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ABSTRACT 

Approximately 75% of socially monogamous passerines pursue extra-pair mating with 

the frequency of extra-pair paternity varying among and within taxonomic groups. Despite the 

ubiquity of extra-pair mating systems, substantial research into the subject has produced mixed 

results and the benefits to females remain elusive. Two genetic benefits hypotheses, the good 

genes hypothesis and heterozygosity theory, predict that extra-pair offspring (EPO) should 

generally be more fit than within-pair offspring (WPO). This study aims to test for genetic-based 

benefits to extra-pair mating in purple martins (Progne subis) by comparing EPO and WPO. 

Specifically, I compare the first year survival estimates of EPO and WPO and of those offspring 

that are recruited into the breeding population, I compare the reproductive success of EPO and 

WPO. I found no differences in first-year survival probability nor did I find any differences in 

reproductive success between EPO and WPO. I conclude that female purple martins are not 

benefitting from extra-pair mating through the improved survival or reproductive success of 

their offspring. Such benefits may be context-dependent or historical contexts in which the 

benefits of extra-pair mating for females may no longer exist for this semi-domesticated 

species. 
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INTRODUCTION 

Approximately 75% of socially monogamous songbird species pursue extra-pair mating 

(Griffith et al. 2002), with the frequency of extra-pair paternity varying widely among and 

within taxonomic groups (Birkhead and Møller 1992, Griffith et al. 2002) or among different 

populations of the same species (Kempenaers and Schlicht 2010). Extra-pair mating has clear 

benefits to males who gain paternity with additional females but benefits are less clear for 

females because their fitness does not appear to be tied to the number of males who they 

copulate with. The willingness of females in many species to seek out or participate in extra-

pair copulations (Griffith et al. 2002) suggests that overall benefits to females outweigh any 

potential costs. However, the adaptive significance of extra-pair mating for females has yet to 

be convincingly shown (Jennions and Petrie 2000; Simmons 2005; Dunn et al. 2009). 

There are at least four possible types of costs to females associated with engaging in 

extra-pair copulations (Westneat et al. 1990, Kempenaers and Schlicht 2010): 1) time and 

energetic trade-offs, 2) increased risk of predation or infection with parasites or sexually 

transmitted diseases, 3) retribution by the social mate (e.g., reduced care, divorce, etc.) and 4) 

increased competition between half-siblings (i.e., reduced kin-selection). Since females produce 

the same number of eggs regardless of the number of males they copulate with, the benefits of 

extra-pair mating must lie with the quality, rather than quantity, of males. When higher quality 

males are already paired, rather than not reproduce at all a female should choose a less 

preferable male to obtain the resources he offers (i.e., parental care, territory or nest site). 

Extra-pair mating may allow a female to choose the best male or males for the genetic fitness 

of her offspring when her social mate is of lower quality (Griffith et al. 2002). Hypothesized 



2 

benefits to females of EPCs may also include direct benefits from extra-pair partners such as 

nuptial gifts, or access to resources. Females probably receive a complex suite of various 

benefits that can vary by individual and species but quantifying such benefits in terms of fitness 

gains is problematic (Kempenaers and Schlicht 2010).  

Numerous sexual selection hypotheses have been suggested to explain extra-pair 

mating by females (Andersson 1994, Griffith et al. 2002, Kempenaers and Schlicht 2010). 

Females may benefit by ensuring that their eggs become fertilized despite potential infertile 

social mates (Sheldon 1994), however evidence from studies of socially monogamous species is 

relatively weak (Kempanaers and Schlicht 2010). Males may be under indirect selection as 

extra-pair mating behaviour may have a genetic component (Forstmeir et al. 2011). Eliassen 

and Jorgensen (2014) argued that extra-pair mating systems can evolve through cooperative 

neighborhoods whereby extra-pair copulations may reduce aggression towards offspring that 

they are not raising themselves.  

Two hypotheses predict genetic benefits to females from extra-pair mating: the good 

genes hypothesis (i.e., additive genetic benefits; see Andersson 1994) and the heterozygosity 

theory of mate choice (i.e., nonadditive genetic benefits; Brown 1997). The good genes 

hypothesis states that sexual selection will lead to the improvement of offspring fitness by 

passing on relatively superior genetic material (Andersson 1994; Griffith et al. 2002). The 

heterozygosity theory predicts that females should mate with males who best complement her 

genome to produce highly heterozygous offspring, and therefore a given male is not necessarily 

superior to all other males (Brown 1997; Griffith et al. 2002; Kempenaers 2007). Choosing 

mates that maximally differ from their own genomes (i.e., are less related) will generally 
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increase the number of loci at which their offspring are heterozygous thus reducing the load of 

deleterious or lethal recessive alleles and ultimately resulting in reduced inbreeding depression 

in the population (Brown 1997; Kempenaers 2007). Specifically, heterozygotes at the Major 

Histocompatibilty Complex (MHC) loci may have an advantage over homozygotes 

(overdominance; Brown 1997; Penn and Potts 1999). MHC genes are implicated in immune 

function; an individual with a greater diversity of MHC genes should have a more robust 

immune response to a greater variety of pathogens (Penn and Potts 1999).  

Both the good genes hypothesis and heterozygosity theory both have clear, testable 

predictions in the context of extra-pair mating systems (Griffith et al. 2002). Both of these 

hypotheses assume that females are able to assess the quality of males and predict that 

females will choose to mate with those males that will improve offspring fitness (Griffith et al. 

2002). Comparisons of extra-pair males with the social male have yielded support for the good 

genes hypothesis; a meta-analysis by Akçay and Roughgarden (2007) found extra-pair males to 

be larger and older than within-pair males. Age is a common factor in the distribution of extra-

pair paternity in birds (Griffifth et al. 2002). Davidar and Morton (1993) argued the good genes 

hypothesis to explain the general pattern that female purple martins (Progne subis) sought 

extra-pair matings from older males (Morton et al. 1990, Wagner et al. 1996, Tarof et al. 2012). 

When it comes to heterozygosity, female mice can differentiate between males of varying 

relatedness at MHC loci and preferentially mate with more dissimilar males (Yamazaki et al. 

1979; Brown et al. 1987; Penn and Potts 1999). Several studies have shown similar mating 

preferences in birds using microsatellite loci, however many have failed to find evidence that 

females select dissimilar males as extra-pair partners (Kempanaers 2007; Mays et al. 2007). 
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Within the same population of tree swallows (Tachycineta bicolor) only one study found 

support for mate choice based on genetic similarity (Stapleton et al. 2007) while another two 

did not (Kempenaers et al. 1999, Barber et al. 2005). The importance of mating preferences 

based on genetic similarity in birds remains uncertain (Andersson and Simmons 2006). 

The good genes hypothesis predicts that there should be a small subset of the “best” 

males and that females mated to poor quality males will seek extra-pair matings with higher 

quality males. As a result, extra-pair offspring (EPO) should have higher fitness (e.g., survival, 

reproductive success) than their within-pair half-siblings (WPO) since EPO are sired by males 

with superior genes. The heterozygosity theory predicts that each female should seek her own 

“best” males and females with genetically similar social mates should seek EPCs (Griffith et al. 

2002). The heterozygosity theory predicts that within a nest EPO will be more heterozygous 

than WPO, and thus will be more fit than their half-siblings. Through different mechanisms, 

both hypotheses predict that EPO will be more fit than their within-pair half-siblings.  

The most unambiguous assessment of potential genetic benefits of extra-pair mating is 

to compare the fitness of within- and extra-pair offspring from the same brood (Griffith et al. 

2002). Empirical evidence in support of the good genes hypothesis via offspring fitness is 

limited to only six of 23 studies reviewed by Akçay and Roughgarden (2007) that tested if EPO 

differed from WPO in fitness-related traits. In a more recent review of offspring survival by 

parentage (Sardell et al. 2011), only 3 of 8 studies found EPO survived to fledging better than 

WPO and only 1 of 5 studies found EPO survived better to independence. These studies 

examined only very short-term fitness differences, in the nest or within several weeks of leaving 

the nest. However, significant mortality occurs after independence and during the first year of 
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life (see Tarof et al. 2011). It is more difficult to test for survival to recruitment (i.e., the first 

year), yet 12 studies have made the comparison of WPO and EPO but none found a significant 

difference in survival over the first year (reviewed in Sardell et al. 2011). It is even more difficult 

to test for longer-term differences in offspring fitness, and only five studies have done so in the 

context of extra-pair mating; none found significant differences in lifetime survival or return 

rates between EPO and WPO (Sardell et al. 2011, Gerlach et al. 2012). All five of those studies 

were conducted on non-migratory species; such a comparison has yet to be attempted with a 

long-distance migratory species. 

This study will examine the benefits of extra-pair mating to female purple martins by 

testing if extra-pair offspring have a fitness advantage over within-pair offspring as predicted by 

the good genes hypothesis and heterozygosity advantage hypotheses. In this study population, 

older males (> 2 year) sired 83% of offspring in their own nests compared with only 63% for 

one-year old males, and extra-pair sires were generally older than the males they cuckolded 

(Appendix A, Tarof et al. 2012). This pattern is consistent with female preference for older 

males as extra-pair sires, but the benefits to females that engage in EPCs have not yet been 

tested. I hypothesize that female purple martins pursue EPCs to improve the genetic quality of 

their offspring. I predict that: (1) EPO will have higher first-year survival rates compared with 

their WPO half-siblings and (2) EPO recruited into the breeding population will have higher 

reproductive success than WPO. Specifically, first year breeders that were EPO are expected to 

have higher mating success, earlier nest initiations, more offspring fledged, than first year 

breeders that were WPO.  
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This is the first study to test for benefits of EPFs a long distance migratory songbird. 

Extra-pair fertilization rates tend to be higher for long distance migrants compared with 

residents (Stutchbury and Morton 1995, 2008; Spottiswoode and Moller, 2004) making the 

question of how females benefit from EPFs all the more important. However, most studies of 

migratory species cannot test for first-year survival because almost all young disperse away 

from the study area, and thus annual first-year survival cannot be estimated. Purple martins in 

eastern North America migrate ca. 10,000 km to their wintering grounds in Brazil (Appendices 

B-E, Stutchbury et al. 2009b, Fraser et al. 2012a, 2012b, 2013) but in my study population natal 

return rates averaged 22% (1998-2002 cohorts) and long-term mark/resight studies estimated 

first year survival probability to be 0.27 (Appendix F, Tarof et al. 2011). I could therefore test if 

annual survival, and reproductive success as a first-time breeder, differed between EPO and 

WPO. My field research during my dissertation made substantial contributions to many 

publications on which I am a co-author (Appendices A-G) but which are not the subject of my 

dissertation. 

 

MATERIALS AND METHODS 

(Study area, Blood Sampling and Laboratory methods, described below, are published in 

Tarof et al. (2011) but adapted slightly here for the dissertation. Sampling of recruited 

offspring of known parentage, survival analyses of extra-pair versus within pair young, and 

genetic sexing methods are unique to this dissertation.)  

 

Study Area  



7 

From May to August 2006-2013 I studied purple martins in north-western Pennsylvania for this 

thesis research on fitness of extra-pair versus within-pair offspring, but also for collaborative 

studies on juvenile and adult survival (Stutchbury et al. 2009a, Tarof et al. 2011), age effects on 

paternity (Tarof et al 2012), and migration ecology (Stutchbury et al. 2009b, Fraser et al. 2012a, 

2012b, 2013). Paternity data were collected 2006-2009 at two primary breeding colonies in 

north-western Pennsylvania, USA that were 19 km apart (Figure 1). The Troyer colony (41.75° 

N, -80.28° W) averaged 160 pairs/year and was located on the lawn of a home in a rural setting. 

The Edinboro colony (41.88° N, -80.12° W) averaged 60 pairs/year and was situated on 

Edinboro Lake in the small town of Edinboro, Pennsylvania. These colonies were part of a long-

term banding and re-sight program led by the Purple Martin Conservation Association, Erie PA. 

All nest houses had predator guards on the poles to prevent climbing nest predators. Exotic bird 

species (house sparrows, Passer domesticus, and European Starlings, Sturnus vulgaris) were 

controlled at both colonies with trapping, shooting or the use of starling-resistant entrance 

holes. Nest material was replaced if the ectoparasites (feather mites, blowfly larvae and fleas) 

became severe; usually once per nesting period and rarely after the young reached the age of 

20 days.  

For survival analyses, I searched for banded individuals from April-August 2006-2012 by 

visiting all nesting colonies within 40 km from our primary study sites at least once per season 

to (Table 1A; Figure 1). The two core colonies were searched at least twice a week from April-

July. In late July and August, after breeding, purple martins congregate at a pre-migratory 

roosting site in the western end of Presque Isle Bay (42.11° N, 80.14° W; Tarof et al. 2011). Birds 

attending the roost are known to come from a large area based on band re-sightings; hatch-
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year birds from natal colonies over 100 km away are consistently observed at the roost with a 

few notable dispersal records of over 300 km (PMK, unpublished data). In the evening hours, up 

to 1500 purple martins at any one time can be attracted to power lines using recordings of 

purple martin dawn song (Morton 1988) located in a parking area for Beach 11 at Presque Isle 

State Park (42.16° N, -80.08° W) approximately 7.4 km from the roost site. Each evening from 

late July-August 2006-2011, I searched for banded individuals among the birds gathered at 

Beach 11 for 5-6 nights per week from approximately 6:00 pm through sunset. Including re-

sightings of birds at the roost substantially improves estimates of survival, because it increases 

the probability of observing previously banded birds that are alive but whose breeding site is 

unknown (Stutchbury et al. 2009a). 

 

DNA Sampling: Field Methods 

Using telescopes, trained field assistants, colleagues and I read alphanumeric color 

bands of banded birds, identified social pairings and the nest sites occupied by banded birds. 

Social pairs were confirmed from observations of nest defense, feeding nestlings or fecal sac 

removal or capture within a cavity. Age is defined with two age classes: Second Year (SY) are 1 

year old (but second calendar year of life), and After-Second-Year (ASY) are ≥2 years old. Age 

class is determined, along with sex, by distinctive plumage characteristics (Pyle 1997, Hill 2002; 

Tarof and Brown 2013) and when possible, verified by banding records. Of all social parents 

included in paternity analyses, we had 100 SY males, 82 SY females and 74 older males (2–9 

years old) and 44 older females (2-9 years old) of known age (Table 2). We also had another 105 

paired males and 151 females for whom minimum age (but not exact age) was known because 
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they were first banded as an older individual. Across all years, most (66%) first-year females (n 

= 72) paired to first-year males, whereas older females (n = 225) frequently (82%) paired with 

older males rather than with first-year males (Tarof et al. 2012). 

 We checked nest contents approximately every five days to determine first egg-laying 

date and nesting success (clutch size, number of eggs hatched and young fledged). First-year 

females laid smaller clutches (4.43 ± 0.10 eggs) than older females (4.92 ± 0.06 eggs; Tarof et al. 

2012). Across all years, older males paired to older females had earlier first egg dates (31 May, 

30.8 ± 0.58 days [day 1 = 1 May]) than if paired to a first-year female (5 June, 34.6 ± 1.60 days) 

and the same was true for first-year males (7 June, 38.5 ± 0.92 days versus 12 June, 42.1 ± 0.85 

days; Tarof et al. 2012).  

In early July, once most eggs hatched, I caught adults at night using a trap that lowered 

weighted doors over all cavity entrances of a nest house simultaneously. Traps were set in the 

afternoon with doors open, and were triggered manually after 11 pm. A team of banders 

returned before dawn to extract adults from compartments for banding and blood sampling. 

Additional daytime target trapping at individual nest cavities captured birds not caught at night. 

We banded adults with a U.S. Geological Survey numbered aluminum band and a colour 

auxiliary band with a unique alphanumeric code. Mass, tarsus, wing chord and tail length were 

measured for all adults. We also banded 2830 nestlings at 12–20 days old. We collected 10–50 

µL blood samples from adults and nestlings and stored samples at 4 °C in 1 mL of Queen’s lysis 

buffer. Unhatched eggs were collected 7-10 days after their expected hatch date (or when 

siblings reach 7-10 days of age) and dissected; a tissue sample was collected if present. Liver 
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tissue was collected from any dead nestlings found in nest boxes in lieu of blood samples. 

Embryo and tissue samples were stored in 1 mL of TE buffer at -20°C.  

Blood samples were obtained from nearly all family groups at the Edinboro colony for 3 

years. The Troyer colony was sampled partially in 2006 and nearly completely in 2007 but was 

not blood-sampled in 2008 due to restrictions (landowner request). Fieldwork and blood 

sampling were conducted under approval of the York University Animal Care Committee.  

 

Reproductive Success of EP versus WPO Recruits 

To assess fitness of extra-pair versus within-pair year young, I searched for the nests of 

returning birds that had been banded and sampled as nestlings for parentage analysis. The 

search area included all colonies within 25 km of the core colony sites (>70 colonies) and each 

colony site was visited at least once per breeding season. Purple martins are an ideal species 

because they have high natal philopatry, are readily observable and aggregate in colonies 

allowing me locate recruits. The nesting success of these recruiting birds was monitored 

through nest checks every 4-5 d. In some cases, nest records were obtained from the owners of 

colonies where recruits were found. The recruit’s mate and offspring were banded and blood 

sampled in order to perform paternity testing and determine the extra-pair mating success as a 

component of male reproductive success. 

 

Laboratory Methods for Paternity Analysis  

Paternity analysis of all samples was performed by myself and Scott A. Tarof (Tarof et al. 

2012). We used a panel of four hypervariable microsatellite-flanking polymerase chain reaction 
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(PCR) primer sets (Table 3; Stanley et al. 2011) to determine the frequency of extra-pair 

fertilizations and assign parentage to 1235 nestlings based on the social parents of 297 families. 

Of the offspring sampled, we only included families with known social parents and for which 

both attending parents and their offspring were sampled. In addition to family groups, 12 

additional males in the population (whose nest sites were unknown) were genotyped as 

putative sires of extra-pair offspring (EPO).  

Blood samples were stored at 4 °C in 1 mL of Queen’s lysis buffer until DNA extraction 

by the ethanol method. Genomic DNA was amplified in 10 µL PCR reactions under the following 

conditions: initial denaturation at 94 °C for 3 min; 30 cycles consisting of 1 min at 94 °C, 1 min 

annealing (Ta: PUMA 19, 55.8 °C; PUMA 49, 50 °C; PUMA 74, 48.2 °C; PUMA 98, 55 °C), 45 s at 

72 °C, followed by a final extension at 72 °C for 5 min. Each tube contained 5.7 µl water (PUMA 

49, 4.8 µl; PUMA 19, 5.1 µl), 1.0 µl 10x TSG PCR buffer (Bio Basic, Markham, Ontario), 0.8 µl 25 

mM MgCl2 (Fermentas, Burlington, Ontario) (PUMA 19 and PUMA 49, 1.2 µl), 0.4 µl 10 mM 

deoxyribonucleotide triphosphates (PUMA 19, 0.6 µL; GE Healthcare, Baie d’Urfe, Quebec), 0.2 

µl 10 µM fluorescently labeled Beckman Coulter WellRed forward primer (250 nm, HPLC 

purification; Integrated DNA Technologies, Coralville, Iowa), 0.2 µl 10 µM reverse primer, 0.2 µl 

5 U/µl TSG DNA Polymerase, 1.5 µl undiluted DNA (212.5 ± 5.2 ng/ml) (PUMA 49, 2.0 µl; PUMA 

74, 1.0 µl), and 0.5 µl 100% dimethyl sulfoxide (PUMA 74 only; BioShop, Burlington, Ontario). 

Products were visualized on 1% agarose gels stained with 5 µl 5 mg/ml ethidium bromide 

(BioShop, Burlington, Ontario) to confirm amplification. This protocol yielded dye-labeled 

amplicons for fragment analysis. Genotyping was conducted on the Beckman Coulter CEQ 8000. 

We genotyped individuals in 3-locus poolplex reactions containing 1.5 µl PCR product mixture 
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(4.4 µl PUMA 19, 4.3 µl PUMA 49, 1.3 µl PUMA 98) in 38.5 µl of CEQ cocktail (38 µl 99.5% 

deionized formamide [Sigma-Aldrich, St. Louis, Missouri] plus 0.5 µl size standard [Beckman 

Coulter, Mississauga, Ontario]). We ran 1.0 µl PUMA 74 PCR product separately in 38.5 µl 

formamide plus 0.5 µl size standard. Genotypes were scored against a 400-bp size standard 

(600 bp for PUMA 74) with phosphoramidite dye mobility calibration and the ‘‘cubic’’ algorithm 

model (‘‘quartic’’ for PUMA 74). Thirty random adults were genotyped twice at all loci to 

confirm repeatability; genotypes were 100% repeatable.  

We defined within-pair offspring (WPO) as nestlings that matched the genotypes of 

their social parents at all loci genotyped (n = 102 in 2006, n = 404 in 2007, n = 219 in 2008) or 

that mismatched with the social father at 1 locus and had low probability of resemblance by 

chance alone at the other matching loci (Ibarguchi et al. 2004). If mutation rate is high or if 

there are genotyping errors, single-locus mismatches can grossly overestimate extra-pair 

paternity. Probability of resemblance (PRa), the likelihood that 2 particular individuals (e.g., 

offspring and social father) share at least 1 allele at a specific locus by chance alone, has high-

resolving power for dealing with single-locus mismatches where genotypes for parents and 

offspring are known and microsatellite allele frequencies from the sampled population are 

available (Ibarguchi et al. 2004). For family groups containing a single-paternal mismatch, we 

calculated PRa using the formula PRa = (2pa-pa
2)2, for a given allele (a) with allele frequency (pa), 

at each locus other than the mismatching locus. The product of these values generated the 

cumulative probability of resemblance (PRaCum) for the matching loci. Social males were 

considered to be the genetic sires if PRaCum was ≤0.005 (after Ibarguchi et al. 2004). That is, 

offspring with a PRaCum meeting this threshold had less than a 0.5% chance of sharing alleles at 
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the other loci with the social male by chance (n = 91 in 2006, n = 189 in 2007, n = 31 in 2008) 

and thus were assigned as WPO (mean PRaCum = 0.0005 ± 0.006). The mutation rate (# per 

meiotic event) of 1 of the loci, HrU10, among 6 species of swallows ranges from 0.6% to 10.8% 

and is relatively high for our purple martin population (5.6%, Anmarkrud et al. 2011). Allele size 

explained almost all the variance in mutation rate across species and was relatively large (310 

bp) in purple martins, which may explain why there were numerous cases of a single-locus 

mismatch, even though the other microsatellite loci did match the social father.  

We identified potential EPO by evaluating genotypes of each offspring in a family 

against their social parents. EPO were defined as nestlings that mismatched the social male at 

≥2 loci (n = 68 in 2006, n = 130 in 2007, n = 42 in 2008) or that had a PRaCum value 0.005 with 1 

paternal mismatch (n = 18 in 2006, n = 21 in 2007, n = 1 in 2008; average PRaCum = 0.076 ± 

0.013). Next, we used CERVUS 3.0.3 (Kalinowski et al. 2007) to identify candidates for true 

extra-pair sires. Using genotype data, CERVUS calculates allele frequencies, deviations from 

Hardy–Weinberg equilibrium, polymorphic information content, null allele frequencies, and 

exclusion probabilities. A likelihood ratio approach determines true parentage of offspring from 

the pool of candidate sires by evaluating all offspring-sire genotype combinations (given 

maternal known genotypes). We used allele frequency data from our population in CERVUS’ 

parentage analysis likelihood simulation to generate paternity assignments for individual EPO 

based on the following criteria. Both social parents needed to genotype at a minimum of 2 loci 

to be included in parentage analyses. Cases of putative intraspecific brood parasitism (<4.7%) 

were excluded. We included the putative social male and all other sampled males each year in a 

colony to identify the most likely and second most likely candidate extra-pair sires. In 
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simulations, we used 100,000 permutation cycles, 80% (2006), 95% (2007), and 80% (2008) of 

candidate sires in our sampled population, a minimum of 2 loci genotyped per individual, 95.6% 

of loci genotyped (from allele frequencies), and 1% genotyping error rate. Determination of the 

extra-pair sire for EPO was based on delta scores calculated by CERVUS, defined as the 

difference in LOD scores between the most likely and second most likely candidate sire, at 

either the 80% (n = 68 EPO) or 95% confidence level (n = 64 EPO). Because we sampled 80–95% 

of males per colony, we assumed that unassigned offspring were likely sired by males outside 

the colony. 

We determined the probability of alleles matching the candidate genetic male by 

chance alone based on nonexclusion probabilities calculated by CERVUS. Nonexclusion 

probability (1-exclusion probability) was the likelihood of not excluding a candidate male that 

was unrelated genetically to an offspring. The mean (±SD) nonexclusion probability for EPO 

with both social parents known was 0.017 ± 0.002 (median = 0.007). The average for all 

offspring (WPO and EPO) was 0.016 ± 0.001 (median = 0.006). Combined exclusion probability 

(PE) with both social parents known was 99.998%. 

