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ABSTRACT 

Twenty-four upland hardwood forests were eramined to determine the influence of plant dispersa1 

and environmentai heterogeneity on the composition and richness of species in the forest understory 

Patterns in the dispersal attributes of established plants were evaluated in relation to associated plant 

traits. microhabitats on the forest floor. and rneasured or inferred gradients in the availability of 

moisture. nutnents and light. 

Plant attributes that ma~imally explained differenccs in species richness were mode of dispersal. 

habitat affinity. life form. shade tolerance. and moisture affinity. Environmental variables that 

ma-imally explained species richness were stand structure. soi1 moisture and soi1 parent material. 

Species richness was strongly influenced by sugar maple abundance and declined sharpl y on mesic. 

calcium-rich soils. 

In this study. modes of dispersal were strongly correlated with plant traits and habitat factors that 

govem germination. establishment and persistence. The contribution of dispersal and environmental 

processes io species nchness could not be distinguished. statisticall y.  
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1.0 INTRODUCTION 

The question. "Why do some places have more species than others?". has attracted attention 

throughout the history of ecology. One reason for this is that the answer one gives both reflects. and 

informs. one's understanding of the fundamental processes that govem the distribution and 

abundance of organisms. A core issue since the late 1 950's has been the identification of processes 

that allow numerous species to coexist in the same environment. Classical models of species 

interactions (Grinnell 1904. Volterra 1926. Gause 1934) predict that two similar species cannot 

coexist indefinitely on a single limiting resource in a uniform environment. In the presence of such 

conditions. one species should eventuallp displacr the other and the assemblage should be reduced 

to a single species (Hutchinson 1957. 1959: Hardin 1 960). How is it. then. that so rnany natural 

habitats are species-rich? 

One productive approach to this question has been to esamine the assumptions of the classical 

models: what happens if species are not "similar". if interactions do not procred to tiquilibrium. if 

there is more than one limiting resource. or. if the environment is not spatially or temporally 

uni form. This research effort has generated a vast literature and many alternative explmations (see 

Chapter 4 and reviews by Conne11 1978. Huston 1979. Pickett 1980. Sousa 1984. Petraitis et ui. 

1989. Hart and Horowitz 199 1. Tilrnan and Pacala 1993. Ricklefs and Schluter 1993. Huston 1994. 

Palmer 1994. Heywood 1995. Grace 1999). Despite this effort. a synthetic understanding that 

applirs at al1 spatial and temporal scales has not been achieved. 

In terrestrial plant communities. a broad consensus has cmerged that the environrnent is not spatially 

and temporally uniform. Under these conditions. hetrrogeneity in limiting resources is expected to 

prornote species coexistence by increasing the probability that there will be some place. or tirne. 

where one's cornpetitors perform poorly or do not survive and where populations of one's o w  kind 

may expand (Hutchinson 196 1. Levin 1974. Warner and Chesson 1985. Comins and Noble 1985. 

H m  and Pacala 1995). Implicit in this perspective is the expectation that differences in plant traits 

will lead to pattern in the distribution of species and variability in the composition and dynarnics of 

plant assemblages (Whittaker 1956. Grubb 1977. Tilman 1982. Chesson 1986). 



The spatial and temporal scales at which heterogeneity contributes to specirs diversitp. and to 

species coexistence. have not been resolved (cf. Pacala and Silander 1985. Ricklefs 1987. Comell 

and Lawton 1992. Holmes and Willson 1998. Cain er cri. 2000). A long-standing presumption has 

been that intcractions among local species and the physical environment are the principal means by 

which plant and animal assemblages are structured (Ricklefs 1987). If truc. then the composition 

and richness of a given assemblage may be explainrd solely by reference to processes operating 

within the local patch. The divenit? of specirs. howwr.  often fails to converge under similar 

conditions. sugyesting that regional and historical processes. as well as unique events and 

circumstances. are important contri butors !O çonimuni ty structure ( Ricklefs 1 987. Comell and 

Lau-ton 1992. Ricklefs and Schluter 1993 ). 

One spatial process that is expccted to influence the coinposition and richness of plant assemblages 

is dispersal. Dispersal is predicted to have profound coiisrquences for populations and conimunities 

since it governs the s i x  and composition of the sced rain i Clark and Yi 1995 ). affects the probability 

that diaspore will land in a site suitable for germination i Harper 1977. Sorensen 1978. Venable and 

Levin 1983). determines the initial conditions thar st.cils and seedlinys must confront (Schupp and 

Fuentes 1995). affects the initial spatial arny of indiïiduals in a population (Thiede and Augspuryer 

1993). determines who interacts with whom and u itti what intensity ( Schmidn and Ellnsr 1984. 

PacaIa 1986. Silander and Pacala 1990. Rees 1996. Rws rr cri. 1 996). inkluences local extinction 

rates by affecting the probability that declining or estirpated populations are rrscued ( Brown and 

Kodric-Brown 1977. Holt 1993). intluences the rate rit which plants colonize new habitat (tlalpern 

et c d .  1990. Matlack 1994. Kotanen 1997. Brunet and von Oheimb 1998) and the sequence in which 

they arrive (Drake 199 1. Fastie 1995 1. and. intluences the levei of Bene tlow within and between 

populations and thus the degree tn which neighboring plants are related (Williams and Guritts 1994) 

and genetic variation is stmctured spatially (Levin 198 1 .  Hamnck and Godt 1997. Hamrick er cri. 

1993). 

The contribution of dispersal to observed difkrences in the composition and richness of individual 

habitats and plant assemblages. however. is poorly understood. One reason for this is the logistic 



challenge of monitoring the dispersal of seeds and spores. Diaspores are typicallp releascd through 

time and often by means and over distances that cannot be readily observed. Despite a concerted 

effort to determine the dispersa1 reach of'species (Apprndix 1 1 ). uncertainty remains regarding the 

proportion of diaspores that land bepond the immediate vicinity of the maternai plant (Portnoy and 

Willson 1993) and regarding the frequency and importaiict. of longer-distance dispersai events (Cain 

et trl. 20001. 

One way fonvard has been the use of indirect measures. such as the proportion of rstablished taxa 

dispersed by a given mode. to characterizr the dispersa1 spectra associatcd with particular habitats 

(Dansereau and Lems 1957. Frenkel 1970. Pojar 1974. I.ufensteiner 1979. Ellner and Shmida 198 1. 

Hoehne 1981. hlonon and tiogg 1989. Willson er d. 1990) and plant traits (Westobp <ri .  1990. 

Hughes ei cil. 1994. Leishman et trl. 1995. blabry C I  LI/. 2000). The data fiom thesc studies. whilc 

limited. have found pattern in the relative frequency of dispersa1 modes and broad similarities in the 

dispersal spectra of similar habitats. In the temperatc iivests of eastem North America. dispersal by 

animal ingestion. unassistcd means. and wind is tyically more tiequent than dispersal by anis. 

animal adhrsion and mechanical expulsion (Table 1 . 1 . ) .  Thc tasa of wetland and disturbrd habitats. 

in contrast. may typically be dispersed by the wind. 

The use of indirect measures. however. rnakes i t  diftkxilt to determine whrther the pattern in the 

distribution and composition of species is duc to the failure of sreds to land there (dispersal 

limitation). ferminate there (recruitment limitation). or. pcrsist thrrr (sun,ival limitation) (Schupp 

and Fuentes 1995). This creates a measure of uncrrtainty with respect to causation and ambiguit): 

with respect to the contribution of plant traits thar ma>- be correlated with dispersal. Pattern in the 

dispersal attributes ofestablished plant assemblages. therefore. may be inherently ambiguous with 

respect to the mechanisms that give rise to it. 

Those who wish to examine the contribution of dispersal at the scale of habitats and landscapes 

reluctantlp accept such mbiguity in the espectation that pattem revealed through the use of indirect 

methods wivill provide a starting point for future research with more revealing methods. 



Table 1 .  I Comparison ofdispersal spectra in plant çonimunities of broadly siniilar structure in eastcrn North America. Cell entries = mean 
percent of flora (r~.Scrrncrs I ,2,3,  this study); niediün percent offlora (refereoce 4). n = nuniber of stands. Modes of dispersal: AI=animal 
ingestion, AA=aninial adhesion, AC=aninial çonveyance (ants), A(.s.l.)=aninial dispersed; ME=n~eclianical expulsion, U=unassisted, 
O=other (itian). Sources: 1. Dansereau and Lems 1 957; 2. tloehne 198 1 ; 3. Morton and 1-logg 1 989; 4. Willsoii Cr rd. 1990. See original 
sources for details regarding s i x  and attributes of the sanipled flora. 
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The principal motivation for this thesis has been to gain a clearer understanding of the roles of 

dispersal and environmental heterogeneity in structuring the composition and richness of species in 

the forest understory. The forests in this study are isolated fragments of the pre-settlement forest of 

the Huron-Ontario Section of the Great Lakes - St. Law~ence Forest Region (Rowe 1972). The 

effects of forest fragmentation are considered only briefly. however. since the methods of the thesis 

cannot readily distinguish their effects from the effects of within-patch processes. 

Objectives of the Thesis 

i) 

i i) 

iii) 

To characterize the dispersa1 profile of established plants in the understory of sampled forest 

patches; 

To identify the environmental factors and plant traits that best explain observed differences 

in the composition and richness of established plants in the understory of sampled forest 

patc hes; 

To compare the degree to which environmental facton and plant traits explain observed 

differences in species richness in the understory of sampled forest patches. 

General Approach 

In keeping with recent studies. the principal method for investigating the influence of dispersal on 

plant assemblages will be the comparison of the proportion of tâua dispersed by a given mode in 

contrasting habitats and environmental States. Ambiguitp with respect to causal facton remains but 

has been minimized by recording the distribution of species in relation to uniform microhabitats and 

by considering the contribution of associated plant traits that may independently influence the 

distribution of species or constrain the mode of dispersal. The latter method draws on long-standing 

initiatives to identiG and evaluate pattern in relation to species groups with similar structural or 

functional traits (e.g. Raunkiaer 1934, Root 1967. MacArthur and Wilson 196% Grime 1977. Noble 

and Slayter 1980. Willson et al. 1990, Leishman and Westoby 1992, Smith ei al. 1997). 



The first objective of the thesis was achieved by conducting a spring and summer survey of twenty- 

four forest patches in the general vicinity of Peterborough, Ontario. and. by characterizing the 

apparent mode of dispersa1 of 413 species of vascular plants in relation to the rnorphology and 

known properties of the diaspore. Plant traits that may independently influence the distribution of 

species or modes of dispersal were also characterized with reference to published sources. 

The vegetation survey was conducted in relation to a field-based classification of microhabitats that 

characterized uniform conditions within each 10m K 1 O r n  quadrat with respect to canopy closure. 

soi1 moisture. substrate. and disturbance. This approach provided insight into the scale of spatial 

heterogeneity within the forest and the degree to which this heterogeneity was associated with 

differences in species composition. richness. and Functional traits. 

The second objective of the thesis was achieved by collecting soi1 sarnples and field data to 

characterize the moisture and fertility of forest soils. the composition and structure of forest trees. 

and site disturbance. The base cation status. soil pH and percent soil organic matter were determined 

by laboratory analysis: percent canopy closure was determined by hemispherical photography. 

Pattern in the composition and distribution of species and plant traits was evaluated by detrended 

correspondence analysis (DCA) and canonical correspondence analysis (CCA). The degree to which 

environmental variables and plant traits explained differences in species richness in 10m x 10m 

quadrats was determined by simple linear regression. 

The third objective of the thesis was achirved by multiple linear regression and detrended 

correspondence analysis (DCA). The latter analysis. suggested by Dr. R. Hansell. Institute of 

Environmental Studies. University of Toronto. provided a graphical method for detemining the 

degree to which environmental and dispersal variables accounted for the same fraction of variance 

summarized by multiple linear regression. 

Structure of the Thesis 

Chapter 2 describes the sampling protocol and methods associated with the vegetation survey and 



environmental inventory; summarizes the relationships among key environmental variables: and. 

identifies the environmental factors and plant traits that influence the distribution and composition 

of species in the forest understory. 

Chapter 3 describes the procedure for classifying modes of dispersa1 and plant traits: and. identifies 

patterns in the distribution of dispersa1 modes in relation to life fom. life history. provenance. 

modality. b i t  type. taxonomie rank. habitat affinity. environmental gradients. rnicrohabitats. species 

frequency class. species richness class. plant cover class. patch size. and. patch isolation. 

Chapter 4 describes the methods for identifying and comparing the contribution of variables to 

species richness: and. identifies the degree to which environmental variables and plant traits 

individually. and collectively. explain observed diffrrences in species richness in 10m .u IOm 

quadrats. 

Chapter 5 presents the principal findings and conclusions of the thesis. 

Chapter 6 summarizes the cited literature. 

Appendices: Supponing information original to the thesis is presented in Appendices 1 to 10. 

Contextual information compiled from secondary sources is presented in Appendices I 1 to 14. 



2.0 ENVIRONMENTAL PATTERNS 

2.1 Introduction 

Spatial and temporal heterogeneity in conditions that govern the germination, establishment. growth 

and reproduction of plants is a stnking Feature of natural environments. In the presence of 

heterogeneity. differences in plant traits are expected to create pattern in the distribution of species 

and variability in the composition and dynamics of plant assemblages (Whittaker 1956. Levin 1974. 

Grubb 1 977. Tilrnan 1 982. Chesson 1 986). Variation in the availability of limiting resources is 

expected to promote species coexistence by increasing the probability that there will be sorne place. 

or time, where cornpetiton perform poorly or do not survive and where populations of low 

abundance may expand (Hutchinson 1961. Levin 1974. Wamer and Chesson 1985. Comins and 

Noble 1985. Hurtt and Pacala 1995). Coexistence under these circumstances requires that species 

be ecologically distinct since the populations of rare species cannot othenvise expand in the presence 

of species that are more abundant (Chesson 199 1. Pacala and Tilman 1994). 

In the temperate forests of eastem North Amenca. environmental heterogeneity may be created at 

a variety of spatial and temporal scales. Influentid procrsses that opente at large spatial or temporal 

scales include glaciation (Hills 1952. Peet and Christensen 1980. Howell and Vankat 198 1 ). 

pedogenesis (McFadden et al. 1994. Reich er al. 1997). plant migration (Davis 198 1 a). succession 

(Glenn-Lewin rt cd. 1992). forest stand development ( Oliver and Larson 1996). periodic outbreaks 

of pathogens (Davis 1981 b. Peny and Moore 1987). periodic storm events (Oliver and Stephens 

1977. Frelich and Lonmer 199 1 ), periodic extremes in precipitation and temperature (Tilman and 

Downing 1994). periodic fire events (Nowacki et cil. 1990. Reich et cil. 1990). chance colonization 

events and sequences (Drake 199 1. Fastie 1995). vegetation and soi1 feed-back pmcesses (Watt 

1947. Fox 1977. Pastor et al. 1984. Frelich et al. 1993). and. past land use practices (Pettit et al. 

1995. Motzin et al. 1996). 

In contrast. processes that operate at small spatial scales. and over short time frames. are typically 

plant-based processes such as the uptake of moisture and nutrients (Tilrnan 1982. 1988: Roberston 

et al. 1988). dispersa1 (Levin 1976, Roughgarden 1977. Pacala 1987. Portnoy and Willson 1993). 



germination (Grubb 1977,1986), recruitment (HUM and Pacala 1999, the creation of space through 

plant death (Chesson and Warner 198 1. Tilman 1994). competitive interactions (Goldberg and 

Barton 1992. Gurevitch e t  al. 1992. Bengtsson et al. 1994). and. herbivory (Whitney 1984). 

In the northem hardwood forest, an important source of heterogeneity is the forest canopy. Canopy 

trees influence the quantity. spectral quality and phenology of light received at the forest floor 

(Minkler and Woerhiede 1965. Hom 1971. 1975. Brewer 1980. Messier and Bellefleur 1988. 

Canharn et  ai. 1990. Canham and Burbank 1994). the availability of nutrients and moisture in the 

rooting zone of forest soils (Aber rr al. 199 1. Pastor and Post 1986. Zinke 1962. Crozier and Boemer 

1984.1986. Leininger and Winner 1988. Boemer and Koslowsky 1989). the quantity and quality of 

coarse woody debris on the forest floor (Hannon rr al. 1986. Hale and Pastor 19%). the probability 

and size of tree pits created during wind-throw events ( Putz et u1. 1 983). and the timing and size of 

gaps in the forest canopy (Lorimer et al. 1988. Liximer 1989. Frelich and Lorimer 199 1 ). 

Mechanisrns that contribute to thesr effects include diffcrences in canopy architecture (Hom 197 1 ). 

seasonal patterns of development and senescence (Braver 1980). tissue and leaf litter chemistry 

(Vitousek 1982. Melillo et cil. 1982). mechanical firmness (Mergen i 954). response to wind-throw 

(Beatty and Stone 1986). and life span (Lorimer 1989). 

The spatial scale at which heterogeneity contributes to species coexistence is influenced by the 

dispersal properties of potentially competing plants. For rnost plants. the fraction of propagules 

dispersed beyond the imrnediate vicinity of the parent declines sharply with distance. creating seed 

dispersal curves with long tails (Portnoy and Willson 1 993). Most propagules travel only metres to 

tens of metres from the parent plant and the most important dispersa1 outcome rnay be achieved 

within 1-2 canopy diameters of the materna1 parent ( Appendix 1 1 : Hughes et cil. 1994). At this 

distance, dispersd is a non-limiting process and pattern in the distribution and composition of 

species is govemed primarily by factors governing germination. establishment and persistence. 

Recent studies suggest that dispenal over this distance rnay be an important precondition for the 

coexistence of species (Atkinson and Shorrocks 198 1 : Shmida and Ellner 1984; Pacala 1986.1987: 

Pacala and Silander 1987; Rees et al. 1996). Rather than interact with a nurnber of individuais in 



a plant assemblage, and thereby experience the average density of the population. plants interact 

primarily with individuals that lie within a canopy or root crown diameter (Harper 1977, Pacala and 

Silander 1985. Venable and Brown 1993). In the forest understory. this means that the distance over 

which most plants competitively interact is on the order of centimetres to metres. When the 

dispersal distance of plants is short. siblings tend to aggregate into monospecific clurnps and 

competing species become segregated spatially. Under these circumstances. individuals tend to 

compete more with their own kind than with others and thus create the primary conditions for 

coexistence(Schrnida and Ellner 1984. Pacala 1987. Lavorel et rd. 1994). 

When the dispersal reach of plants extends beyond the neighborhood in which plants competr. an 

increasing number of seeds land in environmrnts that are less favorable than the home patch. and. 

a declining number of conspecific seeds land in close proximity to one another. These conditions 

reduce the tendency for monospecific dumping by Favoring small founding populations and low 

fecundity. Under these circurnstances. coexistence is facilitated by the spatial segregation of 

competitors when seeds land in empty but suitable environments (Hurtt and Pacala 1995. Holmrs 

and Wilson 1998). and. by reversals in relative cornpetitive strength when more widely dispersed 

seeds germinate next to weaker competitors or to stronger competitors weakened by less favorable 

settings (Chesson and Case 1986). 

Pattern in the response of species to environmental variation has bern exarnined at a variety of 

spatial and temporal scales. One pattern that has attracted increasing attention in recent years is the 

response of forest plants on contrasting geological substrates (Curtis 1959. Buell et al. 1966. Peet 

and Christensen 1980. Howell and Vankat 198 1. Pregitzer and Barnes 1 982. Pastor et al. 1984. Zak 

et al. 1986, Host et al. 1988, Palmer 1990. Whitney 199 1. Host and Pregitzer 1992. McFadden er 

al. 1994. Kobe el al. 1995, Kobe 1996. Reich et al. 1997. van Breeman et al. 1997. Hutchinson et 

ai. 1999). Marked contrasts in the composition and richness of species observed within the forest 

canopy, and on the forest floor. have typically been attributed to gradients in moisture and fertility 

associated with differences in the bedrock. soil parent material. and degree of soil weathering (soil 

order). 



The relative importance of moisture and nutrients to differences in forest composition and 

productivity is a long-standing issue that has been critically re-examined in several recent papers 

(cf. Pastor et al. 1984. Pastor and Post 1986; Reich et (11. 1997: Kobe et ai. 1 995. Kobe 1996. van 

Breeman er al. 1997). This research has contributed to a rethinking of the relative importance of 

plant and soil based processes to nutrient dynamics in north temperate forests. and. has stimulated 

research into the relative importance of nitrogen and base cations to the distribution and relative 

abundance of important canopy trees such as sugar rnaple. 

The calcium-based explanations proposed by Kobe er ul. ( 1995) and Kobe ( 1996) to account for the 

marked decline in juvenile sugar maple mortality on calcium-rich soils in northwestem Connecticut 

(see Section 2.4) have broad phytogeographic and scological importance since they provide a 

mechanistic bais for the predominance of sugar maple in the Maple-Basswood. and Beech-Maple. 

forest regions (Braun 1950). and. for the greater shadr tolerance of  sugar maple. and red sprucr 

(McLaughlin et al. 199 1 ). on calcium-rich soils. 

Study Objectives: The principal objective of this chaptrr is to identify the environmental factors 

that influence the distribution and composition of plants in the understory of sarnpled forest patches. 

Plant response is examined in relation to inferred gradients in limiting resources and to apparent 

microhabitats in the forest undentory. Pattern in the distribution of dispersai modes in relation to 

microhabitats and environmental gradients will be esamined in Chapter 3. The contribution of 

environmental and dispersa1 factors to species diversity will be compared in Chapter 4. 

2.2 Methods 

2.2.1 Selection of Study Sites 

Twenty-four forest patches (Appendix 1) were chosen to reflect a range of patch sizes in two 

landscapes of conûasting forest fragmentation (Table 2.1 ). The forest patches were second-growth 

deciduous stands in the vicinity of Peterborough. Ontario. Sampled areas within patches were 

standardized, where possible. with respect to topographic rebec soil texture. soi1 moisture. forest 

cover type. and disturbance. The intent was to sample upland sugar maple stands on sites with low 



Table 2.1. Size distribution of sampled forest patches. 

Landscape 1 

( 1  5% forest cover)' 
-- - 

Size Class (ha)' 

Total 

- - 

# Patches 

-- - - - -  

Landscape 11 

( 3  5% forest cover)' 
- -- 

Size Class (ha)' # Patches 

Notes: 
1. M. Austen. Long Point Bird Observatory. pers. corn. Digitized forest cover map derived from 

LANDSAT TM satellite imagery. 
2. Source: Forest stand maps (1 : 10.000 scale). Forest Resource Inventory. Ontario Ministry of 

Natural Resources ( 1 978. 1 979. 1 980). 



topographie relief (< 2%), mesic soils. sand or loam textures. and low disturbance. In practice. the 

moisture regirne of sampled areas varied with soil parent material. landscape position. and 

microtopography. and therefore ranged from dry-mesic to wet. 

The chosen patches. with one exception, were selected from among sixty-three forest patches 

previously surveyed by the author (1995) for the Woodlands Biodiversity Project. Long Point Bird 

Observatory (Austen et uL. unpublished). The study sites established by the Long Point Bird 

Observatory (one circular quadrat. 35.4 m radius. per patch) were accepted for this study. The 

exceptions were study sites 0 9  and GG 1. which were rnoved to more level terrain to satisfy the relief 

criterion for this study. and study site DD 1. which was established de novo to balance the sampling 

design for soi1 texture. The protocol for establishing quadrats within study sites is presented below 

(Section 2.2.2). 

The study sites are situated within the Huron-Ontario Section of the Great Lakes-St. Lawrence Forest 

Region (Rowe 1972). also known as the Great Lake Section of the Hemlock-White Pine-Northem 

Hardwoods Forest Region (Braun 1950). The forest patches have developed on sand and loam soils 

of the Brunisol ic. Luvisolic and Gleysolic orden. overl y ing glacio-tluvial. calcareous ti Il. calcareous 

outwash. or lacustrine parent materials. on Ordovician limestone of the Trenton formation (Weber 

and Monvick 1946. Gillespie and Acton 198 1. Hoffman and Acton 1974). The climate of the region 

is humid. mesothermal. with little or no water detïciency (Energy. Mines and Resources Canada 

l99Oa.b). The mean annual temperature (1 96.1- 1990) at Peterborough is 6.0 OC. with a mean daily 

temperature of -9.4 O C  in January and 20.0°C in July . The mean annual precipitation is 882.2 mm. 

(Environment Canada 1993). 

2.2.2 Sampling Methods 

Eight 10m x 10m quadrats were located within each 0.4 ha study site in relation to a stratified 

random sampling design. At each study site. a sketch map was prepared showing the location and 

estimated area of each micro habitat (see Microhabi tat Variables. Section 2.2.3 3). Quadrats were 

located at random within each microhabitat in relation to the following sampling design: for 



extensive microhabitats, such as closed, seasonally dry. forest floors. quadrats were located with 

reference to coordinates (bearing and pacing from the site centre) drawn fiom a random number 

table; for small microhabitats (features less than I Om in each direction). such as tip-up mouds. tree 

pits. seeps. and most canopy gaps. quadrats were centred on the feature which was chosen at random 

from a nurnbered set of such features: for linear microhabitats (features longer than 10m in one 

direction). such as seepage tracks. access lanes and associated ditches. quadrats were centred on the 

feanire at a random nurnber of paces initiated from the kature's edge. Stumps and logs were sampled 

passively in relation to the microhabitats in which they were found. The number of quadrats located 

in a given microhabitat was proportional to its area within the quadrat. subject to the constraint that 

each microhabitat type be sampled at least once. 

Quadrats were located within study sites (rather than within forest patches) in order to clarifv the 

contribution of environmental heterogenei ty to species ric hness within a sarnpl ing space of arbitrary 

but constant area (0.4 ha). A sample area of constant size was used to avoid passive sampling effects 

which inflate species richness when the sampled area is proportional to patch size (Connor and 

McCoy 1979). 

2.2.3 Environmental Variables 

The environmental variables for this study are summarized in Table 2.2. Bief  descriptions of the 

rationaie for inclusion. citeria for classification. field or laboratory methods. and sources for 

published data sets. are presented below. Data collected in the field but not included in analyses are 

surnmarized in Section 2.2.3.7. 

2.2.3.1 Soil Variables 

Soil Parent Material: an indicator of the composition. soning, and stratification of soil materials 

(Flint 1971 ; Bloorn 1978); in this study. an indicator of regional differences in the inherent moisture 

retention and fertility of sampled soils. The inferred order of moisture retention capacity was 

lacustrine~calcareous till>calcareous outwash>glacio-fluvial. based on the declining abundance of 

fine particles. This ordering of parent materials also retlected inherent differences in soil fertility. 



Table 2.2. Surnrnq of environmental variables. 

Variable 
- - 

soi1 parent material 

soil order 

soil moisture class 

soil organic matter 

soi1 pH 

base cations 

tree diarneter class. breast 
height 

tree height class 

1. glacio-fluvial 
2. calcareous till 
3 .  calcareous outwash 
4. lacustrine 

1 .  brunisol 
2. gleyed bninisol 
5 .  luvisol 
4. gleyed luvisol 
5 .  gleysol 

1 . seasonal 1 y wet de pressions 
2. seasonally rnoist 

depressions 
3. seasonal 1 y dry depressions 

continuous variable 

continuous variable 

1. available calcium 
2. calcium:mapnesium ratio 
3. potassiurn:magnesium 

ratio 

1.0-30 cm: 2 cm increments 
2. > 30.0 cm: continuous 

values measured to nearest 
0.1 cm 

1. herb layer (< 1 m) 
2. shmb layer (1 -3 m) 
3. subcanopy (3-l jm) 
4. canopy (> 1 5 m) 

Source 

Weber and Morwick (1946) 
Gillespie and Acton ( 1 98 1 ) 
Hoffman and Acton ( 1974) 

Weber and Morwick ( 1946) 
Gillespie and Acton ( 198 1 ) 
Hoffman and Acton ( 1974) 
field observation 

field observation 

laboratory observation 

laboratory observation 

laboratory observation 

field observation 

field observation 

fieId observation 



Table 2.2 Summary of environmental variables (cont'd). 

Variable 

canopy cover type 

canopy closure 
-- - 

cover class (herb layer) 

habitat affinity 

coefficient of wetness 

microhabi tat type 

# microhabitats 

-. -- 

1. oak. no sugar maple 
2. oak + sugar rnaple 
5- sugar maple 
4. sugar maple + wet-mesic 

or wet tree taxa 
5. wet-mesic + tvet tree taxa 

continuous variable ( O/O) 

1. solitary individual ( -) 

2-5 individuals ( r )  
3 . 4 %  
3. 1-5% 
4.6-15% 
5 .  16-25% 
6.26-50% 
7.  5 L75% 
8. 76- 100% 

1. forest 
2. forest + open 
3. open + forest 
4. open 

-5 obligate wetland 
-4 facultative wetland 
-3 facultative wetland 
-2 facultative wetland 
- I Facultative 
O facultative 
+ 1 facultative 
+2 facultative upland 
+3 facultative upland 
+J facultative upland 
+5 obligate upland 

see Table 2.4 

continuous variable 

Source 

Field observation 

field observation 

field observation 

Voss ( 1972. 1985. 1996) 

.. 

Oldham er al. ( 1995) 

field observation 

field observation 



Table 2.2 Sumrnary of environmental variables (cont'd). 

Variable 

patch interior area class 

patch area 

patch isolation 

forest cover 

Attribute 

1. 0-5 lia 
2. 6-10 ha 
3. f 1-20 ha 
4. 2 1-50 ha 
5. 51-100 ha 
6. 101 -200 ha 
7. 20 1-500 ha 
8. 501-1000 ha 

continuous variable 

- - -  - 

continuous variable 

continuous variable 

Source 

M. Austen. pers. corn. 

Ontario Ministl of Natural 
Resources ( 1978. 1979. 
1980) 

- - - - 

NTS rnap sheets ( 1 50.000) 

NTS map sheets ( 150.000) 



based on an inferred decline in cation exchange capacity (Brady 1990) and soil pH (Dancer et al. 

1993). However, soils on the lacustrine parent materials were saturated seasonally and thus subject 

to periodic denitrification (Pomarnpenuna 1972) and to lower rates of ammonification (Patrick and 

Mahaptera 1968. Pomamperuma 1972). The presurned order of fertility. based on the joint influence 

of contributing factors. was calcareous till xalcareous outwash~lacustrine>glacio-fluvial. Quadnts 

were classified in relation to published soil survey maps and reports (Weber and Monvick 1946. 

Gillespie and Acton 198 1. Hoffman and Acton 1 974). 

Soil Order: an indicator of the effects of the dominant soil-forrning processes on soil properties 

(Canada Soil Survey Committee 1978): in this study. an indicator of regional differences in the 

inherent fertility of sampled soils. The inferred order of soil fertility was Luvisolic~Bninisolic>runisolic~ 

Gleysolic. based on the presencekibsence of a Bt horizon and the degree of penodic or prolonged 

reducing conditions associated with satunted soils. Soils in quadrats with seasonally moist or wet 

depressions were classified as gleyed Brunisolic. and &rd Luvisolic. if mottling observed during 

a previous field assessment ( 1995) was observed within 50 cm of the mineral surface (Canada Soil 

Survey Committee 1978). Quadrats were classified in relation to published soil survry maps and 

reports (Weber and Monvick 1946. Gillespie and Acton 198 1. Hoffman and Acton 1974). 

Soil Moisture Regime: in this study. an indicator of the duration and intensity of moisture deficit 

in the soil (Patterson 1978). In conu?ist to measures of soi1 moisture. soi1 moisture regime is an 

indicator of variations in the soil moisture supply through time (* 100 years) (Pierpoint 1978). The 

former is a direct measure of soil rnoisture content. whereas the latter is assessed in relation to 

physical soil properties and soi1 profile characteristics (Ontario Institute of Pedology 1985). 

in 1995. the moisture regime at the centre of each study site was determined with reference to the 

depth and properties of soil moules, and. the texture of mineral soil in the upper B horizon (Ontario 

Institute of Pedology 1985). This method was not used for the 1996 field season owing to 

difficulties in determining the depth to mottles during the late August assessment. The moisture 

regime of quadrats was therefore classified in relation to the moisture status of forest depressions. 

a supplementary, planned, assessment that was initiated at the beginning of the spring survey. 



Quadrats with standing water in depressions during the spring andor summer vegetation survey (see 

Section 2.2.3.3) were classified as "seasonally wet". Quadrats with moist depressions (soil dark and 

moist to the touch when cornpared to the adjacent forest floor) during the spring andor summer 

vegetation survey were classified as "seasonally moist". Quadrats with dry depressions during both 

the spring and summer vegetation survey were classificd as "seasonally dry". This method. while 

lacking the ngor of the Ontario Institute of Pedology procedure. was deemed sufficient to 

charactenze major differences in soil moisture within and between forest patches. when applied with 

reference to the results of the 1995 survey. 

Soil Organic Matter (SOM): a general indicator of soi1 quality but not useful for predicting 

nitrogen mineralization (Nadelhoffer el ui. 1983): in this study. an indicator of soil moisture 

retention capacity (Brady 1990). and. of seasonally saturated soils when organic matter content was 

greater than 30% (Canada Soil Survey Cornmittee 1978). 

Ten soil cores to 15 cm depth were removed with a dot-tube soil sampler from each IOm I 1Om 

quadrat in relation to a stratified sampling design and placrd in plastic freezer bag. The cores were 

taken in a hap-hazard rnanner in proportion to the type and area of microhabitat present. Loose leaf 

litter was removed pnor to taking the core: Iitter ramitkd with fungal mycelia was left undisturbed 

and included in the core. Each sample was air-dned prior to storage and subsequently mortared and 

pestled. passed through a 4.00 mm sieve. placed in a drier oven. and dried ovemight at 105°C (David 

1988. Karam 1993). Approximately 10- 15 gram of drkd soil. from which macro charcoal and large 

roots had been removed. were placed in a crucible of known weight and subsequently ashed in a 

muffle furnace for 12 hours at 430" C (Nelson and Sommers 1983. Davies 1974) (550" C for soils 

with high apparent soil organic matter: Kararn 1993). The furnace temperature was increased to the 

loss-on-ignition temperature over a three hour period ( four hours for organic soils) to avoid tlash 

combustion of organic matter and to minimize transient surges due to thermal lag. Following cooling 

(approximately 8 hours), samples were removed and weighed on an OHAUS Precision Plus digital 

balance. Percent soil organic matter was calculated as: 

% SOM = [( "soil" - "ash") 1 "soil" ] x 100 



Replicates were not taken owing to the loss of sixty soi1 sarnples during storage. 

Soi1 pH: in this study. an indicator of conditions favoring nitrification (Dancer et al. 1973). Five 

grarns of soi1 (previously dried at 105" C and stored 3.5 years). and 15 ml of de-ionized water. were 

placed in a small plastic beaker. stirred vigorously for 60 seconds on a mechanical stirrer. and let 

stand for at least 15 minutes. The 1 :3 ratio of soil to de-ionized water was increased to 1 :6 for soils 

with > 30% soil organic matter to achieve wet slurry conditions. The pH,,,,,, reading was taken with 

a glass electrode. Coming pH Meter. Model 7. calibrated to buffer pH 7.0. The pH of soi1 sarnples 

was determined for quadrats 1-24. 3 4-40. 49-56. 6 1 - 192. only. since the original soi1 samples for 

quadrats 1-60 were lost during stonge. and. changes in land use prevented rrplicates from being 

taken at each location. 

Base Cations: in this study. a measure of the concentration of available calcium. exchangeable 

magnesium. and exchangeable potassium. in the upper 15 cm of the soi1 profile. Free calcium 

carbonate was not purged from soil samples. in order to determine the concentration of calcium 

"available" for plant uptake. Results were there fore reported as "available calcium" sincr the 

recorded concentration will include both "exchangeablc" calcium. and free calcium carbonate. whrn 

the latter is present in the soil profile. 

Twenty çrams of soil. passed through a Imm sieve. and one teaspoon of silica. were placed in a 

plexiglass leaching tube containing approximately 1 cm of tightly packed glass wool. a one-hole 

rubber stopper. and rubber tubing. After adding a teaspoon of silica to cover the soil surface. the 

leaching tube was suspended between a 300 ml flask containing 250 ml of I N. pH 7.0. ammonium 

acetate. and. a labeled. empty 300 ml flask. The outflow rate of leachate was subsequently adjusted 

to a slow drip. approximately 10 drops per 60 seconds. so that the leaching process would last at 

least 4 hours. 

The concentration of calcium. magnesium. and potassium cations was subsequently determined by 

atomic adsorption spectrophotometry in a Perkin Elmer Atomic Absorption Spectrometer. Model 

3 100. The leachate was diluted. as required. with a 3% solution of lanthamum chlonde. with the aid 



ofa Nichiryo AutoDilutor. The following equation \vas used to calculate the concentration of base 

cations: 

spectrometer reading .u 50 (dilution factor) x 250 (mi leachate) = ppm base cations in soil 

10 (grams of soil) 

The concentration of cations was subsequently espressed in centirnoles ( 10" moles) per kg of soil 

(cmolkg). The atomic adsorption spectrophotomrtp \\-as conducted by Dr.Trng. Depanment of 

Forest-. University of Toronto. 

The ca1cium:magnesium ratio. and. potassium:magnesium ratio. w r e  also calculated to clari fy the 

degree to which cation uptake rnay be affecteci by an imbalance among base cations (Ouimst and 

Camire 1995). Soi1 samplrs were reacted with O. 1 N h! drochloric acid to assess the degret: to whiçh 

free calcium carbonates was present. Soils that "fizzcd" upon reaction were classiîïed as "recictive". 

2.2.3.2 Forest Stand Structure Variables 

Tree Diarneter Breast Height (dbh): in this study. aii indicator of the time since Ilist disturbance 

(Henry and Swan 1974. Oliver and Stephens 1977. Lorimer 1980). The diameter of livr and 

standing dead stems > 1 m tall t a s  measured with a diaincter tape and recorded in 7 cm incremrnts. 

for stems 0-30 cm dbh.; stems > 30 cm dbh were measured to the nearest 0.1 cm in continuous 

increments. The diameter of stems in the 0-2 cm and 2-4 cm size classes was estimated visualiy in 

stands with many stems. Stems < 1 m ta11 were recorded as seedlings and assigned to om of right 

cover classes. 

Tree Height Class: in this study. an indicator of forest stand development (Oliver and Larson 1996 ). 

Tree height was measured during leaf tlush with the aid of a Suunto clinometrr and 30 m tape. 

Stems were assigned to the following height classes: < 1 m. 1-3 m. 3- 10 m. 10- l 5 m. 15-25 m. and 

5 m. Stems < I  m ta11 were recorded as seedlings and assigned to one of triphi covrr classes. 

Representative stems in each height class were measurrd and subsequrntly used as visual standards 

for assigning stems to the appropriate size class. 



Forest Straturn: in this study. an indicator of forest stand development (Oliver and Larson 1996). 

and. a datum used to classify forest cover type and selected microhabitat types. Four strata were 

recognized in this study: herb layer (cl m). shmb layrr ( 1-3 m). subcanopy (3-1 5 m). and canopy 

p l 5  m). The threshold values for each stratum wrre nieasured For representative trees with the aid 

of Suunto clinorneter and a 30 rn tape. 

Forest Cover Type: in this study. an indicator of reciirring tree assemblages. soil moisturr regime 

(Maycock 1963 ). available light (Messier and Belletleur 1 W8. Canharn ri tr i .  1990). and litter qualit) 

(Pastor et cri. 1984. Reich et t r i .  1997). Five çover types w r e  recognized. based on their association 

with increasing soil moisture. and. the presenceiabsencc of sugar maple: i )  red or white oak (no sugnr 

maple. no wet-mçsic or wet taxa): i i )  sugar maple - r d  or white oak: i i i )  sugar maple (no red or 

white oak. no wet-mrsic or wet taxa): iv)  sugar maplc - silver maple. black ash. red ash. balsam 

poplar. or American elm: v )  silver maple. black ash. r d  ash. balsam poplar. or Amrrican elm (no 

sugar maple. no red or white oak). Cover types w r e  assigned to quadrats based on the 

presencehbsence of indicator species in the shnib. siibcanopy or canopy layer. This ûpproach 

accommodated variability in species composition and stand structure caused by recent disturbance. 

and. revealed di ffrrcnces in moisture conditions more accuniel y than a classi tication based solrly 

on the prrdominant species in the canopy layer. 

Canopy Closure: in this study. an indicator of the quiintity and quality of solar radiation receivrd 

at the Forest tloor ( Messier and Belletleur 1988. Canharn et c d .  1 990). Conopy closure was de tined 

as the proportion ofthe sky hemisphere covered bu leavcs. branches and stems. High canopy closure 

therefore corresponds to low levels of red-shified solar radiation reccived at the forest tloor. Percent 

canopy closure was calculated by "HEMIPHOT" (ter Steege 1994) from digitized. hemispherical. 

35 mm photographs taken with a Nikon F3 carnera that \vas fitted with a Nikkor 8 mrnfl.8 "fish- 

eye" lens. and. a Nikon DR-3. right-angle view finder. A high contrast black and white tilm. 

Kodalith High Contrast Onho Film. ASA 12. Eastman Kodak. was used to mmimizt: the contrast 

between sky and canopy (Chan et c d .  1986). 

A hemisphencal photograph of the Forest canopy was taken from the centre of each quadrar. The 



camera was mounted on a Manfrodo tripod. set at 1 .O m above ground level. oriented to 0" north. 

and leveled in the vertical and horizontal planes with the aid of pocket spirit level. An erposure 

sening was chosen that would rnavimize the contrast brtween sky and canopy. The canopy and 

visible sky were metered with the aid of a Minolta kl spotmeter and anjktop was selected that was 

at least two stops higher than the value for open sky. Brightly illuminated spots in the canopy were 

metered to ensure that the sky value was at least two stops greater than the highest value recorded 

for the canopy. For greater security. this exposure valuc was bncketrd by one stop. Inspection of 

the developed images revealed that the middle esposurc best represrnted the status of small and large 

canopy openings. 

This approach was field tested to contirm that canopy wgetation kvas not mis-classitied as "sky". 

Field testing revealrd that under high çanopy closure çimditions ( I O N  light). the edgc of the esposed 

imagecould not be differentiated from the film basc. Espcrimentation substtquently determincd that 

by taping a white plastic arrow to the rim of the lens at cric11 cardinal direction. sutticient light would 

be retlected to the film plane to reveal the reveal the cdge of the esposcid image. The nonh arrow \vas 

made larger than the other arrows to ensure proper oricntntion of the digiiized image. The arrows 

were cut from a white plastic container. The projecting portion of the E. S. and W arrows was 8 mm 

wide x 5 mm high: the projecting portion of the N rirrow was 14 mm wide s 8 mm high. 

The dewioped images (5  cm s k m )  were digitized witli a SCANJET IIC. Hewlett Packard. scanner. 

Images were scanned at 700 DPI at contnst setting 250 iind brightness settiny 125. The digitized 

images were procrssrd in HEMIPHOT with a îïsed radius of 195 units. 

The radius over which light \vas collectrd in each image varied with canopy height and was typically 

on the order 30-25 metres. 

2.2.3.3 Vegetation Variables 

Species Composition: The plant inventory was conducted 7 May 1996 to 14 June 19% (spring 

survey) and 20 June 1996 to 25 July 1996 (summer survey). The boundary of each 10m s 1 Om 



quadrat was marked by yellow propylene rope and sampled intensively by walking close intend 

(approximately 1 .j m) line transects. Taxa were recorded by microhabitat to facilitate analyses of 

compositional trends in relation to environmental factors. Known taxa were identitied to species 

rank in the field with the aid of 10x hand lens: vouchcr sprcirnens were collected for unknown taxa. 

and. for twa requiring more than 10x magnification of diagnostic characters. Voucher sprcimrns 

were identiticd with the aid of a dissecting microscope and with referencr to the following 

authoritirs: trees (Barnes and Wagner 198 1 : Farrar 1995 i. willows (Argus 1991). shrubs (Voss 1985. 

Soper and Heimburger 1982). fems and fem allies (Cod:. and Briiton 1 989). grasses (Voss 1972. 

Dore and McNeill 1980). sedges (Voss 1972. Glrason 1952. Webbrr and Ball 1984 ). herbs (Voss 

1973. 1985. 1 996: Gleason 1952. Gleason and Cronqiiist 1 99 1 ). Asteracear ( Fisher 1988. Srmplt. 

and Ringius 1983. Semple and Heard 1987). [denti ticritions of difficult taxa w r e  revirwed by 

specialists in the Ontario tlora. Carex and Ponceae idcnti tïcations were reviewed by b1.J. Oldham. 

Natunl Heritagc Information Center. Ontario blinistry of 'iatural Resources: ïcire~. Section Ovales. 

identitications were reviewed by Dr. P. W. Ball. Erindale Collegr. Uniwrsity of Toronto: selrctrd 

gnss specimens were identi tied by Dr. S.J. Darbyshire. .-\yriciilture and Agri-Food Canada: selected 

fem identifications were reviewed by Dr. DM. Britton. Professor Emeritiis. Uniwrsity of Guelph. 

Twenty-five sprcimens could not be identitied to spccies. 

Cover Class: in this study. an indicator of plant abundance. The abundance of each species. and 

overall plant cover. within a I O  m x I O  m quadrat was estimaicd visually with the aid of one-rnrtrc 

swag sticks and markrd quadrat diagonals. Plant abundance \vas recorded in relation to eight sowr 

classes: i) solitary individual (+). 2-5 individuals (r): i i  ) < 1 %: iii) 1 -5?/a: iv) 6- 15%: v )  l6-25%: vi) 

2640%: vii) 5 1 -75%: viii) 76- 1 00%. 

2.2.3.4 Plant Attribute Variables 

Habitat Affinity: in this study. an indicator of the habitats in which a species is typically found and 

thus an indicator of transient and permanent residents in the forest understory Four habitat types 

were recoçnized based on the apparent affinity for closed vs open canopy conditions: i )  "forest": 

species f o n d  exclusively in closed forest habitats: i i )  "forest + open": species found primarily in 



closed forest habitats but also present in forest openings and thickets: iii) "open + forest": species 

found primarily in open habitats such as marshes. old fields. thickets. forest edges. but also present 

in closed forest habitats; iv) "open": species found e~clusively in open habitats or disturbed sites in 

forest habitats. Species were assigned to one habitat type based on the habitat descriptions 

summarized by Voss (1972. 1985. 1996) for the State of Michigan. U.S.A. 

Coefficient of Wetness: the probability of finding a species in a wetland habitat (Oldham et tri. 

1995): in this study. an indicator of the moisture affïnity of sunreyed species. Plants in southem 

Ontario were classi fied by Oldham et ul. ( 1 995) in relation to the following categories: i )  "obligate 

wetland": species almost always occurs in wetlands under natural conditions. >99% probability of 

being found in a wetland habitat: ii) "facultative wetlnnd": species usually occurs in wetlands but 

occasionally found in non-wetland habitats. 67-99% probability of being found in a wetland habitat: 

iii) "facultative": species rqually likely to occur in wrtlands or non-wetlands. 3.146% probability 

ofbeing found in a wetland habitat: iv) "facultative upland" : species occasionally occurs in wetlands 

but usually occurs in non-wetland habitats. 1-33% probability of being found in a wetland habitat: 

v) "obligate upland": species almost never occurs in wetlands under natural conditions. 4% 

probability of being found in a wetland habitat. 

2.2.3.5 Microhabitat Variables 

Microhabitat: in this study. a dimension of environmental heterogeneity. and. an indicator of 

uniform conditions. at the quadrat scale. with respect to canopy closure. soi1 moisture. substrate. and 

disturbance. Thirty-nine microhabitats were recognized (Table 2.3). The core features in the 

classification are forest floors. depressions. tip-up mounds. tree pits. stumps. logs. canopy gaps. 

seeps. raised root mats. and. features created by human disturbance. such as lanes. access roads. 

ditches. and regenerating fields. The moisture status for selected features is not recorded in Table 

2.3 to reduce the nurnber of elements in the classification. The moisture status of seep. riparian 

marsh. and ripaian thicket is "seasonally wet": the moisture status of riparian meadow is "seasonal1 y 

moist"; the moisture status of mounds and regenerating fields is "seasonally dry". The rnoisture 

status of stumps. logs. raised root mats. and lane/access roads varies from seasonally dry to 



'rable 2.3. Delinitioii and ür~iil ex tent of forest rnicrohabitats. Notes: "seasonal ly dry" = lbrwt lloor or depression lice of siaiidiiig water 
or nioist soi1 duriiig spring and suniiiier survey; "seasonally nioist" = Forest lloor or depression lias nioist soi1 during spring or sumnier 
survey; "seasonally wet" = forest floor or depression has standing water during spring or suniiiier survey; "li)resi floors, s e r m  srricto" 
= thüt portion of' the Iorcst Iloor Iiee ol'seasonally rnoist or wet drpressions, tip-up inouiids, tree pits, logs, stunips, raised root mats, 
seeps, lane/üççess roads, regeiierating fields, riparian nieadows, ripariaii niarslies and riparian tliickets; "-ccu= küturc under a closed 
canopy oftrees, saplinys or ta11 slirubs; "-oc" = fiaturc under an open cüiiopy (îèature has a clear view to tlic sky); % SA = % ol'sampled 

Microliabi tat 

seasorinlly d r y  forest floors-cc 1 54.3 
scasoiiul ly dry forest h o r s - o c  1 6.8 

sensorial l y  i i ioist Iorcst h o r s - c c  1 3.0 

seasoiially riioist forest dcprcssioiis-oc l 
scnsoiially wct  f'orest iloors-cc 1 0.6 

..- . 

Description 

forest Iloors, serrsir .str*ic~o, tliat arc seüsoiiülly dry  ai id i inder a closed cüiiopy 

forcst floors, scrrsrr srric/o, tliat iire sresoiiülly dry aiid urider üii open cüriopy 

foresi ilours, scrrsir .s/ricnto, h s t  iire ~ ~ i l l i ~ i i i l l l y  i i ioist i l i id ~ u i d e r  a closed caiiopy 

Ibrcst tloors, .srDrrslr stricto, t h 1  iirc ~ ~ i î ~ ~ i i i i l l y  iii(iis1 i ~ ~ i d  iii ider ai i  i ipci i  cai iopy 

rorest deprcssioiis (dcprcssioo iii forest f l o i ~ r  >?O c i i i  deep) t l i i i i  arc seasoiially i i ioist ai id 
iiridcr ai i  opeii cai iopy 

-- 

forest Iloors, scJrr.sir strii.lo, ~ l i i i t  i i rc seiisa~inl ly wct orid iirider il çloscd cnii l ipy 
-- - 

fiiresi dcpressioiis (depressioii iii Forest f loor >'>O c i i i  deep) tIi;it sri: seasoiially wct  ai id 
i i i idcr il closed ci i i iopy 











seaonally wet depending on the feature and the quadrat surveyed. Forest depressions were defined 

as depressions in the forest Boor >20 cm deep and were rneasured with the aid of painted swag sticks 

(altemating biack and tan bands 20 centimetres wide) and a pocket spirit level. 

# Microhabitats: in this study. an indicator of environmental heterogeneity. The value represents 

the nurnber of recognized habitats in a 1 0 rn x 1 O rn quadrat. 

2.2.3.6 Landscape Variables 

Patch Interior Area: in this study. an indicator of forest fragmentation: the area (ha) of continuous 

forest that is more than 100 m fiom the forest edge (Austen et al. unpublished). Interior area was 

calculated fiom digitized LANDSAT TM satellite imagery by the geographic information system. 

ARC-MF0 (S. Hounsell. Ontario Hydro.pers. corn. ). This data set is the property of the Long Point 

Bird Observatory (LPBO) and has been used in the thesis with their permission (M. Austen. pers. 

corn. ). Forest patches were assigned by the LPBO to one of eight area classes: 0-5 ha. 6- 1 O ha. 1 1 -20 

ha, 21-50 ha, 51-100 ha. 101-200 ha. 301-500 ha. 301-1000 ha, 

Patch Area: in this study. an indicator of forest fragmentation: the area (ha) of continuous forest 

within a forest patch. Patch area was calculated fiom the stand data recorded on forest stand rnaps. 

1:10.000 scale (Ontario Ministry of Natural Resources 1978. 1979. 1980). In contrast to the 

previous data set. patch area is a continuous variable that accounts for the total area of continuous 

lorest in the patch. 

Patch Isolation: in this study, an indicator of forest fragmentation. Patch isolation was defined as 

the mean distance (m) to the nearest forest patch in eight 43' arcs radiating from the site centre. The 

distance fiom patch edge to patch edge was rneasured to the nearest 50 metres on a 150.000 scale 

National Topographic Service (NTS) map sheet with the aid of a Staedtler-Mars ratio scale. 

Forest Cover: in this study. an indicator of forest fragmentation. Forest cover was defined as the 

percent forest cover within a 5 km x 5 km square centred on the study site. In contrast to the 



previous data set. this approach includes forest cover within the sampled patch and thus accounts for 

total forest cover within the vicinity of the vegetation samplr. The forest cover on a 1 :50.000 scale 

National Topographie Service (NTS) map sheet was ciilculated with the aid of a dot grid. 

2.2.3.7 Supplemcntary Data 

The following data \vas recorded in the field but not used in analyses reported in this thesis. 

Decomposition Status: an indicator of timr sinçe deatli. The status of l o g  and standing dead stems 

was recorded in relation to the following classi ticatioii: i ) bark tirm: i i  ) bark loose: i i i )  stem bare. 

t'îm: iv) stem mossy. firm: v )  stem soti. bare: vi) stem soft. rnossy. 

Reproductive Status: The reproductive status of species \vas recorded in relation to the following 

classification: i)  vegetative: i i )  tlowverinf (flo\ver in hitd or open): i i i )  fniiting. 

Phenology: a datum that rnablcs the reproductive stntus of plants to be correlated with canopy 

conditions. Reproductive status ai the tirne of sampliny was recorded in relation to the hllowing 

çlassitïcation: i )  trees in bud or Ieaf tlush: i i )  trees uitli immature Ieaws. i i i )  trces with mature 

leaves: iv) trees with senescing leaves. 

Herbivory Status: the herbivory status of plants \vas recorded in relation to the following 

classification: i) leaftip bitten: ii) leaf with holes: i i i )  lenf with raggrd edge: iv) lraf with tùngal dots: 

v) leaf with egg cases: vi) plant decapitated. The intensity of herbivory was recorded in relation to 

the following classification: i)  "1ow":one to few Iravcs per plant. cl% of population: i i )  "inter- 

mediate": few to many leaves per plant. 1-10% of population: ii i)  "high": few to many leaves. >10 

% of population. 

2.2.4 Analytical Methods 

2.2.1.1 Overview 

The objectives of this thesis have been achieved by means of a series of comparative. mensurative. 



experiments (Hurlburt 1984) in which a system propeny (species richness. species composition. 

species attribute) has been measured repeatedly in treatinent space (environmental states. environ- 

mental gradients. microhabitats. forest patches). The sxperimental units in each experiment were 

the physical locations at which the system property uas measured (Hurlburt 1984). 

In mensurative experiments. pseudoreplication ma! ürise when the sample space in whic h sy stem 

properties are rneasured is srnaller than the inference space implicit in the hypothesis being tested 

(Hurlburt 1984). In this chapter. the inference spacc is second-growth northem hardwood stands on 

Ordovician lirnestonr in the vicinity of Peterborough. Ontario. Sample space is cornmensurrite with 

this inference. since systrm properties were measured in treatment space across the region. 

The degrees of freedorn for determining a treatment ct'fect varied with the csperimrntal treatmrnt 

sincc treatment conditions were rarely prrsent in eaçh quadrat or forest patch. or. were not 

statistically independent: n i  192 for system properties riieasured in relation to environmental states. 

gradients and microhabitats: nc24 for system propenies measured in relation to forest patches. 

The statistical independence of samples was more appmnt for some analyses than for O thers. While 

it is clear that replication within patches should not contribute degrecs of freedorn when testing for 

a treatment cffect among patchrs. the statistical independence of two or more qwdrats within a patch 

is less transparent when testing for a treatment effeçt among cnvironmental states. gradients. or 

microhabitats. At issue is whether differences in  distiirbance history at the micro-scale sufficiently 

influence the composition of the seed rain. germination success. resource availability. cornpetitive 

interactions. or plant persistence. for quadrats to be rcgarded as indeprndent samplrs. Since this 

could not be detemined. o priori. rach quadrat was pmnittrd to contribute one drgree of freedom 

when testing for a treatrnent rffect among environmental states. gradients or microhabitats. The 

effects of patch membership. ifpresent. were subsequently removed bu treating patch membership 

as a CO-variable in muitivariate analyses. 



2.2.42 Distribution of Species on Environmental Gradients 

Analysis #1: The tendency for the composition of species to be more similar within. than among. 

forest patches was investigated in order to evaluate the relative influence of local processes. such as 

short-distance dispersa1 and cornpetitive exclusion. and regional processes. such as glaciation and 

pedogenesis. 

Similarities in species composition were investigated by detrended correspondence analysis (DCA) 

(Jongerman et al. 1987). The degree to which quadrats were clustered within patches was assessed 

visually. The contribution of patch membership to the dispersion of quadrats was evaluated in 

canonical correspondence analysis (CCA) by the Monte Car10 permutation test (n=1000 

permutations), after titting al1 remaining environmental variables as CO-variables. DCA was the 

preferred method for the pattern analysis since the dispersion of quadrats is govemed by species 

relations with the underlying environment rather than with the set of variables chosen for study. 

DCA was preferred to correspondence maly sis (Cil 1 since the latter ordination displayed a 

pronounced arch that distorted the order of quadrats dong the second êuis. Al1 analyses were 

performed in CANOCO Version 3.12 (ter Braak 199 1 1. The DCA ordination diagram is presented 

Figure 2.1. 

Analysis # 2: The distribution of species on environmental gradients was exarnined by canonical 

correspondence analysis (CCA) in order to determine which environmental variables exerted the 

greatest influence on the composition of herb assemblages. Patch membership was treated as a CO- 

variable in this analysis to minimize the contribution of replicate samples within patches when 

testing for an overall treatment effect on the dispersion of species in ordination space. The variable 

"number of live tree stems >lm" was omitted fiom the analysis due to high collinearity (variance 

infiation factor =36.6) with the variable "nurnber of stems O 4  cm dbh". Ordination scores were 

scaled in relation to scaling mode 2 (i.e. species scores are weighted mean sample scores) since the 

primary interest was the dispersion of species rather than quadrats (ter Braak 1994). Species in 

ordination space are therefore situated at the centroid of the quadrats (not shown) in which they 

occur. The relative importance of each environmental variable is represented by an arrow that points 



in the direction of maximum influence and that is scalrd to reflect the strength of the correlation 

between the variable and the fined abundance of the plotted species (ter Braak 1994). The scaled 

CO-ordinates for the head of each arrow are the biplot scores for the first and second xxis (ter Braak 

1994). An overall test of significance of the species ordination was determined by the Monte Carlo 

permutation test (n=9.999 permutations). All analyses were performed in CANOCO version 3. l ?  

(ter Braak 199 1). The scatter plot was created in S-Plus. Version 4.5 (Mathsoli Inc. 1998) and 

annotated in Publisher 98 (Microsoft Corporation 1998 1. The CCA ordination diagram is presented 

in Figure 2.2. 

Analysis #3: The relative importance of rn\ironnic.ntal variables was esamined funher by 

determining the percentage of the total inertia esplainrd by each variable. The percent inenia 

explained was computed as the (1 canonical riyen~~aliirs for each variable - 23 unconstrained 

eigenvalues For the ordination) x 100. Since most environmental variables interacted with at leasr 

one other vaxiable. the Fraciion of inenia that \vas ~iniquely explained by each variable was also 

determined by fitting al1 remaining variables as co-variables. The signiticance of the latter value was 

detemined by the Monte Carlo permutation test (n= 1.000 permutations 1. after Bonferroni comction 

for n=16 tests (p<O.O03). AH analyses were perfomrd in CANOCO. Version 3.12 (ter Braak 199 1 ). 

The results of this analysis are presenied in Table 2-13. 

.4nalysis #4: The distribution of species on the principal environmental gradients was esaminrd 

funher to detemine if species were restricted to a partiçiilar rdaphic condition. forest cover type. or 

disturbance state. This analysis was conducted in relation to variables that had the highest inter-set 

correlations with the tirst or second mis of the CCX ordination. The percentage of taxa nstricted 

to a given soi1 parent material. soi1 order and forest cuver type was evaluated at the quadrat spatial 

scale: the percentage of taxa restricted to a given moisture condition and disturbance class \vas 

evaluated a the quadrat scale. The analpis was perfornied in JMP Version 3.1.2. (SAS Institutr Inc. 

1997): results are presented in Table 2.14. 

Analysis #5: The variance explained by environmental variables in Analysis # 2 \vas decomposed 



(Quinghong and Brakenhielm 1995 ) to detemine the relative contribution of edaphic variables. 

patch variables. and landscape variables. to the dispersion of species scores in ordination space. This 

was undertaken to clan@ the relative importance of local versus regional processes (senm Ricklefs 

and Schluter 1993) in the distribution of understory herbs. 

The method of Quinghong and Brakenhielm (1995) enables one to detemine the depree of 

interaction among variables. and. to determine the indcpendent ( unique) contribution of cach 

variable. For this analysis. regional processes such as glaciation and pedogenesis are considered to 

be the primary contributors to properties of the cdaphic variables (soi1 parent material. soi1 order. 

soil moisture class. percent soil organic matter. and suil pH). and. plant migration is considered to 

be the principal mcans by which propagulrs are distributed across the landscape. Recruitmrnt 

limitation is considered to be a consequence of regionül processes when due to soi1 based factors. 

Local processes. suc h as short-distance dispersal. corn petit ive interactions. and htterogencity arising 

fiom the death or removal of canopy trees. are considcred to be the prirnary contributors to patch 

dynarnics and to local specirs composition. The "patch scale" variables for this analysis w r c  forest 

cover type. percent canopy closure. stem diameter class. number of tree species. number of tree 

stems. number ofmicrohabitats. open microhabitats. disturbed microhabitats. and patch membership. 

Landscape variables (patch isolation and patch sizei were considrred to reHect the degree of 

migration constraint inhrrent in the spatial contiguration of forest patches in the present-day 

landscape. 

The results of this analysis were surnmarized in a Vcnn diagram that displays the percentagc of the 

rsplained variance uniquely. and jointly. accounted h r  by edaphic. patch. and matrix (landscape) 

variables. The analysis was perfomed in C.WOCO Version 3.12 (ter Braak 199 1 ). Tlir Vrnn 

diagrarn. presented in Figure 2.3. \vas created in Publisher 98 (Microsoft Corporation 1998). 

2.2.4.3 Distribution of Species in Forest Microhabitats 

Analysis #1: The response of species to the pngmatic classification of microhabitats vas 

investigated by detrended correspondence analysis (DCA). At issue was the degree to which the 



composition of species di ffered among habitat types. The si gni ficance of the ordination \vas 

assessed in relation to the cnteion that habitats separatsd by 4 or more standard deviation units on 

the first or second avis should have few if any species in common (ter Braak 1987). The Monte 

Car10 permutation test cannot be performed on DCA scores in CANOCO Version 3.12. CCA \ras 

not suitable for this analysis since the habitat categorics represented a nested set of environmental 

States within microhabitats rather than discrete or continuous variables within quadrats. The analysis 

uas performed in CANOCO Version 3.12 (ter Braak 199 1 ). The DCA ordination diagram is 

presented in Figure 2.4: the number ofhabitats occupied by surveyxi tasa is presented in Table 2.15. 

Analysis #2: The species composition of canopy gaps was inwstigated further to determine the 

influence of canopy-opening size on species composition. Ten s i x  classes were establishrd îbr the 

ordination analysis: 0- 10 m2. I 1-20 m'. 2 1-30 m2. 5 1-40 m'. 4 1-50 ml. 5 1-60 m'. 6 1-70 m2. 7 1-50 

m'. 8 1-90 m'. 9 1 - 100 rn2. The species composition of sn~all gaps was espectrd to be similar to that 

of closed. seasonally dry. forest tloors. If gap sizr were the primary determinarit of species 

composition in canopy openings. then gaps o h  yivrn s i x  should cluster in ordination spacr. and. 

gaps of increasing s i x  should clustcr at increasing distance from the reference condition. Gaps that 

were separatrd by 4 or more standard dcviation iinits wrre rxpected to have few if an' specirs in 

common (ter Braak 1987).The analysis was pcrformcd in CANOCO Version 3-12 (ter Braak 199 1 ). 

The DCA diagram is presented in Figure 2.5.  

Analysis #3: The distribution of species across habitats was assessed to determine the de- ~ e e  to 

which environmental heterogeneity in the forest undrrstoq- has bren utilized by plants. A restricted 

distribution pattern was considered suppon for the vitiu. that heterogeneity increases the species 

richness of forest patches primarily through the provision of novel resources. whereas. a pattern of 

widespread use was considered support for the view that heterogeneity maintains the nchness of 

forest patches primarily through the spatial segregation of competing species. 

Four broad habitat categories were established for the analysis: closed dry forest tloors. sensir siricto; 

natural disturbance features (canopy gaps. tree pits. tip-~ip mouds. stumps. logs); human disturbance 



(regenerating fields. lanes. ditches): and moist or wet habitats (forest floors. depressions. seeps. 

riparian meadow. riparian rnarsh and riparian thicket). The distinction between natural and human 

disturbance is somewhat forced since many of the stumps and canopy gaps in this study were created 

by selective logging. The effect on the forest canopy. however. is similar to natural tree fall. The 

analysis was performed in JMP Version 3.1.2. (SAS Institutr Inc. 1997) and EXCEL Version 7.0a 

(Microsoft Corporation 19%). The results of this analysis are presented in Figure 2.6. 

2.2.4.4 Distribution of Sugar Maple on a Moisturc-Fertility Gradient 

Analysis #1: Species richness in sarnpled forest stands \vas inversrlp correlatrd with sugar maplr 

abundance (Chapter 4.0). This pattern was especiall> evidrnt on mssic soils overlying calcareous 

till  where sugar maple abundance espiained 63 -0% of tlic variance in spttcies ric hnrss in undisturbed 

stands. The distribution and abundance of sugar maplr at small spatial scales has recently been 

attributed to differences in the availability of calcium ions in the soil profile ( Kobe C r  c d .  1995. Kobe 

1996). The structure of sugar maple stands in this study was subsequently examinrd on a gradient 

of increasing calcium availability to determine if thcre was evidence of increased sugar maple 

survivorship on calcium rich soils. 

The analysis was initially restricted to undisturbrd stands on Brunsolic and Luvisolic soils. ovrrlying 

calcareous till. in order to standardize samples with respect to soil parent material. soil moisture. and 

recent site disturbance. Soils with free calcium carbonate in the upper l j  cm of the soil protile 

(positive reaction to O. I N  HCl ) were escluded tiom iliis analysis in order to standardize snmples 

with respect to eschangeable calcium (see contnsting treatment in Analysis 2 ) .  The analysis \vas 

funher restricted to quadnts with forest cover type 2 (sugar maple + red or white oak) and forest 

cover type 3 (sugar maple. no red or white O&. no wt-mesic. wet. trees) in order to standardize 

samples with respect to forest cover. N = 19 10m ?; 1 Om quadrats in 7 Forest patches. 

Stand structure \vas evaluated in relation to four size classes: 0-4 cm. 4-10 cm. 10-30 cm. and >30 

cm. dbh. Sugar maple abundance was evaluated in relation to absolute and relative abundance. The 

relationship bettveen sugar maple abundance and calcium availabili ty was evaluated in simple linear 



regression. The analysis was perforrned in JMP Version 3.1.2. (SAS fnstitute Inc. 1997). The 

results are presented in Figure 2.7. 

Analysis #2: The relationship between stand structure and calcium availability was re-examined in 

undisturbed stands on Brunisolic soils in order to standardize samples for soil parent material 

(calcareous till), soil order (Orthic Melanic Brunisol) and soil series (Otonabee loam). Soils with 

fiee calcium carbonate in the upper 15 cm of the soil profile were included in this analysis. in order 

to standardize samples with respect to mailable calcium. This analysis. as before. was restricted to 

quadrats with forest cover types 2 and 3. in order to standardize sarnples with respect to forest cover. 

This sample (N = 17 quadrats in 3 forest patches) provided the most uniform subset of quadrats in 

which to m e s s  the response of sugar rnaple to differences in available calcium. 

Stand structure was evaluated in relation to four size classes: O 4  cm. 4-10 cm. 10-30 cm. and >30 

cm. dbh. Sugar rnaple abundance was evaluated in relation to absolute and relative abundance. The 

relationship between sugar maple abundance and calciurn availability was evaluated in simple linear 

regression. The analysis was performed in JMP Version 3.2.2. (SAS Institute Inc. 1997). The 

results are presented in Figure 2.8. 

Analysis #3: The response of shade tolerant and intolcrûnt herbs to increasing calcium availability 

and sugar maple abundance was examined in order to test the presumption of declining light levels 

on calcium rich soils. This analysis was extended to drtrrmine the calcium affinity of understory 

plants in relation to flowering phenology. Of interest was the degree to which life histones attributed 

to shade avoidance. early spring flowering and an ephemeral life history. were associated with 

calcium rich soils. Early spring flowering plants with persistent shoots were contrasted with rnid 

to late season flowering plants to determine if calcium affinity were associated with the degree to 

which the life cycle was completed afler canopy closure. Ephemeral and early spring tlowenng 

plants were classified in relation to Rogers 1982. and. to flowering data collected during the spring 

and sumrner vegetation survey. June lSt was taken to be the transition date between early and mid 

to late season flowering. Although leaf expansion may proceed as late as the sumrner solstice. the 



Forest canopy was typically well developed by June 1 ". 

As in Analysis i! 1. this analysis was restricted to undisturbed stands on Brunisolic and Luvisolic 

soils. overlying calcareous till. in order to standardize samples with respect to soil parent material. 

soil moisture. and recent site disturbance. Soils u-ith free calcium carbonate in the upper 15 cm of 

the soil profile were excluded from the analysis in order to standardize sarnplrs with respect to 

eschangeable calcium. The analysis was restricted to quadrats with Forest cover type 2 (sugar maple 

A red or white oak) and forest cover type 3 (sugar maple. no red or white oak. no wt-mrsic. w t .  

vers) in order to standardize samples with respect to limst covsr. N = 29 10m x 1 Om quadrats in 7 

Forest patches. 

Shade tolerance \vas evaluated by simple linear regression: calcium affinity in relation to flowering 

affinity was evaluated by Wilcoxon rank sum test. 'The analyses was pert'ormrd in JMP Version 

3-22.  (SAS Institute Inc. 1997). The results are prescntcd in Figures 7.9 and 2.10. 

2.2.4.5 Distribution of Plant Attributes on Environmental Gradients 

The distribution of selected plant attributes on environmental gradients was examined in order to 

determine the dcgree to which the distribution of spccics may be esplained by life form. life history. 

provenance. habitat affinity. shade tolerance and moisiure aftïnity. 

Analysis #1: The degree to which the selected attributes explained the dispersion ofspecies scores 

in ordination space kvas investigated in CCA. The response variable was the proportion of tasa in 

a IOm x 10m quadrat with the attribute of interest. The significance of  each contribution was 

determined by the Monte Carlo permutation test (n= 1000 permutations). The analysis w s  perfonned 

in CANOCO Version 3.12 (ter Braak 199 1 ). The resuits of the analysis are presented in Tables 2.16. 

2.17 and 2.18. 

Analysis #2: The distribution of provenance. habitat afhi ty  and moisture affinity was surnmxized 

by microhabitat to provide contextual information for the interpretation of dispersal modes in 



Chapter 3. The response variable was the proportion of tava ( d l  life forrns) in each habitat with the 

attribute of interest. The analysis was performed in JMP. Version 3.22. (SAS Institute Inc. 1997). 

The results are presented in Table 2.19. 

2.3 Results 

The tendency for species to be associated with particuiar environmental states and gradients will be 

reported in relation to the following headings: vegetation survey. relationships among environmental 

variables. species response to environmental gradients. species response to forest microhabitats. 

response of sugar maple and understory herbs to available calcium. local versus regional processes. 

and plant attributes. 

2.3.1 Vegetation Survey 

A surnrnary of surveyed taxa by taxonomie rank. life form. life history and provenance is presented 

in Table 2.4. A summary of plant anributes by species is presented in Appendix2: a cross-referenccd 

Iist of species codes is presented in Appendix 3. The distribution of species by soi1 parent material. 

soi1 moisture and cancpy closure is presented in Appendix 4. A listing of species by microhabitat 

is presented in Appendix 5. The distribution of species by microhabitat is presented in Appendices 

6 and 7. 

The sampled flora was composed of 413 species. 208 genen. 78 families and 45 orders. Twelve 

species occurred in z 50% of the quadrats surveyed: rlcer succhanim (9 1.1 %). Trilliiim grundijurirm 

(7 1.9%). iblaianthemum canadense (67.8%). Epipucr is helleborine (67.8%). Priinrrs virginianci 

(64.1%). Carexpensylvanica (62.5%), Tilia amcricanri (53.7%). Erythronirim americanlcm (55.7%). 

Dryopteris carihusiana (55.7%), Galium triforum (54.7%). Tararnclrm officinale (52.0%) and 

.4risaema triphylZrim (50.5%). The three most species rich genera were Carex (43 taxa). Viola ( 1 O 

taxa), and Aster (9 taxa). The three most genus rich families were Asteraceae (24 genera). Poaceae 

(21 genera) and Rosaceae (10 genera). The three most family nch orders were: Polypodiales (5 

families), Ranunculales (4 families) and Solanales (4 families). 



Table 2.4. Summary of surveyed tava by taxonomie rank. life form. 
life history and provenance. Life history: annual s.s = annual: 
biennial S. l.= biennial. annualfbiennial: perennial S. l. = perennial. 
annual/perennial. biennial/pere~ial. 

Plant Attribute 1 f: Taxa % (n=4 13) 

TAXONOMIC RANK 

species 

genus 

famil y 

LIFE FORM 

tree 

shmb 

vine 

fe rn 

fem al1 y 

gras  

herb 

LIFE HISTORY 

annual S.S. 

biennial S. 1. 

peremial s. 1. 

unclassi fied 

PROVENANCE 

native 

al ien 

unknown 



Herbs were the most abundant life fom (6 1 -0% of swveyed taxa). followed by shrubs ( 1 3.3%). 

grasses (8.7%). trees (7.3%) and îèms (5.6%). The least abundant li fe h s  were vines (3.3% and 
C 

Fem aliies ( 1.9%). Most taxa were perennials (90.1 ? , /O) .  Plants with biennial li fe histories (5 .3%)  

were more abundmt than plants with annual life histories (3.1 %). The provenance of most taxa w3s 

native (84.5%) . 

The cover class of surveyed taxa in 1Om K 10m quadrats is summarized by life form. life histop. 

provenance. and habitat affinity in Table 7.5. The median cover for each rlrment in the analysis ivns 

cover çlass 2 (0.5-1 .O% cover). The maximum cowr recorded was cover class 7 (50-7594~ cover). 

The life forms with the highrst mean çover werc the grasses (2.40) and k m  allies ( 2-37}.  Plants with 

ûnnual lire histories had signiticantly greatrr mran c o ~  cr (7.65) than plants \\ ith perennial(l.08) or 

bicnnial ( 1 3 8 )  l i k  histories. The mran cover class of native tasa (2.12) was signi ficantly greater 

than alien species ( 1.82). Plants with an affinit). for "forest A open" habitats had a signticantly 

higher mean cover (1 .20)  than plants with affinities for other habitats ( 1.79-2.1 1 ). Ovcnll. plants 

with the loivest mean cover were plants with affinity for "open" habitats ( 1.79). alicn species ( 1.82) 

and plants with biennial life histories ( 1.88). 

The habitat affinity rating assiped to understory spccies is reponed in Apprndix 2. Species 

classi fied as occumng exclusively in forestrd habi tnts ( "Fu)  included: .-irisiremu »-ipicYltrnz. 

.~frririntlt~.mzrnr racrmostr. Cinrfophdliirn rhcrlicrroitl.~. Soiiclqo ~1e.ri~~uzrfi.s. and. Cimx trrcrmrr. 

Sprcies classified as occumng pnmarily in forestrd habitats ("F+OW) included: TdIizo?t 

grctndflorctm. Enrhroniztnl umericrinzrrn. Dryupteris cmhzrsictncr. CCwer pechtncirl~rtit. and C'oyftr.~ 

cornutu. Species classified as occumng primarily in open habitats ("OW')  included: Ctrrer 

pensylvuniccr. T~trc~watrn ofjicinrrle. hputiens c~cpet~sis. Fraguriir virginitrncl. and Porr prrrrr mis. 

Species classitied as occumng esclusively in open habitats ("O") included: Ronut~cirIzis ocris. 

-4 sclepios sy-iaca. Dmcirs ccrruta Lricnrcu serrioltr . and l Ïciu crcrccrr . 

A checklist of sweyed taxa is presented in alphabetical order by family in Table 2.6. 



Table 2.5. Cover class of surveyed tava in herb layer in 1 Om x 10m quadnts by life form. 
life history. provenance and habitat affinity . Li fe history : annual S. s = annual; biennial S. I.= 
biennial. annual/biennial; p e r e ~ i a l  s-l. = perennial. annudperennial. biennidperennial. 
Cover class: 1 =<OS% cover. Z=OS-  t .O% cover. 3= 1 .O-3 .O% cover. 4=3- 1 5% cover. 5= 1 5- 
25% cover. 6=X-50% cover. 7350-75% cover. 8=7S 100% cover. Highest value in bold 
when difference among attributes within category significant at p<O.Oj. after Bonferroni 
correction for n=16 tests. Wilcoxon rank sum tests. by column. independent samples. 

I Cover Class 

Plant Attribute 1 Mean 1 Median 1 Range 

tree 

shrub 

vine 

fem 

fem ally 

grass 

herb 

LIFE FORM 

PROVENANCE 

annual S.S. 

biennial S. 1. 

peremial S. 1. 

HABITAT AFFINITY 

2.65 

1.88 

2.08 

native 

alien 

- 3 

3 

- 7 

2.12 

1.82 

forest 

forest + open 

1-7 

1 -4 

1-7 
L 

open + forest 

open 

- 7 

2 

2.1 1 

2.20 

1-7 

1-6 

2 .O9 

1.79 

2 

2 

1-7 

1-7 

2 

2 

1-7 

1 -6 



Table 2.6. Check list of surveyed taxa by family (alphabetical order). 

ACERACEAE 

Acer negrindo L. 

.-!cet- rttbnrm L. 

A cer saccharinirnr L . 
.-hr sacchurunz Marshall ssp. sacchartrm 

Jcer succhumm Marshall ssp. niLgrum (Michaux 
f.) Desrnarais 

.-lcer spicutictn Lam. 

ANACARDIAC EAE 

Rhzrs r d c u n s  L. ssp. negirndo (E.  Greene) 
McNei 1 l 

Rhtrs pphinu L. 

APIACEAE 

Cictiru brrlbijcra L. 

Cicrrru mucrrlartrm L. 

C3yptororniu ccrnadensis ( L . ) DC . 
Dtrrrcrrs carora L. 

Osniorhizcr ciqvronii (Michaux) C.B. Clarke 

Smictrir nturilunclicu L . 

Saniculc~ rrifoiiara B ic kn. 

Sanicirla spec ies 

APOCYNACEAE 

ilpocyntim androsaemifolium L. ssp. 
androsuemifolirirn 

ARACEAE 

.drisaena rriphyllunr (L.) Schott ssp. rriphyhrn 

W I A C E A E  

-4 rulia n udicaulis L . 

Puna  y uinqzrefolitrm L. 

ARISTOLOCHMCEAE 

.4surzrrn canadense L . 

ASCLEPIADACEAE 

.-l sclepias incartrrrta L. ss p. incurnuta 

.-l.sc/epias syriaca L. 

