Conference

on Medical image computing and computer-assisted intervention. Springer,

Cham, 2015.

(36) Rosenblatt, F. "The perceptron: a probabilistic model for information

storage and organization in the brain." Psychological review 65.6 (1958):

386.

(37) Roth, H.R. et al. “Spatial aggregation of holistically-nested

convolutional neural networks for automated pancreas localization and

segmentation.”, Medical Image Analysis 45, 94 – 107

(38) Rumelhart, D., Geoffrey H., and Ronald W. "Learning representations

by back-propagating errors." nature 323.6088 (1986): 533-536.

(39) Settles, Burr. Active learning literature survey. University of

Wisconsin-Madison Department of Computer Sciences, 2009.

(40) Shi, Y., et al. "Automatic road crack detection using random structured

forests." IEEE Transactions on Intelligent Transportation Systems 17.12

(2016): 3434-3445.

96

(41) Simonyan, K., and Zisserman, A. "Very deep convolutional networks

for large-scale image recognition." arXiv preprint arXiv:1409.1556 (2014).

(42) Sudre, C., et al. "Generalised dice overlap as a deep learning loss

function for highly unbalanced segmentations." Deep learning in medical

image analysis and multimodal learning for clinical decision support.

Springer, Cham, 2017. 240-248.

(43) Swan, D. J., P. Eng, and M. Eng. "Fugro Roadware." (2014).

(44) Szegedy, C., et al. "Going deeper with convolutions." Proceedings of

the IEEE conference on computer vision and pattern recognition. 2015.

(45) Teomete, E., et al. “Digital image processing for pavement distress

analyses.”, Proceedings of the Mid-Continent Transportation Research

Symposium. 2005.

(46) Wilson, A. C., et al. "The marginal value of adaptive gradient methods

in machine learning." Advances in Neural Information Processing Systems.

2017.

(47) Wu, Y., and He, K. "Group normalization." Proceedings of the

European Conference on Computer Vision (ECCV). 2018.

(48) Yu, S., et al. “3D reconstruction of road surfaces using an integrated

multi-sensory approach.”, Optics and lasers in engineering 45.7 (2007):

808-818.

97

(49) Yu, Y., et al. “3D crack skeleton extraction from mobile LiDAR point

clouds.”, 2014 IEEE Geoscience and Remote Sensing Symposium. IEEE,

2014.

(50) Yusof, N. A. M., et al. "Crack Detection and Classification in Asphalt

Pavement Images using Deep Convolution Neural Network." 2018 8th

IEEE International Conference on Control System, Computing and

Engineering (ICCSCE). IEEE, 2018.

(51) Zeiler, M., and Rob F. "Visualizing and understanding convolutional

networks." European conference on computer vision. Springer, Cham,

2014.

(52) Zhang, W., et al. “Automatic crack detection and classification method

for subway tunnel safety monitoring.”, Sensors 14.10 (2014): 19307-

19328.

(53) Zhou, Yuyin, et al. "A fixed-point model for pancreas segmentation in

abdominal CT scans." International conference on medical image

computing and computer-assisted intervention. Springer, Cham, 2017.