Offspring sex was determined because sex is known to affect apparent annual survival in 

this species (Stutchbury et al. 2009a, Tarof et al. 2011). We determined sex using PCR after 

Fridolfsson and Ellegren (1999). Genomic DNA was amplified in 10 µL PCR reactions under the 

following conditions: initial denaturation at 94 °C for 2 min; 30 cycles consisting of 30 s at 94 °C, 

30 s annealing at 50 °C, 30 s at 72 °C, followed by a final extension at 72 °C for 5 min. Each tube 

contained 2.9 µl water, 1.25 µl 10x TSG PCR buffer (Bio Basic, Markham, Ontario), 4.0 µl 20 mM 

MgSO4 (Bio Basic, Markham, Ontario), 0.25 µl 10 mM deoxyribonucleotide triphosphates (GE 
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Healthcare, Baie d’Urfe, Quebec), 0.25 µl 10 µM 2550 forward primer (Integrated DNA 

Technologies, Coralville, Iowa), 0.25 µl 10 µM 2718 reverse primer (Integrated DNA 

Technologies, Coralville, Iowa), 0.1 µl 5 U/µl TSG DNA Polymerase, and 1.0 µl undiluted DNA 

(212.5 ± 5.2 ng/ml). All plates included a known female sample as a positive control and a 

negative control with 1.0 µl of water in place of the undiluted DNA. Products were visualized on 

1.5% agarose gels stained with 5 µl 5 mg/ml ethidium bromide (BioShop, Burlington, Ontario) 

run for 1 hour at 100 constant volts to confirm amplification. Gels were imaged using an 

AlphaImager HP (Alpha Innotech, San Leandro, California). Gels were scored manually; samples 

showing one band indicate male, two bands indicate female (all females had a band associated 

with the CHD1Z intron). Samples that were unclear were rerun. Samples remaining unclear 

after two attempts were omitted from the study. 

 

Survival Analyses  

My survival analyses included only known-sex nestlings from mixed broods, those 

having at least one extra-pair and one within-pair offspring (n=363 nestlings; Table 1B). 

Rigorous tests of the good genes and heterozygosity hypotheses for female benefits of EPFs 

requires comparison of the fitness of extra-pair and within-pair offspring only from mixed 

broods, those having at least one extra-pair and one within-pair offspring (Sardell et al. 2011). 

This controls for possible maternal effects on offspring fitness, which is especially important for 

purple martins because of assortative mating by age (Tarof et al. 2012). Furthermore, female 

age class affects timing of breeding, clutch size, and the likelihood of females producing extra-

pair offspring (Morton and Derrickson 1990, Tarof et al. 2012). The oldest birds arrive to the 
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colony first, initiate nests earlier and these earlier nests with older parents have fewer extra-

pair offspring than the later nests of first year females (Morton et al. 1990; Wagner et al. 1996, 

Tarof et al. 2012).  

I estimated apparent annual survival probabilities using the Program MARK, version 7.1 

(White and Burnham 1999, Cooch and White 2008). Program MARK uses maximum likelihood 

estimation on covariates to impose linear constraints on survival estimates. The first step 

determining the global model is to determine the best-fit parameters for resighting probability 

(“p”). This refers to the probability that a bird will be sighted, given that it is known to be alive. 

It is calculated using at minimum three years of data and estimates probability of seeing birds in 

year two given that they were subsequently resighted in a future year. To determine my the 

survival terms of my global model, I compared models with full interactions between age class 

and time in both survival and encounter probability with additive models that have fewer 

parameters (Table 4). The model with the best fit allowed survival of young to vary with their 

age class (juvenile, SY, ASY) and their resighting probability to vary with sex and year 

(Phi(offspringAgeClass) p(offspringSex+t)); this model fit the data approximately ten times 

better than the next best basic model.  

Using my starting global model Phi(offspringAgeClass) p(offspringSex+t), I constructed 

an a priori set of 14 candidate models to examine the influence of various covariates on 

apparent juvenile annual survival. All covariates were allowed interact with all age classes. The 

variables MomMinAge and DadMinAge are the social mother’s and social father’s minimum 

known ages, respectively. Hatch date and the number fledged from each offspring’s nest were 

modelled as well because they have been shown to influence offspring survival in this species 
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(Tarof et al. 2011). The hatch dates were available for more nests than was clutch initiation 

date and they are collinear; incubation periods are extremely consistent in this species (15 days 

starting from the laying of the penultimate egg; Hill 1999). Offspring sex was included because 

previous studies have found it important in explaining offspring survival (Sardell et al. 2011). 

Additionally sex explained some variation in adult survival in purple martins (Stutchbury et al. 

2009a). Parentage was included to address the core predictions of this study. The proportion of 

extra-pair offspring (PropEPO) was also included in some models since it may reflect the social 

mother’s assessment of the social father and thus have impacts on her egg allocation and 

parental care. 

A priori models were ranked and compared using ΔAICc and AICc weights (wi) to 

compare models (Akaike 1973, Lebreton et al. 1992, Burnham and Anderson 2002). I used ΔAICc 

to estimate the relative difference between the top-ranked model and each other model, and 

wi (normalized to sum to 1) to assess a model’s relative probability of being the best among the 

set of candidates. The model with the lowest AICc (and highest wi) is the model that best 

explains the data. Models with ΔAICc ≤ 2 were considered equally supported. Maximum-

likelihood estimates of apparent survival (φ) and encounter probabilities (p) were calculated for 

models with high AICc weighting.  

 

Statistical Analysis of Reproductive Success of Recruited Offspring of Known Parentage 

To explore factors influencing variation in four different parameters of reproductive 

success of recruited offspring of known parentage (clutch initiation date, clutch size, number of 

young fledged and fledging success), I fit general linear models with f1.year, 
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natal.social.father.min.age, natal.social.mother.min.age, natal.parentage, natal.cid and 

natal.fledged as factors using data for all SY-aged f1 recruits (sexes combined) . In addition to 

these factors, the models exploring f1.prop.EPO, f1.eggs, f1.success.rate and f1.cid also included 

f1.mates.min.age because older individuals are known to have higher reproductive success (Lee 

1967, Morton et al 1990, Wagner et al. 1996, Tarof et al. 2012). The model exploring 

f1.prop.EPO included f1.cid since nests initiated earlier in the season have fewer EPO (Morton 

and Derrickson 1990, Wagner et al. 1996, Tarof et al. 2012). 

 Because of the different motivations for each sex, models testing the social and genetic 

mating success of first-year breeders were run on males and females separately. I tested 

models exploring variation in the minimum known ages of f1 mates as a measure of social 

mating success. To test the genetic mating success, models explored the variation in proportion 

of extra-pair offspring in f1 nests and the number of within-pair and extra-pair offspring.  

I used functions in R that use a backwards step procedure (‘‘step’’ function; R 

Development Core Team 2011) to drop individual explanatory variables one by one, refitting 

the model each time, and then used Akaike’s Information Criterion (AIC; Akaike 1973, Burnham 

and Anderson 2002) to measure model fit and complexity to select the optimal model (Zurr et 

al. 2009).  

 

RESULTS 

Patterns of extra-pair paternity 

DNA samples for 2348 individuals comprising 325 complete family sets were collected 

from 2006-2009. Due to severe nestling mortality caused by a weather-related food shortage, 
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the 2009 samples were excluded leaving a total of 297 complete family groups genotyped. Of 

those, 137 broods (46%) contained at least one EPO and 273 of 1235 offspring (22%) were 

extra-pair (Tarof et al. 2012). Among nests with EPO, the proportion of EPO per brood averaged 

0.53 ± 0.03 (Tarof et al. 2012). Overall extra-pair paternity rates in my study population by 

social father age class were 16.7% of nestlings for ASY males and 33.4% for SY males (Tarof et 

al. 2012), and is consistent with a population of purple martins in Maryland (4% for ASY and 

57% for SY males; Wagner et al. 1996).  

 

Annual Survival of EP versus WP Young 

Survival analyses were done on 363 known-sex young from mixed broods (i.e., broods 

with at least one EPO and one WPO). Resighting probability was modeled with a time effect and 

accounted for the sex of the offspring. Search effort varied across years and females are more 

difficult to resight than males because they spend more time inside the nesting cavity. Based on 

the starting model, phi(AgeClass) p(Sex+t) (see Table 4), resighting probability ranged from 

0.36±0.03 for females and 0.72±0.13 for males (Figure 2). Resighting probability declined over 

time for both sexes (Figure 2). 

Extra-pair offspring did not survive better than within-pair offspring (Table 5). This can 

be seen by comparing models that are identical except for the inclusion of parentage (e.g., 

models 1 and 3; 10 and 12). If parentage (WP vs EP) of an individual predicts subsequent 

survival, then models that include parentage should have a higher ΔAICc. However, the models 

with parentage had slightly lower AICc weighting and did not differ meaningfully in ΔAICc scores 

(i.e., ΔAICc differed by less than 2) than models without parentage. Based on the third best-
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fitting model that included parentage, p(AgeClass+MomMinAge+DadMinAge+Sex+Parentage) 

phi(Sex+t), parentage status did not affect apparent survival estimates, even when controlling 

for the age and sex of offspring (Figure 3). Apparent survival probability in the first year of life 

was not higher for young that were the result of extra-pair fertilizations (WP = 0.22 ± 0.041 SE, 

EP = 0.17 ± 0.040 SE). This was also true for both males (WP = 0.38 ± 0.061 SE, EP = 0.31 ± 0.064 

SE) and females (WP= 0.13 ± 0.039 SE, EP=0.10 ± 0.033 SE). Apparent survival probability was 

far higher in the second year of life for both sexes but EPO did not differ from WPO. Note that 

the variance of these second year estimates is higher owing to the fact that sample sizes 

decrease over time due to mortality within cohorts. 

Models that include offspring sex explained the re-sighting data far better than the 

same models without that variable (Table 5). Models 1 and 5 differ only by the inclusion of 

offspring sex yet model 1 fits over 100 times better than model 5. Model 7 fits the data 43 

times better than model 10. Based on the best-fitting model, males had a higher apparent 

survival probability in their first year than females (females: 0.12±0.03; males: 0.35±0.05; Figure 

3).  

Survival of young could also be influenced by maternal effects, in that young raised by 

first-time breeders may be disadvantaged compared to those produced by older females and 

raised by experienced parents. Models without MomMinAge had no support (i.e., AICc Weights 

> 0.001; Table 5). For the first year of life, the apparent survival probability for offspring with 

one year-old mothers was estimated at 0.09±0.03 while the offspring of six year-old mothers 

was 0.86±0.10 (Figure 4A). This pattern persists in the second year of life however small sample 

sizes yielded very large 95% confidence intervals (Figure 4B). This maternal effect suggests that 
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one year-old (SY) birds should prioritize survival over reproduction and may explain why SY 

martins arrive in spring 4-6 weeks after ASY birds (Allen and Nice 1952, Morton and Derrickson 

1990).  

The minimum known age of the social father also appears to improve model fit but only 

when modeled with mother’s minimum age. Model fit was improved with DadMinAge by a 

factor of 8.9 (models 1 and 4) and a factor of 3.2 (models 5 and 6). Comparing models 7 and 8, 

which do not include MomMinAge, the model with DadMinAge has a lower weighting but the 

ΔAICc values indicate the models are not meaningfully different. In contrast with mother age, 

the age of the social father has an inverse relationship; apparent survival decreased with father 

age (Figure 4C-D).  

The variables hatch date and brood size had very poor explanative power for survival 

probability. Both hatch date and brood size lowered model fit slightly but the models did not 

differ meaningfully from the starting model (Table 5).  

 

Reproductive Success of EP vs WP Young as First-year Breeders  

Nesting success was determined for 79 nests belonging to known-parentage offspring 

that returned to the study area to breed (f1 birds), from 2007-2009. Over all years, 40 of these 

79 nests belonging to f1 parents were fully sampled to assess rates of extra-pair paternity 

among their own offspring (i.e., f2 offspring). Most (65 of 79; 88%) recruits were first discovered 

breeding as one-year olds with 39 of these nests belonged to f1 males and 26 to f1 females 

(Table 6). Due to limited sample sizes (n =14), f1s that were first found nesting at 2 years of age 

or older were omitted from subsequent analyses. Furthermore, 11 birds (8 males and 3 
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females) had their nests sampled in two different years with one male sampled in a third year 

but these ASY nests were removed to avoid pseudoreplication; 

The prediction that females benefit from extra-pair fertilizations by producing offspring 

that have higher reproductive success was tested using general linear models first on all SY 

birds (sexes combined). I tested four measures of f1 reproductive success: clutch initiation date, 

clutch size, the number of young fledged and fledging success (defined as the number of young 

fledged divided by the clutch size). To address the predictions of female benefits, the models 

included natal parentage (EPO vs WPO) and proportion of extra-pair young in the natal nest as 

predictor variables. Additional variables included f1 sex, natal clutch initiation date, year, the 

minimum ages of the social parents and the f1 mate’s minimum age.  

An indirect measure of reproductive success is timing of nesting, since this in turn 

affects key measures of nesting success (Price et al. 1988), rates of extra-pair paternity (Morton 

and Derrickson 1990) and offspring survival (Tarof et al. 2011). The best fitting model exploring 

variation in f1 clutch initiation dates was significant (Table 7A; r2
Adjusted = 0.248, F5,51 = 4.694, p = 

0.001). Natal Parentage was included in the best fit model but was not significant (Figure 5A; t = 

1.17, p = 0.25). A strong year effect is present with clutch initiations becoming later over time 

(model estimate = 3.1934 ± 0.9036, t = 3.534, p = 0.0009).  

The best fit model for f1 clutch sizes explained 34% of the variation in clutch size and 

was significant (Table 7B). There was a strong year effect for clutch size and later clutch 

initiation date was associated with smaller clutch size, as expected. Natal parentage was not an 

important predictor (Figure 5B). Mothers with a higher proportion of extra-pair offspring 

produced offspring that, when recruited as breeders, had fewer (not more) eggs in their own 
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nests than the recruits whose mothers had a lower proportion of extra-pair offspring (Table 7B; 

estimate = -0.099 ± 0.036, t = -2.730, p = 0.009).  

Total number of young fledged by f1 parents was well explained by the best fitting 

model (Table 7C; r2
Adjusted = 0.4069, F7,49 = 6.489, p < 0.0001) with the number of eggs not 

surprisingly explaining most of the variation in the number of young fledged (t = 5.56, p < 

0.0001). Natal parentage of f1s was included in the best-fit model but was not significant (Figure 

5C; t = 1.241, p = 0.22). 

Variation in overall fledging success (the number of fledged young divided by the 

number eggs laid) in f1 nests was not well explained by the models (Table 7D; r2
Adjusted = 0.051, 

F5,51 = 1.598, p = 0.18). The best fit model included natal parentage but this was not significant 

(Figure 5D). Year was a significant predictor (t = -2.201, p = 0.032) and in 2009, a weather-

related food shortage that caused high nestling mortality (Figure 6).  

 

Social Mating Success of EP vs WP Young as First-year Breeders 

One measure of mating success of f1 birds is the age of their social mate, because this 

species shows a strong pattern of assortative mating by age class (Wagner et al. 1996, Tarof et 

al. 2012), older birds have more eggs in their nests (Allen and Nice 1952, Lee 1967, Finlay 1971, 

Brown 1978a, Eads 2001, Tarof et al. 2012) and older birds initiate nests earlier in the season 

(Morton and Derrickson 1990, Tarof et al. 2012). If a younger male is able to attract an older 

female, he stands to fledge more offspring than if he had attracted a younger mate. The same 

applies to females. 
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Models assessing the ages of f1 mates were run on males and females separately as I 

expected the factors relating to mate acquisition would be different for each sex (Table 8). 

Predictor variables included natal parentage and proportion of extra-pair offspring in f1’s natal 

nests to assess potential benefits to the mothers of f1 breeders. Additional variables included 

year of f1 nesting attempt, the parents’ minimum ages, natal hatch date and natal brood size. 

For male f1s, the best fitting model included year of nesting attempt, mother min age and natal 

hatch date (r2
Adjusted = 0.307, F4,24 = 4.101, p = 0.011). F1 males that had had older mothers were 

more likely to themselves pair with an older female in their first year of breeding. The model 

failed to explain the variation in f1 mate’s age for females (r2
Adjusted = 0.1964, F3,14 = 2.385, p = 

0.11). However, the top fitting models for both sexes did not include natal parentage indicating 

that EP young are not more likely to attract older mates when they begin breeding. Similarly, 

the proportion of extra-pair young in an f1’s natal nest did not explain variation in f1 mate’s ages 

the following year.  

 

Genetic Mating Success of EP vs WP Young as First-year Breeders 

Females who engage in extra-pair copulations may derive a fitness benefit if their male 

extra-pair offspring in turn sire more of the offspring in their nests (i.e., are cuckolded less) 

when they breed for the first time. For both f1 males and f1 females, the best fit models were 

significant (Table 9; male: r2
Adjusted = 0.4601, F3,17 = 6.682, p = 0.004; female: r2

Adjusted = 0.5593, 

F5,7 = 4.045, p = 0.048). Natal parentage was not included in the best fit model for males and 

was not significant for females (t = 1.686, p = 0.14). No difference was found between within-

pair and extra-pair f1s in the proportion of extra-pair offspring in their own nests (Figure 7; t-
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test: t = -1.253, df = 12.739, p = 0.23). For males, the clutch initiation dates of the f1 nesting 

attempt and the f1’s mother’s minimum age best explained the variation in proportion of young 

that are extra-pair (Table 9). For female f1s, natal clutch initiation dates, the number fledged 

from the f1’s natal nest and the f1’s own clutch initiation dates best explained proportion extra-

pair (Table 9). F1s that nested later in the season had proportionately fewer EPO than earlier-

nesting f1s (Figure 8; model estimate -0.04318 ± 0.01099 SE, t = -3.929, p = 0.0005). 

Models exploring variation in the number of within-pair and extra-pair offspring in f1 

nests were run on males and females separately as each sex has different motivations for extra-

pair mating. All models included natal parentage of f1s and the proportion of extra-pair 

offspring in the f1’s natal nest to test for potential benefits extra-mating behavior for the f0 

mothers. Additional variables included year, f1 mates’ minimum known age, clutch initiation 

date, the minimum known ages of f0 parents and the clutch initiation date and the number 

fledged from the f1’s natal nest. Neither of the models for within-pair young and extra-pair 

young for male f1s were significant. However, both of the models were highly significant for the 

females with most of the included variables also significant. For SY-Females, the proportion of 

extra-pair young in the natal nest was significant within both models and the estimates suggest 

that a heritability of pursuit of extra-pair mating behavior (Table 10; WPO: estimate = ‐4.724 ± 

1.312 SE, t = ‐3.60, p = 0.011; EPO: estimate = 3.8147 ± 0.713 SE, t = 5.347, p = 0.006). This 

relationship was not strong for females (Figure 9; r2
adjusted = 0.1334, F1,12 = 3.001, p = 0.11). For 

both sexes, natal parentage was not included in either of the best fitting models.  

 

  



26 

DISCUSSION 

This is the first study to assess fitness benefits of extra-pair mating to females in a long-

distance Neotropical migratory songbird. Contrary to the predictions of genetics benefits 

hypotheses (i.e., the good genes hypothesis and heterozygosity theory), female purple martins 

do not appear to be benefitting from extra-pair mating through the improved survival or 

reproductive success of their extra-pair offspring. Only five other studies, all on resident 

species, have tested for differences in annual survival or recruitment rates between EPO and 

WPO and none found significant differences (see Sardell et al. 2011, Gerlach et al. 2012). With 

relatively high rates of extra-pair paternity in long-distance migrants, and the greater survival 

challenges for their offspring, one would expect that fitness benefits would be more evident for 

migrants than for residents. However, my survival analysis showed no differences in offspring 

annual survival between within and extra-pair offspring among mixed-broods, even though 

mortality rates for this species are highest during the first year of life (Tarof et al. 2011). Davidar 

and Morton (1993) argued that purple martins are under intense selection from 

haemosporidian infections during their first year. Benefits from both good genes and 

heterozygosity could equip offspring to better survive in face of disease. However, the similar 

survival probabilities for EPO and WPO, even when controlling for sex and using only mixed 

broods, provides a strong test that found no support for either hypothesis. Gerlach et al. (2012) 

found that dark-eyed juncos (Junco hyemalis) that were EP lived longer than WP individuals. 

Extra-pair offspring in purple martins may have longer lifespans than within-pair offspring (i.e., 

enjoy higher survival as adults), but this was not the case for survival from one-year-old to two-

years old (Figure 3A). To obtain statistical power to test for differences in survival among the 
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older age classes (two years of age and older), using only mixed broods, would require a 

unrealistically large starting sample of nestlings that had been sampled for paternity and 

happened to come from mixed broods. Cohort attrition due to annual mortality means that 

only a small proportion of birds survive from their natal year to at least two years of age (e.g., 

Table 1B). 

Dark-eyed juncos (Junco hyemalis), who are short distance migrants or even residents, 

also show higher lifetime reproductive success for EP than WP individuals (Gerlach et al. 2012). 

For migratory species, it is a particular challenge to find the nests of birds that have recruited to 

their natal region. In this study I sampled about 1,200 nestlings but from these “only” 65 were 

located as one-year-old breeders throughout the study area. Nevertheless this provides the first 

study to examine the reproductive fitness of EPO vs WPO in a long-distance migrant species. 

Among the offspring of known parentage that returned to breed themselves (f1 birds), there 

were no differences between EPO and WPO birds in various reproductive success, social mating 

success or genetic mating success parameters. The predictors of first-year reproductive success 

were more closely related to environmental variables (year, clutch initiation date). As aerial 

insectivores, purple martins are highly sensitive to local temperature and rainfall which 

influences both timing of breeding and nestling survival through food availability. Thus the 

parentage (EPO vs WPO) of a bird has little influence on its future reproductive success. For 

instance, in one year of this study (2009) there was 90% nestling mortality due to a period of 

high rainfall in early July. This suggests that evolutionary benefits of extra-pair mating to 

females are not derived through improved reproductive output of extra-pair offspring. 
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In the absence of clear genetic-based benefits of extra-pair mating in this species, it 

stands to reason that female purple martins are either deriving fitness benefits in more subtle 

ways than those tested here or they do not benefit from extra-pair mating at all (i.e., EPC is 

male-driven). Extra-pair mating has clear fitness benefits for males successful in obtaining them 

(Griffith et al. 2002). Forced extra-pair copulations are well documented in this species (Brown 

1978b, Morton 1987, Morton et al. 1990), but Wagner et al. (1996) argued that females solicit 

extra-pair copulations based on observations of mate guarding by males. It is notable that 

female-solicited and within-pair copulations are rarely observed in purple martins, unlike many 

other songbirds. Pairs do not copulate inside, or near, their nest cavity (Tarof et al. 2012, JR Hill 

unpublished data) and so it is presumed that copulations take place while airborne, perhaps 

during or immediately after so-called sexual chases (Brown 1978b, Wagner et al. 1996, ES 

Morton, personal communication). The only copulations that are readily observable are when 

females land on the ground to gather nest material; in this instance females can be forcibly 

mounted by males other than their mate (Brown 1978b, Morton et al. 1990). Whether or not 

this also occurs while airborne, females may have less choice as to whether their offspring are 

sired by their social mate or some other male. If extra-pair copulations are forced onto females, 

there are likely costs to the female relating to evasion of forced copulations such as the risk of 

injury while struggling to break free. Females may therefore accept EPCs to avoid paying these 

costs (Morton et al. 1990) especially since there appear to be no fitness costs to young (this 

study). Or, females may be unable to prevent EPCs from occurring in the first place if evasion 

tactics are ineffective. The lack of female benefits shown here suggests a male-driven system in 
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this species with no apparent benefits to females in terms of the survival or reproductive 

success of offspring.  

Female purple martins may benefit in other ways and alternate hypotheses should be 

considered. Females may pursue extra-pair copulations for fertility insurance (Sheldon 1994). 

However, only 26 of 313 nests (8.3%) had 100% EPO so the frequency of complete infertility in 

social males must be less than this. Another question is whether females who produce EPO bias 

the sex ratio of their nestlings toward males. Sex ratios appear to be slightly biased toward 

female (483:558) however this ratio did not differ between EPO and WPO (The sex ratio among 

EPO was 106:147 and among WPO was 377:411; χ2
4, 1041 = 2.7219, p = 0.099). There is no 

evidence that females are controlling the sex ratio in the context of extra-pair mating. 

Females may also be bet hedging (Yasui 1998, Kempanaers and Schlicht 2010) which can 

be adaptive in unpredictable environments. Mixed broods should offspring of varying genetic 

quality whereas broods sired by one male will have minimal variation in genetic quality 

(Kempanaers and Schlicht 2010). This mating strategy would be beneficial if females were 

unable to assess the genetic composition of potential mates. Extra-pair mating should enhance 

the genetic variation in populations that express this behavior and leave them better able to 

adapt to environmental changes (e.g., global climate change).  

The genetic benefits of extra-pair mating may be context-dependent (Schmoll et al. 

2011) and thus detectable only through long term (> 10 year) studies. Benefits may only be 

realized under specific environmental situations such as increased selection pressure from 

inclement weather, disease outbreaks or increased competition for mates. Obligate aerial 

insectivores such as the purple martin may face starvation during prolonged rainy periods in 
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the breeding season lasting longer than three to five days (Allen and Nice 1952). Genetic 

benefits of extra-pair mating may only be apparent during times of physiological stress. For 

aerial insectivores the environmental influence on reproductive success appears to be far 

stronger than the genetic (this study) such that EPO offspring are not more likely to have higher 

reproductive success. 

Benefits of extra-pair paternity to offspring survival may also be context-dependent. 