ASTERACEAE 

.-fc.hiliiu nrillefolirrrn L. ssp. miilefoliuni 

.-I nihrosiu urtc.niisi~iliu L. 

.-lnrenncrriu neglrcru E. Greene 

.-lrc*tirrn~ rnims ( Hill) Bernh. ssp. minus 

.-fsrrr ciliolart~s Lindley 

.-lsrw corii~olitr.~ L. 

.-lster ericoides L. 

. - l . ~ r  kancroitrzrs L . 

:lster 1ateriJortr.s ( L.) Britton 

.-lsrrr nrucroph~lltis L. 

.-lsrw novue-atrgliue L. 

.-lsrrr prmicetcs L. 

.-l.sr~'r trnibellurzls Miller 

B itk~ns fionciosa L . 
C 'crrcirrrrs actrnthoides L . 
C'~rrchrrrs nutans L. 

~'lr~sunrhernunr iettccrnthenr rrm L . 

Cirsiunz arvense ( L.) Scop. 

Cir.sitïni vulpre ( Sav i ) Ten . 

ï o n p  canadensis ( L.) Cronq. 

Erigeron crnnrtzrs ( L.) Pers. 

Erigeron philudelphicus L. ssp. philaddphicus 

Erigeron srrigostrs Muhlenb. ex. Willd. 

Eripron species 



Table 2.6. Check list of surveyed taxa by family (alphabetical order). 

Ercparorirrnz macirlarrrnt L. 

Etrpatorizrnl perfoliarrtm L. 

Errparurium rugosum Houn. 

Eirthumia gritminrfolia ( L.) Nutt. 

Hieracitrnt utrrantiacum L. 

Hierucitrrn caespitosrrm Dumort. ssp. cutispirosrrni 

Lucr zrccr ccrnudensis L. 

Lcrcrrrca srrriola L. 

Lucrzrca species 

Onopordon trcanrhirrnt L. 

Prenunrhes species 

Rtdbc.ckicr trirrcr L. 

Sol idugo ulrissimu L . 

Solidago carsiu L. 

Sol ichpu cu~raïknsis L. 

Solidago flex icatriis L. 

Sulidugo gipnreu A i ton 

Solidugo jrrnrecr Aiton 

Solidago nemordis Aiton 

Soiichgo nigosa A ito n ss p. rugosa 

Sonchtrs arvensis L . 

Sonchrrs olrracrrrs L. 

Turcrrucunz ofJ;cinofe G. Weber 

Tragopagon dribius Scop. 

TussiZugo farfaru L . 

BALSAMINACEAE 

Impatiens capensis Meerb. 

BERBERIDACEAE 

C a i I o p ~ h n  thcdictroides ( L  .) M ichaua 

Potkophyllrrrn pelrurrrrn L. 

BETULACEAE 

.-lirtr(.s incmrci (L.) Moench ssp. mgosa (Duroi) 
Clausen 

Berrrla ulleghunierzsis Britton 

Bcrth pupyrifera Marshall 

( ' o - h ~  carnrrr~r Marshal I 

Osnycr virginiuncr (MiIler) K .  Koch 

BORAGINACEAE 

Flcrckeiicr virginiunu ( L . )  [.M. Johnston 

BMSSICACEAE 

~.~~rclcrrrrinr diph~.lkr (Michs.)  A. Wood 

( 'crrrf~mine prnsvlvunica Muhlenb. e s  WilId. 

CXMPANULACE AE 

Loheliu injlattr L. 

Loheliu species 

CAPRIFOLIACEAE 

Dicrvillr ioniceru Miller 

Lsnicercr cumcIensis Bartram 

Lorricera dioicu L. 

Loniceru hirsutcr Eaton 

Lonicercr oblongijdio (Goldie) Hook. 

Scrnrbrtctrs citnacirnsis L. 

St~r~rbuctcs racernosu L. ssp. prrbrrts ( b1 ic haus) 
House 

Triostetrm uztranriacrrnl E. B ickn. 

l Yhtrrnzrm ucerfoZizcm L. 

l -ibrrrntrm lenrcrgo L. 

CÏhirrnum optrlrrs L. 

L'ibrrrnrtm rrilobunr Marshall 



Table 2.6. Check list of surveyed taxa by fmi ly  (alphabetical order). 

CARYOPHYLLACEAE 

Cerastium fontamlm Baumg. ssp. triviale (Link) 
Jalas 

Dianthris urmeria L. 

Silene vrrlgaris (Moench) Garcke 

Srellaria lorrgifoliu Muhlenb. ex Willd. 

CELASTRACEAE 

C'rlastnrs scmckris L. 

CLUSIACEAE 

Hvpericiïnr perjbruttrnr L. 

CONVOLVULACEAE 

Calvsfegia s ep im  L . 

CORNACEAE 

Cornus ulternijoiia L. f. 

Cornrrs forrnina Miller ssp. nrcvmnsa (Lam.) J.S. 
Wilson 

Corntïs nïgosa Lam. 

Corr~tis srolon@vv Michaux 

CUCURBITACEAE 

Echinu~~vsfis Iobutu ( Michaux) Torrey & A. Gray 

Skyos L I ~ ~ I U I U S  L. 

CUPRESSACEAE 

Thuja occidentalis L. 

CYPERACEAE 

Cumr albrirsina E. Sheldon 

Corex alopecoideu Tuc kerman 

Carex arcfata Boott 

Carex backii F. Boott 

Carex bebbii (L .  Bailey) Olney e x  Fem. 

Carex blanda Dewey 

C'rrre-Y brevior (Dewey) Mackenzie ex Lunel1 

C'~rrr-r cephcrloiiiea Dewey 

( ' ~ v e x  conrmzrnis L. Bailey 

C 'trrex crinira Lam. 

c 'mex crisrarellu Britton 

c irrrx ~iewewrncr Sc h wein . 

( '~rrrx digitdis W i 1 Id. 

( 'irrer grmillimcr Schwein. 

( ~ W L J - ~  grmularis ~Muhlenb. e s  Willd. 

'LII'PX hirfijdia Mackenzie 

( hrex hitcltcockianu Dewey 

c '~rrer inttrniescrns Rudge 

( irrex Imr trginosa M ic haus 

( ' L I ~ C X  Imifloru Lam. 

C 'trrciu peckii Howe 

c iirrx pedicnclrlu~cc M u  h len b. ex W i l Id. 

C ;iwx penqlvcrnicu Lam. 

( ' L  ri-c-x plun f ciginra Lam. 

C irrm plcr@phvllu J.Carey 

C'ccrex pruirea Dewey 

C h r ~ - r  projrcta blackenzie 

C 'me-u pserrdo-qvpertrs L. 

Ciirex radkrtcr (Wahlenb.) Smali 

c '~rrt'c~ retrorsa Sch we in. 

C irrex rosetr Schk. ex Willd. 

C'me-r sparganioides Muhlenb. es Willd. 

C ~ I F P X  stipata Muhlenb. es Wiild. 

C''rrcr.r renercr Dewey 

C'ccrex nibitloides Wahlenb. 



Table 2.6. Check list of surveyed species by family (alphabetical order). 

Carex crrlpinoidea M c  haux 

Carex rvoodii Dewey 

Carex specimen D7 19 

Curex specimen D858 

Carex specimen D868 

Carex specimen D870 

C'arex specimen 0879 

Cmex Section Ovales 

C'ara spec ies 

Scirpirs utroviret~s W i l  Id. 

DENNSTAEDTIACEAE 

Ptericiium crq ttilinirnt ( L. ) Kuhn 

DRYOPTEFUDACEAE 

.4thyrittmfili~~eminu ( L.) ssp. ungustuni ( W illd.) 
C lausen 

.-lt&riuni the(vpterioides (Michaux) Desv. 

Cystopteris birlbfera ( L. ) Bemh. 

QstoptrrisfLngi1i.s (L.)  Bemh. 

C)sropreris teniris (Michaux) Desv. 

Dvpteris  ctrrrliirsiiittu (Villars) H.P. Fuchs 

Dtyopreris cristtrtu ( L. ) Gray 

Dyopteris interrtdia ( Muh lenb. ex W i l Id.) A. 
Gray 

Dryopteris nrarginalis ( L. ) A. Gray 

Gymnocarpium dryopteris ( L. ) Newman ssp. 
d~opter i s  

.I.ia~teuccia stmhioprrris (L.) Tod. 

Onocleu sensibilis L. 

Po(vsrichzrm acrosrichoides (Michaux.) Schott 

EQUISETACEAE 

Ey lrisetzrm arÿerue L. 

Eqiriseium hyrnale L. ssp. c&e (Engelm.)Stone 

Eqirisetum laevigczttrm A. Braun 

Eqirisetum sc i rpo ih  bI ic haux 

ERICACEAE 

I ircciniuni mgzîstifoliirnr Aiton 

FABACEAE 

.-1 nphiccrrpurtr brctclecrtu ( L.) Fem. 

Dcwioriirrnt gltr~ir~osirm ( M u h  tenb. e s  Wil Id.) DC 
es Loudon 

.\ fdiccrgo Iirp irlim L . 

.\l~.lilorra dbu  Med i kus 

.\fdi/otiï.s ofJicimdis ( L . )  Pallas 

Ro h inirr p.st.rrdouccrcici L. 

Tt. lfilirrni repens L . 

I 'icicr crticcu L . 

FAGACEAE 

I;;~girs gruncifoliu E hrh. 

Qzwrcirs ~rlbu L . 

Qiwrms nicrcroccirpu kt ichaux 

Qirercrrs nrbru L. 

Quercus species 

FUMARIACEAE 

Dicentra canadensis (Goldie) Walp. 

Dicentra cuctdlcrricz ( L.) Bernh. 

GENTIANACEAE 

tienrima undrewsii Grise b. 

GERIANIACEAE 

G'c.rmittrn macirlairrm L. 



Table 2.6. Check list of surveyed species by family (alphabetical order). 

Geraniurn roberrianum L. 

GROSSULARIACEAE 

Ribes americanuni Miller 

Ribes cynosbati L. 

Ribes gtandulosum Grauer 

Ribes laczrstre ( Pers.) Poiret 

Ribes rubrun1 L. 

Ribes nisre Pall. 

Ribes specirnen D827 

HYDROPHYLLACEAE 

fiydrophyllum virginianm L. 

IRrDACEAE 

Iris versicolor L. 

Iris species 

JUGLANDACEAE 

Cuva cordiformis (Wangenh.) K. Koch 

JUNCACEAE 

Juncus tenuis W i l Id. 

LAMIACE AE 

Galeopsis tetrahi1 L. 

Leonurus cardiaca L. ssp. cardiaca 

L~vcopas urnericanas Muhlenb. e x  Bartram 

Lycopus unrjlorus Michaux 

hfenrha arvensis L. 

Prunella vulgaris L. 

Scurellaria laterifïora L. 

LILIACEAE 

Allium tricocmm Aiton 

Ctintonia borealis (Aiton) Raf. 

Erythroniurn americanum Ker Gawler ssp. 
~rniericanum 

.Lluîmrliemzrm cunadense Desf. 

,Cluiun~hemzirn racernostrm ( L.) Link ssp. 
rclcemosum 

.Cklimthernum stellatum (L.) Link 

Po/vgonottm prrbescens ( W i l ld.) Purs h 

Srreptopus rosetrs Michaux 

TriIliuni erectum L. 

Trilliiim grandijlorurn (Michaux) Salisb. 

C iwluria grand~jlora S rn i t h 

LYCOPODIACEAE 

Lw~podiurn unnorinurn L. 

L?twpociirrm dmtiroidrrrm Michaux 

L?wpodium obscurttnr L .var. obscitnrm 

Q.copodi~rnt rrisrach~wn~ Pursh 

M E N I S P E R M A C E A E  

.Clenispermum canucknse L. 

MONOTROPACEAE 

.Ilonotropa hypopithys L. 

.Ifonorropa trntJoru L. 

OLEACEAE 

Frurinrts arnericana L. 

Frurinrls nigra Marshall 

Frminus penr~svtvanica Mars h al l 

ON AGRACEAE 

C'ircea alpina L. 

C'ircra lureriana L. ssp. canadensis ( L.) Asc h m .  
& Magnus 

Epilobiurn ciliatum Raf. 



Table 2.6. Check list of  surveyed species by h i l y  (alphabetical order). 

Epilobirrm coloratum Biehler 

Epilobirim leptophyllurn Raf. 

Epilohizrm parvtjlorum Sc hreber 

OP HIOGLOSSACEAE 

Botqxkiurn nrarricariae folirrm A. Braun ex Koch 

Borrychirim mziltijihrm (S. Gmelin) Rupr. 

Botryhirtni i~irginiartrcnr (L.) Sw. 

ORBiUYCHACEAE 

Epifagrs virginimu (L.)  Barion 

ORCHIDACEAE 

Cypripediirnt ccrlcroliis L. 

Liparis loeselii (L.) Rich. ex Lindley 

OSMUNDACEAE 

Osmtrnda clqtonianu L. 

Osmunda regalis L. 

OXALIDACEAE 

Ordis strictir L. 

Oxcrlis species 

PAPAVERACEXE 

Sunguinar ia cancrdensis L . 
PINACEAE 

-4bies balsanzea (L . )  Miller 

Picea glazrcu (Moench) Voss 

Pir~rls strobris L. 

Tsuga canadensis ( L.) Carriere 

PLANTAGCNACEAE 

Plantago lanceolutu L . 

Plantago major L. 

Plantago nrgelii Decne. 

POACEAE 

.-lgrostis giguntea Roth 

.4grostis siolon~era L. 

Br~icl~-veljtrirm rrectrrni ( S c  hreber in Roth ex 
Sprengel) P. Bzauv. 

Brotrrtrs inrrnris Leysser 

( 'iwru lurifolia (Trevir.ex Goeppinger) Griseb. in 
Ledeb. 

Dtrchfis gionirrtm L. 

Dmtrhoniu spiccltir (L.) P. Beauv. e s  Roemer % 
Schultes 

EI?.nirts reprrrs ( L . )  Gould 

EI\mr.s virgi~t ictrs L . 
Fc)srrrça crrrrndirtacea Sc hreber 

F~srricu proterisis Hudson 

F;witcu rubrct L. 

F~~strrcil sirbrvrticillctrcr (Pers.) E.  Alexeev. 

(;Ii,ceriu stricltcr ( Lam.) A. Hi tçh. 

&srrir patrrlu Moench 

L L ~ S  ia opzo  ides ( L . ) S W .  

Lcrrsiu virgirtica Willd. 

.\/ilium rflrrsrm L. 

.\/icliknbergiufroncIosi~ (Poiret in Lam.) Fern. 

.Clirlilrnbergia mexicann ( L.) Trin. 

O~zops is  cisprrifoliu Michaux 

Ptmicrrrn ucrtminatrrm Sw. 

P~rnicunt capillure L . 

Phrlaris uncndnacea L. 

Phimm pratense L. 

Pou alsocies A. Gray 



Table 2.6. Check list of surveyed species by family (alphabetical order). 

Poa compressa L. 

Pou palrisrris L. 

Pou pratensis L. ssp. prutensis 

Pou sulrrrensis Fern. & W ieg. 

Pon species 

Schtachne ptrrpwascens (Torrey ) Swallen ssp. 
purprrrascerls 

Spherropholis inrernirrliu ( Rydb.) Rydb. 

POLEMONIACEAE 

Phlox species 

POLYGALACEAE 

Polygukr pcrucif0litr W i i Id. 

POLYGONACEAE 

Po[vgortum persiçaria L. 

Rtrmex orbic~ilut~rs A. Gray 

PORTULACACEAE 

Claytoniu cardiniana M ichaus 

PRIMULACEAE 

Ly irnachia ciliatu L. 

L_vsimuchia ntrnirnirluria L. 

Lysimachici terrestris (L.) Britton. Stems & Pogg. 

Trienrulis borealis Ra f. ss p. borealis 

PTERIDACEAE 

rldiantim peiiatum L. ssp. pedatrrrn 

PYROLACEAE 

Chimaphila umbelluta (L . )  Barton 

P-vrola ellipticu Nutt . 

RANUNCULACEAE 

.-inemone canadensis L. 

.-lnrnione qrtinqefo fiu L. 

.-l rrrrriorte virginicrna L. 

.-lq~ilegiu cmudrnsis L. 

('trlrhics palwrris L. ssp. pcrlrrsrris 

C 'lrrriaris virginictnts L . 

fiqxitica uc~itilobu DC. 

R~irirrnclrlra uborrivzis L. 

Rtrrrrrncrrlris ucris L. 

Rirtiuncit1lr.s hispiclris Michaux 

Rmrrnculiis rectrnurra Poiret ex Lam. 

Thlicrrtrm dioic*rrni L. 

TMicrrl.int pithescens Pursh 

RHAMNACEAE 

( 'ccrnorhzrs americanris L. 

Rlrtrrnntrs uln~oliu L' Her. 

Rlrtrmntrs cath~rrricu L. 

ROSACEAE 

.-lgriaoniu  posep pu lu Wallr. 

.-lr~rclmchier crrborea ( Michaux f.) Fern. 

.-lrr~~.krnchier intrrior Nie lson 

.-1 melonchier spec ies 

C'rcrttrrgrts s pecies # 1 

('rczrnegtis spec ies 2 

C'nrraegtis species #3 

('rcrraegtrs s pec ies 

Friyaria vescu L. ssp. cimericanu (Porter) Staudt 

Fruguria virginiuna Miller 

tietini akpicum Jacq. 

Grltm laciniatzrm Murray 



Table 2.6. Check list of surveyed species by family (alphabetical order). 

Gerrrn rivale L. 

Getirn rirbanum L. 

Geum s pecies 

Potentilla narvegica L. 

Pofe~lrillu recru L. 

Priintcs srrotina Ehrh. 

Prrinlis virginiunu L. s p p. virginima 

Roscr blunciu A i ton 

Rosa palicstris Marshall 

Rubzis alZeg/teniensis Porter 

Rubus idaerrs L. 

Rtrhtrs occiderttulis L. 

Rrrbtis odorutra L. 

Rubris pzrbescens Ra f. 

Rirbirs specimen D8JO 

RUBIACEAE 

Galium aparine L. 

Guliunt asprrlItrrn Michaux 

Galirint circaezans Michaux 

Galium lanceolatrirn Torre y 

Galiunt obttistim Bigelow 

Guliunt pulwtre L. 

Galium trrjlonm M ic haux 

Galirrm species 

:\litchella repens L. 

SALICACEAE 

Populus balsamijera L- 

Populus granciidentara M ic haux 

Populuî tremtdoirles Michaux 

Sdilc bebbinna Sarg. 

Sdir ciiscolor Muh len b. 

Sdis  ~riocepl~ulc~ M ic haus 

Stilir prriolaris Smith 

SAXIFRACACEAE 

.I lirella dip~llcr L. 

Titrrella corclijoliu L. 

SCROPHULAMACEAE 

Z~crhï~sctrm rhapslis L. 

I 2ronic.u uflcintrlis L. 

I2ronica srrpyll~oiicz L. 

SMILACACEAE 

Striil~r-Y tierhcrc~.ci L. 

Snl i l~t~ hispich Muhlenb. 

SOLANACEAE 

T m a  cunadensis Marshall 

THELYPTERIDACEAE 

I'hcgopteris conrtectilis (Michaux) Watt 

Thel-vpteris noveboracrnsis (L.) Nieuwl. 

Tlr~lvpteris pcrlrrsrris (Salisb.) Schott 

THYMELAEACEAE 

Dirctr pnlrisrris L. 

TYPHACEAE 

npha futifoliu L. 

TILIACEAE 

Tilicr urnericana L. 

ULMACEAE 



Table 2.6. Check list of surveyed species by family (alphabetical order). 

Ulmus americana L. 

URTICACEAE 

Boehmeria cylincirica ( L.) Sw. 

Laportea canadensis ( L . )  Wedd. 

Pilea purnila ( L . )  A. Gray 

Cirtica dioica L.  ssp. gracilis 

C'rrica dioica L.  ssp. dioica 

VERBENACEAE 

Phvma leprostach-va L.  

Verbenu hatata L.  

Verbena wticifoiiu L. 

VIOLACEAE 

Viola aflnis Le Conte 

Cïolu blanda Willd 

I,'iolu canadensis L . 

Ceiollr crmrllata Ai ton 

I *io lu labrahrica Sc hran k 

Iïoia pzrbescrns Ai ton 

li'olcr rosrrata Pursh 

bi'ollr sororia W i l Id. 

VITACEAE 

Purrite~tocisstrs inserta ( A .  Kerner ) Fritsch 

I 'iitr ripcrriu Michaux 



2.3.2 Relationships Among Environmental Variables 

Relationships arnong the principal environmental variables are summarized in Tables 2.7-2.12. The 

edaphic and stand structure variables included in this summary were found to strongly influence the 

dispersion of species in CCA and DCA ordination space (see Sections 2.3.3 and 2.3.4). The patterns 

of association reported in this section provide general context for analyses reported in this. and later. 

chapters. A summary of environmental variables by quadrat is presented in Appendices 8- 10. 

The distribution of influential variables in relation to soil parent material is presented in Table 2.7. 

The Frequency ofedaphic variables varied by parent material. Seasonally dry depressions were more 

frequent than expected on glacio-fluvial rnaterials. whereas. seasonally moist depressions were more 

frequent on lacustrine matenals and less frequent on glacio-fluvial materials. respectively .SeasonaIly 

wet depressions were over-represented on calcareous outwash materials. Soil pH. available calcium. 

and percent soil organic matter. achieved their highest values on lacustrine parent materials. 

In contrast. the frequency of forest cover types rarely differed on soi1 parent rnaterials. The 

exceptions were oak - sugar maple stands which were over-represented on glacio-fluvial parent 

materials. Forest stands on calcareous outwash had the highest mean number of tree saplings 0-4 cm 

dbh. The latter pattern is more strongly correlated with moist and wet soils than with disturbance 

(see Table 4.3. Chapter 4). 

The distribution of influential variables in relation to soil order is presented in Table 2.8. Seasonally 

dry depressions were more frequent than expected on Brunisolic soils and less frequent than 

expected on gleyed Brunisolic and gleyed Luvisolic soils. Seasonally wet depressions were over- 

represented on gleyed Luvisolic soils. Soil pH was highest on gleyed Brunisolic soils whereas 

available calcium and percent soil organic rnatter reached their highest mean values on Gleysolic 

soils. 

Brunisolic soils were over-represented on glacio-fluvial parent matenals. whereas Luvisolic soils 

were over-represented on calcareous outwash and under-represented on glacio-fluvial materials. 



Table 2.7. Distribution of selected environmental variables by soi1 parent matenal. Ce11 values: 
number of quadrats with specified attribute (mean value of attribute for continuous variables). 
Chi-square tests of homogeneity. by row (categorical variables): Wilcoxon rank sum tests. 
independent samples. by row (continuous variables). Ce11 values in bold when differences 
among parcnt materials significant at pcO.05 afier Bonferroni correction for number of ceIl or 
row tests in category. GF=gIacio-fluvial. CT=calcareous tili: L=lacustrine: CO=calcareous 
outwash. n = number of quadrats in category. Note: oak cover type excluded from analysis. 

1 Soi1 Parent Material 

SOIL ATTRIBUTES 
I I i I 

Variable 

seasonally dry depressions 140 24.6157 63.910 4.9 1 71 24.6 

GF 
(n=40) 

obs. esp. 

seasonally moist depressions 

CT 
(n=104) 

obs. exp. 

seasonally wet depressions 

soi1 pH 

avriilable calcium (cmollkg) 

% soi1 orgrinic matter 

gleyed luvisol 1 0  6 . 5 1 1 6  16.818 1.3 1 7 6.5 

O 8.8 

gleyed brunisol 

luvis01 

FOREST COVER TYPE 

L 
(n=8) 

obs. csp. 

SOIL ORDER 

O 6.7 

5.9 

5.1 

5 3 

oaii I O 1 0 1 0  I I 

CO 
(n=-IO) 

obs. exp. 

3 2  23.8 

O 5.4 

O 11.9 

15 17.3 

6.8 

14.1 

14.5 

8 1.8 

2 2  14.1 

3 2  30.9 

oak + susar maple 

wet rnesic Iwet 1 0  1.7 1 5 7.0 1 1 0.5 1 O 2.9 

2 8.8 

O 1.3 

6.9 

58.5 

69.2 

sugar rnaple 

sugar maple + wet mesiclwet 

STAND STRUCTURE 

17 6.7 

6.7 

S. 1 

I O .  1 

O 1 . 1  

O 2.4 

30 11.3 

4 5.4 

25 11.8 

1 O 15.4 

O 10.4 

20 29.3 

% canopy closure 

# live stems 0-4crn dbh 

44 40.1 

35 27.1 

O 2.3 

87.7 

28.8 

O 2.9 
-- - 

1 3.1 

6 2.1 

O 2.9 

O 2.9 

86.5 

42.1 

85.8 

59.0 

82.1 

60.0 



Table 2.8. Distribution of selected environmental variables by soil order. Ce11 values: number 
of quadrats with specified atûibute (mean value of attribute for continuous variables). Chi-square 
tests of homogeneity. by row (categorical variables): Wilcoxon rank sum tests. independent 
samples. by row (continuous variables). Cell values in bold when differences among soil orders 
significant at piO.05 afier Bonferroni correction for number of ce11 or row tests in category. 
B=brunisol: gB=gleyed bmisol: L=luvisol: gL=glryed luvisol: G=gleysol. n = number of 
quadrats in category. Note: oak cover type excluded from analysis. 

I Soi1 Order 

- -- - -- . - 

SOIL ATTRIBUTES 

Variable 

seasonally dry depressions 1 67 43.0 1 1 16.0 1 50 35 .0  1 O 19.1 1 O 4.9 

seasonally rnoist depressions 1 O 15.3 1 19 5 . 7 1 1  12.5118 6 . 8 1 4  1.8 

seasonally wet depressions 1 3 11.7 1 6 4.3 1 6 9.5 1 13 5.2 1 1 1.3 

B 
(n=70) 

L 
(n=5 7) 

C eB 
(n=26) 

available calcium (cmolkg) 1 6.8 1 16.5 1 6.5 1 28.1 1 37.4 

soi1 pH 

@- 
(n=3 1 ) 

SOIL PARENT MATERIAL 

G 
(n=8) 

6.4 

% soi1 organic matter 

7.6 

6.3 

glacial-fluvial 

calcareous outwash 

calcareous t i 1 l 

lacustrine 

FOREST COVER TYPE 

14.0 

40 14.6 

7 -2 
i 

26 37.9 

O 2.9 

oak + sugar maple 1-85 19 .910  7 . 4 1 9  1 5 . 8 1 0  8 . 8 1 0  2.3 

6.4 

8.9 

O 5.4 

oak 

sugar maple 1 19 27.1 1 4  10.1 143 21.7 1 8 12.0 1 O 3.1 

6.7 

22 14.1 

O 1.1  

33.6 

O 11.9 

O 

STAND STRUCTURE 

11.0 

32 30.9 

O 2.4 

sugar mapIe + wet mesidwet 

wet mesic /wet 

% canopy closure 1 85.4 1 83.6 1 87.6 1 84.0 1 90.1 

O 6.5 

O 

# live stems O-km dbh 1 39.7 1 70.8 1 42.6 1 40.9 1 13.5 

O 1.7 

16 16.8 

8 1.3 

2 18.3 

4 4.8 

1 

8 4.3 

O 0.3 

1 

18 6.8 

4 1.8 

O O 

4 14.7 

O 3.8 

22 8.1 

1 2.1 

4 2.1 

4 0.5 



Table 2.9. Distribution of selected environmental variables by soi1 moisture class. Ce11 values: 
number of quadrats with specified amibute (mean value of attribute for continuous variables). 
Chi-square tests of homogeneity. by row (categorical variables): Wilcoxon rank sum tests. 
independent sarnples, by row (continuous variables). Ce11 values in bold when differences 
arnong moisture classes significant at p<0.05 after Bonferroni correction for number of ce11 or 
row tests in category. Dry=quadrat with seasonally dry depressions: Moist=quadrat with 
seasonally moist depressions: Wet=quadrat with seasonally wet depressions. n = number of 
quadrats in category. Note: oak cover type excluded from analysis. 

1 Soi1 Moisture CIass 

SOIL ATTRIBUTES 

Variable 

I 
- - - -  - -  

% soi1 organic matter 7.3 1 27.7 1 20.8 

Dry 
(n=l 17) 

obs. exp. 

available calcium (cmolkg) 1 6.6 

SOIL PARENT MATERIAL 

glacial-fluvial 1 40 24.6 1 O 8.8 1 O 6.7 

Moist 
(n=43) 

obs. exp. 

31.4 

calcareous tiil 1 57 63.9 [3i--- 22.8 1 15 17.3 

Wet 
(n=33) 

obs. ex p. 

16.6 

lacustrine 1 0  4.9 1 8 1.8 1 O 1.3 

calcareous outwash 1 II 24.6 1 ? 8.8 1 17 6.7 
- -- 

SOIL ORDER 

gleyed brunisol 16.0 1 19 5.7 1 6 4.3 

gleyed luvisol O 19.1 18 5.2 

gleysol O 4.9 4 1.8 4 1.3 

FOREST COVER TYPE 

oak 1 I 1 O 1 O 

oak + sugar maple 

sugar maple 

CANOPY CLOSURE 

sugar maple + wet mesiclwet 

wet mesic /wet 

54 33.1 

59 45.3 

3 30.6 

I 8.0 

% canopy closure 

# live stems O4cm dbh 

O 16.3 

[ O  11.0 

O 9 .O 

5 12.4 

29 11.0 

3 2.6 

. - 

87.7 

39.9 

18 8.4 

9 2.2 

- . - - - - .- - - - - - - .- - 

86.0 

50.3 

- . . - . - 

80.7 

49.6 



Table 2.10. Distribution of selected environmental variables by forest cover type. Ce11 values: 
nurnber of quadrats with speci fied attribute (mean value of attribute for continuous variables). 
Chi-square tests of hornogeneity. by row (categorical variables): Wilcoxon rank sum tests. 
independent sarnples. by row (continuous variables). Ce11 values in bold when differences 
among cover types significant at ~ ~ 0 . 0 5  after Bonferroni correction for number of cell or row 
tests in category. Cover Type: I = red or white O&. no sugar maple: 2 = red. white oak + sugar 
maple: 3 = sugar maple. no red. white oak. no wet mesic or wet tree species; 4 = sugar maple 
+ black ash. silver maple or Amencan elm: 5 = black ash. silver maple. Amencan elm. no suçar 
rnaple. no red. white oak. Cover Type 1 excluded from analysis. n = number of quadrats in 
category 

Forest Cover Type 

SOIL ATTRIBUTES 

Variable 

seasonallydrydepressions 1 I 154 33.1159 15.313 8 . 4 1 1  2.2 

1 
(n= I ) 

obs. exp. 

- 

SOIL PARENT MATERIAL 

seasonal 1 y wet depressions 

soi1 pH 

available calcium (cmollkg) 

% soi1 organic matter 

glacial-fluvial 1 O 130 H . ~ I I O  1 5 . 5 1 0  1 0 . 5 1 0  1.7 

2 
(n=54) 

obs. esp. 

O 

6.2 

2.1 

3.1 

- - - - -  

calcareous outwash 1 1 14  11.0119 1 5 . 1 1 9  10.217 2.7 

3 
(n=75) 

obs. exp. 

calcareous till 

lacustrine 

O 9.0 

6.1 

4.6 

6.1 

J 
(n=49) 

obs. cxp. 

O 

O 

- - - 

SOIL ORDER 

5 
(n= 13) 

obs. esp. 

5 12.4 

6.6 

10.3 

1 1 . 1  

brunisol 

gleyed bninisol 

luvisol 

gleyed luvisol 
Ld 

gleysol 

20 29.4 

O 2.3 

18 8.4 

6.9 

23 .O 

22.9 

O 

O 

1 

O 

O 

9 2.2 

7.4 

29.8 

29.9 

44 40.3 

1 3.1 

45 19.8 

O 7.4 

9 15-23 

O 8.8 

O 2.3 

3 27.2 

6 2.1 

5 7.1 

1 0.5 

19 27.1 

4 10.1 

43 21.7 

8 12.0 

O 3.1 

2 18.3 

18 6.8 

4 14.6 

22 8.1 

4 2.1 

4 4.8 

4 1.8 

O 3 -8 

1 2.1 

4 O .6 



Table 2.1 1. Attributes of forest stand structure by forest cover type. Cell values: mean percent 
of taxa in1 Om x 1 Om quadrats with specified attributes (mean number where noted): Wilcoxon 
rank sum tests. independent samples. by row (Cover Type 1 excluded from analysis): non- 
parametric median tests. by row (Cover Type 1 excluded from analysis). Highest value in bold 
when differences among cover types significant at p<O.Oj. afier Bonferroni correction for 
nurnber of tests in attribute group. Cover Type: 1 = red or white oak. no sugar maple: 2 = red. 
white oak + sugar maple: 3 = sugar maple. no red. white oak. no wet mesic or wet tree species: 
4 = sugar maple + black ash. silver maple or Arnerican elm: 5 = black ash. silver maple. 
Arnerican elm. no sugar maple. no red. white oak. n = number of quadrats in category. 

1 Forest Cover Type 

# LIVE TREE STEMS > 1 m 

Stand Attribute 1 
(n= 1 )  

mean number 

median number 

DBH SIZE CLASS 

range 

% stems 0-4 cm 

2 
(n=54) 

16 

% stems 4- 10 cm 

O 

% stems 10-30 cm 

3 
(n=75) 

53 -9 

46.0 

% stems >30 cm 

9-121 

3 7 -. - 
46.4 

Silver Maple 

4 
(n-49) 

49.7 

42.0 

m&xirnurn DBH 

5 
(n= 13) 

9- 168 

8-10cm 1 88.0cm 1 57.lcm 
Red Oak White Oak A. Beech 

68.0 

63.0 

94.5 cm 
Silver Maple 

59.9 

4 7 .O 

9-1 52 

fi LIVE TREE SPEC 

9-181 

mean # species 

% CANOPY CLOSURE 

median # species 

8 

range 1 O 1 48.3-98.2 1 53.3-99.6 1 57.4-99.0 1 39.2-97.2 

- 

mean % closure 

median % closure 

6.7 

6.5 

88.5 

- 

4.5 

4.0 

86.5 

88.5 

7.8 5 -6 

8.0 5 .O 

70.4 

76.8 

87.9 

90.5 

85.9 

85.9 



Table 2.12. Distribution of selected environmental variables by patch size. Ce11 values: number 
of quadrats with specified attribute (mean value of attribute for continuous variables). Chi-square 
tests of homogeneity. by row (categorical variables): Wilcoxon rank surn tests. independent 
samples. by row (continuous variables). Ce11 values in bold when differences arnong size classes 
significant at p<0.05. afier Bonferroni correction for number of ce11 or row tests in category. 
Large=> 122 h a  Intermediate43-121 ha. Small=< J? ha. n = number of quadrats in category. 
Note: oak cover type excluded from analysis. 

1 Patch Size Class 

Variable 

SOIL MOISTURE 

Large 
(n=48) 

obs. exp. 

seasonally dry depressions 1 31 29.5 1 65 54.1 1 3 34.4 

seasonal ly moist depressions 1 l 6  10.5 1 1 5  19.3 1 I I 12.3 

Intermediate 
(n=9j) 

obs. exp. 

seasonal l y wet depressions 1 0  8.0 1 8 14.7 1 24 9.3 

Small 
(n=49) 

obs. exp. 

SOIL PARENT MATERIAL 

glacial- fluvial 1 16 10.0 1 14 18.3 1 O 11.7 
- - - - - - - - 

calcareous ti 1 l 1 16 2 6 . 0 1  7.17.7 12 30.3 

lacustrine 

calcareous outwash 1 8  10.0 ( 8 18.3 ( 24 11.7 

SOIL ORDER 

gleyed brunisol 6.5 1 16 11.9 110 7.6 

luvisol 

gleyed luvisol 1 l 6  7.8 1 O 11.2 1 15 9 .O 

- -- 

FOREST COVER TYPE 

oak 1 1 1 O 1 O 

oak + sugar maple 1 24 13.3 130 24.9 1 O 15.8 

sugar maple 1 13 18.2 1 38 34.1 1 13 2 1.7 

sugar maple + wet mesicfwet 12.3 1 16 23.0 1 25 14.7 

wet mesic iwet I l  3.2 1 4 5.0 1 8 3 -8 



Gleyed Luvisolic soils were over-represented on lacustrine deposits. Forest stands composed of oak 

and sugar maple were over-represented on Bninisolic soils. whereas sugar maple stands. sensir 

srricto. were over-represented on Luvisolic soils. Stands composed of sugar maple and wet mesic 

or wet trees were over-represented on gleyed Luvisolic soi 1s. whereas stands composed of wet mesic 

and wet species were over-represented on Gleysolic soils. Forests on gleyed Bmnisolic soils had 

the highest rnean number of live tree stems 0-4 cm dbli. The latter pattern was more strongly 

correlated with soi1 moisture than with disturbance. 

The distribution of iniluential variables in relation to soi1 moisture is sumrnarized in Table 2.9. Soil 

pH. wailable calcium. and percent soil organic mattrr. achieved their highest mean values in 

quadrats with seasonally moist depressions Stands composed of oak and sugar maple werc owr- 

represented in quadrats with dry depressions and w r e  absent from quadrats with seasonally moist 

or seasonaily wet depressions. Stands composed of sugx maple with wet mesic and wet species were 

over-represented in quadrats with seasonally mois[. or seasonally wet. depressions. Stands 

composed of wet mrsic and wet tree species uere over-represented in quadrats with seasonally wet 

drpressions. 

The distribution of influential variables in relation to brest cover type is sumrnarized in Tables 2.10 

and 2.1 1. Soil pH. available calcium. and percent soil organic matter. achieved their hiphrst mean 

values in stands dominated by wet mesic and wet trecs. Patterns related to soil moisture. soi1 parent 

material and soi1 order were discussed previously. Stand structure variables also varied by forest 

cover type. Stands composed of sugar maple with oak had the highest mean percentage of stems in 

10-30 cm dbh class. whereas stands composed of sugar maple. sensir stricto. had the highest mean. 

and median. percent canopy closure. Stands composed of sugar maple with rvet mesic or wet species 

had the highest mean number of \ive stems. and. the highest mean. and median. numbrr of tree 

species. 

The distribution of influential variables in relation to patch size is summarized in Table 2.11. The 

ereatest contrast was between large and srnaIl patches. Small patches were over-represented on 
C 



calcareous outwash materials and under-represented on glacio-fluvial materials. In keeping with this 

pattern, seasonally wet depressions were more frequent in small patches than in patches of 

intermediate or large size. Sugar maple stands with red or white oak were over-represented in large 

patches where soils were consistently drier than in patches of small or intemediate size. 

2.3.3 Species Response to Environmental Gradients 

The distribution of quadrats and patches in ordination space (DCA) is presented in Figure 2.1 . 1 n 

general. the species composition of quadrats tended to be more similar within. than among. forest 

patches. This tendency is revealed by the clustering of quadrats in patches 1 5.  1 8. and 17. lower 

right portion of the diagrarn. and by the clustering of quadrats in patches 10. 14 and 17. rniddle 

portion of the diagrarn. Canopy closure and moisturc conditions within these patches are more 

uniform than in patches with quadrats that are broadly dispersed (parches 1. 3.4.6). 

The species composition of quadrats with moist or wec depressions. seeps. and moist or wet forest 

tloors. was typically more similar than the species composition ofquadrats in upland settings. This 

pattern is revealed by tight quadrat clusters from dissimilar patches (e.g. quadrats from patchcs 4 and 

30. 20and34.19and24.6and24.6and l 9 . h n d  12.4and 12.12and16.2and6.3and21.lower 

lefi portion of the diagrarn). A similar tendency was also obsemed in selected quadrats with closed 

forest floors or canopy gaps on dry soils (see tight clusters fomed by quadrats from patches land 

7. 9 and 18. 15 and 18. 15 and 23. 15 and 22. and. 8 and 23. lower right portion of the diagrarn). 

Sevenl of these clusters had similar parent materials and soi1 orders. 

Taken together. these trends suggest that the primary intluence on species composition has been 

similarity in site conditions. However, when edaphic conditions within patches are similar. other 

factors such as within-patch dispersa1 and disturbance history may intensib the similarity in species 

composition within patches. The similarity in species composition in moist and wet habitats 

suggests that species have had an opportunity to sarnple most habitats within the regional landscape 

during the post-glacial period. Pattern in the distribution of species in the present-day landscape. 

therefore, may p n m d y  reflect histonc opportunities Cor germination and persistence. The 



. -. 

Patch Number 

Figure 2.1. Distribution of  forest patches (N=24) in relation to DCA axes 1 and 2. 
Note the degree to which quadrats in each patch (N=8) cluster in ordination space. 



availability of propagules appears not to have been a constraint. when viewed on long time scales. 

The distribution of species in CCA ordination spacc (Figure 1.2) was strongly influenced by 

gradients in soi1 rnoisture. soil order. forest cover type. percent canopy closure. and soi1 parent 

material (see inter-set correlations. Table 2.1 3 ). The ordination explains 3 . 6 %  of the total inertia 

in species scores (F=5.748. p<O.OOl. Monte Carlo permutation test. ~ 9 . 9 9 9  permutations). after 

fitting patch rnembership as a CO-variable: the first and second avis of the ordination collectively 

explain 12.8% of the variance rxplained by submi tted environmental variables. 

The tirst avis is a cornplex gradient dorninated by soi1 nioisture. cover type. and soil parent material 

(sce inter-set correlations. Table 2.13). The second asis is a comples gradient dominated by soi1 

order and percent canopy closure. Species on the upper lest side of the diagram achirvrd their 

mavirnurn ti tted abundance in closed. dry. maple-oak stands. on Bmnisolic soils overly ing glacio- 

fluvial and calcareous till parent materials. In contrast. spccies on the upper right sidr of the diagram 

achieved their maximum fitted abundance in open. uct Iorest stands dominated by wet-mesic and 

wet tree species. on gleyed Brunisolic soils overlying calcareous outwash. Speciçs on the lower right 

side of the diagram achieved their mmirnurn titted abundance in closed and open. wrt forest stands 

dominated by sugar maple and wrt-mesic or wet tree species. on Gleysolic or gleyed Luvisolic soils 

overlying calcareous till. Species in the left-of-centrc region of the ordination diagram achieved 

their maximum fitted abundance in closed. dry. sugar rnaple stands on Luvisolic and gleved 

Brunisolic soils overl y ing calcareous till and calcareous outwash parent materials. Species in the 

right-of-centre reg ion of the ordination diagram achieved their masimum fitted abundance in closçd. 

moist and wet stands dominated by sugar rnaple with wt-mesic or wet species. on gleycd Luvisolic 

and Luvisolic soils overlying calcareous till and lacustrine parent materials. 

Ail but four of the sixteen environmental variables had a significant influence on the dispersion of 

fitted species scores. afier fitting al1 remaining variables as CO-variables. and. afier Bonferroni 

correction for n=16 Monte Carlo permutation tests (n= 1 .O00 permutations) (Table 2.13). The non- 

significant variables viere: # trees 0-4 cm dbh. # trees 4-lOcm dbh. + microhabitats. and disturbed 
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Ordination Details 

1. Species in ordination space are loca the centroid of quadrats (not s h o w )  that have the 
highest fitted mean abundance for the species I Scaling Mode 2) .  

7 -- The CO-ordinates for the heads of arrows are the bi-plot scores for Axis 1 and Asis 2. 
3. Patch membership was designated a CO-variable: the efkct of replicated samples within 

forest patches has therefore been removed from the ordination. 
4. The submitted environmental variables esplain 3 . 6 %  of the variance in species composition 

in the ordination ( 100 x 1 canonical eigenvalues 1 unconstrained eigenvalues). The first 
and second êuis collectively explain 42.8% of the variance esplained by the submitted 
variables. The mode1 and first mis are highly significant: F-ratio (overall test) = 3.748. 
p< 0.00 1 : F-ratio (Asis 1) = 12.074. pc0.00 1 : Monte Car10 permutation tests (n=9.999). 
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microhabitats. The stand structure variables were strongly correlated with sugar maple abundance 

and soil moisture (see Table 4.3. Chapter 4). whereas. the composition of disturbed microhabitats 

was dominated by species with an affinity for closed forest conditions (see Figure 2.4 and related 

discussion). The non-significance of microhabitat nurnber simply retlects the composite nature of 

this variable. The contribution of patch membership to the dispersion of species scores \ a s  

significant (F=2.776. p<O.OOl). however. and accountrd for 4.3% of the explained variance. and 

1.2% of the total variance. in species scores. Patch membership was tlierefore designated a CO- 

variable. when testing for a treatment effect of environmental variables. to minimize the effects of 

replicated samplrs within patches. 

The drgree to which species were restricted to a particular rdaphic condition. forest covrr type. or 

disturbance state is summarized in Table 1.13. In general. the distribution of species was restricted 

more by differences in soil parent material and soi1 ordcr than by differences in forest covrr type and 

soil moisture. Comparatively few species were restricted by differences in canopy closure. Only 

I 0.4 % and 1 2.8 % of species werc present on eveq soi l parent material. and soi1 order. rcspec t i w l y  . 
whereas. 19.4 % and I j  .O % of species were present in every forest cover type. and soil moisture 

class. respectively. In contrast. 69.2% of species wre recorded in both open and closed canopy 

conditions. 

Inspection of the percentage of tava restricted to n giwn cnvironrncntal state reveals that 

proportionall y fewer species were restricted to scasonally moist (5.4%) and seasonlilly u r t  

microhabitats (5.0%) than to seasonally dry microhabitats (40.1 ?/O). This suggests that specirs of 

seasonally rnoist and wet habitats were more tolerant OF dry conditions than specirs of dry habitats 

were of seasonally moist or wet conditions. A greater tolerance of excess moisture may account for 

the small percentage of species restricted to lacustrine parent materials ( 1.9%). and gleyed Brunisolic 

soils (4.7%). since the number of quadrats with seasonally moist depressions was significantly 

higher on these substntes (Table 1.9). 

Species in this data set also showed a pronounced tolerance of gradients in canopy closure. In 



Table 2.14. Nurnber of species with a restricted and unrestricted spatial distribution in relation to 
soil parent material, soil order. soi1 moisture, cover type. canopy closure. Note: "O&" cover type 
(N=l quadrat) included in "oak+sugar maple" for this analysis. 

Environmental Va,riable # Species S pecies Restricted Species Present 

145 10.4 SOIL PARENT MATERIAL (total) 

glacio-fluvial 

calcareous till 

lacustrine 

calcareous ouhvash 

SOIL ORDER 

brunsisol 

gleyed brunis01 

luvisol 

gleyed luvisol 

SOIL MOISTURE (total) 

seasonally dry microhabitats 

seasonally moist microhabitats 

seasonally wet microhabitats 

FOREST COVER TYPE (total) 
. - -- 

oak, and, oak + sugar maple 
. . -.-- 

sugar maple 

sugar maple + wet-mesic, wet 

wet mesic + wet 

CANOPY CLOSURE (total) 

open microhabitats 

closed microhabitats 



contrat to other variables. there were more. rather than fewer. species present in every state. This 

suggests that shade tolerant species are rarely displaced by taxa with an affinity for open habitats 

during disturbance events. 

The relative contribution of patch variables. edaphic variables and matri'c variables to the dispersion 

of species in ordination spacr is summarized in Figure 2.3.  Overall. patch variables. sensic stricto. 

explained more of the variance in composition (36.1 % than did edaphic variables (38.1 %) or matrix 

variables ( 10.2%). Edaphic variables explained 3-1.65h of the variance esplained by patch variables. 

sens11 iaio {( 19.2 + 1 .4) - (36.1 + 19.2 + 1.4 -+ 2.8) = 34.6 I. and. 7 1.7% of the variance explainrd by 

matrix variables. semr  loto ( (  1 .4 Q.1) - ( 10.2 + 2.8 - 1.4 + 2.2)  = 2 1.71 . Matris variables. on the 

other hand. explained only 7.1% of the variance explained by edaphic variables. sensu l m .  and 

patch variables. sensir k m .  The implications for the relative contribution of local versus regional 

processes are discussed in Section 1.4. 

2.3.4 Specics Response to Microhabitats 

Specirs were responsive to the pragmatic classification of microhabitats used in this study (Figure 

2.4). With few exceptions. the microhabitats were wrll separated in ordination space and werr 

dispersed in relation to the moisture and disturbance gradients that defined them. The similarit- in 

species composition (marked by the proximity of habitats in ordination space) varied among habitats 

but even the most widely separated habitats had at least some specirs in common since the length 

of the first axis was less than 4.0 standard deviation units long (ter Braak 1987). This result is  

consistent with the broad moisture tolerance of many of the tas occumng in more than 25 

microhabitats (Table 2.15). As expected. the composition of species in microhabitats was more 

uniform than in the ordination of quadrats (total inenia for the ordination ofmicrohabitats was 2.737 

versus 7.100 for the ordination ofquadrats). Taken togethrr. these patterns providr indirect evidence 

of the role of environmental heterogrneity in structuring the composition of forest patches. 

The strongest overlap in species composition occurred in open stumps and closed moist depressions 

(overlapping annotation in Figure 2.4). This was due to the capacity of species of moist forest floors 



Patch Variables 

Edaphic Variables Matrix Variables 

Figure 2.3. Partial decomposition of variance in CCA species ordination: local versus 
regional processes Patch variables (cover type. Oh canopy closure. stem diameter class. 
# tree species. t tree stems. # microhabitats. open microhabitats. disturbed microhabi- 
tats. patch membership). sensu srricfo. explain 59.5% of the variance explained by 
patch variables. edaphic variables (soil parent material. soi1 order. soil moisture. % soil 
organic matter). and rnatrix variables (patch m a .  patch isolation). Edaphic variables 
explain 34.6% of the variance in species composition explained by patch variables. 
senstc lato. and 21.7% of the variance explained by matrix variables. sensu laio. Patch 
variables explain 25.2% of the variance in species composition explained by matrix 
variables. sensu lato; matrix variables. in tum. explain 7.1% of the variance explained 
by patch variables. senszr laro. nie variables in this mode1 explain 100% of the ex- 
plained variance. and 27.4% of the total variance. in the original species ordination. 



Legend Figure 2.4 
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Table 2.1 5. Number of microhabitats occupied by surveyed taxa. See Notes 
for list of taxa present in more than 25 microhabitats. 

No tes: 
Taxa present in more than 25 rnicrohabitats: rlrisuemcr triphyiiirm. Aster 
latert~orus. Carex gracillima. Circea lutetitr nu, Epipactis helle burine. Gaiium 
triforum. Giyceria striata. Impatiens capensis. Parthenocisstcs inserta. Piiea 
pum ila, Prunus virginiana. Solidugo canudensis, Taraxact cm oflcinule. 



to colonize open stumps. Approximately 80% of species on open stumps occurred in closed moist 

depressions whereas only 20% of species in closed rnoist depressions occurred on open stumps 

(Appendi'c 6 .  7). The near overlap with species of open raised root mats is due pi-imdy to the 

capacity of species of moist forest floors to colonize hoth stumps and raised root mats since open 

stumps rarely occurred in quadrats with open raised root mats. 

The cluster of microhabitats on the extreme lefi of the ordination diagram reveals tbat the species 

composition of canopy gaps. tip-up mounds and dry trce pits in this data set was very similar to the 

species composition of closed. dry. Forest tloors. This suçgests that species of the forest tloor 

persist in canopy gaps and readily colonize dry rnounds and pits created by wind-thrown trers. In 

keeping with this interpretation. 85% of the species recordcd in the latter habitats (n=246 specirs) 

also occurred on closed. dry forest tloors. The 36 speçicis which did not occur on closed dry forest 

tloors were found in open dry canopy gaps (30 species). closed mounds (4  species). open mounds 

( 1 specirs). or closed canopy gaps ( 1 species). The mrijoritp of these tava (80.6%) were sprcics with 

affinity for "open" or "open + forest" habitats. 

In general. the dispersion of microhabitats in ordination space appcars to be intluenced by 

differences in soi1 moisture. canopy closure and human disturbance. Moisture exerts the strongest 

influence over the composition of species. based on thc tendency for habitats with similar moisturc 

conditions to occur in the same sector of ordination spacr (seasonally dry habitats typically to the 

left. seasonally moist and seasonally wet habitats typically to the right). Open and closed habitats 

of the samr vpe  tend to occur together. and. in the sector of ordination space that rrtlscts their 

moisture status. The tendency for open habitats to occur to the right of closed habitats reflrcts the 

shifi in species composition arising from the germination requirements of light-demanding species. 

The analysis of microhabitats was extended to clarify the influence of gap size on the composition 

canopy gaps on mesic soils. If colonization events during the gap phase were a significant influence 

on species composition. then one wouid expect to see an increasing departure from closed forest 

floors with increasing gap size. since species of open habitats should increasingly br  tàvored under 



conditions of increased light. Gaps in ordination space should therefore cluster in relation to gap 

size. and. larger gaps should be more remote from the ordination position of "closed dry forest 

tloors" than small gaps. If other factors are more important determinants of the species composition 

of forest floors. then neither pattern should aise. 

The results of this analysis are sho~vn in Figure 2.5. The dispersion of gaps in DCA ordination space 

is only weakly pattemed at best. The smallest gaps ( "  1". "7") are as likely to br close to the 

reference condition as distant from it. and. some of the largrst gaps ("9". " 10") are closer to the 

rekrence condition than many of the smaller gaps. If thrre is a general trend in the ordination. it is 

For gaps of larger size to be closer to the reference condition. and. for gaps of smaller size to be 

more distant. Gap size. per se. therefore. does not cippear to be a significant contributor to the 

species composition of forest Hoors. 

The factors responsible for this "pattern" are not rcadily apparent. Gaps in closest proximity to the 

reference condition tend to occur on calcareous t i l l  and outwash parent materials. whrreas gaps 

remote from the reference condition tend to occur on glacial-fluvial parent materials and on 

calcareous till. Remote gaps on calcareous ti I l  occur rsçlusivel y on gleyed Luvisolic soils whereas 

proximate gaps on calcareous till occur on soils that are not gleyed. Differences in the species 

composition of gaps. therefore. may largely be due to di ffrrences in cdaphic conditions. 

The largest gaps in this analysis (labeled " 10") differed sharply in the number of tava with the 

capacity to penist in soi1 seed banks. The proportion of taxa with the capacitp for prolonged 

dormancy in the gap nearest to the reference condition was ~ 6 %  whereas the proportion of taxa in 

the gaps in the lower right portion of the diagram was >11%. The former gap was situated within 

an otherwise closed forest whereas the latter gaps were situated at the edge of a recently clear-cut 

forest stand. Differences in the species composition O t'these gaps . therefore. may be due in part to 

differences in seed bank size or in the degree of seed bank germination. If the latter. then large gaps 

(>>100m2) may be a significant contributor to the transirnt composition of sprcies on forest tloors. 





The degree to which species were restricted to a given type of microhabitat is summarized in Figure 

2.6. Four broad habitat categories were used for this analysis: closed. seasonally dry. forest floors 

sensu stricto: natural disturbance features (canopy gaps. tree-pits. tip-up mounds. stumps. logs): 

features created by human disturbance (regenerating fields. lanes. ditches): and. rnoist or wet habitats 

(forest floors. depressions. seeps. riparian rneadow. riparian marsh. riparian thicket). Most species 

(79.2%) were recorded in more than one habitat category and approximately one-third of species 

( 33 2%) were found in every category. 

Species in this study were pmticularly tolerant of conditions created by the death or rrmoval of a 

canopy tree (canopy gaps. tree pits. tip-up mounds. stumps. logs). Such îèatures were colonized by 

86.0% ofthe species on closed. dry. forest floors. 8?.0°,0 of the species in moist or wet habitats. and. 

78.0% of the species in habitats created by human distiirbance. Howevcr. the capacity of species to 

colonize or persist on features created bp natunl disturbance were not uniform. More species werc 

recorded in canopy gaps (282) than on tip-up mounds ( 180). logs ( 170). pits (97). or stumps (61) 

(Appendix 5 ) .  This suggests that most species in these forests have access to alternative habitats 

where their comprtitors may do poorly or not sunivc. and. where populations oftheir ou-n kind ma? 

rxpand. 

Approximately 20% of the sampled tlora (90 species \tire restricted to feaiures of one category . 

In keeping with the dispersion of microhabitats in Figure 2.4. restricted speçics were more 

constrained by moisture (42 species) than by Iiuman or natural disturbance (32 and 16 spccirs. 

respectively). 

2.3.5 Response of Sugar Maple and Understory Herbs to Available Calcium 

The response of sugar maple to the availability of calcium cations in the upper 15 cm of the soi1 

profile was examined to determine if there \vas evidence of increased survivorship of sugar rnaple 

saplings on calcium rich soils. The stand structure ol' undisturbed maple stands was evaluated in 

relation to increasing calcium availability on mesic soils overlying calcareous till. Preliminary 

analysis had revealed that soils of the Luvisolic order were typically more calcium rich than soils 



Closed Dry Forest Floors 

265 
19 species unique 

278 
23 species unique 

Moist or Wet Habitats 

Figure 2.6. Distribution of species among microhabitats. Annotation: number of species re- 
corded in habitat category. Natuml Disturbance = canopy gaps, tree pits. tip-up mounds. 
stumps. logs (in dry. moist or wet conditions); Human Disturbance = regenerating fields. 
lanes. ditches; Moist or Wet Habitats: fioors. depressions, seeps, riparian meadow. riparian 
marsh, or riparian thicket. Unique Species: species restricted to features in habitat category. 



of the Bmnisolic order. and. that the latter soils ofien contained free calcium carbonate in the upper 

15 cm of the soil profile. Sugar maple response was therefore evaluated in relation to non-reactive 

soils when the analysis contained more than one soil order. 

The relative abundance of sugar maple on non-reactivr soils is presented in Figure 2.7. The 

percentage of sugar maple stems increased with increasing calcium availability in al1 size classes. 

The response was significant in the 0-4 cm. 4-10 cm. and 10-30 cm size class. Calcium availability 

explained 13 % to 19 Oh of variance in sugar maple abundance in thesç size classes. The trends in 

absolute abundance (not s h o ~ n )  were similar in direction but weaker (only the response for the 10- 

30 size class was statistically significant). 

The relative abundance of sugar maple on Brunisolic soils is presented in Figure 1.8. The samples 

in this analysis werc from the same soil order and soil serirs. and. thus were the most uniform with 

respect to the degrer of soil weathering and soil development. Forest stands were typically youngcr 

than in the preceding analysis and did not contain an\- stems in the S 0  cm size class. The calcium 

gradient was approximately 50 % longer owing to the inclusion of reactive soils. '-1s before. the 

percentage of sugar maple stems increased with increasing calcium availability in the 0-4 cm. 4- 1 Q 

cm. and 10-30 cm s i x  classes. The percent variance in sugar maple abundancc explainrd by 

available calcium was much higher. however. and nnged from 54 % in the 0-4 cm size class to 35 

% in the 10-30 cm size class. The trends in absolute abundance (not s h o w )  were strongest in the 

4-10 cm size class. where differences in calcium availability explainrd 70.9 % of the variance in the 

number of sugar maple stems in 10m x IOm quadrats. In contrat to previous results. available 

calcium did not enplain differences in the number of sugar maple stems in the 0-4 cm size class. 

Taken together. these results provide indirect rvidrncr of increased suwivorship of sugar maple 

stems in undisturbed second-growth stands on calcium rich. mesic. soils overlying calcareous till. 

Caution is required. however. since the sample size in each analysis was small. The contribution of 

quadrats without stems to the significance of the relationship is strong. In many analyses. this would 

be cause for concem. In this analysis. however. the absence of stems means that maturing sugar 
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Figure 2.7. Sugar rnaple abundance versus available calcium in upper 15 cm of soi1 profile on 
Brunisolic and Luvisolic soils overlying calcareous till. Response variable is the percentage 
of live tree stems ( N  m) in specified size class that are .ker  sacchmim. N=29 10m x 10m 
quadrats in 7 forest patches. Soils with fiee calcium carbonate in upper 1 5 cm of soi1 profile 
excluded from analysis (see text). Quadrats with apparent human disturbance excluded from 
analysis. Forest cover = cover type 2 (sugar maple + red or white oak) and cover type 3 (sugar 
maple. no red or white oak. no wet-mesic. wet. species). 
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Figure 2.8. Sugar maple abundance venus available calcium in upper 15 cm of soil profile on 
Brunisolic soils overlying calcareous till. Response variable is the percentage of Iive tree stems 
(> I m) in specified size class that are Acer saccharum. N= 1 7 quadrats in 3 forest patches. Soils 
with free calcium carbonate in upper 15 cm of soil profile included in analysis. Quadrats w i h  
apparent human disturbance excluded From analysis. Forest cover type = cover type 2 (sugar 
maple + red or white oak) and cover type 3 (sugar maple. no red or white oak. no wet-mesic or 
wet species). 



maple stems did not survive. This interpretation is supported by the absence of "zero percent" 

quadrats in the 0-4 cm size class. and. the marked tendency for "zero percent" quadrats to increase 

with size class and to occur on low calcium soils. The justification for including them in this 

analysis. therefore. is that they are inherent to the hypothesis being tested. 

The modest expianation of variance in the first analysis (Figure 2.7) is due in part to the inclusion 

of quadrats from stands on Luvisolic and Brunisolic soils. For a given concentration of calcium. 

the percentage of stems that were sugar maple was consistently greater on Luvisolic than Brunisolic 

soils. This suggests that factors other than calcium have contributed to this result. One apparent 

factor is antagonism in the uptake of potassium and magnesium (see Chapter 5 ) .  Other factors that 

may have contributed to observed differences in sugar maple abundance are exarnined in Chapter 

4. 

The response of shade tolerant and intolerant herbs to increasing sugar maple abundance and calcium 

availability is presented in Figure 1.9. The response was evaluated in undisturbed stands on 

Brunisolic and Luvisolic soils overlying calcareous till. The analysis was undertaken to test the 

presumption of declining light levels on calcium rich soils. In keeping with expectations. the 

percentage of shade tolerant herbs in 10m x IOm quadrats increased with increasing sugar maple 

abundance and calcium availability. In contrast. the number of shade intolerant herbs declined. The 

variance in response explained by increasing sugar maple abundance. and by increasing calcium 

availability. was similar. 

The calcium affinity of plants that flower prior to. or after. canopy closure is presented in Figure 

2.10. As in the preceding case. the analysis was restrictrd to undisturbed forest stands on Brunisolic 

and Luvisolic soils overlying calcareous till. Ephemeral spring herbs were typically found on more 

calcium-nch soils than plants with persistent shoots that tlowered prior to. or after. canopy closure. 

Early spring flowering plants with persistent shoots occurred on more calcium rich soils than mid 

to late season flowering plants, but not significantly so. The apparent &nity of ephemeral spring 

herbs for calcium-rich soils is consistent with their distribution elsewhere in the Great Lakes region. 
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Figure 2.9. Herb response to increasing sugar maple abundance and available calcium on 
Brunisolic and Luvisolic soils overlying calcareous till. N=29 10m x 10m quadrats in 7 forest 
patches. Soils with fiee caiciurn carbonate in upper 15 cm of soi1 profile excluded from analy- 
sis (see text). Quadrats with apparent human disturbance excluded fiom analysis. Forest cover 
type = cover type 2 (sugar maple + red or white oak) and cover type 3 (sugar maple. no red or 
white oak. no wet mesic or wet tree species. 
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Figure 3.10. Mean calcium affinity and shade tolerance ot understory plants in relation to flow- 
ering phenology on Brunisolic and Luvisolic soils overl ying calcareous till. Lrgend: S-E=spnng 
ephemeral herbs. S-P = early spring flowering plants with persistent shoots. MLS = mid to late 
season flowenng plants with persistent shoots. H = high shade tolerance. M = moderate shade 
tolerance. L = low shade tolerance. N=29 10m x 10 quadrats in 7 forest patches. Soils with free 
calcium carbonate in upper 15 cm of soi1 profile excludrd fiom analysis. Quadrats with apparent 
human disturbance excluded fiom analysis. Forest cover type = cover type 2 (sugar maple + red 
or white oak) and cover type 3 (sugar rnaple. no red or white oak. no wet-mesic ro wet tree 
species. Error bars: one standard error mean. 



where they are typically confined to fertile. glaciated soils (Rogers 1982. Curtis 1959). 

The calcium afinity of plants with persistent shoots \vas rxamined Further to determine if the more 

shade tolerant plants of this functional group were restricted to the more calcium rich soils. In 

keeping with the initial analysis of shade tolerance (Figure 2.9). plants that possessed a high shade 

tolerance were found on soils that were more calcium rich than plants of intermediate or low shade 

tolcrance. This pattern was present in taxa that tlowred before. or atter. canopp closure. 

Taken together. these results suçgest that plants in thrse forests have partitioned the calcium 

availability gradient in relation to the degree of shadr stress to which the. were rxposed. An 

ephemeral habitat was more strongly associated with calcium-rich soils than early or mid to late 

season tlowering. 

2.3.6 Plant Attributes 

The preceding malyses have shown that the distnbiition of species in sarnplrd patches has bern 

determined in part by differences in environmental conditions. The following analysis sumrnarizes 

the degree to which the functional attributes of plants esplain the distribution of specics in the forest 

understory. The attributes included in the ordination analysis were life history. provenance. life 

form. habitat affinity. shade tolerance and moisture aftinity. 

The variance in species composition explained by these attributes is surnrnarized in Table 1.16. 

Habitat affinity and life form. respectively. explainrd 10.5% and 9.7% of the dispersion of species 

scores in CCA. whereas. provenance and life history esplained 5.4% and 2.4%. respectively . Habitat 

affinity and life form. collectively. explained 1 7 . 3 O / 0  of the dispersion of sprcirs scores. By 

cornparison. the comprehensive s û  of environrnental variables esamined in this studp explainrd 

25.6% of the dispersion in species scores in a related ordination (Figure 2.3). A large fraction of the 

variation in the composition of plants in the forest undcrstory. therefore. can be explained by the 

habitat afinity and life form of species in the regional species pool. 





The tolerance of life forms to shade. and to excess moisture. are summarized in Tables 3.17 and 

2.18. respectively. The most shade tolerant life forms were the fem allies. fems and trees. The vines. 

shrubs. and herbs were intemediate in shade tolerance. whereas. the grasses were the least shade 

tolerant. The shade tolerance of taxa within life toms \vas not uni form. however. and ofien ranged 

across the gradient. Nevertheless. the difference in sliade tolerance among life foms was highly 

significant (p>l=0.000 1. Likelihood ratio test). 

The moisture tolerance of taxa also varied by Me tom. Shrubs. trees. herbs and grasses were more 

frequent on the drier soils. whereas. vines. ferns. and fern allies were more frequent on mesic and 

moist soils. The life Foms rnost tolerant of wet soils w r e  the grasses. herbs. shrubs and ferns. When 

trees are rernoved from the anaiysis. the difference in moisture tolerance among life forms is not 

significant (p>f=0.0987. Likelihood ratio test). Trees were highly over-represented in tolerance 

class 2 (facultative upland). and absent from tolrnncs classes I (obligate upiand) and 5 (obligate 

wetland). 

The distribution of selected attributes within esamineci microhabitats is presented in Table 1.19. .As 

espected. non-native species achieved their highest proportional abundance on oprn f m  lanes and 

access roads. open and closed regenerating farm tields. and. in seasonally dry tree pits. With the 

exception of the latter habitat. these habitats were also rich in taxa with an affinity for open habitats. 

Species with an affhitp for l e t  habitats were most abundant in open seasonally wet tree pits. closed 

and oprn seeps. and open riparian marshes. The widespread occurrence of species with a facultative 

or obligate affinity for wetland habitats was not expected. This pattern is in keeping with previous 

results (Table 2.14) and suggests that in these torests. at least. such taxa have a much broader 

moisture tolerance than their classification would indicate. The widespread but modest presencr in 

closed habitats of taxa with an affinitp for open habitats suggests that conditions for germination and 

establishment are more limiting than conditions for persistence. 













2.4. Discussion 

i) Environmental Heterogeneity 

On a regiona! spatial scale. environmental heterogeneity was an important contributor to the number 

of recorded taxa. Approximately two-thirds (64.2%) of the sampled flora \vas recorded on closed. 

seasonall y dry. forest floors. sensu stricio. Di fferences in edaphic conditions. and the presence of 

disturbance features. therefore provided additional habitat for approximately one-third ofthe species 

recorded in this study. 

In this study. the contribution of environmental heteroyttneity to species richness was strongly scale 

dependent. Whereas 2 1 microhabitats contributed to a si yni ficant di fference in species richness at 

the quadrat scale ( 1 Om x 1 Om). only 9 microhabitats did so at the patch scalc. In keeping with this 

pattern. 38 of39 microhabitats contained at least one unique species when evaluated at the quadrat 

scale. whereas. 33 and 13 microhabitats did so when evaluatrd at the patch scalr and landscapr d e .  

respectivelp (see Tables -1.4.4.5 and 4.6. Chapter 4). 

One apparent reason for this pattern is that heterogeneity provides alternative habitat for species of 

broad environmental tolerance. In these forests. most species (79.7%) were round to occur in more 

than one habitat category (sensu Figure 1.6). and several species (33 2%) were present in rvrry 

category. Comparatively few species (21.8%) were confined to one habitat type. Of these. 32 

species were confined to features created by human disturbance. 23 species were confined to moist 

or wet conditions. 19 species were confined to closed dry forest tloors. and 16 species were contlned 

to features created by natural disturbance. Of the specics that did not occur on closed. dry. forest 

tloors. 77 (52.0%) occurred in at least one other habitat category and 4 1 (17.7%) occurred in every 

other category. Taken together. these results suggest that most species were able to germinate or 

persist in a variety of settings and that only rarely were they confined to one type of habitat on the 

forest tloor. Which habitats were occupied by which species depended on the scale of the analysis. 

the local configuration of habitats. and the environmental tolerance of the species involved. In 

general. the smaller the spatial scale. the greater the contribution of heterogeneity to species 

diversity. 



In this study. species were particularly tolerant of conditions created by the death or removal of a 

canopy tree (canopy gaps. tree pits. tip-up mounds. stumps. logs). Such features were colonized by 

86.0% of the species on closed. dry. forest floors. 81.0°/0 of the species in moist or wet habitats. and. 

78.0% of the species in habitats created by human disturbance. However. the capacity of species to 

colonize or persist on features created by natural disturbance was not unifom. More species were 

recorded in canopy gaps (282) than on tip-up mounds ( 180). loçs ( 120). pits (97). or stumps (64). 

Only 20% of the species on these features were not found elsewhere on the forest tloor. 

Taken together. these results provide broad support for the hypothcsis that environmental 

heterogeneity facilitates the coexistence of species throuyh the spatial and temporal segregation of 

competing sprcies (Hutchinson 196 1. Levin 1974). By vinue of their capacity to colonize at least 

one othrr type ofhabitat. most species in these forests have access to alternative environmrnts where 

comprtitors may do poorly or not survive. and. where populations of their own kind may espand 

(Pickett 1980. Comins and Noble 1985. Chesson 1980. B m a z  199 1 ). 

ii) Contribution of Canopy Disturbance to Spccies Composition 

The species composition of canopy gaps was similar to the species composition of the adjacent forest 

floor. In genenl. the species composition ofdry open canopy gaps was not responsive to differences 

in gap size ( 1 - 100 m'). This suggests that the composition of plant assemblages is dominated by 

persistent taxa and that colonization or extinction wents during the gap phase rarely alter the 

composition of the underston; flora in a signiticant wa! . Nevertheless. the marked change in species 

composition of quadrats adjacent to a large. recent. clear-cut suggests that larger canopy openings 

may stimulate the germination of buried seeds and cause significant transient change in species 

composition (Metzger and Schultz 1984). 

These findings are consistent with the results of studirs of specific features in forests of the U.S. 

northeast. Studies of forest gaps that exarnined compositional differences have reported little 

difference between species in gaps and the adjacent forest tloor (Ehrenfield 1980. Moore and Vankat 

1986. Pickett 1987.1988a. 1988b. Mladenoff 1990. and Goldblurn 1997. Gaps in these studies were 



created by tree fall, gypsy moth defoliation. standing dead trees. or experimental treatments; gap size 

ranged from 5-2 14 m' and fiom 1-30 years of age. 

Similarities have also been reported in the species composition of forest floors. logs. and tree pits. 

Thompson ( l98O). for example. reported that logs and tree pits were readily colonized by herbs from 

the forest floor and that approximately 90% of the species on logs, and 85% of the species in pits. 

were recorded within I metre of these features. These tindings are consistent with the results of this 

study. AI1 species recorded in tree pits. and 94% of species recorded on logs. were recorded on 

closed forest floors. 

Studies of tip-up mounds and tree pits. in contrast. have reported distinctive species assemblages 

associated with these features (Beatty 1984. Peterson and Pickett 1990. Peterson et ul. 1990. 

Peterson and Campbell 1 993). In keeping with the results of this study . mounds were typically more 

species rich than pits. although the reverse pattern has bern reported for fresh pits and mounds in a 

large area of catastrophic windthrow (Peterson and Pickett 1990). Studies of environmental 

conditions reveal that the soil in tree pits is typically wtter. more alkaline. has a thicker litter layer. 

soi1 organic matter content. and. experiences less extremç temperature fluctuations. than the soil on 

adjacent mounds (Dwyer and Memam 198 1. Beatty and Stone 1986. Peterson and Campbell 1993). 

Leaf litter depth may be a Iimiting factor in these habitats since differences in species composition 

were non-significant when leaf litter was experimentally removed from pits in deciduous forests in 

central New York (Beatty and Sholes 1988). Excess moisture is also expected to bc Iimiting in pits 

with seasonally saturated soils (Beatty 1984). In keeping with these expectations. low specics 

richness was associated with both leaf litter and seasonally saturated soils in this study. 

iii) Response of Sugar Maple to Available Calcium 

Sugar maple was more abundant. in relative and absolute terms. in undisturbed second-growth stands 

on mesic soils that were rich in calcium cations. Stems that were subject to shade stress and self 

thinning were more responsive to differences in available calcium than were stems in the upper 

canopy. When differences among stands were standardized with respect to soil parent material. soil 



order. and soil series. available calcium explained 70.9 % of the variance in the number of sugar 

maple stems in the 4-10 cm size class. and. 54.0 % to 35.0% of the variance in the proportion of 

stems in the 0-4 cm. 4- 10 cm. and 10-30 cm size class. 

These results are consistent with the sharp reduction in mortality of juvenile sugar maple trees 

observed on calcium rich soils in oak transition-northern hardwood forests in northwestem 

Connecticut (Kobe et al. 1995. Kobe 1996). Juvenilc trees in these studies wrre defined as an!. 

individual > 25 cm ta11 that did not have roliage reaching the canopy of the stand. The upper limit 

varied from site to site but did not exceed 10 cm dbh (diameter breast heiçht). In deep shadç (less 

than 5% full Sun). the probability of mortality in supar maple stems declinrd from 99.8 % on acid 

schisvgneiss uplands to 14.8 % on base rich soils overlying çalcareous bedrock. Differences in 

sapling mortality and çrowth rates successfully predicted the composition of regional forests when 

incorporated in a mode1 of forest dynamics (SORTIE). 

The mechanisms bp which trees benrfit from calcium rich soils are presentlp unresolved. Recent 

studies ofcold temperate trees have found an association betwern foliar calcium levels and dark 

respiration rates in red spruce (McLaughlin et c d .  199 1. McLaughlin and Kohut 1992). In these 

studies. dark respiration rates declined in the presence of increasing foliar calcium and contributed 

to net carbon assimilation in young saplings ( 1.2 - 1.0 m tall). Foliar calcium levels were positively 

correlated with calcium levels in the soil. a finding broadly supported by fertilization studirs in both 

hardwood and conifer trees (Dr. V. Timmer. Department of Forest-. University ofToronto. pers. 

corn.). In keeping with the widespread expectation that plants adapted to low light should have 

lower carbon losses via dark respiration. Lusk and Reich (2000) recently confirmcd that juveniles 

(0.4 -1.5 m tall) of shade tolerant angiosperm trees tvpically have lower dark respiration rates than 

associated less-to lerant species. 

An alternative mechanism by which calcium rich soils may contribute to sapling sunivorship is 

increased nitrogen availability mediated by a calcium-based rise in soil pH. Dancer et al. (1973) 

have shown that nitrification rates are strongly and positively correlated with increasing soil pH over 



the pH range 4.7 to 6.6. On calcium rich soils. soil pH is enhanced when calcium cations are taken 

up by tree roots and returned to the soil surface by litter tèedback dynarnics (Boemer 1984. Khanna 

and Ulrich 1991. Wilmot et 01. 1995). In keeping a-ith this mechanism. leaves of sugar maplr 

seedlings on deeply shaded sites (Goh canopy openness) had higher nitrogen levels. and higher 

çrowth rates. on soils with higher nitritication rates in nonhem Wisconsin(Wa1ters and Reich 1997). 

Soi1 moisture also varird on these soils. however. and the relative contribution of nitrogen and soil 

moisture could not be determined. 

Studies have recently been initiated in the U.S. northeast to clarify which of these calcium-based 

rxplanations best explains trer prow-th and rnortality relations in upland settings (Dr. A. Finzi. 

Department of Biology. Boston University. pers. c o t ~ ~ . :  Dr. R. K. Kobe. Department of Forestry. 

Michigan State University. pers. corn.). At present. thc collective findings of these studies suggests 

that calcium nutrition bas important consequences in the dynamics and distribution of nonh 

temperate trees. Local differences in soi1 chemistry ma! therefore lead to spatial pattrming in the 

distribution of canopy trees that has heretofore been associated with regional differences in mineral 

substrate (Braun 1950. Curtis 1959. Pastor el cd. 1984. Host and Pregitzer 1992. Reich er c d ,  1997. 

van Breemen er trl. 1997). 

iv) Response of Herbs to Understory Shadc 

The response of shade tolerant and intolerant herbs to increasing sugar maple abundance ( Figure 2.9) 

is consistent with declining Iight at the forest tloor. This was not unexpected. After beech and 

hemlock. sugar maple casts the deepest shadr in forests in the Great Lakes reçion (Pacala et al. 

1996). and. has the lowest percent transmission of ph«tosynthetically active radiation (Canham el 

al. 1994). 

Curtis ( 1959) has argued that the forest tloor is a demanding environment that requires specialized 

traits for success and that it is the lirnited set of specics that possess those traits that has led to the 

striking uniformity in species composition in the mesic hardwood forests of eastern North America. 

In keeping with this hypothesis. 92.5% of the species that were prevalent in the understoy of forests 



in the Maple-Basswood forest region in Wisconsin were present in maple dominated forests in this 

study (Appendix I I ) .  

Early spring flowenng is one of several plant traits that has been associated with derp shade in the 

forest understory. in herbs with low shade tolerance. early tlowering is associated with an ephemeral 

(Sparling 1967). or ivinter annual (Rogers 1981). life history. Each facilitates net carbon gain by 

restricting the groivth phase to periods when the canopy is leaf free. More commonly. however. the 

rarly flowering habit is associated with varying drgrecs of shade tolerance that enables shoots and 

leaves to persist until mid to late summer (Sparling 1967. Rogers 1987). The latter combination of 

characters was more common in the Peterborough areri where only six of sixty-two early flowering 

species were spring ephemerals (Alfiicm tricocczit~r. C'tnilophyllirm rhcdicrroitlrs. Clqwnici 

curolinianu, Dicentru crinudensis. Dicentru cliczilltiritr. Eythroniirm rimericcrmim): on1 y one s pecies 

(Gd i~rm ciporinr) was a known winter annual. 

Related plant traits that may facilitate survival in deepl! sliaded habitats include winter-green leaves 

(Bierzychudek 1987) and the initiation of shoot prowtli (Taylor and Prarcy 1976) or tlower initials 

(Bierzychudek 1982) in rarly autumn. The former trait yreatly extends the period of carbon gain in 

s pecies suc h as Carex plun~agineci. Hepriticri ricr 11 ilo ha. .Lkiitinthemum ccintrdrnsr. Tïurrllu 

cordgolia. Trientalis borealis, 2.ïoh hiandu, and I.rclltr twsfrutcr. whereas the latter traits facilitate 

early spring growth and flowering in species such as .-l Ilium rricoccum. Trillizinr ,~rundijlortim. 