When it comes to survival, it is thought that most annual mortality of migrants occurs during 

the trip to, and from, the wintering grounds (Sillett and Holmes 2002). Juvenile survival of 

purple martins from fledging to migration departure is high (ϕr = 0.87) with 81% of first year 

mortality occurring after the onset of fall migration (Tarof et al. 2011). Migration tracking of 

adult purple martins has revealed extensive detail on migration routes and timing and has 

identified the highly forested regions of northwestern Brazil as the core over-wintering region 

for this subspecies (Stutchbury et al. 2009b, Fraser et al. 2012a, 2012b, 2013), a region where 

forest cover has remained stable for centuries. However, limitations in tracking technology do 

not yet allow one to detect mortality during migration, where this occurs, or what 

environmental factors might influence migration-related mortality. There is high annual 

variation in both juvenile and adult survival but it is not known what drives this, or if extra-pair 

paternity could influence survival in difficult years. Another alternative is that EPO may no 

longer have survival advantages on migration due recent ecological changes along the route 

that influence survival. For example, anthropogenic habitat loss in Yucatan Peninsula, a known 

key stopover area for this species, is extensive (Fraser et al. 2013). There are no field studies on 
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purple martin body condition or survival in disturbed versus undisturbed tropical regions and 

our understanding of the non-breeding ecology of this species is very limited.  

Another possibility is that semi-domestication on the breeding grounds may have 

removed the species from the natural selection context in which extra-pair mating behavior 

evolved making it difficult to detect fitness benefits to females even if they once existed. Birds 

may be genetically constrained to express extra-pair mating behavior even if this behavior is no 

longer beneficial (Forstmeier et al. 2014). Purple martins east of the Rocky Mountains nest 

exclusively in man-made housing and have done so for at least a century (Allen and Nice 1952, 

Stutchbury 1991). Purple martin nests are managed extensively often with ectoparasites and 

predators controlled or deterred. As recently as 300 years ago, the environmental 

circumstances on the breeding grounds were much different for purple martins, notably the 

vast primary, deciduous forests and no competition for cavities from invasive house sparrows 

(Passer domesticus) and European starlings (Sturnus vulgaris). Before humans provided nesting 

sites for purple martins, they were limited to natural cavities (i.e., abandoned woodpecker 

cavities or rock crevices) which would have been 1) far less numerous than martins enjoy today 

and 2) far more dispersed compared to modern purple martin housing. Western populations of 

purple martins that still nest in natural cavities form loosely aggregated exploded colonies and 

martins were not observed nesting closer than 100 meters apart (Stutchbury 1991). Of most 

importance, the great concentrations of nesting cavities found in modern martin colonies far 

exceeds what would have been available their evolutionary past (Morton et al. 1990) and likely 

alters competition for mates and nest sites. Based on records dating back to the 1880’s through 

today, martins appear to be arriving progressively earlier (Rohwer and Niles 1979, Zelt et al. 
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2012; Arab and Courter 2014), possibly in response to climate change (Zelt et al. 2012).  It is 

possible that selection pressures promoting extra-pair mating by females are now either 

relaxed or totally absent. Future work on benefits of extra-pair mating for female purple 

martins should sample western subspecies, especially those still nesting in natural contexts 

(e.g., P.s. hesperia and P. s. arboricola). Severe anthropogenic impacts have been in place for 

decades, to the extent that humans may now be the world’s greatest evolutionary force 

(Palumbi 2001). This may explain why so many other studies on female benefits of extra-pair 

mating have also failed to show any benefit (Dunn et al. 2009, Sardell et al. 2011).  
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TABLES AND FIGURES 

 

Table 1: Count data by cohort and year of resightings for all resightings of A) all nestlings of 

known parentage from years 2006-2008 and B) all nestlings of known sex from mixed broods 

only. Initial sample sizes for each cohort are indicated by an asterisk.  

 

A) All offspring of known parentage: 

 Year of observation 

2006 2007 2008 2009 2010 2011 2012 2013 

C
o

h
o

rt
 

2006 268* 41 17 9 4 0 0 0 

2007 - 711* 78 33 30 9 0 0 

2008 - - 256* 26 11 3 1 0 

 

B) Only offspring from mixed-broods and with known parentage and sex. 

 Year of observation 

2006 2007 2008 2009 2010 2011 2012 2013 

C
o

h
o

rt
 

2006 85* 16 10 7 4 0 0 0 

2007 - 226* 29 9 10 2 0 0 

2008 - - 52* 6 2 2 0 0 
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Table 2: Sample sizes of social parents showing both known age birds (actual age is known 

because bird was first sampled as a nestling or one-year-old breeder) and additional minimum 

aged birds (age at first banding unknown). 

 

 
Males Females 

Age Known Minimum Known Minimum 

1 100 n/a 82 n/a 

2 48 99 28 140 

3 7 3 1 9 

4 11 1 6 1 

5 2 0 1 0 

6 2 2 4 1 

7 1 0 1 0 

8 2 0 0 0 

9 1 0 3 0 
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Table 3: Characterization of the four microsatellite loci used in parentage analysis. This analysis 

was done with CERVUS 3.0.3. using data from 2007. k=number of alleles, N=number of 

genotyped individuals, HObs=observed heterozygosity, HExp=expected heterozygosity, 

PIC=polymorphic information content, NE=non-exclusion probability given the genotypes of the 

nestling and the mother, HW=Hardy-Weinberg equilibrium test, ƒnull=null allele frequency 

estimate. Combined exclusion probability (PE) with both social parents known was 99.998%. 

This characterization of microsatellite loci is based on the 2007 cohort of offspring. For the 

Hardy-Wienberg equilibrium tests, “ND” indicates that the test was unable to be performed by 

CERVUS.  

 

Locus k N HObs HExp PIC NE HW ƒNull 

PUMA19 13 1187 0.58 0.86 0.844 0.28 ND 0.1991 

PUMA49 5 1187 0.278 0.377 0.343 0.805 ND 0.1416 

PUMA98 26 1197 0.846 0.88 0.87 0.234 *** 0.0178 

PUMA74 152 1131 0.94 0.979 0.978 0.044 ND 0.0202 
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Table 4: Determing the best-fit basic model from which to build covariate models. The basic 

model used in subsequent analysis was Phi(AgeClass) p(Sex+t), Model #1. 

 

Rank Model AICc 
Delta 

AICc 

AICc 

Weights 

Model 

Likelihood 

Num. 

Par 
Deviance 

1 Phi(AgeClass) p(Sex+t) 580.697  0.000  0.502  1.000  9  562.294  

2 Phi(AgeClass+t) p(AgeClass+Sex) 581.847  1.149  0.282  0.563  7  567.597  

3 Phi(AgeClass+t) p(AgeClass*Sex) 583.919  3.222  0.100  0.200  8  567.597  

4 Phi(AgeClass) p(AgeClass+Sex+t) 584.651  3.954  0.069  0.139  11  562.057  

5 Phi(AgeClass) p(Sex*t) 586.998  6.301  0.021  0.043  12  562.294  

6 Phi(AgeClass+t) p(Sex+t) 588.508  7.811  0.010  0.020  13  561.685  

7 Phi(AgeClass) p(AgeClass+Sex*t) 589.774  9.077  0.005  0.011  14  560.822  

8 Phi(AgeClass*t) p(Sex+t) 590.547  9.849  0.004  0.007  14  561.594  

9 Phi(AgeClass) p(t) 590.600  9.903  0.004  0.007  8  574.278  

10 Phi(AgeClass) p(AgeClass) 592.101  11.403  0.002  0.003  6  579.913  

11 Phi(AgeClass) p(AgeClass+t) 595.208  14.510  0.000  0.001  10  574.713  

12 Phi(t) p(t) 597.197  16.500  0.000  0.000  20  555.266  

13 Phi(AgeClass+t) p(AgeClass) 597.938  17.241  0.000  0.000  10  577.444  

14 Phi(AgeClass*t) p(t) 598.441  17.744  0.000  0.000  12  573.737  

15 Phi(AgeClass) p(AgeClass*t) 598.654  17.957  0.000  0.000  13  571.831  
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Table 5: Model rankings from Program MARK. The starting model Phi(offspringAge) 

p(offspringAge+t) is shaded (model #10). All models have the same terms for resighting 

probability: p(offspringSex+t). Explainations variables included in models: MomMinAge and 

DadMinAge are the social parents’ minimum known ages; Sex is the sex of the offspring; 

Parentage is the parentage category of the offspring: extra-pair or within-pair; HatchDate is the 

date that each offspring hatched; Fledged is the total number of young fledged from the nest of 

each offspring; PropEPO is the proportion of extra-pair in each offspring’s nest. 

 

Rank 
Model 

All models include p(sex+t) 
AICc 

Delta 

AICc 

AICc 

Weights 

Model 

Likelihood 

Num. 

Par 
Deviance 

1 
Phi(AgeClass+MomMinAge+ 

DadMinAge+Sex) 
552.674  0.000  0.398  1.000  12  527.970  

2 
Phi(AgeClass+MomMinAge+ 

DadMinAge+Sex+PropEPO) 
553.274  0.600  0.295  0.741  13  526.450  

3 
Phi(AgeClass+MomMinAge+ 

DadMinAge+Sex+Parentage) 
553.538  0.860  0.258  0.649  13  526.715  

4 Phi(AgeClass+MomMinAge+Sex) 557.049  4.370  0.045  0.112  11  534.454  

5 
Phi(AgeClass+MomMinAge+ 

DadMinAge) 
562.207  9.530  0.003  0.009  11  539.613  

6 Phi(AgeClass+MomMinAge) 564.499  11.820  0.001  0.003  10  544.004  

7 Phi(AgeClass+Sex) 572.492  19.820  0.000  0.000  10  551.997  

8 Phi(AgeClass+DadMinAge+Sex) 574.591  21.920  0.000  0.000  11  551.997  

9 Phi(AgeClass+PropEPO) 578.057  25.380  0.000  0.000  10  557.563  

10 Phi(AgeClass) 580.697  28.020  0.000  0.000  9  562.294  
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11 Phi(AgeClass+Fledged) 581.689  29.010  0.000  0.000  10  561.194  

12 Phi(AgeClass+Parentage) 582.175  29.500  0.000  0.000  10  561.681  

13 Phi(AgeClass+HatchDate) 582.702  30.030  0.000  0.000  10  562.208  

14 Phi(AgeClass+DadMinAge) 582.743  30.070  0.000  0.000  10  562.249  
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Table 6: Sample sizes of all second-year f1s of known parentage that recruited into the breeding 

population and whose nesting location was known. Sample sizes show breeding attempts for 

which their mates and the offspring (f2) were also sampled for parentage analysis. Samples sizes 

given in parentheses are all f1 nests for which nesting data are available, regardless of whether 

the family was sampled for genetic parentage testing. Year is the year in which f1s recruited as 

breeders (i.e., one year after their natal year). 

 

  
2007 2008 2009 Overall 

EPO WPO EPO WPO EPO WPO EPO WPO 

SY-M 3 (3) 7 (9) 2 (5) 6 (17) 0 (0) 2 (5) 5 (8) 15 (31) 

SY-F 3 (3) 3 (4) 1 (3) 7 (15) 0 (0) 0 (1) 4 (6) 10 (20) 

All SY 6 (6) 10 (13) 3 (8) 13 (32) 0 (0) 2 (6) 9 (14) 25 (51) 
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Table 7: Linear model results exploring variation of four reproductive success parameters 

among all f1 birds that recruited into the breeding population as 1 year olds (sexes combined): 

A) clutch initiation date (CID), B) clutch sizes, C) the total young fledged and D) fledging success. 

A) clutch initiation dates (r2
Adjusted = 0.248, F5,51 = 4.694, p = 0.0013): 

  Estimate Std. Error t value Pr(>|t|) 
(Intercept)  -6371.9937  1814.3806  -3.512  0.000941 *** 
natal.parentage 1.3353 1.1412 1.170 0.247418 
f1.sex 1.7375 0.9880 1.759 0.084644 . 
f1.year 3.1934 0.9036 3.534 0.000880 *** 
f1.mates.min.age -0.7937 0.8426 -0.942 0.350633 
natal.social.mother.min.age -0.6254 0.3863 -1.619 0.111636 
 

B) clutch sizes (r2
Adjusted = 0.3412, F5,52 = 6.904, p = 0.0001): 

  Estimate Std. Error t value Pr(>|t|) 
(Intercept) -1.336e+03 5.000e+02 -2.672 0.01005 * 
f1.year 6.696e-01  2.493e-01 2.686 0.00969 ** 
f1.cid -1.178e-01  3.368e-02 -3.498 0.00097 *** 
f1.mates.min.age 1.998e-01 2.111e-01 0.946 0.34832 
natal.social.mother.min.age 1.646e-01  9.701e-02 1.697 0.09561 . 
natal.prop.EPO -9.927e-01 3.636e-01 -2.730 0.00863 ** 
 

C) Number fledged (r2
Adjusted = 0.4069, F7,49 = 6.489, p = 0.00002): 

 Estimate Std. Error t value Pr(>|t|) 
(Intercept) 950.8359 540.4390 1.759 0.0848 . 
f1.sex -0.4180 0.3094 -1.351 0.1830 
f1.eggs 0.8143 0.1464 5.560 1.1e-06 *** 
f1.year -0.4735 0.2693 -1.758 0.0850 . 
f1.mates.min.age 0.2450 0.2560 0.957 0.3432 
natal.parentage 0.4821 0.3884 1.241 0.2204 
natal.fledged 0.5881 0.2390 2.461 0.0174 * 
natal.success.rate -3.7536 1.5112 -2.484 0.0165 * 
 

D) Fledging success (r2
Adjusted = 0.05069, F5,51 = 1.598, p = 0.1775): 

  Estimate Std. Error t value Pr(>|t|) 
(Intercept) 327.063797 148.222216 2.207 0.0319 * 
natal.parentage 0.078199 0.091506 0.855 0.3968 
f1.year -0.162407 0.073800 -2.201 0.0323 * 
f1.mates.min.age 0.102836 0.068619 1.499 0.1401 
natal.social.mother.min.age -0.039666 0.031739 -1.250 0.2171 
natal.cid -0.010285 0.005566 -1.848 0.0704 . 
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Table 8: Results from linear models exploring variation in the minimum age of the mates of f1 

birds that recruited as 1-year olds, which is an indicator of social pairing success. The model was 

run independently on each sex. 

 
Males only (r2

Adjusted = 0.307, F4,24 = 4.101, p = 0.0113): 
  Estimate Std. Error t value Pr(>|t|) 
(Intercept) -1.097e+03 4.289e+02 -2.557 0.0173 * 
f1.year 5.461e-01 2.135e-01 2.557 0.0173 * 
natal.social.father.min.age -1.499e-01 8.139e-02 -1.841 0.0780 . 
natal.social.mother.min.age 2.209e-01 8.143e-02 2.713 0.0121 * 
natal.hd 3.192e-02 1.414e-02 2.258 0.0333 * 

 
Females only (r2

Adjusted = 0.1964, F3,14 = 2.385, p = 0.113): 
  Estimate Std. Error t value Pr(>|t|) 
(Intercept) -1.977e+03 9.453e+02 -2.091 0.0552 . 
f1.year 9.847e-01 4.703e-01 2.094 0.0550 . 
natal.hd 5.623e-02 3.003e-02 1.873 0.0821 . 
natal.fledged -3.845e-01 1.941e-01 -1.981 0.0676 . 
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Table 9: Results from general linear models exploring variation in the proportion of extra-pair 

offspring in f1 nests for males and females that recruited as one-year olds. Proportion of EPO is 

defined as the number of EPO divided by total number of offspring. 

 
Males only (r2

Adjusted = 0.4601, F3,17 = 6.682, p = 0.0035): 
  Estimate Std. Error t value Pr(>|t|) 
(Intercept) 1.12218 0.65418 1.715 0.1044 
f1.cid -0.03270 0.01466 -2.230 0.0395 * 
natal.social.mother.min.age 0.09349 0.04402 2.124 0.0486 * 
natal.fledged 0.08396 0.05343 1.571 0.1345 

 
Females only (r2

Adjusted = 0.5593, F5,7 = 4.045, p = 0.0479): 
  Estimate Std. Error t value Pr(>|t|) 
(Intercept) 6.39701 1.72543 3.707 0.00758 ** 
natal.parentage 0.29677 0.17601 1.686 0.13564 
f1.cid -0.06675 0.01908 -3.499 0.01001 * 
natal.social.father.min.age -0.33543 0.14509 -2.312 0.05404 . 
natal.cid -0.05134 0.01960 -2.620 0.03442 * 
natal.fledged -0.33587 0.12160 -2.762 0.02801 * 
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Table 10: Results from general linear models on males and females exploring variation in total 

number of EPO in f1 nests and the total number of WPO in f1 nests. 

 
A) WPO: Males only (r2

Adjusted = 0.3492, F6,14 = 2.788, p = 0.0534): 
 Estimate Std. Error t value Pr(>|t|) 
(Intercept) 4.12665 3.06121 1.348 0.1991 
f1.mates.min.age 0.61597 0.42823 1.438 0.1723 
f1.cid 0.02840 0.05714 0.497 0.6269 
natal.social.mother.min.age -0.47752 0.18390 -2.597 0.0211 * 
natal.cid -0.05266 0.04573 -1.152 0.2688 
natal.fledged -0.24802 0.22276 -1.113 0.2843 
natal.prop.EPO -1.00864 0.77754 -1.297 0.2155 
 

B) EPO: Males only (r2
Adjusted = 0.1821, F2,18 = 3.227, p = 0.0634): 

 Estimate Std. Error t value Pr(>|t|) 
(Intercept) 5.06193 2.24442 2.255 0.0368 * 
f1.cid -0.12644 0.05524 -2.289 0.0344 * 
natal.fledged 0.33097 0.23249 1.424 0.1717 

 
C) WPO: Females only (r2

Adjusted = 0.8014, F7,6 = 8.494, p = 0.0093): 
 Estimate Std. Error t value Pr(>|t|) 
(Intercept) -6.668e+03 1.471e+03 -4.534 0.00396 ** 
f1.year 3.309e+00 7.309e-01 4.528 0.00398 ** 
natal.social.father.min.age 2.183e+00 6.000e-01 3.639 0.01085 * 
natal.social.mother.min.age 3.463e-01 1.761e-01 1.966 0.09691 . 
natal.parentage 2.286e+00 1.194e+00 1.915 0.10398 
natal.cid 4.418e-01 8.012e-02 5.514 0.00150 ** 
natal.fledged 1.922e+00 4.369e-01 4.400 0.00457 ** 
natal.prop.EPO -4.724e+00 1.312e+00 -3.600 0.01137 * 
 

D) EPO: Females only (r2
Adjusted = 0.9374, F8,4 = 23.47, p = 0.0042): 

 Estimate Std. Error t value Pr(>|t|) 
(Intercept) 2772.79684 894.36882 3.100 0.036211 * 
f1.year -1.36332 0.44501 -3.064 0.037527 * 
f1.mates.min.age -1.50348 0.27481 -5.471 0.005431 ** 
f1.cid -0.19861 0.03567 -5.568 0.005098 ** 
natal.social.father.min.age -1.97995 0.29550 -6.700 0.002582 ** 
natal.parentage -2.07460 0.62987 -3.294 0.030111 * 
natal.cid -0.37150 0.04091 -9.081 0.000815 *** 
natal.fledged -2.23489 0.23542 -9.493 0.000687 *** 
natal.prop.EPO 3.81468 0.71338 5.347 0.005896 ** 
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Figure 1: Known purple martin nesting colonies within the study area that were searched for 

recruited f1 offspring of known parentage. The core research colonies are indicated by open 

circles. 
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Figure 2: Resighting probability, the probability of resighting a bird given that it was alive, by 

sex and year. Estimates are based on the starting model: Phi(AgeClass) p(Sex+t). Error bars 

show 95% confidence interval. 
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Figure 3: Apparent survival probability of offspring by parentage first year of life (Juv) and the 

second year of life (SY) for both sexes (A), males only (B) and females only (C). Estimates are 

based on model 3 in Table 5: Phi(AgeClass+MomMinAge+DadMinAge+Sex+Parentage) p(Sex+t). 

95% confidence interval is shown. 
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Figure 4: Apparent survival probability of offspring by the social parents’ minimum known age 

for the first two years of life: A) by mother’s minimum age for the first year of life, B) by 

mother’s minimum age for the second year of life, C) by father’s minimum age in the first year 

and D) by father’s minimum age in the second year of life. 95% confidence intervals are shown. 

Estimates are based on top-fitting model in Table 5: 

Phi(AgeClass+MomMinAge+DadMinAge+Sex) p(Sex+t).  
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Figure 5: Boxplots exploring determinants of various reproductive success parameters by 

parentage of f1 parents for all SYs combined. Bold line is the median, box shows upper and 

lower quartile, error bars show maximum and minimum values excluding outliers and dots 

indicate outliers. Sample sizes are shown above. A) the clutch initiation dates of f1 nests B) the 

number of eggs in f1 nests, C) the number of young fledged from f1 nests and D) the fledging 

success, defined as the number of young fledged divided by the number eggs laid.  

A B 

C D 
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Figure 6: Overall fledging success, defined as total fledged divided by clutch size, by year for all 

second-year F1s (sexes combined). In 2009, a prolonged rainy period reduced prey availability 

causing extreme mortality of nestlings (>90% for all nests monitored). 
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Figure 7: Boxplots exploring proportion of offspring in f1 nests that are extra-pair (number of 

EPO/total offspring) by the natal parentage status of f1s for A) males and B) females. Bold line is 

the median, box shows upper and lower quartile, error bars show maximum and minimum 

values excluding outliers and dots indicate outliers. 

  

A B 



51 

 

 

Figure 8: Proportion of f2 young that are extra-pair by clutch initiation date of f1 nest. This 

relationship was included in the best fitting model for all three data sets. These data are all SYs 

combined (r2
adjusted = 0.1927, F1,32 = 8.878, p = 0.006). 
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Figure 9: A bivariate plot of the proportion of extra-pair young in f1s’ natal nests and the 

proportion of extra-pair young in f1 nesting attempts. These data are SY-Females only (r2
adjusted = 

0.1334, F1,12 = 3.001, p = 0.11). 
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Effects of known age on male paternity in
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Many avian studies have shown that reproductive performance improves with age, but little is known about how key components
of male fitness, extrapair and within pair paternity, vary across life spans. We tested for age effects on male paternity in purple
martins (Progne subis) using cross-sectional analyses of known-aged males (1–9 years old) and longitudinal analyses of individuals
sampled in 2 successive years. Microsatellite analyses found that 137 of 297 (46%) nests contained extrapair offspring and 273 of
1235 (22%) offspring were extrapair. Using a subsample of unique known-aged males (n ¼ 160), we found significant linear and
nonlinear effects of male age on the number of within pair offspring and, to a lesser extent, on the number of extrapair offspring
sired. Male genetic reproductive success increased with age to 3 years and then leveled off. In longitudinal comparisons of known
age males sampled in successive years (n ¼ 41), within pair offspring increased with age, even for males �2 years old. Paired
comparisons (n ¼ 74) found that extrapair sires were older than the males they cuckolded, and that first-year males were
significantly underrepresented as extrapair sires given the known age distribution in the population. Poor genetic reproductive
performance in younger males is likely constrained through male–male competition during mate guarding and female choice for
older males. Key words: age-related, extrapair paternity, genetic reproductive success, known age, life history strategies, sexual
selection. [Behav Ecol]

INTRODUCTION

Numerous studies on birds have shown that measures of
individual reproductive performance (e.g., laying date,

clutch size, egg volume, number of offspring produced, nest-
ing success) improve with age (Robertson and Rendell 2001;
van de Pol and Verhulst 2006; Brommer et al. 2007). Repro-
ductive performance may also stabilize at mid-age and then
decline in old individuals as a result of senescence (Bouwhuis
et al. 2009; Ricklefs 2010). 3 main hypotheses explain why
reproductive performance increases with age (reviewed in
Forslund and Pärt 1995). 1) The selection hypothesis propo-
ses that progressive mortality of lower quality individuals re-
sults in a population-level, but not individual-level, increase in
performance among the remaining older birds (Perrins and
Moss 1974). 2) The restraint hypothesis suggests that young
birds face life-history trade-offs and withhold reproductive ef-
fort to improve future survival (Hamann and Cooke 1987;
Lessels and Krebs 1989). 3) The constraint hypothesis sug-
gests that young birds perform poorly due to lack of experi-
ence, lower foraging success, and/or lower competitive ability
(Lack 1968).
Where females copulate with multiple partners a ‘‘hidden’’

component of male reproductive performance could include
increased or decreased genetic reproductive success among
older males. High fertilization success in older males could
result from female choice (Morton et al. 1990) if females can
use male age as a proxy for genetic quality (Kokko 1998, but
see Beck and Promislow 2007). Low paternity by young males
as a result of female choice would be a form of constraint on

performance. Age-related mating success could also occur via
constraint if older males are more effective in male–male
competition for females due to experience or larger size
(Johnsen et al. 2003; Wagner et al. 1996). The oldest males
may experience senescence in genetic reproductive success
via reduced sperm competition (Raveh et al. 2010) or decline
in male dominance and social status that limits mate access
(Mainguy et al. 2009; Raveh et al. 2010). Older male feral fowl
(Gallus gallus domesticus) experienced senescence in social
dominance during intense male–male competition and older
males were far less effective in sperm competition and fertil-
ization (Dean et al. 2010). Many birds feature intense male–
male competition for copulations via extrapair paternity in
socially monogamous species (Westneat and Stewart 2003)
but little is known about whether extrapair or within pair
paternity varies with age among older males (Table 1).
Age class effects are common in avian paternity studies, with

first-year males typically siring fewer within pair offspring
(WPO) in their own nest (Griffith et al. 2002) or fewer ex-
trapair offspring (EPO) in other nests compared with older
males (Johnsen et al. 2001). Age class comparisons do not
fully test for age effects in paternity because first-year versus
older males may differ greatly in many other characteristics
(e.g., experience, size, coloration) and one would expect age
effects to continue beyond the second year. Few paternity
studies have tested how components of genetic reproductive
success vary among older males (Table 1) and most include
individuals for whom only minimum age was known which
may obscure subtle age effects. Some studies have found sig-
nificant age effects among older males, but others have not
and none have found that age affects both within pair and
extrapair paternity.
Here, we investigate effects of known age on male paternity

in purple martins (Progne subis), a short-lived migratory pas-
serine for which age class has been previously shown to be
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a powerful predictor of male genetic success (Morton et al.
1990; Wagner et al. 1996). Male age class is readily discernible
in purple martins due to delayed plumage maturation; first-
year males have dull female-like subadult plumage in contrast
to the iridescent steel-blue coloration of older males (Brown
1997). We collaborated with the Purple Martin Conservation
Association who has banded over 14 000 nestlings in north-
western Pennsylvania since 1994 resulting in known age
martins up to 9 years old. Natal recruitment is relatively high
in this region (26%, Tarof et al. 2011). We tested whether
genetic reproductive success increased with age using 1)
a cross-sectional analysis of known age males and 2) a longitu-
dinal analysis of known age individuals sampled in 2 consec-
utive years. We also tested whether known age extrapair sires
were older than the males whom they cuckolded using paired
comparisons, and if first-year males were significantly under-
represented as extrapair sires given the known age distribu-
tion in the population. We demonstrate significant linear and
nonlinear effects of known age on genetic reproductive
success in purple martins.