..lriscremu ».iphyllzim. and Geruniirm rnacztktt~rrn. 

The capacity of plants to tolerate deep shade has been attributed to a suite of trai ts that facilitate the 

capture and processing of light energy at the lowest net cost. Morphological characters associated 

with shade plants include: thin leaves with a large surface area (Grime 1963): a higher proportion 

of chlorophyll b relative to chlorophyll cr (Boardman 1977): a chloroplast with large grana stacks 

oriented in more than one plane (Boardman 1977): a higher proportion of leaf nitrogen allocated to 

chlorophyll than to carboxylating enzymes and other proteins (Seeman et al. 1987. Niinemets 1997. 

Lusk and Reich 2000); a rapid stomatai response to changes in light intensity (Hicks and Cabot 



1985); and leaves deployed in horizontal. non-overlapping layers (Grime 1965. Hom 1 97 1 ). These 

traits facilitate the capture of energy in low light environrnents while minimizing the energetic cost 

to constnict and maintain plant tissue. The latter is perceived to be especially important since it 

results in a lower leaf dark respiration rate and lowers the compensation point for net carbon gain 

(Grime 1965, Loach 1967. Larnbers el al. 1983. Lusk and Reich 2000). These characters were not 

scored directly in this study owing to the lack of a suitable data set. 

V) Response of Herbs to Available Calcium 

Data from this study suggests that many plants of the Forest understory may be responsive to 

differences in available calcium. Ephemeral spring herbs. for examplc. typically occurred on more 

calcium rich soils (mean concentration = 6.9 cmolkp) than plants with persistent shoots that 

flowered prior to. or after. canopy closure. Early spring flowenng plants with persistent shoots 

typically occuned on more calcium rich soils than plants which flowered rnid to late season and 

completed most or al1 of their life cycle under a closed canopy (mean concentration = 5.7 and 5.4 

cmoükg. respectively). but not significantly so. The shade tolerant members of the latter hnctional 

gmups. however. occurred on more calcium rich soils than species with moderate and low shadr 

tolerance. This pattern suggests that plants in these forests have partitioned the calcium availabilitp 

eradient in relation to the degree of shade stress to which they were exposed. 
C 

The mechanism(s) by which plants benefit from calcium rich soils have not been resolved. 

However. the greater availability of nitrogen arising from a calcium-mediated rise in soi1 pH may 

be particularly important for ephemeral spnng herbs. since they typically complete their life cycle 

before the canopy closes (Allium tricocczrm. the apparent exception. flowers mid to late summer). 

These species typically have a high light compensation point and a high saturation light intensity 

(Sparling 1967. Taylor and Pearcy 1976) and may therefore have a greater physiological requirement 

for nitrogen than more shade tolerant species. The reported afinity of ephemeral spnng herbs for 

base rich. and particularly calcium rich. soils (Cunis 1959. Rogers 1982) may therefore be due in 

part to the greater availability of nitrogen on these soils. 



For shade tolerant herbs. however. the principal mechanisrn rnay be a calcium-mediated reduction 

in dark respiration rate. The rnorphology and physiology of these species typically emphasizes the 

conservation of reserves rather than photosynthetic performance (Wrnt 1957. Grime 1965. Loach 

1967) and thus may benefit more Born a reduction in dark respiration rate than from a greater 

availability in nitrogen. Efficient use of high irradiancc requires a high nitrogen investment in 

carboxylating enzymes and proteins responsible for photosynthetic electron transport (Niinemets 

1997). Shade tolerant species. however. typically allocate proportionally more leaf nitrogen to 

chlorophyll than to carboxylation capacity (Seernan er tri. 1987). This investment pattern is thought 

to be the primary reason why shade tolerant species have a lower respiration rate per unit of lraf N 

(Lusk and Reich 2000) and an intrinsically low photosynthetic plasticity (Niinemets 1997). In 

keeping with the latter finding. experhental transkrs of plants between high and low light 

environments have s h o w  that dark respiration rates can change much more rapidiy than 

photosy nthetic capacity ( Azcon-Bieto and Osmond 1 083. S ims and Pcarcy 1 99 1 ). Taken together. 

these findings suggest that shade tolerant plants on calcarcous soils may benetit more from a 

reduction in dark respiration rate than from a çreater availability in nitrogen. 

vi) Contribution of Patch, Edaphic and Matrir Variables to Species Composition 

Patch variables explained more variance in the distribution of specirs in the forest understory than 

did edaphic or matrix variables (36.1%. 28.1% and 10.2%. respectively). Patch variables in this 

analysis were measures of stand structure (forest covcr type. stem diameter class. 8 tree species). 

stand disturbance (% canopy closure. regenerating fields. lanes. canopy gaps). and overall plant 

response to local site conditions and biotic interactions ( patch membership). Edaphic variables were 

rneasures of inherent moisture retention capacity and soil fertility (soil parent material. soil order. 

soil moisture class. and percent soil organic matter). hlatrix variables were measures of the degree 

of forest fragmentation in the local landscape (patch area and patch isolation). 

For the purpose of this analysis. patch variables were viewed as indicators of processes operating 

on ecological time scales and at small spatial scales. whereas. edaphic and matnx variables were 

viewed as indicators of processes operating on long time scales and at larger spatial scales. Within 



this h e w o r k .  the results of this analysis suggest that both local and regional processes have 

influenced the composition of sampled plant assemblages. In particular. the strong contribution of 

edaphic variables provides support for the view that the diversity of species in a given setting cannot 

be explained solely by processes operating on shon tirne scales at the local spatial scale (Ricklefs 

1 987. Ric kle fs and Schluter 1993). 

The principal contribution of this analysis. however. is that it reveals the inherent difficulty in 

selecting appropriate indicators for such a test and in çharacterizing processes at the appropriate 

spatial and temporal scale. 

In its present form. this analysis clearly overstates the regional contribution ofedaphic processes by 

failing to acknowledge that ecological consequences of regional di Rerences in soi1 moisture and soi1 

fertility are expressed at the scale of the germinating seed and the competing plant assemblage. The 

contributions of recruitment limitation and success to species diversity are thus regional. in the sense 

that they are a consequence of glaciation and pedogencsis. and local. in the sense that operatr at the 

scale of the forest patch and intluence the strength of cornpetitive interactions. The former reaffirms 

the importance of viewing local processes in broader context whereas the latter affirms the primacy 

of processes operating at the local scale. 

In its present Form. this analysis may also overstate the contribution of forest fragmentation. since 

large patches in this study were situated pnmady on dry sandy soils. and. small patches were 

situated primarily on loarn soils that were often seasonally moist or wet. Différences in species 

composition. therefore. may be due primarily to differences in edaphic conditions rather than to post- 

settlement colonization and extinction events. The degree to which the composition of present-day 

assemblages is the legacy of past migration events in a continuous forest environment is unknown. 

However. the modest percentage of alien tava in vegetation sarnples (ty picall y < 5%. Appendix 9). 

the similarity in composition of canopy openings and the adjacent forest tloor (Figure 2.4). and the 

predominance of short-distance dispersa1 (see Chapter 3). suggests that the composition of the 

understory flora has been little modified by forest fragmentation. 



The larger issue raised by Ricklefs ( 1987) remains. however. Periodic and chance events such as 

humcanes. pathogens. fire. differential rates of migration. and past land use. when discemed. have 

al1 been shown to have a marked influence on the composition of present-day assemblages. While 

it is clear that a comprehensive explanation of community requires an integration of physical and 

biological factors. over space and time. the practical challenge of how to achieve that explanation 

has not been met. 

vii) Percent Variance in Species Composition Erplained by CCA Ordination 

The percentage of the variance in species composition esplained by environmental variables in CCA 

(rcanonical eigenvalues - ~unconstrained eipenvalues) was a modest 25.6%. A subset of these 

same variables. in contrast. explained 58.3 % of the variance in species richness in multiple linear 

regression (sec Chapter 4.0). Reports of modest explrinations of variance in CCA are widespread 

in the ecological literature (e.g. ter Braak 1987. Borcard et id. 1992. Okland and Eilensen 1991. 

Aude and Lawesson 1998. Ohmann and Spies 1998. ter Braak 1999). In forest studics. the percent 

oftotal variance explained (%IVE) has ranged from 10% (Ohmann and Spies 1998) to 48% (Aude 

and Lawesson 1998) despite comprehensive environmental data. 

In my study. four properties of the data ma) contribute to the modest percent of variance explained 

by environmental variables. First. the median species frequency was 7 quadrats. This propeny will 

generate a higher turnover in species composition for a given richness and thus reduce the percent 

of variance explained in CCA. This phenornenon has been characterized as a rare species effect by 

Ohmann and Spies ( 1998) but it applies more generally since most species are "rare" in most data 

sets. 

Second. the median number of microhabitats per 1 Om x 10m quadrat was 3 (range 1-10). In 

principle. environmental heterogeeneeity should lead to differences in composition for a given value 

olspecies richness. since species Vary in the type and range of habitats occupied. This in tum should 

lead to greater variability in species composition and reduce the percent of variance explained in 

CCA. In keeping with this expectation. habitat diversity explained more variance in species 



richness (F=ll S. r'adj.=0.052. simple linear regression) than in the dispersion of species in CCA 

ordination space (F=3.83, Monte Carlo permutation test. %TVE=1.97%) (follow-up analyses. not 

shown). 

Third. the spatial resolution of the environmental data is large relative to the conditions experienced 

by a given seed. seedling, or maturing plant. This should lead to a lower explained variance in 

species composition since recorded data will fail to account for variability in conditions that lead to 

differential germination. growth, and persistence. Soi1 conditions that contribute to differential 

germination success and to the avaiiability of essential nutrients. for example. typically occur on the 

scale of centimetres (Harper et cil. 1965. Harper 1977. Pacala and Silander 1990. Kosola et c d .  1999) 

whereas soil properties in this study were measured on the çcale of metres or taken from published 

regional soil surveys. The maximum correlation between vegetation and environment should be 

achieved when differences in plant-environment and plant-plant interactions reflect the average 

variation in the physical and biotic environrnent (Reed et r d .  1993). The scale at which this occurs 

has been shown to be attribute dependent (Palmer 1990. Reed et cri. 1993. Ohmann and Spies 1998 ). 

In keeping with this pattern. attributes of the environrnent that varied at larger spatial scales (such 

as soil parent material. soil order, cover type) typically rxplained more variance in composition and 

richness than attributes that varied at smaller spatial scales (such as stand structure variables. 

disturbance features). Differences in soi! parent material. for exarnple. explained 4.5% of the 

variance in species scores in CCA. and 20.9% of the variance in species richness. whereas the 

presence/absence of disturbance features explained only 1.8% of the variance in species scores in 

CCA and 5.5% of the variance in species nchness (Table 7.13 and follow-up analyses. not shown). 

Fourth. the temporal resolution of the environmental data often fails to account for past events that 

are known contributors to differences in composition and richness. such as post-glacial plant 

migration (Davis 1981a). major storm events (Henry and Swan 1974). extreme values for 

temperature and moisture (Okland 1 996. Ohmann and Spies 1 998). and land use (Pettit et al. 1 995. 

Motzin et al. 1996). While aspects of these events may be captured by analyses of pollen profiles 



(Davis 1983). stand structure (Lorimer 1985). soi1 properties (Bormann et al. 1995). soi1 profiles 

(Beke and McKeague 1984). fire scars (Lorimer 1985). etc.. the contribution of stand history is likely 

to remain largely undefined. 

Additional sources of unexplained variation reside in certain technical properties of CCA. The goal 

of CCA is to select the linear combination of environmental variables that mavimizes the dispersion 

of species scores in ordination space (ter Braak 1987). Unlike principal components analysis (PCA). 

CCA is not a maximal variance extraction technique and thus the fraction of inertia esplained by 

CCA cm be quite modest (ter Braak 1999). In strict trrms. the "percentage variance" reported in 

CANOCO is not a true variance. Rather it is the portion of the total inertia that is explained by the 

extracted axes (ter Braak 1999). This proportion is an analogue to i in linear regression but is not 

a true coefficient of determination. One consequence of this is that when the number of variables is 

less than the nurnber of extracted aues. the fraction of inertia explained by the submitted variables 

will always be less than 100%. Moreover. as in CA. site scores on the second mis rnay form a 

quadratic relation with those on the first mis. This fault. known as the "arch effect". is typically less 

of a problem in CCA. but when present. will contnbute to the inertia of the ordination and reduce 

(or enhance!) the arnount of variance that can be explainrd (ter Braak 1999). As a consequence. ter 

Braak ( 1999) has cautioned users not to interpret a lou (high) "variance explained" as a poor (good) 

fit of the ordination model. 

The modest percentap variance in species composition explained by traditional data sets in CCA. 

therefore. rnay not be unreasonable. While the contribution of certain technical aspects of the 

method may not be readily quantified. there are several properties of traditional data sets that may 

account for the rnodest explanation of variance in sprcies composition in CCA. and. for a modest 

explanation of variance in composition cornpared to species richness. 

viii) Pattern of Functional Attributes in Relation to Environmental Gradients 

The functional attributes of plants exarnined in this study individually explained more variance in 

the dispersion of species scores in CCA than did most attributes of the environment (Tables 2.16 and 



2.1 3). Habitat afinity and life form individually esplained more variance in the distribution of 

species than did provenance or life history. and. collectively explained 67.4% of the variance 

explained by environmental variables (Figure 2.2). The capacig of life form to explain variance in 

the distribution of species is the more interesting case. in this study. since habitat affinity was 

defined in relation to canopy closure. 

The capacity of life form to explain variance in the distribution of sampled species is due in part to 

the difference among life forms in shade tolerance (Table 2.17). Grasses. herbs. s h b s  and vines 

in these forests were relatively shade intolerant and were significantly more frequent in quadrats with 

Iow canopy closure (high light) (p<0.0003. Wilcoxon rank sum tests. not shown). In keeping with 

this outcome. the number of species of the most shade iolerant life forms (fem allies. ferns. trees) 

did not Vary with canopy closure. 

The moisture tolerance of species varied within. but typically not among. life forms (Table 2.1 8). 

With the exception of the fern allies. the species associatrd with each lifr form were more tolerant 

of upland conditions (moisture classes 1.2) than of lowland conditions (moisture classes 4.5). In 

apparent contnst to this pattern. the fems. grasses and herbs were proponionally more species rich 

in quadrats with gleyed soil horizons and seasonally wet depressions . The contradiction is more 

apparent than real. however. since a majority of fems. grasses and herbs were tolerant of moist to 

wet conditions when the taxa of intermediate tolerance (moisture class 3) are taken into account. The 

moisture regime of quadrats with seasonally wet depressions typically ranged from mesic to wet and 

thus provided micro-sites for taxa across the moisture continuum. In keeping with this perspective. 

the mean moisture tolerance rating of species in 1 Om s 1 Om quadrats did not Vary among moisture 

classes (p>X=0.98. Wilcoxon rank sum test. not shou-n). 

Life forms in these forests. therefore. appear to be more diversified with respect to moisture than to 

light. This pattern is not unexpected given that differences in moisture availability are less transient 

than differences in the availability of light. In keeping with this line of reasoning. the difference in 

shade tolerance among life foms was not significant when only "F" and "F+O" species were 



considered. Species with an affinity for open habitats were also diversified with respect to moisture 

( p e = 0 . 2 8 ,  Likelihood ratio test. not shown) and w r e  as likely to be found in natural canopy 

openings associated with large seeps as in upland habitats beneath canopy gaps created by human 

disturbance or by wind-throw. As in the previous case. the difference in shade tolerance among life 

forms is not significant when only "0" and "O+F" species are considered. 

A sharp contrast in shade tolerance does arise. however. in life forms that are predominately shade 

tolerant. such as the fems. fem allies, and trees. or. that are predominately shade intolerant. such as 

the vines and grasses (pe=0.000 1. Likelihood ratio test. not shown). These life forms may be 

found in both open and closed habitats. but not with equal frequency. In contrast. the herbs and 

shmbs were more diversified across the light gradient and sprcies were equally as likely to be found 

in closed as in open habitats. Differences in shade tolerance among these life forms are not 

significant (p+=O.48. Likelihood ratio test, not shown). These patterns persist when non-native 

species (which are predominately shade intoierant) are removed from the analysis. 

Life form. therefore. is a significant contributor to dirferences in the composition and distribution 

of species in these forests. Based on the patterns of shade and moisture tolerance summarized above. 

the distribution of most life forms should be markedly non-random. Ferns and fern allies should 

occur ptima-ily on moist soils under a closed canopy: vines should occur pnmarily on moist soils 

under a thin or broken canopy; and, grasses should occur on a variety of soils but primarily under 

broken or open canopy conditions. Herbs and shrubs. on the other hand. should be found throughout 

the forest. And. not surprisingly, this is typically what was found. 

2.5 Principal Findings 

1. Traditional environmental factors explained 25.6% of the variation in composition of plant 

assemblages in the understory of twenty-four. second-growth, northem hardwood. forests 

near Peterborough, Ontario. The distribution of species was most strongly influenced by 

gradients in soil moisture. soil order, forest cover type, percent canopy closure. and soil 

parent material. 



The patterns in plant response to differences in soi1 moisture. soi1 fertility. and available light 

are consistent with the results of previous studies of hardwood forests in the Great Lakes 

region and northeast United States. 

7 . The distribution of species within forest patches was strongly intluenced by microhabitat 

features created by glacial historv, landscape position. the death ofcanopy trees. and human 

disturbance: moist or wet forest floors. seeps. tip-up mounds. tree pits. stumps. logs. canopy 

gaps. raised root mats. lanes, ditches and regenrratinç fields. These features created habitat 

opportunities for 35.8% of the recorded flora that did not occur on closed. seasonally dry. 

forest floors, sensu stricto. 

These resulü provide support for the hypothesis that environmental heterogeneity contributes 

to species diversity through the provision of novel rcsources. 

3. Environmental heterogeneity at the patch scalr provided alternative habitat for species of 

broad environmental tolerance. When the distribution of species was exarnined in relation 

to four generalized habitat categories (closed dry torest tloors: moist or wet habitats: katures 

created by human disturbance: features created by natural disturbance). most species (79.2%) 

were present in more than one habitat category. and sevenl species (33 2%) were present in 

every catepry. Compantively few species (2 1.8%) were confined to only one habitat type. 

In these forests. species were particularly tolrrant of conditions created by the death or 

removal of a canopy tree (canopy gaps. tree pits. tip-up mounds. stumps, logs). Such features 

were coionized by 86.0% of the species on closed dry forest floors. 82.0% of the species in 

moist or wet habitats. and 78.0% of the species in habitats created by human disturbance. 

However. the capacity of species to colonize or persist on these features was not uniform. 

More species were recorded in canopy gaps (282) than on tip-up mounds (1 80). logs (1  20). 

pits (97) or stumps (64). 



These results provide support for the hypothesis that heterogeneity facilitates the coexistence 

of species through spatial and temporal segregation of competing species. By virtue of their 

capacity to colonize at least one other habitat in the local environment. most species in these 

forests have access to alternative environmrnts where their cornpetitors may do poorly or not 

survive and where populations of their own kind may expand. 

4. The species composition of canopy gaps was similar to the species composition of the 

adjacent forest floor. The species composition of dry open canopy gaps was typically not 

responsive to di fferences in gap size ( 1 - 1 00 m'). This suggests that the composition of plant 

assemblages is dominated by persistent taxa. and. that colonization or extinction events 

during the gap phase rarely alter the composition of understory plants in a significant way. 

A marked change in the species composition of quadrats adjacent to a recent clear-cut stand 

suggests that larger canopy openings may stimulate germination of buned seeds and cause 

significant transient change in the composition of understory plants. 

5. Marked differences in the sun~ivorship of juvenile sugar maple stems was observed on a 

gradient of increasing calcium availability in undisturbed forest stands on mesic soils 

overlying calcareous till. Stems that were subject to shade stress and self-thinning were 

more responsive to differences in available calcium than were stems in the upper canopy. 

When differences arnong stands were standardized with respect to soil parent material. soil 

order and soi1 series. available calcium explained 70.9% of the variance in the nurnber of 

stems in the 4-10 cm dbh size class. and. 54.0% to 35.0% of the variance in the proportion 

of stems in the 0-4 cm. 4- 10 cm. and 10-30 cm dbh size class. 

The data are consistent with the sharp reduction in mortality ofjuvenile sugar maple stems 

observed on calcium rich soils in oak transition-northern hardwood forests in northwestern 

Connecticut (Kobe et al. 1995. Kobe 1996) and suggest that on mesic soils the distribution 

and abundance of sugar maple may be secondarily constrained by the availability. and ratio. 

of base cations. 



6.  Data from this study suggests that plants of the forest undentory may also be responsive to 

differences in available calcium. Spring ephemrral herbs. and shade tolerant plants genrrally. 

typically occurred on more calcium-rich soils than plants of moderate or low shade tolerance. 

Plants with persistent shoots that flowered pior to canopy closure typically occurred on 

more calcium nch soils than plants with persistent shoots that flowered mid to late season. 

but not significantly so. Traits that extend the period of carbon gain in deeply shaded 

habitats. such as a winter annual life history. winter-green leaves. and. the initiation of shoot 

erowth or flower initials in the early auturnn. were strongly associated with sugar maple - 
stands on calcium-rich soils. 

The mechanisms by which plants benefit from calcium rich soils have not been resolved. The 

greater availability of nitrogen arising from a calcium-mediated rise in soii pH may be 

particularly important for ephemeral spting hcrbs since they typically complete their lire 

cycle prior to canopy closure. Shade tolerant herbs. however. may benefit more from a 

calcium-rnediated reduction in dark respiration rate since the rnorphology and physiology 

of these species typically emphasizes the conservation of resources rather than 

photosynthetic performance. 

7. Patch variables explained more variance in the dimi bution of species in the forest understory 

than did edaphic or rnatrix variables (36.1%. 28.1% and 10.2%. respectively). Patch 

variables were viewed as indicators of processes that operate at srna11 temporal and spatial 

scales. such as cornpetitive interactions. short-distance dispersal. and heterogeneity created 

by the death or removal of canopy trees. Edaphic variables were viewrd as indicators of 

processes that operate at larger temporal and spatial scales an such as glaciation and 

pedogenesis. Matrix variables were viewed as indicaton of dispersa1 and migration 

constraint within the present-day landscape. 

Within this Framework. the results of this analysis suggest that both local and regional 

processes have iduenced the composition of sampled plant assemblages. The strong 



contribution of edaphic variables provides support for the view that the diversity of species 

in a given setting cannot be explained soiely by processes openting on short time scales at 

the local spatial scale. 

8. Habitat affinity and life fom explained 67.6% of the variance in species composition 

explained by environmental variables. The explanatory power of these variables was largely 

due to their capacity to account for differences in the availability of light. Fems and fem 

allies occurred primxily on moist soils under a closed canopy: vines occurred primarily on 

rnoist soils under a thin or broken canopy: grasses occurred on a variety of soils but primarily 

under broken or open canopy conditions. Herbs and shmbs were found throughout the forest 

understory. 



3.0 DISPERSAL PATTERNS 

3.1 Introduction 

Dispersa1 is the stage in a plant's life cycle in which the spore. seed. fmit. or vegetative propagule. 

detaches fiom the mother plant. travels through spacr. and cornes to rest on a nearby or distant 

surface (Ridley 1930. Berg1983. Little and Jones1980). Dispersal may be achieved in one or more 

episodes and involve one or more agents (Matlack 1989. Beattie and Lyons 1975. Venable and Levin 

1985. Greene and Johnson 1997). The sequence of events may differ somewhat for vegetative 

propagules but must result in a detached. independentlu-rooted. ramet to be considered dispersa1 in 

this study. In spatially structured populations. dispersa1 is expected to serve three population- 

dynarnic Functions: i)  reduction in the risk of low demographic success: ii) escape from the neçative 

consequences of crowding: and. iii) escape from the nrgative consequences of interactions with 

siblings (Venable and Brown 1988. 1993). 

Pattern in dispersal events is predicted to have profound consequences for populations and 

communities since dispersa1 govems variance in the size and composition of the seed rain (Clark and 

Yi 1995). affects the probability that a diaspore will land in a site suitable for germination 

(Harper1977. Sorensen 1978. Venable and Levin 1985 ). determines the initial conditions that seeds 

and seedlings confront (Schupp and Fuentes 1995). affects the initial spatial array of individuals in 

a population (Thiede and Augspurgerl996). determines who interacts with whom and with what 

intensity (Shmida and Ellner 1984. Pacala 1986. Silander and Pacala 1990. Rees 1996. Rees et al. 

1996). influences local extinction rates by affecting the probability that declining or extirpated 

populations are rescued (Brown and Kodric-Brown 1977. Holt 1993). influences the rate at which 

plants colonize new habitat (Halpern et al. 1990. Matlack 1994. Kotanen 1997. Brunet and von 

Oheimb 1 998) and the sequences in which they arrive ( Drake 199 1. Fastie 1 995).and. intluences the 

lewl of gene flow within and between populations and thus the degree to which neighboring plants 

are related (Williams and Guries 1994) and genetic variation is stnictured spatially (Levin 198 1. 

Hamrick and Godt 1997, Hamrick et al. 1993). 



The diaspores of many species possess morphological features or chemical properties that facilitate 

dispersal by a particular agent or mechanism (Etidle- 1930. Dansereau and Lems 1957. van der Pijl 

1982, Thompson et al. 1997). Features considered important for dispersal in temperate forest 

habitats. and their associated dispersa1 syndrome. include the following: a fleshy pulp or ad that 

is eaten by frugivores and the seeds are regurgitated or rxcreted unharmed (endozoochorp): hooks. 

barbs. awns or scabrous hairs that cling to fur or feathers (epizoochory): an oil body (elaiosorne) that 

is attractive to ants and the seed or fmit is moved before the body is eaten and the seed discarded 

unharmed (synzoochory S. l . .  myrmecochory S.S.):  wings. plumes. hain. îlattened or intlated 

structures that increase air resistance and slow the rate of aerial descent of seeds and fruits 

(anemochory): a splash-cup or ballistic mechanism that forcefully espcls the seed from the plant 

(ballochory); a hard seed coat or antifungal agent that facilitates the persistence of seeds in buried 

seed pools (chronochory): a detachable vegetativr propagule or disintegrating rhizome. stolon or 

runner that permits the establishment of an independent ramet (various syndromes. autochory XI. )  

(Ridley 1930. van der Pijl 1982. Sorensen 1986. Warr et cil. 1992. Thompson et ul. 1997. The 

teninology for dispersa1 syndromes follows van der Pijl ( 1982) and Little and Jones ( 1980): suffix 

tt-chory" from chorein = to wander. 

The spatial arrangement of established plants is governed initially by the distance diaspores travrl 

in space or time. the nature of the dispersing agent. and the character ofthe receiving environment. 

The distance diaspores travel in space is influenced by a variety of factors including propagule 

morphology (Baker and O'Dowd 1982. Sacchi 1987. Willson 1993). the agent of dispersal (Hughes 

ri al. 1994). plant height (Sheldon and Burrows 1973). inflorescence position (Trapp 1988). 

proximity and character of the surrounding vegetation (Thiede and Augspurger 1996). weather 

variables (Campbell 1983). seed processing method of animal vectors (Levey 1986). retention time 

in the digestive tract of animal vectors (Proctor 1968). retention time on the exterior of animal 

vectors (Bullock and Primack 1977). ferrying time by insects (Berg 1975. Jules 1996). and related 

Factors. In general. diaspores with facilitating features travel farther than those without special 

devices (Willson 1993). smaller and lighter diaspores travel farther than larger and heavier diaspores 

of similar mode (Hoppes 1988. Matlack 1989). diaspores dispersed by animais travel farther than 



those dispersed on the wind or by ballistic mechanisms (Appendix 1 1 ). diaspores dispersed from 

taller plants and elevated positions travel farther than those dispersed from shorter plants and lower 

positions (Sheldon and Burrows 1973). For most plants. the proportion of diaspores dispersed 

declines sharply with distance creating seed dispersal curves with long tails (Portnoy and Willson 

1993). The srnali fraction of diaspores that disperse beyond their immediate surroundings is 

considered critical for species of transient habitats (Harper et ai. 1970. Meyer and Schmid 1999). 

and for metapopulations (Husband and Barrett 1996. Valverde and Silvertown 1997). and may be 

essential for plant fitness in general (Stebbins 197 1. 1974). 

The rnanner in which distance contributes to the population-dynamic tùnctions of dispersal is 

presently being re-evaluated as studies reveal that man! species lack features that may facilitate 

dispersa1 (Willson 1993. Hughes et ul. 1994). that most diaspores travel only metres or tens of 

metres from the parent plant (Levin 198 1. Willson 1993. Hughes et tri. 1994 Cain ri ol. 1998. 

Appendix 1 1). that rnost dispersai events in spatially variable environments place diaspores in less 

favorable environments (Cohen and Levin 199 1. Holt and McPeek 1996). and. that short distance 

dispersa! ma. prornote coexistence among sprcies ( Atkinson and Shorrocks 198 1 .  Shmida and 

Ellner 1984. Pacala 1986. SiIander and Pacala 1990. Hurtt and Pacala 1995. Rees et ui. 1996). These 

and related studies suggest that for many plants the most important dispersal outcome is achieved 

ot a distance of 1-2 canopy diameters from parent plant and that any further advantage to be gained 

at greater distances is not greatly affected by the dispersal mode adopted (Hughes et al. 1991. 

Portnoy and Willson 1993). 

Nevertheless. that some propagules must achieve longer dispersal disrances for overall plant fitness 

appears certain in view of the evolution of polychorous (multimodal) species and their investment 

in structures such as elaiosornes. and dimorphic seeds. which greatly extend the dispersa1 reach of 

diaspores (Berg 1969. Westoby 1981. Venable and Lrvins 1985): the continuous variation in 

morphology of dispersal structures of individual plants that extends the dispersal reach of unirnodal 

species and rnonomorphic seeds (Sacchi 1987. Michaels et al. 1988); and. the skewed Frequency 

distributions of dispersal distances achieved by al1 plants. no matter what the mode of dispersal 



(Portnoy and Willson 1993). Distance matters. therefore. though not perhaps to the degree once 

thought (Ridley 1930). 

The environment in which a diaspore lands is often a matter of chance alone. However. for some 

modes. and for propagules that travel only a short distance. the probability of landing in a particular 

type of environment is better than chance. The directed quality of such dispersa1 creates the basis for 

pattern in the spatial arrangement of plants. Direct analysis of the seed rain provides the strongest 

evidence for directed dispersal (sensu Howe and Smallwood 1982. H m w a  et al. 1988) since the 

spatial arrangement of established plants c m  be influenced by differential germination success. 

cornpetitive interactions. and other factors. 

For plants dispersed by animal ingestion. the character of the seed rain. and where it lands. may be 

influenced by a variety of mechanisms. including the brhavior and habitat preference(s) of the 

dispersing agent. the size and composition of the h i t  consumed. the manner in which the Imit is 

eaten and seeds are processed. the degree to which seeds are voided alone or in the Company of 

others. and the type of habitat in which post-foraging behavior occurs (Proctor 1968. Thompson and 

Willson 1978, M c D o ~ e l i  and Stiles 1983. Johnson rr cri .  1985. Levy 1986. Piper 1986. Stiles and 

White 1986. Hoppes 1988. Malmborg and Willson 1988. White and Stiles 1990. Stiles 1992. 

Schupp 1993. Kollmann 1995). Spatial pattern arising from these mechanisms has been detected 

in the seed-fa11 of bird dispersed plants in an Illinois woodland (Hoppes 1988. Malrnborg and 

Willson 1988) where 53% of the seeds of fleshy fruits from artificial dispiays (seven species. 

representing four life forms) fell in tree-fall gaps. 33% fe11 within 9 metres of the gap edge. and 14% 

fell in undisturbed forest. Pattem in the receiving environment has also been reported for species 

of oak. beech, and pine arising From the seed caching behavior of blue jays (Darley-Hill and Johnson 

198 1. Johnson and Adkisson 1985) and Clark's nutcracker (Vander Wall and Balda 1977. Tomback 

and Linhart 1990). Pattern in the consumption of seeds by small rnammals has rarely been detected 

owing to complex interactions among contnbuting factors (Willson and Whelan 1990. Whelan ri 

al. 199 1. Willson 1993 b, Boman and Caspar 1995). although a tendency for scat to be deposited at 

the base of trees and on logs has often been observed. 



For plants dispersed on the exterior of animals. the character of the seed rain and the receiving 

environrnent are expected to be less predictable. owing to differences in the "set" of individual barbs. 

the rate of uptake and retention of diaspores in different vegetation types. the rate of detection and 

removal of diaspores by animal vectors. and. the adhesive properties of diaspores and animal hides 

(Agnew and Flux 1970. Bullock and Primack 1977. Sorensen 1986. Williams and Guries 1994. 

Kiviniemi 1996). Unlike dispersa1 by ingestion. dispersal by adhesion is often a random process in 

which diaspores anach and detach as the animal moves. Depending on local circumstances and the 

vector involved. some diaspores may travel only a short distance. while others may travel farther 

than fmits dispersed by animal ingestion or the wind (Sorensen 1986. Matlack 1994. Bruner and von 

Oheimb 1998). Nevertheless. pattern has been detectrd in the spatial distribution of established 

plants. In an intercontinental survey of ten regional Horas. plants with adhesive fmits were more 

likely than other plants to occur in disturbed. meadow. lakeshore. and desert habitats. and. were 

significantly more common in woodlands than in other habitats examined (Sorensen 1986). 

For plants dispersed by ants. the destination of the diaspore is the nest and associated disposa1 sites 

which are often located within rnetres to tens of metres of  the parent plant (Berg 1975. Handel 1976. 

Culver and Beattie 1978). The character o f  the surrounding environrnent in which the seedling 

emerges. however. has rarely been assessed. In habitats where myrmecochory is common (dry 

sclerophyll vegetation in Australia: meadows and forest understories in Nonh Temperate regions 

Rice and Westoby 198 1.1993: Semander 1906. as cittid in Rice and Westoby 1986: Beattie and 

Culver 198 1 ). ant-dispersed species are commonly found in a variety of microsites. The environment 

in which a seedling establishes. therefore. may have more to do with the depree of heterogeneity in 

the local environment than with the presence or absence of particular conditions. The relative 

importance of benefits arising From the escape from predators (O'Dowd and Hay 1980. Heithaus 

198 1). the distance diaspores move (Westoby and Rice I O 8  1). or the placement of seeds in suitable 

microsites (Hanzawa et al. 1988). is still open to drbatr ( Rice and Westoby 1986. Andersen 1988). 

For plants dispersed by wind and by ballistic mechanisms. the character of the receiving environment 

is expected to be highly variable. For most diaspores. however. the receiving environrnent will be 



the irnmediate surroundings of the parent plant since most diaspores travel only a short distance 

(Appendix 1 1). Pattern in the spatial array of thesr species. therefore. is expected to anse from 

differential germination success. and cornpetitive interactions. rather than from the effects of 

dispersal prr se. 

For plants dispersed in persistent seed pools (srnsll Thompson rr ni. 1997). the character of the 

receiving environment will be govemed primarily by environmental heterogeneity since the seeds 

of these plants are typically dispersed by the wind. ballistic mechanism. or adhesive fmits. The 

environment in which germination takes place. however. will typically be disturbed habitats since 

dormancy is favored to evolve in small-seeded plants in variable environrnents (Venable and Brown 

1988). The seeds of these plants typically lack the metabolic reserves to establish under a closed 

canopy (Saverimuttu and Westoby 1996. Westoby cr d. 19%). 

From information presented thus far. one may conclude that: i) dispersal has consequences for 

population and comrnunity structure: i i )  dispersa1 ma)- be a non-limiting procrss within habitat 

patches owing to the predominance of short-distance dispersal: i i i )  the environment in which a 

diaspore lands is govemed by its mode of dispersal: iv dispersal is primaril y a detmninistic process 

for diaspores that remain close to the parent plant: v )  dispersal is pnmanly a stochastic process for 

those that travel more than a Few metres from the parent plant: vi) both short and long-distance 

dispersal contnbute to plant fitness: vii) pattern in the seed rain may arise from dispersa1 but map 

prove difficult to discern in established vegetation owing to the number of mechanisms involved. 

The contribution of dispersai to pattern in plant communities may be affected by interactions with 

other plant traits that contnbute to reproductive succrss. Interactions among traits that represent 

different ways of escaping unfavorable conditions have attracted particular attention since selection 

pressure that favors one trait may indirectly select against another (Levin et al. 1984. Venable and 

Brown 1988. Rees 1993). Reported interactions and apparent trade-offs of interest to this study 

include: seed size and habitat (Salisbury 1942.1974. Baker 1972. Mazer 1989.1990); seed size and 

seed number (Harper 1977); seed size and dispersal mode (Westoby et al. 1992. Hughes et al. 1994. 



Rees 1996); seed size and dormancy (Rees 1996): dormancy and dispersa1 (Bulmer 1984. Rees 

1996); seed size. dormancy and dispersal (Venable and Brown 1988); longevity and dormancy (Rees 

1993. 1994): growth form and mode of dispersal (Harprr et al. 1970. Hughes ei al. 1994. Leishman 

et al. 1995): dispersal, dormancy. peremiality and iteroparity (Silvertown 1984): and. seedling 

success and dispersa1 (Morse and Schmitt 1985). 

The relations between seed size and mode of dispersal have important implications for pattern since 

related trade-offs between seed size and germination success. and between seed size and dispersa1 

distance. may restrici the range of habitats occupied b) a particular dispersal mode. The tinding by 

Westoby et al. (1992) that dispersal mode is rarely constrained by seed size is highly significant. 

therefore. since it implies that the habitats in which plants rstablish will rarely be constrained by the 

way in which they disperse. This greatly increases the range of solutions (to rcological problems) 

available to plants. Obsenred trends in the frequency of modes in relation to increasing seed mass 

(unassisted - wind - adhesion - ant - ballistic - venebrate) (Hughes et cil. 1994) suggest that somr 

modes of dispersal may confer greater fitness bendits ( Westoby ei (11. 1995). or be more constrained 

phy logenetically (Harvey and Pagel 199 1. Harvey Cr cil. 1 995). than others for a given seed m a s  and 

habitat. These trends suggest that pattern may anse within and between habitats in the proportion 

ofspecies dispersed by a given mode. Differences in dispersa1 spectra derived frorn publishçd tloras 

(Willson et ui. 1990. lurado et ai. 199 1. Westoby et nl. I W. Leishman et ul. 1995). and from original 

studies (Dansereau and Lems 1937. Frenkel 1970. Pojar 1974. Luftensteiner 1979. Ellner and 

Schmida 198 1. Hoehne 198 1. Westoby et al. 1990). arc consistent with this expectation. 

The relations between dispersal and germination biology have been studied rarely. That such 

relations occur are not in question since plants in which dispersal attributes fail to hmonize  with 

germination requirements cannot replace themselves (consider. for example. the rapid loss of 

dispersal capacity among species of open inland habitats germinating on ocean beaches reponed by 

Cody and Overton 1996). One rnay also conclude from t in t  principles that the direction in which 

naturd selection typically acts is From germination biology to dispersa1 attributes. since it is 

primarily the alleles (for dispersai) that are compatible with germination requirements that are passed 



along in a colonization event. To date, the impact of germination biology on dispersal attributes has 

been exarnined in relation to three phenornena: serd domancy. seed heteromorphism. and. 

polymorphism in germination requirernents. 

The impact of germination biology on dispersal processes is most clearly resolved in the case of 

spatial dispersa1 and seed domancy (treated in this study as dispersa1 in time. afier Willson er 

al. 1990. but arguably. and perhaps more appropriately. classified as a germination strategy. a%er 

Baskin and Baskin 19%). Modeling by several researchers reveals that the capacity for dormancy 

should rarely evolve in species with efficient spatial dispersal since dispenal reduces the likelihood 

that al1 seeds will be exposed to unfavorable conditions in any one year (cg. Venable and Lawlor 

1980. Cohen and Levin 1987. Venable and Brown 1988). Similarly. domancy is not expected to 

evolve in species with large seeds. since the attendant store of provisions significantly improves the 

chance that a seedling may establish under a closed canopy or other unfavorable conditions (Venable 

and Brown 1988. Rees 1996. Saverimutto and Westoby 1996). Dormancy may select for higher 

dispersal. however. when the probability is high that diaspores will find a suitable patch. and. when 

the amplitude of environmental variation is large (Cohen and Levin 1987. 199 1 ). High dormancy 

and high dispersal. therefore. are most likely to arise in disturbed habitats in species that have small. 

wind-dispersed. seeds. The impact of germination biology on dispersal for species with peremial 

life histories has not been modeled. b ~ t  is not expected to differ with respect to the trends reponed 

here (Venable and Brown 1993). 

The impact of germination biology on dispersa1 attributes has been exmined more thoroughly in 

species with dimorphic (heteromorphic) seeds than in other Functional groups ( Harper 1965. 1977: 

Sorensen 1978; Flint and Palmblad 1978; Venable and Lawlor 1980: Baker and O'Dowd 1982; 

Olivieri and Berger 1985; Venable 1983: Venable and Levin 1985. Venable et al. 1995. and 

references therein). Seed heteromorphism is the production of seeds of different morphologies or 

behaviors by single individuals (Venable 1985). It is more common in annuals. plants of arid and 

semi-arid regions. and weeds. but it is not restricted to these plants (Venable et al. 1995). 

Heteromorphic seeds often display a polymorphism for both germination and dispenal (Harper 1965. 



Silvertown 1984) thereby enabling individual plants to "hedge their bets" with respect to the timing 

and general location of germination events (Sorensen 1978. Seger and Brockmann 1985). 

In general. the seed morph that has the more precise germination requirement. and the capacity for 

dormancy. remains in the immediate vicinity of the parent plant whereas the morph that can establish 

under a wider range of conditions. and lacks dormancy. disperses beyond the local patch (Venable 

and Lawlor 1980. Olivieri and Berger 1985). The former combination provides some measure of 

reproductive assurance (Panne11 and Barrett 1998). as wll as. a mechanism For reducing competition 

with siblings (Olivieri and Berger 1985) and non-related species. The latter combination. on the 

other hand. enables seeds to reach a wider range of habitats and to germinate rapidly in settings that 

provide suitable conditions for establishment. In the summer annual. Heterosoerma ~innatum 

(Asteraceae). the relations between germination attributes and dispersal reach have been shown to 

be heritable and correlated with differences in habitat (Venablr et (11. 19953. In keeping with recent 

theory (Venable and Brown 1993). achenes that germinated rapidly and were capable of longer- 

distance dispersa1 were selected against at sites where early germination was hazardous. In thosr 

environments. tlower hrads contained a signiticantl!. lower proportion of rapidly germinating 

achenes than flowering heads in habitats where the risk of germination was less hazardous. 

The degree to which monomorphic seeds possess germination polymorphisms has been examinrd 

rarely. According to Harper ( 1977) and Silvertown ( 198-1). cryptic seed heteromorphism (variable 

seed behavior that is not accornpanied by dramatic morphological differentiation) may br a 

widespread phenornenon affecting many plant species (Venable 1985). In a study of seedling 

performance and dispersa1 capacity in the common milkwred. Asclepias svriaca. Morse and Schmitt 

(1985) found that germination and seedling success were positively correlated with seed size and 

negatively correlated with dispersa1 reach. These results w r e  interpreted as evidence of a conflict 

between seedling performance and dispersa1 capacity since the seeds that were most capable of 

reac hing distant sites were the seeds least capable of establishment and growth. This conclusion may 

not reveal the mie fitness of seeds dispersed over longer distances. however. since Asclepias svriaca 

has the capacity to form persistent seed banks (sensir Thornpson et al. 1997. Bumside et al. 1996). 



Given that approximately 50% of the seeds in this study failed to germinate. and that the seeds which 

failed to germinate were significantly lighter than those which did. it is possible that the smaller and 

more vagile diaspores of this species have the capacity for prolonged dormancy. If me. then the 

case for contlict between seedling performance and dispersal has not been demonstrated. However. 

if the smaller seeds in Ascleoias svnaca were to possess more capacity for domancy than larger 

seeds. then a germination polymorphism may be present in the monomorphic seeds of this weedy 

perennial. 

The larger issue nised by the Morse and Schmitt stud) remains unresolved. howver. and points to 

a fitness limitation that is inherent in the dispersal c u n e  ofall species and that map account for the 

small fraction of diaspores that leave the immediate vicinity ofmost parents. Although the variety 

of mechanisms by which germination polymorphism may arise (Silvertowvn 1984). and the various 

forms and degrees of dormancy that have evolved (Baskin and Baskin 1998). rnay each reduce the 

risk of regeneration failure in vagile diaspores. it would nppear that these rnechanisms have not been 

sufficient to modify the seed shadow of most species (Ponnoy and Willson 1993). They may. 

howevrr. permit a larger fraction of diaspores to disperse over longer distances and to colonize 

suitable habitat in patchy and disturbed environrnents. 

From the preceding discussion. additional conclusions regarding the contribution of dispersal to 

pattern in established vegetation may be drawn: i )  the habitat in whicli a species germinates should 

rarely be constrained by its mode of dispersal. although a given mode rnay be more frequent in some 

habitats than others: ii) reproductive success in plants requires some measure of harmonization 

between dispersal attributes and germination biology: i i i )  the fraction of seeds that disperses beyond 

the immediate vicinity of the parent plant rnay depend more on the germination biology of the 

species than on the mechanical constraints imposed by the mode of dispersal: iv) dispersal attributes 

are hentable and subject to natural selection. 

Study Objectives and General Approach: The contribution of dispersa1 to spatial structure and 

species diversity in the forest understory has rarely been exarnined. The objectives of this chapter. 



therefore. are to fùrther this understanding by: i) identifying patterns of association between modes 

of dispersal and plant traits that may independently contribute to pattem in the distribution of 

species: and. ii) identifying patterns in the distribution of modes of dispersa1 within the forest 

understory and in relation to gradients in limiting resources. 

The basic approach was to chmctenze the sampled flora in relation to the traits of interest and then 

to search for pattern in the established vegetation. The dispersa1 attributes of 41 3 vascular plants 

from 24 forest stands were classified in relation to the agent of dispersal and then examined for 

pattern in relation to plant traits (life form. life history. provenance. fruit type. tmonomic rank. 

environmental States (environmental gradients. microhahitats. habitat affinitp. moisture aftinity. 

shade tolerance). plant abundance (frequency class. richness class. cover class). and landscape 

properties (patch size and patch isolation). Particular attention was given to the herbaceous tlora 

sincr it represented the full range of dispersal modes reçorded in these forests. Pattern was assessed 

with re ference io descriptive statistics. non-parame tric statistics. detrended correspondence anal y sis 

(DCA). and canonical correspondence analysis (CCA). 

This thesis represents the tirst time that the dispersai spcctmm has been characterized in relation to 

microhabitats within the forest understory. 

The contribution of dispersal to differences in species richness in sampled forest stands is analyzed 

in Chapter 4. 

3.2 Methods 

3.2.1 Classification of Dispersa1 Modes 

3.2.1.1. Overview 

Mode of dispersa1 was inferred from the morphology or known properties of the diaspore. Species 

were assigned to one or more of the following syndromes based on the known or presumed fùnction 

of the facilitating feanire: dispersa1 by animals (zoochory). dispersai by wind (anemochory). 



dispersa1 by mechanical expulsion (ballochory). dispersal by prolonged domancy in the soi1 

(chronochory). dispersa1 by vegetative expansion (autochory). dispersal by unassisted means 

(atelechory). and. dispersal by more than one mode (polychory). Animal dispersa1 was further 

classified in relation to the proximate mechanism. in view of differences in habitat preferences and 

foraging patterns of the animal vectors: dispersa1 by ingestion (endozoochory). dispersal by adhesion 

(epizoochory). and. dispenal by active conveyance or handling (synzoochory). Dispersal by animal 

conveyance was hrther classi fied for similar reasons: dispersai by seed caching. and. dispersal by 

ants (mytmrcochory ). 

Domancy is considered to be a dispersal character. in this study. in recognition of the contribution 

of persistent seed pools to community structure and species richness (Venable and Brown 1988. 

1993: Kalisz rr al. 1997). Other plant traits that contribute to dispersai in rime. such as iteroparity. 

perenniality. and persistent life history stages. are considered alternatives to dispersal since they do 

not affect the morphology or physical attributes of thc diaspore. Serotiny. if present. would have 

been a dispersa1 character since it affects the release of the diaspore. Despite their short dispersa1 

reach. rhizomes. stolons. and mnners are treaied as dispersal characters since they satisfy the 

de finition of dispersal when they result in the establishnient O f a detached. independently rooted. 

rarnet. 

The purpose of the classification is descriptive: to identify the agents. structures and attnbutes that 

facilitate the dispersa1 of recorded taxa. It is concemrd solely with the capacity of the agent to 

transport a spore or seed unharmed. and is silent with respect to the capacity of the agent to delivrr 

the propagule to a "safe site" (dispersa1 efficiency). and. to the proportion of seedlings in a 

population that may be attributed to a particular vector (dispersai effectiveness) (Harper 1977. Reid 

1989. Bustamente et al. 1992. Schupp 1993). 

The classification is also silent with respect to the status of facilitating structures and properties as 

adaptations for dispenal. Depending on the definition used. these features may be adaptations for 

dispersal or not (Reeve and Shemanl993). If the detïnition requires that the feature be built by 



natural selection for its current role (e.g. Gould and Vrba 1982). then most features would not be 

adaptations for dispersal since their original hc t ion  may have been to protect the developing ovule 

(Stebbins 1974) or to serve some other purpose. If the definition only requires that the feature or 

property results in higher fitness than alternative variants in the same environment (Reeve and 

Sherman 1993). then many features in this study would be considered adaptive in some habitats but 

not. perhaps. in dl. In keeping with the requirements of many definitions of adaptation. dispersal 

characters have been shown to contribute to plant tïtness. to be heritable. and to be subject to natural 

selection (e.g. Cody and Overton 1996.Venable er a/. 1995). 

The morphology and dispersa1 properties of diaspores were evaluated in the field and with reference 

to the published literature and the Montgomery Seed Collection. Royal Ontario Museum. Toronto. 

Ontario. Fruit terminology follows Gleason and Cronquist ( 199 1 ). The classification of recorded 

taxa is presented in Appendix 2: a listing of species codes and corresponding scientific names is 

presented in Appendix 3. 

3.2.1.2 Classification Criteria and Related Considerations 

Dispersal by Animals (Zoochory): Dispersa1 by animals may be achieved by ingestion 

(endozoochory). adhesion (epizoochory) or active conveyance (synzoochory) (Semander 1901. as 

cited in Fahn and Werker 1972). Facilitating properties and considerations are discussed below. The 

principal frugivores and myrmecochores in Eastern Nonh America are presented in Appendices 12 

and 1 3. respec tivel y. 

Animal Ingestion (Endozoochory): Dispersal by ingestion is achieved when the fleshy pulp of an 

aril or h i t  is eaten by an animal and the seeds are regurgitated or excreted unharmed (Ridley 1930. 

van der Pij 1 1987. Willson et al. 1990). Species were so classified if the seed possessed a fleshy ad: 

or. if the fmit was a berry. drupe. drupelet. pome: or. if an achene wâs embedded in a fleshy 

receptacle or enclosed by a fleshy hypanthium. Fleshy f i t s  that possessed an elaiosorne were 

classified as ant dispened. Trillium erectnim and Streotoous roseus were classified as ant dispened 

but may be polychorous based on the analysis of Trillium by Berg (1 958). as cited in Stebbins 1974. 



and. on the classification of Strepto~us by Willson 1986. 

The cnterion for dispersa1 by ingestion excludes seeds and fruits eaten by granivores since the hard 

seed coat. which is the facilitating property. cannot be discerned visually. and. since published tests 

of viability were not sufficient to classi@ the tava in this study (e.g. McAtee 1 947. Krefting and Roe 

1949. Flaming and Proctor 1968). Non-fleshy diaspores consumed by animals were theretore 

classified as dispersed by "unassisted" means. While dispersa1 by granivores is generally discounted 

( Willson 1986). some fraction of consumed seeds in\-ariabl y survives passage through the beak. 

giuard. or stomach of the bird. mammal or insect. and contributes to the longdistance dispersa1 of 

species that lack fleshy diaspores (Krefting and Roe 1949. van der Pijl 1982. Morton and Hogg 

1989. Stiles 1989. Schupp 1993). The surviving fraction vases with both the diaspore and the 

consuming agent. Collinge ( 1 9 1 3) reports the gerrninat ion of 28 1 species of herbaceous plants from 

142 droppings of the house sparrow. bull finch and green finch. whereas Rossler ( 1936). in contrast. 

repons that only 7 of 40.000 seeds of various herbaceous plants germinated in the scat of California 

linnets. 

The criterion for dispersa1 by ingestion also excludrs nuts swallowed and regurgitated by japs and 

other seed caching animals. WhiIe satisfjhg the operational requirement that seeds be regurgitated 

or excreted unharmed. the swallouing of nuts for the purpose of later retrieval and consumption 

(Darley-Hill and Johnson 198 1. Johnson and Adkisson 1985) implies intentionaiity that is lacking 

in dispersa1 by frugivores. Nut fruits were theretore classified as being disprrsed by active 

conveyance or handling. 

Fleshy fruits in the forests of Eastern North Arnerica are consurned by birds. mammals. and at least 

one reptile. the Eastem Box Turtle (Martin et al. 195 1 ). Most fleshy fruits in these forests are 

consumed by both birds and marnmals based on data sumrnarized in Martin et al. ( 195 1 ). In that 

study. 46 of 48 genera of fleshy-fniited plants east of the Mississippi River were consumed by each 

animai ciass. Overlaps with birds and marnmals have also been reported for genera consumed by 

the Eastern Box Turtle (Hamilton 194 1, Wilson 1986. Rust and Roth 198 1 ). Further differentiation 



among fleshy fmits arising from differences in foraging and processing within and among animal 

classes was not pursued. therefore. in view of the lack of capacity to discriminate among animal 

agents (based on the presence or absence of selected fruit characters). 

Animal Adhesion (Epizoochory): Dispersal by animal adhesion is achieved when a diaspore 

becomes passively attached to the fur or feathers of an animal by means of barbed. hooked or 

scabrous awm. bristle. hair or spine. and the seed is subsequently removed or released unharmed 

(Sorensen 1986). The facilitating structure in this study may be present on the fruit (typically). 

hypanthiurn (Aerimonia). involucral bnct (Arctium. Cirsium). lemma (Poaceae). stem or leaf 

(Galium. Leersia). 

The citenon for dispersa1 by adhesion excludes f'its that becorne sticky when wet (viscid h i t s )  

since this character is not readily observed and is rarely reponed in technical manuals. Speçies that 

may be dispersed by mucilaginous seeds in this study are Plantaeo ma-ior and Prunella vulaaris 

(Ridley 1930. p.549). Kemer (1  895. p.869) reports that the fruits of Solanum are sticky when over- 

ripe and adhere io the hair and bristles of animais. 

The criterion for dispersa1 by adhesion also excludcs diaspores that may be dispersed in mud 

adhering to the Feet of birds or mammals (Ridley 1930) since facilitating structures are not required 

for this mode ofdispersal. Species that are most likely to be dispersed by this mechanism are smali- 

seeded plants of wet and wet-mesic habitats. 

The adhesive status of diaspores with awns. bristlrs. hairs or spines that lack barbs. hooks or 

scabrous properties was selectively tested with fmits from the Montgomery Collection. Royal 

Ontario Museum. Toronto. Although diaspores lacking these structures were excluded by Sorensen 

(1 986). their adhesive properties may be sufficient to facilitate short-distance dispersal. particularly 

when wet (Morton and Hogg 1989. personal observation). Diaspores that adhered to an inclined 

Cotton shirt when dropped fiom an upnised hand were deemed to be "adhesivett and were included 

in the classification (cited as "Montgomery Collection Testtt in Appendix 2). 



Active Handling or Animal Conveyance (Synzoochory): Dispersa1 by animal conveyance is 

achieved when the diaspore is intentionally transported by an animal for some purpose and the seeds 

are regurgitated or discarded unharmed (Fahn and Werker 1972, van der Pijl 1982). When the 

diaspore is transported for the purpose of storing Food. but is forgotten or not eaten. the dispersa1 

syndrome is "seed caching" (Smith and Reichman 1 984). "larder hoarding". or "scatter hoarding" 

(Stapanian and Smith 1978) . When the diaspore bears an elaiosome (an outgrowth of a seed or fruit 

in which lipids are stored) that is eaten by ants. or by vespid wasps. and the seed is discarded 

unhamed. the syndrome is "myrmecochory" (Semander 1906) and "vespichory" (Jules 1996). 

respectively. In this study, the elaiosome may be attached to the seed (typically). schizocarp 

(Galium), base of the style (Carduus, Cirsium). or. comprise the basal portion of the perigynium 

(Carex) (Semander 1906). In this study. the acknowledpd fruit type dispersed by seed caching is 

the nut. although other fi-uit types may be so dispersed. 

The criterion for dispersal by animal conveyance lraves open the purpose for which the diaspore is 

conveyed. Diaspores passively conveyed on plant parts that are intentionally transported for nesting 

material (Ridley 1930. Morton and Hogg 1989) is not considered to be synzoochory in this study 

since the property of interest does not relate to the diaspore. 

The traditional test for myrmecochory has been behavioral: transport by ants and disposa1 of the 

seed unharmed (Semander 1906. Berg 1975. Hughes and Westoby l9Wb). Chernical assays and 

morphological assessments are not sufficient owing to uncertainty regarding the nature of the 

attractant (Bresinsky 1963. Marshall et al. 1979. Howard et al. 198 1. Gordon 1983. Skidmorc and 

Heithaus 1988. Brew et al. 1989) and the status of arils. caruncles and strophioles as agents of 

myrmecochory (Fahn and Werker 1972. Roth 1977. Brattie 1985). Theref'ore. only species that have 

been tested and been s h o w  to be dispersed by ants have been classified as mymecochores. This 

requirement was waived for Carex pensvlvanica based on an analysis of lipid content conducted for 

this study by Dr. M. Kahn. Department of Botany. University of Toronto. and. for Claytonia 

caroliniana, Dicentra canadensis, Polypala pauciflora. Viola labradorka. Viola sp.. based on the 

known statu of conspecifics and the presence of prominent "elaiosomes". Additional genera not 



classified as mynnecochores in this snidy. but reported to be ant-dispersed in Europe. are 

Ranunculus (Roth 1977). Juncus (Bresinsky 1963). Allium. Conv~vulus~ Festuca. Geranium. 

Imoatiens. Iris, Polygala. Polyeonum. Potentilla.. Silene. Stellaria. Trientalis. and Waldsteinia 

(Semander 1906). 

Dispersa1 by Wind (Anemochory): Dispersal by wind is achieved when the rate of descent of the 

diaspore is slowed by an aerodynamic sbape or by virtue of its small size and light weight (Ridley 

1930. Fahn and Werker 1972. van der Pijl 1982. Burrows 1986). Structures that facilitaie wind 

dispersa1 in this study are wings. accrescent tepals. an intlated perigynium. a detachable panicle. a 

coma of fine hairs. or. a pappus of plumose. capillary or barbellate brisiles. 

The criterion for wind dispersa1 makes provision for srnail. light diaspores ihat othenvise lack a 

facilitating morphology. This approach departs from Willson et id(1990). who excludrd such 

diaspores because of the problem in defitiing an appropriate threshold size. This argument has been 

accepted for seeds but not t'or spores. The former have been classified as "unassisted". whereas the 

latter have been classified as "wind dispersed". Orchid seeds. while dust-like in character (and thus 

classified as "unassisted" by Willson et al. 1990). have a tlattened wing-like rrgion surrounding the 

germ (Surnmerhayes 195 1. Montgomery 1977. persona1 observation). or an inflated and air-filled 

seed coat (Rasmussen 195 1. Arditti 1992). that contributes to their capacity to remain aloft for long 

penods. and thus are classified as wind dispersed in this study. 

Wind-push contributes to the short-distance dispersal of many fruits through the catapult effect of 

swaying stems or direct pressure on a flattened profile. In keeping with the conservative approach 

adopted in this study. most of these species have been classified as dispersed by "unassisted" means 

since they lack a distinctive facilitating morphology. Selected species that have been classified as 

"wind ballists" (van der Pijl 1982) are described in the section entitled "Dispersa1 by Mechanical 

Expulsion (Ballochory)". 

"Aerodynamic" structures. such as plumose hairs. wings. accrescent tepals. and inflated perigynia. 



may enhance the buoyancy of diaspores on water as wrll. This dimension has not been classified 

owing to the lack of flowing water in surveyed stands. Classitied species that may be water 

dispersed in other settings include: Boehmeria cvlindnca Carex intumescens. Carex retrona, Rumex 

orbiculatus. Salix spp.. and T v ~ h a  latifolia. 

Dispersai by Prolonged Dormmcy (Chronochory): Dispersal by prolonged dormancy is achieved 

when a seed regenerates from a long-term persistent seed bank (Thompson er al. 1997). Species were 

classitied as chronochores if their seeds have been reported to persist in the soil for ai least five 

years. and. if the methodology for detemining persistence satisfied the cnteria of Thompson et c d .  

( 1997) for a Type 3 seed bank. 

The threshold for detïning long-term persistence was established pragmatically since t'ive years 

represented the termination point for a significant proportion of burial experiments (Thompson et 

al. 1997). The ecological significance of this threshold is that it differentiates seeds with limited 

capacity to persist in the soil from those with greater capacity. Seeds that can persist at least five 

years in the soil ofien remain viable for much longer (Thompson PI c d .  1997) and thus represent an 

important source of propagules for the colonization ot'disturbed sites. 

The t e m  "chronocho$' (khronos = time + chorein = to wander) originates with this study. 

Dispersa1 by Mechanical Expulsion (Ballochory): Dispersa1 by mechanical expulsion is achieved 

when the seed is forcefully expelled from the plant by esplosive dehiscence (Ridley 1930. Fahn and 

Werker 1972. Beer and Swain 1977. Stamp and Lucas 1983). a splash-cup or springboard 

mechanism activated by falling water droplets (Brodie 195 1. 1955: Savile 1953. 1979: Savile and 

Hayhoe 1977). or. by a swaying stem activated by wind-push (Ridley 1930. van der Pijl 1982). 

The critenon for mechanical expulsion by a swaying stem has been applied conservatively since the 

dispersal of most plants is enhanced by this mechanism. Only plants that are known for catapulting 

their seeds, or that possessed a specialized morphology (e.g. a censer mechanism. or an inflated 



hypanthium) for controlling or enhancing the release of seeds from swaying capsule or follicle. were 

recognized as anemoballists in this study. 

Dispersal by Vegetative Expansion (Autochot-y): Dispersa1 by vegetative expansion is achieved 

when a detachable propagule. or. a disintegrating rhizome. stolon or runner. gives rise to a detached. 

independently rooted. rarnet (Bell 199 1 ). Detachable propagules in this study are bulbils (Cicuta 

bulbifera. Cvsto~teris bulbi fera). twigs and branchlets ( Salk spp. ). 

Dispersal by vegetative expansion has been excludrd as a dimension of polychory to facilitate 

coinparisons between sexual and asexual modes of dispersal. 

Dispersa1 by Unassisted Means (Atelechory ): Dis persal by unassisted means is ac hirved b y 

diaspores that lack an apparent feature or propet-ty to t'ûcilitate their movement through space or time. 

These species are presumably dispersed by animal ingestion since sach has a sizable geographic 

range in Eastern North America (Gleason and Cronquist 199 1 ). 

Dispenal by Multiple Agents (Polychory): Dispersal by multiple agents is achieved when the 

diaspore is dispersed by two or more of the following modes: zoochoy. anemochory. chronochop. 

or ballochory. Dispersal by vegetative expansion has bren rxcluded as a dimension of polychoq 

to facilitate cornparison between sexual and asexual modes of dispersal. 

The results of this classification are presented in Appendix 2. 

3.2.2 Classification of Other Plant Traits 

Additional plant traits evaluated in this study were life form (tree. shrub. vine. fem. fern ally. grass. 

herb). life history (annual. biennial. perennial). provenance (native. alien). and fruit type (achene. 

berry. caryopsis, capsule. drupe. follicle. legume. nut. nutlet. pome. Samara schizocarp. and silique). 

The spores of inventoried fems and fem allies. and the arillate and wvinged seeds of inventoried 

gymnosperms. were classified as "fruit" for ease of use. The authority for provenance was Morton 



and Vem (1990): the authority for life form. life history and fmit type was Gleason and Cronquist 

(1  99 1). A summary of plant traits by species is presented in Appendix 2. 

3.2.3 Identification of Pattern 

In this study. a relationship between (among) variables was deemed to constitute a "pattern" when 

the relationship was significant statistically. or. when the variables of interest were aggregated in 

ordination space. Protocols and assumptions for testing patterns of association are descnbed below. 

3.2.3.1 Pattern in Relation to Plant Attributes 

The relationship between modes of dispersa1 and other plant traits was examined with respect to life 

form. life history. provenance. modality. fmit type. and tavonomic rank. These traits are known. or 

have the potential. to Vary with environmental conditions for independent reasons and thus may 

confound interpretations of the role of dispersal in structuring the composition and abundance of 

plant assemblages. Published data were not sufficient to charactenze the germination traits of 

sampled species. 

The relationship between modes of dispersal and examined traits was summarized by descriptive 

statistics and tested by chi-square tests of homogenrity by row or cell. In keeping with the 

subsequent Focus on understory herbs. only the results for the herb Me fom are reported. The 

expected value for each test was the proportion of herbs in the sampled flora with the trait of interest. 

The defining equation was the following: 

Expected value = (the number of herbs dispersed by mode in sampled patches- 
the total number of herbs in the data set) X (the number of 
herbs ~vith the trait of interest). 

The total number of herbs in sampled patches was 252: however. the total nurnber of herbs in a given 

test varied. since taxa were not always classifiable in relation to the trait of interest. Given the large 

number of tests in each analysis. the status of tests after Bonferroni correction for the nurnber of tests 

was reported. 



The analyses were performed in IMP. Version 3.2.2. SAS Institute. The results of this analysis are 

reported in Tables 3.1 to 3.8. 

3.2.3.2 Pattern in Relation to Environmental Variables 

The tendency for the dispersal modes of herbs to be associated with particular environmental States 

was examined in relation to habitat affinity. moisture aftinity. shade tolerance. environmental 

~radients. and microhabitats (see Chapter 2 for definitions and descriptions of variables). 
C 

The relationship between modes of dispersai and the habitat affinities of herbs was tested by chi- 

square tests of homogeneity. by row and cell. Chi-square tests of independence were not appropriate 

for this analysis since selected herbs were dispersed by inore than one mode and thus were recorded 

in more than one dispersa1 category. 

The relationship between modes of dispersa1 and selected environmental gradients was tested by 

Wilcoxon rank sum tests with independent sarnplrs. The response variable in rach test was the 

proportion of taxa in 1 O m x 1 O m quadrats that were herbs dispersed by a given mode. Analysis of 

variance was not appropriate for this analysis since the response variable was based on count data 

and rarely satistied the nomality and equal variance assumptions of ANOVA. Only the major 

gradients (see C hapter 1) were included in this analysis. 
C 

Analyses were performed in IMP. Version 3.2.2.. SAS Institute. Inc. The results of this analysis are 

reported in Tables 3.9 to 3.12. 

Patterns of association were also examined in the ordination space of detrended correspondence 

analysis (DCA) in order that trends may be assessed in relation to compositional similarities among 

quadrats and to environmental afinities among species. DCA was preferred to CCA for this analysis. 

since the dispersion of quadrats in DCA is govemed by species relations with the underlying 

environment rather than with the resuicted set of variables chosen for study. Pattern analysis was 

conducted by visual inspection. In order to reveal the main trends in the data. only the quadrats in 



which the mode was prominent were labeled (Le. quadrats in which the proportion of taxa dispersed 

by the labeled mode was r the 75% quantile of proportions for that mode in the study area). 

The distribution of dispersal modes in relation to environmental variables was evaluated with 

reference to canonical correspondence analysis (CCA). Here the pattern of interest was the degree 

to which modes of dispenal were associated with the set of environmental variables exarnined in 

Chapter 2. For this analysis, the species codes of species were replaced by modes of dispersal which 

then functioned as "pseudo-species" in the ordination. The abundance values for each mode were 

the proportions of taxa dispersed by the mode in each 1 Om x 10m quadrat in which it occurred. 

The DCA and CCA ordinations were performed in CANOCO. Version 3.12: the ordination diagrams 

were produced in S-Plus. Version 4.5. and re-formattcd for presentation purposes in Microsoft 

Publisher 98. The results of this analysis are presented in Figures 3.1 to 3.6. 

The relationship between modes of dispersal and environmental States was re-exarnined at the 

microhabitat scale since environmental conditions within quadrats were rarely uniform. Pattern was 

investigated in relation to three analytical contexts: i )  difference in the number of herbs recorded in 

each microhabitat; ii) difference in the proportion of herbs in contrasting microhabitats. paired 

samples; iii) difference in the proportion of herbs in contrasting microhabitats. independent samples. 

Context (i) clarified the degree to which differences in the proportion of herbs in contrasting habitats 

were due to the number of herbs dispersed by the mode of interest; context (ii) clarîfied the degree 

to which differences in the proportion of herbs in contrasting habitats was due to factors other than 

dispersal: context (iii) revealed the degree to which the frequency of modes changed under 

contrasting habitat conditions but did not clari@ the role of dispersal since the degree of dispenal 

limitation in sampled quadrats was not known. 

The relationship between dispersal mode and microhabitat in context (i) was tested by chi-square 

tests of homogeneity by column, row, and cell. The relationship in context (ii) was tested by 



Wilcoxon signed-ranks tests. using paired samples from each quadrat in which the contrasting 

habitats were present. The number of habitat contrasts that could be assessed by this method was 

constrained by the minimum sample size associated with this test (6 paired comparisons. al1 of like 

sign. are required for the test to be significant at the jO/o level: Sokal and Rohlf 1995. p.444). The 

relationship in context (iii) was tested by Wilcoxon rank sum tests. using independent samples. 

Quadrats in which the mode was present in rach habitat were excluded from the analysis. 

Analyses were performed in JMP. Version 3.1.1.. SAS Institute. Inc. The results of this analysis are 

reponed in Tables 3.13 to 3.1 5. 

3.2.3.3 Pattern in Relation to Abundance Variables 

The relationship between mode ofdispersal and plant ahundance was examined in relation to species 

frequency. plant cover. and species richness. 

The relationship between mode of dispersa1 and specirs frequency was tested by chi-square tests of 

homogeneity by row and cell. Three frequency classes were established for the analysis: "high" 

(225 quadrais). "intermediate" (3-24 quadrats). and "low" ( 5  2 quadrats). The thresholds for the 

"high" and "low" classes were taken. arbitrarily. to be the 75% and 25% quantiles of species 

frequency. respectively . 

The relationship between mode of dispersal and piani cover was tested by chi-square tests of 

homogeneity by column (df 8). row (df 6). and ce11 (tz'f 1 ). Eight cover classes were established for 

the analysis: trace ( 1-5 individuals or small clumps). < 1 %. 1-5%. 5- 1 5%. 15-25%. 25-50%. 50-75%. 

and 75-1 00%. These thresholds conform to the Daubenmire cover scale when cover is greater than 

25% and. with minor exceptions. to the Dornin-Krajina cover scalr when cover is below 25% 

(Mueller-Dombois and Eilenberg 1974). 

The relationship between mode of dispersal and species richness was tested by Wilcoxon rank sum 

tests. by row. Thee classes of species richness (number of species) were established for the 



analysis: "high" ( 2  56 taxa per quadrat), "intermediate" (39-55 taxa per quadrat). and "low" ( 5  28 

taxa per quadrat). The thresholds for the "high" and "low" classes were taken. arbitrarily. to be the 

75% and 25% quantiles of species richness. respectively 

Analyses were performed in JMP. Version 3.22.. SAS Institute. Inc. The results are reported in 

Tables 3.16 to 3.18. 

3.2.3.4 Pattern in Relation to Spatial Scale 

The relationship betwren mode of dispersal and spatial scale was examined in relation to patch size 

and patch isolation. 

In each case. the relationship was tested by Wilcoxon rank sum tests. by row. Three patch sizr 

classes were established for the analysis: "high" ( 2 122 ha). "intermediate" (43- 12 I ha). and "srnall" 

( 4 2  ha). Three patch isolation classes were establishcd for the analysis: "high" (mran distance to 

the nearest 8 woodlots. in 45' sectors. 2477 metres). "intermediate" (mean distance 233476 metrcs). 

"low" (mean distance i 732 metres). The thresholds for the "high" and "low" classes were takrn. 

arbitrdy.  to be the 75% and 25% quantiles of patch s i x .  and patch isolation. respectively. 

Analyses were perfonned in JMP. Version 3.2.2.. S A S  Institute. Inc. The results are reported in 

Tables 3.19 and 3.20. 

3.3 Results 

Analyses for pattern in the tendency for modes of dispersal to be associated with particular States 

will be reported in relation to the following functional groupings: plant attributes. environmental 

variables. abundance variables and spatial scale. 

3.3.1 Pattern in Relation to Plant Attributes 

The tendency for dispersai modes to be associated with particular plant attributes are summarized 



in relation to life form. life history. provenance. fruit type. and tavonomic rank. Each attribute has 

the potential to confound interpretations of the role of dispersal in stmcturing the composition and 

abundance of herb assemblages on the forest floor. 

3.3.1.1 Life Form 

The mode of dispersa1 varied by life f o m  (Table 3.1 ). Most trees. and al1 fems and fern allies. were 

dispersed by the wind. whereas most shmbs and vines wrre dispersed by animal ingestion. Most 

grasses were dispersed by animal adhesion. Herbs w r r  the only lire f o m  to be dispersed by al1 

modes and were dispersed primwily by vegetative expansion. animal vectors or unassisted means. 

Al1 life forms were dispersed by the wind and al1 but the trees achieved vegetative expansion by 

rhizomes or stolons. With the exception of the fems and fem allies. al1 life forms were dispersed by 

animals and by prolonged dormancy in the soil. Only the grasses and herbs were dispersed by 

adhesion to animals. and only the herbs and one tree (Rohinicr pseitdoacuciu) were dispersed by 

mechanical expulsion. Only the herbs were dispersed by ants. A minorit): of shmbs. and a modest 

tiaction of grasses and herbs. were dispersed by unassisted rneans. Al1 but the rems and fem allies 

were dispersed by more than one mode. 

The dispersal modes of life toms  also changed with the stratum of the forest. Canopy trees werr 

dispersed primarily by the wind. whereas s h b s  and vines were dispersed p n m d y  by animal 

ingestion. Al1 modes were present in the herb layer on the forest floor. 

Taxa in these forests were dispersed primarily by animals (38.5 %). vegetative expansion (35.8 %). 

or the wind (30.5 %). Fewer taxa were dispened by unassisted means (22.0 %). prolonged dom- 

ancy in the soil (1 5.5 %). and mechanical expulsion (4.6 Oh). Approximately 12 % of surveyed taxa 

were dispersed by more than mode. 

These results are not supported by statistical analysis since the sparse data table did not permit 



Table 3.1 . Dispersal modes of surveyrd taxa by l i  îe Sorni. Lrgend: AI = animal ingestion. AA = uninial adhesion, AC = aninial 
convcyance, W = wind, PD = prolongcd dormancy in the soil, ME = iiiechanical expulsion. IJ = unassisted, MM = multimodal, 
VE = vegetative expansion. Entries are the nuniber of taxa recorded i i i  192, 1 Oiii  x 1 Om quadrats. 

Li fe Form Dispersa1 Mode 

AC' AI '  ME' 

t ree 
shrub 
vine 
fern 
fern ally 
grass 
hcrb 

Total 

Notes: 
1. Coluniii valiies For a giveii dispersal niode include speçics that are multi~iiodal. 



chi-square tests of independence or homogeneity. 

The finding that mode of dispersa1 differs among Me forms has important implications for analyses 

of pattem since correlations with dispersal mode may bc confounded with life form. For this reason. 

the results of subsequent analyses are eiiher summarized by life Form or relate strictly to herbs. 

3.2.1.2 Life History 

Approximately 90 % oftava were perennial (Table 3 . 2 ) .  Trees. shrubs. vines. fems and fem allies 

were strictly perennial. Annual and biennial grasses and herbs were dispersed by prolonged 

domancy in the soi1 (45.7 %). wind (37.1 %). adhesion to animals (28.6 %). mechanical expulsion 

( 17.1 %). unassisted means ( 14.3 %). and ants ( I 1.4 O&). None was dispersed by animal ingestion. 

seed caching or vegetative expansion. Approximately one-third of the species dispcrsed by multiple 

modes were annuals or bienniais. 

The number of herbs dispersed by animal adhesion. wind. prolonged dormancy. mechanical 

expulsion. and multiple modes varied with life histop (p<O.Oj. chi-square tests of homogeneity by 

row. df 2. not shown: tests for prolonged dormancy. mechanical expulsion and multiple modes 

significant after Bonferroni correction for 8 row tests ). The nurnber of tava dispcrsed by prolonged 

dormancy. mechanical expulsion and multiple modes was greater than expected for annual herbs. 

whereas. the number of tava dispersed by animal adhesion. wind. prolonged dormancy. and multiple 

modes was greater than expected for biennial herbs ( pc0.0 1. chi-square tests of homogeneity by 

cell). Analyses of pattern involving these modes of dispersal were therefore assessed for possible 

interactions with life history. 

3.3.1.3 Provenance 

Approximately 85% of taxa were native (Table 5.3). Among life foms. only the fems and fem 

allies were strictly native. The percentage of alien taxa among other life forms was highest m o n g  



Table 3.2. Life History of surveyed taxa by dispersa1 mode and life form. Annual = 
annual S.S.; Biennial = annual/biennial. biennial S.S.; Peremiak annudperennial, 
bienniaWperennia1, p e r e ~ i a l  S.S.. *'-*' = not applicable. superscript': total includes taxa 
with unknown life history. Superscript': includes tava dispersed by more than one mode. 

Dispersal Mode Life History 

Mode by Life Form Taxa 
# 

ALL TAXA 

Animal s.1. 

Ingestion 

Adhesion 

Seed Caching 

Ant 

Wind 

Prolonged Dormancy 

Mechanical Expulsion 

Unassisted 

Multiple Modes 

Vegetative Expansion 

TREES 

Ingestion 

Seed Caching 

Wind 

Prolonged Dormancy 

SHRUBS 

Ingestion 

Seed Caching 

Wind 

Prolonged Dormancy 

Multiple Modes 



Table 3.2. Life history of surveyed tava by dispersa1 mode and life history (cont'd). 

Dispersa1 Mode Life History 

Mode by Life Form Biennial 
#/ ?40 

Perennial 
# Y0 

VINES 

Ingestion 

Wind 

Prolonged Dormancy 

Multiple Modes 

FERN / FERN ALLIES 

Wind 

GRASSES 

Adhesion 

Wind 

Prolonged Dormancy 

Unassisted 

Multiple Mode 

HERBS 

Ingestion 

Adhesion 

Ants 

Wind 

Prolonged Dormancy 

Mechanical Expulsion: 

explosive dehiscence 

wind- push 

splash-cup 

Unassisted 

Multiple Modes 



Table 3.3. Provenance of surveyed taxa by dispersai mode and life form. Elements do 
not s u m  to group totals when taxa dispersed by more than one mode. 

Dispersa1 Mode Provenance 

Mode by Life Form Native 
# Y0 

Alien 
# Y0 

ALL TAXA 
-- - - - . . 

Animal s.1. 

Ingestion 

Adhesion 

Seed Caching 

Ant 

Wind 

Prolonged Dormancy 

Mechanical Expulsion 

Unassisted 

Multiple Modes 

Vegetative Expansion 

TREES 

Ingestion 

Seed Caching 

Wind 

Prolonged Dormancy 

SHRUBS 

Ingestion 

Seed Caching 

W ind 

Prolonged Dormancy 

Multiple Modes 



Table 3.3. Provenance of surveyed tava by dispersal mode and life history (cont'd). 

Dispenal Mode Life History 

Mode by Life F o m  Alien 
Y Y0 

VINES 

Ingestion 

W ind 

Prolonged Dormancy 

Multiple Modes 

FERN 1 FERN ALLIES 

Wind 

GRASSES 

Adhesion 

Wind 

Prolonged Dormancy 

Unassisted 

Multiple Mode 

HERBS 

Ingestion 

Adhesion 

Ants 

Wind 

Prolonged Dormancy 

Mec hanical Expulsion: 

explosive dehiscence 

wind-push 

splash-cup 

Unassisted 

Multiple Modes 



the grasses ( 19.4%) and herbs (1 8.7%). followed by the vines ( 1 1.1 %). shrubs (7.3%) and trees 

(O. 1%). 

The nurnber of herbs dispersed by animal ingestion. wind. prolonged dormancy. multiple modes and 

unassisted means varied with provenance (p<O.Oj. chi-square tests of homogeneity by row. df 1. not 

show:  tests for prolonged dormancy and multiple modes significant after Bonferroni correction for 

9 tests). Dispersa1 modes with a higher than expected number of alien têua were wind (p<O.Oj). 

prolonged dormancy in the soi1 (p<0.001). and multiple agents (p<0.00 1 ) (chi-square tests of 

homogeneity by cell). Analyses of pattern involving these modes of dispersa1 were therefore 

assessed for possible interactions with species provenance. 

3.3.1.1 Modality 

Approximately 17% of taxa were dispersed by more ihan one mode (Table 3.4). Among lice forms. 

only the fems and Fem allies were unimodal. The percentage of multimodal taxa among other lire 

forms was highest among the grasses (19.4%) and hrrbs (15.3%). followed by the vines ( 1  1.1%). 

shrubs (5.5%) and trees (3.3%). 

The number of herbs dispened by animal adhesion. wind. prolonged dormancy. and mechanical 

expulsion varied with modality (p<O.OO 1. chi-square test of homogeneity by row. Jf I .  not showm: 

al1 tests significant afier Bonferroni correction for 7 tests). In rach case. the number of herbs 

dispersed by multiple modes was significantly higher than expected (chi-square tests of homogeneity 

by cell: a11 tests significant after Bonferroni correction for 14 tests). Analyses of pattem involving 

these modes of dispersal were therefore assessed for possible interactions with species rnodality. 

3.3.1.5 Fruit Type 

Arnong the herbs. the most abundant h i t  types were the achene (49.8 %) and capsule (3 1.1 %) 

(Table 3.5). Minor h i t  types in descending order of abundance were the schizocarp. berry. nutlet. 



Table 3.4. Modality of surveyed taxa by dispersa1 mode and Iife fonn. Unimodal = 

taxon dispersed by one mode: multimodal = t a o n  dispersed by more than one 
mode. 

Dispersal Mode Modal ity 

Mode by Life Form Unimodal 
# Y0 

Multimodal 
# Y0 

ALL TAXA 

Animal s.1. 

Ingestion 

Adhesion 

Seed Caching 

Ant 

Wind 

Prolonged Dormancy 

Mechanical Expulsion 

Unassisted 

Multiple Modes 

Vegetative Expansion 

Ingestion 

Seed Caching 

W ind 

Prolonged Domancy 

SHRUBS 

Ingestion 

Seed Caching 

Wind 

Prolonged Dormancy 

Multiple Modes 



Table 3.4. Modality of surveyed tmca by dispersa1 mode and life history (cont'd). 

Dispersa1 Mode Modality 

Mode by Life Form Unimodal 
fC 940 

Multimodal 
ff % 

VINES 

Ingestion 

W ind 

Prolonged Dormancy 

Multiple Modes 

FERN / FERN ALLIES 

Wind 

GRASSES 

Adhesion 

Wind 

Prolonged Dormancy 

Unassisted 

Multiple Mode 

HERBS 

Ingestion 

Adhesion 

Ants 

Wind 

Prolonged Dormancy 

Mec hanical Expulsion: 

explosive dehiscence 

wind-push 

splas h-cup 

Unassisted 

Multiple Modes 
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capsular fruit. legurne, follicle. drupe XI. .  and silique. The number of modes by which a given fruit 

type was dispersed varied fiom one to six (excluding multiple modes and vegetative expansion). 

No h i t  type was dispersed by al1 modes. Fruit types dispersed by a variety of modes were the 

achene (6). capsule (6). schizocarp ( 5 )  and capsular fruit (4). Two fi-uit types were dispersed by one 

mode: drupe S. 1. and silique. 

Each dispersa1 mode deployed the seeds of more than one fmit type but no mode deployed the seeds 

of al1 ten fmit types. The modes deploying the seeds of the greatest range of fruit types were 

animais s.1.. (8). and prolonged dormancy in the soil ( 7). The modes deploying the seeds of the least 

number of fruit types were animal ingestion ( 3 )  and wind (4). 

The predominant mode by which a given fruit type \vas dispersed vxicd. Achenes were dispersed 

primarily by the wind: bemes by animal ingestion: capsules by unassisted means and ants: capsules 

by wind and prolonged dormancy: drupes s . 1 .  by animal ingestion: follicles and Iegumes by 

prolonged domancy in the soil: nutletsand siliques by iinassisted means: and. schizocarps by animal 

adhesion. 

The data table summarizing the relationship between fruit type and dispersa1 mode was too sparse 

to test the overall relationship with standard statistical tests. However. selrctive row tests (not 

shown) revealed that the number of herbs with achrne and capsule fruits differed by dispersal mode 

( p<O.OO 1. chi-square tests of homogeneity by row. dJ8 ). In particular. the number of herbs dispersed 

by wind (p<O.OO 1 ) was significantly greater than rxpected for achene ffuits: the number of herbs 

dispersed by mechanical expulsion (pcO.00 1 )  and by nnts (pcO.0 1 ) were significantly greatrr than 

expected for herbs with capsule fruits (chi-square tests of hornogeneity by cell). 

Collectively. these results suggest that h i t  type may have intluenced the frequency of dispersal 

modes in these forests. Further andysis is required. however. since this data table could not be 

tested comprehensively. 



3.3.1.6 Taxonomie Rank 

The distribution dispersal modes by taxonomie rank is presented in Tables 3.6 (genus). 3.7 (farnily). 

and 3.8 (order). The most important trend for this thesis is that the number of taxa dispersed by more 

than one mode increases with tavonomic rank: species ( 12.3 Oh). genus (25.8 %). farnily (33.3 O/O). 

and order (57.4 %). This pattern has consequences for the number of degrees of freedom associated 

with linear regression analyses reported in Chapter 4. The contribution of phylogeny to species 

richness in vegetation sarnples will be discussed thrre. 

3.3.2 Pattern in Relation to Environmental Variables 

The analysis for pattern in relation to environmental variables was restricted to the herbs since it was 

the one life form that was dispersed by al1 modes. The results are summarized in relation to habitat 

affinity. moisture affinity. shade tolerance. environmental gradients. and microhabitats. 

3.3.2.1 Ha biiat Affinity 

The number of herbs dispersed by animal ingestion. ants. wind. prolonged dormancy. wind-push 

mechanisms. unassisted means. and multiple modes varied with the habitat affinity of the tavon 

(Table 3.9). Herbs dispened by animal ingestion. ants. and splash-cup mechanisms were over- 

represented in taxa with an affinity for forest habitats. ivhrreas. herbs dispersed by wind. prolonged 

dormancy. wind-push. and multiple modes were over-represented in tava with an affinity for open 

habitats. The number of herbs dispersed by animal adhesion. explosive mechanisms. and vegetative 

expansion did not vary with habitat affinity. The strongest evidence kvas found for herbs dispersed 

by prolonged dormancy and by multiple modes (chi-square tests of homogeneity by cell. p<O.OO 1. 

Bonferroni correction for 52 ce11 tests). 

The significance of zero values in the data is difficult to assess since absence may be due to 

sampling error associated with small sarnples or to habitat related factors constraining dispersal. 

germination. establishment and/or persistence. The absence ofherbs dispersed by animal ingestion 

and splash-cup mechanisms in taxa widi afinity for open habitats. and by wind-push rnechanisms 



Table 3.6. Distribution of dispersa1 modes by tavonomic rank 1 (genus). Legend: Abanimal 
ingestion; AA=animal adhesion; AC=animal conveyancr (ants. seed caching); W=wind: PD=pro- 
longed dormancy; ME=mechanical expulsion: U=unassisted: MM=dispersed by >7 modes. Ce11 
entries are the nurnber of genera dispersed by the given mode(s). Only the lower half of matrix is 
show.  "-" denotes combination not observed in vegetation samples. Al1 lire forms included in 
analysis. N = 208 genera. 

Notes: 
1 .  Genera dispersed by more than two modes: 

Carduus: AC. AA. W. PD 
Carex: AC. W. U 
Cirsiurn: AA. W. PD 
Galium: AA. AC, PD 
Melilotus: AC. PD. U 
Poa: AA. PD. U. 

GENUS 

AI 

AI 
n=35 

32 

AC 
n=2O 

AA 
n=3 1 

1 I 

1 

.. 1 
1 

4 

16 

- 7 
9 

4 

AA 

AC 

W 

PD 

bI E 

U 

MM 

W 
n=65 

1 

3 

45 

13 

I 

3 

MM 
n=6 

PD 
n=59 

6' 

15 

7 

6 

5 

ME 
n=14 

U 
n=44 

5 

I 33 

3 



Table 3.7. Distribution of dispersal modes by tavonomic rank II (family). Legend: AI=animal 
ingestion; AA=animaI adhesion: AC=animal conveyance (ants, seed caching); W--wind: PD=pro- 
longed domancy; ME=mechanical expulsion; U=unassisted: MM=dispersed by >Z modes. Ce11 
entries are the number of families dispersed by the given mode(s). Only the lower half ofthe matrix 
is shown. "-" denotes combination not observed in vegetation sarnples. All life foms included in 
analysis. N = 78 fmilies. 

Notes: 
1 .  Families dispersed by more than hvo modes: 

Apiaceae: AA. PD. U 
Asteraceae: AA. W. PD. U 
Betulaceae: AC. W. PD 
Caprifoliaceae: AI, PD, U 
Caryophyllaceae: PD. ME, U 
Cucurbitaceae: PD. ME. U 
Cyperaceae: AA, AC. W, U 
Fabaceae: AA. AC. PD. ME. U 
LiIiaceae: AI. AC, U 
Onagraceae: AA, W, PD 
Poaceae: AA. W, PD, U 
Ranunculaceae: AI. AC, W. PD, ME. U 
Rosaceae: AI, AA. PD. U 
Rubiaceae: AI. AA. AC, PD 
Urticaceae: AA. W, PD, U 
Verbenaceae: AA. PD. U. 

FAMILY 

AI 

AA 

AC 

W 

PD 

ME 

u 
M bI 

AI 
n= 19 

12 

1 

- 

1 

5 

AA 
n=I 1 

1 

AC 
n=14 

7 

- 

1 

W 
n=27 

1 O 6 

1 

4 

PD 
n=27 

7 

ME 
n=l 1 

3 

1 J 

- 3 

18 

- 1 4 

3 



Table 3.8. Distribution of dispersa1 modes by tavonomic rank III (order). Legend: AI=animal 
ingestion: AA=animal adhesion; AC=animai conveyance (ants. seed caching); W-ind: PD=pro- 
longed dormancy: ME=mechanical expulsion; U=unassisted; MM=dispersed by >2 modes. Ce11 
entries are the number of orders dispersed by the given mode(s). Only the lower half of the matriv 
shown. "-" denotes combination not obsewed in vegetation sarnples. Al1 life forms included in 
analysis. Nomenclature follows Mabberly 1997. N = 47 orders. 

Notes: 
1. Orders dispersed by more than two modes: 

Apiales: AI. AA. PD. U 
Asterales: AA. W. PD. ME, U 
Caryophyllales: AC. PD. ME, U 
Cyperales: AA. AC. W. PD. U 
Dipsacales: AI. PD. U 
Fabales: AA, AC, W. PD, ME. U 
FagaIes: AC, W, PD 
Gentianales: W. PD. U 
Carniates: AA, PD. U 
Liliales: AA, PD, U 
Malvales: W. PD. ME 
Myrtales: AA. W. PD 
Ranunculales: AI, AC. W, PD. ME. U 
Rosales: AI. AA, PD, ME. U 
Rubiales: AI, AA, AC, PD, U 
Scrophulariales: W. PD, ME, U 
Solanales: AI. PD. U 
Urticales: AA. W, PD, U 
Violales: AC, PD, ME. U 



Table 3.9. Dispersa1 modes of surveyed herbs by habitat affkity. "Forest": taxa occur only in 
forested or shaded habitats; "Forest-Open": taxa occur primarily in forested habitats but move 
into open habitats (including thickets); "Open-Forest": taxa occur pnmady in open habitats but 
move into forested habitats: "Open": taxa occur only in open habitats. N = 234 herbs. Expected 
number of taxa = (# taxa dispersed by mode - 234) x (# tava in habitat category). Habitat 
assignments based on descriptions in: Voss 1972. 1985. 1996: Cody and Brinon 1989: Dore and 
McNei111980. Gleason and Cronquist 199 1. Dispersai mode and observed value marked by an 
asterisk when differences among habitat classes significant at p<O.Oj. chi-square tests of 
homogeneity by row. df 3. and cell. df 1: dispersal mode and observed value in bold when 
differences significant after Bonferroni correction for the total number of tests ( 13 tests by row: 
52 tests by cell). 

Dispersal Mode # Taxa 
(n=334) 

Habitat Class 

Animal 1 76 

Forest 
(n=5 5 )  

Obs. Exp. 

ingestion* I l7 

adhesion 

Forest-Open 
(n=54) 

Obs. Exp. 

- --- - 

Wind 162 16' 14.616* 14.3118 ?1.7122* 11.4 

Open-Forest 
(n=82) 

Obs. Exp. 

ant 

Mechanical Expulsion 1 1 7 1 3 4.0 1 3 3.9 1 6 6.0 1 5 7.9 

Open 
(n=43) 

Obs. Exp. 

explosive I 

3 1 

splash-cup ( 2 1 2* 0.5 1 O 0.5 1 O 0.7 1 O 0.4 

wind-push 1 5  1 0  1.2 1 O 1.2 1 1 1.8 1 J* 0.9 

13* 7.3 

Unassisted 169 119 16.2118 15.9127 24.21 j*  12.7 

Multimodal 139 13* 9 .215  9.0 1 11 13.7 1 20 7.2 

Vegetative Expansion 1 92 1 22 2 1.6 1 23 2 1.2 1 37 31.2 1 10 16.9 

2 5.7 
1 

13" 7.2 3* 10.9 



in taxa with aKinity for closed habitats. cannot be assessed owing to the small nurnber of t u a  

involved. The absence of herbs dispersed by dormancy among taxa with forest affinity may be due 

to habitat related factors since their absence is consistent with factors hypothesized to favor the 

evolution of seed domancy (Venable and Brown 1 988. 1 993). 

The dispersa1 mode of herbs seldom varied with the known moisture affinity of the tauon (Table 

3.10). Herbs dispersed by animal vectors S. I. were under-represented in taxa with an affinity for 

wetland habitats whereas herbs dispersed by unassisted means were over-represented in tava with 

an affinity for wetland habitats (chi-square tests of homogeneity by cell. p<O.Oj. uncorrected for 

the number of tests). The number of herbs dispersed by other modes did not Vary with the moisture 

affinity of the tauon. 

The dispersa1 mode of herbs did v q .  however. with the known shade tolermce of the t uon  (Table 

3.1 1). Herbs dispersed by animal ingestion were over-rcpresented in taxa with high shade tolerance. 

whereas. herbs dispersed by wind. prolonged dormancy. and multiple modes were strongly over- 

represented in taxa with low shade tolerance. and. stronyly under-represented in taxa with high shade 

tolerance. The number of herbs dispersed by adhesion. ants. mec hanical expulsion. and vegetative 

expansion did not vary with the shade tolerance of the tauon. 

3.3.2.2 Environmental Gradients 

Pattern in relation to environmental gradients was investigated by univariate and multivariate 

methods. The former revealed the degree to which dispersa1 modes were associated with particular 

gradients and portions ofgradients. whereas. the latter revealed affinities among quadrats dominated 
L 

by a particular mode of dispersai and among species with similar environmental affinities. 

Univariate Analysis 

In general. the proponion of herbs in a 10m x 10m quadrat dispersed by a given mode varied in 

relation to the principal environmental gradients exarnined in this study (Wilcoxon rank sum tests. 



Table 3.10. Dispersa1 modes of herbs by moisture afinity. N = 233 herbs. Moisture 
affïnity classification based on Oldham et al. 1995. Expected number oftaxa = (# tava 
dispersed by mode - 233) x (# taxa in moisture affinity class). Dispersal mode marked 
by an asterisk when differences arnong habitat classes significant at p<0.05. chi-square 
tests of homogeneity by row. df 2; observed value rnarked by an asterisk when 
departure fiom expectation significant at p<O.Oj. chi-square tests of homogeneity by 
cell. df 1 : no test significant after Bonferroni correction for the total number of tests ( 13 
tests by row: 39 tests by cell). 

Dispersai Mode # Taxa 
(n=233) 

Animal * 

ingestion 

adhesion 

-- 

Moisture Affinity 

ant 

Wind 

Prolonged Dormancy 

Mechanical Expulsion 

explosive 

splash-cup 

wind-push 

3 1 

60 

49 

18 

1 1  

- 3 

5 

Upland 
(n=116) 

Obs. Enp. 

Unassisted* 

Multimodal 

Vegetative Expansion 

1 ntermediate 
(n=Q) 

Obs. Exp. 

69 

38 

9 1 

Wetland 
(n=75) 

Obs. Exp. 



Table 3.1 1. Dispersal modes of  herbs by shade tolerance. N = 143 herbs. Shade 
tolerance classification based on Nimerfko and Brand (1993) and Ellenbeq ( 1988). 
Expected nurnber of taxa = (# taxa dispersed by mode - 143) x (# taxa in shade 
tolerance class). "High" = shade tolerance class 1.2; "Intermediate = shade tolerance 
class 3: "Low" = shade tolerance class 4.5. Dispersal mode and observed value marked 
by an asterisk when differences arnong tolerance c1asst.s significant at p<O.Oj. chi- 
square tests of hornogeneity by row. df 2. and cell. dfl : dispersal mode in bold when 
differences among classes significant afier Bonferroni correction for the total nurnber 
of tests ( 13 tests by row). 

Dispersa1 Mode fC Taxa 
(n=I43) 

adhesion 

Animal 

ingestion' 

ant 17 9 5.1 3 2.3 

Wind 42 2' 12.6 5 5.6 

High 
( n = 4  ) 

Obs. Erp. 

Mechanical Expulsion 1 II 1 4 3.61 3 1.6 

Intermediate 
(n= 1 9) 

Obs. Exp. 

54 

15 

explosive I I z  1.8 1 3 0.8 
-- -- 

splash-CU~ 2 a 3 0.6 O 0.3 

wind-push 4 O 1.2 O 0.5 

28' 16.2 

9' 4.5 

Unassisted 1 2 5  1 8  7.5 1 3 3.3 

8 7.2 

2 2.0 

Multimodal 29 2' 8.7 1 3 -9 

Vegetative Expansion 65 21 19.5 8 8.6 

Lotv 
(n=8 1 ) 

Obs. Exp. 



independent samples) (Table 3.12). Most modes varied dong each gradient (pcO.0 1. Bonferroni 

correction for 5 row tests; pc0.001, Bonferroni correction for 50 tests). The major exception was 

dispersal by vegetative expansion which did not Vary in relation to any gradient. 

Al1 modes were present on each portion of the gradients examined. Patterns associated with 

particular gradients are sumrnarized below. 

Canopy Closure: Under low canopy closure (high light). the largest proportion of herbs for a given 

mode was dispersed by animal adhesion. wind. prolonged dormancy. unassisted means. and multiple 

modes. These results reflect an underlying interaction between dispersal mode and habitat affinity 

since herbs dispersed by these modes are over-represented by taxa with open habitat affïnities. 

h i m a l  ingestion was the dominant mode ofdispersal under high canopy closure (low light) whereas 

dispersa1 by ants was the dominant mode undrr medium canopy closure. Dispersa1 by mechanical 

expulsion did not Vary with canopy closure. 

Moisture: In quadrats with seasonally dry depressions. the largest proportion of herbs for a given 

mode was dispersed by animal ingestion and ants. In quadrats with seasonally moist depressions. 

the dominant mode was dispersa1 by prolonged dormancy. In quadrats with seasonally wet 

depressions. the predominant modes were animal adhesion. wind. mechanical expulsion. unassisted 

and multiple modes. Moishue conditions in quadrats with seasonally moist and wet depressions 

were typically dry. however. since the latter habitats occupied less than 50% of the quadrat. on 

average. The percentages for dispersal modes. therefore. tend to be higher in quadrats with moist 

and wet depressions since they include taxa with an aftinity for mesic soils. 

Percent Soi1 Organic Matter ( O h  SOM): In quadrats with low and medium soil organic matter. the 

largest proportion of herbs for a given mode was dispersed by animal ingestion and by ants. 

respectively. In quadrats with high soi1 organic matter. the predominant modes were dispersal by 

animal adhesion. wind. prolonged dormancy. mechanical expulsion. unassisted means and multiple 

modes. Higher percentages of soil organic matter in these forests tend to be associated with tree pits 
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and with moisi to wet topographic depressions. which typically occupied less than 50% of a given 

quadrat. when present. The percentages for dispersal modes therefore tend to be higher in quadrats 

with medium and high soil organic matter since they typically include taxa with affinity for low to 

medium percent soil organic matter. 

Cover Type: The predominant modes under cover type " I " ( red or white oak. no sugar maple) were 

dispersal by mechanical expulsion and by multiple modes. The dominant mode under cover type 

"2" (sugar maple + red or white oak ) was dispersal by animal ingestion. whereas the dominant mode 

under cover type "3" (sugar maple. no red or white oak. no wet mesic or wet tree species) was 

dispersal by ants. No modes were dominant under cowr type "4" (sugar maple + black ash. silver 

maple. or American elm). The predominant modes under cover type "5" (black ash. silver rnaplr. 

Amencan elm. no sugar maple. no red or white oak) were dispersal by animal adhesion. wind. 

prolonged dormancy. and unassisted means. 

Disturbance: In quadrats with a trail. regenerating tïrld. or canopy gap. the predominant modes of 

dispersal were animal adhesion. wind. prolonpd domancy. and multiple modes. This pattern 

retlects differences in the proportion of herbs with affinity for "open+forest" and "open" habitats 

(p<0.00 1. Wilcoxon rank sum test. independent samples. data not shown). rather than invasion by 

alien taxa. The proportion ofalien taxa did not vary with disturbance class (pz0.05. Wilcoxon r a d  

surn test. independent samples. data not shown). The dominant mode in quadrats without 

disturbance features was animal ingestion. The proportion of herbs dispened by ants. mechanical 

expulsion and unassisted means did not vary with disturbance class. 

Multivariate Analysis 

Further evidence of the tendency for dispersal modes to be associated with particular environmental 

States is provided by the distribution of dispersal modes in the ordination space of detrended 

correspondence analysis (DCA). DCA is an ordination technique which arranges vegetation samples 

dong gradients (axes) that maximize their dispersion on the bais  of differences in species 



composition and abundance. Quadrats that are close together in stand ordination space (Figures 3.1 - 

3.5) are more similar in species composition than quadrats that are Far apart. Quadrats separated by 

more than 4 standard deviations in these figures have few if any species in cornmon. 

The distribution of dispersal modes in ordination space reveals that quadrats in which animal 

ingestion. ants. and vegetative expansion are the predominate mode of dispersa1 are largely confined 

to the right side of the stand ordination (Figures 3.1. 3.2. 3.5) whereas quadrats in which the 

predominate modes of dispersal are animal adhesion. wind. prolonged dormancy. mechanical 

expulsion. unassisted. and multiple modes are concentrated on the left side of the ordination (Figures 

3.1-3.5). 

Quadrats in which the predominate modes are animal adhesion. wind or prolonged domancy otien 

overlap (50% of occurrences) fnot shown). Quadrats in which animal ingestion. ants and vegetative 

expansion are the predominate modes also tend to overlap (62% of occurrences) (not shown). In 

contrast. dispersal by wind. prolonged dormancy and mechanical expulsion are rarely major 

constituents in quadrats where animal ingestion is the predominate mode of dispersal (Figures 3.2. 

3 3). This is true even in the central portion of ordination where al1 modes are present. This suggests 

that the environrnents in which animal ingestion predominates are well defined and differçnt from 

other modes. 

Inspection of the survey data reveals that quadrats in which animal ingestion predominates are 

characterized by moderate to high canopy closure. mesic soils. moderate to low percent soi1 organic 

matter. Iow disturbance. and forest cover types I and 3. In contrast. quadrats in which wind. 

prolonged domancy . and mec hanical expulsion predominate are characterized by moderate to 10 w 

canopy closure. moist to wet soils. moderate to high percent organic matter. high disturbance. and 

forest cover types 4 and 5 .  Unlike the latter modes. dispersa1 by animal ingestion is ofien the 

predominate mode of dispersai on glacial fluvial parent materials and never achieves predominance 

on calcareous outwash or lacustrine parent materials. 



Animal Adhesion 

PAA t 

DC.4 Axis 1 

- 

- 

- 

- 

- 

- 

Figure 3.1. Distribution of herbs dispersed by anima1 ingestion (1) and by animal adhe- 
sion (A) in relation to DCA axes 1 and 2. Only quadrats in which the proportion of 
herbs dispersed by designated mode i s5  75% quartile are labeled. Note minor overlap 
(O) in quadrats where animal ingestion and animal adhesion predominate. 
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Animal Conveyance (Ants) 
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Figure 3.2. Distribution of herbs dispersed by ants (E) and by wind (W) in relation to 
DCA axes 1 and 2. Only quadrats in which the proportion of herbs dispened by desig- 
nated mode is=75% quartile are labeled. Note differences in the degree of overlap (O) 
in quadrats where designated modes and animal ingestion predominate. 
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Figure 3.3. Distribution of herbs dispersed by prolonged dormancy in the soi1 (D) and 
by mechanical expulsion (E) in relation to DCA axes 1 and 2. Only quadrats in which 
the proportion of herbs dispersed by designated mode is 5 75% quartile are labeled. 
Note minor or no overlap (O) in quadrats where designated modes and animal ingestion 
predominate 
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Figure 3.4. Distribution of herbs dispersed by unassisted rneans (U) and by multiple 
modes (M) in relation to DCA axes 1 and 2. Only quadrats in which the proportion of 
herbs dispersed by designated mode is 5 75% quartile are labeled. Note minor or no 
overlap (O) in quadrats where designated modes and animal ingestion overlap. 
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Figure 3.5. Distribution of herbs dispened by vegetative expansion (V) and by selected 
animal agents (A) in relation to DCA axes 1 and 2 .  Oniy quadrats in which the propor- 
tion of herbs dispersed by designated modes is 575% quartile are labeled. Note substan- 
tial overlap (O) in quadrats where animal ingestion and abiotic agents predominate. 



The environments in which dispersal by ants predominates are similar to animal ingestion (Figure 

3 2). Unlike the latter. however. dispersal by ants was predominate in quadrats with wet depressions 

and in quadrats on calcareous outwash parent materials. The environments in which dispersal by 

mechanical expulsion predominates are similar to dispersa1 by wind and prolonged dormancy 

(Figures 3 2 . 3  2). but trend towards the closed and wet ends of the environmental continuum. The 

quadrats in which dispersal by animal ingestion and ants predominate rarely overlap with quadrats 

in which dispersal by wind. prolonged dormancy or mechanical expulsion predominate (Figure 3 5).  

An important trend in the data which has been masked by the decision to label only those quadrats 

in which the mode predominates is that sorne modes are more frequent than others. Herbs dispersed 

by vegetative expansion. animal ingestion and ants occur in vinually every quadrat whereas herbs 

dispersed by prolonged dormancy. rnechanical expulsion and multiple modes are absent from more 

than 30 O/O ofquadrats. Herbs dispersed by unassisted means. wind and animal adhesion are absent 

from 6 %. 1 O % and 1 7 % of quadrats. respectively . Most absences occur in closed. dry. undisturbed 

habitats on calcareous till and glacio-fluvial parent materials. 

The tendency for modes of dispersal to predominate in particular environmental States is readily 

apparent in the CCA ordination presented in Figure 3.6. In keeping with the pattern in the DCA 

ordination. the portion of ordination space occupied b'. herbs dispersed by animal ingestion and by 

ants is widelp separated From the portion occupied by herbs dispersed by wind. prolonged domancy. 

unassisted means. animal adhesion and multiple modes. Herbs dispersed by animal ingestion and 

by animal conveyance were most frequent in quadrats with a closed canopy. mesic soils. and large 

trees. whereas. herbs dispersed by wind and by prolonged dormancy were most frequent in disturbed 

habitats and quadrats with an open canopy. Herbs dispersed by unassisted means. adhesion to 

animals. and by multiple modes. were most frequent in quadrats with a high number of young stems. 

high soi1 organic matter. Gleysolic soils. and calcareous outwash or lacustrine parent matenals. 

Taken together. these results reveai that dispersal modes of herbs of the forest understory tend to be 

associated with particular environmental states at the quadrat scale. The mechanisms contributing 





to this pattern require M e r  anaiysis since the observed associations may be caused by differential 

dispersal. germination and establishment success. Nevertheless. the finding that al1 modes were 

present in each portion of the gradients examined sugpsts that the distribution of herbs in these 

forests has not been constrained by dispersal. or at Ieast. has not been constrained absolutely. 

3.3.2.3 Microhabitats 

Environmental conditions within quadrats(1 Om x 1 Om ) were rarely uniform. The relations between 

dispersal mode and environmental states were reassessed at the microhabitat scale in order that 

patterns may be examined in relation to more uniform states of forest cover. rnoisture. and 

disturbance. Definitions and descriptions of examined microhabitats were presented in Chapter 2. 

Pattern was investigated in relation to three contexts: difference in the total number of herbs 

recorded each microhabitat (Table 3.13): difference in the proportion of herbs in contrasting 

microhabitats. paired samples (Table 3.14): and. difference in the proportion of herbs in contrasting 

microhabitats. independent samples (Table 3.1 5 ) .  The tkst context clarified the degree to which 

differences in the proportions of herbs in contrasting habitats were due tu differences in the number 

of herbs present. The paired sample analysis clarifieci the degree to which dispersa1 modes were 

associated with particular environmentai states when dispersa1 is known to be non-limiting. The 

independent sarnpie analysis extends the latter analysis to cases where the contribution of dispersal 

is not known. 

Number of Herbs within Microhabitats 

Typically. the number of herbs dispersed by a given mode did not Vary arnong microhabitats (Table 

3.13). The exception was dispersa1 by animal ingestion which was over-represented in closed, dry. 

disturbed microhabitats (canopy gaps, tip-up mounds. tree pits. logs. stumps. farm lanes/access 

roads), closed seasonally dry forest floors, closed seasonally moist forest depressions. and. closed 

raised root mats (pc0.05, chi-square tests of homogeneity by column. df 38. Bonferroni correction 

for 9 modes). Among open microhabitats. the number of herbs dispersed by animal ingestion 













departed fiom expectation only in dry tree pits. 

Within microhabitats. the number of herbs rarely varied uith mode of dispersal. The exceptions 

were seasonally dry or wet forest floors under closed canopies. disturbed microhabitats under closed 

canopies (canopy gaps with seasonally dry soils. tree pits with seasonally dry soils. stumps. 

lanes/access roads). and open regenerating fields (~-4.05. chi-square tests of homogeneity by row. 

df 8. rarely significant afier Bonferroni correction for 39 row tests). The modes typically associated 

with this pattern were dispersai by animal ingestion and by ants. 

The microhabitats in which modes of dispersa1 were significantly over (under) represented varied 

by mode. Dispersal by animal ingestion was over-represented in eleven microhabitats (see table). 

whereas dispersal by animal adhesion was over-represented only in open. seasonally moist. forest 

depressions. Dispersal by ants was over-represented on closed seasonally dry forest floors. and in 

closed or open seasonally moist depressions. whereas. dispersal by wind was over-represented in 

both closed and open regenerating fields. Dispersai bu prolonged dormancy in the soi1 was over- 

represented on open lanes/access roads and under-represented in dry closed tree pits. Dispersal by 

unassisted means was over-represented on closed seasonally wet tloors. whereas. dispersai by 

veçetative expansion was over-represented in open seasonally moist gaps and in closed seasonally 

dry tree pits. Dispersa1 by mechanical expulsion and by multiple modes did not differ from 

expectation in any microhabitat. 

Al1 modes of dispersal were represented in most microhabitats. The exceptions were seven rare 

microhabitats with seasonally saturated or shallow soils (number of missing modes in brackets): 

closed seeps (1). open seeps (2). closed seasonally moist tree pits (4). open seasonally wet tree pits 

(8). boulden (3). open riparian marshes (1). and open riparian thickets (1). The modes most 

fiequently absent frorn these habitats were dispersal by animal ingestion ( 5  habitats). prolonged 

dormancy (4 habitats) and multiple modes (3 habitats). The modes least absent from these habitats 

were dispersal by animai adhesion. wind. mechanical expulsion and vegetative expansion. These 

modes were absent only fiom open seasonaily wet tree pits. 



The trends in Table 3.13 are broadly consistent with the trends reported in Section 3 -3 2.2. 

Proportion of Herbs in Contrasting Microhabitats within the Same Quadrat 

Within quadrats. the dispersa1 modes of herbs were often associated with particular microhabitats 

(Wilcoxon signed rank tests by cell. paired comparisons) (Table 3.14). This suggests that herb 

assemblages in these sarnples were affected more by factors goveming germination. establishment. 

and persistence than by dispersal. per se. since herbs dispersed by each mode werc already present 

in eac h quadrat. 

The following patterns were observed: 

i) Under closed canopy conditions. the proportion of herbs dispersed by animal ingestion. 

mechanical expulsion and vegetative expansion was signi Licantly higher on disturbance features with 

organic substrates such as logs. stumps and raised root mais than on the adjacent dry forest tloor. 

The proportion of herbs dispersed by these modes on minera1 substrates. such as pidmound 

complexes. and on features created by anthropogenic disturbance. such as lanes. access roads. and 

regenerating fields. did not differ frorn the proportion on the adjacent forest tloor. 

ii) Under closed canopy conditions. the proportion of herbs dispersed by animal adhesion. ants. and 

unassisted means was significantly lower on natural disturbance features with organic substrates than 

on the adjacent forest tloor. As in the previous case. the proportion of herbs dispersed by these 

modes on mineral substrates. such as pit/mound complexes. and on features created by 

anthropogenic distubance. did not differ (or rarely differed) from the proportion on the adjacent 

floor. The proportion of herbs dispersed by wind. prolonged donnancy and multiple modes did not 

differ From the adjacent forest floor under any conditions. 

iii) The proportion of herbs recorded under open canopy conditions did not differ from the 

proportion recorded in the same habitat under closed canopy conditions. 
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iv) The proportion of herbs dispersed by ants was significantly lower in moist and wet depressions 

under closed canopy conditions rhan on the adjacent dry forest floor. 

v) The proportion of herbs dispened by animal adhesion. ants. wind and prolonged dormancy on 

disturbance features varied with the feature and the nature of the substrate. 

Proportion of Herbs in Contrasting Microhabitats, Independent Samples 

The nurnber of contrasting conditions that could be evaluated in paired samples was constrained by 

sarnple size and within-quadrat habitat combinations. By relaving the requirement that contrasting 

habitats be present in the same quadrat. the analysis can be extended to the more general case: does 

the proportion of herbs dispeeed by various modes change under contrasting habitat conditions. 

The greater generality achieved by this approach is offset by greater uncrnainty regarding causal 

mechanism. since differences among sites cannot bç controlled to the same degree. and. the degree 

to which dispersal is limiting is not known. 

In general. the proportion of herbs dispened by a given mode varied in response to contrasting 

habitat conditions (Wiicoxon rank sum tests. independent samples)(Table 3.15). Habitat contrasts 

that produced the most significant differences were the following (number of modes whcre the 

difference was significant in brackets): closed vs open dry forest floors (6): closed vs open forest 

floors/depressions (6). closed forest floors/depressions vs open human disturbance features (6). 

closed forest floors/depressions vs open natural disturbance tèatures (5). dry vs moist closed forest 

floors (4). and. natural vs human disturbance features under an open forest canopy (4). Habitat 

contrasts in which the proportion of herbs did not vary For any mode were moist floors versus moist 

depressions. and. ciosed versus open pit/mound complexes. Modes of dispersa1 that were most 

sensitive to changes in habitat conditions were animal ingestion. prolonged dormancy in the soil. 

ants. and wind (difference in response was significant in >50% of habitat contrasts). Modes that 

were least sensitive to changes in habitat conditions were dispersal by unassisted means and by 

multiple modes (difference in response was significant in 20% of habitat contrasts). 



Table 3.15. Mean percent of herbs (n=234) dispersed by various modes in contrasting niicrohabitats witliin loin x 10ni quadrüts. 
Wilcoxoii rank suni tests, independent saniples. AI = animal ingestion, AA = animal adhesion, A= ant, W = wind, PD = prolonged 
dormüncy, ME = iiirchanical expulsion, U = unassisted, MM = multiple niodes, VE = vegetative expansion. Quadrats witli mode in each 
habitat excluded from analysis. Mean % Ior microhabitat presented for suniiiiary purposcs. Larger value markcd by an asterisk when 
difference between habitats significant: 1 1 1  * ~ ~ 0 . 0 5 ,  ** p<0.01, *** p<O.OOl. ****  p<0.0001; larger value in bold when difference 
signitkant afier Bonferroni correction for n=9 tests pcr coniparison. N = 192 quadrats; n = niaxiniuni number of quadrats in analysis. 
Suffixes: "-cc" = closed canopy; "-ocw = open canopy. 
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Herbs dispersed by animal ingestion were most strongly associated with closed. dry forest tloors: 

100s and sturnps under closed canopies; and with natural rather human disturbance features (p<O.Oj. 

Bonferroni correction for 9 tests per comparison). In contrast. herbs dispersed by animal adhesion 

were most strongly associated with open natural disturbance features. whereas. herbs dispersed by 

ants were most strongly associated with closed forest floors. closed pit/mound complexes. lanes and 

access roads under closed canopies. and. with natural rather than human disturbance features. Herbs 

dispersed by the wind were most strongly associated with open human disturbance features such as 

lanes. access roads and regenerating fields. whereas. herbs dispersed by prolonged dormancy in the 

soi1 were most strongly associated with human disturbance features under an open canopy and with 

closed logs and stumps. Herbs dispersed by mechanical expulsion and by unassisted means were 

rnost strongly associated with closed logs and stumps. Herbs dispersed by multiple modes were 

most strongly associated with open Forest floors. human disturbance features under open canopies. 

and closed logs and stumps. In contrast. herbs dispersed by vegetative expansion were most strongly 

associated with closed. dry forest floors. 

The patterns of association revealed by independent and paired samples were similar in cases where 

direct or indirect comparison was possible. The sole exception was the affinity of selected modes 

for open habitats. In contrast to the pattern in paired samples. the proportion of herbs dispersed by 

animal adhesion. wind. prolonged dormancy. and multiple modes was ofien significantly higher 

under open than closed canopy conditions. 

The latter result is intuitively more satis@ing given that many of these herbs have affinities for open 

habitats. The difference in results is primarily in the relative strength of the outcorne. however. since 

the proportion of herbs in open habitats was also greater in the paired samples analysis. If the 

positive, but non-significant, difference in richness in the paired sarnples simply reflects the low 

probability that a new tavon rnay land or germinate in a canopy opening before it closes. then ihe 

difference in results may be due to the larger sarnple size. and the different unit of rneasure. in the 

analysis of independent samples. The greater number of closed forests with low species richness 

in the independent sarnples analysis may also have strengthened the statisticd relationship in that 



analysis. 

3.3.3 Pattern in Relation to Abundance Variables 

The tendency for dispersa1 modes to be associated with particular States of plant abundance was 

examined in relation to frequency class. cover class and species richness class. 

3.3.3.1 Frequency Class 

The frequency class of herbs rarely varied with dispersal mode (Table 3.16). The sole exception 

were herbs dispersed by animai ingestion which were over-represented in the high frequency class 

( 2 25 quadrats) (p<0.00 1. chi-square tests homogeneity by row and cell. Bonferroni correction for 

10 row tests and 30 ce11 tests). The tendency for herbs dispersed by animal ingestion to occur with 

high frequency is consistent with the mobility and variet. of animal tava that consume fleshy fmits. 

and. with the capacity of these herbs to germinate and persist under closed canopy conditions. 

Surprisingly. the frequency of wind dispersed herbs did not differ from rxpectation. Given the 

mobility of wind dispersed diaspores. one might have rxpected wind dispersed herbs to be over- 

represented in the high frequency class. The capacity for these taxa to colonize and persist in closed 

habitats is limited. however. and these factors ma- have offset the extended dispersa1 reach of these 

species. 

3.3.3.2 Cover CIass 

The cover of a given herb within a 1 Om x 1 Om quadrat otien varied with the mode of dispersa1 (chi- 

square tests of homogeneity by row and colurnn) (Table 3.17). Herbs dispersed by the wind were 

over-represented in cover class 1 whereas herbs dispersed by animal ingestion. and by vegetative 

expansion. were over-represented in cover classes 4 and 5 .  Herbs dispersed by prolonged dormancy 

were over-represented in cover class 1 and under-represented in cover classes 2 and 4. Herbs 

dispersed by ants were over-represrnted in cover class 5 (chi-square tests of hornogeneity by cell). 



Table 3.16. Dispersa1 modes of herbs (n=252) by frequency class. Ce11 values are the 
number of observed and expected herbs dispersed by a given mode at the designated 
fiequency. Expected = (# herbs dispened by mode - 3 2 )  x (# herbs in the Frequency class). 
Dispersa1 mode and obsewed value marked by asterisk(s) when departure from expectation 
signifiant: *pc0.05, **p<O.O 1. ***p<O.OO 1. chi-square tests of homogeneity by row (df2) 
and ce11 (dfl ). respectively; dispersal mode and observed value in bold when departure fiom 
expectation significant after Bonferroni correction for 10 row tests and 30 ceil tests. 
respectively. N= 192 10m x 1 O quadrats. 

Dispersa1 Mode Frequency Class 

Mode 

Animal 

ff Herbs 

~ngestion I l 7  

Adhesion 1 34 1 j 6.6 1 20 17.1 19 10.3 

High 
r 25 quadrats 
n=49 herbs 

Obs. Exp. 

Wind 1 64 1 l 1  12.4 1 35 31.3 1 18 t 9.3 

Prolonged Dormancy 1 50 1 5  9.7 1 31 25.2 1 14 15.1 

Intemediate 
3-24 quadrats 
n= 1 37 herbs 

Obs. Exp. 

Mechanical Expulsion 1 18 l 3  3.5 1 8 9.1 1 7 5.4 

Low 
1 -2 quadrats 
n=76 herbs 

Obs. Exp. 

Unassisted 1 78 1 12 15.2 1 39 39.3 1 27 23.3 

Multiple Modes 1 39 I 5  7.6 1 24 19.7 1 10 11.8 

Vegetative Expansion 1 95 1 23 18.5 1 49 47.9 1 23 28.7 





The tendency for herbs dispersed by animal ingestion. ants and vegetative expansion to be over- 

represented in the higher cover classes is consistent with their greater tolerance for deep shade and 

capacity for clona1 growth. The tendency for herbs dispened by wind and prolonged dormancy to 

be over-represented in cover class 1 is consistent with their mobility in space. or time. and their 

affinity for high light environments. Both recmitment and extinction processes may contribute to 

the tendency for the latter species to be found as isolated individuals or in small clumps. 

3.3.3.3 Ric hness Ciass 

The mean proportion of herbs in a 10m x 1Om quadrat dispersed by a given mode varied with the 

number of taxa in the quadrat (Table 3.18). The proportion of herbs dispersed by animal ingestion 

and by ants was highest in quadrats with low species riçhness. whereas. the proportion dispersed by 

animal adhesion. wind. prolonged dormancy. mechanical expulsion. unassisted means. and multiple 

modes was highest in quadrats with high nchness( Wilcoxon rank sum tests by row). The proportion 

of herbs dispersed by vegetative expansion did not V a r y  with the species richness of the quadrat. 

This pattern is broadly consistent with the tendency for taxa dispersed by these modes to be 

associated with closed or open habitats (Tables 3.9 and 3.12). Closed forest habitats tend to be 

comparatively species poor since taxa with affinity ti~r open habitats cannot germinate or persist 

under a closed canopy. Open forest habitats. on the other hand. provide opportunities for 

colonization by taxa with afXnities for high light conditions. and. retain tava with affinity For 

moderate and low light conditions (since open canopy conditions are short-lived) and thus tend to 

be comparatively species rich. 

33.4 Pattern in Relation to Spatial Scale 

The tendency for the dispersa1 modes of herbs to vary in relation to the spatial scale of their 

surroundings was examined in relation to patch size and patch isolation. 



Table 3.1 8. Dispersal modes of herbs (n=252) by species richness class. Cell value: mean 
percent of herbs in 10m x 1 Om quadrats dispersed by mode. Dispersa1 mode and class with 
the highest mean ranked surn marked by asterisk(s) when differences among nchness classes 
signifiant: *p<0.05, * *p<O.O 1. * **p<O.OO 1. ** **p<0.000 1 .Wilcoxon rank surn tests by row. 
df 2); dispersa1 mode and ceil value in bold when differences significant after Bonferroni 
correction for 1 0 tests. N= 1 92 quadrats. 

Dispersa1 Mode Richness Class 

Mode 
High 1 ntermediate 

r 56 taxdquadrat 29-55 tadquadrat  
n49quadrats n=93quadrats 

Low 
i 28 taudquadrat 

n=jOquadrats 

Ingestion 

Adhesion 

Conveyance (ant) 

Wind 

Prolonged Dormancy 

Mechanical Expulsion 

Unassisted 

Multiple Modes 

Vegetative Expansion 



3.3.4.1 Patch Size 

The proportion of herbs dispersed by a given mode ofien varied in relation to patch size (Wilcoxon 

rank s u .  tests) (Table 3.19). The proportion of herbs dispersed by animals, ants, prolonged 

dormancy. and multiple modes was highest in patches of intennediate size. whereas. the proportion 

ofherbs dispersed by mechanical expulsion. unassisted means. and vegetative expansion was highest 

in small patches. The proportion of herbs dispened by animal ingestion. animal adhesion. and wind 

did not Vary with patch s ix .  

The causal mechanisms for these patterns are not immediately apparent. However. the pattem is 

consistent with the tendency for small patches to have wet depressions (Table 2.12). and. for patches 

of intemediate size to be rich in sugar maple (Wilcoxon rank sum test. not show) .  The former may 

explain the greater frequency of herbs dispersed by unassisted means. mechanical expulsion and 

prolonged dormancy in small patches. given their apparent affinity for moist and wet soiis. whereas. 

the latter may explain the greater frequency of herbs dispersed by ants patches of intermediate size. 

given their apparent affinity for sugar maple stands on mesic soils (Tables 2.12 and 3.12). 

Only the most mobile modes did not Vary with patch size: animal ingestion. animal adhesion. and 

wind. The degree to which this pattern is due to dispersal is unclear since the environmental States 

most strongly associated with these modes did not V a r y  ~vith patch size: canopy closure. mesic soiis. 

high soi1 organic matter. cover type 5. and disturbance (Tables 2.  II and 3.12). 

3.3.4.2 Patch Isolation 

The dispersal modes of herbs rarely varied with patch isolation (Wilcoxon rank sum tests) (Table 

3 20).  The exceptions were dispersal by unassisted means and by vegetative expansion. The former 

were more abundant in quadrats in patches of intermediate isolation whereas the latter were more 

abundant in quadrats in patches of low isolation. These differences were not significant after 

Bonferroni correction for the number of tests. The mechanisms responsible for this result are not 

apparent. 



Table 3.19. Dispenal modes of herbs (n=252) by patch size class. Ce11 value: mean percent 
of herbs in 1 Orn x 10m quadrats dispersed by mode. Dispersal mode. and class with the 
highest mean ranked surn. marked by asterisk(s) when differences arnong size classes 
significant: *p<0.05. **p<O.O 1. ***p<0.00 1. * ***p<0.000 1. Wilcoxon rank sum tests by row: 
dispersa1 mode and ce11 value in bold when differences significant afier Bonferroni correction 
for 1 O tests. N= 1 92 quadrats. 

Dispersal Mode 

Mode 
Large 
2 123 ha 

n=48 quadrats 

Animal* * 1 22.8 

Ingestion I 10.2 

Adhesion 

W ind I 8.5 

5.7 

Conveyance (ant) 

Prolonged Dormancy* 1 3.4 

7.0 

Mechanical Expulsion 1 
Unassisted 1 8.3 

I 
- - 

Multiple Modes* 3.4 

Vegetative Expansion* 1 24.6 

Patch Size Class 

intermediate 
43-121 ha 

n=88 quadrats 

39.4" 

10.5 

5.7 

Small 
5 42 ha 

n=56 quadrats 

26.9 

9.1 

4.9 



Table 3.20. Dispersa1 modes of herbs (n=252) by isolation class. High: mean distance to 
nearest 8 woodlots in 45' sectors 2 477m: Intermediate: mean distance 233-476 rn: Low: 
mean distance 232 m. Cell value: mean percent of herbs in 10m x 1 Om quadrats dispersed 
by mode. Dispersal mode, and class with the highest mean ranked sum. marked by asterisk(s) 
when differences among tichness classes significant: +p<0.05. **p<0.0 1. ***p<0.00 1. **** 
p<0.0001 .Wilcoxon rank sum tests by row: differences among classes not significant after 
Bonferroni correction for 10 tests. N= 192 quadrats. 

Dispersa1 Mode 

Mode 

Animal 

Ingestion 

Adhesion 

Conveyance (ant) 

Wind 

Prolonged Dormancy 

Mechanical Expulsion 

Unassisted* 

Multiple Modes 

Vegetative Expansion* * 

isolation Class 

Low 
5232 rn 

n=48quadrats 

High 
2477 m 

n48quadrats 

56.1 

20.7 

12.0 

33.4 

18.9 

11.3 

7.0 

Intermediate 
233-476 m 

n=96quadrats 

51.8 

21.2 

10.0 

20.6 

19.3 

9.1 

5.7 



3.4 Discussion 

Limitations of the Methodology 

The composition and relative abundance of herbs in a given assemblage may be intluenced by the 

composition. size and frequency of the seed rain: di fferential germination and establishment success: 

competitive interactions. and other factors. In principle. the distribution of plants will resemble 

the distribution of diaspores only when the probability of recruitment and persistence are 

independent of where a seed may land. In practice. this probability is not independent. and 

determination of the degree to which the composition of an assemblage has been influenced by 

dispersa1 limitation. site limitation. and persistencr. is a complex undertaking. Inferences with 

respect to causal mechanism that may be drawn from pattem in the attributes and distribution of 

established plants. therefore. are limited. 

In this study. the composition of an assemblage was deemed to have been influenced by dispersa1 

if: i) the proportion of herbs dispersed by a given mode was significantly yreater than its proportion 

in the sampled k a :  and. i i )  there was evidence of directed dispersal: or. iii) there was reason to 

conclude that the composition of the assemblage was not the result of differential germination. 

establishment. or penistence. This test of causality limits the accepted cases of influence to those 

in which seeds are dispersed beyond the immediate vicinity of the matemal plant. and. seedlings 

aggregate in sufficient nurnbers to be detected in a chi-square test of homogeneity or a Wilcoxon 

rank sum test. Seeds that are dispersed close to the matemal plant will be excluded from 

consideration since dispersa1 at this spatial scale is non-limiting ar.d pattem in the established 

vegetation will br due to differential germination. establishment or persistence. Seeds that are 

dispersed at randorn beyond the imrnediate vicinity of the matemal plant will often be excluded 

since they will fail to aggregate in suficient numbers to be detected in statistical tests. 

Taken together. these conditions remove most seeds from consideration when evaluating ihe 

potential contribution of dispersai to the distribution and composition of herb assemblages in the 

forest undemory (Portnoy and Willson 1993). 



Has Dispersal Mode been a Limiting Factor in Sampled Herb Assemblages? 

One inference that rnay be drawn. when modes of dispersa1 are consistently present in the sampled 

vegetation. is that the assemblage has not been constrained by the mode of dispersal. or at least. has 

not been constrained absolutely . This inference. while nccessarily me. is not trivial when interpreted 

in the context of reported differences in the mavirnum reach of dispersa1 modes (Appendix 1 1 ) and 

concem that dispersa1 rnay be limiting in fiagmented landscapes (Curtis 1956. Matlack 1994. Kalisz 

et al. 1997. Tilman 1997. Ehrlen and Eriksson 2000). 

By this test. the composition of herb assemblages in these forests has not been constrained by the 

mode of dispersal. or at least. has not been constrainsd absolutely. Each mode of dispersa1 was 

represented on each portion of the environmental gradients examined (Table 3.12). and. with few 

exceptions (7 rare habitats with extreme conditions). in each type of microhabitat (Table 3.1:). 

Although most modes were absent from at least one 1 Om s 1 O r n  quadrat. each mode of dispersal was 

present in al1 but one sarnpled patch (summaries of sun-ry data. not show) .  This pattern suggests 

that at least some seeds from each functional group were able to reach most patches and to germinate 

in most conditions recorded there. 

Contrary to my expectations at the b e g i ~ i n g  of this study. the number of herbs recorded at low. 

intermediate and high frequencies was in proportion to their representation in sampled patches 

(Table 3.16). This suggests that the frequency of herbs in the sampled landscape was not 

constrained by mode of dispersal. The sole exception were herbs dispersed by animal ingestion. 

which were significantly over-represented in the high frequency class. Unlike other herbs. herbs 

dispersed by animal ingestion are both mobile and compantively shade-tolerant and thus ma): 

experience greater colonization success in the forest understory. Taken together. these findings 

support the inference that mode of dispersal has not been a limiting factor in sampled patchei 

The inference that mode of dispersal has been a non-limiting factor in the composition of sampled 

herb assemblages may depend cntically on the level of generali ty in the analysis. Therefore. what 

may be tme for huictional groups may not apply to individual populations and species. Similady. 



what may be tme for environmental states may not apply to individual localities. Or. at least. not 

at al1 temporal and spatial scales (Matlack 1994. Brunet and von Oheimb 1988. Cain et al. 1998). 

Has the Composition of Herb Assemblages been Mediated by Dispersal? 

The tendency for the dispersa1 modes of herbs to be associated with particular environmental states 

(Figures 3.1-3.6. Tables 3.12-3.15) is consistent with a dispersal mediated process that has facilitated 

the colonization of tava in certain habitats but not others. According to this hypothesis. the observed 

tendency for herbs dispersed by animal ingestion to be owr-represented in former canopy gaps. and 

on natural disturbance features associated with former canopy gaps (tip-up mounds. tree pits. logs 

and sturnps) (Table 3.13). may be attributed to the habitat preferences and Fonging behavior of their 

dispersa1 agents and to the rnethods by which seeds were processed. Similarly. the tendency for 

herbs dispersed by the wind to be found in open habitats rnay be attributed to higher wind speeds 

and the greater dispersal reach of diaspores in open YS closed habitats (Hughes et cd .  1994). The 

evidence for such an hypothesis is exarnined below. 

The pattern of colonization by herbs dispersed by fleshy fruits does appear to be consistent with a 

dispersa1 rnediated process. First. birds that consume tleshy fruits are h o w  to forage prekrentially 

in canopy gaps (Thompson and Willson 1978. Willson er ui. 1982. Malmborg and Willson 1988) 

and tu regurgitate or excrete the majority of ingested sreds within and near gaps (Hoppes 1988). 

Moreover. forests and advanced second-growth habitats are known to support a greater divenity and 

abundance of fi-ugivorous birds than early successional habitats and grasslands (Willson 1986. 

McDonnell and Stiles 1983). While the foraging patterns of mammals are apparently less defined 

(Willson and Whelan 1990). the scat of both mammals and birds has often been observed in tree pits 

(Thompson 1980) and on logs and stumps (Whelan er d. 1990, persona1 observation). 

Second. al1 fleshy-hited herbs observed in tree pits. or on tip-up mounds. logs and sturnps. were 

also recorded on forest floors (summaries of survey data. not shown). And. al1 but two fleshy-fruited 

herbs recorded on forest floors were present in tree pits. or on tip-up mounds, Iogs and sturnps. Thus 

there is little evidence that the distribution of fleshy-fniited herbs on these features has been 



constrained by differential germination or persistence. 

Third. inspection of the normative and compositional data (Tables 3.13 and 3.14. respectively) 

reveals that the over-representation of fleshy-hited herbs on these features is due to an increase in 

the nurnber of taxa rather than to an increased proportion of the taxa capable of colonizing these 

features. This suggests the principal mechanism contributing to this pattem has been dispersal 

enrichment. Although the direction of dispersa1 is unknom. the higher frequency and proportions 

of fleshy-fmited herbs on closed vs open features (Tables 3.13 and 3-15)  suggests that the features 

were colonized over time and ptimxily from the forest floor. This pattern. and inference. are 

consistent with the patterns of herb colonization reported for tree pits and logs in three Illinois 

woodlands (Thompson 1980). and. with the seed min reported for Trelease Woods. Illinois. ( Willson 

et al. 1982. Hoppes 1988). 

Interpretation OF the colonization pattem of herbs dispersed by ants is less transparent. Although 

present in every patch. and in virtually every quadrat ( 189/192). herbs with elaiosornes were 

consistently over-represented on closed dry forest tloors. tip-up mounds and dry tree pits (Table 

3.13) and strongly under-represented (in selected habitat contrasts) on closed wet forest floors. logs 

and stumps. moist or wet depressions. and regenerating fields (Tables 3.13. 3.14. 3.15). 

Aspects of this pattem are consistent with a dispersal mediated process. First. ants are known to 

carry elaiosorne-bearing seeds back to the nest where the elaiosome is eaten and the seed is 

discarded unharmed (e-g. Handel 1978. Beattie and Culver 1981). In forests of the US northeast. 

nests of these species ma) be located in the soi1 (n=l3 species). on decaying wood such as logs and 

stumps (n=3 species). or in both soil and decaying wood (n=2 species) (Appendixl3). Most tava 

excavate their nests in dry minera1 soils (Creighton 1 950 1. However. nests of iWyrrnecinu americunci 

and Prenolepis imporis are typically found in moist and damp soils. respectively (Creighton 1950). 

and. nests of Form ka neogugates. F. szi bsericea. Lusitrs ulieniis. and Tapinomu sessile have bee n 

obsewed on organic soils in southem Quebec (Letendre er al. 197 1 ). These tendencies are consistent 

with both the widespread occurrence and observed frequencies of elaiosorne-bearing. herbs. This 



inference, however. depends on the unproved assumption that similar tâua and fiequencies occur in 

sampled forest patches. 

Second. ants that forage prima-ily in forest habitats have been s h o w  to be less tolerant of elevated 

temperatures than tava associated with old-field or othrr open habitats (Lynch 198 1). Although the 

habitat afinities of known rnyrmecochores have not been widely assessed. most evaluated species 

show an affinity for forested habitats (Lynch 198 1 ). However. at least one known rnyrrnecochore. 

Tupinoma sessile. has an apparent affinity for recently abandoned fields. and two predominately 

forest litter species. including one of the most common ant species of the eastem deciduous forest. 

.-îphaenogas&er ntdis (Lynch et al. 1980). have been recorded there (Lynch 198 1 ). I f  these species 

were to nest in old-fields, then differences in the frequency and habitat affinity of dispersa1 vectors 

may contribute to the observed scarcity ofelaiosorne-braring herbs in regenerating old-field habitats. 

Third. the over-representation of elaiosorne-bearing herbs on closed forest floors. tip-up mounds and 

dry tree pits was due to a greater number of herbs rather thm to a higher proportion of tava that were 

able to colonize these habitats (Table 3.13). Moreover. 2 I of 26 species recorded on closed dry 

forest floors were also recorded on tip-up mounds and in tree pits: a11 taxa recorded in the latter 

habitats were recorded on closed dry forest floors (summaries of survey data. not sho~vn). Taken 

together. these data provide little evidence of limitation by other factors and suggest that the 

principal mechanism contributing to this pattern has bçen dispersai ennchment. 

The case for dispenal limitation as the principal mechanism in habitats where elaiosorne-bearing 

herbs were under-represented is less strong. Although somewhat fewcr species were recorded in 

regenerating fields. sturnps. and open rnoist depressions (Table 3-13), the strength of the relationship 

was due pnmady to differences in the proportion of elaiosome-bearing taxa in the contrasting 

habitat (Tables 3.14. 3.15). This was also the case for closed and open logs where more. rather 

fewer. species were present (Tables 3.13.3.14). Taken together. these resutts suggest that dispersal 

was not the principal mechanism responsible for the under-representation of elaiosorne-bearing herbs 

in these habitats. However. the under-representation of elaiosorne-bearing herbs on closed wet 



floors is consistent with a dispersa1 mediated process. since significantly fewer species were 

recorded in this habitat (Table 3.13) and comparatively few species of ants nest in such conditions. 

The presumption that elaiosome-bearing herbs are dispersed exclusively by ants is not strictly tnie. 

Yellow jacket wasps in Oregon state have been obseneed transporting diaspores of Triilium ovcrntm 

to their nests (Jules 1996), and in Washington state. Pellmyr (1 9 8 5 )  has observed yellow jacket 

wasps dispersing elaiosome-bearing seeds of C'uncoirirria hemndru (Berberidaceae). Elaiosomes 

represent a nch source of lipids in the forest understory and it is likely that deer and other animals 

consume and passively disperse the diaspores of man) "ant-dispersed" herbs. Infrequent but chance 

(or consistent but unrecognized) dispersa1 by insect and animal vectors rnay therefore be an 

important mechanism for longer-distance dispersal of thrse herbs and may account for their rapid 

apparent rate of post-glacial migration in eastem North America (Cain el ul. 1998). 

The degree to which dispersa1 lias contributed to patterns of association for other modes is less 

certain. Herbs dispersed by the wind. for example. were consistently associated with open 

microhabitats and with human disturbance (Tables 3.12 and 3.15). While propagules with wings 

and plumes rnay travel farther in these habitats than under a closed forest canopy (Hughes er cri. 

1994). the tendency for wind-dispersed herbs to be poorly represented in forest habitats is more 

likely to be have been caused by differential germination success arising from differences in seed 

weight (Salisbury 1942. 1974: Baker 1972. Luftenstciner 1979. Mazer 1990. Saverimuttu and 

Westoby 1996). Species of open habitats tend to have lower seed mass than congener species of 

closed habitats and thus lack suficient reserves to sustain seedling growth in dense shade during the 

critical cotyledon stage (Saverimuttu and Westoby 

differentially occupy habitats on the bais  of seed 

dispersal reac h. 

1996). According to this view. species should 

size (Mazer 1990) rather than on the basis of 

Published data were not suffrcient to test the seed size (seed reserve) hypothesis. However. in 

keeping with this hypothesis. approximately 10 % of the wind-dispersed herbs in this snidy had an 

affinity for closed habitats (Appendix 2): Aster mucruphyllr~s. Boehmeria cylindrica. Galerris 



spectabilis, Prenanthes sp., Solidago caesia, and Solid~~goflexicaulis. The reported mean seed rnass 

for congeners of closed vs. open habitats (sensu loto) is consistent with the predictions of the seed 

size (seed reserve) hypothesis: 0.847 mg (n=l) vs 0.250 mg (n=j) for classified species of Aster: 

0.346 mg. (n=l ) vs. 0.090 mg. (n=7) for classified species of So(idago (Mazer IWO). 

In addition. the mean frequency of wind-dispened herbs in sampled patches was higher for herbs 

with afinity for "forest" habitats ( 2  = 18.0 quadrats. s 6  herbs) than for herbs with affinity for 

"open" habitats ( Z  = 6.4 quadrats. n=22 herbs) (p=O.O3. Wilcoxon rank sum test. not show).  Herbs 

with aRinities for intermediate conditions were present at higher frequencies ( 2 4 3 . 2  quadrats. n=6 

herbs with affinity for "forest + open habitats": n= 16.8 quadrats. n=28 herbs with affinity for "open 

+ forest habitats"). These data suggest that lower wind speeds in forest interiors do not pose a 

colonization constraint for wind-dispersed herbs with affinities for closed habitats (sensu iato). The 

dispersa1 reach of asters and goldenrods may be enhanced by late season flowering and by higher 

wind speeds associated with a senescing canopy. The higher mean frequency of herbs with affinity 

for "forest+open" habitats may indicate that the dispersa1 reach of forest dependent tava is 

constrained by their greater seed rnass. 

Wind-dispersed herbs were present in every sampled forest patch but were absent from 10 % of 

quadrats within patches. Closed canopy conditions were present in most of these quadrats. In the 

remaining cases. canopy gaps were either small ( ~ 2 9 . 6  of sampled area) or in a large forest stand 

where the sole wind dispersed herb was Solidugo/Ieeric~~~~Iis. 

Taken together. these results suggest that closed canopy conditions pose less of a constraint for herbs 

with affiinities for closed habitats ("forest". "forest+open") than for open habitats ("open". "open + 

forest"). While the colonization success of wind-dispersed herbs may be mediated to some extent 

by dispersa1 processes, the overall evidence from this study suggests that the principal mechanisms 

goveming their distribution are differential germination. establishment or persistence. 

Herbs dispersed by animal adhesion were over-represented in open seasonally moist depressions 



(Table 3.13) and were consistently associated with open habitats in contrasting habitat comparisons 

(Table 3.15). While these habitats are associated with animal activity, the more likely explanation 

for this pattern is differential germination. establishment or persistence since dispersal by animal 

adhesion is prim&ly a stochastic process (Agnew and Flux 1970. Bullock and Primack 1977. 

Sorensen 1986, Williams and Guries 1994. Kiviniemi 1996). The habitat afXnities of hrrbs 

dispersed by adhesion are broadly consistent with this inference: 74.2% of taxa have affinities for 

open habitats (sensu lato) and 30.4 % of these taxa have affinities for moist and wet habitats. 

Herbs dispersed by mechanical expulsion were over-represented in open seasonally wet tree pits 

(Table 3.13) and were strongly associated with logs and stumps under closed canopies in habitat 

comparisons (Tables 3.14). At the local scale. dispersal by mechanical expulsion should be ptimarily 

a non-limiting process since most seeds land in the immediate vicinity of the parent plant (Appendix 

1 1). The principal contributors to pattern in the local herb assemblage should therefore be 

differential germination. establishment and persistencc. In keeping with this inference. only 50% 

of the ballochores recorded on closed forest floors were present on logs and stumps (summaries of 

survey data. not shown). The ballochores occupying open seasonally wet tree pits were habitat 

generalists that were recorded in more than 60% of classified habitats. 

Although the dispersa1 reach of herbs dispersed by mechanical expulsion is typically less than 5 

metres (Appendix 11). bailochores were present in 23 of 24 sampled patches. Longer-distance 

dispersa1 rnay therefore be achieved by ingestion by birds. mammals or insects. Interestingly. herbs 

dispened by mechanical expulsion in this study were never secondarily dispersed by animal 

adhesion. 

Herbs dispersed by unassisted means were over-represented on closed seasonally wet forest tloors 

(Table 3.13) and under-represented on closed logs and stumps in habitat contrasts (Table 3.14). 

Although the diaspores of these herbs lack apparent features that may facilitate their dispersal. herbs 

dispersed by unassisted means were present in every patch and in 181 of 192 quadrats. The 

contribution of dispersal to this pattern is not known but presumably is mediated by animal vecton. 



Herbs dispersed by prolonged dormancy were initially dispersed by some other agent: unknown 

vectors (36%). wind (34%). vegetative expansion (26%). adhesion to animals (16%). mechanical 

expulsion (l4%), ants (6%). and ingestion by animals (??h)(percentages do not surn to 100 since 

certain herbs were dispersed by more than one mode). The distribution of propagules arising from 

dispersa1 in space has presumably been masked by patterns of recruitment in time. owing to the 

inherent requirement for high light conditions for germination and establishment. In keeping with 

this inference. the habitats in which dispersal by prolonged dormancy was most prominent were 

open microhabitats associated with human disturbance and former canopy gaps (closed logs and 

stumps) (Table 3.1 5). 

Herbs dispersed by vegetative expansion were often dispersed by some other agent: animal ingestion 

(9.9%). animal adhesion (4.4%). ants (22.0%). wind (35.2%). prolonged dormancy ( 14.3%). 

mechanical expulsion (8.8%). and multiple modes ( 132%).  Herbs dispersed by vegetative 

expansion were present in every quadrat and rarelp were associated with particular microhabitats. 

Their numbers were over-represented. however. in open. moist. canopy gaps and in closed. dry. tree 

pits (Table 3.13). The former association is unique among dispersal modes whereas the latter 

association was also shared by herbs dispersed by animal ingestion and by ants. The distribution 

of herbs dispersed by vegetative expansion may therrfore be mediated to some extent by animals. 

Dispersa1 in Time 

Dormancy enables plants to germinate when conditions are favorable and to delay germination when 

they are not. Delayed germination is predicted to be favored in taxa of open habitats since it allows 

species to avoid exposure to unfavorable conditions and to specialize on conditions that mavirnize 

reproductive success (Brown and Venable 1986. Cohen and Levin 1987). Delayed germination is 

predicted to be less favored in forest habitats. since the enhanced seed reserves that facilitate 

establishment in dense shade also enable forest plants to specialize on shaded conditions and to 

avoid the reduction in mean annual fitness that arises when dormancy constrains the nurnber of seeds 

that can be produced in favorable years (Venable and Brown 1988). Selection pressure for the 

rvolution of dormancy. therefore. is expected to be greatest in permanently open habitats. where 



environmental qudity varies more or less randomly in tirne. and to be intermediate in successional 

habitats, where the decline in environmental quality is progressive and persistent, and where non- 

seed-bank traits increasingly should be favored (Brown and Venable 1986). Plants with annual life 

histories are expected to benefit more from dormancy than plants with biennial or perennial life 

histories (Rees 1 993, 1 994). 

Approximately 20 % of the herbs recorded in this study are known to disperse in persistent soi1 seed 

banks (Table 3.1 ). In keeping with models of the evolution of dormancy. the majority of these herbs 

(92%) were species with afinities for "open" or "open+forestM habitats. and no herbs were species 

with an affinity for "forest" habitats (Table 3.9). Moreover. the nurnber of tava with capacity for 

prolonged dormancy increased with increasing affinity For open conditions (Table 3.9). These 

results. and curent theory. suggest that in forested habitats. dispersa1 in time may be restricted to 

Fugitive species and to sites ofrecent canopy disturbance. In keeping with this prediction. herbs with 

capacity for dormancy were significantly over-represented in the trace cover class (1 -5 individuals) 

and under-represented in the higher cover classes (Table 3.17). 

Unexpectedl y. many seed-banking herbs (52%) in this study were also capable of long-distance 

dispersa1 (Le.. dispersa1 by wind. animal ingestion or animal adhesion). Typically. models of annual 

herbs in spatially and tempordly variable environments predict an inverse relationship between 

dormancy and dispenal. since a reduction in the variance in reproductive success by dispersa1 should 

reduce selection pressure for the evolution of dormancy. and vice versa (e.g. Venable and Lawlor 

1980. Cohen and Levin 1987). In plants with dimorphic seeds. reproductive success is rnavimized 

when low dispersal seeds have delayed germination and when high dispersal seeds have quick 

germination (Venable and Lawlor 1980). These combinations are aiso favored in plants with 

monomorphic seeds (Cohen and Levin 1 987). A seed that is both domant and mobile is there fore 

unexpected. 

The most apparent explanation for taxa with the capacity for high dispersal and high dormancy is 

a seed polyrnorphism. In this study. such a species would be classified as having "high dispersai" 



based on the morphology of the diaspore. and. as possessing "high dormancy" based on its 

demonstrated capacity to persist in the soi1 for 2 5  years. Based on the reasoning above. one would 

expect the dormant seeds to be dispersed close to the parent and the non-donnant seeds to be 

dispened remote from the parent. The reverse pattern is less likely and has been observed only in 

selected species of Brassicaceae (Venable and Lawlor 1980). In keeping with this reasoning. one 

might also expect variability in the reported dormancy status of such species since their 

classification would depend on the morph that was sarnpled. Al1 but one "high-dispersal. high- 

dormancy" taxa in this study (Bidensfrondosa )were typically classified as "transient" or "short-term 

persistent" in Thompson et al. ( 1997). An assessrnent ol'seed polymorphism in these taxa. therefore. 

appears warranted. 

Deterministic versus Stochastic Dispersa1 Processes 

Most seeds of most North Amencan herbs apparently land within a few metres of the parent plant 

(Portnoy and Willson 1993. Cain et al. 1998. Appendis 1 1 ). At this spatial scale. dispersal is 

primarily a deteministic. non-limiting. process and pattern in the structure of herb assemblages 

should be governed primarîly by factors controlling germination. establishment and persistence. The 

maximum dispersal distance achieved bp North American herbs is poorly understood but is 

apparently on the order of tens of metres for most herbs. and. rarely more than a thousand metres 

for seeds dispersed by the wind and animal adhesion (Apprndix 1 1 ). Dispersa1 at these spatial scales 

is increasingly a stochastic process and may result in dispersa1 limitiation on short time scales. 

Dispersal by ants and by f'givorous birds may be important exceptions since these taxa have the 

potentiai for "directed"dispersa1 at these spatial scales. 

When viewed fiom this perspective. dispersal is pnmarilp a short-distance process that operates on 

the scale of metres to tens of metres. This is the scale where dispersa1 has the greatest control over 

where a seed may land. and. apparently is the scale at which reproductive success. on average. is 

maximized. Paradoxically. it is also the scale where differences in the dispersa1 reach of evolved 

morphologies are minimized. This is apparently tme evrn for herbs of ephemeral habitats since most 

of their seeds. on average. also land in close proximity to the parent (Appendix 1 1). However. it is 



these seeds in which dormancy is mosr often expressed and thus travel greater distances in time 

(Flint and Palmblad 1978. Olivieri and Berger 1985. Venable and Lawlor 1980. Venable er ( I I .  

1995). Taken together, these tendencies imply that. on average. the fitness benefits to be derived 

From long-distance dispersal are outweighed by the benetits to be derived from "controlled" dispersal 

at the micro-scale. Paradoxically. it would appear that dispersa1 is most successful when the 

movement of seeds is most constrained. 

Principal Findings 

Most plants in the forest understory were dispersed by animals (38.5 %). vegetative 

expansion (35.8 %). and the wind (30.5 %). Others were dispersed by unassisted means 

(22.0 %). prolonged dormancy in the soi1 ( 15.5 %). multiple modes (1  2.3 %). or mechanical 

expulsion (4.6 %). Of those dispersed by anirnals. 16.9 % were dispersed by animal 

ingestion. 1 2.8% were dispersed by animal adhesion. and 9.7% were dispersed by ants or by 

seed caching. These patterns are broadly consistent with reported dispersai profiles for 

temperate forest habitats in the Great Lakes region and northeast United States (Table 1.1 ). 

The proportion of tuadispersed by a given mode was found to be sensitive to environmental 

conditions at the micro spatial scale. Characterization of the dispersa1 profile at the patch 

or landscape spatial scale. therefore. may mask variation in dispersa1 frequencies that retlect 

di fferences in causal factors. 

The mode by which plants were dispersed varied by life form. Most trees. and al1 Ferns and 

fem allies. were dispersed by the wind. whereas most shmbs and vines were dispersed by 

animal ingestion. Most grasses were dispened by animal adhesion. Herbs were the only life 

f om to be dispened by al1 modes and were disprrsed primarily by vegetative expansion. 

animal vectors or unassisted means. 

The mode by which plants were dispersed also varied by life history. provenance. rnodalit).. 

h i t  type. habitat aK~nity. and shade tolerance. Pattern in the fiequency of dispersai modes 



was also observed in relation to environmental gradients. microhabitat. patch size and plant 

cover class. Dispersa1 by animal ingestion and by ants was associated with low species 

richness in 1 Om x 10m quadrats. whereas dispersa1 by animal adhesion. wind. prolonged 

dormancy. mechanical expulsion. unassisted means. and multiple modes were associated 

with high species richness. 

4. The composition of herbs in sampled patches has not been constrained by the modes of 

dispersai employed by herbs. or at least. has not been constnined absolutelp. Each mode 

of dispersal was represented on each of the environmental gradients examined. and. with few 

exceptions. in each type of microhabitat. Although most modes were absent from at least one 

LOm x 1 Om quadrat. each mode of dispersal was present in 73 of 24 surveyed patches. These 

patterns suggest that at least some seeds from each functional group were able to reach most 

patches and to germinate there. 

5 .  The species composition of selected habitats has been enrîched by dispersal b y frugivorous 

birds and marnrnals and by ants. The strongest evidrnce for directed dispersal by animal 

ingestion was found in former canopy gaps and on disturbance features associated with 

canopy openings (tip-up mounds. tree pits. logs. stumps. Forest lanes and access roads). The 

strongest evidence for directed dispersal by ants was found on closed tip-up mounds and 

tree-pits. 

6.  With few exceptions. the tendency for modes of dispersai to be correlated with particular 

environmental States cannot be attributed to dispersa1 processes. The supporting evidence 

for this conclusion is not definitive. however. since the methodology has lirnited capacity 

to differentiate between effects caused by dispersa1 and effects caused by germination. 

establishment and penistence. 

7. Several herbs were classified as having the capacity for both long-distance dispersa1 and 

dormancy. This character combination is rare in the literature and counter to current theory 



regarding the evolution of dormancy. The most apparent reason for this combination is seed 

heteromorphism. a property previously unreported for these species. Approximately 10 % 

of surveyed herbs, and 2 1% of herbç with the capacity for long-distance dispersal. possessed 

the traits of interest. 

8. If most seeds of most herbs land within a few metres of the matemal plant. then dispersal is 

primarily a non-lirniting. deterministic. process and pattern in established herb assemblages 

should be due primarily to differential germination. establishment. and persistence. 

Evolved dispersal morphologies. however. enable at least some propagules to travel metres 

to hundreds of metres from the matemal plant. on short time scales. At this spatial and 

temporal scale. dispersal is increasingly a stochastic process and the structure of established 

herb assemblages may be rnediated by the nurnber and spatial distribution of dispersing 

seeds. Opportunities to detect change based on properties of the established vegetation are 

limited. however. since only rarely cm the contribution of dispersal be ditkrentiated from 

the effects of germination. establishment and persistence. 



1.0 PATTERNS OF SPECIES RICHNESS 

4.1 Introduction 

The paradox posed by the apparent coexistence of many species in the same environment has 

attracted attention for more than a century. According to the cornpetitive exclusion principle. two 

similar species cannot coexist indefinitely on a single limiting resource in a uniform environment 

(Grinnell 1 904. Volterra 1 926. Gause 1 934). Under such conditions. one species should eventually 

exclude the other and the assemblage should be reduced to a single species (Hutchinson 1957. 3959. 

196 1 : Hardin 1960). How is it. then. that so many natural habitats are species nch'? 

One productive approach to this question has been to examine the assumptions of the exclusion 

principle: what happens if species are not "similar". if interactions do not proceed to equilibrium. 

if there is more than one lirniting resource. or. if the environment is not spatially and temporally 

uniform. This research effort has generated a vast literature and many alternative explanations 

(Conne11 1978. Huston 1979. Pickett 1980. Sousa 198-1. Petraitis er ai. 198% Hart and Honvitz 199 1. 

Tilman and Pacala 1993. Ricklefs and Schluter 1993. Huston 1994. Palmer 1994. Heywood 1995. 