MATERIALS AND METHODS

Study species and general field methods

Purple martins nest colonially in nest boxes in eastern North
America and migrate to South America in winter (Brown
1997). From May to August 2006–2008, we studied purple
martins at 2 breeding colonies in northwestern Pennsylvania,
USA (42�08#N, 80�18#W) that were 19 km apart. The Edin-
boro colony averaged 60 pairs/year; Troyer colony 160 pairs/
year. We visited colonies several times weekly and, using tele-
scopes, read alphanumeric color bands of returning banded
birds and identified social pairings. Social pairs were con-
firmed from observations of nest defense and nestling feed-
ing. Males and females were assigned to age class (first-year
versus older, i.e., �2 years old) using distinctive plumage char-
acteristics (Brown 1997) and/or band records. Across all
years, more first-year females paired to first-year males (n ¼
48) compared with older males (n ¼ 24), whereas most older
females paired with older males (n ¼ 184) rather than with
first-year males (n ¼ 41).
We checked nest contents approximately every 5 days to de-

termine first egg-laying date and nesting success. In a general-
ized linear model (GLM) involving unique females and taking
year into account, first-year females laid smaller clutches (4.43
6 0.10 eggs) than older females (4.92 6 0.06 eggs) (whole
model: v23 ¼ 25.54, n ¼ 262, P , 0.0001; female age class: v2 ¼

16.92, P , 0.0001; year: v2 ¼ 8.04, P ¼ 0.02). Martins are
single-brooded in our population and females rarely lay
a replacement clutch following early nest failure. Across all
years, older males paired to older females had earlier first egg
dates (31 May, 30.86 6 0.58 days [day 1 ¼ 1 May]) than if
paired to a first-year female (5 June, 34.69 6 1.60 days; F1,208
¼ 5.06, P ¼ 0.03). The same was true for first-year males
(7 June, 38.58 6 0.92 days versus 12 June, 42.11 6 0.85 days;
F1,89 ¼ 8.65, P ¼ 0.004).
In early July, once most eggs hatched, we caught adults at

night using a trap that lowered doors simultaneously over
all cavity entrances of a nest house. We returned before dawn
to extract adults from compartments for banding and blood
sampling. Daytime target trapping captured individuals not
caught at night. We banded adults with a USGS numbered alu-
minum band and color auxiliary band with a unique alphanu-
meric code. We banded 2830 nestlings at 10–20 days old.
Edinboro colony was blood sampled nearly completely in all
3 years of this study. Troyer colony was sampled partially in
2006 and nearly completely in 2007 but was not sampled in
2008 due to restrictions on access. Fieldwork and blood sam-
pling were conducted under approval of the York University
Animal Care Committee.

Known male age

Of all paired birds observed at the 2 breeding colonies, we had
89 first-year males and 71 older males (2–9 years old) of
known age. We also had 137 other paired males for whom
minimum age was known because they were first banded as
an older individual. These males were included in general
paternity patterns and age class comparisons but were ex-
cluded from paternity analyses involving known age birds.

Paternity methods

We used a panel of 4 hypervariable microsatellite-flanking poly-
merase chain reaction (PCR) primer sets (Stanley et al. 2011)
to determine the frequency of extrapair fertilizations and as-
sign parentage to 1235 nestlings based on the social parents of
297 families. Of the offspring sampled, 957 (77.5%) genotyped
at 4 loci, 226 (18.3%) genotyped at 3 loci, 26 (2.1%) genotyped
at 2 loci, and 26 (2.1%) genotyped at 1 locus. Offspring geno-
typed at less than 2 loci were excluded from further analysis.
We only included families with known social parents and for
which both attending parents and their offspring were sam-
pled. In addition to family groups, 12 males were genotyped

Table 1

DNA fingerprinting and microsatellite paternity studies on short-lived socially monogamous passerines that test for age effects among older
males

Species

Age effect among older
males?

Proposed mechanism ReferenceWPO EPO Total

Pied flycatcher Ficedula hypoleuca Yes — — Territory defense Moreno et al. (2010)1

Blue tit Cyanistes caeruleus No — — — Kempenaers et al. (1997)1

Coal tit Periparus ater No Yes No Unknown Schmoll et al. (2007)2

Purple martin Progne subis Yes Yes Yes Mate guarding, female choice This study2

American redstart Setophaga ruticilla Yes — — Male experience Perreault et al. (1997)1

Hooded warbler Wilsonia citrina No No — — Stutchbury et al. (1997)1

Red-winged blackbird Agelaius phoeniceus No Yes No Male experience, female choice Weatherhead and Boag (1995)1

In all cases, significant effects were positive. Variables not tested indicated by ‘—’. Studies are based on minimum or known age birds (superscript
1 or 2, respectively, after reference) and report data for age effects among older males.
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as putative sires of EPO. In 2007, 37 males (14%) were also
sampled in 2006 but only 1 paired with the same female both
years. In 2008, 14 males (25%) were sampled in a previous year
but all paired with different females.
We collected 10–50 ll blood samples from adults and nest-

lings and stored samples at 4 �C in 1 ml of Queen’s lysis buffer
until DNA extraction. Genomic DNA was amplified in 10 ll PCR
reactions under the following conditions: initial denaturation at
94 �C for 3 min; 30 cycles consisting of 1 min at 94 �C, 1 min
annealing (Ta: PUMA 19, 55.8 �C; PUMA 49, 50 �C; PUMA 74,
48.2 �C; PUMA 98, 55 �C), 45 s at 72 �C, followed by a final
extension at 72 �C for 5 min. Each tube contained 5.7 ll water
(PUMA 49, 4.8 ll; PUMA 19, 5.1 ll), 1.0 ll 103 TSG PCR buffer
(Bio Basic, Markham, Canada), 0.8 ll 25 mMMgCl2 (Fermentas,
Burlington, Canada) (PUMA 19 and PUMA 49, 1.2 ll), 0.4 ll
10 mM deoxyribonucleotide triphosphates (PUMA 19, 0.6 lL;
GEHealthcare, Baie d’Urfe, Quebec), 0.2 ll 10 lMfluorescently
labeled Beckman Coulter WellRed forward primer (250 nm,
HPLC purification; Integrated DNA Technologies, Coralville,
Iowa), 0.2 ll 10 lM reverse primer, 0.2 ll 5 U/ll TSG DNA
Polymerase, 1.5 ll undiluted DNA (212.5 6 5.2 ng/ml) (PUMA
49, 2.0 ll; PUMA 74, 1.0 ll), and 0.5 ll 100% dimethyl sulfoxide
(PUMA 74 only; BioShop, Burlington, Canada). Products were
visualized on 1% agarose gels stained with 5 ll 5 mg/ml ethi-
dium bromide (BioShop, Burlington, Canada) to confirm am-
plification. This protocol yielded dye-labeled amplicons for
fragment analysis. Genotyping was conducted on the Beckman
Coulter CEQ 8000. We genotyped individuals in 3-locus pool-
plex reactions containing 1.5 ll PCR product mixture (4.4 ll
PUMA 19, 4.3 ll PUMA 49, 1.3 ll PUMA 98) in 38.5 ll of CEQ
cocktail (38 ll 99.5% deionized formamide [Sigma-Aldrich, St.
Louis, MO] plus 0.5 ll size standard [Beckman Coulter, Missis-
sauga, Canada]). We ran 1.0 ll PUMA 74 PCR product sepa-
rately in 38.5 ll formamide plus 0.5 ll size standard. Genotypes
were scored against a 400-bp size standard (600 bp for PUMA
74) with phosphoramidite dye mobility calibration and the ‘‘cu-
bic’’ algorithm model (‘‘quartic’’ for PUMA 74). Thirty random
adults were genotyped twice at all loci to confirm repeatability;
genotypes were 100% repeatable.
We defined WPO as nestlings that matched the genotypes of

their social parents at all loci genotyped (n ¼ 102 in 2006, n ¼
404 in 2007, n ¼ 219 in 2008) or that mismatched with the
social father at 1 locus and had low probability of resemblance
by chance alone at the other matching loci (Ibarguchi et al.
2004). If mutation rate is high, single-locus mismatches can
grossly overestimate extrapair paternity. Probability of resem-
blance (PRa), the likelihood that 2 particular individuals (e.g.,
offspring and social father) share at least 1 allele at a specific
locus by chance alone, has high-resolving power for dealing
with single-locus mismatches where genotypes for parents and
offspring are known and microsatellite allele frequencies from
the sampled population are available (Ibarguchi et al. 2004).
For family groups containing a single-paternal mismatch, we
calculated PRa using the formula PRa ¼

�
2pa2p2a

�2
, for a given

allele (a) with allele frequency (pa), at each locus other than
the mismatching locus. The product of these values generated
the cumulative probability of resemblance (PRaCum) for the
matching loci. Social males were considered to be the genetic
sires if PRaCum was �0.005 (after Ibarguchi et al. 2004). That is,
offspring with a PRaCum meeting this threshold had less than
a 0.5% chance of sharing alleles at the other loci with the
social male by chance (n ¼ 91 in 2006, n ¼ 189 in 2007,
n ¼ 31 in 2008) and thus were assigned as WPO (mean PRaCum
¼ 0.00056 0.006). The mutation rate (# per meiotic event) of
1 of the loci, HrU10, among 6 species of swallows ranges from
0.6% to 10.8% and is relatively high for our purple martin
population (5.6%, Anmarkrud et al. 2011). Allele size ex-
plained almost all the variance in mutation rate across species

and was relatively large (310 bp) in purple martins, which may
explain why there were numerous cases of a single-locus mis-
match, whereas the other microsatellite loci did match the
social father.
We identified potential EPO by evaluating genotypes of each

offspring in a family against their social parents. EPO were
defined as nestlings that mismatched the social male at �2
loci (n ¼ 68 in 2006, n ¼ 130 in 2007, n ¼ 42 in 2008) or that
had a PRaCum value .0.005 with 1 paternal mismatch (n ¼ 18
in 2006, n ¼ 21 in 2007, n ¼ 1 in 2008; average PRaCum ¼ 0.076
6 0.013). Next, we used CERVUS 3.0.3 (Kalinowski et al.
2007) to identify candidates for true extrapair sires. Using
genotype data, CERVUS calculates allele frequencies, devia-
tions from Hardy–Weinberg equilibrium, polymorphic infor-
mation content, null allele frequencies, and exclusion
probabilities. A likelihood ratio approach determines true
parentage of offspring from the pool of candidate sires by
evaluating all offspring-sire genotype combinations (maternal
genotype known). We used allele frequency data from our
population in CERVUS’ parentage analysis likelihood simula-
tion to generate paternity assignments for individual EPO
based on the following criteria. Both social parents needed
to genotype at a minimum of 2 loci to be included in parent-
age analyses. Cases of putative intraspecific brood parasitism
(,4.7%) were excluded. We included the putative social male
and all other sampled males each year in a colony to identify
the most likely and second most likely candidate extrapair
sires. In simulations, we used 100 000 permutation cycles,
80% (2006), 95% (2007), and 80% (2008) of candidate sires
in our sampled population, a minimum of 2 loci genotyped
per individual, 95.6% of loci genotyped (from allele frequen-
cies), and 1% genotyping error rate. Determination of the
extrapair sire for EPO was based on delta scores calculated
by CERVUS, defined as the difference in LOD scores between
the most likely and second most likely candidate sire, at either
the 80% (n ¼ 68 EPO) or 95% confidence level (n ¼ 64 EPO).
Because we sampled 80–95% of males per colony, we assumed
that unassigned offspring were likely sired by males outside
the colony.
We determined the probability of alleles matching the can-

didate genetic male by chance alone based on nonexclusion
probabilities calculated by CERVUS. Nonexclusion probability
(1-exclusion probability) was the likelihood of not excluding
a candidate male that was unrelated genetically to an off-
spring. The mean (6standard deviation) nonexclusion prob-
ability for EPO with both social parents known was 0.017 6
0.002 (median ¼ 0.007). The average for all offspring (WPO
and EPO) was 0.016 6 0.001 (median ¼ 0.006). Combined
exclusion probability (PE) with both social parents known was
99.998%.

Statistical analysis

Analyses were performed using JMP 9.0.2 for Macintosh. We
verified parametric assumptions and evaluated outliers using
Cook’s D Influence tests and Mahalanobis plots. Equal vari-
ance–covariance between groups was tested using Bartlett’s
test (all Bartlett’s F , 0.87, all P . 0.35). Pearson chi-square
Goodness-of-fit analysis tested whether the distribution of
EPO in nests was random among brood sizes. Unless other-
wise indicated, we used the proportion of WPO instead of the
number of WPO in analyses to control for variation in brood
size. Means are presented 6 standard error of the mean
(SEM) and significance level was set at 0.05.
We used maximum likelihood (v2) GLMs to test for popu-

lation-level (e.g., cross-sectional analysis) effects of male
known age on genetic reproductive success (McCullagh and
Nelder 1989). We ran GLMs on 160 independent males
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of known age (1–9 years old). In the 41 cases where we
sampled the same individual in multiple years, we used only
the latest year. Response variables (WPO, EPO, total number
of offspring) were nontransformed. Independent variables
used to examine age-related patterns of male success included
known age (fixed continuous effect), female age class, and
year (fixed categorical effects). We included the quadratic
age2 term because male success could vary nonlinearly with
age, and quadratic curves were fit onto model-generated GLM
estimates (Schmoll et al. 2007; Mainguy et al. 2009; Raveh
et al. 2010). For the number of WPO, we used a binomial
distribution with logit links. Clutch size was set as the binomial
denominator to account for variation in within pair paternity
due to older females laying larger clutches. We used the Pois-
son distribution function with log links for number of EPO
and total number of offspring sired (Everitt 2010).
We used paired t-tests to examine longitudinal variation in

genetic reproductive success within unique repeat-sampled
individuals as they aged (year x, x 1 1; n ¼ 41) (Schmoll
et al. 2007). Longitudinal analysis over the full range of ages
was not possible as this was a 3-year study and only 12 males
were sampled in 3 consecutive years. We compared the known
age of each cuckolded male with the age of the identified
extrapair sire using a Wilcoxon paired test. Because old birds
are less prevalent in the population, we also tested whether
the overall known age distribution of extrapair sires differed
significantly from the population distribution of known age
males using a heterogeneity chi-square test.
We used a GLM with Poisson distribution and log links to

investigate if clutch size (response) differed for first-year versus
older females. Female age class and year were fixed effects. To
investigate possible correlates of known age among oldermales
(other than genetic reproductive success) while controlling for
multicollinearity, we performed a partial correlation analysis.
Variables included male body mass, wing chord length, tarsus
length, and tail length. Finally, to determine if first egg date
was related to the known age of older males, we performed
a GLM with a Poisson distribution and log links. In this anal-
ysis, we set Julian first egg date as the response and male age
and year as fixed effects.

RESULTS

Extrapair paternity

For the 297 families genotyped from 2006 to 2008 (minimum
and known age males combined), 137 nests (46%) contained
EPO and 273 of 1235 offspring (22%) were extrapair. Brood
size averaged 4.24 6 0.07 offspring per brood, and for nests
containing at least 1 EPO, the proportion of EPO per brood
averaged 0.53 6 0.03 (n ¼ 137 nests). We identified extrapair
sires for 132 of 273 (48%) EPO and for nests containing �2
EPO, 46% (32 of 70) had multiple extrapair sires.
Oldermales sired 83%of offspring in their own nests and pro-

duced a total (WPO1 EPO) of 4.0 offspring annually compared
with only 63% WPO and 2.5 offspring for first-year males.
Because purple martins feature strong assortative mating by
age class, we examined if the age class of a male’s mate
influences paternity. For both first-year and older males, the
proportion of WPO in males’ nests was similar irrespective of
the age class of their social mates (Figure 1a), whereas individ-
uals paired to older females tended to sire more EPO
compared with males paired to first-year females (Figure 1b).
An overall effect of female age class was observed in the total
number of offspring sired for older (F1,208 ¼ 4.06, P ¼ 0.045)
but not first-year males (F1,89 ¼ 0.61, P ¼ 0.44) (Figure 1c).
First-year males who sired EPO had higher total genetic re-

productive success compared with other first-year males who

Figure 1
Genetic reproductive success of first-year and older males paired to
first-year versus older females in terms of the (a) proportion of WPO,
(b) number of EPO gained, and (c) total number of offspring sired.
Values are mean 6 SEM with sample sizes above bars.
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did not gain extrapair fertilizations (gained EPO: 3.39 6 0.37,
n ¼ 18; no EPO: 2.32 6 0.18, n ¼ 71; analysis of variance
(ANOVA), F1,89 ¼ 6.75, P ¼ 0.01). We found a similar pattern
among older males as individuals who gained EPO produced
39% more offspring annually than older males who sired no
EPO (gained EPO: 4.79 6 0.19, n ¼ 72; no EPO: 3.44 6 0.14,
n ¼ 136; ANOVA, F1,208 ¼ 33.79, P , 0.0001).

Genetic reproductive success and male known age

For unique males of known age, we found significant effects of
male age on the number of WPO in a male’s own nest (GLM,
whole model: v25 ¼ 23.74, n ¼ 160, P ¼ 0.0002, Table 2). There
was also a significant effect of year (P ¼ 0.004) but not of
female age class (P ¼ 0.81) (Table 2). Male within pair
reproductive success increased up to 3 years old and then
leveled off (Figure 2a). The influence of male age on within
pair reproductive success was captured by the linear (age) and
quadratic (age2) variables (age: r2 ¼ 0.41, n ¼ 160, P, 0.0001,
b¼ 0.346 0.03; age2: r2¼ 0.53, n¼ 160, P, 0.0001, b¼20.07
6 0.01; Figure 2a, Table 2). Modeling variation in the number
of EPO sired by males in relation to male age, male age2, age
class of the social mate, and year revealed a non-significant
whole model fit (GLM, v25 ¼ 4.26, n ¼ 160, P ¼ 0.51; Table 2).
Number of EPO increased from 1 to 2 years of age but
remained relatively constant among older males (age: r2 ¼
0.10, n ¼ 160, P , 0.0001, b ¼ 0.02 6 0.004; age2: r2 ¼ 0.10, n
¼ 160, P, 0.0001, b¼20.0036 0.002; Figure 2b, Table 2). In a
GLM analysis of the total number of offspring sired (WPO 1
EPO), male age and year were significant (v25 ¼ 34.31, n ¼
160, P , 0.0001, Table 2). Total number of offspring sired an-
nually increasedbetween1 and3 years old, but didnot continue
to increase after 3 years of age (age: r2 ¼ 0.58, n ¼ 160,
P , 0.0001, b ¼ 0.37 6 0.02; age2: r2 ¼ 0.73, n ¼ 160,
P, 0.0001, b ¼ 20.086 0.008; Figure 2c, Table 2). Quadratic
effects for the 3 measures of genetic reproductive success had
shallow negative slopes and were driven primarily by unavoid-
ably small sample sizes for the oldest males.

In longitudinal analyses of individuals sampled in 2 succes-
sive years, the proportion of WPO and total number of off-
spring sired increased from 1 to 2 years old (Table 3). This
pattern was also true for older males between year x and x1 1.
Most (19/22) older males in this analysis were ,5 years old
when first sampled.
An alternative approach for assessing the effect of known age

on extrapair mating is to compare directly the ages of the
extrapair sire and cuckolded male for EPO where both male
identities are known. Extrapair males were significantly older

Table 2

GLM models testing the effects of male age, male age2, female age
class, and year on the number of WPO, number of EPO gained, and
total number of offspring sired for unique known age purple
martins (n ¼ 160) breeding in Pennsylvania

Est. 6
SEM Lower, upper v25 P

No. of WPO
Male age 0.47 6 0.24 0.004, 0.93 3.80 0.05
Male age2 20.04 6 0.03 20.09, 0.02 1.44 0.23
Female age class 0.03 6 0.12 20.21, 0.27 0.06 0.81
Year 20.39 6 0.19 20.76, 20.03 11.07 0.004

No. of EPO
Male age 20.08 6 0.32 20.72, 0.57 0 1.00
Male age2 0.01 6 0.04 20.07, 0.08 0 1.00
Female age class 0.26 6 0.19 20.09, 0.66 2.15 0.14
Year 0.29 6 0.22 20.14, 0.74 2.04 0.36

Total RS
Male age 0.22 6 0.08 0.06, 0.38 7.28 0.007
Male age2 20.02 6 0.01 20.04, 0.003 3.07 0.08
Female age class 0.06 6 0.05 20.03, 0.15 1.61 0.20
Year 20.17 6 0.08 20.32, 20.02 7.74 0.02

Functions based on a binomial distribution (binomial denominator ¼
clutch size) with logit links (WPO) and Poisson distributions with log
links (number of EPO, total number of offspring). Parameter
estimates (Est.) with SEMs, lower and upper confidence intervals,
maximum-likelihood v2 values, and P-values reported. See text for
whole model statistics.

Figure 2
Quadratic curve fits of male known age (1–9 years old) versus the (a)
number of WPO, (b) number of EPO, and (c) total number of
offspring sired. Values are mean6 SEM GLM estimates from Table 2.
See text for complete regression results.
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than males they cuckolded (Wilcoxon, W ¼ 2179.5, n ¼ 74, P
¼ 0.02, Figure 3a). Only 5 of 15 2-year-old males and 3 of 18
males �3 years old were cuckolded by a first-year extrapair
male, despite the fact that 55% of known age males in the
population were first-year. Most (59%, 24 of 41) first-year
males were cuckolded by older extrapair males rather than
by other first-year extrapair males. If extrapair success is ran-
dom with respect to male age then the age distribution of
extrapair sires should not be significantly different from the
age distribution of all known-aged males in the population.
The age distribution of extrapair sires that cuckolded first-year
(heterogeneity chi-square test, v24 ¼ 11.78, n ¼ 41, P , 0.05)
and older males (v24 ¼ 10.15, n ¼ 33, P , 0.05) differed from
that expected under random mating (Figure 3b). First-year
males were underrepresented as extrapair sires, whereas
males �3 years old were extrapair sires more often than ex-
pected by chance. Distributions of ages of extrapair sires that
cuckolded first-year versus older social males did not differ
from each other (v24hetero ¼ 2.97, P . 0.05).

Known age and male size, fertility, and timing of breeding

To explore factors that might contribute to higher paternity by
older males, we looked for other correlates of age among
known age older males. In a multivariate analysis age (2–9
years) was not correlated with body mass, wing chord length,
tarsus length, or tail length (partial correlation: 20.11 , r ,
0.18, n ¼ 68, all P . 0.05). The proportion of infertile eggs
was also not correlated with male age (r ¼ 20.12, n ¼ 71,
P ¼ 0.30). In a GLM analysis examining the relationship be-
tween first egg date and male age, we found that older males
tended to have earlier first egg dates (whole model: v23 ¼
23.73, n ¼ 71, P , 0.0001; age: v2 ¼ 3.05, n ¼ 71, P ¼ 0.08;
year: v2 ¼ 20.62, n ¼ 71, P, 0.0001) after controlling for year.
Older pairs also tended to mate assortatively by known age
(2–9 years old; r ¼ 0.25, n ¼ 49, P ¼ 0.087).

DISCUSSION

4 main results emerged from our analysis of age-related
patterns of paternity in purple martins. 1) First-year males
experienced lower within pair paternity and were underrep-
resented as extrapair sires. 2) There were significant linear
and nonlinear effects of known age on the number of WPO
and total reproductive success of males, with paternity increas-
ing to 3 years of age and then leveling off. 3) For individual
males, the number of WPO increased between successive years
both for 1- to 2-year-old comparisons and for males �2 years
old. 4) In paired tests, extrapair sires were older than the
males they cuckolded.