Grace 1999). A selected review of the principal themcs tollows. 

Limiting Sirnilarity: The Lotka-Volterra rnodel of interspecific competition predicts the stable 

coexistence of species when competition between species is less significant than cornpetition within 

species. One way this may be achieved is through niche di fferentiation. If cornpetitors were to differ 

in their requirements for a limiting resource. or. were to consume that resource at a different time 

or in a different place. then the effects of competition would be concentrated more within than 

between species and coexistence would be favored (Begon et al. 1990). 

The apparent necessity for coexisting species to possess distinct ecologies has been demonstrated 

in mathematical models in both uniform and variable environrnents (eg .  MacArthur and Levins 

1967. May 1973. Chesson and Warner 198 1. Pacala and Tilrnan 1994). An important prerequisite 

for coexistence is that populations be able to expand when rare. If individuals ofdifferent species 

in a competing assemblage were indistinguishable. then the competition experienced by individuals 



would depend solely on the total density of individuals in the assemblage. Under these 

circumstances, individuals of rare species experience no less competition than individuals of 

abundant species. And, since individuals possess the same capacity to reproduce and disperse. and 

propagules have the same response to differences in rnvironrnental quality. each species has the 

same chance of recruiting offspring into the population. Under these circumstances. it is not 

apparent how populations recover from fluctuations that take them to low density. and thus. how the 

criterion for coexistence may be satisfied (Chesson 199 1 ). 

There would appear to be some limit. therefore. to the similarity in the way in which species in a 

competitive assemblage may use. and respond to differences in. available resources. That limit is 

is now expected to be both environment and species assemblage specific (Abrams 1983). 

The niche differentiation hypothesis may constitute a necessary. but not sufficient. rxplanation of 

species richness. however. owing to the degree of resource partitioning that is implied for a species 

rich assemblage (ConneIl 1978. Silvertown and Law 1987). In spite of the apparent utility of 

concepts such as the regeneration niche (Grubb 1977. 1986). and the resource ratio hypothesis 

(Tilman 1982,1988). a major dificulty in applied studies has been to identib the important resource 

axes that may permit coexistence at the local scale (Silvertown and Doust 1993. Tilman 1993. 

Hooper and Vitousek 1997. Busing and White 1997). 

Non-Equilibrium Conditions: An important limitation of hypotheses that seek to explain species 

coexistence under equilibrium conditions is that assemblages are embedded in environments that are 

subject to more or less continuous change. In a variable environment. species densities are expected 

to fluctuate over time. rather than stabilize, in response to patch dynamics (Watt 1947. Oliver 198 1. 

Pickett and White 1983) and to penodic disturbance (Conne11 1978. Picken 1980. Sousa 1984. 

Petraitis et al. 1989). Under non-equilibrium conditions. cornmunity recovery From such processes 

is expected to be incomplete. owing to prioriry effects (Yoclzis 1978. 1986), differences in the 

assembly sequence arising from chance colonization events (Drake 1 99 1. Fastie 1995). and time 

lags in plant response (Davis 198 1. 1986). 



Hypotheses that account for spatial and temporal variability in the environment have proposed three 

general ways in which variability may facilitate species coexistence on ecoIogica1 time scales: i) by 

slowing down the rate of competitive exclusion (e.g. Hutchinson 1941. Levin and Paine 1974. 

Comell 1978. Huston 1979. Shrnida and Ellner 1984): ii) by reversing the order of competitive 

supenority among species ( e g  Hutchinson 1961. Chesson 1985. Pacala 1987); and. iii) by altering 

the availability of Iimiting resources (e.g. Tilman 1 982. 1 988). These processes are not mutually 

exclusive and may differentially apply in given circumstances (Warner and Chesson 1985). The tïrst 

process emphasizes the conservation ofexisting species. whereas the latter processes emphasize how 

populations and diversity may increase (Chesson and Case 1986). 

An important property of the slow dynamics hypothesis is that disturbance intempts and sets back 

the process of competitive exclusion. by removing the competitive dominants and releasing 

resources for established species. This prevents cornpetitive dominants from monopolizinp available 

resources and promotes species coexistence by dela? ing the exclusion of inferior cornpetiton. 

Factors expected to promote slow dynamics includc: i )  long life spans: i i )  small differences in 

cornpetitive strength; iii) highly aggregatrd or clumped distributions: iv) a surplus of suitablr 

microsites: v) widely separated microsites: vi) intermittent cornpetition: vii) slow growth rates: and. 

viii) intermediate rates of disturbance (S hmida and Ellner 1 984. Huston 1 979. Conne11 1 978). 

Related theories based primarily on small differences in cornpetitive strength include the slow 

dynamics model of Hubbell and Foster ( 1986). and. the ecological and competitive combining ability 

model of Aarssen (1983). 

Patterns and processes of diversity explained by this mechanism include: gap phase dynamics (Watt 

1947. Oliver 198 1. Pickett and White 1983): the initial tloristic composition model of secondary 

succession (Egler 1954): species coexistence in the presence of keystone predators (Paine 1966. 

1974); and. the displacement of charactenstic species and assemblages in the absence of fire (Varga 

1989. Kruger and Reich 1997), fluctuating water levels ( Keddy and Renicek 1 982.1 986). herbivory 

(Whitney 1984. Gmbb 1986). and land-use management (Gimingharn 1972. Heil and Bruggink 

1987). 



An important property of the reversal in competitive rankings hypothesis is that a variable 

environment providrs some place or time where competitors rnay perform poorly or not survive. and. 

where populations of low abundant species may expand. It is the latter process that distinguishes 

this explanation from the others and that provides the basis for the coexistence (Warner and Chesson 

1985. Chesson 1986). Factors expected to promote reversals in competitive superiority in competing 

plant assemblages include: i) juvenile mortality rates that are sensitive to environmental conditions: 

ii) reproductive rates that are sensitive to environmental conditions: iii) adult survival rates that are 

insensitive to environmental conditions: iv) overlapping generations; v) iteroparity: and. vi) random 

dispersal (Chesson 1985. 1986: Pacala 1987). 

In this analytical setting. species in strong competition rnay depress each other's recruitment rates. 

Nevertheless. each species rnay still be able to show positive average growth rates provided that it 

has periods when it is able to recruit well. In a variable environment. ternporary reversals in the 

competitive advantage of species make this increasingly likely owing to the sensitivity of both 

juveniles and reproductive rates to changes in environmental conditions. This should lead to the 

strong recruitment of different species at different times. or in different places. and reverse the trend 

towards competitive exclusion for al1 species. Overlapping generations promote coexistence in this 

setting by ensuring that demographic gains made during favorable penods are "stored" in the 

surviving offspnng and contribute to reproduction when favorable conditions retum (Warner and 

C hesson 1 983. Chesson 1 985). Dispersal Facilitates thc reversal in competitive rankings through the 

randomization of neighbors in competing plant assemblages (Pacala 1987). 

An important property of the resource availability hypothesis is that species utilize different portions 

of available habitats. or. differ in the range of habitats wherein they have a competitive advantage 

over other species. owing to differences in plant requirements and the differential availability of 

limiting resources (Whittaker 1965. Grime 1973. 1979: Tilman 1982. 1988: Comins and Noble 

1985; Bazzaz 1991). In these models. coexistence is achieved pnmarily through the spatial 

segregation of competitors in a mosaic of suitable habitats. The C-S-R mode1 of competition 

(Grime 1973. 1979) and the resource ratio hypothesis ( Tilman 1982. 1988) emphasize competitive 

interactions among established plants. whereas. the lottery mode1 of competition (Sale 1977. 



Chesson and Warner 198 1. Comins and Noble 1985 ) emphasizes the recruitment phase and the 

cornpetition for suitable sites for establishment. Periodic disturbance facilitates coexistence and 

e ~ c h e s  local diversity by increasing spatial heterogeneity in the availability of limiting resources. 

In these models. the important consequence of disturbance is the change in the relative supply of 

limiting resources for which competition occurs. Cornpetition is not so much interrupted as 

redirected. 

Patterns explained by the differential availability of lirniting resources include: the paradox of 

enrichment (Rosennveig 197 1. Al-Mufti et al. 1977. Tilman 1982. Wisheu and Keddy 1989. Abrams 

1995); the facilitation mode1 of plant succession (Conne11 and Slaytrr 1977. Finegan 1984): 

regeneration from persistent seed pools (Thompson et tri. 1998). persistent seedlings. and serotinous 

cones: and. the differential composition and richness of plant assemblages alonç gradients of 

moisture (Spies and Bames 1985. Caspersen et cd. 1999). nutrients (Whitney 199 1. Diekmann and 

Falkengren-Grerup 1998. Hutchinson rr al. 1999). light (Thomas et ul. 1999). and geomorpholgy 

(Pastor et al. 1984. Host and Pregitzer 1992. Reich et ul. 1997). 

Dispersai: The importance of environmental heterogrneity and periodic disturbance to species 

coexistence has awakened interest in the potential contribution of dispersa1 to the spatial and 

temporal segregation of competing species. Whereas the former segregates competitors by creating 

conditions locally suitable to different species. the latter may segregate competitors by chance 

dispersai to empty sites followed by population expansion of the favored species. Current models 

suggest that segregation by dispersa1 may arise at two spatial scales: the micro-scale of the 

cornpeting plant assemblage (Atkinson and Shorrocks 1 98 1. Shmida and Ellner 1984. Ives and May 

1985. Pacala 1986. Geritz et of. 1988). and. the scale at which environmental heterogeneity enables 

each species to compete for establishment sites (Comins and Noble 1985. Pacala and Tilman 1994 

Lavorel ei al. 1994. Lavorel and Chesson 1995. Hurtt and Pacala 1995. Holmes and Wilson 1998. 

Bolker and Pacala 1999. Loreau and Mouquet 1999). 

Rather than interact with a number of individuals in a plant assemblage. and thereby experience the 

average density of the population at large. plants interact pnmarily with individuals that lie within 



a crown or root diameter (Harper 1977. Pacala and Silander 1985. Venable and Brown 1993). In the 

forest understory. this means that the distance over which most plants competitively interact is on 

the order of decimetres to metres (Pacala and Silander 1987). When the dispersa1 distance of plants 

is short. siblings tend to aggregate into monospecitic clurnps and competing species become 

segregated spatially. Under these circumstances. individuals tend to compete more with their own 

kind than with others and thus create the conditions for coexistence (Atkinson and Shorrocks 198 1. 

Shmida and Ellner 1984. Ives and May 1985. Pacala 1986. 1987). An interesting property of these 

models is that the spatial heterogeneity required for coexistence is generated by the plants 

themselves. 

When the dispersal distance extends beyond the immediair vicinity of the matemal plant. adeclining 

number of conspecific seeds land in close proximity to one another and an increasing number of 

seeds land in environrnents that are less favorable than the home patch. These processes confer a 

competitive advantage to established plant assemblages by lirniting the number of seeds tiom 

neighboring patches and by limiting the capacity of invading seeds to Form aggregations of their own 

kind. These dynarnics are expected to favor coexistence by enablinp each species to be dominant 

in site establishment at some time or place (Shmida and Ellner 1984. Comins and Noble 1983. 

Loreau and Mouquet 1999). 

The stochastic arrivai of a diminishing nurnber of serds is expected to facilitate this process by 

randomizing the composition of neighbors in competing plant assemblages and by leaving a certain 

proportion of sites vacant for colonization (Pacala 1 986. Geritz et rd. 1 988. Clark cf al. 1 998. Ehrlen 

and Eriksson 1000). The former process increases the likelihood that seeds geminate next to weaker 

competitors. or to stronpr competiton weakened by a less favorable setting, whereas the latter 

process enables inferior competitors to win favorable sites in the absence of more dominant but 

recniitment lirnited competitors (Hurtt and Pacala 1995). 

The degree to which long-distance dispersa1 is required for the persistence of competitively inferior 

species remains controversial. Recent modeling studies suggest that a long dispersal reach. pcr se. 

is not as important as regeneration niche. fecundity. disturbance. storage effects, and the spatial 



pattern of suitable sites (Lavorel er al. 1994. Lavorel and Chesson 1995. Holmes and Wilson 1998. 

Bolker and Pacala 1999). In general. dispersal beyond the immediate vicinity of the matemal plant 

is favored whenever the distribution of the superior cornpetitor is strongly clustered and the invading 

species is able to establish in the intervening gaps. The required dispersal distance to achieve this 

need not be great if both species are resident in the same habitat. Short distance dispersa1 is 

apparently favored in al1 other situations. owing to the cornpetitive advantage that accrues when 

offspnng are clustered and close to hand (Holmes and Wilson 1998. Bolker and Pacala 1999). With 

spatial segregation and environmental heterogeneity. these studies suggest that a mixed strategy 

which strongly favors short distance dispersa1 may offer the greatest retum in most habitats. 

Local versus Regional Processes: The assumption that the diversity of species in a given setting 

can be explained solely by properties of the local environrnent. and by interactions among resident 

species. has corne under increasing scrutiny in receni years (e.g.. MacArthur and Wilson 1967. 

Ricklefs 1987. Taylor et al. 1990. Corncll and Lawton 1992. Ricklefs and Schluter 1993. Caley and 

Schluter 1997. Comell and Karlson 1997. Zobel 1 997. Loreau and Mouquet 1999). Examination 

of processes that operate at larger spatial and temporal scales has revealed that the composition and 

richness of local assemblages rnay be influenced by historical processes such as time lags in plant 

response to climate change (Davis 198 la. 1986). alternative sequences of community development 

arising from chance colonization events (Drake 1 99 1 . Fastie 1995). establishment opportunitics1 

constraints arising from past disturbance (Motzkin ci al. i 996. Abrarns and Orwig 1996). estirpation 

by herbivory (Whitney 1984) or pathogens (Davis 198 1 b ). and. by spatial processes such as dispersa1 

(Holt 1993) and the scale of heterogeneity in the local environrnent (McLaughlin and Roughgarden 

1993). 

Recent studies investigating the relationship between local and regional species diversity have 

argued that the principal direction of control should be from regional to local (Comell and 

Lawton1992. Eriksson 1993. Partel ri  al. 1996. Caley and Schluter 1997. Karlson and Comell 1998). 

The principal reason for this is that in a variable environment biological interactions may not be 

stûficient to limit the number of species in the local assemblage. In the presence of dispenal. the 

nchness of the local assemblage should reflect the number of species in the surrounding region that 



are capable of establishing there. Empirical evidence from plant communities has been reported by 

Keddy 198 1. Partel et al. 1996. Tilman 1997. Duncan et al. 1 998, and Ehrlen and Eriksson 2000). 

An alternative explmation for the positive correlation between local and regional richness observed 

in these studies is that the composition of plant assemblages is in fact constrained by local processes 

and that limits to regional richness are set by the number of distinct habitats, each supporting a 

saturated assemblage (Comell and Lawton 1992). In the presence of migration. differences in the 

richness of local assemblages should reflect properties of the local environment rather than the 

nurnber of species in the surrounding region. 

Summary: Niche differentiation. competitive exclusion. slow dynamics. weak competitive 

interactions, differential resource availability. short-distance dispersai. recruitment limitation. and 

the consequences of periodic and chance events. are prominent elements in the vast nurnber of 

individual hypotheses that have been advanced to explain observed differences in the composition 

and nchness of plant assemblages. In a spatiaily and temporally variable environment. however. the 

synthesis for which we suive may well be pattern and scale dependent. I f  so. then a usetùl way 

forward is to clarify which of the alternative mechanisms apply to the pattern at hand and to what 

extent, 

Study Objectives: The objectives of this chapter are the following: i) to identi. the environmental 

variables that best explain observed differences in species richness in IOm x 10m quadrats: ii) to 

identiQ the plant attributes that best explain obsewed differences in species t-ichness in IOm x 1 Om 

quadrats: and, iii) to compare the degree to which environmental and plant attributes explain 

observed differences in species richness in the understory of sampled forest patches. 

3.2 Methods 

42.1 Environmental Correlates of Species Richness 

Environmental correlates of species richness were assessed in relation to edaphic. forest stand 

structure. human disturbance. environmentai heterogeneity. and landscape. variables. Methods 



related to the identification and evaluation of environrnental correlates are presented in the following 

sections. 

.(.Ll.lGeneralized Linear Regression Models 

Analysis #1: Environmental correlates of species richness in 10m x 1 Om quadrats were identified 

by simple linear regression. The normality of residuals \vas evaluated by the Shapiro- Wilk W test 

(SAS Institute Inc. 1997): environmental and response variables were transformed (square root. ln. 

logit) where necessary to achieve. and/or mauimize. normality. Pair-wise interactions arnong 

environmental variables were evaluated and al1 significant interactions (p<O.Oj) recorded. Analyses 

were performed in JMP. Version 3.2.2.. SAS Institute. 

Alternative combinations of variables that rnauimally explained the variance in obsewed species 

richness were identified through generalized linear regression (GLM) models that were fit manuall y 

by fonvard and backward selection. Separate models were fit for edaphic. forest stand structure. 

human disturbance. environrnental heierogeneity. and. iandscape. variables. Summary models were 

also developed to identiq an overall set of environmental variables that mavimally explained 

observed differences in species nchness. Candidate models were evaluated in relation to Mallow's 

Cp statistic (Neter et cd. 1996. Ryan 1997. Hocking 1996. Mathsofi Inc. 1998) to ensure that only the 

most parsimonious models were retained for M e r  anal ysis. Only significant. non-interacting. terms 

were retained in each model. 

A "Best Model" was identified for each set of variables. based on the amount of explained variance 

(r adjusted statistic). Alternative models were retained for further analysis in cases where the next 

best model represented a better fit in relation to the Shapiro-Wilk W test. or. where an entirely 

different set of variables explained virtuaily the same mount of variance. 

The results of this anaiysis are presented in Table 4.1. Scatter plots of important correlates of species 

richness are presented in Figures 4.1.4.2.4.3.4.4. Mean species richness for categorical variables 

is presented in Table 4.2. 



4.2.1.2 Contribution of Forest Stand Structure 

Analysis #1: The contribution of stand structure to species richness (Table 4.1) was examined 

M e r  to chri@ the cause and effect relationship among selected variables. Of particular interest 

was the degree to which "number of tree species". and. "number of live stems 0 4  cm dbh". were 

causal mechanisms of species richness. Non-parametric correlations (Spearman's Rho) with selected 

stand structure variables. soil moisture. available calcium. and human disturbance. were computed 

with a view to identifving more proximate correlates ohvailable moisture. nutrients and light on 

the forest floor. 

Variables included in this analysis were: species richness: percent live tree stems Acer succhoriirn: 

percent live tree stems wet-rnesic. or wet. trer specirs (Abies bulsu»iea. .ker  negtndo. .-fcer 

sacchar inurn. Frarinus nigra. Frarinus pennsylvcinictr . Popirliis hulsuscrm @ru. Thuju occidentcil is. 

Umus occidentalis): percent live tree stems shade intolrrant or very shade intolerant tree species 

(Acer nesindo. Acer saccharinrim. Betula papyriferu. Popirlris balsami/eru. Poprlus grundidentata. 

Popzrlus tremiiloides. Robinia pseudoaccaciu); percent canopy closure: soil moisture class ( 1 = 

seasonally dry depressions. 2 = seasonally moist or wet depressions: available calcium (cmolsikg): 

and. human disturbance ( 1  = no disturbance apparent in quadrat. 2 = trails. canopy gaps due to 

logging. or. regenerating fields. present in quadrat). 

Trees associated with wet-mesic or wet soils were identified with reference to Oldham et al. ( 1996). 

Maycock ( 1963). and. Nimerfro and Brand ( 1 993 j. Trees classified as obligate or facultative 

wetland species (wetland affhity rating = -1. -2. -3. -4. or -5)(Oldham et al. 1996) were chosen as 

representative indicators of wet-mesic or wet soils in this study. Trees that achieved their maximum 

average importance value in southern Ontario on wet-mesic soils (Maycock (1963) were typicaily 

rated as "facultative" or "facultative upiand" species by Oldham et al. (1996). when abundant on 

other soils, and were not used as indicators in this study (Benria papyrifer~. Carpinus carolinianu. 

Carya cordiformis, Fraxinus mericana. Tilia amrriccirici. Qiterczrs macrocarpa). Shade intolerant. 

and very shade intolerant. trees were identified with reference to Baker ( 1949). Barnes and Wagner 

( 198 1) and Oldham et al. ( 1996). The shade tolerance ratings of Barnes and Wagner ( 198 1 ) were 



adopted for Acer negundo, Acer saccharinum (owing to uncertainties in the Baker's ratings) and 

Prunus serotina (owing to its relative shade tolerance when young); the shade tolerance ratings of 

Baker (1949) were used for al1 other species. 

Analyses were performed in JMP. Version 3.22. .  SAS Lnstitute. Results are presented in Table 4.3. 

1.2.1.3 Contribution of Soi1 Fertility 

Analysis #1: The interaction between available calcium and sugar mapie abundance (Table 4.1 ) was 

investigated W e r  to clarify the contribution of soi1 fertility to observed differences in species 

richness. This analysis was restricted to undisturbed forest stands on Brunisolic and Luvisolic soils. 

overlying calcareous till. in order to standardize samples with respect to soil parent material. soil 

moisture and recent site disturbance. Soils with free calcium carbonate in the upper 15 cm of the 

soil profile (positive reaction to O. IN HCI) were excluded from this analysis in order to standardize 

samples with respect to exchangeable calcium (see contrasting treatment in Analysis 2). This 

analysis was Further restricted to quadrats with cover type 2 (sugar maple + red or white oak) and 

cover type 3 (sugar maple. no red or white oak. no uet-mesic. wet. trees) in order to standardize 

samples with respect to forest cover. N = 29 10m x 1 Om quadrats in 7 Forest patches. 

The contribution of available calcium to species richness. and to sugar maple abundance (% stems 

>1 m Acer saccharztm. # stems > I  m Acer saccharwn). was evaluated by simple linear regression. 

Analyses were performed in JMP. Version 3.2.2.. SAS Institute. The results of this analysis are 

presented in Figure 4.5. 

Analysis #2: The interaction between available calcium and sugar maple abundance was re- 

examined in undisturbed forest stands on Brunisolic soils in order to standardize sarnples for soil 

parent material (caicareous till), soil order (Orthic Melanic Brunisol) and soil series (Otonabee 

loam). The analysis was restricted to quadrats with cover type 2 (sugar maple + red or white oak) 

and cover type 3 (sugar maple, no red or white oak. no urt-mesic. wet. trees) in order to standardize 

sarnples with respect to forest cover. These stands (Ti = 17 quadrats in 3 forest patches) provided 



the most uniform subset of sarnples in which to assess the response of sugar maple to differences in 

available calcium. 

The contribution of available calcium to species richness. and to sugar maple abundance. was 

evaluated by simple linear regression. Analyses were performed in JMP. Version 3.2.2.. SAS 

Institute. The results of this analysis are presented in Figure 4.6. 

Analysis #3: Stand history. edaphic variables. and available light. were exarnined further to 

determine whether one or more of these factors may have contributed to observed differences in 

species ichness. or sugar maple abundance. in stands evaluated in Analysis # l .  Indicaton of 

potential differences in stand history were: stand structure (% stems in 0-4 cm dbh. 4- 1 O cm dbh. 10- 

30 cm dbh. and >30 cm dbh. size c h ) ;  % live stems shade intolerant. very shade intolerant. trees: 

and. % canopy closure. Indicators of potential differences in soi1 properties were: available calcium. 

soil pH,v,,. and % soil organic matter. Indicators of potential differences in available light were: O h  

canopy closure: % taxa shade tolerant herbs (Nimerfro and Brand light rating 1.2: Ellenberg light 

rating 1 .2.3.4): and. % taxa shade intolerant herbs (Nimerfro and Brand light rating 4.5: Ellenberg 

light rating 6.7.8.9). 

Differences among soil orders were evaluated by Wilcoson rank sum tests. Analyses were performed 

in IMP. Version 3.2.2.. SAS Institute. The results of this analysis are presented in Figures 4.7.4.8. 

and 4.9. 

4.2.1.4 Contribution of Patch Isolation and Patch Size 

Analysis #l: The contribution of patch isolation and patch size to species richness was evaluated 

by simple and multiple linear regression. The independent contribution of patch isolation and patch 

size to species richness was evaluated by testing their interaction with edaphic. stand structure. and 

human disturbance variables. A significant interaction with one or more variables was taken as 

evidence that patch isolation, or patch size. per se. did not contribute to species richness. 



Analyses were performed in JMP. Venion 3.2.2.. SAS Institute. The results of this analysis are 

presented in Table 4.1. 

4.2.1.5 Contribution of Microhabitats 

Analysis #1: The contribution of microhabitats to species richness was evaluated at the quadrat. 

forest patch. and landscape spatial scale. The objective was to determine the degree to which a given 

microhabitat contained species that did not occur clsewhere in the re ference area. Observed 

differences in species richness ["total # species in quadrat or patch" versus "total it specirs in quadrat 

or patch - # species unique to microhabitat"] were evaluated by paired t-test. when the distribution 

of differences was normal. and by Wilcoxon signed rank sum test. otherwise. A minium number of 

six rlements was required for the latter analysis (Sokal and Rohlf 1995. p.444). Quadrats or patches 

that contained only one microhabitat were excluded from the analysis. 

Analyses were performed in JMP. Venion 3.3.2.. SAS Institute. The results of this analysis are 

presented in Tables 4.4.4.5 and 4.6. 

Analysis #2: The proportion of the study area occupied by habitats of contrasting moisture and 

canopy closure states was detemined in order to evaluate the contribution of sarnpled area to the 

relative importance of moisture and light in models of species richness. 

The results of this analysis are presented in Table 4.7. 

4.2.2 Plant Trait Correlates of Species Richness 

Plant trait correlates of species richness were assessed in relation to mode of dispersal. life history. 

provenance. life form. habitat afinity. shade tolerance. and moisture affinity. Methods related to 

the identification and evaluation of plant trait correlates are presented in the following analysis. 

Analysis #1. Plant trait correlates of species richness in 10m x 10m quadnts were identified bp 

simple linear regession. The normality ofresiduals was evaluated by the Shapiro-Wilk W test (SAS 



Institute Inc. 1997); plant trait and response variables were transformed (square root. In. logit) where 

necessary to achieve. and/or maximize, normality. Pair-wise interactions among plant trait variables 

were evaluated and al1 significant interactions (piO.05) noted. Analyses were performed in JMP. 

Version 3 .LI, SAS Institute. 

Alternative combinations of variables that mavimally rxplained the variance in observed species 

richness were identified through generalized linear regression (GLM) models that were fit manually 

by fonvard and backward selection. Separate models w r e  fit for mode of dispersal. life history. 

provenance. life form. habitat affmity. shade tolerance. and moisture tolerance. variables. Sumrnaq 

models were also developed to identib an overall set of plant traits that mâuimaily explained 

observed differences in species richness. Candidate models were evaluated in relation to Mallow's 

Cp statistic (Neter rf al. 1996. Ryan 1997. Hocking 1996. Mathsoft Inc. 19%) to ensure that only 

the most parsimonious models were retained for further analysis. Only signiticant. non-interacting. 

terrns were retained in each model. 

A "Best Model" was identified for each set of variables. based on the arnount of explained variance 

(9 adjusted) and normality of residuals. An additional model was identified for modes of dispersa1 

to permit a cornparison among life forms. 

The results of this analysis are presented in Table 4.8. Scatter plots of selected dispersa1 correlates 

of species richness are presented in Figures 4.10 and 4.1 1 .  

4.23 Cornparison of Alternative Models of Species Richness 

Analysis #1: Alternative models of species richness. composed of environrnental variables. dispersal 

variables, and both environrnental and dispersa1 variables. were compared within and among 

functional groupings. in relation to four statistical properties: F-statistic. iadjusted value. mean 

square error, and. normality of residuals (Shapiro-Wilk W test). Interactions among explmato. 

variables prevented the use of a single evaluation criterion, such as Mallow's Cp statistic or the 

PRESS, statistic (Neter et al. 1996). to identifj an overall best model. Models with a high p<W 



value and a low mean square error were considered superior to models with a low p<W value and 

a high mean square error. Superior models with a higher iadjusted value were considered to be 

more informative than superior models with a lorvrr r'adjusted value. Models that could not 

otherwise be differentiated were considered to be comparable models for the purpose of explaining 

observed differences in species richness. 

One outlier. quadrat #160. was removed from each model (Cooke's D statistic = 0.226). Specirs 

richness in this quadrat was sharply reduced by seasonal standing water that covered more than 85% 

of the forest floor during the spnng and summer survey. resulting in a strongly outlying data point 

in models with dispersa1 variables. 

Analyses were performed in JMP. Version 3.2.2.. SAS Institute. The results of the analysis are 

surnmarized in Tables 4.9 and 4.1 1 .  

Analysis #2: A graphical method (persona1 communication. Dr. Roger Hansell. Institute for 

Environmental Studies. University of Toronto) \vas subsequently employed to reveal the degrer to 

which alternative models explained similar or dissimilar portions of sample space. Explanatory 

variables for each regression model were submitted to detrended correspondence analysis (DCA) 

(ter Braak 1987). and. the resulting "species" scores used to construct a polygon in ordination space. 

The ordination space enclosed by each polygon was interpreted to represent the portion of sample 

space mi~uimally explained by each model. Regression models that overlapped in ordination space 

were considered less distinctive than models that did not. 

The detrended correspondence analysis was perfirmed in CANOCO. Version 3.12 (ter Braak 199 1 ). 

The polygons were constructed in S-Plus. Version 4.5 ( klathsoft Inc. 1998). Representative results 

are presented in Figures 4.12 and 4.13. Surnrnaries are presented in Tables 4.10 and 4.1 1. 

4.2.1 Contribution of Phylogeny 

Analysis #1: The contribution of phylogeny to explmations of variance in species richness (Table 



4.8) was evaluated indirectly by refitting the regression models at more inclusive tavonomic ranks. 

Detection of a significant pair-wise interaction between terms was taken as indirect evidence of a 

phylogenetic contribution to observed differences in species richness. 

The response variable in a given regression mode1 was the number of species. genera families. or 

orders. in a given 10m x IOm quadrat. The predictor variable For a plant trait was the number of 

species. genera. families. or orders with the trait of interest in a given 1 Om x 1 Om quadrat. 

Analyses were perforrned in JMP. Version 3.2.2.. SAS Institute. The results are summarized in 

Table 4.12. 

Analysis #2: The contribution of phylogeny to obsen-rd interactions among selected variables at 

more inclusive tavonomic ranks was examined funher by determining the Ioss of degrees of freedom 

associated with evaluating selected plant traits at mort: inclusive ranks. The traits addressed in this 

analy sis were moisture affinity. shade tolerance. and mode of dispersal. 

Analyses were performed in JMP. Version 3.2.2.. SAS Institute. The results are summarized in 

Table 4.13. 

4.3 Results 

4.3.1 Environmental Correlates of Species Richness 

4.3. 1.1 Generalized Linear Regression Models 

Environmental correlates of species richness in 10m s I Om quadrats are reported in Table 4.1 in 

relation to the following groupings: edaphic variables. forest stand structure. human disturbance. 

environmental heterogeneity. landscape variables. and. overall model. Scatter plots of the most 

influential variables are presented in Figures 4.1. 4.2. 4.3. and 4.4: the mean species richness of 

categoricai variables is presented in Table 4.2. 













SPM 
O 
O 

Figure 4.1. Scatter plots of selected correlates of spec ies nchness in 1 Om x 1 Om quadrats 1. 
Legend: SPM = soil parent material: GF = glacio-fluvial. CT = calcareous till. L = lacustrine. 
CO = calcareous till: SO = soil order: G = gleysol. B = brunisol, GL = gleyed luvisol. GB = 

gleyed luvisol; MOIST = soi1 moisture: SD = seasonally dry depressions. SM = seasondl y 
moist depressions, SW = seasonally wet depressions: pH = soil pH,,,, upper 15 cm soil profile. 
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Figure 4.2. Scatter plots of selected correlates of species nchness in 10m x 10m quadrats 11. 
Legend: CT = forest cover type: 1 = sugar maple + red. white oak: 2 = sugar maple. no oak. no 
wet-mesic or wet species; 3 = sugar maple + wet-rnesic or wet species. 4 = oak. no sugar maple 
( 1  quadrat). 5 = wet-mesic or wet species. no sugar maple. no oak; %CC = % canopy closure; 
#TSPECIES = # tree species (>lm): #TstmsO-4cm = 3 iree stems 0-4 cm dbh. 



Figure 4.3. Scatter plots of selected correlates of species richness in i Om x 1 Om quadrats II I .  
Legend: %stmsACERSACC = % live tree stms (> 1 m) in I Om x 10m quadrat Acer succha- 
rum: %stmsO-4cmASACC = % live Qee stems 0 4  cm dbh in IOm x 1 Om quadrat Acer sac- 
chunim; %stms4- 1 OcmASACC = % live tree stems 4- 10 cm dbh in 1 Om x I Om quadrat Acer 
saccharum: %stms10-30cmASACC = % live tree stems 10-30 cm dbh in 10m x IOm quadrat 
A cer saccharum. 

a- 

" 
ad 

O 
0 Co 8 8 

y*., . 0 . 5 1  0' O l 
a': i<:* :*. .O 

0 oooo r I 

I o  \;:p@.a * q t 
,. 9 1 i 

@ 0 l b, a-,, 

a 0 
I %:Gi 



FCOVER 

V) 

!! 80 z 
a. B O '  
V) 

Figure 4.4. Scatter plots of selected correlates of species tichness in 10m x 10m quadrats IV. 
Legend: DISTURB = disturbance absentlpresent (open or closed trails. canopy gaps, regener- 
ating fields): OMHABS = open microhabitats absentlpresent (cut or snag canopy gaps. trails. 
regenerating fields. seeps. riparian meadow. riparian thicket. tipian marsh): FCOVER = % 
forest cover within a jkrn x jkm square. centered on study site: PA = patch area (ha). 



Table 4.2. Species richness (1 Om x 1 Om quadrats) of soil parent materials, soil orders. soil 
moisture classes, forest cover types. and disturbance classes. Wilcoxon rank sum tests. by 
attribute: ** p<O.0 1, * *** p<0.000 1. Highest mean value in attribute group in bold. 

Attribute 

calcareous till 

X Quadrats 

lacustrine 

calcareous outwash 

eleyed brunisol 
C 1 26 1 253 ( 67.0 

1. SOIL PARENT MATERIAL"" 

I O4 

brunisoi 

luvisol 1 57 

# Species 
StudyArea 

glacio-fluvial 1 40 

8 

JO 

gleyed luvisol 1 198 1 47.6 

Mean # 
Species 

I 

70 

116 

334 

1 04 

307 

4. FOREST COVER TYPE"" 

27.8 

47.6 

48.5 

55.2 

280 

3. SOIL MOISTURE CLASS"" 

36.6 

seasonally dry depressions 

seasonally moist depressions 

seasonall y wet depressions 

red oak. no sugar maple 

sugar maple + red oak 

sugar maple 

sugar mapfe + wet-rnesic/wet 

wet-mesic + wet, no sugar rnaple 

118 

43 

32 

5. DISTURBANCE CLASS" 

I 

54 

74 

50 

13 

human disturbance present (closed or open 
canopy gaps. tanes, regenerating fields) 

human disturbance absent 

337 

24 1 

159 

34.8 

53.2 

56.2 

57 

188 

305 

287 

333 

6 1 

131 

57 

33.6 

36.3 

54.9 

63.9 

345 

355 

49.2 

39.2 



i) Edap hic Variables 

Edaphic variables that mavimally explained observed differcnces in species richness in 10m x 1 Om 

quadrats were soil order (Tadj.=0.253). soil moisture (r'adj.=0.247). and soil parent material 

(f adj .=0.220) (Table 4.1). Significant. but less informative variables. were soil pH,,,,,(?adj.=O. 1-10). 

and. ln % soil organic matter ($adj.=0.052). Available calcium (free calcium carbonate + 

exchangeable calcium) was a signifiant but weak predictor of overall species richness 

(?adj .=O.O26). 

Quadrats on calcareous outwash parent materials (mean richness = 55.2 species) were approximately 

twice as rich in species as quadrats on glacio- tluvial parent materials (mean richness = 27.8 species) 

(Table 4.2). Quadrats on lacustrine parent materials (mean richness = 18.5 species) were more 

species rich than quadrats on calcareous till (mean richness = 42.6 species). The latter contras(. 

however. was not significant (Tukey-Knmer HSD test). 

Quadrats on gleyed Brunisolic soils (mean richness = 67.0 species) were more species rich than 

quadrats on glcyed Luvisolic soils (mean richness = 47.6 species). and far more species ricli than 

quadrats on Brunisolic soils (mean richness = 36.6 species). Luvisolic soils (mean richness = 36.6 

species). or Gleysolic soils (mean richness = 34.0 species) (Table 4.2). 

Quadrats with seasonally moist depressions (rnean richness = 56.7 species) were marginally more 

species rich than quadrats with seasonally wet depressions (mean richness = 53.2 species). and 

significantly more species rich than quadrats with seasonally dry depressions (mean richness = 34.8 

species)(Table 42)(Tukey-Knmer HSD test). 

Species richness was positively correlated with percent soil organic matter. soil pH. and available 

calcium. 

Soi1 moisture and soi1 parent material collectively csplained 35.6% of the variance in species 

richness in 10m x 10m quadrats (Table 4.1). 



Pair-wise interactions among edaphic variables (superscript 2-6). and with stand structure variables 

(superscript 10-2 1). were common (Table 4.1 ). Less common were interactions with human 

disturbance (superscnpt 24-29) and landscape variables (supencript 33-35). 

ii) Forest Stand Structure Variables 

Stand structure variables that maximally explained differences in species richness in IOm xlOm 

quadrats were forest cover type (f adj.=0.277). # tree species (?adj.=0.268). % stems sugar maple 

(iadj.=O.256). % stems sugar maple 0-4 cm dbh (f adj.=O.Z54). # wet-mesic. wet. tree species 

(Tadj.=0.224). and. # live tree stems 0 4  cm dbh (f adj.=0.196) (Table 4.1. variables variously 

transformed). Significant. but less informative. stand structure variables were % canopy closure 

(f adj .=O. 150). % stems sugar maple 4- 1 O cm dbh ($adj .=O.OW). % stems sugar maple 10-30 cm dbh 

($adj.=0.096). and. # live tree stems >30 cm dbh (iadj.=0.032) (variables variously transformed). 

The nurnber of live tree stems in the 4- 1 O cm dbh. and 10-30 cm dbh. size class were non-significant 

predictors of species richness. 

Quadrats composed of wet-mesic or wet tree species (mean richness = 63.9 species). or composrd 

of sugar maple and wet-mesic or wet tree species (mean nchness = 54.9 species). were significantly 

more species rich than quadrats cornposed of sugar maple (no wet-mesic. wet. trees: no red or white 

oak) (mean richness = 36.4 species) or composed of sugar maple and red or white oak (mean 

ric hness = 3 3 -6 species) (Table 4.2) (Tukey-Krarner HS D test). 

Species richness was positively correlated with the number of tree species: the number of wet-mesic. 

wet. trees: the nurnber of live stems 0-4 cm dbh: and. the number of live stems 4- 1 O cm dbh. Species 

richness was negatively correlated with the nurnber of live stems >30 cm dbh: the percent stems 

sugar maple; the percent stems sugar maple 0-4 cm dbh: the percent stems sugar maple 4- 10 cm dbh: 

and. the percent stems sugar maple 10-30 cm dbh. 

The number of live tree species (>lm). degree of canopy closure. and type of forest cover. 

collectively explained 54.9 % of the variance in species richness in 10m x 1Om quadrats (Table 4.1). 

The number of tree stems 0-4 cm dbh. degree of canopy closure. and type of forest cover type 



collectively explained 49.8% of the variance in species richness. The latter mode1 achieves a better 

statistical fit (p<W = 0.92 vs p<W = 0.68) and thus constitutes the "best" set ofexplanatory variables 

for this set of environmental variables. 

Pair-wise interactions arnong stand structure variables (superscript 10-21). and with edaphic 

variables (superscnpt 2-6), were common (Table 4.1 ). Less common were interactions with human 

disturbance (superscript 24-29) and with landscape variables (superscript 33-35). Stand structure 

variables that interacted less Frequently than other variables were # live tree stems >30 cm dbh. % 

canopy closure. # tree species (> 1 m). and. % stems 10-30 cm dbh. 

iii) Human Disturbance 

The disturbance variables that mavirnally explained differences in species richness in 10m .u 10m 

quadrats were disturbed microhabitats (present/absent) ( ?adj.=0.089). open trails (f adj.=0.089). and 

open regenerating fields (sadj.=0.079). Significant. but less informative. variables were closed trails 

(iadj.=0.043) and open canopy gaps (iadj .=O.O4 1 ) (Table 4.1 ). Closed canopy gaps did not explain 

observed differences in species richness. 

Quadrats with human disturbance (closed or open canopy gaps. trails. regenerating fields) were 

significantly more species rich than quadrats with no apparent disturbance (mean richness = 49.1 

species versus 39.2 species) (Table 4.2). 

Open trails and open regenerating fields collectively tisplained 12.8% of the variance in species 

richness in 10m x 1 Om quadrats (Table 4.1 ). 

Pair-wise interactions arnong disturbance variables (superscript 24-29). and with edaphic variables 

(superscript 2-6). and with stand structure variables (superscript 10-2 1 ). were comrnon (Table 4.1 ). 

Open conditions interacted more frequently with other environmental variables than did closed 

conditions. 



iv) Environmental Heterogeneity 

The number of microhabitats recorded in a given quadrat explained 5.4% of the variance in species 

richness in 10m x 1 Om quadrats (Table 4.1 ). 

Pair-wise interactions occurred with soil parent material (superscript 2). selected stand structure 

variables (superscript 10-24). and selected disturbance variables (supencript 24-Z9)(Table 4.1 ). 

v) Landscape Variables 

The variables that mavimally explained differences in species richness in 1 Om x 1 Om quadrats werr 

percent forest cover in the surrounding landscape (Tadj.=0.066). and. patch area (iadj.=0.019) 

(Table 4.1 ). The mean distance to the nearest forest patch (in 45'' arcs) did not explain observed 

differences in species richness. 

Species richness was positively correlated with the mean distance to the nearest forest patch (in 45" 

arcs). and. negativeiy correlated with the percent forest çover in the surrounding landscape. and. with 

patch area. 

Pair-wise interactions occurred with soil parent material (superscript 2). soil order (superscript 3). 

soil rnoisture (superscript 4). selected stand structure variables (superscript 1 0-2 1 ). selected 

disturbance variables (superscript 24-29). and landscape variables (superscript 33-35). 

vi) Overall Model 

The combination of environmental variables that masimal1 y explained di fferences in species ric hness 

in 10m xl Om quadrats were the number of tree species (> 1 m). percent canopy closure. forest cover 

type, and open microhabitats (cut or snag gap. lane. regenerating tield. serp. riparian meadow. 

riparian thicket. riparian manh) (?adj.=0.582) (Table 4.1). An alternative mode1 composed of 

percent canopy closure. number stems 0-4 cm dbh. soil moistue class. and soil parent material. was 

equally successfùl in explaining observed differences in species richness (?adj.=0.5495). 



4.3.1.2 Contribution of Forest Structure 

The contribution of stand structure to species richness (Table 4.1) was examined fùrther to clarify 

the cause and effect relationship arnong selected variables. Of particular interest was the degree to 

which "number of tree species". and "number of live stems 0-4 cm dbh". were causal mechanisms 

of species ric hness. Non-pararnetric correlations ( S pearman's Rho) with selected stand structure 

variables. soil moisture. available calcium. and human disturbance were computed with a view to 

revealing more proximate correlates of species richncss (Table 4.3). 

The number of tree species in a given I Om x 1 Orn quadrat was negatively correlated with the percent 

stems that were sugar maple (p<0.000 1 ). and. positivrly correlated with the percent stems that were 

wet-mesic. wet. trees (pxO.000 1). or. shade intolerant. very shade intolerant. vees (p<0.000 1 )(Table 

4.3). The number of tree species was not correlated with recent human disturbance (p=0.95) or with 

percent canopy closure (p=0.27). 

The percent stems sugar maple in a given 10rn x I Om quadrat was negatively correlated with 

seasonally moist or wet depressions on the forest Boor ( p-4.000 1 ) and with the percentage of stems 

that were wet-mesic. wet trees (p<0.0001). or. shade intolerant. very shade intolerant. trees 

(p<0.000 1 ) (Table 4.3). Sugar maple abundance was negatively correlated wi th availab le calcium 

(p=0.0049). owing to the strong positive correlation between available calcium and percent soil 

organic matter. Sugar maple abundance was positively correlated with percent canopy closure 

(p=0.0029) and weakly correlated with the absence of the human disturbance (p=0.0655). 

Taken together. these results reveal that the number of tree species in given quadrat increased in the 

presence of seasonally moist or wet soils and in conditions that favored the establishment of shade 

intolerant and very shade intolerant trees. and. declined in the presence of sugar maple. This 

suggests that the number of tree species in a given quadrat is a complex variable that accounts for 

differences in soi1 moisture. stand history. and available light. Tree species number is thus a 

correlate of species richness and not its cause. 







The nurnber of live tree stems 0-4 cm dbh was positively correlated with the number of tree species 

(p<0.000 1) and with the percentage of stems that were wet-mesic. wet. trees (p=0.0002) (Table 4.3). 

The number of live tree stems in this size class was weakly correlated with recent human disturbance 

(p=0.0546) and negatively correlated with the percentage of stems that were sugar maple (p=0.0005). 

Stem nurnber was neither correlated with percent canopy closure (p=OA 150) nor with the percentage 

of stems that were shade tolerant or very shade tolerant (p=0.7250). 

Taken together. these results reveal the number of livç tree stems. 0-4 cm dbh. was more strongly 

intluenced by the number of tree species. the percentage of stems that were wet-rnesic. wet. trees. 

and. the percentage of stems that were sugar maple. than by recent and past stand disturbance. In 

general. the number of stems in this size class increased with increasing soil moisture and declined 

with increasing sugar maple abundance. This suggests that the number of live tree stems. 0-4 cm 

dbh. is acomplex variable that primarily accounts for differences in soil moisture and available light. 

The number of tree stems. 0-4 cm dbh. is thus a correlate of species richness and not its cause. 

The capacity of each variable to explain observed diffrrences in species richness. therefore. is a 

function of their correlation with differences in soil moisture and available light. The variance in 

richness explained by the number oftree species also retlects the influence of past disturbance events 

and thus explains marginally more variance in species richness than the number of live tree stems 

0-4 cm dbh (Table 4.1 ). 

4.3.1.3 Contribution of Soil Fertility 

The interaction between available calcium and sugar maple abundance (Table 4.1 ) was investigated 

further to clarify the contribution of soil fertility to observed differences in species nchness. This 

analysis was conducted in two contrasting settings. 

The first setting was restricted to forest stands on Bmisolic and Luvisolic soils. in view of reported 

differences in calcium availability in these soils (Hot'fman and Acton1974. Gillespie and Acton 

1981). Soils with fiee calcium carbonate in the upper 15 cm of the soil profile (positive reaction 



to 0.1N HC1) were excluded from this anaiysis in order to standardize samples with respect to 

exchangeable calcium. Exchangeable calcium in these soils ranged £Yom 0.7 to 13.1 cmolkg. 

The results of this analysis are summarized in Figure 4.5. Differences in sugar maple abundance 

explained 63.2 % of the variance in species richness in I Om x IOm quadrats. when expressed as the 

percentage of live stems (> 1 m) that were sugar maple. and 50.0 % of variance in species nchness 

in 10m x 1 Om quadrats. when expressed as the number of live stems (> 1 rn) that were sugar maple. 

Exchangeable calcium, in turn, explained 11.1 % of the variance in sugar maple abundance 

(p=0.054), when expressed as the percentage of live stems (> 1 m) sugar maple. and 2.9 % of the 

variance in sugar maple abundance (p=0.200). when expressed as the number of live stems sugar 

maple. Exchangeable calcium. sensu stricto. explained 6.6 % of the variance in species nchness 

(p=O. 109) on these soils. Exchangeable calcium is a significant predictor of sugar maple abundance 

for selected size classes. however. and explains 13% to 19% of the variance in the percentage of 

live stems (> lm) sugar maple in the 0-4 cm. 4-10 cm. and 10-30 cm. dbh size class (Figure 2.7). 

The second setting was restricted to forest stands on Brunisolic soils in order to standardize samples 

for soil parent material (calcareous till). soil order (Orthic Melanic Brunisol). soil senes (Otonabee 

loarn). soil moisture (mesic). forest composition (Cover Type 2.3). and recent site disturbance (no 

tnils, canopy gaps. regenerating fields). Soils with free calcium carbonate in the upper 15 cm of the 

soil profile were included in the analysis in order to standardize samples for available calcium (free 

calcium carbonate + exchangeable calcium) in the upper 15 cm of the soil profile. The gradient in 

available calcium on these soils ranged from 0.3 cmolikg to 20.2 cmolkg. Soils with free calcium 

carbonate contained significantly higher levels of available calcium than non-reactive soils ( 16.6 

cmokg  versus 4.1 cmolkg, respectively)(Wilcoxon rank surn test. not show). 

The results of this analysis are pcesented in Figure 4.6. Available calcium explained 62.8 % of the 

variance in sugar maple abundance, when expressed as the percentage of live stems (> 1 m) that were 

sugar maple, and, 45.9% of the variance in sugar maple abundance, when expressed as the nurnber 

of live stems (>l rn) that were sugar maple. However. in contrast. to the first setting, differences in 
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Figure 4.5. Species richness. sugar maple abundance. and available calcium. in 1 Om s 1Om 
quadrats on Brunisolic and Luvisolic soils overlying calcareous till. Soils with free calcium 
carbonate in upper 15 cm of soi1 profile excluded fiom analysis (see text). Quadrats with ap- 
parent human disturbance excluded from analysis. Forest cover = cover type 2 (sugar maple + 
red or white oak ) and cover type 3 (sugar maple. no red or white oak. no wet-mesic. wet. spe- 
cies). Regression statistics based on transformed data. Available calcium explains 6.6% of 
variance @=O. 1 1)  in species richness (not shown). N=29 quadrats in 7 forest patches. 
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Figure 4.6. Species richness, sugar maple abundance. and available calcium. in 10m x 1Om 
quadrats on Brunisolic soils overlying calcareous till. Soils with free calcium carbonate in up- 
per 15 cm of soi1 profile included in analysis. Quadrats with apparent human disturbance ex- 
cluded fiom analysis. Forest cover = cover type 2 (sugar maple + red or white oak) and cover 
type 3 (sugar maple. no oak. no wet-mesic. wet species). N=17 quadrats in 3 forest patches. 
Available calcium explains 6.0% of variance in species richness (p=0.76). 



sugar maple abundance do not explain observed differences in species richness (p=0.7 1). As in the 

first setting, available calcium does not explain species richness on these soils (p=0.76). 

The preceding results reveal that differences in exchangeable and available calcium do not esplain 

observed differences in species richness. Or at least. not directly. The degree to which species 

richness is explained by differences in sugar maple abundance. and the degree to which sugar maple 

abundance is explained by differences in calcium availability in the upper 15 cm of the soi1 profile. 

depends on the setting in which the analysis is conducted and on the measure of sugar maple 

abundance that is used. 

Available 1 ight. stand structure. and edaphic factors were examined further to reveal potential 

mechanisms that may explain the preceding results. The results of this analysis are surnrnarized in 

Figures 4.7.4.8. and 4.9. 

The mean number of species. percent stems sugar maple. percent taxa shade tolerant herbs. and 

percent shade intolerant herbs. are compared in Figure 4.7. The mean number of species. and the 

mean percentage of taxa that were shade intolerant herbs. were significantly higher on Brunisolic 

soils whereas the mean percentage of live stems that were sugar maple. and the mean percentap of 

taxa that were shade tolerant herbs. were significantly higher on Luvisolic soils. This pattern 

suggests that more light is available in forest stands on Brunisolic soils than on Luvisolic soils. and. 

that the difference in species nchness on these soils is due in part to the deep shade cast by maple 

saplings and trees. Obsewed differences in canopy ciosure were not significant (mean O h  canopy 

closure: 89.0% on Brunisolic soils versus 9 1.1% on Luvisolic soils. p=0.93. Wilcoxon rank surn test. 

not shown). 

The abundance of sugar maple in selected size classes is presented in Figure 4.8. The data reveal 

that the number of sugar maple stems in a 10m x 10m quadrat is consistently higher on Luvisolic 

soils than on Bninisolic soils. The data also reveal that stands on Brunisolic soils have significantly 

fewer stems in the 10-30 cm dbh size class and no stems in the >30 cm size class. The most likely 

explanation for the latter patterns is that stands on Brunisolic soils were more intensively. or more 



# SPECIES % STEMS SUGAR MAPLE 

% SHADE TOLERANT HERBS Oh SHADE INTOLERANT HERBS 

Figure 4.7. Comparison of mean plant response in I Om x 1 Om quadrats on soils of contrasting 
fertility 1. Legend: B = Brunisolic soils. L = Luvisolic soils. overlying calcareous till. Soils with 
free calcium carbonate in upper 15 cm of soi1 profile excluded fiom analysis. Quadrats with ap- 
parent hurnan disturbance excluded from analysis. N = 29 quadrats in 7 forest patches. Error bars: 
one standard error mean. Means: # SPECIES: B=39.6. L=23.9: % STEMS SUGAR MAPLE: 
B=lj.l. L=76.7; % TAXA SHADE TOLERANT HERBS: B42.1.  L=56.1; % TAXA SHADE 
INTOLERANT K E N S :  B=25.7. L=10.6. P-value: Wilcoxon rank sum test- 



# SUGAR MAPLE STEMS 0-4 cm # SUGAR MAPLE STEMS 4-10 cm 

# SUGAR MAPLE STEMS 10-30 cm 

B L 

# SUGAR MAPLE STEMS >30 cm 

Figure 4.8. Comparison of mean plant response in 10m x 10m quadrats on soils of contrasting 
fertility 11. Legend: B = Brunisolic soils. L = Luvisolic soils. overlying calcareous till. Soils 
with fiee calcium carbonate in upper 15 cm of soi1 profile excluded from analysis. Quadrats 
with apparent human disturbance excluded from analysis. N = 29 quadrats in 7 forest patches. 
Error bars: one standard error mean. Means: # SUGAR W L E  STEMS 0-4 cm: B=9.6. 
L=17.1: # SUGAR MAPLE STEMS 4-10 cm: B=0.4. L=7.0: # SUGAR MAPLE STEMS 10- 
30 cm: B=0.3; L=1.9: # SUGAR MAPLE STEMS >j0 cm: B=O.O. L=0.6. P-value: Wilcoxon 
rank surn test. 



# SUGAR MAPLE STEMS AVAILABLE CALCIUM 

% SOIL ORGANIC MATTER 

Figure 4.9. Cornparison of mean plant response in 10m .u 10m quadrats on soils of contrasting 
fertility III. Legend: B = Brunisoiic. L = Luvisolic soils. overlying calcareous tili. Soils with 
Free calcium carbonate in upper 15 cm of soii profile excluded from analysis. Quadrats with ap- 
parent human disturbance excluded from analysis. N = 29 quadrats in 7 forest patches. Error 
bars: one standard error rnean. Means: # SUGAR AMPLE STEMS: B=lO.3, L=26.5; AVAJL- 
ABLE CALCIUM: B=4.3. L=6.9; pHlmtc; 8=6.5. L=6.4: % SOIL ORGANIC MATTER: 
B=S.9, L=9.0. P-value: Wilcoxon rank sum test. 



recently, logged than stands on Luvisolic soils. While such a difference in stand history may explain 

the relative scarcity of large diameter stems on Brunisolic soils. it does not readily explain the greater 

number of species, and the greater number of shade intolerant herbs. since the canopy in each stand 

in this analysis was intact. A more likely explanation. therefore. is that the number of sugar maple 

stems in stands on Brunisolic soils was not suficient to cast a deep shade over the entire 1 Om x 10m 

quadrat. This explanation is in keeping with the relative and absolute difference in mean sugar 

maple abundance. and. with the difference in the mean percentage of tava that were shade intolerant 

herbs (Figures 4.7 and 4.9). It also provides an explanation for the non-significant relationship 

between sugar maple abundance and species richness reported in Figure 4.6. 

Selected soil properties and the mean number of sugar maple stems are presented in Figure 4.9. The 

mean number of sugar maple stems. the mean concentration of available calciurn. and the mem 

percent soil organic matter. were significantly higher on Luvisolic soils than on Brunisolic soils. 

The difference in mean pH,,,, was not significant. The correspondence between available calcium 

and absolute sugar maple abundance on these soils is consistent with the calcium - mortality 

hypothesis proposed by Kobe et al. (1 995) and Kobr ( 1 996) (see Section 2.4. elernent iii). Other 

factors may contribute to the observed difference in sugar maple abundance on these soils. however. 

since the strength of the relationship between available calcium and sugar maple abundance depends 

on the parameters included in the analysis (non-significant when the analysis includes stands on both 

Luvisolic and Brunsiolic soils. Figure 4.5: significant when the anaiysis is restricted to Brunisolic 

soils. Figure 4.6). 

Soil organic matter was positively and significantly corrrlated with the number of sugar maple stems 

in both analytical settings (p=0.042 when the analysis includes Brunisolic and Luvisolic soils: 

p=0.0007 when the analysis was restricted to Brunisolic soils) (supplementary correlation analysis 

not shown). The most apparent reason for this association is the high cation exchange capacity of 

soil organic matter (Brady 1990). In keeping with this property, the relationship between percent 

soil organic matter and available calcium on these soils was linear, positive. and strong (Tadj.=O.45 

when the analysis includes Brunisolic and Luvisolic soils: iadj.=0.68 when the analysis is restricted 

to Brunisolic soils). Soil organic matter rnay therefore contribute to differences in sugar maple 



abundance by making calcium differentially available to surface roots. 

Soi1 organic rnatter also facilitates the retention of soi1 moisture (Brady 1990) and thus may 

contribute to differences in sugar maple abundance by facilitating the germination. establishment. 

and persistence of sugar maple seedlings. The moisture retention hypothesis is not supported by 

data. however. since the relationship between percent soil organic matter and the mean cover class 

of sugar maple seedlings (<lm) was negative in both analytical settings (supplementary linear 

regression analyses not shown). 

The relationship between percent soil organic matter and species richness was rnarginally significant 

(p=0.062) and negative when the analysis included both Brunisolic and Luvisolic soils. and. 

markcdly non-significant (p=0.605) and positive when the analysis was restricted to Brunisolic soils 

(supplementary correlation analyses not shown). Differences in soi1 organic rnatter content. 

therefore. do not appear to have contributed to obsenttd differences in species richness. 

4.3.1.4 Contribution of Patch Isolation and Patch Sizc 

The contribution of patch isolation and patch size to differences in species richness was evaluated 

by multiple linear regression (Table 4.1). Patch isolation. when expressed as the percent forest cover 

within a 5 km x jkm square centered on the study site. explained 6.6 % of the variance in species 

richness. In general. the species richness in a given 10m s 1 Om quadrat declined as the percent Forest 

cover in the surrounding landscape increased (Figure 4.4). Patch isolation. when expressed as the 

mean distance to the nearest eight woodlots. measured in 45' arcs. was markedly non-signiticant 

(p=0.32). Significant pair-wise interactions were detrcted between patch isolation and selected 

edaphic. stand structure. and disturbance variables. Interactions with important. and cornplex. 

explanatory variables such as soil order. and forest cover type. suggest diat patch isolation. perse. 

does not make an independent contribution to species richness in this study. 

Patch size. when expressed as the area of the forest patch in which the study site was situated. 

explained 1.9% of the variance in species richness. In general. the species richness in given quadrat 



declined as the size of the forest patch increased. Significant pair-wise interactions were detected 

between selected edaphic. stand structure. and landscape variables. The interaction with soil parent 

material. soil order and forest cover type. in particular. suggest that patch size. per se. does make an 

independent contribution to species richness in this study. 

4.3.1.5 Contribution of Microhabitats 

The contribution of microhabitats to observed differences in species richness was evaluatrd at the 

quadrat (Table 4.4). forest patch (Table 4.5). and landscape (Table 4.6) spatial scale. The objective 

of this analysis was to determine the degree to which a given microhabitat contained species that did 

not occur elsewhere in the sarnpled area. 

The microhabitats that contributed mavimally to species richness at the quadrat scale were open 

lane/roads (mean + unique species = 24.3): open regenerating fields (mean # unique species = 19-33): 

closed. seasonally dry. forest floors (mean X unique species = 1 6.60): open nparian meadows (mean 

i: unique species = 15.33): and. closed. seasonally moist forest tloors (mean # unique species = 15.30 

species) (Table 4.4). Microhabitats that occasionally contributed additional species were open and 

closed tree pits (rnean # unique species = 0.50 and 0.5 4. respective1 y ): open and closed stumps ( mean 

# unique species = 0.43 and 0.90. respectively): open and closed logs (mean # unique species = 0.83 

and 1 37. respectively). Only two of twenty-three evaluated microhabitats did not make a significant 

contribution to species nchness at the quadrat spatial scale (open tree pits. al1 moisture classes: and. 

open stumps). Seventeen microhabitats were not evaluated (minimum sarnple size criterion For 

Wilcoxon signed rank sum test not satisfied). 

The microhabitats that contributed mavimally to species richness at the patch scde were closed. 

seasonally dry. forest floors (mean # unique species = 17.05). open regenerating fields (mean Rr 

unique species = 12.5). and open lanes/roads (mean # unique species = 9.00) (Table 4.5). 

Microhabitats that contributed a modest but significant nurnber of species at the patch scale were 

closed. seasonally moist. forest floors (rnean # unique species = 6.13): open. seasonally dry. canopy 

gaps (mean # unique species = 4.40): closed. seasonally wet. forest depressions (mean # unique 



Table 4.4. Contribution of microhabitats to species richness in 10m x 1 Om quadrats. Legend: %SA 
= % of sampled area (1 9.200 m'). # Quads: number of quadrats in analysis: Mean difference = mean 
difference in species richness: (# species in quadrat) - ( #  species in quadrat - # species unique to 
microhabitat): paired t-tests when distribution of di fferences normal; Wilcoxon signed rank sum tests 
otherwise. NT = not tested (see text). Quadrats in which microhabitat is the only microhabitat 
excluded from analysis. 

Microhabitat 1 % SA 1 # Quads 1 Mean Difference 1 p l t l  

seasonally dry forest floor-cc 1 54.3 1 102 1 16.60 1 0.0001 

seasonally dry forest floor-oc 1 6.8 1 23 1 11.30 

seasonally moist forest floors-cc 1 3 . 0  1 2 1  1 15-30 1 O.OOO~ 

seasonaily moist forest tloors-oc 1 3 . 0  1 9 

seasonal ly moist forest depressions-cc 

seasonally moist forest depressions-oc 

seasonally wet forest floors-oc 

seasonally wet forest depressions-cc 1 4.0 1 1 7 1 5 -47 1 0.0001 

4.1 

0.2 
1 

seasonally wet forest depressions-oc 1 1 .O 1 4 

3 seasonally wet forest floors-cc 

20 

- i 
0.6 

seasonai l y dry gap-cc 1 1.1 1 3 1 9.00 1 NT 

5.3 3 

seep-cc 

seep-oc 

seasonally rnoist gap-cc 1 0.5 1 2 1 5 .OO I NT 

5.35 

4 .O0 

NT 

0.000 1 

NT 

0.9 

O .3 

p it/mound complexes-oc 1 o.6 1 ' 1 6.3 O 1 0.0378 

p it/mound complexes-cc 

mound-cc 1 3 . 6  1 60 1 3.12 1 0 .0Zl  

3 

1 

5.6 

pits-oc (al1 moisture c tasses) 1 0.2 1 6 1 0.50 1 1.0000 

4.67 

12.00 

rnound-oc 

pits-cc (al1 rnoisture classes) 

seasonally dry pit-cc 1 1.5 1 41 1 0.3 8 

NT 

NT 

64 

seasonally dry pit-oc I o - 1  1 1 0.75 1 NT 

0.4 

1.8 

seasonaily moist pit-cc 10.3 1 2 1 0.50 I NT 

3.66 0.000 1 

-- - -- 

5 5 2 0  

46 0.54 

. - 

0.0466 

0.000 1 



Table 4.4. Contribution of microhabitats to species richness in 10m x 1 Om quadrats (cont'd). 

Microhabitat 

seasonally wet pit-cc 

stum p-cc 1 0.1 1 30 1 0.90 1 0.0001 

seasonally wet pit-oc 

% SA 

0.2 

raised root mat-oc 1 0 . 6  1 12 1 4.25 1 0.0040 

0.1 

stump-oc 

raised root mat-cc 

# Quads 

3 

lanehoad-oc ( 1 . 3  1 8 1 24.13 1 0.0107 

I 

O.  1 

1.3 

stone-cc 

lanehoad-cc 

ditch-cc 1 OS3 1 1 5 .O0 1 NT 

Mean Difference 

1.33 

ditch-oc L 0 . 1  1 2 1 2.50 1 NT 

P'I tl 

NT 

0.00 

7 

28 

4 . 1  

2.3 

NT 

O .43 

3.79 

I 

I I 

regenerating field-cc 

regenerating field-oc 

riparian meadow-oc 

0.078 1 

0.000 I 

riparian marsh-oc 

riparian th ic ket-oc 

4.00 

6.18 

1.3 

1.3 

0.7 

NT 

0.0003 

O .4 

O. 1 

5 

6 

3 

3 

1 

14.20 

19.33 

15.33 

0.035 1 

0.00 1-1  

NT 

2.33 

2.00 

NT 

NT 



Table 4.5. Contribution of microhabitats to species nchness in surveyed forest patches. Legend: 
%SA = % of sarnpled area (19.200 m2). !: Patches: number of forest patches in analysis; Mean 
difference = mean difference in species richness: (# species in patch) - ( # species in patch - # species 
unique to microhabitat); paired t-tests when distribution of differences nomal: Wilcoxon signed 
rank surn tests otherwise. NT = not tested (see text). Patches in which microhabitat is the only 
microhabitat excluded from analysis. 

Microhabitat 1 % SA 1 f! Patches 1 Mean Difference 1 p>itl 

seasonaIIy dry forest floor-cc 153.3 1 2 1  ( 17.05 1 0.0001 

seasonally dry forest floor-oc 1 6 . 8  1 14 1 4.30 1 0.0010 

seasonal1y moist forest floors-cc 1 3 . 0 1  8 1 6.13 1 0.0040 

seasonally moist forest floors-oc I 3 . O 1  1 1.83 1 0.2500 

seasonally moist forest depressions-cc 1 4. I 1 6 1 1.12 1 0.2500 

seasonally rnoist forest depressions-oc 1 0.2 1 I 1 2.00 1 NT 

seasonally wet forest floors-cc 1 0 . 6  1 2 1 2.50 1 NT 

seasonally wet forest floors-oc 1 1 . 0  1 I ( 1 .OO I NT 

seasonal iy wet forest dcpressions-cc 1 4.0 1 7 1 3 .O0 
- - -- 

seasonally wet forest depressions-oc 1 1 .O 2 1 1.00 

seasonally dry gap-cc 1 . 2  1 3 1 1 .O0 1 NT 

seep-oc 0.3 

seasonally moist gap-cc 

pit/mound cornpiexes-cc 

pit/mound comp texes-oc 

mound-cc 

mound-oc 

seasonal ly dry pit-oc I o d  1 0.50 1 NT 

I 

0.5 

5.6 

0.6 

pits-cc (al l moisture classes) 

pits-oc (al1 rnoisture classes) 

3.6 

O .4 

7.00 

1 

20 

5 

1.8 

0.2 

NT 

20 

5 

2.00 

2.30 

1.30 

15 

5 

NT 

0.000 1 

0.0400 

1.35 

1.20 

0.000 1 

O .  1250 

0.33 

0.20 

O. 1250 

0.5000 



Table 4.5. Contribution of microhabitats to species nchness in surveyed patches (cont'd). 

Microhabitat 1 % SA 1 t: Patches 1 Mean Difference 1 p>ltl 

seasonally moist pit-cc 1 0 . 3  1 7 

seasonally wet pit-cc 1 0 . 2  1 1 1 0.00 I NT 

seasonally wet pit-oc 

log-CC 

log-OC 

raised root mat-cc 1 1 . 3 1  9 1 1.68 1 0.0630 

stump-cc 

stump-oc 

O. 1 

0.5 

0.2 

0.2 

O. 1 

raised root mat-oc 

ditch-oc I < O . l  1 2 

1 

11 

7 

l anekoad-oc 

ditch-cc 

regenerating field-cc 

10 

1 

0.6 

regenerat ing field-oc 

0.00 

0.93 

0.7 1 

i .3 

0.3 

riparian meadow-oc 1 O.' 1 1 0.00 1 NT 

NT 

0.03 1 O 

1.1250 

0.400 

0.00 

- 

6 

stone-cc 

lanehoad-cc 

0.2500 

NT 

1 

6 

<O. 1 

2.3 

5 

- 7 

-- 

2.33 

riparian marsh-oc 

riparian th icket-oc 

- 

O. 1250 

0.00 

1.33 

9 .O0 

0.50 

NT 

0.0606 

0.0390 

NT 

O .4 

0.1 

1 

I 

3 .O0 

3 .O0 

NT 

NT 



Table 4.6. Contribution of microhabitats to species richness at the landscape scaie. Legend: % 
SA = percent total sweyed area (19.200 m') 

Micro habi tat 

- 

% SA,# Species Restricted to Habitat 

seasonal ly dry forest floors-cc' 1 54.3 1 16 

seasonal ly dry forest floors-oc' 1 6.8 1 6 
- - - - - - - - 

seasonally moist forest noors-CC' 1 ~ 0 ~ ~ r ~  5 

seasonally wet forest floors-cc" 1 1 1 

seasonally wet Forest depressions-ccJ 

mound-cc' 1 3.6 1 
log-cc" 

raised root mat-oc" 1 

lanehoad-oc 6 

regenerating field-cc1' 1 1 . 3  ( I 

regenerat ing field-oc" 1 1.3 1 8 

riparian marsh-oc " 1 1 1 

Notes: 
Borqchium multifidtim. Curer cornmunis. Cura  plutyphyll~~. C'cira wmdii. Chimaphila iimbellutu, Crutuegtrs 
species r 1. Cruraegus species $3, Geum allrpicum, Hieracrunr uiirantiuctim. Lonicera hirstrta. .C/onotropu b p o -  
pithys. Panax quinquefolium, Rharnnus alni/olia. Snnictilu trl/aliata, kronica officinulis. tkdu rosrruru. 
Cu[t,stegia sepiunr. Curdttus acanthoides. Lobelio infitu. .C'epetu catariu. Punictrm capillare. Triosreuna 
arirantiacum. 
.-!melunchier arboreu. Cvpripediurn calceoltis. Phegopterls c.onnrcrilis. S~elluriu longflolia. npha lurifoliu. 
.-lster umbellatiis. 
Cara pseudo-cypem. Cicura b ulb ifera. Osm unda regdis. 
Car= crinira. 
Monorda fistulosa. 
Echinacystis lobara. 
Sicyos angulatirs. 

10. Ambrosia artem isi folia. Carduus nttrans. Festtrca pratensis. Potentilla nomegica. Verhena hastcrta. térbena 
tcrticifolia. 

1 1 .  Rudbeckia hirta. 
1 3. -4 ntennaria neglecta, Aster ericoides. Carex pruirea. Festucu urundinacea. Festuca rubra. Lycopodium nistac&um. 

Rhus typhina, Salk petiolaris. 
13. Rtrmex urbicularirs. 



species = 3.00); closed pit/mound complexes (mean # unique species = 2.30): open pit/mound 

complexes (mean # unique species = 1 .JO): closed tip-up mounds (mean # unique species = 1.35): 

and, closed logs (mean # unique species = 0.93 species). Only nine of twenty evaluated habitats 

made a significant contribution to species nchness at the patch scale. Twenty-one microhabitats were 

not evaluated (minimum sarnple size criterion for Wilcoxon signed rank sum test not satisfied). 

Thirteen microhabitats contributed to species richness at the landscape scale (i.e. contained species 

that were not recorded in any other habitat)(Table 4.6). The habitat that contributed the greatest 

number of species was closed seasonally dry forest floor ( 16 species). Habitats that contributed an 

intermediate number of species were open regenerating fields (8 species): open lanes/roads (6 

species);open. seasonally dry. forest floors (open canopy gaps)(6 species): and. closed seasonally 

moist forest floors (5 species). Habitats that contributed a minor number of unique species at the 

landscape scale were closed. seasonally wet. forest depressions (3 species); closed. seasonally wet. 

forest floors ( 1 species): open seeps ( 1 species): closed mounds ( 1 species): closed logs ( 1 species); 

open raised root mats ( 1 species); closed regenerating fields ( 1 species): and. open riparian marsh 

(1  species). 

Taken together. these results suggest that light is more limiting than moisture for many plants in 

these forests. Open disturbed habitats were particularly strong contributors to species richness at the 

quadrat scale. whereas. closed dry forest floors were the strongest contributors to species richness 

at the patch and landscape spatial scale. While closed seasonally moist forest floors and seeps were 

important contributors to species richness at the quadrat scale. moist and wet habitats were modest 

to weak contnbutors to species richness at Iarger spatial scales. Habitats created by natural 

disturbance (tip-up mounds, tree pits. logs. stumps. raised root mats) were tvpically weak 

contributors to species richness at al1 spatial scales. 

These results may depend in part on differences in sampled area. Habitats in these forests were 

typically closed and seasonally dry (Table 4.7). Open microhabitats occupied 16.5 % of the sampled 

area and were typically drv. whereas? seasonally moist or wet habitats occupied 2 1 3% of the 



Table 4.7. Comparison of microhabitats by moisture and canopy closure class. Legend: % 
SA = % of total sunreyed area ( 19,200 m'). 

Microhabitat 

I .  MOiSTURE STATUS 

# Quadrats 
Present 

Total Area Mean Are" (rn') 1 m2 , 
per Quadrat 

When Present % SA 

closed canopy 1 170 1 76.8 1 13.031 1 68.0 

Dry Habitats 1 188 1 80.3 

Open canopy 1 43 1 47.8 1 2.03-1 1 10.7 

closed canopy 

15.105 

opencanopy 1 19 1 58.4 1 1.109 1 5.8 

78.7 

II. LIGHT STATUS 

Closed Habitats 

dry habitats 

moisu'wet habitats 

Open Habitats 

dry habitats 

moistfwet habitats 

174 

170 

58 

47 

92.2 

76.8 

5 1.5 

67.3 

1 6.03 7 

33.05 1 

7.986 

3,163 

43 

19 

83 -5 

68.0 

15.6 

16.5 

2.054 

1.109 

47.8 

5 8.4 

10.7 

5 -8 



sampled area and were typically closed. These patterns increase the probability of recording 

restricted species in both closed - dry and closed - moist habitats. Passive sarnpling effects. however. 

cannot account for the tendency for open lanejroads and open regenerating fields to contribute more 

to species richness than their closed counterparts. since the open phase of these habitats occupied 

an equal or smaller percentage of the total sampled area than the closed phase. at each spatial scale. 

Nor. for similar reasons. can passive sarnpling account for the tendency for open seeps. open 

pit/mound complexes. and open raised root mats. to contribute more to species nchness than their 

closed counterparts at the quadrat spatial scale. Nor. for similar reasons. c m  passive sarnpling 

account for the tendency for closed seasonally moist floors to consistently contribute more to species 

richness than the open phase. 

4.3.2 Piant Trait Correlates of Species Richness 

4.3.2. 1 Generalized Linear Regression Models 

Plmt trait correlates of species nchness in 1 0m x I Om quadrats are reported in Table 4.8. in relation 

to the following groupings: mode of dispersal. life history. provenance. life form. habitat affinity. 

shade tolerance. moisture affinity. and. overall model. Scatter plots of the most influential dispersa1 

correlates are presented in Figures 4.10 and 4.1 1.  

0 Mode of Dispersa1 

Modes of dispersa1 that mavirnall y explained O bserved di lferences in species richness in 1 Om x 1 Om 

quadrats were dispersal by animal ingestion (iadj . = O . N i ) .  dispersa1 by wind (?adj .=O.DI). 

dispersa1 by unassisted means (Tadj.=O.3 1 7). and. dispersal by multiple modes (f adj.=O.Z46)(Table 

4.8). Modes with intermediate explanatory power were dispersa1 by prolonged dormanc y 

(f adj .=O. 199). dispersal by ants (f adj .=O. 1 52). and. dispersa1 by animal adhesion (+adj .=O. 1 14). 

Modes with minimal explanatory power were dispersal by mechanical expulsion (iadj.=O.O60) and 

dispersal by vegetative expansion (f adj .=0.050). 

Species rkhness was positively correlated with dispersal by animal adhesion. wind. prolonged 

dormancy. unassisted means. and multiple modes. and. negatively correlated with dispersal by 















Figure 4.10. Scatter plots of dispersal correlates of species richness in 1 Om x 1 Om quadrats 1. 
Legend: %AIH = % taxa herbs dispersed by animal ingestion: %ANTH = % tava herbs dis- 
persed by ants; %WINDH = % taxa herbs dispeeed by wind: %PDH = % taxa herbs dispersed 
by prolonged dormancy. 



Figure 4.1 1 .  Scatter plots of selected correlates of sprcies nchness in 10m x IOm quadrats II. 
Legend: %WASSH = % taxa herbs dispersed by unassisted means; %ACT = % taxa dispersed 
by animal conveyance (ants. or, seed caching by birds or marnmals). al1 life forms: %PDT = % 
taxa dispersed by prolonged domancy. al1 life forms: %UNASST = % taxa dispersed by uans- 
sisted means. al1 life forms. 



animal ingestion. ants. mechanical expulsion. and vegetative expansion. 

The percentage of tava that were herbs dispersed by unassisted means. prolonged dormancy. ants. 

and animal ingestion. explained 55.8 % of the variance in species richness in 10m x 10m quadrats. 

The percentage of taxa dispersed by unassisted means. animal conveyance (ants + seed caching by 

birds and mammals). and prolonged dormancy (al1 life forms). explained 56.5 % of the variance in 

species richness in 10m x 1Om quadrats. The former model represents a better statistical fit (p<W 

= 0.95 versus p<W = 0.67) and is considered to bc the superior mode1 for dispersa1 variables. 

Pair-wise interactions were common among dispersal variables (superscript 3-1 1 ). and between 

mode of dispersal and life history (superscript 1 5- 1 7 ). habitat affinity (superscript 28-3 1 ). and 

moisture affinity (superscript 39-43) (Table 4.8). Less common were interactions behveen mode of 

dispersal and provenance (superscript 18-19). life tom (superscript 20-26). shade tolerance 

(superscript 3 3-37). 

ii) Life History 

Life history variables that mavimally explained observed differences in species richness in 1Om x 

10m quadrats were the percentage of taxa that possessed a biennial (r%dj.=O. 1 54) or perennial 

(?adj .=O. 132) life history (Table 4.8). The latter mudel is considered to be the superior model for 

life history variables in view of its superior statistical fit. The percentage of taxa that possessed an 

annual life history explained a significant but srnall fraction of the observed variance in species 

nchness ( iadj  .=O.O43). 

Species richness was positively correlated with the percentage of taxa with an annual or biennial life 

history. and. negatively correlated with the percentage of tava that possessed a perennial life history. 

Pair-wise interactions were cornrnon among life history variables (superscript 1 5- 1 7) and between 

life history variables and mode of dispersal (superscript 3- I I ). provenance (superscript 1 8- 1 9). life 

form (superscript 20-26). habitat afinity (superscript 28-3 1). and shade tolerance (superscript 33- 

37). Plants with an annual or perennial life history interacted with moisture affinity (superscnpt 39- 



43) whereas plants with a biennial life history did not. 

iii) Provenance 

The percentage of taxa that were native species explained rnarginally more variance in specirs 

richness than the percentage that were not (f adj.= 0.168 venus 0.256. respectively) (Table 4.8). The 

former model is considered to be the superior model ter provenance variables in view of its superior 

statistical fit and explanation of variance. 

Species richness was positively correlated with the percrntage of tma that were alien species. and. 

negatively correlated with the percentage of taxa that were native. 

Pair-wise interactions were common between provenance variables and mode of dispersal 

(superscript 3-1 1). life history (superscript 15-1 7). life Fom (superscript 19-26). habitat affinity 

(superscript 28-3 1). and shade tolerance (superscript 3 -37) .  Provenance variables did not intrract 

with moisture affinity (superscript 39-43 ). 

iv) Life Form 

Life form variables that rnaximally explained obsewed di fferences in species richness in 1Om x 1Orn 

quadrats were the percentage of taxa that were grasses ( iadj .= 0.273) and trees ($adj .= 0.263) (Table 

4.8). Variables with intemediate explanatory power uere the percentage of taxa that were vines 

($adj.= 0.178) and herbs (?adj.= O. 137). The percentage of taxa that were fems (f adj.= 0.055) and 

shmbs ($adj.= 0.03 1) explained a significant but minor hction of variance in species richness. The 

percentage of taxa that were fem allies did not explain observed differences in species richness 

(p>F=0.08). 

The percentage of taxa that were trees and vines collectively explained 32.5 % of the variance in 

species ric hness in I Om x 1 0m quadrats. 

Species nchness was positively correlated with the percentage of taxa that were vines. fern allies. 

grasses, and herbs. and. negatively correlated ~ 4 t h  the percentage of taxa that were trees. shrubs. and 



ferns . 

Pair-wise interactions between life f o m  and life history (superscript 1 5- 1 7) were more cornmon than 

interactions among life forms and between life form and other plant traits. The percentage of taxa 

that were trees. shrubs. and grasses did not interact with moisture affinity (superscnpt 39-43). 

v) Habitat Affinity 

Habitat affinity variables that mmimally explained observed differences in species nchness in 1 Om 

x 10m quadrats were the percentage of taxa with an affinity for open (?adj.= 0.388) and forested 

($adj.= 0.214) habitats (Table 4.8). The percentage of taxa with an affinity for "open + forest" 

habitats ($adj.= 0.194) explained more than twice as rnuch variance in species richness as taxa with 

an affinity for "forest + open" habitats ($adj.= 0.073). 

The percentage of taxa with an affmity for "open" and " forest" habitats collectively explained 41 -4% 

of the variance in species richness in 1 Om x 1 Om quadrats. 

Species richness was positively associated with the percentage of taxa with an affinity for "open + 

forest" and "open" habitats, and. negatively correlated with the percentage of twa with an affinity 

for " forest" and "forest + open" habitats. 

Pair-wise interactions were cornmon arnong habitat affinity variables (superscript 28-3 1). and. 

between habitat affinity variables and mode of dispersa1 (superscnpt 3- 1 1 ). life history (superscript 

15- 17), provenance (superscript 18- 19). life form (superscript 20-26). shade tolerance (superscript 

33-37). Only the interactions between moisture affini ty and the percentage of taxa with an affinity 

for "forest + opentt and "open" habitats were significant. 

vi) Shade Tolerance 

Shade tolerance variables that maximally explained observed differences in species richness in 1 Om 

x 10m quadrats were the percentage of taxa classified as shade tolerance class 5 (?adj.= 0.293). 

shade tolerance class 1 (iadj .= 0.2 14), and, shade tolerance class 2 (Fadj .= 0.1 70) (Table 4.8). The 



percentage of taxa classified as shade tolerance 4 (+adj .= 0.09 1 ) explained more variance than taxa 

classified as shade tolerance class 3 (?adj.= 0.024). 

The percentage of taxa classified as shade tolerance class 5 .  and shade tolerance class 1. collectively 

explained 32.5 % of the variance in species richness in IOm x 10m quadrats. 

Species richness was positively correlated with the percentage of taxa classified as shade tolerance 

class 4 and 5. and. negatively correlated with the percentage of t a a  classified as shade tolerance 

class 1 and 2.  

17 ') Pair-wise interactions were common among shade tolerance classes (superscnpt 33-37), and. 

between shade tolerance classes and mode of dispersa1 (superscript 3-1 1 ). life history (superscnpt 

1 5- 1 7). life form (superscript 20-27). Shade tolerance class interacted infrequently with provenance 

(superscnpt 1 8- 19) and moisture affinity (superscript 39-43). 

vii) Moisture Afinity 

Moisture affinity variables that mavirnally esplained observed differences in species richness in IOm 

x 10m quadrats were the percentage of tava that were facultative wetland species (+adj.= 0.30 1 ). 

facultative upland species ($adj.= 0.269). obligate upland species (?adj.= 0.255). and obligate 

wetland species (f adj.= 0.21 4) (Table 4.8). The percentage of taxa with a facultative affinity for 

moisture did not explain observed differences in species richness (p>F=0.87). 

The percentage of taxa that were facultative wetland species was considered to be the superior mode1 

for moisture affinity variables in view of its superior statistical fit and explmation of variance. 

Species richness was positively correlated with the percentage of taxa classified as facultative 

wetland, and obligate wetland, species. and. negatively correlated with the percentage of taxa 

classified as facultative upland, and obligate upland. species. 

Pair-wise interactions were common among moisture affinity variables (superscript 3943). and. 



between moisture affinity variables and mode of dispersal (superscript 3-1 1). life history (superscnpt 

15-1 7), and. life form (superscnpt 20-26). Moisture affinity variables interacted infrequently with 

habitat affïnity (superscript 28-3 1)  and shade tolerance (superscript 33-37) and did not interact with 

provenance (superscript 18- 19). 

viii) Overall Mode1 

The combination of plant attributes that mavimally explained observed differences in species 

richness in 10m x 1 Om quadrats was the percentage of taxa that were herbs dispersed by unassisted 

means. prolonged dormancy. ants. and animal ingestion. This model. which explains 55.8 % of the 

observed variance in species richness. was considered superior to al1 other models because of 

supenor statistical fit and strong explanation of variance. An alternative mode1 (composed of the 

percentage of taxa dispersed by unassisted means. animal conveyance and prolonged dormancy) 

explained marginally more variance in species richness (56.5 % versus 55.8%) but was a weaker 

statistical fit (p<W = 0.67 veeus p<W = 0.95). 

1.3.3 Cornparison of Alternative Models of Species Richness 

1.3.3.1 Generalized Linear Regression Models 

The combinations of variables that mavimally explain differences in species richness in IOm x I Om 

quadrats are presented in Table 4.9. Models E l  and E l  summarize the optimum combination of 

environmental variables: models DI and D2 summarize the optimum combination of dispersa1 

variables; models M 1 through M5 sumrnarize the optimum combination ofenvironmental. dispersal. 

and life form variables. One outlier. quadrat #160. \vas removed From each model to improve the 

statistical fit (see Section 4.323).  

Models Dl.  D2. and M4 were considered inferior models in view of the comparatively weak 

statistical fit (p<W = 0.33. 0.1 1. 0.22. respectively). Models M 1. MX and M5 were considered 

supenor models in view of the excellent statistical fit (p<W = 0.88.0.95. 0.89. respectively) and 

strong explanation of variance (?adj. = 0.659.0.7 1 2.0.642. respectively). Interactions among model 

elements prevented an overall statistical evaluation of superior and inferior models (see Section 









4.2.1.3). In general. dispersal models explained more variance in species richness than did 

environmental models. and. mixed models explained more variance than either dispersai or 

environmental models. sensu srricto. Mode1 M3. which included environment, life form and 

dispersal variables. explained 29.9% more variance in species richness than model E2. which 

included only environment variables. 

4.3.3.2 Graphical Evaluation of Alternative Models of Species Richness 

The degree to which elements in alternative models explained sirnilar propenies of the underlying 

environment was evaluated graphically by submitting the elements of each model to detrended 

correspondence analysis (DCA) and using the resulting "species" scores to constnict a polygon in 

ordination space (see Section 4.2.2.3). The ordination space enclosed by each polygon was 

interpreted to represent the portion of sarnple space ma~imally explained by each model. Rcgression 

rnodels that overlapped in ordination space were considered less distinctive than models that did not. 

The results of this analysis are summarized in Table 4.10: representative graphical solutions are 

presented in Figure 4.12. The most distinctive modrl contrasts were between regression modrls E? 

and M 1 (no overlap in ordination space). E 1 and D I  (minor overlap). and. M 1 and M2 (minor 

overlap). Al1 other models overlapped moderatel y or 

elements occupied distinct regions in ordination space 

regression models: e.g. elements El4 (open micro 

conveyance) when present with elements in model D 1 

strongly in ordination space. Individual 

when evaluated in contrasts with selected 

iabitats) and D 12 (dispersa1 by animal 

(Figure 4.12): element M34 (dispersai by 

animal ingestion) when present with elements in model Ml (Figure 4.13); element M53 (soi1 

rnoisture) when present with elements in model Ml (Figure 4.13): and element M33 (dispersal by 

prolonged dormancy) when present with elements in model M5 (Figure 4.13). However. dispersal 

and environmental elements typically occupied proximate positions when present with elements in 

the superior models of species richness: M 1. M3 and M5 (Figure 4.13). These results suggest that 

while each mode1 addresses unique regions in ordination space. the models in this study prirnarily 

represent alternative ways of explaining underlying causai factors. 



Table 4.10. Summary of graphieal evaluation of leading models of species richness. Legend: E = 

environmental model, D = dispersal model, M = mixed model. Minor overlap: 4 0% area of smaller 
polygon: moderate overlap: 1040% area of smaller polygon: major overlap: >50% of area of srnaller 
polygon. 

Mode1 1 DCA Ordination Space 1 Degree of Overlap 

E l  vs EZ 1 overlap 1 moderate 

Dl  vs D2 1 overlap 1 major 

M l  vs M2 1 overlap 

M l  vs M3 1 overlap 1 moderate 

Ml  vs M4 1 overlap 1 moderate 

overlap 1 moderate 

overlap I major 

overlap 1 rnoderate 

M2 vs M5 I overlap I major 

bf 3 vs hl4 I overiap I major 

M3 vs M5 I overiap I major 

M4 vs M 5  1 overlap 1 major 

E l  vs DI I overlap moderate 

E l  vs D2 I overlap major 

overlap major 

El vs M2 1 overlap 1 moderate 

E l  vs M3 1 overlap 1 major 

E l  vs M4 

E l  vs M5 

E2 vs Dl  

E2 vs D2 

E2 vs Ml  

E2 vs M3 

€2 vs M3 

overlap 

overlap 

overlap 

overlap 

separate 

overlap 

overlap 

moderate 

moderate 

minor 

minor 

none 

moderate 

major 



Table 4.10. Summary of graphical evaluation of leading models of species richness (cont'd). 

E2 vs MS 1 overlap 

Mode1 

moderate 

overlap 

DCA Ordination Space 

major 

Degree of Overlap 

E2 vs M4 1 overlap 

Dl  vs M 2  1 overlap 

moderate 

Dl  vs M3 I overlap moderate 

Dl vs M4 1 overlap moderate 

Dl vs M5 1 overlap 1 moderate 

D2 vs M2 1 overlap 1 moderate 

D2 vs Ml  overlap 

- - p. . -- - - - - - - 

D2 vs M3 

D2 vs M3 

0 2  vs MS 

major 

over l ap 

overlap 

overlap 

moderate 

moderate 

moderate 



NO OVERLAP MlNOR OVERLAP 

MODERATE OVERLAP MAJOR OVERLAP 

DCA AXlS 1 

Figure 4.1 2. Representative results fiom graphical evaluation of leading GLM models of species 
richness. Legend: Minor Overlap: < 10% area of smaller polygon: Moderate Overlap: 10% - 
50% area of smaller polygon: Major Overlap: >50% area of smaller polygon. See Table 4.14 for 
description of regression models. 



DCA AXIS 1 

Figure 4.13. Graphical evaluation of superior GLM models of species richness. Lrgend: M 1 1 
= mixed model. number 1, element 1. See Table 4.14 for description of elements and models. 
DCA = Detrended Correspondence Analysis (ter Braak 1987). 



The results of the graphical evaluation of the "superior" rnodels of species richness are presented in 

Figure 4.13. Model 1 was the most distinct. based on the degree of overlap in ordination space. 

whereas models M3 and M5 were the most similar. The portion of ordination space shared by al1 

three models was very small. 

Shared elements arnong models have presumably contributed to overlaps in ordination space when 

present (e.g. D2 vs MI. M3 vs M5). The contribution of shared elements to similarities in the 

fraction of variance explained by each model. however. is more difticult to discem. owing to the 

degree to whic h the elements in a given model CO-vary . lnspec tion of the partial F statistics for rac h 

model (Table 4.1 1 )  reveals that the contribution of variables-in-cornmon is largely context 

dependent. 

4.3.4 Contribution of P hylogeny 

The variables that explain species richness in a given linear regression model may depend in part on 

the tavonornic rank at which the relationships are examined. Variables that are significant. and non- 

interacting. at one taxonomic rank may not retain this status at more inclusive ranks owing to a 

reduction in the number of degrees of freedom. The regression models reported in Table 4.9 were 

re-evaiuated at the ranks of genus. farnily and order to determine their dependence on taxonomic 

rank. The results of the analysis for the superior models are reported in Table 4.12. 

As expected. the variance explained by a given model. and the quality of the statistical fit. declined 

with taxonomic rank. The number of interacting elements typically increased with taxonomic rank 

and, depending on the model, peaked at the rank of genus. family or order. The relative importance 

of variables often depended on the taxonomic rank of the analysis and elements in selected models 

did not retain their significance at the more inclusive ranks. The mean number of tava in a given 

10m x 10m quadrat was 42.5 species. 33.4 genen. 23.2 families. and 19.0 orders. 

The mon apparent cause of the interactions reported in Table 4.12 is the progressive inclusion of 

plant attributes at the higher taxonomic ranks (Table 4.13). This tendency is most strongly expressed 

at the rank of order, where more than 50 % of the orden included more than one mode of dispersal. 



Table 4.1 1 .  Explanatory variables included in leading models of species richness (Table 4.9). 
Legend: E = environmental model, D = dispersai model. M = mixed model, ALF = a11 life forms. 
H = herb life form. See Table 4.9 for descriptions of models and surnrnary statistics. 

Variable 1 Model(s) 1 Partial F 1 P> F 

forest cover type 

# tree species 

% canopy closure 

open microhabitats 

-- 

El  66.16 
M2 75.5 1 

E 1 18.29 
E2 43.19 

# stems 0-4 cm dbh 

soil rnoisture class 

--- 

soil parent material 

% unassisted means(ALF) 

Oh animal conveyance (ALF) 1 DI 1 46.15 1 <O.OOO 1 

% prolonged dormancy (ALF) 

% unassisted means (H) 

% prolonged dormancy (H) 



Table 4.1 1 .  Explanatory variables included in leading models of species richness (cont'd). 

% animal ingestion (H) 

Variable 

% stems sugar maple 1 M l  1 92.36 1 <O.OOO 1 

Model(s) 

% grasses 

soi1 order 

O h  wind (H) 1 Mj 1 49.1 O 1 <O.OOO 1 

Partial F 

open regenerating fields 

P'F 

M3 

M4 

M4 

1 

34.58 

5.08 

4.53 

<O.OOO I 

0.0007 

0.03 47 



Table 4.1 2. Contri but ion of pliy logeny to superior niodels 01' specics richness. Ciraeralized linear regression (Ci1.M) inodels, by row. 
Prediçtor variables arc the percentage oî'species, genera, hniilies. or. ordcrs. in I Oni x I Oin quadrats, with the specified attribute. Sqrt 
= square root; In plq = In [(proportion)+( 1 -proportion)]; n.s. = not sigiiilicant (pz0.05); Al = % taxa herbs disprrsed by aninial ingestion; 
ASACC = % live stems > l  m Acer sricchrtrirni; CC = % caiiopy closure: GRASS = % taxa grasses; MC = soil iiioisture çlass; PDH = % 
taxa herbs dispersed by proloiiged dormancy; PDI' = % taxa dispersed by prolonged dorniancy (al1 lire Fornis); SPM = soil parent material; 
WlND = % taxa Iierbs dispersed by wind; UNASS = % taxa Iierbs dispersed by unussisted nirans; 0-4 cm dbh = sqrt # stems 0-4 cm dbh. 
One outlier, quadrat ft 160, removed from eaçh inodel. 

Model 

MODEI, M 1 - SPECIES: % s t e m  sugar niaple + % tasil 
Iierbs disperscd by unassisted nieaiis + % taxa dispersed by 
p r o l o n p d  dormancy (al1 li fe Soriiis)' 

liesponse 
Variable 

sqrt # spp 

MODEL M I - GENUS: % tasa dispcrsed b y  prolongcd 
dori i iai icy (al1 l i fe  forriis) + % s t e m  siigar mziple + % tasa 
Iierbs dispersed by iiiiüssistcd iiieaiis' 

# gencrii 

Mt )I)i:l. M I - 1w.A MI I .Y: 'Yo  sa dispcrscrl by prciloiigcrl 
dor r i~a l icy  (al1 l i f è  fbriiis) -t % stciiis siigar i i iaplc + O/u tasa 
herbs dispersed by unassisted liieatis' 

it fiiiii il ics 

MODEL M I - OHDER: % taxa disperscd by proloi iged 
dorrnaiicy (al1 liSc f'oriiis) + YO stciiis sugar niüple + O/u irisa 
Iierbs dispersed by uiiassisted ~iieaiis' 

# ordcrs 

MODEL M3 - SPECI ES: sqrî # stems 0-4 cni  dbli + % tnsü 
grasses + % tasa l w b s  dispersed by proloi iged dori i iüncy + % 
Iierbs dispersed by ari i i i i i i l  ingcstioii t. % canopy closiirt. -t 
forest cover type5 

1: 
Statistic 

wlrt # spp 

50.16 

53.18 

p- 
Value 

0.000 1 

0.0001 

p<W1 9 adj. 1 nteraction 

0.4787 

0.71 19 

0.06 

0.95 

ASACC s UNASS 

ASACC >i PD'I' 

11 o 
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Table 4.13. Proportion of taxa with selected plant attributes at progressively more inclusive 
taxonomic ranks. Categories: Moisture Affinity: obligate upland, facultative upland. facultative. 
facultative wetland. obligate wetland; Light Affinity: Shade tolerance class 1 (very shade tolerant) - 
class 5 (very shade intolerant); Mode of Dispersal: animal ingestion, animal adhesion. animal 
conveyance, wind, prolonged domancy, mechanical expulsion, unassisted means. Cell entries = % 
classified taxa with specified number of attribute categories. 

Taxonomie 1 # 1 # A ttri bute Categories 

MOISTURE AFFINITY 

Rank classi fied 
taxa 

S pec ies 

Genus 

Fam i l y 

Order 

- - 

MODE OF DISPERSAL 

Species 

Genus 

Fam i l y 

Order 

. 

387 

204 

76 

45 

1 

266 

17 1 

62 

45 

Species 

Genus 

Farnily 

Order 

1 O0 

73.5 

46.1 

28.9 

1 O0 

81.3 

56.5 

26.7 

4 13 

208 

77 

45 

2 

O 

17.2 

22.4 

17.8 

4 3 

O 

12.9 

17.7 

17.8 

88.1 

86.5 

66.2 

42.2 

O 

4.4 

5 

O 

5.3 

16.1 

31.1 

11.1 

12.5 

14.3 

20.0 

> 1 

O 

2.5 
i 

O 

0.6 

9.7 

11.1 

0.5 

I .O 

11.7 

--.- 33 3 

O 

1.5 

17.1 

26.7 

O 

25.5 

10.5 

15.6 

3.9 

1 1 . 1  

O 

O 

O 

13.3 

53.9 

71.1 

O 

18.7 

43.5 

73.3 

11.9 

13.5 

33.8 

57.8 

0.2 

O 

2.6 

4.4 

O 

O 

5.2 

1 1 . 1  



and. where more than 70 % of the orders included more than one moisture or light affnity. 

Taken together. these results reveal the models of species richness developed for this study are 

sensitive to the tavonomic rank at which they are assessed. This provides indirect evidence that 

phylogeny has contributed to the nurnber of tava recorded in I Om x 10 m quadrats in this study. 

4.4 Discussion 

i) Environmental Heterogeneity 

Environmental heterogeneity. in this study. is spatial and temporal variation in conditions that 

eovem the germination. establishment. growth and reproduction of plants. When measured in 
C 

relation to traditional environmental variables. heterogeneity in the availability of moisture. nutrients 

and light explains up to 58.3% of the variance in species richness in 1 Om x 1 Om quadrats (Table 4.9). 

When measured in relation to microhabitats. heterogeneity in site conditions at the landscape scale 

has facilitated the germination and establishment of 38.3% of the sampled flora ( 158 species) thar 

was not recorded on closed. seasonally dry. forest tloors. sensu srricto (Appendix 5 ) .  

The contribution of microhabitats to species richness ivûs strongly scalr dependent. Whereas 2 I of 

25 evaluated microhabitats contributed to differences in species richness at the quadrat scale (Table 

4.4). only 9 of 20 evaluated microhabitats contributed to differences in species richness at the patch 

scale (Table 4.5). In contrast. whereas 38 of 39 habitats contained at least one unique species at the 

quadrat scale (Table 4.4). only 13 of 39 microhabitats contained at least one unique species at the 

landscape scale. and only five of these contained five or more species not recorded elsewhere in the 

forest understory (Table 4.6). 

One apparent reason for this pattern is that the distribution of species has been constrained by 

opportunities for germination. establishment and persistence. In a spatially variable environment. 

differences in plant traits are expected to Iead to pattern in the distribution of species and in the 

composition of local plant assemblages. In this analytical setting, the probability of encountering a 

new species scales with the size of the sampled area and with the scale of heterogeneity in the local 



environment. The observed decline in the number of species restricted to a given habitat is 

consistent with this scaling relationship, and. with the passive sarnpling e f k t s  associated with an 

increasing sample size. This suggests that an increasing proportion of the species capable of 

occupying a given habitat were recorded as the size of the sampled area increased fiom quadrat to 

patch to landscape. The sharp decline in the number of contributing habitats in the transition from 

quadrat to patch suggests that much of the regional variance in environmental heterogeneity was 

capnired at the scale of the forest patch. 

Additional factors that may have contributed to this pattem of scale dependence include: the drgree 

of habitat specialization in the sampled fion: the thresholds used to differentiate continuous 

environmental states into discrete habitat types: the decision to evaluate the relationship at the habitat 

level. and not in relation to more genenlized categories: the sampling decision to locate al1 eight 

1 Om .u 10m quadrats within a 35 metre radius ot'a fixcd sampling point within each forest patch: and. 

plant dispersal. 

The contribution of dispenal to observed differences in the distribution and composition of plant 

assemblages is less transparent. given the decision to sample plants rather than propagules in this 

study. Nevertheless. the repeated observation that most propagules land in close proximity of the 

materna1 plant (Appendix 1 1) suggests that dispersal ma- rarely lirnit the availability of propagules 

within 10m x 10m quadrats. on ecological time scales. This suggests. in turn. that pattem in the 

distribution of species at this spatiai scale is controlled primarily by factors that govem germination. 

establishment and persistence. Dispersal on the order of decimetres to metres may also be sufficient 

to sample al1 habitats with a given forest patch. on most ecological time scales. since al1 eight 

quadrats were located within a 35 metre radius of a fised sampling point. 

Dispenal to nearby forest patches currently requires a mean dispenal reach of 41m tol378m. 

depending on the degree of forest cover in the landscape. Dispersal over this distance should not 

pose an absolute constraint for taxa dispersed by birds and large mammals (38.5% of the sampled 

flora) and for taxadispersed by spores or winged and plurned seeds of low mass (proportion of wind- 

dispened taxa 30.5% of the sampled flom unknown). Such distances will be beyond the normal 



reach of species dispersed by other means, however. and. except for rare long-distance dispersal 

events. the propagules of these species will remain within the curent patch. Dispersal beyond these 

distances is presurnably a low-probability event for even the most mobile of species and thus plant 

migration, rather than dispersal. is the more relevant consideration when evaluating the distribution 

of plants at the landscape scale. 

Taken together. this reasoning suggests that the distribution and richness of plant assemblages in 

these forests has been not been constrained by dispersal. given the length of time available. post- 

glacially. for the dispersal and migration of less mobile taxa. The number of species restricted to 

a particular habitat. therefore. has been influenced primarily by the spatial and temporal scale of 

heterogeneity in the local environment and by the spatial scale of the analysis. 

Heterogeneity. when measured as the number of microhabitats in a given 10m x 1 Om quadrat. was 

a significant but weak contributor to species richness (p=0.0007. $adj = 0.054. Table 4.1 ). The mean 

number of habitats per IOm x 1 O r n  quadrat was 3.01 and ranged from one to ten habitats 

(supplementary anaiysis not shown). The weak explanaiion of variance suggests that diversity in the 

nurnber of habitats is less important at this spatial scale than the attributes. and area. of the habitats 

that are present. 

The habitats that contributed maximally to species richness. at every spatial scale. were closed 

seasonally dry forest floors. open regenerating fields. and. open laneshoads (Tables 4.4.4.5.46). 

These habitats stand in contrast to one another. with respect to available light. habitat structure and 

site history; and. to related habitats in the forest understory. with respect to availabie moisture. 

substrate. transience, and sarnpled area. Seasonally dry forest floors were more species rich than 

open lanes/roads and open regenerating fields with respect to total species nchness (255 species. 18 1 

species. and 147 species. respectively, Appendix 1 1 )  but were far less species rich with respect to 

mean-richness-when-present (3 1.1 species. 50.7 species. and 58.0 species. respectively : supple- 

mentary anaiysis not shown). When differences in habitat transience and area are taken into account. 

open laneskoads and open regenerating fields are markedly species rich. by any measure, since the 

latter habitats are transient in tirne and individually occupied only 1.3% of the total sampled area 



(Table 4.4). whereas. closed seasonally dry forest floors persist for the life span of the canopy and 

occupied 54.3% of the total sampled area. 

One apparent reason for the large number of restricted species in these habitats is the suite of 

adaptations required to germinate. establish. and persist in low and high light environments. One 

plant trait that has been differentially favored in these habitats is mode of dispersal. Herbs recorded 

on closed. seasonally dry forest floors were disproportionately dispersed by animal ingestion 

whereas herbs recorded on open Ianes/roads were disproportionately dispersed by prolonged 

dormancy (Table 3.1 1 ). In contrast. herbs recorded in open regenerating fields were 

disproportionately dispersed by the wind. It may not be coincidental that herbs dispersed by these 

modes are the most mobile tava in these forests (Appendis 1 1 ). since the seed rain from mobile taxa 

is more likely to include a greater proportion of specirs from the surrounding landscape with the 

capacity to establish in such habitats. 

One habitat factor that presumably contributes to this pattern is available light at the soi1 surface. 

Establishment in dense shade. for example. has k e n  shown to be facilitated by seed reserves that 

enable seedlings to survive to the cotyledon stage (Saverimuttu and Westoby 1996). This enables 

plants with large seeds to specialize on shaded conditions and to avoid the reduction in mean annual 

fitness that arises when dormancy constnins the number of seeds produced in favorable years 

(Venable and Brown 1988). Selection pressure for the evolution of dormancy is therefore rxpected 

to be weak in closed Forest habitats. In contrast. dormancy is expected to be favored in open habitats 

where the capacity for delayed germination enables plants to avoid unfavorable conditions and to 

specialize on conditions that maximize reproductive success (Brown and Venable 1986. Cohen and 

Levin 1987). Selection pressure for the evolution of dormancy in these environments is expected to 

be greatest in small-seeded annual and biennial plants since the cost of reproductive failure is 

extirpation. In keeping with these expectations. the number of herbs in this study dispersed by 

prolonged dormancy increased with increasing light availability and no herbs with an apparent 

finity for forested habitats were dispersed by prolonged dormancy (Table 3.7). 

The tendency for herbs dispersed by prolonged dormancy to occur more frequently on open lanes 



than in open regenerating fields may also be due to differences in available light since leaf litter was 

absent on the traveled portion of lanes but present in regenerating fields (persona1 observation). The 

periodic breakage of stems by passing vehicles and equipment. and the cnishing of plants by tires. 

may also be important since on lanes and access roads the mean height of plants dispersed by 

prolonged dormancy was significantly lower than plants dispersed by wind or by both wind and 

dormancy (mean minimum height = 17.3 cm. 32.3cm and 32.3, respectively. p>f = 0.0097: mean 

maximum height = 76.6 cm. 133.2cm. and 146.4 cm. respectively. p>T = 0.000 1 : supplementary 

Wilcoxon rank sum tests. based on data on stem heights presented in Gleason and Cronquist 199 1. 

not shown). The mean heights of plants dispersed by prolonged dormancy was also lower on open 

lanes than in open fields. but not signi ficantly so. In genrral. however. herbs dispened by prolonged 

dormancy were significantly shorter than herbs dispersed by wind or by both wind and domancy 

(mean minimum height = 23.0 cm. 31.2 cm and 30.0 cm. respectively. p>p = 0.0333: mean 

maximum height = 8 1.4 cm. 12 1.7 cm. and 139.5 cm. respectively. p>f = <0.000 1 ). Taken together. 

these results suggest that habitat conditions in lanes and fields have favored the persistence of plants 

with contrasting traits that are causally or passivcly correlated with mode of dispersal. 

ii) Environmental vs Plant Correlates of Species Richness 

Overall. plant anributes in this study explained more variance in species richness in 10m x IOm 

quadrats that did physical attributes of the environment (i adj. = 0.6285. Model D 1. versus 6 adj. 

= 0.5833. Model E 1. Table 4.9). Plant attributes that maximally explained differences in species 

nchness were mode ofdispersal (i adj. = 0.5583). habitat affinity (? adj. = 0.4143). life form (? adj. 

= 0.3373), shade tolerance (i adj. = 0.3247) and moisture afinity (f adj. = 0.3014) (Table 4.8). In 

contrast. environmental attributes that maximally esplained differences in species richness were 

stand structure (i adj. = 0.5485) and soils (I? adj. = 0.3557) (Table 4.1). Significant but weak 

predictors of species richness were life history (6 adj. = 0.13 15). human disturbance (9 adj. = 

0.1280). landscape variables (6 adj. = 0.0658) and environmental heterogeneity (i adj. = 0.0537) 

(Tables 4.1 and 4.8). 

The tendency for plant attributes to explain more variance than physical attributes of the 

environment was not unexpected. Plants in the forest understory sample spatial differences on the 



scaie of centimetres and temporal differences over the course of a life span, whereas. apparent 

differences in moisture. nutrients and light were measured or characterized on the scale of decimetres 

to rnetres and over the coune ofone field season. The similarities in explained variance suggests that 

the scale of the environmental data was appropriate for the scale of heterogeneity in the environment. 

The overall fraction of explained variance. however. suggests that important factors may have been 

weakly characterized or overlooked. 

Among plant attributes. mode of dispersal explainrd far more variance than life form. shade 

tolerance or moisture affinity. One apparent reason for this pattern is that the rnoisture affinity and 

shade tolerance of taxa both varied in relation to mode of dispersa1 (p>f = 0.02. and <0.0001. 

respectively. supplementary log likelihood ratio tests. not shown). In contrast. only the shade 

tolerance of taxa varied with life form (p'f =<0.000 1 ): the moisture affinity and shade tolerance 

of classified species were not associated (p>f = O. 42). Di fierences in rnoisture and light availability 

are thus more likely to be accounted for by modes of dispersa1 than by life form. or by moisture and 

light affinity alone. 

Mode of dispersa1 also explained more variance than habitat affinity (? adj. = 0.5583 versus 0.4 143. 

respectively. Table 4.8). The most apparent explanation for this pattern is that mode of dispersal 

was also strongly correlated with calcium availability in the upper 15 cm of the soi1 profile whereas 

habitat afinity was not. Thus differences in moisture. nutrients and light are more likely to bc 

correlated with mode of dispersal than with habitat affinity alone. 

The degree to which dispersal has contributed to differences in species richness was not resolved. 

While there is indirect evidence of directed dispersal by birds in former canopy gaps. and by birds. 

marnmals and ants on disturbance features associated wi th former canopy gaps (tip-up mounds. tree 

pits. logs. stumps. closed lanes), most propagules appear to be dispened at random and in close 

proximity to the maternai plant (Chapter 3). This suggests that the distribution of plants in a given 

1 0m x 10m quadrat has been determined primarily by factors that govem germination. establishment 

and persistence. 



However, the number of species with a particular anribute in a given quadrat rnay be influenced by 

dispersa1 since the seed rain From mobile tava is more likely to reflect the diversity of species in the 

surrounding region that are capable of establishing there. In keeping with this line of reasoning. the 

mean percentage of plants dispersed by animal ingestion in 10m x 10m quadrats was significantly 

greater than the proportion in the flora as a whole (herbs: l O. 1 % vs 6.7 %. p> 1 21 = 0.000 1 : al1 life 

forms: 27.6 % vs 16.9 %. p> 1 zi = 0.0000). This pattern was also apparent in plants dispersed by 

animal conveyance (al1 life forms: 15.8% vs 9.7%. p> z t  = 0.0000). These tava are typically shade 

tolerant and thus may be less constrained by understory conditions that species with an affinitp for 

open habitats. Approxirnately 80% of the taxa dispersed by animal ingestion were recorded on 

closed. seasonally dry. forest floors. 

The reverse pattern. however. was observed in plants dispersed by the wind (herbs: 10.1 % vs 3.4%. 

p>izl = 0.0000: al1 life forms: 29.69 % vs 30.5 O h .  p> z = 0.1054). This result was not expected 

and rnay reflect differences in the dispersal reach of seeds relative to spores. since the proportion of 

wind dispersed taxa approached their proportion in the sampled flora when fems and fem allies were 

included in the analysis. This pattern may also retlect a greater diversity in germination and 

establishment requirements arnong wind than animal dispersed taua. since only 67.6% ofthe species 

dispersed by wind were found in canopy openinys and only 49.2% were recorded in apparently 

Favorable habitats such as open roads and open regenerating fields (Appendix 1 1). 

On balance. these results sugpst that longdistance dispersa1 has enriched the proportion of species 

dispersed by animal ingestion and animal conveyance. Overall species richness has been govemed 

by additional factors. however. since dispersal by animal ingestion was strongly associated with low 

species richness in 1 Om x 1 Om quadrats whereas dispersai by wind was strongly associated with high 

species richness (Table 3.16). 

The degree to which dispersa1 and environmental factors accounted for a unique Fraction of the 

variance in species richness was evaluated indirectly by detrended correspondence andysis (DCA). 

The results of this anaiysis suggest that while certain combinations of dispersai and environmental 

variables may occupy distinct regions in ordination space. they primarily represent alternative ways 



of explaining the proximate mechanisms of causation. Modes of dispersal are thus strongly 

correlated with the habitat factors and plant traits that govem germination. establishment and 

penistence. Environmental variables, in tum. are correlated with modes of dispersa1 that determine 

the composition and size of the seed rain. the initial conditions that seeds and seedlings must 

confront. and, therefore, who interacts with whom and with what intensity. 

In these models (Figures 4.12.4.13). dispersal by animal ingestion was associated with soil moisture. 

whereas, dispersal by the wind was associated with the number of tree stems in the 0-4 cm dbh class. 

forest cover type. and soil parent matenal. In contrast. dispersa1 by prolonged dormancy was 

associated with sugar maple abundance and dispersal by the wind. whereas dispersal by unassisted 

means was associated with percent canopy closure. 

Factors that may contribute to the correlation of environmental and dispersa1 variables include: i )  

the predominance of short-distance dispersal in plant communities (Portnoy and Willson 1993. 

Hughes et al. 1994): ii) a convergence of germination and dispersa1 biology. owing to the necessity 

for prior germination and reproductive success for the transmission of dispersa1 alleles from parent 

to offspring (Venable and Lawlor 1980. Olivieri and Berger 1985. Venable et al. 1995. Cody and 

Overton 1996); iii) the presence ofhabitat factors that favor dispersal by some modes but not others 

(Cohen and Levin 198% Venable and Brown 1988.1993): and. iv) heterogeneity in local conditions 

goveming germination. establishment and persistencr ( Fowler and Antonovics 198 1. Robertson et 

al. 1988, Lechowicz and Bell 199 1. Palmer 1990). 

These factors suggest that the contribution of dispersal to species richness is both fundamental and 

pervasive. The failure to find strong evidence of this contribution. therefore. may be due more to 

the choice of methodology than to the importance of dispersal. per se. 

iii) Forest Stand Stmcture 

In this study, the environmental variables that mâuimally explained species rkhness were attributes 

of forest stand structure: fores cover type (F adj. = 0.2765), nurnber of tree species (? adj. = 

0.2682). and, the relative abundance of sugar maple (r' adj. = 0.2555) (Table 4.1). Stand structure 



variables explained more than 50% of the variance in species richness in 10m x 10m quadrars (Table 

4.1) and were important elements in the superior modttls of species richness (Table 4.9). 

The capacity of forest stand structure to account for species richness is due in part to the fact that 

measured attributes both respond to. and alter. the spatial and temporal availability of moisture. 

nutrients and light on the forest floor. As "consequence". stand structure reflects the past influence 

of physical and ecological processes that govem the distribution and abundance of plants in the 

Forest understory. As "cause". stand structure controls the spatial and temporal availability of light 

within the forest canopy and on the forest floor (Minkler and Woerhiede 1965. Hom 197 1. 1975. 

Messier and Bellefleur 1988. Canharn et al. 1990. Canham et ai. 1994. Brewer 1980): moderates the 

availability of nutrients and moisture in the rooting zone of Forest soils (Aber et al. 199 1. Pastor and 

Post 1986. Zinke 1962. Crozier and Boemer 1984.1986. Leininger and Winner 1988. Boerner and 

Koslowsky 1989): determines the quantity and quality of coarse woody debris on the forest tloor 

(Hannon et cal. 1986. Hale and Pastor 1998): intluences the probability and size of tree pits created 

during wind-throw events (Putz et u2. 1983): and. intlutrnces the timing and size of gaps in the forest 

canopy (Lorimer et ni. 1988. Lonmer 1989. Frelich and Lorimer 199 1 ). 

As a causal factor. stand structure contributes to species tichness by providing spatial and temporal 

heterogeneity in the fom of logs. stumps. tree pits. tip-up mounds. raised root mats. and çaps in the 

Forest canopy. These features provide novel resources for the germination. establishment and 

persistence of new species and for the CO-existence of species already established on the Forest floor. 

The results of this study suggest that contribution to coesistence ma- be far more important than the 

contribution to richness per se. 

At small spatial scales. habitat features created by the death of canopy trees provide novel and 

alternative settings for the germination of propagules from nearby plants. and. the number of local 

species is substantiaily enriched (Table 4.4). At larger spatial and temporal scales. these features 

increasingly represent alternative rather than novel habitat. owing to the apparent tolerance of plants 

to conditions created by the death of a canopy tree (Figure 2.9). and. the number of new species 

recorded on these features declines (Tables 4.5 and 4.6). When viewed from the perspective of the 



forest patch, or regionai landscape, the contribution of habitats created by the death of canopy trees 

to species richness is strikingly modest relative to the contribution of the forest floor. 

The predorninance of short-distance dispersai in plant communities. however. suggests that the 

appropriate spatial scale for this analysis is on the order of metres to tens of metres. At this spatial 

scale, the availability of altemative habitat is expected to promote species coexistence by increasing 

the probability that there will be some place. or time. where cornpetitors perform poorly or do not 

survive and where populations of low abundance species may expand (Hutchinson 196 1. Levin 

1974. Warner and Chesson 1985. Comins and Noble 1985. Hurt and Pacala 1995). In keeping with 

this expectation, more species in this study were recorded in canopy gaps (282) than on tip-up 

mounds (1 80), logs (l20), pits (97) or stumps (64) (Appendix 1 1). This suggests that species in the 

understory of these forests differ in their capacity to colonize or persist on these features. and. that 

the principal contribution of habitats created by the death or removal of canopy trees may be the 

maintenance, rather than generation. of species richness. 

n i e  principal mechanism by which stand structure contributes to differences in species richnrss. 

however, is by altering the spatial and temporal availabiiity of light within the forest canopy and on 

the forest floor. For plants in these settings. the composition of the canopy matters. owing to 

differences arnong species in the arrangement of leaves and stems (Hom 1971. Brown and Parker 

1994), the transmission of light (Canham et al. 1994). the seasonal pattern of leaf expansion and 

senescence (Brewer 1980). the shade tolerance of seedlings and young saplings (Kobe er al. 1995. 

Lusk and Reich 2000), and, life span (Lorimer 1989). In the forests exarnined in this study. the 

species that exerted the greatest control was sugar maple (supplernentary correlation analysis not 

shown: % stems Acer saccharum. % stems Faps  grundifolia. % stems Tsuga canadensis. % stems 

shade intolerant and very shade intolerant trees, % stems wet-mesic or wet trees. % taxa in shadr 

tolerance class 1. class 2, class 4. class 5). Although capable of casting a deeper shade than sugar 

maple (Canham et al. 1994), beech and hemlock exerted little influence over the availability of light. 

owing to their Iow density in the forest canopy. 

In keeping with these patterns. the number of species in 10m by 10m quadrats was strongly and 



negatively correlated with the absolute and relative ûbundance of sugar maple. Sugar rnaple 

abundance explained 25.6% of the overall variance in species richness (Table 4.1 ) and up to 63.0% 

of the variance in species tichness in undisturbed quadrats on Brunisolic and Luvisolic soils 

overlying calcareous till (Figure 4.5). The diversity of trees in the forest canopy. a strong correlate 

of overall species richness in these forests. and in forests elsewhere in glaciated eastern North 

Amenca (Braun 1950. Curtis 1959. Whittaker 1965). declined sharply in the presence of sugar maple 

(Table 4.3). and was up to 50% lower in stands on mesic soils (Table 2.1 I ). 

Sugar maple achieved its highest abundance on rnesic soils that were high in available calcium 

(Figures 4.5. 4.6. 4.7 and 4.9). This pattern is commonly observed in southem Ontario (Farrar 

1995). where sugar maple abundance is strongly associated with Lime rich soils: in the mesic forests 

of southem Wisconsin (Curtis 1 959). where sugar maple dominance and low canopy diversity are 

associated with high levels of exchangeable calcium in the A, layer (36 to 64 cmolkg): and. in mesic 

forests elsewhere in the Beech-Maple and Maple-Basswood Forest regions (Braun 1950). where 

sugar rnaple dominance is strongly associated with glaciated soils that possess an arçillic B horizon 

(Braun 1950. Brady 1990). The correlation between sugar maple abundance and calcium r ic  h soils 

h a  also been observed in selected northem hardwood stands in northwestern Connecticut. where 

the mortality of sugar rnaple seedlings and young trees is sharply lower than on nearby acidic soils 

(Kobe et al. 1995. Kobe 1996). 

This pattern contrats sharply with abundance of sugar maple elsewhere in its range. where it is 

typically only one of several trees in the forest canopy. This is particularly tme of the rich cove 

forests of the Mixed Mesophytic. and Oak-Chestnut. forest regions which typically contain up to 30 

or more canopy trees (Braun 1950) and an exceptionally species rich understory (Whittaker 1965). 

The availability of base cations in these forests varies. Reported mean values for exchangeable 

calcium range from 3.3 cmolkg in old growth stands in eastem Kentucky (Muller 1982) to 1.95 

cmoVkg in mesic eutrophic cove forests on the North Carolina Piedmont (Peet and Christensen 

1980). These values are substantially lower dian the mean concentration of available calcium in 

sugar rnaple dominated quadrats in this study (8.9 cmolkg) and the mean concentrations reported 

by Cuxtis (1950) for exchangeable calcium in the A, horizon of sugar maple dominated forests in 



southem Wisconsin (32 to 64 cmol/kg). 

Exchangeable base cations have been identified as a potential contributing factor to species richness 

in forests on the North Carolina piedmont (Peet and Christensen 1980). In an analysis of 105 

hardwood forest stands on soils of contrasting moisture and fertility, total exchangeable base cations 

(calcium + magnesium + potassium) explained 85% of the variance in species nchness in O. 1 ha 

plots. In mesic eutrophic cove forests. the most species rich community. the mean concentration of 

total base cations in the upper 1 O cm of the soil pro tile was 1043 ppm. Calcium ions accounted for 

75.0 % of this total. In keeping with cove forests elsewhere in the Oak-Chestnut forest region. the 

stand with the highest species richness contained 29 species of trees. 

In contrast. total base cations in this study explained on1y 2.5% of the overall variance in species 

richness (p>F=0.02) and did not explain the variance in spccies richness in undisturbed maple stands 

on mesic soils overlying calcareous till. When two strong outliers were excluded from the analysis. 

soil order explained 7 1.8% of the variance in species richness in these stands and 86.2% of the 

variance in sugar maple abundance (measured as percent stems sugar maple). Sugar maple 

abundance. in Nm. explained 69.9% of the variance in species richness. In keeping with cove forests. 

species richness was significantly higher in the quadrats with high tree diversity (mean X tree species 

per quadrat: 9.4 species on Brunisolic soils versus 4.2 species on Luvisolic soils) and with low sugar 

maple abundance (mean % stems sugar maple per quadrat: 15.1% on Brunisolic soils versus 76.796 

on Luvisolic soils). In contrast to the cove forests. high concentrations of total base cations and 

exchangeable calcium in the upper 15 cm of the soi1 profile were associated with Iow rather than 

high species richness. 

Taken together. these results suggest that species richness on mesic soils in the Peterborough area 

is govemed primxily by soi1 order and by the percentage ofsugar maple stems (>I m) in the forest 

canopy. In contrast to the cove forests. calcium availability in Ontario stands is strongly correlated 

with sugar maple dominance which in tum sharply limits the availability of light within the canopy 

and on the forest floor. The mean concentration of base cations at which the transition to sugar 

maple dominance and low species richness may occur is not known, but in these forests. it appears 



to lie between 4.3 and 6.8 cmolkg for available calcium. and between 1795 and 2780 ppm for total 

base cations. These values are substantially above those reported by Peet and Christensen ( 1980) 

for cove forests on the North Carolina piedmont. 

The capacity of soil order to explain observed differences in species nchness and sugar maple 

abundance requires fùrther study. since the degree to which soil order stands for available calcium 

in the preceding analysis is not known. A narrow reading ivould suggest that properties other than 

available calcium may be involved since soil order in this analysis explained far more variance in 

species nchness and sugar maple abundance than xailable calcium (71.8% vs 20.7%. species 

richness; 86.2% vs 1 J.î%, sugar maple abundance: supplementary regression analysis not show).  

Caution and further analysis are required. however. since available calcium explained 63.0% of the 

variance in sugar maple abundance when the analysis was restricted to undisturbed second-growth 

stands on Brunisolic soils (Figure 4.6). 

Taken together. however. these results suggest sugar maple abundance. mediated by differences in 

the availability of calcium. and potentially by unmeasured pro perties of differentially weathered 

soils. is the principal contributor to species richness in closed-canopied forests on mesic soils. The 

proximate rnechanism by which this influence is exened is p t i m d y  by control of the spatial and 

temporal availability of light within the forest canopy and on the forest floor. 

iv) Forest Fragmentation 

The observation that larpr areas. in general. contain more species than smaller areas has recently. 

and critically, been explained in relation to three hypotheses: 

i)  the "habitat diversity" hypothesis (Williams 1943.1964). which argues that species nurnber 

is govemed p r h t i l y  by environmental factors and thus larger areas typically have more 

species because they have more habitats: 

ii) the "passive sampling" hypothesis (Connor and McCoy 1979, Coleman 198 1). which argues 

that species number is controlled pnrnarily by passive sampling of the species pool and thus 



larger areas typically contain more species because they represent larger sarnples: 

iii) the "areaper se" hypothesis (Preston 1960.1962: MacArthur and Wilson 1963. 1967). which 

argues that when distance to the propagule pool is held constant. species number will be 

govemed prirnarily by extinction rates: sincr these rates are inversely proportional to 

population size. the number of species in a given sarnple will be proportional to its area. 

The fixed-area sarnpling design applied in this study provides a suitable context for an indirect test 

(Gilbert 1980) oithe areaper se hypothesis. The passive sampling and habitat diversity hypotheses 

each predict that no correlation should be found betwern patch area and species nchness. whereas. 

the area per se hypothesis predicts that a positive correlation should be found (Kelly el al. 1989). 

The mechanisms underlying the passive sarnpling and habitat diversity hypothesis cannot be 

distinguished by this test. however. since diverse rather than uniform habitats were sarnpled in this 

study (Comor and McCoy 1979). Evidence of a ncgative relationship between extinction processes 

and area. however. would provide indirect support for the habitat diversity hypothesis since no 

relation should be found if passive sampling were the principal or only causal factor involved 

(Connor and McCoy 1979). 

The results of this study were not consistent with the predictions of the area per sr hypothesis. 

Species richness in 10m x 1Om quadrats was negatively ( rather than positively) correlated with patch 

area (Spearman Rho: -0.2208. p>! Rh01 = 0.0021 ) and explained less than 2% of the variance in 

species nchness in linear regression (Table 4.1). In keeping with the habitat diversity hypothesis. 

the number of microhabitats in 1 Om x 1 Om quadrats was positively correlated with species richness 

(Spearman Rho: 0.2460. p>(Rhol = 0.0006) and environmental variables in multiple linear 

regression explained 58.2% of the variance in species richness in 10m x 1 Om quadrats (Table 4.1 ). 

In keeping with the habitat diversity hypothesis. the number of taxa recorded prim&ly or 

exclusively in forested habitats ("Forest" and "Forest + Open". sensu section 2.2.3.4) was negatively 

correlated with patch area (Spearman Rho: - 0.2803. p>: Rh01 < 0.0001). These species are more 

likely to persist in the forest understory than species of open habitats and thus provide an indirect 

measure of post-settlement extinction rates in these forests. The negative correlation of apparent 



extinction and patch area is contrary to the prediction of both the areaper se and passive sampling 

hypotheses. In contrat to the predictions of the habitat diversity hypothesis, however. the number 

of habitats in 1 Om x 10m quadrats did not increase with patch area (Spearrnan Rho: - 0.1949. 

p> Rho 1 = 0.0068). 

One apparent explanation for the failure ofthe areaper sr hypothesis in this study is the ameliorating 

effect of dispersal on local extinction rates (Brown and Kodrik-Brown 1977. Holt 1992). Given 

the predominance of short-distance dispersa1 in plant communities (Portnoy and Willson 1993. 

Hughes et al. 1994. Appendix 1 1). dispersa1 is expected to be a non-limiting process at the scale of 

centimetres to metres. In the presence of spatial and temporal heterogeneity. and non-limiting 

dispersal. differences in plant traits should facilitate persistence by ensuring that there will be some 

place or time where cornpetitors perform poorly or do not survive and where populations of low 

abundance may expand (Hutchinson 1961. Levin 1974. Warner and Chesson 1985. Comins and 

Noble 1985. Hurt and Pacala 1995). Moreover. given that the distance over which plants compcte 

is on the order of centimetres to metres (Harper 1977. Pacala and Silander 1 985. 1 987. Venable and 

Brown 1993). the spatial aggregation of conspecifics resulting from short-distance dispersal should 

sharply dirninish the potential for cornpetitive displacement by ensuring that most interactions in a 

competing plant assemblage occur between individuals of the sarne species (Schmida and Ellner 

1984. Pacala 1986. Lavorel et al. 1994. Rees et al. 1996). Under these conditions, extinction 

processes in the forest understory should proceed slowly. And. since both immigration and 

extinction operate primarily at the micro spatial scalr. on ecological time scales. there is no apparent 

reason why extinction processes should proceed more rapidly in forest patches of smaller size. 

The failure to detect a positive correlation between specirs richness and patch area is consistent with 

the few studies that have controlled for passive sampling (Harner and Harper 1976, Westman 1983. 

Kelly et al. 1989, Holt 1992, Fukarnachi et al. 1996. and Scariot 1999). These studies encompass 

a wide variety of habitats: pinyon-juniper cornmunities in Utah and New Mexico; xeric shmblands 

of the inner Channel Islands, California; beech forest and manuka scnib on islands in Lake 

Manpouri, New Zealand; a successional field in Kansas: old growth forest reserves in the cool 

temperate zone of Japan; and. palm communities in isolated forest fragments in centrai Amazonia. 



respectively. The study by Kelly et al. (1989) is perhaps the most convincing demonstration of the 

contribution of passive sampling effects to species-area relations. since it was conducted on islands 

on which the entire flora had been systematically sarnpled by proportional sampling (Quinn et al. 

1 987). The percentage of variation in species richness explained by island area declined from 92% 

with proportional sampling to 17% (beech forest) and 10% (manuka scrub) with fixed-area sarnples. 

The latter results were statistically non-significant. 

The negative correlation between habitat diversity and patch area in my study was unexpected and 

may be due to the fixed-area sampling design. For example. whereas the number of habitats at both 

the quadrat and patch scale declined with area. the increase in the mean number of habitats from 

quadrat to patch was highly significant (p> 1 t i = 0.0000: Wilcoxon signed rank sum test). This result 

conforrns to the more traditional pattern when a proportional sampling design has been used. 

On balance. the evidence from this study supports the view that the positive correlation that has 

traditionally been found between patch area and species richness is due p t i m d y  to passive 

sampling e ffects and to environmental heterogenei ty . 

4.5 Principal Findings 

1. Edaphic variables explained 35.6% of the variance in species richness in 10m x 10m 

quadrats. The variables that maximally explained differences in richness were soi1 order 

(f adj. = 0.253). soil moisture ($adj. = 0.247). and soil parent material (f adj. = 0.220). 

2. Stand structure variables explained 54.9% of the variance in species richness in lOm xl  Om 

quadrats. The variables that maximally explained differences in richness were forest cover 

type (?adj. = 0.277). # tree species > I m (f adj. = 0.268). % stems sugar maple (Adj. = 

0.256)! % stems sugar maple 0-4 cm dbh (?adj. = 0.254), # wet-rnesic. wet tree species > 1 m 

(iadj. = 0.224), and, # live tree stems 0-4 cm dbh ($adj. = 0.196). 

The variance in species richness explained by sugar maple abundance was substantially 

higher in undisturbed quadrats on Luvisolic or Brunisolic soils overiying caicareous till. In 



these settings. the percentage of tree stems (> 1 m )  that were sugar maple explained 63.0 % 

of the variance in species richness in 10m x I Om quadrats. 

3. Human disturbance (lanes. roads. ditches. regenerating fields) explained 12.8% of the 

variance in species richness in 1 Om x 1 Om quadrats. The variables that maximally explained 

differences in richness were disturbed rnicrohabitats (Fadj. = 0.089). open trails ($adj. = 

0.089). and open regenerating fields ($adj. = 0.079). 

4. Environmental heterogeneity. when measurrd as the number of recorded microhabitats. 

explained 5.4% of the variance in species richness in IOm x 10m quadrats. 

5 .  Environmental heterogeneity. when measured as the contribution to species richness by 

individual microhabitats. explained the presencr of 38.3% of the sarnpled flon that did not 

occur on closed. seasonally dry. forest floon. sensri stricto. 

Microhabitats that contributed mauimally to species richness at the quadrat scale. when 

present. were open laneshoads (mean # unique species = 24.3): open regenerating fields 

(mean # unique species = 19.3): closed. seasonally dry. forest floors (mean # unique species 

= 16.6). open riparian meadows (mean # unique species = 15.3). and. closed. seasonally 

moist forest fioors (mean # unique species = I 5.3 ) 

Microhabitats that contributed rnavimzlly to species richness at the patch scale. when 

present. were closed. seasonally dry. forest tloon (mean # unique species = 17.1 ). open 

regenerating fields (mean # unique species = 12.5). and open lanes/roads (mean # unique 

species = 9.0). 

Thirteen microhabitats contributed to species richness at the Iandscape scale (i.e. contained 

species that were not recorded in any other habitat). Microhabitats that contributed the 

greatest number of species were closed. seasonally dry. floors ( 1 7 species). open regenerating 

fields (8 species), open lanes/roads (6 species). open canopy gaps on seasonally dry forest 



floors (6 species), and, closed. seasonally moist. forest floors ( 5  species). 

6. Patch size was negatively correlated with species richness and explained 1.9% of the 

variance in species richness in 10m x 1 Om quadrats. This pattern. and significant interactions 

with important explanatory variables such as soil parent material. soil order. and forest cover 

type. were interpreted as evidence that patch size. prr se. did not make an independent 

contribution to species richness in this study. 

The rnost apparent reasons for the failure of the areaper se hypothesis to explain differences 

in species richness were the use of a fixed-area sarnpling design to control for the effects of 

passive sarnpling, and. the spatial scale at whicli extinction processes operate on ecological 

time scales. 

Patch isolation. when measured as the mean distance to the nearest 8 forest patches. 

measured in 45' arcs. was negatively correlated with species richness and non-significant. 

M e n  measured as the percentage of forest covrr within a 5 km by 5 km square centred on 

the study site. path isolation was significantly and negatively correlated with species and 

explained 6.6% of the variance in species richness. The latter pattern was not regarded as 

supporting evidence for the MacArthur-Wilson hypothesis. owing to the strongly non- 

significant relationship for the more direct test of the immigration hypothesis. and. to 

significant pair-wise interactions between percent forest cover in the landscape and important 

explanatory variables such as soi1 order and forest cover type. 

8. Dispersal explained 55.8% of the variance in species richness in 1 Om x 1Om quadrats. The 

variables that maximally explained differences in richness were the percentage of taxa that 

were herbs dispersed by animal ingestion (f adj. = 0.397). ants (iadj. = 0.333). and the wind 

($adj. = 0.3 17). 

9. Life history explained 13.2 % of the variance in species richness in 10m x 1 Om quadrats. The 

variable that maximally explained differences in richness was percentage of taxa that were 



perennial herbs ($adj. = 0.132). 

Provenance explained 26.8% of the variance in species nchness in 1 Om x 1 Om quadrats. The 

variable that maxirnally explained differences in richness was the percentage of tava that 

were native herbs (iadj. = 0.268). 

Life form explained 33.7% of the variance in species richness in 10m x 10m quadrats. The 

variables that mavimally explained differences in richness were the percentage of taxa that 

were grasses (f adj. = 0.273) and trees (?adj. = 0.263). 

Habitat affinity explained 4 1.4 % of the variance in species richness in 1 Om x 1 Om quadrats. 

The variables that mavimally explained differences in species richness were the percentage 

of taxa classified as having an affinity for "open" and "forest" habitats (?adj. = 0.388 and 

0.262. respectively). 

Shade tolerance explained 33.5% of the variance in species richness in 1 Om x 1 Om quadrats. 

The variables that mavimally explained di fferences in richness were the percentage of tava 

classified as being very intolerant. and very tolerant. of shade (f adj. = 0.293 and 0.211. 

respective1 y). 

Moisture afinity explained 30.1% of the variance in species richness in 1 Om x 1 Om quadrats. 

The variables that maximally explained differences in richness were the percentage of taxa 

classified as having a facultative afinity for wetland habitats (Tadj. = 0.301). and the 

percentages of taxa classified as having a facultative or obligate a fh i t y  for upiand habitats 

(f adj. = 0.269 and 255, respectively). 

In general. linear regression models composed of dispersa1 and environmental variables 

explained more variance than models composed of dispersal or environmental variables 

alone. For example. mixed model M3 explained 7 1.2% of the variance in species richness 

in 10m x 10m quadrats. whereas dispersal mode1 Dl and environmental model E 1. 



respectively. explained 62.9% and 58.3% of the variance in richness. 

A graphical evaluation of alternative models of species richness revealed that while 

individual variables and models may occupy distinct regions in DCA ordination space. 

dispersal and environmental variables primarily represent alternative ways of explaining 

underlying causal factors. The most apparent reason for this convergence is that dispersal 

is a non-limiting process at the scale of centimetres to metres. A further contributing factor 

may the tendency for the dispersa1 and germination biology of plants to converge. owing to 

the necessity of pnor germination success for the transmission of alleles for dispersal. 

16. The linear regression models of species richness in this study are sensitive to the tzxonomic 

rank at which they are assessed. The variance in richness explained by a given model. and 

the quality of the statistical fit. declined at progressively more inclusive ranks. The number 

of interacting elements typically increased with taxonomie rank. and. depending on the 

model, peaked at the rank of genus. farnily or order. 

The most apparent cause of the interactions was the progressive inclusion of plant traits at 

the higher taxonornic ranks. This tendency was most strongly expressed at the rank of order. 

where more than 50% of the orders in the analysis included more than one mode of dispersal. 

and where more than 70% of the orders includrd more than one moisture or light affinity. 

Taken together. these patterns were interpreted as indirect evidence that phylogeny has 

contributed to the diversity of taxa recorded in these forests. 



5.0 GENERAL CONCLUSIONS 

The principal findings and conclusions of the thesis are summarized below. Specific findings related 

to the distribution of species, and to modes of dispersal. in relation to environmental variables are 

reported in Chapters 2.5 and 3.5 respectively. Specific findings related to the capacity of 

environmental variables and plant traits to explain observed differences in species richness are 

reported in Chapter 4.5. 

1. Herbs. unlike other life forms. were dispened by every mode of dispersal recorded in these 

forests. The reasons for this pattern are beyond the scope of this thesis but suggest in part 

that the outer integuments that evolved to protect the developing ovule in the angiosperms 

have been responsive to selection pressure when subsequent modifications facilitated 

dispersa1 by various means (Stebbins 1974). The capacity to disperse by one or by many 

modes. however. did not influence the number of habitats colonized by a given life form. 

2. The mode by which a given herb dispersed was often associated with the type of fruit it 

possessed. Achenes. for exarnple. were more likrly to be dispersed by the wind than by other 

modes. whereas. berries and drupes were more likely to be dispersed by animal ingestion. 

Seeds in capsules were more likely to be dispersed by mechanical expulsion and by animal 

conveyance. whereas. schizocarps were more likely to be dispersed by adhesion to animals. 

Nutlets were more likely to be dispersed by unassisted means and by prolonged dormancy 

in the soil. whereas seeds in capsular fniits were more likely to be dispersed by prolonged 

dormancy in the soil and by animal conveyance. 

The degree to which mode of dispersal was predetermined by the type of fi-uit a herb 

possessed was less clear. The berry. drupe. and silique were over-represented in herbs with 

an affinity for forest habitats whereas the legume was over-represented in herbs with an 

affinity for open habitats. This tendency is consistent with some measure of control by h i t  

type. However. the colonization pattern for fleshy h i t s  may also be explained, in part. by 

the tendency of seeds of h i t s  ingested by birds to be excreted in tree-fa11 gaps and the 

adjacent forest (Hoppes 1988, Malmborg and WiIlson 1 988). 



Evidence consistent with marginal or no control by f i i t  type arnong herbs was more 

petvasive. First. in contrast to the previous pattern, the majority of h i t  types in this study 

(achene. capsular. capsule. follicle. nutlet schizocarp) were not associated with the habitats 

in which they are typically found. Second. most fmits of herbs in this study were dispersed 

by several modes. The apparent exceptions were the drupe, which was dispersed by animal 

ingestion: the silique. which was dispersed bp unassisted means: and. the berry. which was 

dispersed by animal ingestion and by animal çonveyance. In contrast. the achene and the 

capsule were each dispersed by every mode savr one (mechanical expulsion and animal 

ingestion. respectively). The latter fmit types were possessed by 70% of the herbs recorded 

in this study. 

Third. the tendency for certain modes of dispersa1 to be more frequent in some habitats than 

others appears to be related more to germination constraints than to fmit type. For example. 

the tendency for wind-dispersed herbs to be over-represented in open habitats. and under- 

represented but present in forest habitats. rnay be explained in part by the differentiai 

germination success of large versus small seeds in deep shade (Salisbury 1942. 1974: Baker 

1972. Luftensteiner 1979. Mazer 1990. Saverimutto and Westoby 1996). In keeping with 

this hypothesis. the reported seed mass for congeners of wind-dispersed herbs in this study 

was consistently heavier for herbs with an aftinity for closed versus open habitats (scnvir 

lato). The statistical significance of this trend could not estabiished owing to the srnall 

sample size. In a similar fashion. the tendency for herbs dispersed by prolonged dorrnancy 

to be associated with an affinity for open habitats may also be explained by differential 

germination success in open versus closed habitats (Brown and Venable 1986. Cohen and 

Levin 1987. Venable and Brown 1988). 

Taken together. the evidence fiom this study suggests that h i t  type exerts linle or no control 

over the mode of dispersal of herbs in the forest understory Further study of the understory 

flora in the Great Lakes - St. Lawrence Forest Region (Rowe 1972) is necessary. however. 

in view of modest sarnple size (n=234 herbs) associated with this study. This pattern. if 

widespread. is keeping with the finding by Westoby et al. (1 992) that mode of dispersal is 



rarely constrained by seed size. Taken together. these findings suggest that the habitats in 

which plants establish will rarely be constrained by the way in which they disperse. This 

greatly increases the range of solutions (to ecological problems) available to plants. 

3. The composition of herb assemblages in sampled patches has apparently not been 

constrained by the mode of dispersal. or at least. has not been constrained absolutel y. Eac h 

mode of dispersal was represented on each portion of the environmental gradients examined. 

and. with few exceptions. in each type of microhabitat. The exceptions were 7 rare habitats 

with rnoist or wet soi1 conditions: closed seeps: open seeps: closed. seasonally moist tree 

pits: open. seasonally wet tree pits: open riparian marsh: open riparian thicket. Although 

rnost modes were absent from at least one 1Om s 1Om quadrat. each mode of dispersal was 

present in al1 but one of twenty-four sampled patches. These pattems reveal that at least 

some seeds from each functional group were able to reach most patches and to germinate in 

the conditions recorded there. 

4. The habitats in which a given herb was found. however. were associated with the mode by 

which it dispened. This suggests that certain modes of dispersal. or traits correlated with 

dispersal. may be Favored in some habitats but not others. Herbs dispersed by animal 

ingestion. for exarnple. were strongly over-represented (relative to their proportion in the 

sampled tlora) in closed seasonally dry canopy gaps. on open tip-up mounds. and in closrd 

seasonally dry tree pits. In contrast. herbs dispersed by the wind were over-represented in 

regenerating fields. and. herbs dispersed by prolonged dormancy were over-represented on 

open lanes and access roads. Herbs dispersed by animal adhesion. ants. mechanical 

expulsion. unassisted means. and vegetative expansion were over-represented in at Ieast one 

of the habitats in which they were found. 

The degree to which these patterns of association were caused by dispersal. or by plant traits 

correlated with dispersal. could not be answered with the sampling design applied in this 

study. However. the habitats in which certain herbs were typically over-represented were 

consistent with a distribution pattern that had been mediated by dispersal. The indirect 



evidence for directed dispersa1 was strongest for herbs dispersed by birds and mammals: 

i) patterns of colonization that were consistent with the foraging and seed-processing patterns 

of hgivorous birds (Thompson and Willson 1978. Willson er al. 1982. Malmborg and 

Willson 1988. Hoppes 1988): ii) patterns of colonization that provided little evidence of 

differential germination or persistence: e.g.. al1 fleshy-hited herbs recorded in tree pits or 

on tip-up mounds. logs. and sturnps were obsenred on forest floors. and. al1 but two fleshy- 

f'ited herbs recorded on forest floors were present in tree pits or on tip-up mounds. logs and 

stumps; and. iii) pattems of distribution which revealed that the over-representation of 

fleshy-hited herbs on these features \vas due to the greater number of fleshy-hited species 

rather than to a greater proportion of tava that were able to colonize such habitats. 

The degree to which dispersal has contributed to the distribution pattern of herbs dispersed 

by other means is less certain. Herbs dispersed by the wind. for example. were consistently 

associated with open microhabitats and with human disturbance. While propagules with 

wings and plumes may travel farther in these habitats than under a closed forest canopy 

(Hughes el cil. 1994). the tendency for wind-dispersed herbs to be poorly represented in 

forest habitats is equally or more likely to be caused by differential germination success 

arising from differences in seed weight (Salisbury 1942. 1974. Baker 1972. Luftensteiner 

1979. Mazer 1990. Saverimuttu and Westoby 1 996). In keeping with this line of reasoning. 

wind-dispersed herbs with an afinity for "forest" habitats were recorded in significantly 

more quadrats than were wind-dispersed herbs with an affinity for "open" habitats. This 

pattern suggests that the distribution of wind-dispersed herbs in the forest understory is 

constrained more by germination, establishment and persistence than by dispersal. 

A similar case can be made for herbs dispersed by prolonged dormancy in the soil. In 

keeping with recent models of the evolution of dorrnancy (Venable and Lawlor 1980. Broun 

and Venable 1986. Cohen and Levin 1987. 1991. Venable and Brown 1988. 1993. Rees 

1996). more than 90% of the seed-pooling herbs in this study were species with an affinin 

for "open" or "open + forest" habitats. and. none of the herbs with an apparent affinity for 

"forest" habitats was classified as a seed-banking species. Taken together. these patterns 



suggest that in forested habitats dispersal in time may be restricted to fugitive species and 

to sites of recent canopy disturbance. In keeping with this line of reasoning, herbs with the 

capacity for domancy were significantly over-represented in the trace cover class ( 1-5 

individuals) and under-represented in the higher cover classes. Herbs with the capacity for 

prolonged donnancy were found in a wide variety of habitats. however. including closed 

forest floors. This suggests that these herbs may persist in the understory of second-growth 

forests for many years. For these herbs. the conditions required for germination and 

establishment appear to be more limiting than the conditions required for persistence (Grubb 

1977, 1988: Grime 1997). 

The colonization pattern of herbs dispened by other modes was consistent with non-directcd 

dispersal and factors goveming germination. establishment and persistence. Longer distance 

dispersal of herbs dispersed by mechanical expulsion and by unassisted means is presumably 

facilitated by animal ingestion since each species has a sizeable Nonh American range. 

However. pattern resuiting from such dispersal events was not detectable by the sampling 

design applied in this study. 

Taken together. the indirect evidence from this study suggests that distribution of herbs in 

the forest understory is govemed more by differential germination. establishment and 

persistence than by dispersal. The apparent exceptions are plants dispersed by animal 

ingestion and by ants. The tendency in this study for modes of dispersa1 to be associated 

with particular habitats appears to be due more to plant traits that are correlated with 

dispersa1 than to the dispersal process per sr. 

5 .  The nurnber and composition of plants in the forest understory was strongly influenced by 

the abundance of sugar maple. Mean species richness (ail life forms) in undisturbed 10m 

x 10m quadrats declined fiom 46.0 species in quadrats with 5 2 5  % stems (> 1 m) sugar maple 

to 27.1 species in quadrats with 2 75% stems (> 1 m) sugar maple. Associated with this 

4 1.1% decline in mean richness was a marked rise in the proportion of prevalent species 

( 2 20% frequency) that flowered be fore canopy closure (35 2% to 5 5 -6%) and that were shade 



tolerant (54.9% to 72.7%). 

Curtis (1959) has argued that the forest floor is a demanding environment that requires 

specialized traits for success and that it is the limited set of species that possess those traits 

that has led to the striking unifomity in species composition in the mesic hardwood forests 

of eastem North America. In keeping with this hypothesis. 92.5% of the species that were 

prevalent in the understory of southern mesic forests in Wisconsin were present in maple 

dominated forests in this study. Traits that were prominent in each geographic region were 

early spring Bowering and shade tolerance. 

Early spring flowering is one ofseveral plant traits that have been associated with deep shade 

in the forest understory. In herbs with low shade tolerance. early flowering is associated with 

an ephemeral (Sparling 1967) or winter annual (Rogers 1982) life history. Each facilitates 

net carbon gain by restricting the growth phase to periods when the canopy is leaf free. 

More commonly. however. the early flowering habit is associated with varying degrees of 

shade tolerance that enables shoots and leaves to persist until mid to late summer (Sparling 

1967. Rogers 1982). The latter combination of characters was more common in the 

Peterborough area where only six of sixtu-two early flowering species were spring 

ephemerals (Il lliirrn iricoccirm. Cairiophyilitm rhcrlictroides. CIuytonia ccrroliniuna, Dicenrm 

canadensis. Dicentra ciicitllaria. Erythronilrm trmericcrnum): only one species (Galiitm 

nparine) was a known winter annual. 

Related plant traits that may facilitate sumival in deeply shaded habitats include winter-green 

leaves (Bierzychudek 1982) and the initiation of shoot growth (Taylor and Pearcy 1976) or 

flower initials (Bierzychudek 1982) in early auturnn. The former trait greatly extends the 

period of carbon gain in species such as Carex plantaginea. Hepatica acutiloba, 

Maianthemum canademe. Tiarella cordijb l ia  Trientalis borealis. Viola blanda, and Viola 

rostrata, whereas the latter traits facilitate early spring growth and flowering in species such 

as Allizrm tricoccum. Trilliiim grandijlomrn. m4ri.wema triphyllrim. and Geranium maculatum. 



The capacity of plants to tolerate deep shade has been attributed to a suite of traits that 

facilitate the capture and processing of light çnergy at the lowest net cost. Morphological 

characters associated with shade plants include: thin leaves with a large surface area (Grime 

1965); a higher proportion of chlorophyll b relative to chlorophyll a (Boardman 1977); a 

chloroplast with large grana stacks oriented in more than one plane (Boardman 1977): a 

higher proportion of leaf nitrogen allocated to c hlorophyll than to carboxy lating enzymes and 

other proteins (Seeman et al. 1987. Niinemets 1997. Lusk and Reich 2000); a rapid stomatal 

response to changes in light intensity (Hicks and Cabot 1985): and leaves deployed in 

horizontal. non-overlapping layers (Grime 1 963. Hom 197 1 ). These traits facilitate the 

capture of energy in low light environments while minimizing the energetic cost to constnict 

and maintain plant tissue. The latter is perceived to be especially important since it results 

in a lower leaf dark respiration rate and lowers the compensation point for net carbon gain 

(Grime 1965. Loach 1967. Larnbers et al. 1983. Lusk and Reich 2000). These characters 

were not scored directly in this study owing to the lack of a suitable data set. 

The foregoing traits. and a large seed (Saverimuttu and Westoby 1996). are expected to be 

arnong those essential for germination. growth and reproduction on the forest floor. It is 

more likely. therefore. that it is traits correlated with dispersal. rather than the dispersa1 

process per se. that fundamentally govem the distribution of plants on the forest floor. One 

important reason for this may be the necessity of prior germination and reproductive success 

for the transmission of dispersa1 alleles from parent to offspring. 

6 .  Sugar maple abundance on mesic soils was significantly correlated with available calcium 

(exchangeable calcium + free calcium carbonate) in the upper 15 cm of the soil profile. 

Mien differences in soil parent matenal. soil order. soil series. and site disturbance were 

standardized. available calcium explained 43.1% of the variance in the nurnber of sugar 

maple stems (> 1 m) in 1 Om x 10m quadrats and 62.8% of the variance in the percentage of 

stems that were sugar maple. In keeping with the calcium - monality hypothesis (Kobe et al. 

1995. Kobe 1996), calcium availability expIained observed difTerences in the nurnber of 

sugar maple stems subject to shade stress and self-thinning. In undisturbed stands on 



Brunisolic soils overlying calcareous till. differences in available calcium explained 70.9% 

of the variance in stem nurnber in the 4-10 cm dbh size class and 23.3% of the variance in 

stem number in the 10-30 cm size class. The decline in explained variance with increasing 

stem size is consistent with the decline in shade stress experienced by stems as they reach 

the middle and upper layers of the forest canopy. 

Unexpectedly, however. available calcium did not explain the variance in the number of 

sugar maple stems (>lm) in the 0-4 cm class. These stems are typically the most deeply 

shaded stems within the forest canopy. and therefore among the stems that would most 

benefit from a calcium-mediated reduction in lcafdark respiration rates. The soils in this 

analysis were particularly nch in magnesium. however. and may be causing nutrient stress 

owing to an imbalance in base cations. To avoid antagonisrn in the uptake of potassium and 

magnesium in sugar maple in the Quebec Appalachians. Ouimet and Camire ( 1995) 

concluded that the potassium:magnesium ratio in the B soi1 horizon should be > 1. To avoid 

calcium de ficiencies associated with cro wn die-bac k. the calcium:magnrsium ratio should 

be > 4. In contrast. the potassium:magnesium ratio was 4 in approximately 50% of the 

quadrats in this analysis. whereas. the calcium:magnesium ratio was < 4 in approximately 

60% of the quadrats. In keeping with a cation imbalance hypothesis. the number of sugar 

maple stems in the 0-4 cm dbh size class on these soils increased with increasing values of 

the calcium:magnesiurn. and magnesium:potassium. ratio. and. declined in the presence of 

increasing magnesiurn. 

Taken together. these results suggest that the abundance of sugar maple in the t'orest 

understory may be limited by the availability. and ratio. of base cations in the soil. This 

constraint was most apparent on mesic soils and suggests that on the optimal portion of the 

moisture gradient sugar maple may be secondarily constrained by the availability of base 

cations. 

7. The data from this study suggests that many plants in the forest understory may be 

responsive to differences in available calcium. Ephemeral spring herbs. for example. 



typicaily occurred on more calcium rich soils (mean concentration = 6.9 cmoükg) than plants 

with persistent shoots that flowered prior to. or aftrr. canopy closure. Early spring flowering 

plants with persistent shoots typically occurred on more calcium rich soils than plants which 

flowered mid to late season (rnean concentration = 5.7 and 5.4 cmol/kg. respectively). but 

not significantly so. The shade tolerant members of these functional groups. however. 

occurred on soils that were significantly more calcium rich than species with moderate and 

low shade tolerance. This pattern suggests that plants in these forests have partitioned the 

calcium availability gradient in relation to the degree of shade stress to which they were 

exposed. 

The mechanism(s) by which understory plants benefit from calcium rich soils are presently 

unresolved. Recent studies of cold temperate trres have found an association between foliar 

calcium levels and dark respiration rates (McLaughlin et ui. 199 1. McLaughlin and Kohut 

1993) and sharp reductions in the mortality of sugar maple saplings on calcium rich soils 

(Kobe et ai. 1995. Kobe 1996). The greater availability of nitrogen on calcium rich soils 

(Dancer et al. 1973) may be equally or more important for some species. however. and 

studies have recently been initiated in the U S .  northeast to clari& the relative contribution 

of calcium and nitrogen to tree growth and mortality relations (Dr. A. Finzi. Department of 

Biology, Boston University. pers. corn. : Dr. R. K. Kobe. Department of Forestry. Michigan 

State University. pers. corn.). 

The greater availability of nitrogen may be particularly important For ephemeral spting herbs 

since they typically complete their life cycle before the canopy closes (Alliirm tricocciim. the 

apparent exception. Bowers mid to late summer). These species typically have a high light 

compensation point and a high saturation light intensity (Sparling 1967. Taylor and Pearcy 

1976) and may therefore have a greater physiologicai requirement for nitrogen than more 

shade tolerant species. The reported afhi ty  of ephemeral spring herbs for base rich. and 

particularly calcium nch. soils (Curtis 1959. Rogers 1982) may therefore be due in part to 

the greater availability of nitrogen on these soils. 



For shade tolerant herbs. however. the principal mechanism may be a reduction in dark 

respiration rate. The rnorphology and physiology of these species typically emphasizes the 

conservation of reserves rather than photosynthetic performance (Went 1957. Grime 1965. 

Loach 1967) and thus may benefit more from a reduction in dark respiration rate than from 

a greater availability in nitrogen. Efficient use of high irradiance requires a high nitrogen 

investrnent in carboxylating enzymes and protrins responsible for photosynthetic electron 

transport (Ninemets 1997). Shade tolerant species. however. typically allocate 

proportionally more leafnitrogen to chlorophy l l  than to carboxylation capacity (Seeman et 

al. 1987). This investment pattem is thought to be the primary reason why shade tolerant 

species have a lower respiration rate per unit of leaf N (Lusk and Reich 2000) and an 

intrinsically low photosynthetic plasticity (Niinemets 1997). In keeping with the latter 

finding. experimental transfers of plants between high and low light environments have 

shown that dark respiration rates c m  change much more rapidly than photosynthetic capacity 

(Azcon-Bieto and Osmond 1983. Sims and Pearcy 199 1 ). Taken together. these findings 

suggest that shade tolerant plants on calcareous soils may benefit more from a reduction in 

dark respiration rate than from a greater availability in nitrogen. 