Older males sired 83% of offspring in their own nests com-
pared with only 63%WPO for first-year males, similar to a differ-
ent population of purple martins (96% and 57%, respectively;
Wagner et al. 1996). We also showed that within pair mating
success increased among older males (Figure 2) in both cross-
sectional and longitudinal comparisons. In pied flycatchers
(Ficedula hypoleuca), within pair fertilization success increased
with age among older males and was greater for males that
exhibited more aggressive territorial defense (Moreno et al.
2010). In American redstarts (Setophaga ruticilla), within pair
success increased among older males, and Perreault et al.
(1997) suggested that experience allows males to better
prevent extrapair copulations from occurring through more
effective territory defense. Purple martins defend nesting com-
partments rather than large feeding territories and copulations
(within pair or extrapair) do not occur at the nest site. Never-
theless, male defense of the mate while females are away from
the colony could determine within pair paternity and drive age-
related patterns. Wagner et al. (1996) found that first-year
males guard their fertile mates more intensely than older males

Table 3

Longitudinal comparisons of genetic reproductive success for male
purple martins sampled in successive years

Year x Year x 1 1
t PMean 6 SEM Mean 6 SEM

1- to 2-year-old males
Proportion of WPO 0.63 6 0.09 0.82 6 0.06 1.67 0.056
No. of EPO gained 0.29 6 0.10 0.35 6 0.11 0.44 0.33
Total offspring sired 2.48 6 0.31 3.85 6 0.38 2.79 0.01

Older males
Proportion of WPO 0.74 6 0.06 0.86 6 0.05 2.19 0.02
No. of EPO gained 0.48 6 0.13 0.42 6 0.15 20.54 0.70
Total offspring sired 3.45 6 0.32 4.45 6 0.36 2.37 0.01

Analyses (paired t-tests) based on within-individual success for males
at 1 year old versus 2 years old (n ¼ 19) and for older males sampled
in 2 consecutive breeding seasons (n ¼ 22). 0
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Figure 3
(a) Paired comparison of the age of the identified extrapair sire
versus the social male that lost paternity (n ¼ 74 EPO). In cases
where multiple EPO in a social male’s nest had the same extrapair
sire, only 1 was included in the analysis. Diagonal is the line of
equality. Dot size reflects the number of entries with equal value
(range ¼ 1–13). (b) Age distribution of extrapair sires of offspring in
nests of first-year (n ¼ 41, white bars) and older (n ¼ 33, gray bars)
social males in relation to the population distribution of all known
age males (n ¼ 160, solid line with open symbols).
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suggesting that restraint in time or energy invested in mate
defense does not explain the poor performance of young
males. Despite high guarding effort, first-year males may be
constrained to be less effective in mate guarding as a result
of inexperience or smaller size (Wagner et al. 1996; Johnsen
et al. 2003). It is not known how mate guarding effectiveness or
effort varies among older male martins.
Older males may have an advantage in gaining access to

extrapair partners due to age-dependent spring arrival sched-
ules in purple martins. First-year males arrive several weeks
after older males, and their mates lay eggs a week or more
later than do the social mates of older males (Morton and
Derrickson 1990; Wagner et al. 1996). Older males are there-
fore emancipated from guarding their own mate at the same
time as most first-year females are egg laying, giving older
males a competitive edge in terms of the time and energy
available to pursue extrapair matings. Similarly, among older
males, there was a strong negative trend between first egg date
and age which could explain why 3-year-old males performed
better in siring young in their own nest than did 2-year-old
males. Extrapair success may be also be driven by timing of
breeding and create pronounced variation among males in
opportunity to seek extrapair matings, similar to the ‘‘mating
opportunity’’ hypothesis for protandrous emergence in in-
sects (Wiklund and Fagerström 1977).
Morton et al. (1990) proposed that extrapair choice of fe-

male martins is based on male age because older males have
‘‘good genes’’ or greater heterozygosity as a result of differen-
tial mortality of poor quality males at a younger age (Davidar
and Morton 1993). If male paternity is strongly influenced by
female choice, and females use male age as a proxy for male
genetic quality, then 1) older males should gain more EPO as
well as lose less WPO and 2) females would be expected to
have an open-ended mating preference resulting in the oldest
males having the highest genetic reproductive success (John-
sen et al. 2001; Schmoll et al. 2007). In coal tits (Periparus
ater), Schmoll et al. (2007) found that EPO but not WPO
increased among older males, up to 3 years of age. In purple
martins, WPO increased up to 3 years of age, but there was not
as strong an age effect on EPO, which increased from 1 to 2
years of age and remained relatively constant among older
males. In a paired comparison, extrapair sires were signifi-
cantly older than the males they cuckolded (Figure 3a) and
fewer first-year males achieved EPO than expected by chance,
similar to several other age-related studies (Weatherhead and
Boag 1995; Schmoll et al. 2007). The oldest males in our
population were extrapair sires surprisingly often. Although
only 12% of known age males in our sample were �4 years
old, these males sired approximately 30% of EPO in nests of
first-year males and 23% of EPO in the nests of older males
(Figure 3b). These results are consistent with female prefer-
ence for the oldest males; however, we caution that we do not
demonstrate female choice. Direct observation of female
choice for particular males (e.g., Chiver et al. 2008) is difficult
to obtain for purple martins because they travel far from their
nest on a daily basis and within pair copulations are rarely
observed at the colony (Tarof SA, personal observation).
If females prefer the oldest males as extrapair mates, it

remains unclear how females might discern age among older
males and whether females assess age directly or indirectly
(Brooks and Kemp 2001). Male age is often correlated with
body size, competitive ability, ornament size, color, display,
or song making it difficult to separate age effects from age-trait
relationships (Freeman-Gallant et al. 2009). Several studies
have shown that age, rather than color ornaments, predict
paternity among older males despite the presence of a corre-
lation between age and ornament (Weatherhead and Boag
1995; Moreno et al. 2010). In our study, body size was inde-

pendent of known age among older males, leaving ornament
size, color, or song and other behaviors as potential pheno-
typic mechanisms for females to assess male age. Annual sur-
vival probability in our study population is relatively high
(0.48–0.62, Stutchbury et al. 2009) and older pairs tended
to mate assortatively by age, making individual recognition
of males by returning females another possible mechanism.
We found a low assignment rate (48%) for EPO despite

sampling 80–95% of the candidate sires in our population.
First-year males spend from several days up to several weeks
‘‘floating’’ while they compete with older males for nesting sites
(Stutchbury 1991). Consequently, it is possible that some un-
assigned extrapair sires were non-territorial floaters that gained
extrapair copulations before obtaining a nest site in a different
colony. We cannot distinguish between floaters siring EPO ver-
sus females leaving the colony to mate with breeding males at
other colonies. In purple martins, adults often leave the breed-
ing colony for extended periods of time during the day and
therefore have opportunities to mate with distant individuals.
Similarly, in tree swallows, most extrapair sires originate from
outside the immediate population (Kempenaers et al. 2001)
and breeding females travel far from their nest site when fertile
(Dunn and Whittingham 2005).
Interpreting patterns of female choice based on male fertil-

ization success may fail to detect age effects if older males are
less fertile due to senescence (Hansen and Price 1995; Brooks
and Kemp 2001; Dean et al. 2010). Male reproductive senes-
cence could generate sexual conflict in age-structured popu-
lations if older males are more likely to achieve extrapair
copulations with females but have low fertility, resulting in
lower than expected female reproductive success (Gasparini
et al. 2009; Dean et al. 2010). Passerines are expected to
exhibit senescence in male genetic mating success because
they typically have a ‘‘fast’’ life-history strategy (Jones et al.
2008). Senescence is best tested longitudinally by examining
genetic mating success over an individual’s lifetime, but for
paternity studies, this is logistically difficult. In purple martins,
we found no correlation between egg infertility and age
among older males, implying that the lack of increase in total
fertilization success among males �3 years old was not simply
a result of low fertility. A robust test of the hypothesis that
females choose older males in order to benefit by producing
higher genetic quality EPO could compare fitness-related
traits of half-siblings and differences in offspring quality
should correspond to the age difference of the cuckolded
versus extrapair male (Schmoll et al. 2007).
Predicting and interpreting age-related patterns in paternity

among species (Table 1) are difficult because the underlying
behavioral mechanisms that determine paternity are often not
well understood. In hooded warblers (Wilsonia citrina), for ex-
ample, paternity is not male age-related (Stutchbury et al. 1997)
and their extrapair behavior, studied via radiotelemetry, provides
insights as to why. Males make little attempt to mate guard (Fedy
et al. 2002) because females make frequent off-territory forays to
neighbouring males and most intrusions onto the territory by
neighbouring males go undetected (Stutchbury 1998). Extrapair
paternity is determinedprimarily via female choice. Femalesmade
more frequent off-territory forays if their social mates had a low
song rate, and in paired comparisons extrapair sires sang more
than the males whom they cuckolded (Chiver et al. 2008).
For species where mate guarding and territory defense are

effective for increasing within pair paternity, age effects on
within pair success would be expected if older males are com-
petitively superior as a result of aggression (Moreno et al.
2010), earlier breeding (Wagner et al. 1996, this study), or
experience in territory defense (Perreault et al. 1997). Similar
traits may also influence extrapair paternity depending on the
mating system. In some species, neighboring females
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eavesdrop on male–male territorial disputes to assess male
quality for extrapair matings (Mennill et al. 2002). Weather-
head and Boag (1995) suggested that older male Red-winged
blackbirds (Agelaius phoeniceus) may be more successful in
gaining extrapair fertilizations due to experience, but it is
not known whether there are age-related differences in male
off-territory foray frequency, duration, or strategy.
If paternity is determined primarily by female choice, then

within pair and extrapair fertilization success should be the
result of a male’s intrinsic quality, as assessed indirectly by
females, and preferred males should both gain WPO and
EPO. In purple martins, we found evidence for age-related
increases in WPO and, to a lesser extent, EPO. 2 other studies
found that males gained more EPO but not more WPO as
they aged (Weatherhead and Boag 1995; Schmoll et al.
2007) but it is not clear why. Extrapair copulations occur in
the context of a complex social environment of male–male
competition during defense and acquisition of mates, as well
as female choice of extrapair mates. Although patterns of age
class effects on paternity are well documented (Griffith et al.
2002), we suggest that the subtle age effects among older
males will be far more variable as a result of the details of
how and why extrapair copulations are achieved.

CONCLUSIONS

Our results, along with studies of other species (Table 1), are
consistent with the constraint hypothesis for age-related male
performance (reviewed in Forslund and Pärt 1995). WPO in-
creased for male martins sampled in consecutive years, sug-
gesting that the cross-sectional age-related patterns were not
simply a result of mortality of lower quality individuals (see
also Weatherhead and Boag 1995; Perreault et al. 1997;
Schmoll et al. 2007). Young martins have lower competitive
ability in mate guarding (Wagner et al. 1996), later initiation
of egg-laying by their mates (Morton et al. 1990, this study),
and are disadvantaged as a result of female preference for
older males (Wagner et al. 1996). In purple martins, the rel-
atively high level of mate guarding shown by first-year males
(Wagner et al. 1996) is not consistent with the restraint hy-
pothesis. Furthermore, first-year males who sired EPO had
46% higher total genetic reproductive success compared with
first-year males who did not gain extrapair fertilizations.
Among older males, individuals who gained EPO produced
39% more offspring. Even given the comparatively short life
span of this species (Stutchbury et al. 2009), the high fitness
gains of extrapair fertilizations would presumably be sufficient
to offset life-history trade-offs. If so, the survival probability of
males who sired EPO should be similar to same-aged males
that did not sire EPO. Studies of other species showing age
effects among older males (Table 1) also suggest that poor
paternity performance in younger males is constrained via
male–male competition and female choice.
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Tracking Long-Distance Songbird
Migration by Using Geolocators
Bridget J. M. Stutchbury,1* Scott A. Tarof,1 Tyler Done,1 Elizabeth Gow,1 Patrick M. Kramer,1
John Tautin,2 James W. Fox,3 Vsevolod Afanasyev3

Until now it has been impossible to track
migratory songbirds to their tropical win-
tering grounds. Songbirds are far too small

for satellite tracking, and our current understand-
ing of individual movements comes from brief
snapshots of the journey via radar images, oppor-
tunistic recaptures of banded individuals, studies
of migrants on the ground refueling, and an excep-
tional study that followed radio-tagged songbirds
by airplane (1–4). We tracked songbird migration
by mounting light-level geolocators (5, 6) on 14
wood thrushes (Hylocichla mustelina) and 20
purple martins (Progne subis) breeding in northern
Pennsylvania during 2007. The next summer we
retrieved geolocators from five wood thrushes and
two purple martins and analyzed sunrise and sunset
times to reconstruct migration routes and estimate
wintering locations (T300 km).

Rapid long-distance movement occurred in
both species, and prolonged stopovers were com-
mon during fall migration (Fig. 1). Both purple
martins flew south 2500 km to the Yucatan Pe-
ninsula in 5 days (500 km/day) and, on the basis of
longitude estimates, then had a stopover of 3 to 4
weeks in the region (fig. S1). Four wood thrushes
spent 1 to 2 weeks in the southeastern United
States in late October before crossing the Gulf of
Mexico (Fig. 1C), and two individuals stopped on
the Yucatan Peninsula for 2 to 4 weeks before
continuing migration (Fig. 1D).

Wood thrushes overwintered in a narrow band
from 83.7° to 85.0°W (T1.4°) in Honduras or Nicara-
gua (Fig. 1), suggesting a level of connectivity not
previously documented for migratory songbirds.
Stable isotope analysis of black-throated blue war-
bler (Dendroica carulescens) feathers, for instance,

showed that individuals wintering on western Carib-
bean islands originate from the northern portion
of the breeding range, whereas those on easterly
islands are from southern breeding areas (7).

Overall migration rate was 2 to 6 times more
rapid in spring than in fall (table S1). One female
martin (Fig. 1A) left the Amazon basin after the
night of 12 April and flew about 7500 km in 13
days (577 km/day). Nine days involved migra-
tion flights, and 4 days were spent on stopover.
Most wood thrushes returned to their breeding
territory in only 13 to 15 days (233 to 271 km/day).
One wood thrush did not cross the Gulf of Mexico
on spring migration and took 29 days to com-
plete the 4600-km overland route (Fig. 1D). Pre-
vious studies appear to greatly underestimate the
true flight performance of migrating songbirds (4)
because spring migration speed has typically been
estimated at under 150 km/day.

Alarming long-term declines of migratory song-
bird species in North America and elsewhere
heighten the urgency of mapping migration routes
and wintering locations with far greater accuracy
than is currently possible with stable isotope anal-
ysis (8). Tracking individuals to their wintering
areas is essential for predicting the impact of trop-
ical habitat loss and climate change (7, 9). Survival
estimates can now be obtained from regions where
individuals from a specific breeding population
overwinter, improving our understanding of how
wintering versus breeding threats drive population
fluctuations of migratory songbirds.
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Fig. 1. Interpolated geolocation tracks of individual purple martins (A and B) and wood thrushes
(C and D) that bred in northern Pennsylvania, USA (42°N, 80°W). Blue, fall migration; yellow, winter
range movements; and red, spring migration. Dotted lines link locations when latitude could not be
determined. Inset shows winter territory locations of wood thrush and species winter range (shaded); the
standard deviation for one individual is shown.
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Appendix C: Fraser KC, CA Silverio, PM Kramer, N Mickle, R Aeppli and BJM Stutchbury. 2012a. 

A Trans-Hemispheric Migratory Songbird Does Not Advance Spring Schedules or Increase 

Migration Rate in Response to Record-Setting Temperatures at Breeding Sites. PLoS ONE, 8(5): 

e64587. 
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A Trans-Hemispheric Migratory Songbird Does Not
Advance Spring Schedules or Increase Migration Rate in
Response to Record-Setting Temperatures at Breeding
Sites
Kevin C. Fraser1*, Cassandra Silverio1, Patrick Kramer1, Nanette Mickle2, Robert Aeppli3,

Bridget J. M. Stutchbury1

1Department of Biology, York University, Toronto, Ontario, Canada, 2Woodbridge, Virginia, United States of America, 3 Purple Martin Conservation Association, Erie,

Pennsylvania, United States of America

Abstract

The decline of long distance migratory songbirds has been linked to an increasing mismatch between spring arrival date
and timing of food availability caused by climate change. It is unclear to what extent individuals can adjust migration timing
or en route rate in response to annual variation in temperature at breeding sites. We tracked the ca. 7300 km spring
migration of 52 purple martins Progne subis from the Amazon basin to two breeding sites in eastern North America. Spring
2012 was the warmest on record in eastern North America, but contrary to predictions, this did not result in earlier
departure, faster migration, or earlier arrival at breeding areas compared with earlier years. Temperatures and rainfall in the
Amazon basin at the time of departure were not higher in 2012, and conditions along migration routes did not give
consistent signals of a warmer spring at the breeding site. Once in North America, individuals likely had limited opportunity
to speed up their migration because this final portion of the journey was already very rapid (570 km/d; 4–5 d in duration).
Migration timing over the entire journey was best predicted by breeding latitude and sex and was not sensitive to
ecological cues (temperature and rainfall amount) at departure from South American overwintering sites or en route, in
contrast to recent studies of other songbirds. Our results provide the first direct evidence for a mismatch between higher
spring temperatures at breeding sites and departure schedules of individual songbirds, and suggest phenotypic responses
to short-term climatic warming may be limited for some species. Further direct-tracking data with greater geographic and
temporal scope is needed to test for individual plasticity in response to temperature and rainfall along migratory routes for
this, and other, species.

Citation: Fraser KC, Silverio C, Kramer P, Mickle N, Aeppli R, et al. (2013) A Trans-Hemispheric Migratory Songbird Does Not Advance Spring Schedules or Increase
Migration Rate in Response to Record-Setting Temperatures at Breeding Sites. PLoS ONE 8(5): e64587. doi:10.1371/journal.pone.0064587

Editor: Johan J. Bolhuis, Utrecht University, The Netherlands

Received December 16, 2012; Accepted April 16, 2013; Published May 31, 2013

Copyright: � 2013 Fraser et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: Funding was provided by Natural Sciences and Engineering Research Council, National Geographic Society, proceeds from Silence of the Songbirds
(2007, Walker & Co.), North American Bluebird Society, and the Purple Martin Conservation Association. The funders had no role in study design, data collection
and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: fraserkev@gmail.com

Introduction

Many animals have shown long-term advancement in spring

phenology in response to climate change [1]. The failure of some

long-distance migratory songbirds to sufficiently shift arrival date

at breeding areas in response to warmer spring temperatures can

result in severe population declines [2]. The cause of this inability

to shift arrival schedules is much debated [3], and may be driven

by constraints on departure date from distant tropical ‘wintering’

areas, and/or by varying conditions and environmental constraints

along migratory routes [4]. For long-distance migrants it is unclear

if suitable temperature cues are available at tropical wintering sites

or if individuals are able to make short-term phenotypic

adjustments in departure timing or rate in response to changes

in temperature [3]. The amount of rainfall, either at tropical

overwintering sites or along migratory routes, may also influence

migratory timing of songbirds through its effect on food availability

[5,6,7]. Recently it has become possible to determine start-to-

finish migration timing and rate of small songbirds through direct

tracking [8], allowing an unprecedented opportunity to assess

phenotypic responses to temperature and rainfall all along

migratory routes.

We examined migratory schedules of purple martin Progne subis,

a declining [9], trans-hemispheric migrant that travels between the

Amazon basin and breeding colonies in North America. In 2012,

eastern North America experienced the warmest spring since

record-keeping began in 1895 [10]. Several studies have shown the

existence of large-scale climate and behavioural connectivity

between temperate breeding and tropical overwintering sites

[11,12,13]. Migrants in the tropics may receive signals of

anomalous weather events at breeding areas, even while thousands

of kilometres away [11]. Weather conditions in 2012 allowed a

unique opportunity to examine the extent to which migration

schedules and rate are flexible from year to year. Our objectives

were to 1) determine if, near the time of departure from tropical

PLOS ONE | www.plosone.org 1 May 2013 | Volume 8 | Issue 5 | e64587

74



non-breeding sites and at passage through key points en route,

birds received temperature or rainfall cues of advanced spring and

record-setting temperatures at breeding sites in North America, 2)

if birds had earlier migration timing (departure, en route, arrival)

and faster rate in the warmest spring on record, and, 3) determine

if rainfall amount, at departure or en route, was a significant

predictor of migration timing and rate.

Materials and Methods

This study was conducted in accordance with the recommen-

dations of the Ornithological Council ’Guidelines to the Use of

Wild Birds in Research’ and was approved by the York University

Animal Care Committee (Animal Care Protocol Number: 2009-

2 W (R1)).

Geolocator Deployment and Analysis of Light Data
Purple martins were fitted with geolocators (British Antarctic

Survey, models MK10, MK12, MK14, MK20) during the nesting

period (2007–2011, n = 228) at two eastern breeding locations

(Pennsylvania, Virginia; Table S1). Geolocators were retrieved

(n = 73; 52 with spring migration data) in the year following

deployment. Purple martins fitted with geolocators did not have a

lower return rate than those not carrying geolocators [14]. Raw

light data were corrected for clock drift using BASTrak and

analyzed using TransEdit (British Antarctic Survey). We manually

verified a sharp transition at each sunrise and sunset and deleted

obvious shading events during the daytime. We used a light-level

threshold of 32 (MK14, MK10) or 5 (MK12, MK20) to define

sunrise and sunset transitions, and used live calibration data from

birds after nesting but prior to migration to determine the average

sun elevation that corresponded with this light threshold level at

the breeding site. Sun elevation values were averaged across

individuals within each year to better represent average conditions

for migrating birds at unknown locations. Latitude was not

determined for 15 days before and after the spring equinox when

day length is similar everywhere. During this period, positions

were estimated using longitude [8]. This is appropriate for spring

migration in this species, as migratory routes have a large

longitudinal component [15]. Latitude and longitude coordinates

were calculated with Locator software (British Antarctic Survey)

using midnight locations because purple martins are primarily

diurnal migrants. Movements away from tropical roosts consistent

with spring migration, and from one stopover location to another

(.200 km latitude, .100 km longitude), were defined as migra-

tion. Arrival at breeding sites was considered to have occurred

when the latitude and longitude ceased to shift in a direction

consistent with spring migration and fluctuated around a narrow

range of values (less than 2 degrees longitude), consistent with a

stationary bird, and frequent shading events indicated use of

nesting boxes. To estimate geolocator accuracy we calculated

location for two weeks after nesting but prior to migration and

compared that with the known roost or breeding colony location.

Average geolocator accuracy at breeding sites prior to migration,

ranged from 20–60 km for latitude, and 20–75 km for longitude

[14].

Temperature Data
We compared average maximum daily temperatures at two

breeding areas in 2012 versus prior years (2008–2011 PA; 2011

VA) during the main departure period from Brazil (March 15 to

April 15). We also compared spring warmth sum (sum of

maximum daily temperatures [16]) over the same period to

provide a cumulative estimate of differences between years. The

average daily maximum temperature 10 days before and after the

median passage date [4] of each population in 2012 was compared

using t-tests to prior years at the core wintering area (Manaus

Brazil), and at three points en route: 1) Panama (Panama City); 2)

Yucatan Peninsula (Merida, Mexico), 94% of birds crossed the

Yucatan Peninsula; and 3) Along the U.S. Gulf coast (PA

population: Mobile, Alabama; VA: Panama City, Florida). Total

rainfall amount was determined for the month (30 d) prior to

median migration passage date at each of the 4 locations above

because rainfall in the month leading up to migration is expected

to have the greatest influence on migration timing via effects on

food supply [5]. Temperature and rainfall data are from the

National Oceanic and Atmospheric Administration [17].

Statistical Tests of Migration Timing and Rate
First, we used univariate tests to compare migration timing (t-

test) and rate (ANOVA) between 2012 and earlier years, for each

breeding population. Next, we used linear mixed-effects models fit

by REML to assess the influence of temperature and rainfall on

migration timing and rate at the core wintering and stopover

locations. We examined timing at four locations (Brazil, Panama,

Yucatan, and breeding site) and rate in three migration zones

(South, Central and North America). We fit a separate timing and

rate model for each location and zone. For arrival date at stopover

sites and migration rate in each zone, we used temperature and

rainfall amounts at the preceding site as factors, reasoning that

timing and rate would be most influenced by conditions prior to

arrival (i.e. at the previous site). The full models included fixed

factors of population (PA or VA), sex, rainfall and temperature

with a random effect of year. We dropped individual explanatory

variables one by one, then used Akaike’s Information Criterion

weights to select the best-fit model. To assess the significance of

each variable, we removed them one by one from the full model,

then compared each reduced model to the full model using a

likelihood ratio test. All analyses were conducted using R [18].

Results

In 2012, maximum daily spring temperature was significantly

higher at breeding sites for both populations (Fig. 1a–b; PA:

t=23.42, df=49.38, P= 0.001, VA: t=23.09, df = 54.51,

P= 0.003) and spring warmth sum was 46% (PA) and 25% (VA)

higher than previous years. However, in 2012 birds departed

significantly later, not earlier, from wintering sites (PA: t = 2.29,

df = 30.06, P= 0.03; VA: t = 2.99, df = 15.35, P= 0.008) and there

was no difference between years in the timing of crossing the Gulf

of Mexico (23.4uN) or arrival at breeding sites (Fig. 2a–b). The

Virginia population, as expected, had earlier departure, passage,

and arrival dates than the more northern Pennsylvania population.

Rate of spring migration varied significantly (PA: F1,96=30.52,

P,0.0001; VA: F1,39=25.61, P,0.0001) during passage through

South America (PA: 310 km/d 630; VA: 289 km/d 628),

Central America (PA: 333 km/d 625; VA: 370 km/d 637) and

North America (PA: 538 km/d 635; VA: 649 km/d 675).