8. The contribution of environmental heterogeneity to species richness was strongly scalr 

dependent. Whereas 21 microhabitats contributed to a significant difference in species 

richness at the quadrat scale. only 9 microhabitats did so at the scale of the forest patch. In 

keeping with this pattern. 38 of 39 microhabitats contained at least one unique species when 

evaluated at the quadnt scale whereas only 13 of 39 microhabitats did so when evaluated at 

the landscape scale. 

In a spatially and ternpordly variable environment. differences in plant traits are expected 

to lead to pattern in the distribution of species owing to differential germination. 

establishment and penistence. In this context. the probability of encountenng new species 

should scde with the size of the sampled area and the scale of heterogeneity in the sampled 

environment. The obsewed decline in unique species at increasingly larger spatial scales 

is consistent with this scaling relationship and suggests that an increasing proportion of the 



species capable of occupying a given habitat were recorded as the size of the sarnpled area 

increased From quadrat to patch to landscape. The sharp decline in the number of 

contributing habitats in the transition kom quadrat to patch suggests that a large fraction of 

the regional variance in environmental heterogeneity was captured at the scale of the forest 

patch. 

In this study. habitat features created by the death or removal of canopy trees were an 

important source of environmental heterogeneity at small spatial scales. Features such as 

logs. stumps. tree pits. tip-up mounds. raised root mats. and canopy openings provided novel 

resources for the germination and establishment of new species and alternative habitat for 

species already established on the forest floor. The latter process is expected to promote 

species coexistence by providing somr place or time where cornpetitors perform poorly or 

do not survive and where populations of low abundance may expand (Hutchinson 1961. 

Levin 1974. Wamer and Chesson 1985. Comins and Noble 1985. Hum and Pacala 1995). 

In keeping with this expectation. these habitats were colonized by 86% of species recorded 

on closed. seasonally dry. forest floors. 82% of species recorded in moist or wet habitats. and 

78% of species recorded in habitats created by human disturbance. However. the capacity 

of species to colonize or persist on these features was not uniform: more species were 

recorded in canopy gaps (282) than on tip-up mounds ( 1  80). raised root mats ( 138). logs 

(120), tree pits (97). and stumps (64). In these forests. the provision of alternative habitat 

was f a  more prevalent than the provision of novel resources for new species since only 30% 

of the species recorded on these features were not found elsewhere on the forest floor. 

Taken together, these results provide support for the hypothesis that heterogeneity facilitates 

the coexistence of species through the spatial and temporal segregation. and differential 

performance, of competing species (e.g. Levin 1974. Chesson and Wamer 198 1. Shrnida and 

Ellner 1984, Comins and Noble 1985, Warner and Chesson 1985). 

9. Dispersai variables explained more variance in species richness in 1 Om x 1 Om quadrats than 



did environmental variables ($adj. = 0.6285. Model D 1 versus iadj. = 0.5833. Model E l  ). 

The statistical significance of this difference could not be determined, however. owing to 

interactions among the explanatory variables. The degree to which modes of dispersal and 

physical attributes of the environment accounted for the same variance was subsequently 

evaluated indirectly by detrended correspondence analysis (DCA). The results of this 

analysis revealed that while certain combinations of dispersal and environmental variables 

may occupy distinct regions in ordination space. they primarily represent alternative ways 

of explaining the proximate mechanisms of causation. Modes of dispersa1 are thus strongly 

correlated with habitat factors and plant traits that govern germination. establishment and 

persistence. Environmental variables. in turn. are correlated with modes of dispersai that 

determine the composition and size of the seed rain. the initial conditions that seeds and 

seedlings must confront. and, therefore. who will interact with whom and with what intensity 

in competing plant assemblages. 

The most apparent explanations for this correlation are: i )  the predominance of short-distance 

dispersal in plant communities (Portnoy and \hTillson 1993. Hughes et d 1994. Appendis 

1 1 ): ii) a convergence of germination and dispersa1 biology. at local spatial scales. owing 

to the necessity of prior germination success for the transmission of dispersal alleles from 

parent to offspring (Venable and Lawlor 1980. Olivieri and Berger 1985. Venable et al. 

1995. Cody and Overton 1996): iii) the presence of habitat factors that favor dispersa1 by 

some modes but not others (Cohen and Levin 1987. Venable and Brown 1988. 1993): and. 

iv) heterogeneity in local conditions goveming germination. establishment and persistence 

(Fowler and Antonovics 198 1. Robertson er tri. 1988, Lechowicz and Bell 199 1. Palmer 

1990). 

Under these conditions, dispersal in the forest understory is pnmarily a non-limiting process 

and pattern in the composition and distribution of plant assemblages is due pnmarily to 

factors goveming germination. establishment and persistence. 



1 0. Dispersal is expected to have profound consequences for populations and communities since 

it determines the size and composition of the seed rain (Clark and Yi 1995). determines the 

initial conditions that seeds and seedlings confront (Schupp and Fuentes 1995). determines 

who interacts with whom. with what intensity. and over what time scale (Atkinson and 

Shorrocks 198 1, Schmida and Ellner 1984, Pacala and Silander 1985. Pacala 1986. 198% 

Lavorel et  al. 1994, Rees et  al. 1996). influences local extinction rates by affecting the 

probability that declining or extirpated populations are rescued (Brown and Kodric- 

Brown1 977). influences the rate at which plants colonize new habitat (Halpern et al. 1990. 

Matlack 1994. Kotanen 1997. Brunet and von Oheimb 1998) and the sequences in which 

they arrive (Drake 199 1. Fastie 1995). and. influences the level of gene flow between 

populations and thus the degree to which neighboring plants are related (Williams and Guries 

1994) and genetic variation is structured spatially (Levin 198 1. Hamnck et al. 1993. Hamrick 

and Godt 1997). 

This suggests that the contribution of dispersa1 to plant dynamics is both Fundamental and 

pervasive. The failure to End strong evidençc of this influence in the composition and 

distribution of herbs in the understory of sampled forests is therefore surprising. On 

reflection. this result reflects both the nature of the dispersa1 process and the choice of 

methodology for this study. 

if rnost seeds of most plants land within a few mctres of the matemal plant. then the principal 

contribution of dispersal to spatial pattern is the spatial aggregation of conspecifics and the 

randomization of neighbors in competing plant assemblages. ïheory predicts that the former 

pattern should facilitate the coexistence of species by increasing the frequency of competitive 

interactions among conspecifics, whereas. the latter pattem should enable populations of low 

abundance to expand by increasing the probability of reversais in relative competitive 

strength (Hutchinson 196 1. Atkinson and Shorrocks 198 1. Chesson and Warner 198 1. 

Shmida and Ellner 1984, Pacala and Silander 1985. Warner and Chesson 1985, Pacala 1986. 

Lavorel et al. 1994' Rees et al. 1996). The contribution of the latter mechanism is expected 

to increase with increasing dispersal distance from the matemal plant and to be influenced 



by the scale of spatial and temporal heterogeneity in the local environment (Levin et al. 

1984, Comins and Nobel 1985, Chesson 1986. Pacala 1987, Lavorel and Chesson 1995). 

This suggests that the principal contribution of dispersa1 to spatial pattern may occur at the 

scale of the competing plant assemblage. The degree to which these micro-scale processes 

have influenced the spatial distribution of plants in the forest understory could not be 

answered with the methodology applied in this study. The decisions at the outset of this 

study to map plants rather than propagules. and to evaluate functional groups in relation to 

microhabitats and environmental gradients rather than individual species in relation to spatial 

aggregation and competing plant assemblages. precluded subsequent examination of these 

matten when their potential significance becamr apparent during preliminary analysis of the 

data. 

The inference that pattern in the composition and distribution of plant assemblages is due 

pt-imarily to differential germination. establishment and persistence. therefore. undentates 

the contribution of dispersa1 to plant dynamics and persistence at the micro spatial scale. 

Concluding Remarks 

The patterns of colonization exarnined in this study suggest that the principal contribution of 

dispersa1 to the spatial distribution. composition. and coexistence of species is made at the scale of 

the competing plant assemblage and at the scales at which environmental heterogeneity enables 

populations of low abundance species to expand. If most seeds of most plants land within one to two 

canopy diameters of the matemal plant. as the current Iiterature suggests, then the principal 

contributions of dispersal to the spatial distribution. and coexistence. of plants may be the spatial 

aggregation of conspecifics near the base of the materna1 plant. and the randomization of neighbors 

in adjacent competing plant assemblages. Paradoxically. but perhaps necessarily. the p n m q  

contribution to species coexistence, and to reproductive assurance. is made at a spatial scale where 

differences in the dispersal reach of evolved dispersal morphologies are minimized. 



In the forest understory. habitat features created by the death or removal of canopy trees are an 

important source of environmental heterogeneity at small spatial scales. Canopy openings. tree pits. 

tip-up mounds, raised root mats, logs and stumps were widespread on the forest floor and apparently 

well within the dispersal reach of even the least mobile species. Evidence From this study suggests 

that these features provide novel resources for new species and alternative habitat for species already 

established on the forest floor. The former contributes to species richness in the forest understory. 

whereas. the latter may promote species coexistence by providing some place or time where 

competitors perform poorly. or do not survive. and where populations of low abundance may 

expand. In this study, the provision of alternative habitat appeared to be the more important process. 

since only twenty percent of the species recorded on thcse features were not f o n d  elsewhere on the 

forest floor. 

Heterogeneity in site conditions provided novel habitat for 38.3 percent of the sampled flora ( 1  58 

species) that was not recorded on closed, seasonally dry. f'orest floors. sensti stricto. Habitats that 

were the most significant contributors to species richness were closed seasonally dry Forest floon. 

habitats created by human disturbance. and. habitats with moist and wet soils. Conditions in these 

habitats contrast sharply with respect to relative availability of light. moisture. and substnte. and 

provide the most apparent expianation for the distinctive tlon associated with each setting. 

The degree to which dispersal has contributed to diffrrences in species richness was not resolved. 

While there is indirect evidence of directed dispersal by birds in former canopy gaps. and by birds. 

mamals, and ants. on disturbance features associated with former canopy gaps (tip-up mounds. tree 

pits. logs. stumps. closed lanes). most propagules appear to be dispersed at random and in close 

proximity to the parent plant. This suggests that the distribution and richness of plants in a given 

1 Om x 1 Om quadrat has been determined pnmarily by factors that govem germination. establishment 

and persistence. 

The capacity for longer distance dispersal. however. may influence the composition of species ulth 

a particular set of traits since the seed rain fiom mobile tâua is more likely to reflect the diversity of 

species in the surrounding region that are capable of establishing there. The strongest evidence for 



this source of influence \vas found in plants dispersed by animal ingestion and by ants. In each case. 

the mean proportion of plants in 10m x 1Om quadrats dispersed by each mode was significantly 

higher than their proportion in the flora as a whole. Thrse tava are typically shade tolerant and thus 

inherently less constrained by understory conditions than species with an affinity for more open 

habitats. The low shade tolerance of species in open habitats may explain the failure to find a similar 

pattern in plants dispersed by the wind. 

Overall species richness. however. has been govemed by other factors. since dispersa1 by animal 

ingestion was strongly associated with low species richness whereas dispersal by wind and by 

prolonged dormancy was strongly associated with high species richness. 

On balance. the principal contributors to differences in species richness have been the moisture and 

base cation status of forest soils. The relative availability of these limiting resources has strongly 

influenced the composition of the forest canopy and the consequent soil-vegetation complexes have 

mediated the composition and richness ofspecies by controlling the spatial and temporal availability 

of light on the forest tloor. and. the availability of alternative habitats where cornpetitors may 

perform poorly or not survive and where populations of low abundance may expand. 

On mesic soils. the most significant factor has been the absolute and relative abundance of sugar 

maple. The number of species in 10m .u 10m quadrats was strongly and negatively correlated with 

each measure. Overall. sugar rnaple abundance explained 25.6 % of the variance in species richness 

and up to 63% of the variance in species richness on Brunisolic and Luvisolic soils overlying 

calcareous till. Mean species nchness in undisturbed qudrats declined from 46.0 species in quadrats 

with r 25% stems (> 1 m) sugar maple to 27.1 species in quadrats with 2 75 % stems (> 1 m) sugar 

rnaple. Associated with this sharp decline in species richness was a marked rise in the proportion of 

species that flowered before canopy closure and that were shade tolerant. 
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Appendix 2. Surnmary of Plant Attributes by Species. 

Legend: SPECIES: species code (see Appendix 3): # Q: nurnber of quadrats (N=192): LF: life 
Form: T= tree, S = shrub. V = vine. F= fern, FA =fem ally. G = grass. H = herb; LH: life history. 
A = annuai, R = biennial. annual/biennial. P = peremial. annuai/perennial. biemial/perennial: P: 
provenance. N = native. A = alien. U = unknown: HA: habitat dfinity. F = forest. FO = forest + 
open. OF = open + forest. O = open: FRUIT TYPE: "adlate seed". "winged seed" (gymnosperms). 
"spore" (homosporous spores of fems and fem allies) are regarded as fruit types in this classification; 
DISPERSAL MODES: AI = animal ingestion: FF = tleshy fniit: AA = animal adhesion: AD = 

adhesive h i t :  AC = animal conveyance: EL = elaiosome bearing seed or fruit. NF = nut fruit: PD 
= prolonged dormancy: SP = long term persistent seed pool: W = wind: ME = mechanical 
expulsion: EM = explosive mechanism. WM = wind-push mechanism. SM = splash-cup rnechanism: 
U = unassisted: MM = multiple modes: VE = vegetative expansion. 

Sources: plant narnes and provenance: Morton and Venn 1990. Cody and Britton 1989: life form. 
life history and h i t  type: Gleason and Cronquist 199 1 .  

References: ( 1)  Alex 1992. (2) Arditti 1992. (3)  Beattie and Culver 198 1. (4) Beattie and Lyons 
1975. ( 5 )  Beattie el al. 1979. (6) Bell 199 1. (7) Berg 1'166. (8) Berg 1969. (9) Brodie 1955. ( 10) 
Bulow-Olsen 1984. ( 1 1 ) Bumside et ul. 1996. (1  2)  Cody and Britton 1989. ( 13) Corner 1976. ( 14) 
Crockett 1977. (1  5 )  Culver and Beattie 1978. ( 16) Darlry-Hill and Johnson 198 1. ( 17) Dore and 
McNeill 1980. (1 8) Ellioa 1978. ( 1  9) Farrar 1995. (20) Fisher 1988. (2 1 ) Gaddy 1986. (22) Gates 
1940. (23) Gates 194 1. (24) Gleason 1952. (25) Gleason and Cronquist 199 1. (26) Graber and 
Thompson 1978. (27) Gunther and Lanza 1989. (28) Handel 1976. (29) Handel l978ab. (30) Handel 
er al. 198 1. (3 1 )  Heithaus 198 1. (32) Howard 1961. (33) Hitchcock 1971. (34) Livingston and 
Allessio 1968. (35) Martin et al. 195 1. (36) McDonald et cd. 1996. (37) McKay and Catling 1979. 
(38) Montgomery 1977. (39) Montgomery Collection Test 1997. (40) Pudlo er al. 1980. (40) 
Rasmussen 1995. (42) Ridley 1930. (43) Roberts and Vankat 199 1. (44) Savile 1953. (45) Savile 
1979. (46) Semple and Heard 198% (47) Semple and Ringius 1983. (48) Sernander 1906. (49) Smith 
and Reichman 1984. (50) Smith er al. 1989. (5 1 ) Snow and Snow 1988. ( 5 2 )  Soper and Heimburger 
1982. (53) Sorensen 1986. (54) Stamp and Lucas 1983. (55) Stiles 1980. (56) Stiles 1989. (57) 
Thompson 1980. (58) Thompson 198 1. (59) Thompson and Willson 1979. (60) Thompson et al. 
1997. (6  1 ) Trapp 1988. (62) Webb and Willson 1985. (63) Wein and Pickett 1989. (64) White and 
Stiles 1992. (65) Whitney 1986. (66)Williams and Guries. (67) Willson 1986. ST = see text Section 
3.2.1. 
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SPECIES CODES 



Appendix 3. Species codes. 

Species Code 

ABIEBALS 
ACERNEGU 
.4CERRUBR 
ACERSACC 
ACERSACN 
ACERSANI. 
ACERSPIC 
-4CHIMILL 
ADIAPEDA 
AGRIGRYP 
AGROG [GA 
AGROSTOL 
ALLITRIC 
ALNUINCA 
AMBRARTE 
.4MELARBO 
AMELINTE 
AMEL-SP 
AMPHBRAC 
ANEMCANA 
ANEMQUN 
ANEMVIRG 
.4NTENEGL 
APOCANDR 
AQUICANA 
ARALNUDI 
ARCTMINU 
ARISTRIP 
AS ARC ANA 
.4SCLiNCA 
ASCLSYRI 
ASTECILI 
ASTECORD 
ASTEERIC 
ASTELANC 
ASTELATE 
ASTEMACR 
ASTENOVA 
ASTEPUNI 

Scientific Name 

Abies balsamea (L.) Miller 
Acer negundo L. 
Acer rubrzrm L. 
Acer sacchanrrn Mars ha1 1 ssp. succharitm 
Acer succharinum L. 
dcer saccharrrm Marshall ssp. nigrrrrn (Michaux 
Acer spicatm Lam. 
rlchillia millefolizrrn L. ssp. milkejblitrm 
d diuniurn pedattrm L. ssp. pe~ltrr~rrn 
.Agrirnonia gryposepaia Wallr. 
ilgrostis gigan feu Roth 
Agrostis stolonifera L. 
Allizrm fricocctrm Aiton 

f.) Desmarais 

Alnus incana (L.) Moench ssp. r~~gosu (Duroi) Clausen 
Ambrosia urtemisi foiia L. 
Amelanchier arborru (Michaus f.) Fern. 
..lmelanchier interior Nielsen 
-4 melanchier species 
d rnphicarpueu bructeara ( L . ) Fem. 
Anemone canadensis L. 
cl nemone quinqefolia L. 
Anemone virginiuna L. 
;Intennaria neglecra E. Greene 
Apocyttm androsuemifoiitrrn L. ssp. androsaernifoliurn 
Aquilegia canadensis L. 
-4 raliu nudicatrlis L . 
Arctiurn minus (Hill) Bernh. ssp. minrrs 
.-irisaema triphyihm (L.)  Schott ssp. triphyllurn 
..lsarztm canadense L. 
Asclepias incarnata L. ssp. inctrrnata 
Asclepias syriaca L. 
Aster ciliola~trs Lindley 
Aster cordi/olirlî L. 
Aster ericoides L. 
Aster lanceolatrrs L. 
Aster laterfirus (L.) Britton 
Aster rnacrophylhs L . 
Aster novae-angliae L. 
Aster punicerrs L . 



Appendix 3. Species codes. 

Species Code 

ASTEUMBE 
ATHYFILI 
ATHYTHEL 
BETUALLE 
BETUPAPY 
BIDEFRON 
BOEHCYLI 
BOTRMATR 
BOTRMULT 
BOTRVIRG 
BRACEREC 
BROMINER 
CALTPALU 
CALYSEPi 
CARDACAN 
CARDNUTA 
CARDDIPH 
CARDPENS 
CAREALBU 
CAREALOP 
CAREARCT 
CAREBACK 
CAREBEBB 
CAREBLAN 
CAREBREV 
CARECEPH 
CARECOMM 
CARECRIN 
CARECRIS 
CAREDEWE 
CAREDIGI 
C AREGRAC 
C AREGRAN 
C AREHIRT 
C AREHITC 
CAREINTU 
CARELANU 
CARELAXI 
CAREPECK 

Scientific Name 

Aster rtmbellarzrs Miller 
Athyriltrn filix-femina (L.) ssp. trnpstiim ( Willd.) Clausen 
Athyrirtm thelypterioides (Michaux) Desv. 
Berula alleghaniensis Brinon 
Betrtla papyrifera Marshall 
Bidens fiondosa L. 
Boehmeria cyhdrica ( L.) Sw. 
Botrychiirm matricariae folirrm A. Braun ex Koch 
Botrychium mirltijidrim (S. Gmel i n) Rupr. 
Botrychiirm virginianrrm ( L. ) Sw. 
Bruchyelytrirm erectrrm (Schreber in Roth ex Sprengel) P. Beauv. 
Brornzrs inermis Leysser 
Calthus pahistris L. ssp. pdirstris 
Calptegia sepii~m L. 
Curdlrrrs czccznthoicies L . 
Curdrirrs nritcrns L. 
Cardamine diphylla (Michx.) A. Wood 
Cardamine pensylvanica Muhlenb. ex Willd. 
Carex albitrsina E.  Sheldon 
Carex nlopecoidea Tuckerman 
Carex arctuta Boo tt 
Carex backii F .  Boott 
Carex bebbii (L. Bailey) Olney ex Fem. 
Carex blanda Dewey 
Carex hrevior (Dewey) Mackenzie ex Lunell 
Carex cephaloidea Dewey 
Carex commztnis L. Bailey 
Carex crinita Lam. 
Carex cristatella Britton 
Carex deweyana Sc hwein. 
Carex digitalis W illd. 
Carex gracillima Sc hwein. 
Carex grandaris Muhlenb. ex Willd. 
Carex hirtifolia Mackenzie 
Carex hiichcockiana Dewey 
Carex intumescens Rudge 
Carex lanuginosa Michaux 
Carex Imriflora Lam. 
Carex peckii Howe 



Appendix 3. Species codes. 

S~ecies  Code 

CAREPEDU 
CAREPENS 
CAREPLAT 
CAREPLAT 
CAREPRAI 
CAREPROJ 
CAREPSEU 
CARERADI 
CARERETR 
CAREROSE 
CARESPAR 
CARESTlP 
CARETENE 
CARETRIB 
CAREVULP 
CAREWOOD 
CARE 71 9 
C A R E I ~ ~ ~  
CARE-868 
C ARE-870 
CARE-879 
C A R E O V  
C ARE-SP 
CARYCORD 
CAULTHAL 
CEANAMER 
CELASCAN 
CERAFONT 
CHIMUMBE 
CHRYLEU 
CICUBULB 
CICUMACU 
C N M A T I  
CIRCALPI 
CIRCLUTE 
CIRSARVE 
CIRSVULG 
CLAYCARO 
CLEMVIRG 

Scientific Name 

Carex pedttnculata Muhlenb. es Willd. 
Carex pensylvanica Lam. 
Carex plantugineu Lam. 
Carex pla~phyliu J .Carey 
Carex pruirea Dewey 
Carex projectu Mackenzie 
Carex pseudo-cyperits L. 
Carex radiata ( Wahlenb. ) Small 
Carex retrorsa Schwein. 
Carex rosea Schk. ex Willd. 
Carex sparganioides Muhlenb. es Willd. 
Carex stipata Muhlenb. ex Willd. 
Carex teneru Dewey 
Carex tribtdoides Wahlenb. 
Carex vitlpinoideo Michaux 
Curex woodii Dewey 
Curex specimen D7 19 
Curex specimen D858 
Carex specimen D868 
Curex specimen D870 
Curex specimen D879 
Carex sect. Ovales 
Curex species 
Carya cordiformis ( Wangenh. ) K. Koch 
Caulophyllirm thalicrroides ( L . ) iMic hau.. 
Ceanothtis americantrs L . 
Celastr tts sctrndens L . 
Cerastirinlfontaniim Baumg. ssp. triviale (Link) Jalas 
Chimaphila rtmbellata (L. )  Barton 
Chrysanthemum leucanihemitm L . 
Cicuta bidbifera L. 
Cictrta maculatum L. 
Cinna latifolia (Trevir. ex Goeppinger) Griseb. in Ledeb. 
Circea alpinu L. 
Circea lute tiana L. ssp. canadensis (L.) Aschers.& Magnus 
Cirsium arvense (L.) Scop. 
Cirsium vitlgare (Savi) Ten. 
Claytonin caroliniana Mic haus 
CIemafis virginianu L. 



Appendix 3. Species codes. 

Species Code 

CLINBORE 
CONYCANA 
CORNALTE 
CORNFOEM 
CORNRUGO 
CORNSTOL 
CORYCORN 
CRAT-SP 1 
CRAT-SP? 
CRAT-S P3 
CRAT-SP 
CRYPCANA 
CYPRCALC 
CYSTBULB 
CYSTFRAG 
CYSTTENU 
DACTGLOM 
DANTSPIC 
DAUCCARO 
DESMGLUT 
DIANARME 
DICECANA 
DICECUCU 
DIERLONI 
DIRCPALU 
DRYOCART 
DRYOCEUS 
DRYOINTE 
DRYOMARG 
ECHILOBA 
ELYMREPE 
ELYMVIRG 
EPIFVIRG 
EPILCILI 
EPILCOLO 
EPILLEPT 
EPILPARV 
EPIPHELL 
EQUIARVE 

Scientific Name 

Clintonia boreaïis (Aiton) Raf. 
Conyza canadensis (L.) Cronq. 
Cornirs alternifolia L. f. 
Cornirs foeminu Miller ssp. rcrcernosa (Lam.) J.S. Wilson 
Cornlis riigosu Lam. 
Cornzrs st01oniJera Michaux 
Coryliis cornuta Marshall 
Crataegirs species # 1 
Crataegus species #2 
Craraegis species #3 
Crataegzrs species 
Cryptoturniu crinodensis (L.) DC. 
Cypripedium calceollrs L. 
Cjstupteris birlbferu ( L.) Bemh. 
Cystopter is fiagilis ( L . ) B em h . 
Cvstopteris tenriis (Michaux) Desv. 
Dacîylis &meruta L. 
Danthonia spicotu ( L . )  P. Beauv. e: 
Duitctrs carota L. 

~s. Roemer & Schultes 

Desmodium glzrtinosttm (Muhlenb. ex Willd.) DC ex Loudon 
Dianthiis armeriu L. 
Dicentru canadensis (Goldie) Wal p. 
Dicentra ciiczrhvà (L.) Bernh. 
Diervilln lonicera Miller 
Dircu pulustris L . 
Dryopteris carthrrsiana (Villars ) H.P. Fuchs 
Dryopteris cristaru ( L . ) Gray 
Dryopteris intermedia (Muhlen b. ex Willd.) A.Gray 
Dryopteris marginalis (L.) A. Gray 
Echinocystis lobara (Michaux ) Torre y & A.Gray 
E!vmiis repens (L.) Gould 
Elymrrs virginicus L. 
Epifugtrs virginiana (L .) Barton 
Epilo bizim ciliatum Raf. 
Epilobium coloralum Biehler 
Epilobium leptophyhm Raf. 
Epilobium pan~ifonim Schreber 
Ep@acris helleborine (L .) C rantz 
Equiserum arvense L . 



Appendix 3. Species codes. 

Species Code 

EQUIHYEM 
EQUILAEV 
EQUISCIR 
ERIGANNU 
ERIGPHIL 
ERIGSTRI 
ERIG-SP 
ERYTAMER 
EUPAMACU 
EUPAPERF 
EUPARUGO 
EUTHGRAM 
FAGUGRAN 
FESTARUN 
FESTPRAT 
FESTRUBR 
FESTSUBV 
FRAGVESC 
FMGVIRG 
FRAXAMER 
FRAXNIGR 
FRAXPENN 
GALETETR 
GALIAPAR 
GALIASPR 
GALICIRC 
GALILANC 
GALIOBTU 
GALIPALU 
GALITRIF 
GALI SP 
GENTANDR 
GERAMACU 
GERAROBE 
GEUMALEP 
GEUMLACI 
GEUMRIVA 
GEUMURBA 
GEUM-SP 

Scientific Name 

Equisetum hj~emale L. ssp. aninr (Engelm.) Stone 
Equisetum laevigatitm A. Braun 
Equisetitm scirpoides Michaus 
Erigeron annirus (L.)  Pers. 
Erigeron philadelphicus L. ssp. philadelphicirs 
Erigeron strigosirs Muhlenb. es. Willd. 
Erigeron species 
Eryrhronium americuniirn Ker Gawler ssp. arnencanum 
Eltpatorium macitlaium L. 
Eupatoriitm perfoliaiirm L . 
Eitpatorium rugosurn Houtt. 
Eirthamiu graminifoliu (L.) Nutt. 
Fagus grandgolia E hr h. 
Fesiirca artrndinucwa Sc hre ber 
Fesf lrca pratensis Hudson 
Festuca rttbra L. 
Festircu s~rbverticillrta ( Pers. ) E. Alexeev. 
Fraguria vescu L. ssp. umerictrntr (Porter) Staudt 
Frugurria virginianu Miller 
Fraxinrts americana L . 
Fraxinits nigra Manhall 
Fminus pennsylvmica Mars ha1 1 
Guleopsis tetrahit L. 
Galiitm 
Galiitm 
Galium 
Galium 
Galium 
Galiurn 

aparine L. 
asprellrrrn Michaux 
circaezans Michaux 
bnceolaium Torre- 
obtusitm Bigelow 
pulustre L. 

Gulium triflorztm Michaux 
Galiitm species 
Gentiuna andrewsii Griseb. 
Geraniirm maczrlatum L. 
Geranium ro bertianzrm L, 
Geum allepicitm Jacq. 
Gertm laciniotum Murray 
Geum rivale L. 
Geum urbanurn L. 
Geum species 



Appendix 3. Species codes. 

S~ecies  Code 

GLYCSTRI 
GYMNDRYO 
HACKVIRG 
HEPAACUT 
HIERAURA 
HIERCAES 
HYDRVIRG 
HYPEPERF 
HYSTPATU 
IMPACAPE 
IRISVERS 
IRIS-SP 
SUNCTENU 
LACTCANA 
LACTSERR 
LACT SP 
LAPOCANA 
LEERORYZ 
LEERVIRG 
LEONCARD 
LIPALOES 
LOBEINFL 
LOBE SP 
LONCANA 
LONTDIOI 
LONIHIRS 
LONIOBLO 
LSYNUMM 
LYCOAMER 
LYCOANNO 
LYCODEND 
LYCOOBOB 
LYCOTEüS 
LYCOUNIF 
LYSICILI 
LYSITERR 
MAIACANA 
MAIARACE 
MAI ASTEL 

Scientific Name 

Giyceria striata (Lam.) A. Hitch. 
Gymnocurpiirm dryopteris ( L . ) Newman ssp. dryopteris 
Hackelia virginiana ( L  .) 1. M. Johnston 
Heputica aczrrilo bu DC . 
Hieracium uttranriuct~rn L. 
Hieracium caespitosrrm Dumon. ssp. caespitosirm 
Hvdrophyllum virginiunirrn L . 
Hyperictrm perforarirm L. 
Hysrrix paru fa Moench 
Impatiens capensis Meerb. 
Iris versicolor L. 
Iris species 
Jirncus rentris Willd. 
Lucrrrca cunadensis L . 
Lactrrca serriola L. 
Lac~ucu species 
Laportea canadensis (L.) Wedd. 
Leersiu oryzoides (L.)  Sw. 
Leersiu virginica Willd. 
Leonurrrs curdiaca L. ssp. cardiaca 
Liparis loesefii (L.) Rich. ex Lindley 
Lobeiia inflata L. 
Lobeliu species 
Lonicera canadensis B artram 
Lonicera dioica L. 
Lonicera hirsuta Eaton 
Lonicera oblongifolia (Goldie) Hook. 
Lysimachia nummularia L. 
Lycopus americanus Muhlenb. ex Bartram 
Lycopodium annotinum L. 
Lycopodium dendroideirm Michaux 
Lycopodium O bscurirm L .var. O bscumm 
Lycopodium aistuchyum Pursh 
Lycoptrs unifloncs Mic h a u  
Lysimachia ciliata L. 
Lysimachia terrestris (L. )  Brinon. Stems& Pogg. 
Maianthem um canadense Des f. 
Maianthemum racemosum (L .  ) L ink ssp. racemosum 
Maianthemum stellatum (L .) Link 



Appendix 3. Species codes. 

Species Code 

MATTSTRU 
MEDILUPU 
MELIALBA 
MELIOFFI 
MENICANA 
MENTARVE 
MILIEFFU 
MITCREPE 
bfITED[PH 
MONOHYPT 
MONOWIF 
MUHLFRON 
MUHLMEXI 
ONOCSENS 
ONOPACAN 
ORYZASPE 
OSMOCLAY 
OSMUCLAY 
OSMUREGA 
OSTRYVIRG 
OXALSTRI 
OXAL-SP 
PANAQUrN 
PANIACUM 
PANICAP1 
PARTrNSE 
PHAL ARUN 
PHEGCONN 
PHLEPRAT 
PHLO-SP 
PHRYLEPT 
PICEGLAU 
PILEPUMI 
PINUSTRO 
PLANLANC 
PLANMAJO 
PLANRUGE 
POA-ALSO 
POA-COMP 

Scientific Name 

Matteuccia srrirthioprrris (L . )  Tod. 
Medicago l upulina L . 
Melilotzcs dba Medikus 
LMelifotus officinalis (L.)  Pallas 
iClr nisperm rim canadensr L . 
.Ventha arvensis L. 
,Clil iiim eflztsztm L. 
,l.litchellu repens L. 
.l.litellu diphylla L. 
:Cfunorropa h~vppopir h y  L . 
iClonorropa irniforu L. 
Mth fenbergia fiondosa (Poiret in Lam.) Fem. 
Mrihienbergia mexicanu (L . )  Trin. 
Onoclea sensihilis L. 
Onopordon acunthiirm L. 
Oryzopsis asperifolici Mic haua 
Osmorhiza c-/ronii (Michaus ) C.B. Clarke 
Osmunda cluy~oniunn L. 
Osmunda regcil is L . 
Osi ry  virginiunu (Mi l ler )  K .  Koch 
Oxalis strictu L. 
Uxulis species 
Panar quinquefofilm L. 
Panicum acttminatum Sw. 
Panicum capillare L. 
Parthrnocisszrs inserta (A.  Kemer) Fritsch 
Phalaris urrindinuceu L . 
Phegopreris connectifis (Michaux) Watt 
Phleum prarense L. 
Phlox species 
Phryma leprostachyu L . 
Picea giauca (Moench) Voss 
Pilea pumila (L.) A. Gray 
Pinzrs srrobtis L. 
Pluntago lanceolota L. 
Plantago major L. 
Plantago rugelii Decne. 
Pou alsodes A. Gray 
Poa compressa L. 



Appendix 3. Species codes. 

Species Code 

POA-PALU 
POA-PRAT 
POA-SALU 
POA-SP 
PODOPELT 
POLYACRO 
POLYPAUC 
POLYPERS 
POLYPUBE 
POPUBALS 
POPUGRAN 
POPUTREM 
POTENORV 
POTERECT 
PREN-SP 
PRUNSERO 
PRUNVIRG 
PRUNVULG 
PTERAQUI 
PYROELLI 
QUERALBA 
QUERMACR 
QUERRUBR 
QUER-SP 
RANUABOR 
RANUACRI 
RANUHISP 
RANURECU 
RHAMALNI 
RHAMCATH 
RHUSRADI 
RHUSTYPH 
EUBEAMER 
EUBECYNO 
RIBEGLAN 
RIBELACU 
EUBERUBR 
NBETRIS 
RIBE-827 

Scientific Name 

Poa palustris L. 
Poa pratensis L. ssp. pratensis 
Poa saltrrensis Fem. & Wieg. 
Poa species 
Podophyllrrm peltatrtm L. 
Polystichrtrn acrostichoides ( h.1 ic haux. ) Schon 
Polygda paztcifolia Willd. 
Poiygonurn persic*uriu L. 
Poi'gonutrim pubescens (Willd.) Pursh 
Popuirrs balsamijeru L . 
Popttlrrs grandidentatu Michaux 
Poprilirs tremuloides Michaux 
Pntentilla norvegicn L. 
Potrntilla recta L. 
Prenanthes s pecies 
Prunus serotina Ehrh. 
Prtinus virginiana L. spp. rirginitrna 
Prirnella vrriguris L. 
Pteridiirm oqirilinrim (L. )  Kuhn 
Pyrola ellipticn Nutt. 
Qirerczrs alba L. 
Qtrrrcirs mucrocurpcr Michaus 
Qitercrrs rtrbra L. 
Querczrs species 
Ranrrncrrlus abortivzw L. 
Ranrrncrrlrrs ucris L. 
Ranunculus hispidus Michaux 
Ranztnculzls recurvatris Poiret es Lam. 
Rhamnus alnfoiia L'Her. 
R hamnzrs cathartica L. 
Rhris radicans L. ssp. negrindo (E. Greene) McNeill 
Rhus typhina L. 
Ribes americantrm Miller 
Ribes cynosbati L. 
Ribes glandrtlosum Grauer 
Ribes lactrsrre (Pers.) Poiret 
Ribes rtîbrzrm L. 
Ribes [riste Pall. 
Ribes specimen D827 
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Species Code 

ROBIPSEU 
ROSABLAN 
ROSAPALU 
RUBUALLE 
RUBUIDAE 
RUBUOCCI 
RUBUODOR 
RUBUPUBE 
RUBU-840 
RUDBHIRT 
RUMEORBI 
SALIBEBB 
SALIDISC 
SALIERI0 
SALIPETI 
SAMBCANA 
SAMBRACE 
SANGCANA 
SANIMARI 
SANITRIF 
SANI-SP 
SCHIZPURP 
SCIRATRO 
SCUTLATE 
SICYANGU 
SILEVULG 
SMILHERB 
SMILHISP 
SOLADULC 
SOLIALT 
SOLICAES 
SOLICANA 
SOLIFLEX 
SOLIGIGA 
S O L I r n C  
SOLNEMO 
SOLIRUGO 
SONCARVE 
SONCOLER 

Scientific Name 

Ro hinia pseudoacacia L. 
Rosa blanda Aiton 
Rosa palustris Marshall 
Rubus allegheniensis Porter 
Rubus idaeus L. 
Rzibzis occidentalis L. 
Rzebtis odorattls L. 
Rrebzrs ptibescens Raf. 
Rzibiis specimen D840 
Rrrdbeckia hirta L. 
Rrrmex orbicrrlarzis A.Gray 
Salir be h biana Sarg . 
Sulix discolor Muhlenb. 
Salir eriocephah Michaux 
Salir petiolaris Smith 
Sambuczis cunadensis L. 
Sam bzlctrs racernosa L. ssp. ptrhens (Michaux) House 
Sanqit inaria canadensis L . 
Sanicula marilandka L . 
Saniculcr rrifoliara Bickn. 
Suniculu species 
Schizachne pzirprcrascens ( Torre y ) S wallen ssp. piirptiruscens 
Scirpus afrovirens Willd 
Sczrtelluria lateriflora L . 
Sicyos ungiilatzcs L . 
Silene vulgaris (Moench) Garckci 
Smilm herbacea L. 
Smilax hispida Muhlenb. 
Solunurn drilcamera L. 
Solidago alt issima L . 
Solidago caesia L. 
Sol idago canadensis L . 
Solidago jlexicaulis L . 
Solidago giganlea Aiton 
Solidago jzincea Aiton 
Solidago nemoraf is Aiton 
Solidago nigosa Aiton ssp. rzrgosci 
Sonchtrs amensis L. 
Sonchzis oleraceus L. 
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S~ecies  Code 

SPHENINTE 
STELLONG 
STREROSE 
TARAOFFI 
TAXUCANA 
THALDIOI 
THALPUBE 
THELNOVE 
THELPALU 
THUJOCCI 
TIARCORD 
TILIAMER 
TRAGDUBI 
TRIEBORE 
TRiFREPE 
TRILEREC 
TRILGRAN 
TFUOAURA 
TSUGCANA 
TUSSFARF 
TYPHLATI 
ULMUAMER 
URTIDIGR 
URTIDIOI 
UVULGRAN 
VACCANGU 
VERBHAST 
VERBTHAP 
VERBURTI 
VEROOFFI 
VEROSERP 
VIBUACER 
VIBULENT 
VIBUOPUL 
VIBUTRT 
VICICRAC 
VIOLAFFI 
VIOLBLAN 
VIOLCANA 

Scientific Name 

Spenopholis iniermedia (Rydb.) Rydb. 
Stellaria longifolia Muhlenb. es Willd. 
Strepioplis roseus Michaux 
Tararacirrn oflcinale G. Weber 
Taws canadensis Marshall 
Thalictrzrm dioicttm L. 
Thalicirtrm pubescens Pursh 
Thelypteris novebormensis ( L.  Nieuwl. 
Thelypteris palustris (Salisb.) Schott 
Thrija occidenialis L 
Tiarellu cordifolia L . 
Tilia americana L. 
Trogopagopagon dzibiirs Scop. 
Trientalis borealis Raf. ssp. borealis 
Trij2olirim repens L. 
Trillirim erectum L . 
Trilliirm grnndijlorttm ( Mic haus ) Salisb. 
Triosrerrrn uzirantiaczrrn E .  Bickn. 
Tsirgu canadensis (L.) Carriere 
Trrssilago farfaru L . 
Typha latijlolia L 
Ulm ris umericana L . 
Urrica dioica L. ssp. grucilis 
Urrica dioica L. ssp. dioicri 
Lrvularia grandiflora Smith 
Vaccinitrm angusiifoliirm Ai ton 
krbena hastara L. 
Verbascrim rhapsits L. 
Verbena iirticifolia L. 
Veronica oficinalis L. 
Veronica serpyllifolia L. 
Viburnum acerfoliirm L. 
Viburnum lenrago L. 
Pïbltrnum opzrlus L. 
Vibitrntrm irilobztm Marshall 
Vicia cracca L. 
Viola a m i s  Le Conte 
Viola blanda Willd. 
Viola canadensis L. 



Appendix 3. Species codes. 

Species Code 

VIOLCUCU 
VIOLLABR 
VIOLPUBE 
VIOLROST 
VIOLSORO 
VITARIPA 
WALDFRAG 

Scientific Kame 

Viola crtcullata Aiton 
Viola labrador ica Sc hrank 
IGla pubescens Aiton 
Viola rosirata Pursh 
Viola sororia W illd. 
Vira ripariu Michaux 
~Va'aldsteiniafiugarioides (Michaux) Tratt. 



APPENDIX 4 

DISTRIBUTION OF SPECIES BY SOIL PARENT MATERIAL, 
SOIL ORDER, SOIL MOISTURE AND CANOPY CLOSURE 



Leeend 

Column Heading 
# Q  
GF 
CT 
LAC 
CO 
B 
GB 
L 
GL 
G 
SD 
SM 
SW 
OC 
CC 

Description 
# quadrats 
Glacio-fluvial parent material 
Calcareous till parent material 
Lacustrine parent material 
Calcareous outwash parent material 
Brunisol soil order 
Gleyed Brunisol soil order 
Luvisol soil order 
Gleyed Luvisol soi1 order 
Gleysolic soil order 
Seasonally dry depressions 
Seasonal ly moist de pressions 
Seasonally wet depressions 
Open canopy 
Closed canopy 

Unit 
# quadrats 
# quadrats 
# quadrats 
# quadrats 
# quadrats 
# quadrats 
# quadrats 
# quadrats 
# quadrats 
# quadrats 
X quadrats' 
X quadrats' 
8 quadrats' 
# quadrats2 
# quadrats' 

Notes: 
1. Frequency based on presence in dry. moist and wet rnicrohabitats. respectively: frequency 

may not surn to number of quadrats recorded in colurnn 2 (#Q) since occurrences on logs. 
stumps. nised root mats. lanes. ditches and regenerating fields were not included. 

3. Frequency based on presence in open and closed microhabitats. respectively: frequency may 
not sum to number of quadrats recorded in column 2 (#Q) since species sometimes present 
in both open and closed microhabtats in the same quadrat. 
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APPENDIX 5 

LISTING OF SPECIES BY MICROHABITAT 



Appendix 5. Listing of species by microhabitat. Species codes presented in Appendix 3. 

CLOSED 
CANOPY 
1. Dry Floon 
(n=265 species) 
ABIEBALS 
ACERNEGU 
ACERRUBR 
ACERSACC 
ACERSACN 
ACERSANI 
ACERSPIC 
ACTAPACH 
ACTARUBR 
ACTA-SP 
ADIAPEDA 
AGRIGRY P 
ALLITRIC 
AMELMTE 
A M E L S P  
AMPHBRAC 
ANEMVIRG 
APOCANDR 
AQUICANA 
ARALNUDI 
ARCTMNU 
ARISTRIP 
ASARCANA 
ASCLSY RI 
ASTECILI 
ASTECORD 
ASTELATE 
ASTEMACR 
ASTENOVE 
ATHYFILI 
ATHYTHEL 
BETUALLE 
BETUPAPY 
BIDEFRON 
BOEHCYLI 
BOTRMATR 
BOTRMULT 
BOTRVIRG 
BRACEREC 
CARDDIPH 
CAREALBU 
CAREARCT 
CAREBACK 
CAREBLAN 

CARECOMM 
CARECRIS 
CAREDEWE 
CAREDIGI 
C AREGRAC 
CAREGRAN 
CAREHIRT 
CAREHITC 
CAREMTU 
CARELAXI 
CAREPECK 
CAREPEDU 
CAREPENS 
CAREPLAN 
CAREPLAT 
CARERADI 
CAREROSE 
CARESPAR 
CARETENE 
CAREWOOD 
CARE-OV 
CAR€-SP 
CARPCARO 
CARYCORD 
CAULTHAL 
CELASCAN 
CERAFONT 
CHIMUMBE 
C INN LAT1 
ClRCALPl 
CIRCLUTE 
CLAYCARO 
CLINBORE 
CORNALTE 
CORNFOEM 
CORNRUGO 
CORNSTOL 
CORYCORN 
CRAT-SP 1 
CRAT-SP7, 
CRAT-SP3 
CRAT-SP 
CRYPCANA 
CYSïBULB 
CY STFRAG 
CYSTTENU 
DACTGLOM 
DANTSPIC 
DESMGLUT 

DICECANA 
DICECUCU 
DIERLONI 
DIRCPALU 
DRYOCART 
DRYOCRIS 
DRYOINTE 
DRYOMARG 
EPIFVIRG 
EPIPHELL 
EQUIARVE 
EQUIHYEM 
EQUlLAEV 
EQUlSCIR 
ERIGANNU 
ERIGPHIL 
ERYTAMER 
EUPARUGO 
FAGUGRAN 
FESTSUBV 
FRAGVESC 
FRAGVIRG 
FRAXAMER 
FRAXNIGR 
FRAXPENN 
GALESPEC 
GALIAPAR 
GALICIRC 
GALILANC 
GALIOBTU 
GALITRIF 
GALI-SP 
GERAMACU 
GERAROBE 
GEUMALEP 
GEUMCANA 
GEUMLACI 
GEUMURBA 
G E U M S P  
GLYCSTRI 
GYMNDRYO 
HEPAACUT 
HIERAURA 
HIERCAES 
HYDRVlRG 
HYPEPERF 
IMPACAPE 
LAPOCANA 
LONICANA 

425 

LONIDIOI 
LONIHIRS 
LYCOANNO 
LYCODEND 
LYCOOBOB 
LYSINUMM 
MAIACANA 
MAIARACE 
MAIASTEL 
MA'ITTSTRU 
MEDILUPU 
MENICANA 
MENTARVE 
MILIEFFU 
MITCREPE 
MITEDIPH 
MONOHY PO 
MONOLJNIF 
ONOCSENS 
ORYZASPE 
OSMOCLAY 
OSMUCLAY 
OSTRV I RG 
OXALSTRI 
PANAQUIN 
PARTINSE 
PHEGCONN 
P H L O S P  
PHRYLEPT 
PICEGLAU 
PILEPUMI 
PMUSTRO 
POA-ALSO 
POA-COMP 
POA-PALU 
POA-PRAT 
PODOPELT 
POLYACRO 
POLYPAUC 
POLYPUBE 
POPUBALS 
POPUGRAN 
POPUTREM 
PREN-SP 
PRUNSERO 
PRUNVIRG 
PRUNVULG 
PTERAQUl 
PY ROELLI 

QUERALBA 
QUERMACR 
QUERRUBR 
RANUABOR 
RANU ACRI 
RANURECU 
RHAMALNI 
RHAMCATH 
RHUSRADI 
RIBEAMER 
RIBECYNO 
RIBEGLAN 
RIBERUBR 
RIBETRIS 
ROBIPSEU 
ROSABLAN 
RUBUALLE 
RUBUIDAE 
RUBUOCCI 
RUBUODOR 
RUBUPUBE 
SAMBCANA 
SAMBRAPU 
SANGCANA 
SANIMARI 
SANITRIF 
SANI-SP 
SCHIPURP 
SMILHERB 
SMILHISP 
SOLADULC 
SOLI ALTI 
SOLICAES 
SOLICANA 
SOLIFLEX 
SOLiNEMO 
SOLIRUGO 
SPHEMTE 
STREROSE 
SYMPALBU 
TARAOFFI 
TAXUCANA 
THALDIOt 
THELNOVE 
THELPALU 
THUJOCCI 
TIARCORD 
TIL IAMER 
TRAGDUBI 



Appendix 5. Listing of species by microhabitat. Species codes presented in Appendix 3. 

CLOSED 
CANOPY 
1. (cont'd) 
TRIEBORE 
TRiFREPE 
TRILEREC 
TRILG RAN 
TSUGCANA 
ULMUAMER 
URTIDIGR 
UVULGRAN 
VACCANGU 
VERBTHAP 
VEROOFFI 
VEROSERP 
VIBUACER 
VIBULENT 
VIBUTRIL 
VIOLAFFI 
VIOLBLAN 
VIOLCUCU 
VIOLLABR 
VIOLPUBE 
VIOLROST 
VIOL-788 
VIOL-SP 
VITIRIPA 
WALDFRAG 

2. Moist Floors 
(n=197 species) 
ABIEBALS 
ACERNEGU 
ACERRUBR 
ACERSACC 
ACERSACN 
ACERSANI 
ACERSPIC 
ACHIMILL 
ACTARUBR 
ACTA-SP 
ADIAPEDA 
AGRIGRYP 
AGROGIGA 
AiMELARBO 
AMPHBRAC 
ANEMCANA 
ANEMVIRG 

APOCANDR 
ARALNUDI 
ARCTMiNU 
ARISTRIP 
ASARC ANA 
ASCLSYRI 
ASTELATE 
ASTENOVE 
ASTEPLMI 
ATHYFILI 
BETUALLE 
B E N P A P Y  
BIDEFRON 
BOEHCYLI 
BOTRVIRG 
CARDDIPH 
CARDPENS 
CAREALOP 
CAREARCT 
CAREBEBB 
CAREBLAN 
CAREBREV 
CARECEPH 
CARECRIS 
CAREDEWE 
CAREGRAC 
CAREiNTU 
CARELANU 
CAREPEDU 
CAREPENS 
CARERADI 
CAREROSE 
CARESPAR 
CARESTIP 
CARETENE 
CARETRIB 
CAREVULP 
CARPCARO 
CARYCORD 
CAULTHAL 
CERAFONT 
CIRCALPI 
CIRCLUTE 
CIRSARVE 
CLEMVIRG 
CLMBORE 
CORN ALTE 
CORNFOEM 
CORNRUGO 

CORNSTOL 
CORYCORN 
C R A T S P  
CYPRCALC 
CYSTBULB 
DRYOCART 
DRYOCRIS 
DRYOINTE 
DRYOMARG 
ELYMVIRG 
EPILCILI 
EPILCOLO 
EPILLEPT 
EPILPARV 
EPIPHELL 
EQUiARVE 
ERIGPHIL 
ERtGSTRI 
ERYTAMER 
EUPAMACU 
EUPAPERF 
EUPARUGO 
FAGUGRAN 
FESTSUBV 
FRAGVI RG 
FRAXAMER 
FRAXNIGR 
FRAXPENN 
GALETETR 
GALIASPR 
GALIOBTU 
GALITRIF 
GENTANDR 
GERAROBE 
GEUMCANA 
GEUMLACI 
G E U M S P  
GLYCSTRI 
GYMNDRYO 
HIERCAES 
HYPEPERF 
IMPACAPE 
LAPOCANA 
LIPALOES 
LYCOAMER 
LYCOüNIF 
LYStCtLI 
LYSNUMM 
MAIACANA 
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MAIARACE 
MAI ASTEL 
MATTSTRU 
MENTARVE 
MITEDIPH 
MUHLMEXI 
ONOCSENS 
OSTRVIRG 
PARTINSE 
PHRY LEPT 
PILEPUMI 
PMUSTRO 
PLANMAJO 
PLANRUGE 
POA-ALSO 
POA-PALU 
POA-PRAT 
POLYACRO 
POPUBALS 
POPUTREM 
P R r n S E R O  
PRuNVlRG 
PRUNVULG 
QUERMACR 
RANUABOR 
RANUACRI 
RANURECU 
RHAMCATH 
RHUSRADI 
RIBEAMER 
RIBECYNO 
RIBEGLAN 
RIBERUBR 
RI BETRIS 
ROSABLAN 
ROSAPALU 
RUBUALLE 
RUBUIDAE 
RUBUODOR 
RUBUPUBE 
SALIBEBB 
SALIDISC 
SALIERI0 
SAMBRAPU 
SCHIPURP 
S C I M T R O  
SCUTLATE 
SOLADULC 
SOLIALTI 

SOLICANA 
SOLI FLEX 
SOLIGIGA 
SOLIRUGO 
SPHEINTE 
STELLONG 
TARAOFFI 
TAXUCANA 
THALDIOI 
THALPUBE 
THELPALU 
THUJOCCI 
TIARCORD 
TILIAMER 
TRIEBORE 
TRILEREC 
TRILGRAN 
TSUGCANA 
TYPHLATI 
ULMUAMER 
WKN-75 1 
URTIDIOI 
VIBULENT 
VIBUTRIL 
VIOLAFFI 
VIOLBLAN 
VIOLCANA 
VIOLCUCU 
VIOLLASR 
VIOLPUBE 
VIOL-SI' 
VITIRIPA 
WALDFRAG 

3. Wet Floors 
(n=152 species) 
ACERRUBR 
ACERSACN 
ACWIMILL 
AGROGIGA 
AMPHBRAC 
ASCLMCA 
ASTECILI 
ASTELATE 
ASTEUMBE 
BtDEFRON 
BOEHCYLI 
CAREALOP 
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CLOSED 
CANOPY 
3. (cont'd) 
CAREBEBB 
CAREBLAN 
CAREBREV 
CARECRIS 
CAREGRAC 
CAREGRAN 
CARELANU 
CARERADI 
CAREROSE 
CARESTIP 
CARETENE 
C ARETRIB 
CAKEVULP 
CERAFONT 
CICUMACU 
CORNSTOL 
CRAT-SP 
ELYMVIRG 
EQUIARVE 
ERIGPHIL 
FRAGVIRG 
FRAXNIGR 
FRAXPENN 
GALIOBTU 
GALITRIF 
GENTANDR 
G E U M S P  
GLYCSTRI 
HIERCAES 
IMPACAPE 
IRIS-SP 
LIPALOES 
LYCOAMER 
LYCOUNIF 
LYSICILI 
LYSMUMM 
MATTSTRU 
MENTARVE 
MUHLMEXI 
ONOCSENS 
PARTMSE 
PILEPUMI 
PLANMAJO 
PLANRUGE 
POA-ALSO 

POA-COMP 
POA-PALU 
POA-PRAT 
POPUTREM 
PRUNVIRG 
PRUNVULG 
RANUABOR 
RANUACRI 
RHAMCARI 
RHUSRADI 
RIBETRIS 
ROBIPSEU 
ROSAPALU 
RUBUPUBE 
SALIBEBB 
SALIERI0 
SCUTLATE 
SOLADULC 
SOLICANA 
SOLIGfGA 
TARAOFFI 
ULMUAMER 
VIBULENT 
VIBUOPUL 
VIOLAFFI 
VITIRIPA 

4. Moist 
Depressions 

(n=136 species) 
ABIEBALS 
ACERRUBR 
ACERSACC 
ACERSACN 
ACERSPrC 
ACTARUBR 
ADIAPEDA 
ARALNUDI 
ANSTRIP 
AS ARCANA 
ASCLSYRI 
ASTELATE 
ASTEPUNI 
ATHYFILI 
BOEHCYLI 
CALTPALU 
CARDDIPH 
CAREBEBB 

C A E B L A N  
CARECRIS 
CAREDEWE 
CAREGRAC 
CAREGRAN 
CAREINTU 
CAREPEDU 
CAREPENS 
CAREPLAN 
CAREPROJ 
CARERADI 
CARERETR 
CAREROSE 
CARESTIP 
CARETEN E 
CARE-OV 
CARE-SP 
CAULTHAL 
CINNLATI 
CIRCALPI 
CIRCLUTE 
CIRSARVE 
CLEMViRG 
CORNALTE 
CORNFOEM 
CORNSTOL 
CYSTBULB 
DACTGLOM 
DRYOCART 
DRYOC RIS 
DRYOiNTE 
DRYOMARG 
ELYMREPE 
ELYMWRG 
EPILCOLO 
EPIPHELL 
EQUIARVE 
EQUILAEV 
ERIGANNU 
ERIGPHIL 
E R I G S P  
ERYTAMER 
EUPARUGO 
FAGUGRAN 
FRAGVIRG 
FRAXAMER 
FRAXNIGR 
FRAXPENN 
GALIOBTU 
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GALITRIF 
GERAROBE 
GEUMCANA 
GEUMLACI 
GEUMRIVA 
GEUM-SP 
GLYCSTRI 
GYMNDRYO 
HEPAACUT 
HIERCAES 
HY STPATU 
IMPACAPE 
LAPOCANA 
LYSICILI 
LY SINUMM 
MAIACANA 
MAIARACE 
MAIASTEL 
M ATTSTRU 
MITEDIPH 
ONOCSENS 
OSMUCLAY 
OSTRVIRG 
PARTINSE 
PILEPUMI 
PLANMAJO 
POA-COMP 
POA-PALU 
POLY PUBE 
POPUBALS 
PRUNVIRG 
PRüNVULG 
RANUABOR 
RANUACRI 
RANUHICA 
RANURECU 
RHAMCATH 
RHUSRADI 
RIBEAMER 
RIBECYNO 
RIBEGLAN 
RIBELACU 
RIBETRiS 
RUBUIDAE 
RUBUPUBE 
SAMBCANA 
SCHIPURP 
SCUTLATE 
SOLADULC 

SOLIALTI 
SOL ICANA 
SOLIFLEX 
TARAOFF1 
THELNOVE 
THELPALU 
THUJOCCI 
TIARCORD 
TILIAMER 
TRIEBORE 
TRILEREC 
TRILGRAN 
TSUGCANA 
ULMUAMER 
VIBULENT 
VIOLAFFI 
VIOLBLAN 
VIOLLABR 
VlOLPUBE 
VITIRIPA 

5. Wet 
Depressions 

(n= 1 1 S species) 
ABIEBALS 
ACERSACC 
ACERSACN 
ACERSPIC 
ACTA-SP 
ADIAPEDA 
AGROGIGA 
ALLITRIC 
ALNUINCA 
AMPHBRAC 
ARISTRIP 
ASARC ANA 
ASCLINCA 
ASTECORD 
ASTELATE 
ASTENOVE 
ASTEPlMI 
ATHYFILI 
ATHYTHEL 
BETUALLE 
BIDEFRON 
BOEHCYLI 
CARDDIPH 
CAREBLAN 
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CLOSED 
CANOPY 
5. (cont'd) 
CARECEPH 
CARECRIS 
CAREGRAC 
CAREHIRT 
CAREINTU 
CAREPEDU 
CAREPLAN 
CAREPSEU 
CARERADI 
CARERETR 
CARETENE 
CARETRIB 
CARPCARO 
CAULTHAL 
CICUBULB 
CINNLATI 
CIRCALPI 
CIRCLUTE 
CORNALTE 
CORNRUGO 
CORNSTOL 
CY STBULB 
DRYOCART 
DRYOCRIS 
DRYOiNTE 
DRYOMARG 
EPILCILI 
EPILCOLO 
EPILPARV 
EPIPHELL 
EQUIARVE 
EUPAMACU 
EUPARUGO 
FESTSUBV 
FRAXAMER 
FRAXNIGR 
FRAXPENN 
GALIOBTU 
GALITRIF 
GERAROBE 
GLYCSTRI 
HIERCAES 
HYDRVIRG 
IMPACAPE 
IRIS-SP 

LAPOCANA 
LIPALOES 
LYCOüNIF 
LYSICILI 
LYSINUMM 
MAIARACE 
MATTSTRU 
MENTARVE 
ONOCSENS 
OSMUREGA 
PARTINSE 
PILEPUMI 
POA-ALSO 
POA-PALU 
POLYPUBE 
PRUNVIRG 
RANUABOR 
RANURECU 
RHAMCATH 
RHUSRADI 
RIBEAMER 
RIBECYNO 
RIBETRIS 
RIBE-827 
RUBUIDAE 
RUBUOCCI 
RUBUPUBE 
SALIERI0 
SCIRATRO 
SIUMSUAV 
SOLADULC 
SOLIALTI 
SOLICANA 
SOLIFLEX 
TARAOFFI 
THELPALU 
THUJOCCI 
TIARCORD 
TILIAMER 
TRILEREC 
TRILGRAN 
ULMUAMER 
VIOLBLAN 
VIOLCUCU 
VIOLPüBE 
VITIRIPA 

6. Seep 

(n=33 species) 
ASTENOVE 
BOEHCYLI 
CALTPALU 
CARENTU 
CARESTIP 
CARE-OV 
CICUMACU 
CINNLATI 
EPILCOLO 
EQUIARVE 
FRAXNIGR 
GEUMRIVA 
GLYCSTRI 
GYMNDRYO 
IMPACAPE 
LAPOCANA 
LYCOAMER 
LYCOUNIF 
LYSICILI 
LYSINUMM 
MATTSTRU 
ONOCSENS 
PILEPUMI 
POA-PALU 
RANUHICA 
RIBEAMER 
RIBEGLAN 
SAMBCANA 
SOLADULC 
TIARCORD 
ULMUAMER 
UNKN-79 I 
V I O L S P  

7. Dry Gap 
(n= 1 15 species) 
ABIEBALS 
ACERRUBR 
ACERSACC 
ACERSPIC 
ACTAPACH 
ACTARUBR 
ACTA-SP 
ADtAPEDA 
ALLITRIC 
A M E L S P  
APOCANDR 

ARISTRIP 
ASCLSYRI 
ASTECILI 
ASTECORD 
ASTELATE 
ATHYFILI 
BETUPAPY 
BOTRVIRG 
CARDDIPH 
CAREBLAN 
CAREDEWE 
CAREDIGI 
CAREGRAC 
CAREPEDU 
CAREPENS 
CAREPLAN 
CARERADI 
CAREROSE 
CARESPAR 
CARPCARO 
CARYCORD 
CEANAMER 
CELASCAN 
CIRCLUTE 
CORNALTE 
CORNFOEM 
CORNRUGO 
CORYCORN 
CRAT-SP 
CYSTFRAG 
DESMGLUT 
DICECANA 
DIRCPALU 
DRYOCART 
DRYOINTE 
DRYOMARG 
EPIPHELL 
ERYTAMER 
FESTSUBV 
FRAGVESC 
FRAGVIRG 
FRAXAMER 
GALESPEC 
GALITRIF 
GERAMACU 
GERAROBE 
GEUMLACI 
GEUM-SP 
GLYCSTRl 

HIERCAES 
IMPACAPE 
LONICANA 
LONIDIOI 
MAIACANA 
MAIARACE 
MAIASTEL 
MENICANA 
MONOUNIF 
ONOCSENS 
ORYZASPE 
OSMOCLAY 
OSTRV IRG 
P A N I S P  
PARTINSE 
PLANMAJO 
POA-COMP 
POA-PRAT 
PODOPELT 
POLYPUBE 
PRUNSERO 
PRUNVIRG 
PTERAQUI 
PYROELLI 
QUERRUBR 
RANUACRI 
RANURECU 
RHAMCATH 
RHUSRADi 
RIBECYNO 
RIBETRIS 
ROBIPSEU 
RUBUALLE 
RUBUIDAE 
SAMBRAPU 
SMILHERB 
SOLADULC 
SOLI ALTI 
SOLICANA 
SOLIFLEX 
SOLIJUNC 
TARAGFFl 
THALDI0 I 
THUJOCCI 
TIARCORD 
TILIAMER 
TRILGRAN 
VIBUACER 
VIBULENT 
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CLOSED 
CANOPY 
7. (cont'd) 
VIOLBLAN 
VIOLLABR 
VIOLPUBE 
VIOL-SP 
VITIFUPA 
WALDFRAG 

8. Moist Gap 
(n48  species) 
ABIEBALS 
ACERRUBR 
ACERSACC 
ACERSACN 
ACERSPIC 
ARALNUDI 
ARISTRI P 
ATHYFILI 
BOEHCYLI 
CAREBEBB 
CAREBLAN 
CAREDEWE 
CAREGRAC 
CAREPEDU 
CARERADi 
CAREROSE 
CAULTHAL 
CINNLATI 
CIRCALPI 
CIRCLUTE 
CORNALTE 
CORNSTOL 
CYSTBULB 
DRYOCART 
DRYOCRIS 
DRYOMTE 
DRYOMARG 
EPILCOLO 
EPILPARV 
EPIPHELL 
ERYTAMER 
EUPAMACU 
FRAGVESC 
FRAXNIGR 
FRAXPENN 
GALITRIF 

GERAROBE 
GEUMCANA 
GEUMLACI 
GLYCSTRI 
IMPACAPE 
L A C T S P  
LAPOCANA 
MAIACANA 
ONOCSENS 
PARTINSE 
POPUBALS 
PRUNVIRG 
RANUABOR 
RANURECU 
RHAMCATH 
RIBECYNO 
RIBERUBR 
RIBETRIS 
RUBUIDAE 
RUBUPUBE 
SAMBCANA 
SOLADULC 
SOLI ALTI 
SOLICANA 
SOLIGIGA 
TARAOFFI 
THALPUBE 
TIARCORD 
TRILEREC 
ULMUAMER 
VIOLCUCU 
VIOLPUBE 

9. M O r n  
(n=L65 species) 
ABIEBALS 
ACERRUBR 
ACERSACC 
ACERSANI 
ACERSPIC 
ACTAPACH 
ACTARUBR 
ACTA-SP 
ADIAPEDA 
ALLITRiC 
A M E L S P  
APOCANDR 
AQUICANA 

ARALNUDI 
ARISTRIP 
ASARCANA 
ASCLSY RI 
ASTEClLl 
ASTECORD 
ASTELATE 
ASTEMACR 
ASTENOVE 
ATHYFILI 
ATHYTHEL 
BETUPAPY 
BOTRVI RG 
CARDDIPH 
CAREARCT 
CAREBACK 
CAREBLAN 
CAREDEWE 
CAREDIGI 
CAREGRAC 
CAREHITC 
CAREINTU 
CARELAXI 
CAREPEDU 
CAREPENS 
CAREPLAN 
CARERADI 
CAREROSE 
CARYCORD 
CAULTHAL 
CELASCAN 
CIRCALPI 
CIRCLUTE 
CLAYCARO 
CORNALTE 
CORNRUGO 
CORYCORN 
CRAT-SP3 
CRAT-SP 
DANTSPIC 
DESMGLUT 
DICECANA 
DICECUCU 
DIERLONI 
DRYOCART 
DRYOMTE 
DRYOMARG 
EPIFVIRG 
EPILCOLO 
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EPIPHELL 
EQUIARVE 
ERIGANNU 
ERIGPHIL 
ERYTAMER 
FAGUGRAN 
FESTSUBV 
FRAGVESC 
FRAXAMER 
FRAXNIGR 
FRAXPENN 
GALIAPAR 
GALITRIF 
GERAROBE 
GEUMLACI 
GLYCSTRI 
GYMNDRYO 
HEPAACUT 
HlERCAES 
HY DRVIRG 
IMPACAPE 
LEONCARD 
LONICANA 
LYCOOBOB 
MAIACANA 
MAIARACE 
MAIASTEL 
MATTSTRU 
MITCREPE 
MITEDIPH 
MONAFIST 
ONOCSENS 
ORYZASPE 
OSMOCLAY 
OSTRVIRG 
OXAL-SP 
PARTINSE 
PHRYLEPT 
PILEPUMI 
PiNUSTRO 
POA-ALSO 
POA-COMP 
POA-SALT 
P O A S P  
PODOPELT 
POLYPUBE 
POPUGRAN 
POPUTREM 
PREN-SP 

PRLMSERO 
PRUNVIRG 
PTERAQUI 
PYROELLI 
QUERRUBR 
QUER-SP 
RANUABOR 
RANUACRI 
RANURECU 
RHAMCATH 
RHUSRADI 
RIBECYNO 
RI BETRI S 
ROBIPSEU 
ROSABLAN 
RUBUALLE 
RUBUIDAE 
RUBUOCCI 
RUBUODOR 
RUBUPUBE 
SAMBRAPU 
SANGCANA 
SANIMARI 
SCHIPURP 
SILEVULG 
SMILHERB 
SOLIALTI 
SOLICAES 
SOLICANA 
SOLIFLEX 
SOLINEMO 
SONCARVE 
STREROSE 
SYMPALBU 
TARAOFFI 
THALDIOI 
THUJOCC t 
TIARCORD 
TILIAMER 
TRZEBORE 
TRIL E REC 
TRlLGRAN 
TSUGCANA 
ULMUAMER 
UVULG RAN 
VIBUACER 
VIBULENT 
VIOLAFFI 
VIOLBLAN 
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CLOSED 
CANOPY 
9. (cont'd) 
vIOLCUCu 
VIOLPUBE 
VIOL-SP 
VITIRIPA 
WALDFRAG 

10. Dry Pit 
(n=8 f s pecies) 
ABIEBALS 
ACERRUBR 
ACERSACC 

ACTA-SP 
AMEL-SP 
ARALNUDI 
AR1 STRI P 
ASARCANA 
ASTEMACR 
ATHY FIL1 
BOEHCYLl 
BOTRVIRG 
CAREDEWE 
CAREPEDU 
CAREPENS 
CARPCARO 
CARYCORD 
CAULTHAL 
CELASCAN 
CIRCLUTE 
CLAYCARO 
CORNALTE 
CORNRUGO 
CORYCORN 
DESMGLUT 
DICECANA 
DRYOCART 
DRYOMTE 
DRYOMARG 
EPIFViRG 
EPIPHELL 
ERYTAMER 
FAGUGRAN 
FESTSUBV 
FRPLXAMER 
GALITRiF 
GERAROBE 

GYhrl-NDRYO 
HEPAACUT 
HY DRVIRG 
IMPACAPE 
LONICANA 
MAIACANA 
MAIARACE 
MAIASTEL 
MITCREPE 
MITEDIPH 
ORYZASPE 
OSMOCLAY 
OSTRVIRG 
PrNUSTRO 
POA-ALSO 
POLY ACRO 
POLYPUBE 
POPUGRAN 
PRUNSERO 
PRUNVIRG 
PTERAQUI 
PYROELLI 
QUERRUBR 
RANUABOR 
RHUSRADI 
RIBECYNO 
ROBIPSEU 
ROSABLAN 
RUBUALLE 
SAMBRAPU 
SANGCANA 
SMILHERB 
SOLIFLEX 
SY MPALBU 
TARAOFFI 
THUJOCCI 
TILIAMER 
TRIEBORE 
TRILEREC 
TRILGRAN 
VIBUACER 
VIBULENT 
VIOLPUBE 
WALDFRAG 

I l .  Moist Pit 
(n=5 species) 
CAREMTU 

CIRCALPI 
CIRCLUTE 
ERYTAMER 
[MPACAPE 

12. Log 
(n=102 species) 
ABIEBALS 
ACERRUBR 
ACERSACN 
ACERSPIC 
A C T A S P  
ANEMQUIN 
ARALNUDI 
ARISTRIP 
ASTELATE 
ATHY FIL1 
BETUALLE 
BETUPAPY 
BIDEFRON 
BOEHCYLI 
CARDDIPH 
CAREBLAN 
CARECRIS 
CAREDEWE 
CAREGRAC 
CAREINTU 
CAREPEDU 
CAREPENS 
CARERADt 
CAREROSE 
CARESTl P 
CARETENE 
CARPCARO 
CARYCORD 
CAULTHAL 
CMNLATI 
CIRCALPI 
CIRCLUTE 
CLEMVIRG 
CORNALTE 
CORNFOEM 
CYSTBULB 
DRYOCART 
DRYOCRIS 
DRYOINTE 
ECHILOBA 
EPILCOLO 

EPILLEPT 
EPIPHELL 
EQUIARVE 
ERYTAMER 
EUPARUGO 
FRAGVESC 
FRAGVIRG 
FRAXAMER 
FRAXNIGR 
FRAXPENN 
GALIASPR 
GALIPALU 
GALITRIF 
GERAROBE 
GEUMLACI 
GLYCSTRI 
G Y W D R Y O  
HEPAACUT 
HIERCAES 
IMPACAPE 
LAPOCANA 
LYCOUNIF 
LYSINUMM 
MAIACANA 
MAIARACE 
MENT ARVE 
MILIEFFU 
MITEDIPH 
ONOCSENS 
PARTiNSE 
PILEPUMI 
POA-PALU 
POLYPUBE 
RANUABOR 
RANURECU 
RHAMCATH 
RIBECYNO 
RIBEGLAN 
RUBUALLE 
RUBUIDAE 
RUBUODOR 
RUBUPUBE 
RUBU-840 
SOLADULC 
SOLI ALTI 
SOLICANA 
SOLIFLEX 
TARAOFFI 
THUJOCCI 

TIARCORD 
TILIAMER 
TRIEBORE 
TRI LEREC 
TSUGCANA 
ULMUAMER 
VIOLBLAN 
VIOLLABR 
VIOLPUBE 
VIOL-SP 
VITI RIPA 
WALDFRAG 

13. Stump 
(n=51 species) 
ABIEBALS 
ACERRUBR 
ACERSACC 
ACERSPIC 
ARALNUDI 
ARISTRIP 
AST ELATE 
BETU ALLE 
BOEHCYLI 
CARECRIS 
CAREDEWE 
CAREGRAC 
CAREPEDU 
CAREPENS 
C A R E O V  
CIRCALPI 
CIRCLUTE 
DRYOC ART 
DRYOiNTE 
EPIPHELL 
FAGUGRAN 
FRAGVIRG 
GERAROBE 
GYMNDRYO 
IMPAC APE 
MAIACANA 
MAIARACE 
PARTMSE 
PICEGLAU 
PILEPUMI 
POLY PAUC 
POLYPUBE 
QUERALBA 
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CLOSED 
CANOPY 
13. (cont'd) 
QUERRUBR 
RANUABOR 
RIBEAMER 
RUBUIDAE 
RUBUODOR 
RUBUPUBE 
SAMBRAPU 
SOLADULC 
SOLICANA 
SOLIFLEX 
SPHEINTE 
TARAOFFI 
THUJOCC 1 
TIARCORD 
TRIEBORE 
TSUGCANA 
ULMUAMER 
VIOLCUCU 

14. Raised Root 
Mat 

(n=I38 species) 
ABIEBALS 
ACERRUBR 
ACERSACC 
ACERSACN 
ACERSPIC 
ACTARUBR 
ACTA-SP 
ALLITRIC 
ARALNUDI 
ARCTMNU 
ARiSTRiP 
ASARCANA 
ASTECORD 
ASTELATE 
ASTENOVE 
ATHYFILI 
BETUALLE 
BETUPAPY 
BIDEFRON 
BOEHCY LI 
CARDDlPH 
CAREARCT 
CAREBLAN 

CARECRIS 
CAREDEWE 
CAREGRAC 
CAREINTU 
CAREPECK 
CAREPEDU 
CAREPENS 
CAREPLAN 
CARERADI 
CAREROSE 
CARESTIP 
CARETENE 
CARE-OV 
CARYCORD 
CAULTHAL 
CELASCAN 
CINNLATI 
CIRCALPI 
CIRCLUTE 
CLEMVIRG 
CLINBORE 
CORNALTE 
CORNRUGO 
CORNSTOL 
CYSTBULB 
C Y  STFRAG 
DRYOCART 
DRYOCRIS 
DRYOINTE 
DRYOMARG 
EPILCOLO 
EPIPHELL 
EQUIARVE 
EQUISCIR 
ERIGPHIL 
FAGUGRAN 
FRAGV 1 RG 
FRAXAMER 
FRAXNtGR 
FRAXPENN 
GALIASPR 
GALIOBTU 
GALIPALU 
GALITRIF 
GERAROBE 
GEUMCANA 
GEUMLACI 
GEUM-SP 
GLYCSTRI 

GYMNDRYO 
HIERCAES 
HYDRVIRG 
IMPACAPE 
L A C T S P  
LONICANA 
LYCOANNO 
LYCOtTiJIF 
MAIACANA 
MAI ARACE 
MEDILUPU 
MILIEFFU 
MITEDIPH 
OSMOCLAY 
OSTRVIRG 
PARTINSE 
PINUSTRO 
POA-ALSO 
POA-COMP 
POLYACRO 
POLYPUBE 
POPUBALS 
PREN-SP 
PRUNSERO 
PRUNVIRG 
PY ROELLI 
QUERMACR 
RANUABOR 
RANUACRI 
RANURECU 
RHAMCATH 
RHUSRADI 
RIBECYNO 
RIBEGLAN 
RIBELACU 
RUBUALLE 
RUBUIDAE 
RUBUODOR 
RUBUPUBE 
SAMBCANA 
SAMBRAPU 
SCHIPURP 
SCUTLATE 
SIUMSUAV 
SOLADULC 
SOLICANA 
SOLIFLEX 
SOLIRUGO 
SPHEiNTE 
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TARAOFFI 
TAXUCANA 
THALPUBE 
THELPALU 
THUJOCCI 
TIARCORD 
TILIAMER 
TRIEBORE 
TRILEREC 
TRI LGRAN 
TSUGCANA 
ULMUAMER 
URTIDIGR 
VIBULENT 
VIOLBLAN 
V I O L S P  
VITIRIPA 

15. Stone 
(n=20 species) 
ANEMQUIN 
ASTELATE 
CAREBLAN 
CAREPEDU 
CAREPENS 
DRYOCRIS 
EPIPHELL 
EQUIHYEM 
ERIGPHIL 
FRAXAMER 
GALITRIF 
LONIDIO[ 
MAIACANA 
PARTINSE 
PRCMVIRG 
RHUSRADI 
RIBECYNO 
SCHIPURP 
SOLIFLEX 
TRILGRAN 

16. Lane 
(n=89 species) 
ABIEBALS 
ACERRUBR 
ACERSACC 
A C T A S P  
ARALNUDI 

ARISTRIP 
ASTELATE 
ATHYFILI 
BOEHCYLI 
BOTRVIRG 
CARDDIPH 
CAREARCT 
CAREBLAN 
CAREDEWE 
CAREGRAC 
CARERJTU 
CAREPEDU 
CAREPENS 
CAREPROJ 
CARERADI 
CAREROSE 
C ARETENE 
CARETRIB 
CARE-SP 
CARYCORD 
CAULTHAL 
CIRCALPI 
CIRCLUTE 
CORNALTE 
DRYOCART 
DRYOCRIS 
DRYOINTE 
EPIPHELL 
EQUISCIR 
ERYTAMER 
FAGUGRAN 
FRAGVESC 
FRAXAMER 
GALILANC 
GALITRIF 
GLYCSTRI 
HIERCAES 
HYDRVIRG 
IMPACAPE 
LYCODEND 
MAIACANA 
MAIARACE 
MENTARVE 
MITCREPE 
ONOCSENS 
ORYZASPE 
OSMOCLAY 
OSMUCLAY 
OSTRVIRG 
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CLOSED 
CANOPY 
16. (cont'd) 
POA-PRAT 
PODOPELT 
POLYPUBE 
POPUGRAN 
POPUTREM 
PRUNSERO 
PRUNVIRG 
PTERAQUI 
QUERRUBR 
RANUABOR 
RHAMCATH 
RHUSRADI 
IUBECYNO 
ROBIPSEU 
RUBUIDAE 
RUBUOCCI 
SALIERI0 
SAMBRAPU 
SANGCANA 
SMILHERB 
SOLIALTI 
SOLICANA 
TARAOFFI 
THALDIOI 
TIARCORD 
TILIAMER 
TRIEBORE 
TRILEREC 
TRILGRAN 
ULMUAMER 
URTIDIGR 
VIOLLABR 
VIOLPUBE 
VIOLSORO 
VITIRiPA 

17. Ditch 
(u=68 species) 
ACERSACC 
ACERSACN 
ACHIMILL 
AGROGIGA 
ANEMCANA 
ASTELATE 
ASTEPCMI 

CARECRIS 
CAREGRAN 
CARELANU 
CARERADI 
CAREROSE 
CARESTIP 
CARETENE 
CAREVULP 
CARYCORD 
CLAYCARO 
CORNRUGO 
CORNSTOL 
EPILCILI 
EPILLEPT 
EPIPHELL 
EQUIARVE 
ERIGPHIL 
ERYTAMER 
EUPAMACU 
EUPAPERF 
FRAGVIRG 
FRAXNIGR 
FRAXPENN 
GALIOBTU 
GALITRIF 
GLYCSTRI 
HYDRVlRG 
IMPACAPE 
LEERORYZ 
LYCOUNIF 
LYSICILI 
LYSITERR 
MAIACANA 
MEDILUPU 
MENTARVE 
MUHLMEXI 
ONOCSENS 
PARTINSE 
PHALARUN 
PILEPUMI 
PLANRUGE 
POA-PALU 
POA-PRAT 
POLYPUBE 
PRUNVIRG 
RANUACRI 
RANURECU 
ROBIPSEU 
SALIDISC 

SALIERI0 
SANGCANA 
SCUTLATE 
SOLI ALTI 
SOLIGIGA 
TARAOFFI 
TILIAMER 
TUSSFARF 
ULMUAMER 
VIOLPUBE 
VIOL-SP 
VITIRIPA 

18. Regenerat- 
ing Field 

( ~ 1 2 5  species) 
ABIEBALS 
ACERRUBR 
ACERSACC 
ACERSACN 
ACHIMILL 
ACTARUBR 
AGRIGRY P 
AGROGIGA 
AGROSTOL 
AMELINTE 
ANEMVIRG 
APOCANDR 
AQUICANA 
ASCLSYRI 
ASTECILI 
ASTELATE 
ASTENOVE 
ASTEPUNI 
BETUPAPY 
BOTRVIRG 
BROMINER 
CAREBLAN 
CARECRIS 
CAREGRAC 
CAREGRAN 
CARELANU 
CAREPENS 
CARERADI 
CARESTIP 
CARETENE 
CARE-7 19 
CARPCARO 

CARYCORD 
CELASCAN 
CERAFONT 
CHRY LEUC 
CIRSARVE 
CORNSTOL 
CORYCORN 
C R A T S P  
DAUCCARO 
DESMGLUT 
ELYMVIRG 
EPILCILI 
EPILLEPT 
EPIPHELL 
EQUIARVE 
ERIGPHIL 
ERIGSTRI 
EUPAMACU 
EUPAPERF 
EUTHGRAM 
FRAGVIRG 
FRAXAMER 
FRAXNIGR 
FRAXPENN 
GALICIRC 
GALIOBTU 
GALITRIF 
GENTANDR 
HIERCAES 
HYPEPERF 
[MPACAPE 
IRIS-SP 
LACTCANA 
LIPALOES 
LYCOAMER 
LYCOLMIF 
LYSICILI 
MAIACANA 
MATTSTRU 
MEDILUPU 
MELIALBA 
MELIOFFI 
MUHLFRON 
ONOCSENS 
OXALSTRI 
PANIACUM 
PARTMSE 
PHALARUN 
PHLEPRAT 

PILEPUMI 
PLANLANC 
PLANRUGE 
POA-COMP 
POA-PALU 
POA-PRAT 
POPUBALS 
POPUTREM 
POTERECT 
PRUNSERO 
PRUNVIRG 
PRUNVULG 
PTERAQUI 
QUERRUBR 
RANUACRI 
RHAMCATH 
RIBEAMER 
RIBECYNO 
RUBUALLE 
RUBUIDAE 
RUBUPUBE 
RUDBHIRT 
SALIBEBB 
SALIDISC 
SALIERI0 
SISY MONT 
SMILHERB 
SOLI ALTI 
SOLICANA 
SOLIGIGA 
SOLINEMO 
TARAOFFI 
THUJOCCI 
TILIAMER 
TRAGDUBI 
TRIFREPE 
TRI LG RAN 
ULMUAMER 
VIBUACER 
VIBULENT 
VICICRAC 
VIOLAFFI 
VIOL-SP 
VITIRIPA 

OPEN 
CANOPY 
19. Dry Floors 
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OPEN 
CANOPY 
19. Dry Floors 
(n=205 apecies) 
ABIEBALS 
ACERRUBR 
ACERSACC 
ACERSACN 
ACERSPIC 
ACTAPACH 
ACTA-SP 
ADIAPEDA 
AGRIGRY P 
ALLITRIC 
AMELMTE 
A M E L S P  
AQUKAN A 
ARALNUDI 
ARCTMCNU 
ARlSTRlP 
ASARCANA 
ASCLSYRI 
ASTECILI 
ASTELATE 
ASTEMACR 
ASTENOVE 
ATHY FI L 1 
BETUPAPY 
BOEHCYLI 
BOTRVIUG 
BRACEREC 
CALYSEPI 
CARDACAN 
CARDDIPH 
CAREALBU 
CAREARCT 
CAREBACK 
CAREBLAN 
CARECRIS 
CAREDEWE 
CAREGRAC 
CAREHITC 
CAREMTU 
CARELAXI 
CAREPEDU 
CAREPENS 
CAREPLAN 
CARERADI 

CAREROSE 
CARESPAR 
CARE-OV 
CARE-SP 
CARPCARO 
CARYCORD 
CAULTHAL 
CEANAMER 
CELASCAN 
CERAFONT 
CIRCALPI 
CIRCLUTE 
CIRSARVE 
CIRSVULG 
CLAYCARO 
CLEMVIRG 
CONYCANA 
CORN ALTE 
CORNFOEM 
CORNRUGO 
CORYCORN 
CRAT-SP 
CRYPCANA 
CYSTBULB 
DACTGLOM 
DANTSP IC 
DICECANA 
DICECUCU 
DtERLONI 
DIRCPALU 
DRYOCART 
DRYOCRIS 
DRYOINTE 
DRYOMARG 
EPIFVIRG 
EPILCOLO 
EPIPHELL 
ERIGANNU 
ERIGPHIL 
ERYTAMER 
EUPAPERF 
EUPARUGO 
FAGUGRAN 
FESTSUBV 
FRAGVESC 
FRAXAMER 
FRAXNlGR 
FRAXPENN 
GALETETR 

GALIAPAR 
GALILANC 
GALITRIF 
GERAMACU 
GERAROBE 
GEUMCANA 
GEUMLACI 
GEUMURBA 
GLYCSTRI 
GYMNDRYO 
HACKVIRG 
HEPAACUT 
HIERCAES 
HYDRVIRG 
HY STPATU 
IMPACAPE 
JUNCTENU 
LACTCANA 
LACTSERR 
LAPOCANA 
LEONCARD 
LOBEINFL 
LONICANA 
LONIDIOl 
MAIACANA 
M A I  ARACE 
MAIASTEL 
MEDILUPU 
MELIALBA 
MENICANA 
MILIEFFU 
MITCREPE 
MITEDIPH 
NEPECATA 
ONOCSENS 
ONOPACAN 
ORYZASPE 
OSMOCLAY 
OSTRVIRG 
PANICAPI 
PARTMSE 
P H L O S P  
PHRYLEPT 
PILEPUMI 
PMUSTRO 
PLANRUG E 
POA-COMP 
POA-PALU 
POA-PRAT 
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POA-SALT 
POLY PAUC 
POLY PUBE 
PREN-SP 
PRUNSERO 
PRUNVIRG 
PTERAQUI 
QUERALBA 
QUERMACR 
QUERRUBR 
RANUABOR 
RANUACRI 
RANURECU 
RHAMCATH 
RHUSRADI 
RIBECYNO 
RIBETRIS 
ROBIPSEU 
RUBUALLE 
RUBUIDAE 
RUBUOCCI 
RUBUPUBE 
SAMBRAPU 
SANGCANA 
S A N I S P  
SCHlPURP 
SMILHERB 
SMILHISP 
SOLADULC 
SOLIALTI 
SOLICAES 
SOLICANA 
SOLIFLEX 
SOLIGIGA 
SOLINEMO 
SOLIRUGO 
SONCARVE 
SONCOLER 
SPHEMTE 
SYMPALBU 
TARAOFFI 
THALDIOI 
THUJOCCI 
TIARCORD 
TILIAMER 
TRIEBORE 
TRIFREPE 
TRI LEREC 
TRILGRAN 

TRIOAURA 
TSUGCANA 
ULMUAMER 
URTIDIGR 
UVULGRAN 
VACCANGU 
VERBTHAP 
VIBUACER 
VIBULENT 
VIOLBLAN 
VIOLPUBE 
VIOLSORO 
VITIRIPA 
WALDFRAG 

20. Moist 
F Ioors 

( ~ 1 5 3  species) 
ABIEBALS 
ACERRUBR 
ACERSACC 
ACERSACN 
ACERSPIC 
ACHIMILL 
ACTARUBR 
ACTA-SP 
AGROG IGA 
AMPHBRAC 
ANEMVIRG 
ARALNUDI 
ARISTRIP 
ASARCANA 
ASCLSYRI 
ASTEC I L 1 
ASTELANC 
ASTELATE 
ASTENOVE 
ASTEPLJ I  
ATHYFILI 
BETUALLE 
BIDEFRON 
BOEHCYLI 
CARDDIPH 
CAREARCT 
CAREBEBB 
CAREBLAN 
CAREBREV 
CARECRIS 
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OPEN 
CANOPY 
20. (coot'd) 
CAREDEWE 
C AREGRAC 
CAREGRAN 
CAREINTU 
CARELANU 
CAREPEDU 
CAREPENS 
CARERADI 
CAREROSE 
CARESTIP 
CARETENE 
CAREVULP 
CAULTHAL 
CELASCAN 
CERAFONT 
CHRYLEUC 
CINNLATI 
CIRCALPI 
CIRCLUTE 
CORN ALTE 
CORNSTOL 
C R A T S P  
CRYPCANA 
CYSTBULB 
DRYOCART 
DRYOCRIS 
DRYOMTE 
DRYOMARG 
ELYMVIRG 
EPILCOLO 
EPILPARV 
EPIPHELL 
EQUIARVE 
ERIGANNU 
ERYTAMER 
EUPAMACU 
EUTHGRAM 
FAGUGRAN 
FRAGVESC 
FRAGVIRG 
FRAXAMER 
FRAXNIGR 
FRAXPENN 
GALIOBTU 
GALITFUF 

GENTANDR 
GERAROBE 
GEUMCANA 
GEUMLACI 
GEUM-SP 
GLYCSTRI 
HIERCAES 
IMPACAPE 
MULHELI 
IRISVERS 
IRIS-SP 
L A C T S P  
LAPOCANA 
LEERVIRG 
LIPALOES 
L Y C O W I F  
LYSICILI 
MAI ACANA 
MATTSTRU 
MEDILUPU 
MENTARVE 
MITEDIPH 
ONOCSENS 
OSMOCLAY 
PARTMSE 
PHLEPRAT 
PILEPUMI 
PLANMAJO 
PLANRUGE 
POA-ALSO 
POA-PA LU 
POA-PRAT 
POLYPUBE 
POPUBALS 
POPUTREM 
PRUNVIRG 
PRUNVULG 
RANUABOR 
RANUAClU 
RANURECU 
RHAMCATH 
RHUSRADI 
RIBEAMER 
RIBEGLAN 
RiBERUBR 
RIBETRiS 
ROBIPSEU 
RUBUIDAE 
RUBUODOR 

RUBUPUBE 
SALIDISC 
SALIERIO 
SAMBCANA 
SAMBRAPU 
SCUTLATE 
SOLADULC 
SOLI ALTI 
SOLICANA 
SOLIFLEX 
SOLIGIGA 
SOLIRUGO 
SONCARVE 
SPHEINTE 
TARAOFFI 
THUJOCCI 
TIARCORD 
TILIAMER 
TRIEBORE 
TRILEREC 
TRI LGRAN 
TSUGCANA 
ULMUAMER 
VIBUOPUL 
VtOLAFFl 
VIOLBLAN 
V~OLCUCU 
VIOLPUBE 
VITIRIPA 

21. Wet Floors 
( ~ 8 2  species) 
ACERSACN 
ACERSPIC 
ADIAPEDA 
AGROGIGA 
A RI STRI P 
ASTELANC 
ASTELATE 
ASTEPUNI 
ATHYFILI 
BIDEFRON 
BOEHCYLI 
CAREBEBB 
CAREBLAN 
CARECRIS 
CAREDEWE 
CAREGRAC 

CAREINTU 
C A E P R O J  
CARERADI 
CARERETR 
CAREROSE 
CARESTIP 
C ARETRIB 
CAREVULP 
CIRCLUTE 
CLEMVIRG 
CORNRUGO 
CORNSTOL 
CYSTBULB 
DRYOCART 
ELYMVIRG 
EPILCOLO 
EPILPARV 
EPIPHELL 
EQUIARVE 
ERIGANNU 
EUPAMACU 
EUPAPERF 
EUPARUGO 
FRAXNIGR 
GALIOBTU 
GALIPALU 
GERAROBE 
GEUMLACI 
G E U M S P  
GLYCSTRI 
HYSTPATU 
IMPACAPE 
[NULHELI 
LAPOCANA 
LEERORYZ 
LYCOUNIF 
LYSICILI 
MENTARVE 
ONOCSENS 
PARTiNSE 
PILEPUMI 
POA-COMP 
POA-PALU 
POA-PRAT 
PRUNVULG 
RANUACRI 
RANURECU 
RHAMCATH 
RHUSRADI 

RIBEAMER 
RIBECYNO 
RI BETRIS 
RUBUOCCI 
SALIERIO 
SAMBCANA 
SCUTLATE 
SOLADULC 
SOLICANA 
SOLIGIGA 
SPHEMTE 
TARAOFFI 
THUJOCCI 
TILlAMER 
ULMUAMER 
VIOLCUCU 
VITIRIPA 

22. Moist 
Depressions 

(n=42 species) 
ABIEBALS 
ACERSACN 
ACERSPIC 
ARISTRIP 
ASTELATE 
BOEHCYLI 
CARECRIS 
CAREGRAC 
CAREINTU 
CARERADI 
CIRCALPI 
CIRCLUTE 
CORNALTE 
CORNSTOL 
CYSTBULB 
DRYOCART 
DRYOiNTE 
EQUIARVE 
ERIGPHIL 
ERYTAMER 
FRAXNIGR 
GALIPALU 
GALITRIF 
GERAROBE 
G E W L A C I  
GLYCSTRI 
t MPACAPE 
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OPEN LYCOUNIF 
CAPmPY ONOCSENS - - - - -  

22. (cont'd) 
ONOCSENS 
PARTINSE 
POA-PALU 
PRUNVIRG 
RANUACRI 
RANURECU 
RHAMCATH 
RIBETRIS 
RUBUIDAE 

PILEPUMI 
RANURECU 
RHAMCATH 
SAMBCANA 
SOLADULC 
SOLICANA 
TARAOFFI 
TILIAMER 
ULMUAMER 
vIoLCUCU 

RUBUPUBE 
SAMBCANA 24. Seep 
SOLADULC (n=25 species) - - -  

TARAOFFI ARISTRIP 
TIARCORD ATHYFILI 
ULMUAMER BOEHCY LI 

CARECRIN 

23. Wet CARECRIS 
CAREGRAC 

Depressions CAREINTU 
( ~ 3 8  species) 
ACERSACN 
ACERSPIC 
ARISTRIP 
ASTELANC 
ATHYFILI 
BIDEFRON 
BOEHCYLl 
CAREBEBB 
CAREBLAN 
CARECRIS 
CAREDEWE 
CAREGRAC 
CAREMTU 
CARERETR 
CARESTIP 
CORNRUGO 
ELYMVIRG 
EPILPARV 
EQUIARVE 
FRAXNIGR 
GALIPALU 
GERAROBE 
GEUMLAC I 
GLYCSTRI 
IMPACAPE 
LAPOCANA 

CAREPROJ 
CARERETR 
CARETENE 
CARPCARO 
CIRCALPI 
EPlLCOLO 
EUPAMACU 
FRAXPENN 
GALITRIF 
GLYCSTRl 
IMPACAPE 
LYCOAMER 
ONOCSENS 
RANU ABOR 
RANURECU 
SOLADULC 
TIARCORD 
URTID IGR 

25. Mound 
(n=76 species) 
ABIEBALS 
ACERRUBR 
ACERSACC 
ACTAPACH 
ACTARUBR 

ADIAPEDA 
ARALNUDI 
ARISTKIP 
ASARCANA 
ASTELATE 
CARDDIPH 
CAREARCT 
CAREBLAN 
CAREDIGI 
CAREPEDU 
CAREPENS 
CARERADI 
CAREROSE 
CARYCORD 
CAULTHAL 
CIRCLUTE 
CIRSARVE 
CIRSVULG 
CONYCANA 
CORNFOEM 
CORNRUGO 
CY STTEN U 
DICECANA 
DIERLONI 
DRYOCART 
DRYOINTE 
EPIFVIRG 
EPILCOLO 
EPIPHELL 
ERYTAMER 
EUTHGRAM 
FRAGVESC 
FRAXAMER 
GALITRIF 
GERAMACU 
GERAROBE 
GYMNDRYO 
HACKVIRG 
MAlACANA 
MAIARACE 
MITCREPE 
ONOPACAN 
ORYZASPE 
OSMOCLAY 
OSTRVIRG 
PHRYLEPT 
POA-PRAT 
POLY PAUC 
POLYPUBE 
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PRUNVIRG 
QUERRUBR 
RANUABOR 
RHAMCATH 
RUBUIDAE 
RUBUOCCI 
SAMBRAPU 
SANGCANA 
SMILHERB 
SOLADULC 
SOLICANA 
SOLIJUNC 
SONCARVE 
SONCOLER 
SYMPALBU 
TARAOFFI 
THALDIOI 
TILIAMER 
TRIFREPE 
TRILGRAN 
VIOLPUBE 
WALDFRAG 

26. Dry Pit 
(n=26 species) 
ACERSACC 
ARISTRIP 
ASARCANA 
CiRCLUTE 
CIRSVULG 
DICECANA 
DRYOCART 
DRYOlNTE 
EPILCOLO 
ERYTAMER 
EUPAMACU 
FAGUGRAN 
FESTSUBV 
FRAXAMER 
GALITRIF 
GERAROBE 
HACKVIRG 
MAIARACE 
POLYPUBE 
PRUNVIRG 
RANUABOR 
RUBUIDAE 
RUBUOCCI 

SAMBRAPU 
SOLADULC 
TARAOFFI 

27. Wet Pit 
(n= 1 species) 
IMPACAPE 

28. Log 
(n= 64 species) 
ACERSACC 
ACERSPIC 
AGROSTOL 
ARALNUDI 
ARISTRIP 
ASTELATE 
ASTEPUNI 
ATHY FIL1 
BETUALLE 
BETUPAPY 
BOEH CYLI 
CAREARCT 
CAREDEWE 
CAREINTU 
CAREPEDU 
CARERADI 
CICUMACU 
C M L A T I  
CIRCALPI 
CIRCLUTE 
CLEMVIRG 
CY STBULB 
DRYOCART 
DRYOMTE 
ELYMVIRG 
EPI LCOLO 
EPILPARV 
FRAGVESC 
FRAGVlRG 
FRAXNIGR 
FRAXPENN 
GALIAPAR 
GALIOBTU 
GALIPALU 
GALITRIF 
GERAROBE 
GLYCSTRI 
HIERCAES 
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OPEN 
CANOPY 
28. (cont'd) 
IMPACAPE 
L A C T S P  
LYCOUNIF 
MAIACANA 
OSTRVIRG 
PARTiNSE 
PILEPUMI 
PRUNVIRG 
RANURECU 
RIBETRIS 
RUBUIDAE 
RUBUPUBE 
RUBU-840 
SOLIALTI 
SOLICANA 
SOLIGIGA 
SPHEINTE 
TARAOFFI 
TAXUCANA 
TIARCORD 
TRIEBORE 
TSUGCANA 
ULMUAMER 
VIOLAFFI 
VIOLCUCU 
VIOL-SP 

29. Stump 
(n= 34 species) 
ACERSACC 
ARISTRIP 
ASARCANA 
ASTELATE 
ASTEPUNI 
BETUPAPY 
CAREDEWE 
CAREGRAC 
CAREPEDU 
CAREROSE 
CAREVU LP 
CIRCALPI 
DRYOCART 
DRYOMTE 
EPIPHELL 
EQUIARVE 

ERIGPHIL 
FESTSUBV 
FRAGVIRG 
GALITRIF 
GLYCSrn I  
HIERCAES 
IMPACAPE 
MAIACANA 
PARTMSE 
RANURECU 
RUBUIDAE 
RUBUPUBE 
SOLICANA 
SOLIFLEX 
SOLIRUGO 
SPHEINTE 
TARAOFFI 
TIARCORD 

30. Raised Root 
Mat 

(n=96 species) 
ACERRUBR 
ACERSACC 
ACERSPIC 
ACTA-SP 
ADIAPEDA 
ARALNUDI 
ARISTRIP 
ASTELATE 
ASTEPUNI 
BETUALLE 
BIDEFRON 
BOEHCYLI 
CARDPENS 
CAREARCT 
CAREBLAN 
CAREDEWE 
C A E G R A C  
CAREPEDU 
CAREPENS 
CARE-SP 
CIRCALPI 
CIRCLUTE 
CIRSVULG 
CLEMVI RG 
CONYCANA 
CORNALTE 

CORNSTOL 
CYSTBULB 
DAUCCARO 
DRYOCART 
DRYOCRIS 
DRYOiNTE 
DRYOMARG 
EPILCOLO 
EPlLPARV 
EPIP HELL 
EQUIARVE 
ERIGANNU 
ERIGPHIL 
E R I G S P  
EUPAMACU 
FRAGVESC 
FRAGVIRG 
FRAXNIGR 
FRAXPENN 
GALITRIF 
GERAMACU 
GERAROBE 
GEUMCANA 
G E U M S P  
GLYCSTRI 
HIERCAES 
IMPACAPE 
LACTSERR 
LYCOUNIF 
MAIACANA 
MATTSTRU 
MENTARVE 
ONOCSENS 
PARTINSE 
PICEGLAU 
PILEPUMI 
POA-PRAT 
PREN-SP 
PRUNVIRG 
RANUABOR 
RANUACRI 
RHAMCATH 
RHUSRADI 
RIBECYNO 
RUBUIDAE 
RUBUOCCI 
RUBUODOR 
RUBUPUBE 
SAMBCANA 
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SAMBRAPU 
SCUTLATE 
SICY ANGU 
SOLADULC 
SOLIALTI 
SOLICANA 
SOLIFLEX 
SPHEMTE 
TARAOFFI 
THUJOCCI 
TI ARCORD 
TILIAMER 
TRIEBORE 
TRILEREC 
TRILGRAN 
TSUGCANA 
ULMUAMER 
VIOLBLAN 
VIOLLABR 
VIOLSORO 
VITIRlPA 

31. Lane 
(n= 181 species) 
ACERSACC 
ACERSACN 
ACHIMILL 
ACTA-SP 
AGROGIGA 
AGROSTOL 
AMBRARTE 
ANEMCANA 
ANEMVIRG 
ARCTMINU 
ARISTRIP 
ASCLSY RI 
ASTEC ILI 
ASTECORD 
ASTELANC 
ASTELATE 
ASTENOVE 
ASTEf UNI 
ATHYFILI 
BETUPAPY 
BIDEFRON 
BOEHCYLI 
BOTRVIRG 
BROMINER 

CARDDIPH 
CARDNUTA 
CAREARCT 
CAREBACK 
CAREBEBB 
CAREBLAN 
CAREGRAC 
CAREGRAN 
CAREINTU 
CARELANU 
CARELAXI 
CAREPENS 
CAREPROJ 
CARERETR 
CAREROSE 
CARESTIP 
CARETENE 
CARETRIB 
CAREVULP 
CARE-868 
CARE-870 
CARE-SP 
CARYCORD 
CAULTHAL 
CERAFONT 
CHRY LEUC 
ClRCALPI 
CIRCLUTE 
CIRSARVE 
CIRSVULG 
CLEMVIRG 
CONYCANA 
CORNRUGO 
CORNSTOL 
CYSTBULB 
DACTGLOM 
DAUCCARO 
DIANARME 
DICECANA 
DRYOCART 
ELYMREPE 
EPILCOLO 
EPIPHELL 
EQUIARVE 
EQUILAEV 
ERIGAMW 
ERIGPHIL 
ERiGSTRI 
ERYTAMER 



Appendix 5 .  Listing of species by microhabitat. Species codes presented in Appendix 3. 

OPEN 
CANOPY 
31. (cont'd) 
EUPAMACU 
EUPAPERF 
EUPARUGO 
FESTPRAT 
FRAGVESC 
FRAGVIRG 
FRAXAMER 
FRAXNIGR 
FRAXPENN 
G A L I O B N  
GALITRIF 
GERAROBE 
GEUMLACI 
G E U M S P  
GLYCSTRI 
GYMNDRYO 
HACKVIRG 
HEPAACUT 
HIERCAES 
HY PEPERF 
HY STPATU 
IMPACAPE 
l R i S S P  
JLlNCTENU 
LACTCANA 
LACTSERR 
LEERORYZ 
LEONCARD 
L O B E S P  
LYCOAMER 
LYCOCMIF 
LYSIClLl 
MAIACANA 
MATTSTRU 
MEDILUPU 
MELIALBA 
MENICANA 
MENTARVE 
MUHLMEXI 
ONOCSENS 
ONOPACAN 
OSMOCLAY 
OSTRVIRG 
O d W S T l U  
P A N I S P  

PARTMSE 
PHALARUN 
PHLEPRAT 
PHRYLEPT 
PILEPUMI 
PLANLANC 
PLANMAJO 
PLANRUGE 
POA-ALSO 
POA-COMP 
POA-PALU 
POA-PRAT 
POLY PERS 
POLY PUBE 
POPUTREM 
POTENORV 
POTERECT 
PRUNSERO 
PRUNVIRG 
PRUNVULG 
RANUABOR 
RANUACRI 
RANURECU 
RHAMCATH 
RHUSRADI 
RIBECYNO 
RUBUALLE 
RUBUIDAE 
RUBUOCCI 
RUBUPUBE 
SALIERI0 
SAMBRAPU 
SCIRATRO 
SCUTLATE 
SOLADULC 
SOLIALTI 
SOLICANA 
SOLIFLEX 
SOLIGIGA 
SONCOLER 
SPHEMTE 
TARAOFFI 
TIARCORD 
TRiFREPE 
TRILEREC 
TRILGRAN 
TSUGCANA 
ULMUAMER 
UNKN-822 

URTIDIGR 
URTIDIOI 
VERBHAST 
VERBURTI 
VEROSERP 
VIBUACER 
VICICRAC 
VIOLAFFI 
VIOLBLAN 
VIOLCANA 
VIOLCUCU 
VIOLPUBE 
VIOLSORO 
VITIRIPA 

32. Ditch 
(n=33 species) 
ACERSACC 
AGROGIGA 
ASTECILI 
ASTELANC 
ASTELATE 
ASTEPUNI 
CARETENE 
CICUMACU 
CORNALTE 
CORNSTOL 
EPILCILI 
EPILCOLO 
EQUIARVE 
ERYTAMER 
FRAXAMER 
GALIOBTU 
Gt YCSTRl 
IMPACAPE 
LEERORYZ 
LYCOUNIF 
LYSITERR 
MENTARVE 
PARTINSE 
PILEPUMI 
POA-PALU 
POLYPUBE 
RANUACRI 
RI BEAMER 
RUBUPUBE 
SALIERI0 
SCUTLATE 
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SOLIGIGA 
TWSSFARF 

33. Regenerat- 
ing Field 

(n=147 species) 
ACERRUBR 
ACERSACC 
ACERSACN 
ACHIMILL 
AGRIGRYP 
AGROGIGA 
AMPHBRAC 
ANEMCANA 
ANEMVIRG 
ANTENEGL 
APOCANDR 
AQUICANA 
ASCLINCA 
ASCLSY RI 
ASTEC 1 LI 
ASTEERIC 
ASTELANC 
ASTELATE 
ASTENOVE 
ASTEPUNI 
BETUPAPY 
BOTRMATR 
BOTRVIRG 
BROMINER 
CAREALOP 
CAREBEBB 
CAREBLAN 
CAREBREV 
CARECRI S 
CAREDEWE 
CAREGRAC 
CAFEGRAN 
CARELANU 
CAREPENS 
CAREPRAI 
CAREPROJ 
CARERADI 
CARESTIP 
CARETENE 
CAREVULP 
CARE-879 

CARYCORD 

CERAFONT 
CHRYLEUC 
CIRSARVE 
CIRSVULG 
CORNRUGO 
CORNSTOL 
CRAT-SP 
DANTSPIC 
DAUCCARO 
DIANARME 
ELYMREPE 
ELYMVIRG 
EPILCILI 
EPILLEPT 
EPIPHELL 
EQUIARVE 
EQUIHYEM 
ERIGPHIL 
ERIGSTRI 
EUPAMACU 
EUPAPERF 
EUTHGRAM 
FAGUGRAN 
FESTARüN 
FESTRUBR 
FESTSUBV 
FRAGVIRG 
FRAXAMER 
FRAXNIGR 
FRAXPENN 
GALIOBTU 
GALITRIF 
GENTANDR 
GEUM-SP 
GLYCSTRI 
HIERCAES 
HY PEPERF 
LACTCANA 
LYCOTRIS 
LYCOüNIF 
LYSICILI 
MAIACANA 
MATTSTRU 
MEDILUPU 
MELIALBA 
MELIOFFI 
MENTARVE 
MUHLFRON 
MUHLMEXI 



Appendix 5 .  Listing of species by microhabitat. Species codes presented in Appendix 3. 

OPEN 
CANOPY 
33. (Cont 'd)  
ONOCSENS 
OXALSTRI 
PANIACUM 
PARTINSE 
PHALARUN 
PHLEPRAT 
PHRY LEPT 
PILEPUMI 
PLANLANC 
PLANMAJO 
PLANRUGE 
POA-COMP 
POA-PALU 
POA-PRAT 
POPUBALS 
POPUTREM 
POTERECT 
PRüNSERO 
PRüNVIRG 
PRUNVULG 
PTERAQUI 
QUERRUBR 
RANUACRI 
RHAMCATH 
RHUSTYPH 
RIBECYNO 
ROBIPSEU 
ROSAPALU 
RUBUIDAE 
RUBUPUBE 
SALIBEBB 
SALIDISC 
SALIERI0 
SALIPETI 
SC 1 RATRO 
SILEVULG 
SISY MONT 
SMILHERB 
SOLIALTI 
SOLICANA 
SOLIGIGA 
SOLMEMO 
TARAOFFI 
THUJOCCI 
TILIAMER 

TRAGDUBI 
TRIFREPE 
TUSSFARF 
ULMUAMER 
VERBTHAP 
VIBULENT 
VIBUTRIL 
VICICRAC 
VIOLAFFI 
VIOLBLAN 
VITIRIPA 

34. Riparian 
Marsh 

(1146 species) 
AGROSTOL 
ASTELATE 
ATHYFILI 
BIDEFRON 
BROMINER 
CARDPENS 
CICUMACU 
CIRCLUTE 
CLEMVIRG 
CORNRUGO 
ERIGANNU 
EUPAPERF 
GEUMLACI 
IRIS-SP 
LYCOUNIF 
MATTSTRU 
MENTARVE 
PILEPUMI 
POA-COMP 
RIBERUBR 
RUMEORBI 
SCIRATRO 
SOLADULC 
SOLIALTI 
SPHEINTE 
VIOLCUCU 
VITI RlPA 
ASTEPUNI 
CARESTIP 
CYSTBULB 
EPILCOLO 
LAPOCANA 
ONOCSENS 

POLYPERS 
SOLIGIGA 
AGROGIGA 
BOEHCYLI 
CORNSTOL 
EQUIARVE 
EUPAMACU 
GALIOBTU 
GLYCSTRI 
IMPACAPE 
LEERORYZ 
PARTINSE 
POA-PALU 

35. Riparian 
Meadow 

(n=75 species) 
ADIAPEDA 
AGROGIGA 
ARISTRIP 
ASTELANC 
ASTELATE 
ASTEPWI  
ATHYFILI 
BIDEFRON 
BOEHCYLI 
CAREBEBB 
CAREGRAC 
CAREPROJ 
CARERADI 
CARERETR 
CAREROSE 
CARESTIP 
CARETRIB 
CAREVULP 
CIRCLUTE 
CLEMVIRG 
CORNRUGO 
CORNSTOL 
CYSTBULB 
DRYOC ART 
DRYOCRIS 
EPILCOLO 
EPt PHELL 
EQUIARVE 
ERIGANNU 
EUPAMACU 
EUPAPERF 
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EUPARUGO 
FRAXNIGR 
GALIOBTU 
GEUM-SP 
GLYCSTRI 
HY PEPERF 
HY STPATU 
IMPACAPE 
INULHELI 
LAPOCANA 
LEERORYZ 
LYCOUNIF 
LYSICILI 
LYSINUMM 
MATTSTRU 
MENTARVE 
ONOCSENS 
PARTINSE 
PILEPUMI 
POA-COMP 
POA-PALU 
POA-PRAT 
PRUNVULG 
RANUACRI 
RHUSRADI 
RIBEAMER 
RIBECYNO 
RIBETRIS 
RUBUOCCI 
RUBUPUBE 
SALIERI0 
SCUTLATE 
SOLADULC 
SOLICANA 
SOLIGIGA 
SPHEINTE 
THUJOCC 1 
TIARCORD 
TILIAMER 
ULMUAMER 
VIOLAFFI 
VIOLCUCU 
V I O L S P  
VITIRIPA 

36. Riparian 
Thicket 

(n=37 species) 

ACERRUBR 
ASTELATE 
ASTEPUNI 
ATHY FIL1 
BETUALLE 
BIDEFRON 
BOEHCYLI 
CAREBEBB 
CAREGRAC 
CARESTIP 
CIRCLUTE 
CLEMVIRG 
CORNSTOL 
EPILCOLO 
EPIPHELL 
EQUIARVE 
ERIGPHIL 
EUPAiMACU 
FRAXPENN 
GALIOBTU 
GALITRIF 
GEUMCANA 
GEUM-SP 
GLYCSTRI 
IMPACAPE 
PARTINSE 
PILEPUMI 
POA-PALU 
POA-PRAT 
RANUABOR 
RANUACRI 
RANURECU 
RIBETRIS 
RUBUPUBE 
SOLADULC 
TARAOFFI 
VIOLAFFI 



APPENDIX 6 

DISTIUBUTION OF SPECIES BY MICROHABITAT: 
CLOSED CANOPY 



Legend 

Column Heading 
dFLR 
rnFLR 
wFLR 
mDEP 
wDEP 
SEEP 
dGAP 
mGAP 
MOUN 
dPIT 
mPIT 
LOG 
STMP 
RMAT 
STON 
LANE 
DITCH 
F 

Description 
seasonally dry forest floor 
seasonally moist forest floor 
seasonally wet forest floor 
seasonally moist depression 
seasonally wet depression 
seep 
seasonally dry gap 
seasonally moist gap 
tip-up m o u d  
seasonally dry tree pit 
seasonally moist tree pit 
log on dry. moist or wet substrate 
stump on dry. moist or wet substrate 
raised root mat on dry. moist or wet substrate 
Stone 
lane or access road 
ditch associated with lane/access road 
regenerating f m  field 

Unit 
# quadrats 
# quadrats 
3 quadrats 
# quadrats 
X quadnts 
# quadrats 
# quadrats 
# quadrats 
# quadnts 
X quadrats 
# quadrats 
# quadrats 
X quadnts 
# quadrats 
# quadrats 
# quadrats 
# quadrats 
# quadrats 
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Appendix 6. Distribution of specics by niicrohabitat: closed canopy. 

SPECIES 

ARCTMINU 
ARISTRIP 
ASARCANA 
ASCLINCA 
ASCLSY RI 
ASI'ECILI 
A SI'ECOR D 
ASI'EERIC 
ASI'ELANC 
ASTELATE 
AS'I'EMACR 
ASI'ENOVE 
ASI'EPUN 1 
ASI'EUMBE 
AT1 IYFlLl 
ATIIYTHEL 
1WI'lJALLl~ 
BE'I'U PA l'Y 
BIDEFRON 
BOEHCY LI 
BOTRM ATR 
BOTRMULT 
BOI'RVIRG 
BRACEREC 
BROMINER 
CAl.1'PALU 
CALYSEPI 
CARDACAN 
CARDDIPH 
- - - - - - - - - - 

w FLR LOG STMP RMAT S'l'ON LANE DITCH I' 
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Appendix 6 .  Distribution of species by niicrohabitüi: closed canopy. 

SPECIES 

CIRSARVE 
CIRSVULG 
CLAYCARO 
CLEMVIRG 
CLINBORE 
CONYCANA 
COKNALTE 
COKNFOEM 
CORNRUGO 
CORNSTOL 
CORYCORN 
CRAT-SPI 
CRAT-SPZ 
CRAT-SP3 
CRAT--SP 
CRY PCANA 
C'Y I'KCA1.C' 
CYS'I'BULB 
CY STFRAG 
CY S'ITENU 
DACTGLOM 
DANTSPIC 
DAUCCARO 
DESMGLUT 
DIANARME 
DICECANA 
DICECUCU 
DIERLONI 
DIRCPA1,U 

SEEP LOG S'l'MI' RMA'I' STON 
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Appendix 6. Distribution of spscies by microliabitat: closed çanopy. 

wDEP SEEP dG AI' 

1 
1 
I 
4 

I 

4 

3 

1 

1 

I 
I 

11l'l'I' LOG S'I'MP RMA'i' STON LANE DI'i'CII F 
-- - ---- 

FESTRUBR 
FESTSUBV 
FRAGVESC 
FRAGVIRG 
FRAXAMER 
FRAXNJGR 
FKAXPENN 
GALESPEC 
GALETETR 
GALIAPAR 
GALIASPR 
GALICIRC 
GALILANC 
GALIOBTU 
GALIPA1,U 
GALITKIF 
GALI-- SI' 
G ENTA N DR 
GERAMACU 
GERAROBE 
GEUMALEP 
GEUMCANA 
GEUMLACI 
GEUMRIVA 
GEUMURBA 
GEIJM-SP 
GLYCS'TRI 
GYMNDRYO 
HACKVIRG 



Appendix 6. Distribution ol'species by microhabiiat: closed canopy. 

SEEP dGAP 
- - - - -. - - - 

LOG 

I 

8 

SI'Mf' KMA'I' STON LANE DITCH F 
- . . . . - . -. - - - - . -. - - - . . - - - - -- . -- - -- 

HEPAACUT 
HIERAURA 
HIERCAES 
HYDRVIRG 
HY PEPERF 
HY STPA'I-U 
IMPACAPE 
INULHELI 
lRlSVERS 
IRIS-SP 
JUNCTENU 
LACTCANA 
LACTSERR 
L A C T S P  
LAPOCANA 
LEE.:ROKYZ 
LELXV IKCi 
LEONCAKD 
LIPALOES 
LOBEINFL 
L O D E S P  
LONICANA 
L,ONIDIOI 
LON 11-1 I RS 
LYCOAMER 
LYCOANNO 
LYCODEND 
LYCOOBOB 
LYCO'TRIS 
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Appendix 6. Distribution of species by microliabitut: closed canopy. 

SEEP S'fM f' KMA'I' 
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POPUBALS 
POPUGRAN 
POPUTREM 
POTENORV 
POTERECT 
P R E N S P  
PRlJNSERO 
PRUNVIRG 
PRlJNVULG 
PTEKAQUI 
PY KOELLl 
QUERALBA 
QUERMACR 
QUERRUBR 
QUEK--SP 
RANUABOK 
KANUACKl 
RANUI !ICA 
RANURECU 
RHAMALNI 
RHAMCATH 
RHUSRADI 
RHUSTY PH 
RIBEAMER 
RIBECYNO 
KIBEGLAN 
RIBELACU 
RIBERUBK 
RIBErI'RIS 
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APPENDIX 7 

DISTRIBUTION OF SPECIES BY MICROHABITAT: 
OPENCANOPY 



Column Heading 
dFLR 
mFLR 
wFLR 
mDEP 
wDEP 
SEEP 
MOUN 
dPIT 
wPlT 
LOG 
STMP 
RMAT 
LANE 
DITCH 
RFLD 
RMA 
RME 
RT 

Description 
seasonally dry forest floor 
seasonaily moist forest floor 
seasonally wet forest floor 
seasonally moist depression 
seasonally wet depression 
seep 
tip-up moud  
seasonally dry tree pit 
seasonally wet tree pit 
log on dry, moist or wet substrate 
sturnp on dry. moist or wet substrate 
raised root mat on dry. moist or wet substrate 
lane or access road 
ditch associated with lane/access road 
regenerating fm field 
riparian rnarsh 
riparian meadow 
riparian thicket 

Unit 
# quadrats 
# quadrats 
# quadrats 
# quadrats 
# quadrats 
# quadrats 
# quadrats 
# quadrats 
dr quadrats 
# quadrats 
t: quadrats 
X quadrats 
# quadrats 
# quadrats 
# quadrats 
X quadrats 
if quadrats 
# quadrats 





Appendix 7. Distribution of species by microliabitat: open cüiiopy. 
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S'I'MP KMA'f LANE DI'i'CH KFLD RMA RME RT 

ARCTMINU 
ARlSTRlP 
ASARCANA 
ASCLINCA 
ASCLSY RI 
AS'i'ECILI 
AS'I'ECORD 
AS'TEERIC 
AS'TELANC 
AS'I'ELATE 
AS'I'EMACR 
AS'TENOVE 
ASTEPUNI 
AS'i'EUMBE 
ATHY FIL1 
A'll-IY 1.1 !El.. 
13H'I'UAl ,LE 
13E'flJPAPY 
DIDEFRON 
BOEHCY L I  
BOTKMATR 
BOTRMULT 
BOTRVIRG 
BRACEREC 
BROMJNER 
CAL'I'PA LU 
CALYSEPI 
CARDACAN 
CARDDIPH 
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Appendix 7. Distri but ion of species by microhabi fat: open canopy. 

CAREPSEU 
CARERADI 
CARERETR 
CAREROSE 
CARESPAR 
CAKESTlP 
CARETENE 
CARETRI B 
CAREVULP 
CAREWOOD 
CARE-7 19 
CARE-868 
CARE-870 
CARE-879 
CARE-OV 
CARE _--Si' 
CAKI'CAKO 
CARYCOKD 
CAULTHAL 
CEANAMER 
CELASCAN 
CERAFONT 
CHIMUMBE 
CHRY LEUC 
CICUBULB 
CICUMACU 
ClNNLATl 
CIRCALPI 
CIRCIAJTE 



Appendix 7. Distribution of species by microhabitat: open caiiopy. 

-- --- * 

SPf3CIES dFLR mFLK wFLR iiiDEP wDEP 
- - - - - -- -. - 

CIRSARVE 3 
CIRSVULG 3 
CLAYCARO 3 
CLEMVIRG I I 
CLINBORE - 
CONYCANA 3 
CORNALTE 4 5 1 
CORNFOEM I 
CORNRUGO 4 2 I 
CORNSTOL - 3 I 1 
COKYCORN 4 
CRAT-SP 1 
CRArl'-SP2 - 
CRAT-SP3 
CRA'T--SP 3 2 
CRYPCANA I I 
C'YPHCA1.Ç - 
CYS'I'UULB 2 3 1 
CYSTFRAG - 
CYSITENU - 
DAC'TGLOM I 
DANTSPIC I 
DAUCCARO - 
DESMGLIJT - 
DIANARME - 
DICECANA 6 
DICECUCU I 
DIERLONI 1 
DIRCPALU 3 

--A -- -- - - -.-.. ---- 

w t W  LOG STMP RMA'f LANE DI'I'CH RFLD RMA RME RI' 
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Appendix 7. Distribution of species by microhabitat: open canopy. 

SPECIES dFLR riiFLR w t L K  niDEP wDEP SEEP MOUN dPIT wl>lVl' 

HEPAACUT 
HIERAURA 
HIERCAES 
HYDRVIRG 
tiY PEPERF 
HY STPATU 
IMPACAPE 
INULkiELl 
IRISVERS 
IRIS-SP 
JUNCTENU 
LACTCANA 
LACTSERR 
L A C T S P  
LAPOCANA 
LEERORYZ 
LIXKVIKCi 
LEONCAKD 
LIPALOES 
LOBEINFL 
LOBE-SP 
LONICANA 
LONIDIOI 
LONIHIRS 
LYCOAMER 
LYCOANNO 
LYCODEND 
LYCOOBOB 
LYCOTRIS 
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Appendix 7. Distribution of species by microhabitai: open canopy. 

- - -- -- -- - - -- - - - - - . . - - - - - - - - - -- A - - a--- - - -- - - - - - - - - - - - - - - 
SPECIES dFLK mFLR wFLK niDEP wDEP SEEP MOUN dPIrI' wf31'I' LOG STMP KMA'I' LANE IlI'J'CI1 KF1.D RMA HME RT - ________l___l___ __-__ LI_-__ _ - .. _ _ - -  _ _  _ _ _ _ ----- _-- 
POPUBALS * I 2 
POPUGRAN - 
POPUTREM - 1 I 5 
POTENORV - I 
POTERECT - - 3 5 
P R E N S P  4 I 
PRUNSERO 7 3 I 
PRUNVIRG 8 4 I I I 1 1 3 5 
PRUNVULG - 1 I 3 4 I 
PTERAQUl 5 3 

PYROELLI - 
QUERALBA I 
QUERMACR I 
QUEKRUBR 5 I I 
QUER-SP - 
RANUADOR 5 3 1 1 I 3 2 I 
KANUACKI 3 - i 1 I - 7 3 I 5 7 1 

RANUHICA - 
RANURECU 3 7 1 I I 1 1 I 3 t 
RHAMALNI - 
RHAMCATH 9 5 7 I 7 7 I 3 5 
RHUSRADI 4 I 1 I 3 1 
RHUSTYPtl - 1 
RIBEAMER - I I I 2 
RIBECYNO 4 I 2 I 1 2 
RIBEGLAN - I 
KIBELACU - 
RIBERUBR - 1 I 
RIBE'I'RIS 7 6 I 1 3 3 I 



Appendix 7. Distribution of species by microhabitat: open cunopy. 

ROBIPSEU 7 

ROSABLAN - 
ROSAPALU - 
RUBUALLE 3 
RUBUIDAE 9 
RUBUOCCI 7 
RUBUODOR - 
RUHUPUBE I 
RUBU-840 
RUDBHIKT - 
RUMEORBI - 
SALIBEBB - 
SAL.IDISC 
SALIERI0 
SA1,IPE'I'I 
SAMUCANA - 
SAMBRAPU 7 
SANGCANA I 
SANlMARl - 

SCIRA'I'RO - I 1 I 
SCUTLATE - 1 I I I 1 3 
SICYANGU - I 
SILIIVULG - I 
SISYMON'T - 3 

SIUMSUAV - 



Appendix 7. Disiri bution of species by rnicrohabi tat: open canopy. 

- -- - - - - - . - - -- - -- - - - - - -- . - - - - 

SPECIES dFLR inFLR wFLR niDEP wDEP SEEP MOUN dPIT wPI1' LOG 
----- 
SMILHERB 
SMILHISP 
SOL,ADULC 
SO1,lALTI 
SOLICAES 
SOLICANA 
SOLIFLEX 
SOLfGlGA 
SOLIJUNC 
SOLINEMO 
SOL,IRUGO 
SONCARVE 
SONCOLER 
SPI WINTE 
STELLONG 
STREHOSE 
SY MI'A1,UlI 
'I'AKAOFFI 
TAXUCANA 
TH ALDIOI 
I'HALPUBE 
Tt-iELNOVE 
THELPALU 
Tt IUJOCCI 
TIARCORD 
TILIAMER 
TRAGDUBI 
TRI EBORE 
TRIFREI'E 



Appendix 7. Distri bution of species by microhübi tat: open canopy . 

--- 
SPEClES III FLR 

TRILEREC 
TRILGRAN 
TRIOAURA 
TSlJGCANA 
TUSSFARF 
TY PHLATI 
ULMUAMER 
UNKN-75 I 
UNKN-79 1 
UNKN-822 
URTIDIGR 
U R'U Dl01 
UVULGRAN 
VACCANGU 
VERBCIAST 
VERBTI-IAP 
VEKBUK'I'I 
VER0OFI:I 
VEI<OSERP 
VIBUACER 
VIBULENI' 
VIBLJOPUL 
VlRUTRlL 
VlClCRAC 
VIOLAFFI 
VIOLBLAN 
VIOLCANA 
VI0L.CUCU 
VIOLLABR 





APPENDIX 8 

ENVIRONMENTAL DATA SUMMARY BY QUADRAT (1) 



Column Heading Description 
PA# patch number (label) 
Q# quadrat number (label) 
SPP # species recorded in quadrat 

# MW # microhabitats recorded in quadrat 
SPM soi1 parent material class: 

glacio-fluvial parent matenal 
calcareous till parent rnaterial 
lacustrine parent material 
calcareous outwash parent material 
soi1 order class: 
brunis01 
gleyed brunisol 
luvisol 

UnitLabel 
numeric label 
numeric label 
nurnber 
number 

MOIS 

SOM 
PH 
CALC 
Ca:Mg 
K:Mg 
OMH 

SEEP 

DIST 

gleyed luvisol 
gleysol 
soil moisture ciass 
seasonally wet depressions present 
seasonally moist depressions present 
dl depression seasonally dry 
% soil organic matter 
soi1 pH 
available calcium 
calciurn:magnesium ratio 
potassiurn:magnesium ratio 
open microhabitat class 

seep 

disturbance c las:  
regenerating field 
=anoPY gap 
trai l/lane/access road 
no disturbance features present 
patch area 
% forest cover in 5km x jkrn square 
centered on quadrat 
patch isolation: mean distance to nearest 
8 woodlots. measured in 45 degree arcs 

percentage 
value 

value 

G 
T 
N 
hectares 
percentage 

metres 



Appendix 8. Environmental data summary by quadrat (1). 

PA# Q# #SPP #Mt1 SPM S O  MOIS SOM pH CA1.C' C'a:Mg K:Mg OMI-1 SEEP DIS'f PA I T  PI 

F 183 49 228 
F 183 49 228 
Ci 183 49 228 
G 183 49 228 
N 183 49 228 
N 183 49 228 
N 183 49 228 
N 183 49 228 
N 53 41 5 0  
N 53 41 50 
N 53 41 50 
N 53 41 50 
N 53  41 50 
N 53 4 1 50 
N 53 41 50 
N 53  4 I 5 O 
'1' 42 43 415 
'TG 42 43 415 
Ci 42 43 4 15 
N 42 43 4 15 
N 43 43 4 15 
1 42 43 415 
N 42 43 415 
N 42 43 415 
'1 ' 78 30 450 
'1' 78 30  450 
N 78 30 450 





Appendix 8. Environmental data suinmary by quadnt (1). 

PA# Q# #SPP #MI-{ SPM SO MOIS SOM pl-{ CALC Ca:Mg K:Mg OMl-l S E P  DIST PA FC PI 



Appendix 8. Enviroiiniental data surnniary by quadrat (1). 

PA# Q# #SPI> #MC! SPM SO MOIS SOM pH CA1.C Ca:Mg K:Mg OMH SEEP DISI' PA FC PI 











APPENDIX 9 

ENVIRONMENTAL DATA SUMMARY BY QUADRAT (11) 



Column Heading 
PA# 
Q# 
ffSPP 
#GEN 
# F M  
# A m  
#BIE 
#PER 
#NAT 
#ALI 
#F 
#FO 
#OF 
#O 
CT 

Description UnitLabel 
patch nurnber (label) nurneric label 
quadrat number (label) numeric label 
# species recorded in quadrat number 
# genera recorded in quadrat nurnber 
tt families recorded in quadrat number 
# annual species recorded in quadrat number 
# biennial species recorded in quadrat number 
# perenniai species recorded in quadrat number 
# native species recorded in quadrat nwnber 
# alien species recorded in quadrat number 
# species with affinity for forest habitats number 
# species with afinity for forest + open habitats number 
# species with affinity for open + forest habitats number 
# species with affinity for open habittats number 
cover type class: 
redwhite oak (no sugar maple) 1 
red/white oak + sugar maple 2 
sugar maple (no red/white oak: no wet-mesic. wet species) 3 
sugar maple + wet-mesic or wet species 4 
wet-mesic or wet species (no sugar maple) 5 
# live tree stems (al1 diarneter size classes) number 
ff live tree stems 0-4 cm dbh number 
# live tree stems 4-10 cm dbh number 
# live tree stems 10-30 cm dbh nurnber 
# live tree stems >30 cm dbh nurnber 

NOTE: species attributes may not sum to species total since unclassified species not 
included in summary. 



Appendix 9. Environmental data sumniary by quadrnt (I I ) .  



Appendix 9. Environmental data summary by quadrat (11). 









i m i  



Appendix 9. Environmental data summary by quadrat (II). 

- - - -- -- - -- - - - - - - - - - - - -- - - - -- - - - - -- - - - -- . -. - - - - - - - - - - - - - - - - - - - - -- - - - - - - -- 

PA# QU HSPP UGEN HFAM HANN ##BIE HPER #NAT #AL1 [IF #IF0 #OF HO C'f HL'l'S #O-4 lt4-10 #IO-30 #>30 
-- - - - - 

23 181 32 26 2 1 O O 3 2 3 1 I 8 9 8 O 2 32 10 13 8 I 
2 3 182 18 17 12 O 0 18 18 O 6 3 4 O 3 49 45 O 3 I 
23 183 26 2 1 15 O O 26 25 l 9 6 6 O 3 2.3 15 2 5 I 

23 184 30 27 20 O O 30 29 1 10 8 5 O 7 3 1 25 1 3 3 

24 185 34 17 16 O I 2 3 2 1 3 6 8 3 O 3 54 39 IO 4 I 
24 186 58 40 25 1 3 55 50 8 14 14 14 3 4 65 43 17 4 I 
24 187 61 46 30 1 I 59 54 6 13 19 17 O 4 1 03 95 3 3 2 
24 188 44 30 30 1 I 42 37 6 I I 9 16 3 5 17 15 3 O O 
24 189 59 4 I 30 1 I 57 5 1 7 13 15 16 I 4 143 120 6 7 I 
24 190 44 3 1 25 1 I 42 36 7 8 13 10 I 4 5 1 27 20 4 O 
24 191 51 40 28 1 I 49 44 6 I I 17 12 O 4 92 8 5 3 1 3 
24 192 47 35 27 1 I 45 40 6 I I 13 1 O I 4 47 39 3 4 I 



APPENDIX 10 

ENVIRONMENTAL DATA SUMMARY BY QUADRAT (III) 



Column Heading 
PA# 
Q# 
#SPP 
#TRE 
#SHR 
#VIN 
fCFRN 
#FA 
%RA 
#HRB 
m'JH 
ff ADH 
#ANH 
#WIH 
#PDH 
fCMEH 
ffNFH 

Description 
patch number (label) 
quadrat number (label) 
ft species recorded in quadrat 
# tree species recorded in quadrat 
8 s h b  species recorded in quadrat 
# vine species recorded in quadrat 
X fern species recorded in quadrat 
X fem ally species recorded in quadrat 
# grass species recorded in quadrat 
# herb species recorded in quadrat 
# herb species dispersed by animal ingestion 
# herb species dispersed by animal adhesion 
# herb species dispersed by ants 
# herb species dispersed by wind 
# herb species dispened by prolonged dormancy 
X herb species dispened by mechanical expulsion 
X herb species dispersed by propagules with no 

facilitating morphology 
# herb species dispersed by multiple modes 
# herb species dispersed by vegetative expansion 

UnitLabel 
numeric label 
numeric label 
number 
number 
number 
number 
number 
number 
number 
nurnber 
number 
number 
number 
num ber 
number 
number 

number 
number 
number 













Appendix 10. Environiiicntül data suiniiiary by quadrat ( I I I ) .  

- -. - - - - - 

#lFA HGKA 
- -  - 

O I 
3 3 

O 1 
I I 
3 - O 
O 3 
I I 
1 I 
I 7 

I 3 
I 3 

O 3 
O I 
I 3 
O -7 

O I 
O I 
O 3 
O I 
O O 
O O 
O O 
0 I 
O - 7 

I O 
O O 
O 1 
O 3 

UNFH #MU14 HVEH 





APPENDIX 1 1  

REPRESENTATIVE SEED DISPERSAL DISTANCES 
OF NATIVE AND ALIEN SPECiES IN NORTH AMERICA 



Appendixl 1 . Representative seed dispersa1 distances of native and alien species in N. America. 

Selected references to species fiom other continents are cited by country and enclosed in brackets. 
Methodologies vary: direct observation. experimental treatments (indoor. outdoor). estimated 
lateral dispersa1 distance based on terminal velocity values or mathematical models. and. 
measured parent-seedling distances (rarely). Legend: mtd = mavimum trap distance. References: 
(1  ) Andersen 1988, ( 3 )  Andersen 199 1, (3) Arnold 198 1. (4) Antonovics and Ellstrand 1985, (5) Baker and O'Dowd 
1982, (6) Bakker 1960. (7) Beattie and Lyons 1975. (8) Beer and Swaine 1977. (9) Berg t 966, ( 10) Berg 1969. ( I 1 ) 
Boyd 1996. (12) Brodie 1% 1. (13) Brodie 1955. ( 14) Bullock 1989. (15) Builock and Primack 1977, ( 16) Bulow- 
Olsen 1983, ( 17) Burton 1989. (1 8) Cain er al. 1998. ( 19) Campbell 1983. (20) Carey and Watkinson 1993. (2 1 ) 
Caspar 1987. (22) Clark et al. 1998. (23) Culver and Beattie 1978. (24) Davidson and Morton 198 1. (35) Darley-Hill 
and Johnson 198 1. (26) Evans et ul. 1987. (27) Fenster 199 1. (28) Gashwiler 1969. (29) Geiger 1950. (30) Greene 
and Johnson 1989, (3 1 )  Greene and Johnson 1995, (33) Greene and Johnson 1996. (33) Gross 1986. (34) Gross and 
Wemer 1982, (35) Hinds and Hawksworth 1965, (36) Hoppes 1988. (57) Howard 1970. (38) Hughes and Westoby 
1993ab. (39) Hughes rr al. 1994, (40) Johnson 1996. (4 1 ) Johnson and Adkisson 1985. (42) Johnson and Patterson 
unpubl.. (43) Jules 1996. (44) Kalisz unpubl., (45) Klinkenhamer ul. t 988. (46) Kjellsson 1985. (47) Kohlermann 
1950. (48) Lee 1984. (49) Levin and Kenter 1969. (50) Lrvin and Kerster 1974, ( i l )  Matlack 1987, (52) 
McCaughey et al. 1986. (53) McDonnell and Stiles 1983. (54) McEvoy and Cox 1987. (55) Meagher and Thompson 
1987, (56) Mesler and Lu 1983. (57) Meyer and Schmid 1999, ( 5 8 )  Morse and Schmitt 1985. (59) Muller 1955. (60) 
O'Dowd and Hay 1980. (6 1 ) Ohara and Higashi 1987. (62) Okbo and Levin 1989. (63) Olivieri and Gouyon 1985. 
(64) Parra er ai. 1993. (65) Pemberton 1988, (66) Plan 1976. (67) Plan and Weiss 1977. (68) PudIo er al. 1980. (69) 
Rabinowitz and Rapp 1979. (70) Sacchi 1987. (71) Savile 1953. (73) Schaal 1980. (73) Schemske 1978, (74) 
Schmitt et al. 1985. (75) Sheldon and Burrows 1973. (76) Smith 1975. (77) Smith 1989. (78) Smith and Kok 1984. 
(79) Stamp 1989. (80) Stamp and Lucas 1983. (8 1 ) Stamp and Lucas 1990. (82) Stapanian and Smith 1978. (83) 
Stergios 1976. (84) Stratton 1994, (85) Thiede and Augspurger 1996. (86) Tomback and Linhan 1990. (87) Tmpp 
1988. (88) Vander Wall and Balda 1977, (89) Venable and Levin 1985. (90) Vickery et al. 1986. (9 1 )  Waller 1980. 
(92)Watkinson 1978, (93) Webb and Willson 1985. (94) Weiblen and Thomson 1995. (95) Wemer 1975. (96) Wemer 
and Plan 1976. (97) Westlaken and Maun 1985. (98) Westob! and Rice 198 1. (99) Willson er al. 1990. 

Species 

ANIMAL DISPERSED 

Fleshy Fruits 

trees, shmbs, vines, herbs 
(n= 13 spp) 

Trees (n= 1 ) 

Prunus serotina 

Shrubs (n=3) 

Ref.# 

53 

76 
5 3 
36 

Seed Dispersal Distance 

Mean 
(ml 

Median 
(ml 

I 

Masimum 
( m l  

170 

25 
35 
9 

Range 
(m) 

Terminal 
Velocity 
(cm/s ) 



Appendixl 1 .  Representative seed dispenal distances of native and alien species in N. Arnerica. 

Species s 
Prunus virginiana 

Prunus avium 

Pclrrhrnocissus quinq trefolia 

1 Herbs (n= 1 )  

1 Nut Fruits 

Quercus pal usrris 

1 Adhesive Fruits 
1 Herbs ( n 4 )  

A clyanthes aspera (Costa 
Rica) 

Bidens sp. (Costa Rica) 

Pet iveria ailiucea (Costa Rica) 

Elaiosorne SeedsIFruits 

Trees (n=3) 

..lcacia suaveolens (Australia) 

Seed Dispersal Distance Ref.+ 

9 3 

9 3 

36 

36 

36 

3 6 

JI 

82 

- 7 d 5 

42 (25) 

15 

15 

34 

1 S 

1 

Mean 
(ml 

38.1 

1 . 1  km 

24.7m - 
2.4 km 

12.4- 
108.8 

32.9- 
156.6 

2.0-6.5 

Median 
(m) 

Masimum 
(m)  

I O  (mtd) 

9 

0.5-6 
(mode) 

Range 
(m) 

Terminai 
Velocity 
(cmls) 

IO (mtd) 

33 (mtd) 

33 (mrd) 

4 km 

1.9 Lm 
5 km 

15 

10.9 

0.1-1.9 km 

0.4- 10.9 



Appendix 1 1. Representative seed dispersal distances of native and alien species in N. America. 

.-îcacia rerm inalis (Austral ia) 

1 Shrubs ( n 4 )  

Dendromecon harfordii 

Dendromecon rig ida 

Dillrcynia retorta (Australia) 

Herbs (n= 1 8) 

.-!samm canadense 
- - -  

Gara piluIlfera (Denmark) 

Crotalaria rotundifolia 

Datura discolor 

Sclerolaenu dicuntha 
(Australia) 

1 Trillium grandi/orum 

Trillium htschaticum 
(JapW 

Trill iurn ovarrtm 

Seed Dispersal Distance 1 Ref.# 

38 

9 

9 
14 

38 

I I 

18 

46 

8 1 

60 

10 

94 

65 

6 8 

24 

44 

6 1 

5 7 
5 7 
43 

61 

77 

Mean 
(m) 

1.1 

3 -6 

2.7 

I .Z 

1.5 

3 1) -.- 

2.3 

0.2-3.1 

0.6 

0.6 

Range 
(ml 

0.2- 1.9 

0.1-1 1.0 

60°/0 6-8 

0.1-33.0 

O- 1.4 

0-8 

4-77; 
50-77 
cornmon 

cl-10.0 

0.2-3.3 

O- 1.8 
>70°/o ~0.6 
>30 (wasp) 

0.0 t -0.4 

Median 
(m) 

0.3 

I 

Terminal 
Velocity 
( c  m/s ) 

Maximum 
(m) 

1.9 

5.1 

4.8 
'10 

11.0 

I Z 

3 9 

5 6 

5 l irntd) 

25 (mtd) 

IZ 

7 7 

10.0 

3.3 

1.8 

>30 ( wasp) 

0.4 

50 



Appendix 1 1 .  Representative seed dispersa1 distances of native and alien species in N. America. 

Seed Dispersal Distance 

Terminal 
Velociiy 
(cmfs) 

Median 
(m) 

t'iola pedata 

Viola pensylvartica 

Maximum 
(m) 

i 

Other Fruits (fi=;) 

Range 
(ml 

Trees 

Pinzrs spp I 1 22 km 
- 

Pinus edulis 

Herbs 

W N D  DISPERSED 

Trees (n=3 1 ) 

.4 bies alba 

- 

.4 cer griseum 

..I cer platanoides 

..icer pseudoplatanus 

A cer saccharum 



Appendixl 1 . Representative seed dispersa1 distances of native and alien species in N. America. 

Species Seed Dispersal Distance 

Maximum 
(m) 

Range Terminal 
(ml Velocity 

(cmls) 

.-î lbizzia julibrissum 

Berula papyrferu 

1 Berulu pop ul i/olia 1 1 
1 Caralpu bignoides I I 

Carpin irs car0 finiana 

Cedrus arlanrica var. glaucu 1 I I ?  

Frminrrs spp 

Larik decidua 

Larir laricina 

Liriodendron rttlipgera 

Picea giuitcu 

Picea mariana 

1 Pinus rigida 1 15.1 1 



Appendixl 1 .  Representative seed dispersal distances of native and alien species in N. America. 

Terminal 
Velocity 
(cmls) 

Species 

Pinus strobiîs 

Plutanus occidentalis 

Pseirdorsuga menziesii 

Thuja plicata 

Thuja plicata 

Tilia ameriçanu 

Tiliu gruniiijiolia 

Tilia parvifloru 

Tsuga runudensis 

Ulmtrs campestris 

Shrubs (n=2) 

.-ilnus crispa 

Hulesiu monricolu 

Vines (n=l ) 

Clemaris virginianu 

Grasses (n=5) 

.-lgrostis hiemalis 

,.I ndropogon gerardi 

.-l ndropogon glomerarus 

-4ndropogon virginicus 

Mean 
(m) 

46 

13.0 

58 

19.7 

60 

Median 
(ml 

Seed Dispersa1 

Maximum 
(ml 

835 irntd) 

62.8 

122 ~ m t d )  

112 ( mtd) 

122 mtd) 
20 1 

15.0 

6.7 

18.5 

3.2 

Distance 

Range 
(ml 

6194 15-30 
26% 6 1-76 
13'41 107-122 

799'0 1 5-30 
1 7941 6 1-76 

39'0 107-1 22 



Appendixl 1 . Representative seed dispersal distances of native and alien species in N. Arnerica. 

Seed Dispersa1 Distance 

Range 
(m) 

Terminal 
Velocity 
(cm/s) 

Sch izachyrittm scoparium a 
I Herbs (n=S 1 ) 

.Isclepias v r  iaca 

.ister prenanthoides 

Curdutrs nutuns 

Curiina vulgaris 

Centcruria scab ;osa 

Cirsium art'ensii 

Cirsium pulusrre 

Cirsium trnduiat um 

Cirsiurn vulgare 11.6 
33 (mtdj 
>>km 



Appendixl 1 . Representative seed dispersal distances of native and alien species in N. America. 
I I I 

Species 

Mean 
(ml 

Erigeron acer 

Seed Dispersal Distance 

Range 
(m) 

Terrn inal 
Velocity 
(crnls)  

I 

Eupatorium cannabintrm 

1 

Eupatorium rugosum 

Hererorheca larlfolia 1.1-1.7 

Hieracium auranriacum 

Hreracium umbellartrm 

1.0 (rntd) 

Hypochoeris glabra 

Leonrodon utrrumnalis 

- - - -  

Rumer obrtrs$!olia 

Senecio jacobeu 
disk achenes 0.6-3.3 
disk achenes 

Senecio squal idtrs 

14.9 
6-8 (mtd) 

Solidugo canadensis 

Solidago giganrea 



Appendix 1 1 .  Representative seed dispersal distances of native and alien species in N. Arnerica. 

Terminal 
Velocity 
(cm/s) 

Species 

Maximum 
(m) 

Mediaii 
(ml 

1 

Seed Dispersal Distance 

Range 
(m) 

1 Solidago missouriensis 1 1 

1 Solidago speciosa 1 1 

Sonchru oieraceus O. 1-0.9 
(mode) 

Tragopogon dtrb ilrs 
3 (mode) 

1 Tragopogon diibius 1 1 

1 BALLISTIC DISPERSED 

Shrubs ( n 4 )  

Ceanoihur cuneatus IO (rntd) 1 lob = 9  

Ceanorhus leucodermis 

Dendromecon harfordii 
. . . - - -- -- 

Dendromrcan rigida 



Appendixl 1 . Representative seed dispersal distances of native and alien species in N. Amerka. 

S pec ies 

1 Herbs (n=JZ) 

1 Ballechores s.1. 

.-i mphicarpa bracteata: 
chasmogamous seeds 
aerial cleistogarnous seeds 

.ïrceuthobium cryptopodum 

Cardurn ine hirsutu 

Cussia fascicidata 

Chamaecrista fuscicitlata 

Chrÿsosplen I um americanrtm 

Cnidoscolus stim ttlosirs 

Crotaluriu s p 

Crotalaria rotundifolia 

Ettphorbia rnarginata 

Geraniurn caroliniunrrm 

Geraniurn molle 

Geraniurn macttlatum 

Impatiens capensis 

Impatiens pallida 

Impatiens paryrflora 

Lepidium campestre 

Seed Dispersa1 Distance [ Ref.# 

8 

87 
87 

3 5 

59 (50) 

48 

27 

7 1 

8 1 

49 

8 1 

79 

60 (50) 

80 

60 (50) 

8 0 

8 0 

80 
73 
9 1 
74 
74 

7 3 

60 (50) 

12 

85 

Mean 
(ml 

1.4-2.1 

0.3-0.7 

O .6 

0.9 

0.6 

3.3 

1.8 

3 .O 

0.2 

0.3-0.8 

Median 
(m) 

1 .4 
I .3 

Maximum 
( m l  

45 

4.5 
3 -8 

t 4.6 

1.4 

4.8 

0.4 

1.2 

4.5 

2.4 

O .9 

4 .O 

4 -2 

1.5 

2.8 

4.8 

1.6 
2.0 
3 

2.1 

2.0 

3.4 

1.5 

2.0 (mtd) 

Range 
(ml 

3 1°6 >?.O 
25% >2.0 

1.6% >4 

0.0-0.9 

1.8-4.2 

1 .O-2.8 

1.5-4.8 

0.1-1.6 

1.5-2 
most <O.? 
15% >1.0 

Terminal 
Velociîy 

(crn/s) 



Appendix 1 1 .  Representative seed dispersa1 distances of native and alien species in N. America. 

Seed Dispersa1 Distance Ref.# Species 

Range Terminal 
(ml Velocity 

(cm/s) 

Lepidium vulgare 

Miteila diphylla 

1 .Cionria fonrana 

Oenothera biennis 

1 Oenothera rosea 

b'iola blanda 
c hasrnogarnous seeds 
cieistogamous seeds 

Viola papilionucea 
chasrnogarnous seeds 
cleistogamous seeds 

Viola rosrrata a 



Appendix 1 1 .  Representative seed dispersa1 distances of native and alien species in N. America. 

Species Seed Dispersal Distance 

Range Terminal 
VeIocity 
(cm/s) 

riola striata 
c hasmogamous seeds 
cleistogamous seeds 

Grasses (n=3) 

.Who-ranrhum odoratum 

Vulpta ciliata 

Herbs (n= l 1 )  

Chaenorrhinum minus 
- -  - 

Dipsucus sylvestris 

Echeveria gib hifloru 

Hererolhecu lurifoltu 
ray achenes 

L ithospermum carolintensr 

,Cïirabilis hirsuta 

E erbena stricta 



APPENDIX12 

PRINCIPAL FRUGIVORES OF EASTERN NORTH AiMERICA 



Appendix 12. Principal Frugivores of Eastern North Arnerica. Legend: * Major fmgivore (2 10 stars. 
Martin et al. 1951, as calculated by Willson 1986): Sources: Birds: Willson 1986: Mammals: Hamilton 
1941, Martin et al. 1951; Reptiles: Rust and Roth 198 1 .  Willson 1986, Stiles 1993. 

-- - - 

BIRDS (n=50) 

Eastern bluebird* 

Northem bobwhite 

Northem cardinal 

Gray catbird* 

Yellow-breasted chat 

Amencan crow 

Fish crow* 

Purple finch 

Northern tlicker 

Great-crested flycatc her 

Evening grosbeak 

Pine gros beak 

Rose- breasted grosbeak 

Ruffed-grouse* 

Spruce grouse 

Eastern kingbird 

Ruby-crowned kinglet 

Northem mockingbird* 

Baltimore oriole 

Orc hard oriole 

Ring-necked pheasant 

Amencan robin* 

Yellow-bellied sapsuc ker 

Fox sparrow 

Whi te-throated sparrow 

Europran starling* 

Tree swallow 

Summer tanager 

Brown thrasher* 

Gray-cheeked t h s h  

Hermit thrush 

Swriinson's thrush 

Wood thrush* 

Tutied titmouse 

Eastern towhee 

Wild turkey 

Veery 

Red-eyed vireo 

Warbling vireo 

Bay-breasted warbler 

C hestnut-sided warbler 

Tennessee warbler 

Yellow-rumped warbler 

Bohemian waxwing 

Cedar wauwing* 

Downy woodpecker 

Pileated woodpecker 

Red-bellied woodpecker 



Appendix 12. Principal Frugivores of Eastern North Ametica (cont'd). 

MAMMALS (n= 14) 

Black bear* 

Eastern chipmunk 

Common cottontail 

New England cottontail 

White-tai ted deer* 

Eastern red fox 

Gray fox 

REPTILES (n= I ) 

Box TurtIe 

Moose 

Deer mouse 

White- footed mouse 

Raccoon 

Eastern fox squirrel 

Eastern gray squirrel 

Eastern red squirrel 



APPENDIX 13 

K N O W  MYRMECOCHORES IN THE U.S. NORTHEAST 



Appendix 13. Known Myrmecochores in the U.S. Northeast. Sources: ( 1) Beattie and Lyons 1975. 
(2) Beattie et ai. 1979. (3) Beattie and Culver 1978. (4) Beattie and Culver 1981. ( 5 )  Culver and 
Beattie 1978. (6) Culver and Beattie 1 BO, (7) Gaddy 1986. (8) Gates 194 1. (9) Gates 1943. ( 10) 
Gunther and Lanza 1989, (1 1) Handel 1976. (12) Handel 1978b. (13) Heithaus 1981. (14) Pudlo et 
al. 1980. ( 1  5) Ruhren and Dudash 1996 

Reference Nesting Preference 

majority of Aphaenoguster spp. nest 
in the soil; usually start nest beneath 
some covering object: if a log. ants 
may construct part of nest in it but 
main part of nest is subterranean 
(Creighton 1950. p. i 39) 

usually nests on rotten sturnps and 
fallen logs with few passages running 
into the soi1 (Creighton. 1950. p. 139: 
Lynch et al. 1988) 

see .4. mdis. 

most species of Cumponortis nest in 
decay inç wood. especial ly in soi? and 
rotting parts; nests that occur in logs 
or trees rarely extend into the soi1 
(Creighton 1950. p.365) 

see C. netrrcticzrs. 

Cremaiogaster lineoiata nests in dead wood of standing or 
prostrate trunks ( Wheeler 1960, p. 
208) 

nests in soil beneath a covering object 
(Creighton 1950. p.528) 

Formica inregru nests in stumps and in soi1 under 
cover of stones. logs. or branches 
( Wheeler 1960. pp. 204-206). 

Formica neogagutes nests in soil beneath stones or other 
covering objects (Creighton 1950. p. 
457) 

- 

nests in soil where it forrns rnounds 
up to 30 cm high (Wheeler 1960. pp. 
203-204) 

Formica subsericea 



Appendix 13. Known Mynnecochores in the US Northeast (cont'd). 

Reference Nesting Preference 

remarkably flexib te; most species 
prefer weli drained soi1 that is not too 
dry: nest may be free in soil. under 
stones or other covering objects. or in 
and under rotten logs and stumps 
(Creighton 1950) 

Leptuthorur curvisp inosirs genus nests by choice in preformed 
cavities; e g .  in crannies under rock 
chips. or under bark. in hollow hvigs. 
dried grass stems. old galls. or empty 
nut shells (Creighton 1950. p. 2 5 5 )  

Leptothorar iongispinostrs see L. curvispinosra. 

:Mjwnecina urnericana usually nests in moist shady areas. 
often under small stones (Creighton 
1950. p.248) 

most species in genus nest in soi1 
under a covering object (Creighton 
1930. p.9 1 ) 

see il% emeryanu. 

:Yvrrn icu prrnct iventr is 

ofien nests in damp soil in shady 
positions (Creighton 1950. p. 135) 

Stenamma schmitti habits little known: nests in wooded 
areas in leaf mould. under stones or 
logs or beneath thick. loose moss 
(Creighton 1950. p. 135) 

Tapinoma sessile not particular: in soi1 with or without 
a covering object. under bark, and in 
preformed cavities of various kinds 
(Creighton 1950. p.35 1 )  



SPECIES PREVALENT iN THE HERB LAYER IN THE 
MAPLE-BASSWOOD FOREST REGION IN SOUTHERN WISCONSIN 
AND PRESENT IN SUGAR MAPLE DOMINATED STANDS IN THE 

VICINlTY OF PETERBOROUGH, ONTARIO 



Appendix 14. Species prevalent in the herb layer in the Maple-Basswood Forest Region in southem 
Wisconsin and present in sugar maple dominated stands in the vicinity of Peterborough. Ontario. 
"@"  denotes that species achieves maximum presence in this forest type in Wisconsin. 
W=Wisconsin. P=Peterborough; Flowering phenology at Peterborough: E=early spring tlowering 
(before June 1"); ML=mid to late season flowering (aRer June 1 "). Source: Curtis 1959. p.52 1. 

S pecies 

,i ctaea pachypoda 

..idiantum pedatrrm 

..llliurn rricocczrm 

E 1 :Clui~rnihemurn canadensr 1 I E  
-4mphicarpaea bracteata 

Botrychim virginianirm 1 1 E 1 ~orrhrnocisstrr insertri 

W P  

Carex ia~ifiora 1 1 E 1 Podophflrcnt peZiaturn 

ML 

Carex pensyl vanica 

Caziloph~vlltrm thul ictroides 

Ce fastrus scandens 

Circaea lutiuna 

Claytonia caroliniana 

Cuptotaenia canadens is 

Etythroniitm antericanrrnt 

Galiurn aparine 

Galium trifIorum 

E 

Geranium maculatum 

Luportra canadensis 

No tes: 

Species 

Geirm canadense 

1 

ML 

Prr ncrnthes ulba 

Heplrrica aczirilo ba 

?&irophyl/urn virginianirm 

? 

E 

- - 

ML Sangtrinaria canaciensis 

E Sol i ~ h g o  fle-r icaulis 

ML Thdictrtim dioictim 

E Trillizirn grandi~orum 

E C/i.rrlwia grandiforu 
I 

W P  

E Vio/~r pubescens 

E 

Species prevalent in Wisconsin but absent fiom stands at Peterborough: Erythronium albidum. 
Claytunia virginica, Ga1 ium concinnum. Sanicula gregcwia. Smilav ecirr hata. 

E 

E 