Migration rate was not significantly faster in 2012 versus prior

years (Fig. 2c–d) for any stage of migration (PA: F1,96=1.75,

P= 0.19; VA: F1,39=0.05, P= 0.83). Migration duration from the

Yucatan Peninsula to the breeding colony was only 4–5 days on

average (PA: 560.35; VA: 460.55).

Temperatures at the core overwintering area [14] in northern

Brazil were not significantly warmer in 2012 (Table 1; Fig. 1).

Temperatures were generally similar between years along

migratory routes, during the peak passage period specific to

each population. However, there were warmer temperatures in
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2012 at Panama for birds from the Virginia breeding

population and a trend for higher temperatures in 2012 for

both populations once birds reached the U.S. Gulf Coast

(Table 1; Fig. 1). Rainfall at wintering and passage sites was not

consistently higher in 2012.

Based on our model results, neither rainfall amount or

temperature were significant factors predicting departure date

from South American overwintering sites in the Amazon Basin.

Our best-fit models of migration departure date included only

sex and breeding location (PA or VA) and both were significant

in the model (sex: r2 = 4.71, df = 1; breeding location: r2 = 16.27,

df = 1, P,0.0001). On average, males left 5 days earlier than

females and individuals breeding at the more southerly Virginia

colony departed 14 days earlier than birds breeding in

Pennsylvania. We had similar results for migration timing en

route at Panama, Yucatan and breeding arrival where best-

models included only sex and breeding location. Both factors

were significant in the models except for sex at the Yucatan

(r2 = 3.77, df = 1, P,0.052). None of the factors in our models

of migration rate during each of the three stages of migration

(SA, CA, NA) were significant, illustrating that birds did not

differ their rate in response to temperature or rainfall en route

and that rate did not differ by breeding location or sex.

Discussion

We found no evidence that purple martins advanced their

departure date from South America, or increased their migration

rate, during the warmest spring on record at breeding sites in

eastern North America. Consistent temperature and rainfall cues

were not present in South or Central America, and these weather

variables were not significant predictors of departure date and en

route migration timing and rate. These results, based on direct-

tracking of purple martin, are surprising and contrast recent

papers that show that some species may be able to increase rate in

response to conditions en route [19,20,21] or in general enact a

strong phenotypic response to changing weather and environ-

mental conditions [5,6,7,22,23].

Spring departure date from tropical overwintering sites of a

forest songbird was highly repeatable between years, suggesting

limited phenotypic plasticity in some species [24]. Inflexible

departure schedules in warm springs could be a result of mostly

endogenous control of migration timing [25,26,27] but may also

reflect limited environmental cues available to long-distance

migrants about conditions at the breeding grounds [11,12,13].

Purple martins apparently received limited or conflicting environ-

mental cues of an early spring at breeding sites while still at

wintering sites and en route. Once en route, birds received no (PA

Figure 1. Spring migration routes and en route temperatures and rainfall for purple martins. Birds were tracked from two breeding
populations a) Pennsylvania (41.8uN, 79.9uW) and b) Virginia (38.61uN, 77.26uW). Spring routes shown in red (2012) and blue lines (2008-11 PA; 2011
VA). Dashed lines show estimated route based on longitude when latitude was uncertain due to equinox. Black circles show locations of en route
temperature and rainfall measurements and correspond to adjacent graphs showing mean 6 SD temperature during passage (10 d pre-and post-
median passage date) and rainfall sum (30 d pre-median departure/passage date; 6 SD where multiple years). Breeding site graphs (Pennsylvania
and Virginia) show maximum daily temperature and spring warmth sum at breeding sites March 15– April 15 (circles show mean, bars standard
deviation). Last winter roost locations in South America before spring migration are shown by red and blue circles. Error bars, shown for one bird on
each map, are typical standard deviation in latitude and longitude for estimated winter locations.
doi:10.1371/journal.pone.0064587.g001
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Figure 2. Migration rate of purple martins in record warm year 2012 versus prior year(s). Timing of spring migration at departure (dep),
date crossing 23.4uN (x), breeding arrival date (arr) for breeding populations from a) Pennsylvania and b) Virginia. Spring migration rate during three
stages en route (South America, SA; Central America, CA; North America, NA), c) Pennsylvania (2008-11, n = 18; 2012, n = 15) and d) Virginia (2011, SA
n= 9, CA n=6, NA n=8; 2012, n = 10).
doi:10.1371/journal.pone.0064587.g002

Table 1. Temperatures experienced by purple martins during peak passage times along migratory routes.

En route location and breeding population tracked pre-2012 2012 t P

U.S. Gulf Coast

Pennsylvania 23.164.7 25.264.9 21.72 0.097

Virginia 21.863.9 24.163.6 21.95 0.059

Yucatan Peninsula

Pennsylvania 33.265.3 32.965.8 20.21 0.84

Virginia 34.365.4 31.063.2 2.34 0.03

Panama City

Pennsylvania 31.861.9 32.061.9 20.45 0.65

Virginia 31.061.9 32.761.0 23.59 0.001

Manaus, Brazil

Pennsylvania 28.062.1 28.161.9 20.03 0.98

Virginia 27.962.0 28.261.8 20.50 0.62

Mean (6 SD) maximum daily temperature 10 days before and after median departure date from Brazil, and at passage through Panama, the Yucatan Peninsula, and the
U.S. Gulf Coast for birds tracked from two breeding populations (Pennsylvania, n = 33; Virginia, n = 19). Statistics reported from t-tests.
doi:10.1371/journal.pone.0064587.t001
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population) or inconsistent (VA population) temperature cues of

the warm spring until they reach the U.S. Gulf coast. However,

most martins travelled more than 400 km/d during their final 4–5

day spring passage to their breeding sites, supporting the

hypothesis that long-distance migrants have little opportunity to

advance their rate of migration in response to temperature cues at

the final stage of their journey [4]. Our model results suggest that

migration timing and rate in purple martin is not highly sensitive

to short-term variation in temperature and rainfall. We suggest

that multiple years of increasing spring temperatures may be

required to generate an adaptive response of earlier breeding

arrival timing of purple martins, via selection for earlier departing

individuals. Further direct-tracking data with greater geographic

and temporal scope, and repeat tracking of individual birds, is

needed to better understand individual plasticity in response to

temperature and rainfall along migratory routes.

Aerial insectivores, particularly species migrating longer dis-

tances and populations breeding in the north, are experiencing

strong population declines [9]. We suggest that this could be

driven by constraints on spring departure date, the absence of

strong and consistent temperature cues, and low opportunity for

rate adjustments during migration leading to a mismatch between

arrival date and optimal breeding conditions. Recent direct

tracking of other species has shown a strong correlation between

departure and arrival date as well as rapid spring migration [28],

suggesting many long-distance migrants may have limited

opportunities to respond to short-term climatic warming.

Supporting Information

Table S1 Geolocator deployment locations, year, type,
number of units deployed, geolocators retrieved (does
not include birds who lost tags) and total sample size for
spring migration (excludes tags that failed prior to
spring migration). Most (75%) geolocators were 1.1 g with a

,10 mm stalk (MK10S, British Antarctic Survey) and were

mounted using a leg-loop backpack harness [1,2].
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North American birds that feed on flying insects are experiencing steep population declines, particularly

long-distance migratory populations in the northern breeding range. We determine, for the first time, the

level of migratory connectivity across the range of a songbird using direct tracking of individuals, and test

whether declining northern populations have higher exposure to agricultural landscapes at their non-

breeding grounds in South America. We used light-level geolocators to track purple martins, Progne

subis, originating from North American breeding populations, coast-to-coast (n ¼ 95 individuals). We

show that breeding populations of the eastern subspecies, P. s. subis, that are separated by ca. 2000 km,

nevertheless have almost completely overlapping non-breeding ranges in Brazil. Most (76%) P. s. subis

overwintered in northern Brazil near the Amazon River, not in the agricultural landscape of southern

Brazil. Individual non-breeding sites had an average of 91 per cent forest and only 4 per cent agricultural

ground cover within a 50 km radius, and birds originating from declining northern breeding populations

were not more exposed to agricultural landscapes than stable southern breeding populations. Our results

show that differences in wintering location and habitat do not explain recent trends in breeding popu-

lation declines in this species, and instead northern populations may be constrained in their ability to

respond to climate change.

Keywords: geolocator; songbird; South America

1. INTRODUCTION
Population dynamics of neotropical migratory songbirds

are driven by the interaction of productivity on the

breeding grounds and mortality, which occurs primarily

during migration and the non-breeding season in the

tropics [1–3]. Migratory birds are predicted to be more

vulnerable to habitat disturbance and environmental

change at their wintering grounds if they exhibit strong

migratory connectivity, in which most members of a

given breeding population migrate to the same region

within the non-breeding range [4,5]. In contrast, species

with weakmigratory connectivity are buffered fromhabitat

disturbance in specific non-breeding regions because

reduced survival of individuals is spread diffusely across

the breeding range [6]. However, understanding the popu-

lation dynamics of long-distance migratory songbirds has

been hampered by the difficulty in determining migratory

connectivity [2,6] because until recently it was not possible

to track migration of songbirds [7].

Connectivity patterns between breeding and wintering

sites thousands of kilometres apart have been determined

for migratory songbirds using large-scale band-recovery

efforts [8–10], but for many species recovery records
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linking breeding and tropical ‘wintering’ sites are too infre-

quent. Stable isotope values of feathers, and to a lesser

extent genetic markers, have been used to document

migratory connectivity in several songbirds, but precision

is generally restricted to large geographic regions [11–14].

Songbirds can exhibit coarse patterns of east–west

parallel connectivity at a continental [10,12,14,15] or sub-

continental [8,16] scale. Less common are patterns of

leapfrog migration, where northern breeding populations

have relatively southern non-breeding destinations [17],

and crossover connectivity, in which western populations

are connected to eastern non-breeding regions [18].

Many aerial insectivores in North America, particu-

larly long-distance migrants, have experienced steep

population declines since the mid-1980s [19,20]. There

is a strong geographic pattern in declines, which are

more prevalent towards the northeast of North America.

One explanation for this pattern is that north-eastern

regions receive relatively high levels of atmospheric pollu-

tants, including acid precipitation, which in turn has

negative effects on insect abundance and thus produc-

tivity of aerial insectivores [20]. Climate change is also

expected to disproportionately affect populations in

more seasonal habitats due to a phenological mismatch

between food availability and timing of breeding in

long-distance migrants [21]. Agricultural pesticide use

may also influence aerial insectivore populations, through

broad changes in their prey base [22]. Nebel et al. [20]

suggested that northern populations may face higher

mortality on the wintering grounds due to agricultural

pesticides in South America, either through direct mor-

tality or indirectly via reduction in food availability [23].

Associations with agricultural landscapes in the winter

quarters could increase exposure to pesticides and their

effects, potentially influencing year-round population

dynamics of long-distance migratory birds. If this latter

hypothesis is correct, then migratory connectivity should

be strong in aerial insectivores and northern popula-

tions are predicted to have stronger associations with

agricultural landscapes in the non-breeding season.

For the first time, using light-level geolocators, we

tracked individual (n ¼ 95) songbirds that originated

from coast-to-coast breeding populations in North

America and travelled to wintering sites in South America.

Purple martins, Progne subis, are declining throughout

much of their northern range [19,20] and their non-breed-

ing range extends from the relatively undisturbed upper

Amazon basin down to southern Brazil where the land-

scape has been converted almost entirely to agricultural

use. Our primary objectives were to (i) measure the

range-wide degree of migratory connectivity between

breeding and non-breeding populations of purple martin

and (ii) determine whether northern populations of this

declining aerial insectivore may face distinct threats

through greater association with agricultural habitat at

their non-breeding grounds in South America.

2. METHODS

(a) Geolocator deployment

Purple martins were captured and fitted with geolocators

during the breeding season by trapping birds in nest boxes

at eight breeding locations across the range (n ¼ 421, elec-

tronic supplementary material, table S1). Geolocators

(�1.6 g; MK10s/12/12s/14s/20, British Antarctic Survey)

were mounted using a leg-loop backpack harness [7,24] con-

structed with Teflon ribbon or, in some cases, polypropylene

thread. Geolocators were retrieved (n ¼ 120) at the same

breeding sites in the year following deployment. Geolocator

battery failure prior to arrival and residency at winter roosts

reduced sample size to 95. At the Pennsylvania breeding site

(2009–2011), the return rate of birds wearing geolocators

was not lower than that of bandedbirdswithout geolocators (see

the electronic supplementary material, table S2). Harness fail-

ure occurred for 10 per cent of birds when using a thread

harness but only 3 per cent of birds using a Teflon harness.

(b) Analysis of light data from geolocators

Geolocators measured the intensity of visible light every 1 min

and recorded the maximum reading within each 10 min inter-

val (MK16, MK10) or each 2 min interval (MK12, MK20).

Raw light data were corrected for clock drift (1–3 min lost

during 10-month deployment) using BASTrak and analysed

using TransEdit (British Antarctic Survey). We manually ver-

ified a sharp transition at each sunrise and sunset and ignored

obvious shading events during the daytime. We used a light

threshold level of 32 (MK16, MK10) or 5 (MK12, MK20)

to define sunrise and sunset transitions, and used live cali-

bration data (see below) from birds prior to migration to

determine the average sun elevation that corresponded with

this light threshold level at the breeding site. Transitions

with light peaks or non-linear transitions before sunrise or

after sunset were rejected from further analysis. Latitude

was not determined for 15 days before and after the fall

equinox when day length is similar everywhere.

Latitude and longitude coordinates were calculated with

Locator software (British Antarctic Survey) using midnight

locations because purple martins are diurnal migrants, and

therefore midnight locations should be more accurate because

birds are stationary during the night. No compensation

for longitudinal movement was made when estimating latitude

because birdswere assumed to be stationary from sunset to sun-

rise. Locations that were clearly anomalous (i.e. .1000 km

from previous location) were rejected as outliers.

All geolocators received a static pre-deployment and post-

deployment calibration for 1 week in open habitat with a

clear view of the horizon, to assess light sensitivity of units.

Light sensitivity was virtually identical among units of similar

model and was similar before and after deployment. Analysis

of live locations for birds prior to migration was used to

determine the average sun elevation (BASTrak, British

Antarctic Survey) that corresponds to the light level

(32 or 5, depending on geolocator model) that was used to

define sunrise and sunset transitions. The sun elevation, in

turn, is used in Locator (British Antarctic Survey) to deter-

mine location given the sun’s position on a given date and

time. Sun elevation was calculated separately for different

geolocator models, after birds finished nesting but before

migration, and averaged across individuals within each year

to better represent average conditions for migrating birds at

unknown locations.

(c) Estimating geolocator error

Geolocation accuracy was estimated for birds at each of the

eastern breeding populations by averaging locations of indi-

viduals in late July and early August, prior to autumn

migration. Average geolocator estimates closely matched

breeding sites (see the electronic supplementary material,
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table S3), and geolocator positions for individuals mis-

matched breeding sites by an average of 49–60 km in

latitude (range: 0–210 km) and 38–48 km in longitude

(0–196 km). Differences in geolocation accuracy among

individuals reflect individual pre-migration habitat at dawn

and dusk and differing weather conditions at the time

of live calibration. During the pre-migration period, the

standard error of latitude for an individual ranged from

0.15 to 1.0 (avg. 0.3) and for longitude ranged from

0.06 to 0.36 (avg. 0.2).

Arrival at the wintering ground was considered to have

occurred when the latitude and longitude ceased to shift in

a direction consistent with autumn migration, fluctuated

around a narrow range of values (less than 28 longitude),

consistent with a stationary bird, and fluctuated around a

similar value for at least 10 days within the winter range.

During stationary periods at the wintering grounds, location

was determined by calculating average latitude and longi-

tude during the period. Most (63 of 95) martins shifted

roost locations while at the wintering grounds, averaging

ca. 700 km between sites.

(d) Band recovery data for connectivity

Band recovery data can be used to independently assess

migratory connectivity, and to supplement geolocator tracking

data [8]. Analysis of North American band recovery data

(1921–2010) for purple martins banded at breeding sites

(n ¼ 2884 recoveries) identified 12 birds that were recove-

red in South America after autumn migration and before

spring migration (see the electronic supplementary material,

figure S1). However, 11 of 12 birds were banded as a nestling

and therefore their first breeding site was unknown. Band

recovery data were therefore not included in our analyses.

(e) GIS data and analysis

Northern breeding populations of purple martins (P. s. subis)

are declining more severely than central or southern popu-

lations (figure 2a). For all roost sites in South America

occupied for � 30 days, we used kernel density analysis to

test whether the core wintering region of northern breeding

populations was associated with more extensive agricultural

land use than breeding populations from central and

southern regions. We measured winter roost density of north-

ern (SD, MN, PA, NJ, n ¼ 59 individuals, 97 roosts) versus

southern and central (VA, OK, TX, n ¼ 30 individuals,

55 roosts) breeding populations based on points of

1–3 roosts per individual bird using fixed kernel densities

in the program ArcGIS 10 [25]. We determined kernel den-

sities at 20, 40, 60 and 80 per cent of the total density using a

sample radius of 50 km (or 0.45 decimal degrees) and a cell

size of 1 km2. We derived land-cover data for the purple

martin wintering range in South America from Eva et al.

[26]. We calculated per cent of agricultural land-cover

versus forest and other vegetated, non-agricultural cover

(hereafter called forest) within a 50 km radius (which corre-

sponds to longitudinal geolocator error) around each winter

roost and compared roosts of northern versus south-central

breeding birds using a t-test.

3. RESULTS
Migratory connectivity was very weak, and there was

extensive overlap in non-breeding sites within South

America for martins originating from across eastern

North America (figure 1). Individuals from breeding

sites up to 2000 km apart in both latitude and longitude

were often mapped to within 100 km of each other in

South America, the limit of geolocator accuracy. Birds

from the western subspecies, P. s. arboricola (n ¼ 6),

appear to have a distinct wintering region in southeastern

Brazil, whose core area is ca. 3000 km from the core

wintering region of the eastern subspecies.

Most individuals (76%; 68 of 89) of the eastern sub-

species roosted for the longest period in northern Brazil

(ca. 68 S to 18N) from the Rio Negro region eastward

to the mouth of the Amazon River (648 to 478W).

Many individuals had multiple roost sites that they occu-

pied for at least 30 days (1 roost: 26%; 2 roosts: 61%;

3 roosts: 11%). Individuals moved an average of 700 km

between roost sites (up to 1400 km in some cases), but

all these additional roosts were within the same geogra-

phic region as defined by the longest occupied roosts.

The average occupancy of the longest roost (124 days)

was more than double that of other roost sites (2nd long-

est roost: 55 days, 3rd longest: 43 days). For the longest

occupied roosts, there was no significant correlation

between breeding and wintering latitude (rs ¼ 20.12,

p ¼ 0.80, n ¼ 89), or between breeding and wintering

longitude (rs ¼ 20.04, p ¼ 0.77, n ¼ 89) (see the elec-

tronic supplementary material, figure S2) and sex was

not a significant factor in winter roost location

(t ¼ 21.46, df ¼ 90, p ¼ 0.15).

Individuals from a discrete breeding population had a

broad distribution at the wintering grounds. For the

Pennsylvania population, for instance, the average dis-

tance between individuals, for the longest occupied

roost sites, was 903 km (+23 km SE, n ¼ 34 individuals,

561 comparisons) with an average nearest neighbour dis-

tance of 140+20 km and average farthest neighbour

distance of 1787+336 km.

Birds originating fromnorthern and south-centralNorth

American breeding populations shared a similar and mostly

overlapping over-wintering area centred in northern Brazil

near the Amazon River (figure 2b). The distance between

the centre of northern (lat. 22.518, long. 262.198) and

south-central (lat. 21.348, long. 261.68) wintering ranges

was just 144 km, within a region dominated by relatively

undisturbed evergreen tropical forest (figure 2b). Ground

cover within 50 km of overwintering roosts was mostly

forest (average for all birds 91%+1 forest and 4%+0.8

agriculture). Northern breeding birds did not have greater

per cent agricultural ground cover at winter roosts than

birds from southern and central breeding sites

(t ¼ 20.59, df ¼ 109, p ¼ 0.55).

4. DISCUSSION
For the first time, we determined the degree of range-

wide migratory connectivity between northern breeding

populations and corresponding non-breeding areas in

the tropics using direct tracking of individual songbirds.

We show that seven breeding populations of the eastern

subspecies of purple martin (Progne s. subis) exhibit very

weak connectivity, and share a broad, overlapping non-

breeding region along the Amazon River in northern

Brazil. This is remarkable, considering that breeding

populations were separated by up to 2000 km, and

other songbird species have exhibited sub-continental

patterns of connectivity [8,16]. This shared core area
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encompasses only about 20 per cent of the entire winter-

ing distribution of the species, yet supports an estimated

80 per cent of the eastern subspecies. Threats to the

core overwintering areas in the upper Amazon could

therefore influence population dynamics across the east-

ern breeding range of purple martin.

Long-distance migratory songbirds that feed on aerial

insects, as a group, show strong breeding population

declines, with steeper declines in more northern popu-

lations of several species [20]. Direct tracking of

individual Swainson’s hawk (Buteo swainsonii ) using satel-

lite tags revealed that breeding population declines in

North America were likely a result of intensive spraying

of organophosphate insecticides and associated mortality

(approx. 1% of global population) at wintering sites in

South America [23,27]. Similarly, range-wide declines

in dickcissel (Spiza americana) were attributed to

associations with intensive agriculture and persecution

at their South American wintering sites [28]. The use of

agricultural habitats in the non-breeding season could

expose purple martins to pesticides, causing either

direct mortality or reduced food availability with sub-

sequent fitness costs, potentially contributing to declines

observed at breeding areas [20]. However, we found no

significant difference between declining and stable

breeding populations in the use of agricultural non-breed-

ing habitat. The core ‘wintering’ region for the eastern

subspecies of purple martin, including declining northern

breeding populations, is dominated by largely undisturbed

tropical rainforest (figure 2b). Our kernel density analyses

show that the centre of the core over-wintering area of

northern and south-central birds was only 144 km apart.

Owing to this overlap, eastern breeding populations likely

experience similar conditions at their overwintering sites

in SouthAmerica, andwintering ground events are unlikely

to be the cause of differential population declines in breed-

ing populations. Thus we conclude that exposure to

agricultural landscapes does not appear to be the cause of

declines of northern breeding populations.

Proposed alternative explanations for population

declines of purple martins (and other aerial insectivores)

include the effects of acid rain on prey abundance at

breeding sites, which is greatest in the northeast, and cli-

mate change [20]. For the latter, constrained migratory

schedules can limit adaptive responses to climate

change, and can result in severe population declines of

long-distance migratory songbirds [21,29,30], and these

patterns are expected to be stronger for birds in more sea-

sonal habitats [21], such as more northern breeding sites

of purple martin.

(b) (c)

(a)
(d )

(e) ( f )

Figure 1. Migratory connectivity of purple martin breeding populations tracked with geolocators to South America; range
shown with grey shading. The site with the longest winter residency (124+5.4 days, n ¼ 95) is shown for each individual (tri-
angles are males, circles are females) from (a) British Columbia (n ¼ 6), (b) Minnesota (white, n ¼ 5) and South Dakota
(black, n ¼ 9), (c) Pennsylvania (n ¼ 34), (d) New Jersey (n ¼ 11), (e) Oklahoma (white, n ¼ 3) and Texas (black, n ¼ 8),
and ( f ) Virginia (n ¼ 19). British Columbia birds are Progne subis arboricola and all other populations are P. s. subis. Error
bars for roost location in (b) shows typical standard deviation in latitude and longitude for estimated winter locations. Map
of North America shows the breeding range in grey and stars indicate the location of geolocator deployments.
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Populations of long-distance migratory birds may be

most limited during the overwintering and migratory

period, thus it is important to determine connections

between different periods of the annual cycle in order to

better understand, and mitigate, population declines

[2]. Determining continent-wide connectivity using

direct tracking provided the surprising result that breed-

ing populations separated by up to 2000 km share a

broad overwintering region in South America, suggesting

that future habitat disturbance in this region would have

a broad influence on population dynamics across the

range. We also quantified habitat use thousands of

kilometres away from breeding sites to show that the

patterns of population decline in this long-distance

migratory aerial insectivore are not associated with differ-

ent threats on the wintering grounds. The dramatic

increase in direct tracking of songbirds will soon establish

the levels of migratory connectivity in a wide range of

species, allowing for better conservation and management

of declining songbirds.

This was a large collaborative project that involved dozens of
private and public funding sources and scores of volunteers
(see the electronic supplementary material, additional
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Figure 2. (a) Population trends based on the BBS data (1966–2010). Kernel density of all winter roost locations occupied for
�30 days by martins (P. s. subis) from (b) northern breeding populations (Minnesota, South Dakota, Pennsylvania, New Jersey;

n ¼ 59 individuals, 97 roosts) and (c) central/southern breeding populations (Oklahoma, Texas, Virginia; n ¼ 30 individuals,
55 roosts). Maps show kernels of 20, 40, 60 and 80% of the total density. Green shading represents forest and non-agricultural
vegetated cover; yellow shading represents agricultural lands.
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I was involved in the planning and implementation of fieldwork portion of this 

project for deployments and retrievals on purple martins. I trapped adult purple 

martins, measured, banded and blood sampled them prior to them receiving a 

geolocator. Conducted most of the visual searching for tagged individuals as they 

returned each spring and trapped any purple martins carrying a geolocator.  
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CONSISTENT RANGE-WIDE PATTERN IN FALL MIGRATION STRATEGY OF 

PURPLE MARTIN (PROGNE SUBIS), DESPITE DIFFERENT MIGRATION ROUTES 

AT THE GULF OF MEXICO
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Abstract.—The migration rate of Nearctic–Neotropic songbirds is expected to be influenced by whether the route is around or across 

migration barriers such as the Gulf of Mexico. To examine factors that influence fall migration strategies, we used light-level geolocators 

to track the journeys of  Purple Martins (Progne subis) originating from breeding colonies across the eastern range of the species. We 

expected individuals that crossed the Gulf of Mexico to have slower migration rates, and more stopover days in Central America to refuel 

after the crossing, than birds that took routes around the gulf. Owing to expected variability in conditions experienced by individuals en 

route, we anticipated that departure date would be a poor predictor of arrival date within and among populations. Despite widely separated 

breeding origins, one-way journeys of >, km, and high variability in departure dates and routes, individuals showed a strikingly similar 

fall migration strategy. Fall migration featured a rapid ( km day–) initial migration covering ≥, km, followed by prolonged stopovers 

and a slower rate of travel before the birds continued to South America. Contrary to predictions, route explained little of the variation in 

the overall migration rate or the rate to Central America. Stopover duration in Central America was unrelated to whether birds crossed or 

circumnavigated the Gulf of Mexico. As expected, breeding location (primarily longitude) was the strongest predictor of the routes that 

birds took at this barrier. Within-breeding-region departure date alone predicted much of the variation in arrival date at the first winter 

roost, but route was not a significant factor. Our results reveal a consistent range-wide pattern in fall migration strategy, with route and 

migration timing predicting little of the variation in rate or stopover duration. Received  December , accepted  March .

Key words: autumn migration, geologger, migration rate, migration schedule, Progne subis, Purple Martin, songbird, South America, 

stopover.

Patrones Consistentes en las Estrategias de Migración de Otoño de Progne subis en Toda su Distribución a Pesar de 
Presentar Rutas Migratorias Diferentes en el Golfo de México.

Resumen.—Se espera que la tasa de migración de aves canoras entre el Neártico y el Neotrópico se vea influenciada por si la ruta migratoria 

se da alrededor o a través de barreras para la migración como el golfo de México. Para examinar los factores que influyen en las estrategias de 

migración de otoño, usamos geolocalizadores basados en niveles de luz para seguir el viaje de  individuos de la especie Progne subis desde 

colonias reproductivas distribuidas en el sector oriental de la distribución de la especie. Esperábamos que los individuos que cruzaban el golfo de 

México presentaran tasas de migración más lentas,y más días de parada en Centro América para reabastecerse después del cruce en comparación 

con las aves que tomaban rutas rodeando el golfo. Debido a la variabilidad esperada en las condiciones experimentadas por cada individuo en la 

ruta, anticipamos que la fecha de salida sería un predictor pobre de la fecha de llegada dentro de poblaciones y entre poblaciones. A pesar de que 

los sitios originales de reproducción estaban ampliamente separados, de los viajes de más de  km y de la alta variabilidad en las fechas y rutas 
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species: Pennsylvania (–; °′′′N, °′′′W), 

Texas (–; °′N, °′W), Virginia (–; 

°′′′N, °′′′W), South Dakota (; °′′′N, 

°′′′W and °′′′N, °′′′W), Minnesota (; 

°′′′N, °′′′W; °′′′N, °′′′W; °′′′N, 

°′′′W; and °′′′N, °′′′W), New Jersey (; 

°′′′N, °′′′W), and Oklahoma (; °′′′N, 

°′′′W). All birds tracked on fall migration were at least  year 

old. See Fraser et al. () for details regarding geolocator type 

and mounting procedures by population and year. Geolocators 

were retrieved at the same breeding sites in the year after deploy-

ment, and battery failure prior to completion of fall migration 

reduced the sample size to , with lower sample sizes for some 

variables owing to the equinox (when day length is similar across 

latitudes) or poor-quality sunrise–sunset transitions because of 

shading or light pollution. 

Analysis of light data from geolocators.—Raw light data were 

corrected for clock drift using BASTRAK and analyzed using 

TRANSEDIT (British Antarctic Survey). We manually verified a 

sharp transition at each sunrise and sunset and ignored obvious 

shading events during the daytime. Transitions with light peaks or 

nonlinear transitions before sunrise or after sunset were rejected 

from further analysis. We used a light-level threshold of  (MK, 

MK) or  (MK, MK) to define sunrise and sunset transi-

tions and used live calibration data from birds prior to migration 

to determine the average sun elevation that corresponded with 

this threshold at the breeding site (for additional methods specific 

to Oklahoma geolocators, see Fraser et al. ). Latitude was not 

determined for  days before and after the fall equinox, when day 

length is similar everywhere. Latitude and longitude coordinates 

were calculated with LOCATOR software (British Antarctic Sur-

vey), using midnight locations because Purple Martins are diurnal 

migrants. Locations that were clearly anomalous (i.e., >, km 

from previous location) were rejected as outliers. Sun elevation was 

calculated separately for different geolocator models, after birds 

finished nesting but before migration, and averaged across individ-

uals within each year to better represent average conditions for mi-

grating birds at unknown locations. Average geolocator accuracy at 

each breeding location was assessed prior to fall migration. Average 

accuracy ranged from  to  km in latitude (range: – km)  

and from  to  km in longitude (range: – km) for differ-

ent breeding sites; see additional details and return rates of birds 

with and without geolocators in Fraser et al. (). Movements of 

> km in latitude and > km in longitude away from the breed-

ing site, and from one stopover location to another, were defined as 

migratory movements. Movements during the fall equinox, when 

latitude could not be determined, were based on longitude alone. 

Locations that remained consistent for ≥ days and were within the 

location error of stationary birds were defined as stopover locations. 

de salida, todos los individuos mostraron una estrategia de migración de otoño sorprendentemente similar. La migración de otoño consistió de 

una migración inicial rápida ( km día-) de más de  km, seguida por paradas prolongadas y una tasa más lenta de viaje antes de que las aves 

continuaran hacia Sur América. De modo contrario a nuestras predicciones, la ruta explicó poco de la variación en la tasa migratoria general o en 

la tasa de llegada a Centro América. La duración de las paradas en Centro América no estuvo relacionada con el hecho de que las aves hubiesen 

cruzado o circunnavegado el golfo de México. Como se esperaba, la localidad de reproducción (principalmente la longitud) fue el predictor más 

fuerte de las rutas que tomaron las aves al encontrarse con esta barrera. La fecha de salida estimada dentro de las regiones reproductivas predijo 

por sí sola mucha de la variación en la fecha de llegada al primer sitio de descanso de invierno, pero la ruta no fue un factor significativo. Nuestros 

resultados revelan un patrón consistente a través de la distribución geográfica de P. subis en la estrategia migratoria de otoño, y que muy poca de la 

variación en la tasa de migración o en la duración de las paradas fue explicada por la ruta y el momento en que tiene lugar la migración.

Route selection and migration rates of birds may be shaped by 

selection pressure to avoid risk and arrive optimally at both stop-

over locations and final destinations (Alerstam , Newton 

). Large open-water crossings, such as the Gulf of Mexico, may  

serve as migration barriers and influence migration rates if birds  

require greater refueling time before or after crossing (Newton 

). Factors that affect individual decisions to either cross or 

circumnavigate large barriers, and subsequent effects of that deci-

sion on migration rate and arrival date at wintering sites, are poorly 

understood. For passerines, other factors such as departure date 

and migration distance may also affect migration rate. Birds that 

depart breeding sites later in the year may be able to accumulate lar-

ger fat stores prior to migration that support a faster migration rate 

and effectively allow them to “catch up” to birds that departed ear-

lier (Fransson , Newton ). Birds with longer overall migra-

tion distances may also travel at a faster rate; passerines traveling 

through Europe to destinations , km away traveled at about 

half the rate of those with journeys of ,–, km (Alerstam 

). Owing to variability in migration speed, stopover duration, 

and routes, departure date alone is expected to be a poor predictor 

of arrival date at the destination (Newton , Both ). 

Previous estimates of fall migration strategy (here referring 

to rate, departure date, arrival date, and stopover duration or tim-

ing) have been based largely on band recovery data, providing only 

a snapshot of behavior. Direct tracking using geolocators allows 

an examination of migration strategies for many individuals over  

the whole of the migratory journey. We tracked the trans- 

hemispheric migration of individual Purple Martins (Progne 

subis) that originated from seven breeding populations spanning 

the eastern part of the species’ North American breeding range. 

We expected, given the wide spread in latitude and longitude be-

tween breeding populations, that the fall migration route would 

differ among populations, particularly at the Gulf of Mexico. We 

predicted greater stopover duration and a slower rate of travel 

in Central America for individuals crossing the Gulf of Mexico 

(–, km) because birds presumably require more refueling 

time after a nonstop flight across a large open-water barrier than 

after they follow an overland route around the barrier (Newton 

). Because en route factors experienced by individual birds 

are expected to uncouple the relationship between departure and 

arrival date within and among populations (Newton , Both 

), we predicted that departure dates in fall would explain little 

of the variation in arrival dates at winter roosts in South America.

METHODS

Geolocator deployment.—Purple Martins were captured and 

fitted with geolocators over several years during the breed-

ing season in seven regions across the eastern range of the 88
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Arrival at the wintering ground was considered to have occurred 

when the latitude and longitude were consistent with a stationary 

bird; that is, latitude and longitude () ceased to shift in a direction 

consistent with fall migration, () fluctuated around a narrow range 

of values (<° longitude), and () fluctuated around a similar value 

for ≥ days. To explore migration rate and stopover duration in 

the vicinity of the Gulf of Mexico, we analyzed the migration rate 

within each breeding population separately for three stages of fall 

migration: breeding site to the tropics (Gulf of Mexico, ~.°N), 

travel within Central America, and entry into South America to 

first night at the winter roost. Migration rate is defined as the num-

ber of kilometers traveled divided by the total number of days trav-

eled, including stopover days. Migration distance was calculated 

as the straight-line distance between breeding sites, stopover loca-

tions, and winter sites.

Statistical analyses.—To test predictors of circum- versus 

trans-Gulf crossing, we fit general linear models (GLMs) with 

breeding latitude, breeding longitude, fall departure date, and sex as 

factors. Using hypothesis-testing procedures, we dropped the least 

significant explanatory variables one-by-one on the basis of t and 

P values to arrive at an optimal model (Zuur et al. ). We used 

similar methods to explore factors that influenced the overall fall 

migration rate (km day–) and the rate on the first leg of the journey 

(between the breeding site and arrival in Central America), with 

route at Gulf of Mexico (across, east route around, or west route 

around), departure date, distance (overall and between breeding 

site and Central America), and sex as factors. We expected the mi-

gration rate (overall and first leg) to be faster for birds that traveled 

a greater distance (Alerstam ) and departed later from breed-

ing colonies (Newton ). We expected a slower rate of travel for 

birds that made a direct crossing of the Gulf, owing to greater stop-

over duration for fueling before and after crossing. We also exam-

ined variation in stopover duration (days) in Central America, the 

ratio of days spent in flight to days spent at stopover, and the arrival 

date at first winter roost in South America. Because of the presumed 

greater stopover time needed to fuel before and after a crossing of 

the Gulf of Mexico, we expected birds taking this route to have a 

longer stopover in Central America, a lower ratio of flight to stop-

over nights, and later arrival at winter roosts. To compare variation 

in migration rate by stage of migration (breeding site to tropics, 

through Central America, to South America) and breeding region, 

we fit general linear mixed-effects models with region and stage as 

fixed factors and individual as a random factor. We grouped breed-

ing regions by longitudinal proximity because we expected longi-

tude to predict route and migration rate. Because of large latitudinal 

differences between Texas–Oklahoma and South Dakota–Minne-

sota that might also influence migration strategy, these colonies 

were grouped separately despite longitudinal similarity. Some mi-

gration variables were not available for all birds because of equinox, 

missing days, and battery failure. All analyses were conducted using 

R (R Development Core Team ). Results are presented as means 

± SE unless otherwise noted.

RESULTS

As expected, once birds reached the Gulf of Mexico, the fall 

migration route varied widely among populations across the 

breeding range (Fig. ) and, in some cases, also varied within pop-

ulations. However, migration routes of Purple Martins at the Gulf 

of Mexico were predicted reasonably well by breeding longitude. 

Birds from more western breeding populations (South Dakota, 

Texas) were much more likely to take a western route around the 

gulf, whereas those from breeding populations nearer to the At-

lantic coast (New Jersey, Virginia) took a mostly overland route 

eastward around the gulf, traversing the Florida panhandle and 

crossing a shorter open-water distance to Cuba, followed by a 

flight to either the Yucatan Peninsula or Central America. Birds 

that bred directly north of the Gulf of Mexico (Pennsylvania) were 

the most likely to make a direct gulf crossing to the Yucatan Pen-

insula. In the GLM fitted to describe the route taken at the Gulf of 

Mexico, only breeding latitude (model estimate = –. ± .) 

and longitude (model estimate = . ± .) were retained in 

the top model (F = ., df =  and , r = ., P < .), illus-

trating that departure time and sex did not predict whether birds 

crossed or went around the gulf. 

Despite different breeding origins and migration routes 

across or around the gulf (Fig. ), individuals from widely sepa-

rated populations (≤, km) and with different migration routes 

showed a strikingly similar fall migration strategy (Fig. ). The mi-

gration rate was very rapid for the first , km for all popula-

tions (mean breeding population rate = – km day–), after 

which individuals had a slower overall migration rate during the 

FIG. 1. Breeding sites and fall migration routes at the Gulf of Mexico of 
birds originating from seven breeding colonies (South Dakota, n = 9; 
Minnesota, n = 5; Pennsylvania, n = 34; New Jersey, n = 11; Virginia, n = 
20; Oklahoma, n = 3; and Texas, n = 8). Pie charts show the percentage 
of birds from each breeding colony that used one of three major routes 
at the Gulf of Mexico (blue = western route around the gulf, red = direct 
crossing of the gulf, and green = eastern route around the gulf). Lines  
illustrate tracks taken by individuals for each of the three major routes.
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second leg of their journey (– km day–) owing to long stop-

overs (average [± SD] stopover duration =  ± ; n = ) in the 

Yucatan peninsula, Cuba–Caribbean, and Central America be-

fore reaching Panama. The migration rate then increased across 

northern South America (– km day–) to the first winter-

ing site (Fig. ). The migration rate varied significantly with stage  

of migration (North, Central, and South America; t = –.,  

df = , P < .), but breeding region was not a significant pre-

dictor of rate (t = –., df = , P = .). The route taken at the 

Gulf of Mexico (across, east route around, or west route around) did 

not influence the migration rate from the breeding site to the first 

night at the roost in South America; migration rate was also inde-

pendent of distance from the breeding colony, departure date from 

the breeding grounds, and sex (F = ., df =  and , R = ., P <  

.). For the first rapid leg of the journey between the breeding site 

and arrival in the tropics, migration route did not influence rate. 

Fall departure date and distance were retained as significant factors 

in the top model but, overall, were poor predictors of migration rate 

because they explained just % of the variation in migration rate 

(km day–) between the breeding site and Central America (F = ., 

df =  and , R = ., P < .). Fall departure date and migration 

rate over the entire route were positively correlated (model estimate 

= . ± ., t = ., P < .), as were distance from the breeding 

colony and rate (model estimate = . ± ., t = ., P < .). 

Birds that crossed the Gulf of Mexico were expected to have a 

greater stopover duration in Central America; however, our GLM 

results showed that stopover duration was independent of route at 

Gulf of Mexico, rate and distance from breeding site to Mexico, 

and sex, in that none of these factors examined to explore varia-

tion in stopover duration (days) was significant. Route also did not 

account for variation in the ratio of flight to stopover days over the 

whole journey, showing that birds crossing the Gulf did not take a 

proportionally greater number of stopover days to compensate for 

the long open-water crossing. 

Departure date from the breeding colony alone predicted much 

of the variation in arrival date at the first winter roosts in South Amer-

ica (Fig. ). The GLM analysis of arrival date on the winter grounds 

included departure date from the breeding ground, route at Gulf of 

Mexico, overall migration distance, and sex, but only fall departure 

date (model estimate = . ± .) and distance (model estimate 

= . ± .) were retained in the top model, which explained 

% of the variation (F = ., df =  and , r = ., P < .). 

DISCUSSION

Purple Martins have been described as leisurely diurnal migrants 

that forage while migrating (Brown ), but our results show 

that individuals that originated from breeding populations across 

eastern North America had very rapid migration ( ±  [SD] 

km day–) during the first days of fall migration, followed by a pro-

longed stopover in Central America. It is not known how food 

supply (aerial insects) varies along the journey or affects stopover 

duration, or whether stopover sites used in Central America are 

locations with regionally abundant food resources. Purple Mar-

tins do not exhibit the expected stop–refuel–resume strategy 

thought to be typical of migrating songbirds (Hedenström and 

Alerstam ). Instead, Purple Martins gather at premigratory 

roosts near their breeding sites for – weeks prior to fall migra-

tion, then travel ~, km in less than  week. The prolonged 

Central American stopover could also be a staging site for subse-

quent rapid migration to Brazil.

Within species, migration rate is generally predicted to 

be highly flexible and influenced by the availability of fueling 

resources at stopover sites, migration routes, migration barriers, 

distance of migration, weather, molt strategies, and distance to 

the final destination (Newton ). Contrary to predictions, our 

results reveal that fall route at Gulf of Mexico, departure date, 

and migration distance were not significant predictors of Pur-

ple Martins’ start-to-finish migration rate and explained little of 

the variation in the migration rate to Central America. Whether 

birds crossed or took an overland route around the Gulf of Mex-

ico also did not influence stopover duration in Central America, 

which suggests that “barrier” crossing did not require greater time 

to refuel after an extended migratory flight. It is surprising that 

our data reveal similar migration rates among widely separated 

breeding populations and that the overall migration rate is largely 

independent of breeding origin, timing, route, and distance. 

We speculate that the subsequent stopover by many individ-

uals in the Yucatan Peninsula, which includes birds breeding in 

Texas that made a detour to this region (Fig. ), is a staging area 

to refuel for the longer migration to the Amazon basin and/or 

serves as a location to continue their annual molt. Purple Mar-

tins may begin flight feather molt in premigratory roosts that form 

throughout eastern North America in late summer and early fall 

(Russell et al. ), but museum records suggest that this molt is 

interrupted during migration (Niles ). In some western song-

birds, long stopovers in coastal western Mexico are associated 

with molt (Rohwer et al. , ) during the seasonal flush in 

food resources with monsoon rains. The Yucatan Peninsula may 

serve Purple Martins in a similar manner; it remains to be deter-

mined whether a seasonal abundance of aerial insects there might 

support the nutritional and energetic costs of molt. 

That winter arrival dates in the Amazon basin can be pre-

dicted largely from departure dates from breeding sites >, km 

away is surprising, especially given the different migration routes 

across (or around) the Gulf of Mexico and long stopovers during 

FIG. 2. Mean (± SE) fall migration rate by zone (North America, Central 
America, and South America) and grouped by breeding region (black 
bars = Pennsylvania, n = 31; light gray = Oklahoma and Texas, n = 11; 
dark gray = New Jersey and Virginia, n = 27; and white = South Dakota 
and Minnesota, n = 14). 
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autumn migration (Tøttrup et al. ). Even within populations, 

departure date was a strong predictor of arrival date. A predictable 

trans-hemispheric migration schedule that includes long stationary 

periods en route has been described for shorebirds (Hedenström 

and Alerstam , Conklin et al. ) but has not been previously 

documented in songbirds. We suggest that the range-wide migra-

tion strategy described here is more similar to shorebird migration, 

in which individuals have prolonged staging periods to refuel, fol-

lowed by rapid migration to the next refueling site (Newton ). 

As in shorebirds and waterbirds (Baker et al. ), the convergence 

of widely separated breeding populations on predictable staging 

areas during migration increases vulnerability to localized reduc-

tion in food resources due to habitat loss or climate change.
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approximately 1200 nestlings and 200 adults annually. I also conducted the radio-

tracking field work including deployment of tags on nestlings and most of the radio-

telemetry work.  
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BROOD SIZE AND LATE BREEDING ARE NEGATIVELY RELATED TO JUVENILE 

SURVIVAL IN A NEOTROPICAL MIGRATORY SONGBIRD

SCOTT A. TAROF,1,3 PATRICK M. KRAMER,1 JAMES R. HILL III,2 JOHN TAUTIN,2 AND

BRIDGET J. M. STUTCHBURY1

1Present address: Department of Biology, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada; and
2Purple Martin Conservation Association, 301 Peninsula Drive, Suite 6, Erie, Pennsylvania 16505, USA

Abstract.—Widespread decline of Neotropical migrant songbirds requires better understanding of the mechanisms driving 

juvenile mortality. We used mark–resight encounter histories of , banded fledglings (–) to test whether late breeding or large 

brood size negatively affected apparent annual and migration–wintering survival probability of juvenile Purple Martins (Progne subis). We 

estimated apparent annual juvenile survival (ϕ
a
, fledging to  year old) by resighting individuals as adults at regional breeding colonies and 

at a premigratory roost. We tested for carryover effects of fledge week and brood size on migration–wintering survival (ϕ
m

, premigratory 

roost to  year old) using two encounter occasions per season (premigratory roost, breeding colony) to partition annual survival into 

premigration versus migration–wintering survival. Annual survival (± SE) was . ± . and the best model (model weight = .) 

included week of fledging and brood size, with survival probability decreasing with increasing fledge date and brood size. Apparent 

fledgling survival probability to premigratory roosts (ϕ
r
) was . ± . and migration–wintering juvenile survival (ϕ

m
) averaged . ± 

. (range: .–. among years). The best model included an effect of fledging week (model weight = .) on migration–wintering 

survival but little support for brood size effects. Late-fledged young that survive to begin migration may incur higher subsequent mortality 

because of less foraging time and experience before migration. Telemetry of  fledglings in  also revealed high premigration survival 

to the premigratory roost (.). Most (%) juvenile mortality occurred after the onset of migration. Juvenile recruitment and population 

dynamics are likely closely linked to migration and wintering ground threats. Received  April , accepted  August .

Key words: carryover effects, dispersal movements, juvenile survival, migration survival, Progne subis, Purple Martin, recruitment.

El Tamaño de la Parvada y la Reproducción Tardía se Relacionan Negativamente con la Supervivencia de 
Individuos Jóvenes en un Ave Canora Migratoria Neotropical

Resumen.—La disminución generalizada de las poblaciones de aves canoras migratorias neotropicales requiere una mejor comprensión 

de los mecanismos que afectan la mortalidad juvenil. Utilizamos datos históricos de marcado y reavistamiento de  polluelos anillados 

(-) para comprobar si la reproducción tardía o el tamaño de parvada grande afectaron negativamente la probabilidad de supervivencia 

aparente anual de invernada y la migración de aves jóvenes de la especie Progne subis. Estimamos la supervivencia aparente anual de las aves 

jóvenes (φ
a
, desde volantones hasta  año de edad) a partir de los individuos reavistados como adultos en las colonias de cría regional y en un 

sitio de descanso premigratorio Pusimos a prueba los efectos de la semana de emplumamiento y el tamaño de la parvada sobre la supervivencia 

durante el período migración-invernada (φ
m

, descanso premigratorio a  año de edad), utilizando dos ocasiones encuentro por temporada 

(descanso premigratorio y colonias de cría) para separar la supervivencia anual en la supervivencia antes de la migración y la supervivencia 

migración-invernada. La supervivencia anual (± DE) fue de . ± . y el mejor modelo (peso del modelo = .) incluyó la semana de 

emplumamiento y el tamaño de la parvada, y una disminución de la probabilidad de supervivencia con el aumento de la fecha y el tamaño de 

la parvada. La probabilidad de supervivencia aparente hasta el descanso premigratorio (φr) fue de . ± . y la supervivencia de los jóvenes 

durante el período migración - invernada (φm) fue en promedio de . ± . (rango: .-. entre los años). El mejor modelo incluyó un efecto 

de la semana de emplumamiento (peso del modelo = ,) sobre la supervivencia migración-invernada, pero muy poco apoyo para un efecto 

del tamaño de la parvada. Las aves jóvenes que emplumaron tardíamente y que sobrevivieron hasta comenzar la migración pueden incurrir en 

una mayor mortalidad posterior por tener menos tiempo de forrajeo y experiencia antes de la migración. El seguimiento por telemetría de  

polluelos en el año  también reveló una supervivencia alta durante el período previo a la migración hasta el descanso premigratorio (.). 

Gran parte (%) de la mortalidad de las aves jóvenes se produjo después del inicio de la migración. La dinámica del reclutamiento de aves jóvenes 

y de la población están probablemente estrechamente vinculadas con las amenazas en las áreas de migración y de invernada.
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period affects avian life history tradeoffs, but obtaining these met-

rics is problematic in migratory birds for several reasons. Survival 

to first reproduction is difficult to estimate given high natal dis-

persal and low philopatry in many species. Resighting juveniles as 

adults requires extensive surveys on the breeding grounds (Win-

kler et al. , Balbontín et al. ). Furthermore, studies rarely 

distinguish between fitness costs to fledgling versus juvenile sur-

vival because newly fledged birds are often difficult to observe 

without radiotelemetry and fledglings disperse off their natal ter-

ritory prior to migration (Vega Rivera et al. , Imlay et al. ).

Here, we used mark–resight encounter histories for almost 

, fledglings banded from  to  and resighted up to 

 to test whether timing of breeding or brood size predicted 

juvenile survival in the Purple Martin (Progne subis), a colonial 

swallow that migrates to South America for the non-breeding 

season (Stutchbury et al. b). Our study provides a unique 

opportunity to quantify offspring survival in a long-distance 

Neotropical migrant because we resighted % of fledglings as 

adults in subsequent years by conducting intensive surveys of lo-

cal breeding colonies and a premigratory roost (hereafter “roost”). 

Tens of thousands of Purple Martins in our study area gather at a 

large roost from late July through early September, which allowed 

us to resight adults whose breeding colony was unknown. We also 

resighted fledglings at the roost many weeks after they left their 

natal colony and thus could partition annual juvenile survival into 

premigration versus migration–wintering survival. 

Using maximum likelihood estimation and model fitting in 

Program MARK we evaluated the effects of fledging date and brood 

size on apparent annual juvenile (ϕ
a
, fledging to  year old or second 

year [SY]). First we tested whether fledgling Purple Martins from 

earlier nests or smaller broods exhibit higher apparent survival 

compared with those reared in later nests or larger broods. Previ-

ous tests of these hypotheses have not made explicit predictions 

about when in the annual cycle survival costs are incurred (e.g., van 

Noordwijk et al. ). Resightings at the roost allowed us to parti-

tion annual survival into that from fledging to the roost (ϕ
r
) versus 

migration–wintering survival (ϕ
m

, premigratory juvenile to  year 

old). If low survival is a consequence of fledgling predation risk we 

predicted a strong time of season effect on apparent annual survival 

but not migration–wintering survival. If low survival is a result of 

an ontological handicap from poor provisioning or resource com-

petition we predicted timing of breeding effects to carry over into 

migration–wintering survival because of high energetic costs of 

migration (Stutchbury et al. ). We estimated premigration sur-

vival of fledglings to the roost (ϕ
r
) via band resightings at the roost 

(–) and by radiotracking newly fledged young in . We 

show that timing of fledging but not brood size is associated with 

low migration–wintering survival and conclude that most first-year 

mortality of Purple Martins occurs after the onset of migration.

METHODS

Study area and species.—Purple Martins are North American 

breeding swallows that nest in colonies of ≤ pairs and, in east-

ern North America, breed exclusively in artificial housing (Brown 

). In our study area adults (≥ years old or after second year 

[ASY]) arrive in late April and SY -year-olds are first seen at 

breeding colonies in mid-May. Purple Martins are single brooded 

In animal populations, factors that influence survival 

and recruitment as a first-time breeder are quintessential to fit-

ness and the evolution of life history strategies (Clutton-Brock 

, Low and Pärt , Grorud-Colvert and Sponaugle ; re-

viewed by Doligez and Pärt ). In birds, mechanisms that drive 

classic reproductive tradeoffs between clutch size and offspring 

recruitment probability have been studied intensively (Newton , 

Magrath , Morton et al. ). Variation in survival and recruit-

ment of fledglings or juveniles (reviewed by Müller et al. ) may 

be explained by () timing of breeding (Verboven and Visser , 

Naef-Daenzer et al. , Wheelwright et al. , Dolan et al. ) 

or () parental care (Naef-Daenzer and Keller , Schiegg et al. 

, Schwagmeyer and Mock ). Late breeding is hypothesized 

to affect individual fitness by reducing fledgling or juvenile survival 

because of seasonal decline in food availability to young in the nest 

(Verboven and Visser , Wheelwright et al. ; but see Mon-

rós et al. ), although provisioning larger prey items can amelio-

rate this seasonal trend (Schwagmeyer and Mock ). The fledgling 

stage, when young have left the nest but still receive parental care, is 

a period of high mortality risk for many passerines, especially during 

the first week after fledging (Kershner et al. , Rush and Stutch-

bury , Low and Pärt ), and temporal variation in fledgling 

predation risk may favor early nesting (Naef-Daenzer et  al. , 

Götmark ). Other possible mechanisms underpinning the tim-

ing of breeding hypothesis include resource competition between 

early- versus late-fledged young (Verboven and Visser ) and 

variation in social dominance of young birds that differ in age (Heg 

and van der Velde ). Although many studies have shown low 

juvenile recruitment among offspring of late breeders, the underly-

ing mechanism causing mortality often remains unknown (Shutler 

et al. ). In addition to breeding effects on fledgling and juvenile 

survival, overwinter survival can also depend on winter habitat qual-

ity (Angelier et al. ) and likelihood of recruitment can be strongly 

influenced by sex (Greenwood and Harvey ). 

The parental care hypothesis states that fledgling or juvenile 

survival may depend on food delivery by parents and parental attri-

butes of quality such as age or physiological condition (Schiegg et al. 

). Young with older social parents or parents in superior condi-

tion should be more likely to survive to reproduction because they 

receive higher-quality care. This hypothesis can also operate through 

parental provisioning rate and brood size variation (Naef-Daenzer 

and Keller ). Brood size manipulations have shown adverse ef-

fects on nestling body mass and growth for individuals from enlarged 

broods (Siefferman and Hill ). If food is limited, offspring growth 

may be compromised in larger broods, which in turn could affect off-

spring survival once birds leave the nest (van Noordwijk et al. , 

Naef-Daenzer and Keller ). In their study on parental foraging 

effects on nestling growth Naef-Daenzer and Keller () noted that 

a brood size effect on nestling growth might carry over to also re-

duce overwintering survival of juveniles (see also Reid et al. ). 

Yet Shutler et al. () found that although nestling body mass was 

lower in enlarged Tree Swallow (Tachycineta bicolor) broods, recruit-

ment of juveniles was not affected significantly by brood size.

Carryover effects of breeding season events on juvenile sur-

vival may be particularly strong in long-distance migrants be-

cause of high survival costs of migration (Sillett and Holmes 

). Consequently, accurate estimates of fledgling and juvenile 

survival are required to better understand how this vulnerable 
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and forage on aerial insects. Juveniles are independent from pa-

rental care – days after fledging (Brown ) and in late sum-

mer they aggregate with adults in roosts (Allen and Nice , 

Morton and Patterson , present study). 

Our study area (Fig. ) comprised two “core” breeding colo-

nies,  km apart, south of Erie, Pennsylvania (°′N, °′W), 

two dozen smaller peripheral colonies, and a roost at the base of 

Presque Isle State Park on the south shore of Lake Erie (°′.′′N, 

°′.′′W) that have been monitored by the Purple Martin 

Conservation Association (PMCA) since  (Stutchbury et al. 

a). The Indianhead colony (°′.′′N, °′.′′W), 

located on Edinboro Lake, consisted of – pairs year– breed-

ing in three wooden houses and several dozen natural and plastic 

gourds. The Troyer colony (°′.′′N, °′.′′W) in Con-

neautville had – pairs year– that bred in nine wooden or 

plastic houses and several dozen nest gourds. Nests were initiated 

from late April through mid-July and checked approximately every 

 days to monitor nesting success. All nestlings were banded with 

a federal band and a color band with a unique alphanumeric code. 

Young fledged from the nest – days posthatch. Parental age 

class (SY or ASY based on plumage color) was available for only % 

of nests so this variable was not included in survival analyses. 

Mark–recapture studies typically cannot distinguish perma-

nent emigration from actual mortality (Low and Pärt ), thus 

resulting in underestimates of true survival (Cilimburg et al. , 

Keyser et al. , Marshall et al. ). To obtain a more robust 

estimate of true annual survival we searched systematically for 

banded birds at the two intensively studied core breeding colonies, 

at all other breeding colonies within  km of the core colonies, 

FIG. 1. Location of study area in North America (inset) and of the two 
core Purple Martin breeding colonies in northwestern Pennsylvania 
where nestlings were banded and resighted (black circles; Indianhead, 
Troyer). Peripheral colonies (white circles) surveyed annually to resight 
juveniles that dispersed from their natal colony and the roost (“R”) on 
the south shore of Lake Erie, where Purple Martins in the region gathered 
before migration, also shown.

and at the roost (Fig. ; Stutchbury et al. a). Identity of juve-

niles and adults was determined primarily by using a telescope at 

close range to read color bands when birds were perched on their 

nest houses or wires. Observers visited the core breeding colonies 

several times each week from April through early August and each 

peripheral colony was visited at least once during the nestling 

period to identify feeding parents. Breeding adults were some-

times captured when feeding young or sleeping in their houses 

at night, but encounter histories were composed almost entirely 

(>%) of resightings. We restricted our analyses to nestlings 

banded between  and  because our resighting efforts at 

the peripheral colonies and the roost were most intensive during 

those years. Overall, % (range: –% year–) of all fledglings 

(n = ,) were seen in the study area as adults.

The roost in this region attracts >, Purple Martins 

each night, peaking in mid-August, and is attended by individu-

als from ≤ km away (Hill ). The PMCA searched intensively 

for banded Purple Martins perched on wires at several staging 

areas in Presque Isle State Park near the roost (–. km). These 

staging areas were searched – nights per week from mid-July 

to the end of August, and as many as  banded individuals were 

seen nightly. Bands were read at these staging areas before banded 

birds entered the roost for the night. Of the thousands of birds at-

tending the roost on a given night, only a fraction visited the stag-

ing area. The average date of sighting a banded juvenile at the roost 

was  August and % (range: –% year–) of fledglings were 

resighted as juveniles at the roost (n = ,).

Statistical analysis of survival.—We estimated survival probabil-

ities using the general methods of Lebreton et al. () and Burnham 

and Anderson (). We assessed the parsimony of different models 

to the data using Program MARK, version . (White and Burnham 

), evaluated the support of different hypotheses, and generated 

maximum likelihood estimates of survival and recapture probabili-

ties. We identified a priori a set of survival and encounter probability 

models that were fit to the data. We first analyzed apparent annual 

juvenile survival (ϕ
a
, fledging to  year old) using encounter histories 

of fledglings (banded –, n = ,) resighted as adults up to 

. Our global starting model (ϕ
age*year

 p
age*year

) was a Cormack-Jolly-

Seber model that was age class (juvenile, adult) and time (year) struc-

tured for survival (ϕ) and encounter probability (p). When modeling 

mark–resight data a critical initial step requires testing global model 

support by calculating the variance inflation factor (ĉ) in MARK to 

adjust the AIC
c
 through quasi-likelihood if ĉ > , resulting in a QAIC

c
.

To assess goodness-of-fit (Lebreton et al. , Burnham and 

Anderson ) we calculated median ĉ for the global model and 

corrected for overdispersion. The global model supported the data 

adequately for modeling apparent annual juvenile survival (median 

ĉ = .). 

We used linear models to constrain apparent survival as a 

logit function of week of fledging and brood size, starting with 

an additive model for age and year effects (ϕ
age+year 

p
age+year

). This 

model fit better than the general model (ϕ
age*year

 p
age*year

) in which 

effect of age on survival was allowed to vary with year. Linear 

models included an interaction effect between age and each co-

variate because we expected these factors to affect juvenile but not 

adult survival, and year was included as an additive effect. We as-

sessed whether survival varied as a function of fledge week and 

brood size by evaluating the support of survival models with these 
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Approximately  weeks after fledging we conducted  h of 

aerial telemetry to search for individuals that could no longer be 

detected from the ground. We equipped each wing of a fixed-wing 

Cessna aircraft with a Yagi antenna strut-mounted at ~° and 

connected to separate R- receivers programmed for repeat 

scanning of transmitter frequencies. Signals could be detected 

≤ km away. Upon signal detection we adopted a multiple-pass 

search pattern to triangulate the bird’s location. We returned to 

each location later the same day by car to confirm fledgling status. 

RESULTS

Apparent annual, fledgling, and migration–wintering survival.—

Models for annual juvenile survival that did not include week 

of fledging had no support (Table ) and the best-fitting model 

(ϕ
age+week + brood+year

) included linear effects of week of fledging and 

brood size (model weight, w
i
 = .). This model had × more 

support than the model with no brood size effect (ϕ
age*week+year

,

w
i
 = .). The model with a week*year interaction term had far 

less support (ΔQAIC
c
 = .) than the additive model (week+year, 

ΔQAIC
c
 = .). Using the best-fitting model, apparent annual ju-

venile survival probability (ϕ
a
) was . ± . (range: .–. 

among years) and, as expected, was much lower than annual adult 

survival (. ± .). Resighting probability ranged from . to 

. among years (average . ± .). Annual juvenile survival 

decreased strongly with fledging date (B
age*week

 = –. ± ., % 

confidence interval [CI]: –. to –.) and late-fledged young 

had a % reduction in apparent survival probability compared 

with early-fledged young (Fig. A). Apparent annual survival of 

juveniles also decreased with brood size (B
age*brood

 = –. ± ., 

% CI: –. to –.; Fig. B). 

In each year we searched for juveniles at the roost to parti-

tion annual survival into the premigration versus migration–

wintering survival periods. The postfledge age of juveniles when 

first detected at the roost averaged  ± . days (range: – days) 

covariates (ϕ
age+week+year

; ϕ
age+brood+year

). We also included a model 

with interaction between week of fledging and year (ϕ
age*week*year

)

because the relationship between survival and week of fledging 

could vary annually because of population-level differences in 

timing of breeding. Finally, we included a model with both week of 

fledging and brood-size effects (ϕ
age+week+brood+year

). For each analy-

sis, we ranked models using QAIC
c
 values corrected for small sam-

ple sizes (Burnham and Anderson ) and compared models on 

the basis of the difference between the most supported model and 

all others (ΔQAIC
c
). We used the Akaike weight (w

i
) as a measure 

of the model’s relative probability of being the best model for the 

data compared with other models tested (Akaike ).

In a second analysis, we partitioned annual juvenile survival into 

premigration survival to the roost (ϕ
r
) versus migration–wintering 

survival (ϕ
m

) by constructing encounter histories using two resight-

ing occasions per year (roost and breeding colony; total of  en-

counter occasions –) for each individual. For the full model 

survival probability was modeled with four age classes (survival from 

fledgling at colony to fledgling at roost, from fledgling at roost to adult 

at breeding colony in first breeding season, from adult at colony to 

adult at roost, and from adult at roost to adult at breeding colony the 

following year). Because our focus was on juvenile survival, year ef-

fects on survival were included only for the first two age classes. For 

encounter probability we used three age classes: probability of detect-

ing a fledgling at the roost (with year effects), probability of detecting 

an adult at a colony (whether  year old or older), and probability of 

detecting an adult at a roost. This global model supported the data 

adequately (median ĉ = .). Preliminary analyses indicated that 

late-fledged young who returned to breed were less likely to have 

been observed at the roost the previous year than early-fledged young 

(see below) and, therefore, encounter probability was subsequently 

modeled with week of fledging. To compare monthly survival rate be-

tween the two periods we ran the model set with interval lengths as 

 month for fledging to roost attendance and  months from roost to 

the first breeding season. Means are presented ± SE.

Radiotelemetry.—To obtain a second and independent esti-

mate of fledgling survival we deployed radiotransmitters (. g; 

Holohil Systems, Carp, Ontario) on  nestlings (≤ per nest, aver-

age age  days old posthatch) in  at the Indianhead colony. 

Transmitters were attached dorsally using a figure  leg-loop har-

ness (Rappole and Tipton ) made of triple braided, soft Kevlar 

thread. Transmitters weighed <% of body mass at time of de-

ployment. In Barn Swallows (Hirundo rustica) radiotagged young 

showed no adverse survival effects from transmitters (Grüebler 

and Naef-Daenzer ). We attempted to locate birds daily 

(– hours EST) within several kilometers of the breed-

ing colony from  July to  August and after sunset at the roost, 

from the closest shoreline position, from  July to  August. We 

monitored radiotagged young using a handheld -element Yagi 

antenna and R- programmable scanning receiver (Commu-

nications Specialists, Orange, California). Maximum detection 

range on the ground was – km, depending on the landscape. 

We obtained Universal Transverse Mercator coordinates (datum 

NAD  zone ) for individuals using a Garmin Global Posi-

tioning Systems  data logger equipped with real-time correc-

tion and  m accuracy. An individual was recorded as “dead” if we 

found its carcass, if the radio signal was stationary for  consecu-

tive days, or if the bird disappeared within  week of fledging. 

TABLE 1. Models used to evaluate the influence of timing of fledging and 
brood size on apparent annual survival (ϕa; fledglings resighted in subse-
quent years) of Purple Martins banded as nestlings in Pennsylvania from 
1998 to 2002 (n = 3,990) and encountered as adults up to 2007. The 
model set included a general time dependent model (ϕage*year page*year)
that fit the data adequately. Starting with the model for an additive effect 
of age class (juvenile vs. adult) and year (ϕage+year page+year), linear con-
straints were used to test for linear effects of week of fledging (week) 
and brood size (brood) on survival (see text). The model with the lowest 
QAICc score is considered to best fit the data. K is the number of param-
eters in each model, ΔQAICc is the difference between the current model 
and that of best fit, and wi is model weight.

Model K QAICc ΔQAICc wi

ϕage+week+brood+year page+year 24 5,965.9 0 0.93
ϕage+week+year page+year 22 5,971.1 5.2 0.07
ϕage*week*year page+year 30 5,984.3 18.4 0
ϕage+year page+year 20 5,995.9 30.0 0
ϕage+brood+year page+year 22 5,997.5 31.6 0
ϕage*year page*year 34 6,017.4 51.5 0
ϕage page 4 6,097.9 132.0 0
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and declined significantly with week of fledging (analysis of vari-

ance [ANOVA]: F = ., df =  and ,, P < .). Young fledged 

in late June and early July (n = ) were first seen at the roost 

 days after fledging, compared with young fledged in late July or 

early August (n = ) that were, on average,  days old postfledge 

when first seen at the roost. Thirty-two percent of fledglings were 

sighted at the roost more than once before their first migration 

and the duration between first and last sighting averaged . ± . 

days (n = ).

For estimating and modeling fledgling survival to the roost 

versus migration–wintering survival the model that included 

fledge week in the probability of encountering fledglings at the 

roost (ϕ
fldg*year juv

; p
fldg*year+week

) had far more support than the 

global model (ϕ
fldg*year juv*year

; p
fldg*year

; Table ) and was used for 

all subsequent models. Comparing models with no covariates 

of week or brood in survival probability, the model with year ef-

fects only on juvenile migration–wintering survival (ϕ
fldg juv*year

;

p
fldg*year+week

) had stronger support (ΔAIC > ) than models with 

year effects on only fledgling survival. Adult survival was held 

year-independent in all models. Next we compared models with 

an additive effect of week of fledging on fledgling survival versus 

juvenile migration–wintering survival and included a year effect 

FIG. 2. Mean (± SE) apparent annual juvenile survival ϕa of Purple Mar-
tins from Pennsylvania versus (A) week of fledging, given the average 
brood size of 4.2, and (B) brood size, given the average week of fledg-
ing of 3.3. 

for juvenile survival. We made the same comparison with brood 

size. The model that included week of fledging on migration–win-

tering survival (ϕ
fldg (juv*year+week)

; p
fldg*year+week

) had almost full sup-

port (w
i
 = .; B

juv*week
 = –. ± ., % CI: –. to –.) and 

outcompeted the model with a week of fledging effect on fledgling 

survival to the roost. There was little support for brood size effects 

on juvenile migration–wintering survival.

Apparent fledgling survival probability (ϕ
r
) to the roost using 

the best-fitting model was . ± . and migration–wintering 

survival of juveniles (ϕ
m

) averaged . ± . (range: .–. 

among years). Encounter probability was . ± . for fledg-

lings at the roost, . ± . for adults at the roost, and . ± 

. for adults at a breeding colony. To obtain monthly estimates 

of survival rather than season-long estimates we reran our best-

supported model and specified a time interval length of  month 

for fledgling survival to the roost and  months for survival from 

the roost to the next breeding season. Monthly juvenile survival 

probability during migration–wintering averaged . ± . 

(range: .–. among years) compared with . ± . for 

fledgling survival to the roost. Monthly migration–wintering sur-

vival probability for adults was . ± ..

Reproductive parameters.—For all years combined, -year-old 

females nested later (mean fledge date  July ± . days) than older fe-

males ( July ± . days) (Welch’s ANOVA, F = ., df =  and , 

P < .; Bartlett’s F = ., P = .). For all nests (–) 

clutch size averaged . ± . eggs (range: –; n = ), brood size 

was . ± . nestlings (range: –; n = ), and number of young 

fledged was . ± . (range: –; n = ). Average fledge date was 

 July ± . days (range:  June– July; n =  nests) and was 

independent of brood size (r = –., P = ., n = ).

TABLE 2. Models used to evaluate the influence of timing of fledging and 
brood size on fledgling Purple Martin survival to the roost (ϕr; fledglings 
resighted at the roost prior to their first migration) versus migration–win-
tering survival of juveniles by using two encounter occasions per year 
(roost, breeding colony). Individuals were banded as nestlings in Penn-
sylvania from 1998 to 2002 (n = 3,990). The model set included a global 
model with year effects on fledgling survival to the roost and juvenile 
migration–wintering survival as well as fledgling encounter probability 
at the roost (ϕfldg*year , juv*year; pfldg*year; see text) that fit the data adequately. 
Encounter probability of fledglings at the roost was then modeled with 
week of fledging before using linear constraints to test for linear effects 
of week of fledging and brood size on survival. The model with the low-
est QAICc score is considered to best fit to the data. K is the number of 
parameters in each model, ΔQAICc is the difference between the current 
model and that of best fit, and wi is model weight.

Model K QAICc ΔQAICc wi

ϕfldg (juv*year+week); pfldg*year+week 19 11,494.6 0 0.99
ϕfldg+week juv*year; pfldg*year+week 19 11,504.3 9.7 0.01
ϕfldg+brood juv*year; pfldg*year+week 19 11,516.2 21.5 0
ϕfldg juv*year; pfldg*year+week 17 11,523.4 28.7 0
ϕfldg (juv*year+brood); pfldg*year+week 19 11,526.5 31.9 0
ϕfldg*year juv*year; pfldg*year+week 21 11,528.1 33.5 0
ϕfldg*year juv; pfldg*year+week 17 11,548.8 54.2 0
ϕfldg juv; pfldg*year+week 13 11,576.5 81.8 0
ϕfldg*year juv*year; pfldg*year 20 11,733.1 238.5 0
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Survival and movements of radiotagged fledglings.—Radio-

tagged young fledged at an average age of  ± . days posthatch 

(range: – days). All  radiotagged young in  survived 

the first week after fledging (ϕ
f
 = .). An owl killed two birds near 

their natal colony  and  days after fledging as determined by 

owl pellets that contained functional transmitters and leg bands. 

The average distance from the colony at which fledglings were 

detected on the day they fledged was  ±  m (Fig. A) and 

most fledglings (–%) were detected within  km of the col-

ony area on a daily basis until day  (Fig. B). Nine individuals 

were detected during the aerial flight on  August , at – 

days postfledging, an average of  ± . km from their natal colony. 

Individuals were first detected at the roost – days after fledg-

ing and  of  fledglings (%) were detected at the roost. Six to 

 radiotagged fledglings occupied the roost on a given night and 

individuals used the roost for an average of . ± . nights each 

(range: – nights). 

We estimated daily survival rate using a nest survival model 

in Program MARK (e.g., Dinsmore et al. ) based on the -day 

period after fledging. We assumed that for the first  weeks after 

fledging birds that were alive would be detectable within the sur-

vey region via ground telemetry at the colony and roost or via the 

single aerial telemetry search. Given the high mobility of newly 

fledged Purple Martins (Fig. ) it is possible that birds that dis-

appeared prior to  days postfledgling had dispersed outside of 

the search region. Daily survival probability of fledglings was 

. ± . with a cumulative survival probability over  weeks 

postfledging of . (% CI: .–.). We compared the support 

of models in which survival was constant, time dependent (age 

since fledging), or sex dependent. The model that included age since 

fledging had very high support (AIC weight = .), reflecting the 

fact that all  fledglings survived the first  days after fledging.

DISCUSSION

Timing of breeding and brood size effects.—Our results provide 

strong evidence for the timing of breeding and parental care hy-

potheses for variation in survival probability of juvenile Purple 

Martins. Apparent annual juvenile survival declined sharply for 

young that fledged late in the season and from large broods. Sup-

port for the timing of breeding hypothesis has been found in other 

passerines, including Great Tits (Parus major; Verboven and Visser 

), Savannah Sparrows (Passerculus sandwichensis; Wheel-

wright et al. ), and Red-backed Shrikes (Lanius collurio; Müller 

et al. ). Grüebler and Naef-Daenzer () manipulated tim-

ing of breeding while controlling for inherent variation in parental 

provisioning in Barn Swallows by exchanging similar-sized sec-

ond brood clutches such that pairs that laid early clutches were 

given eggs from nests of late-laying parents and vice versa. Their 

experiment revealed a reduction in fledgling survival with date 

of fledging that seemed independent of brood manipulation but 

linked to inter-annual variation in food supply for this aerial in-

sectivore (Grüebler and Naef-Daenzer ). In Cliff Swallows 

(Petrochelidon pyrrhonota) annual juvenile survival was highest 

for early nesters in most years (Brown and Brown ) but only 

for fumigated nests, indicating that nest parasites are directly 

or indirectly associated with first year mortality. Wheelwright 

et al. () found that greater body mass at fledging in Savannah 

Sparrows tended to improve juvenile survivorship (see also Naef-

Daenzer et al. , Monrós et al. , Low and Pärt ). Our 

study is the first that we are aware of that specifically examined 

carryover effects of fledge week on juvenile migration–wintering 

survival in a migratory songbird. After the onset of migration the 

probability that a juvenile survived migration–winter was indepen-

dent of brood size but declined with week of fledging. 

Naef-Daenzer et al. () concluded that the seasonal de-

cline in survival of fledgling Great and Coal tits (P. ater) was likely 

due to an increase in predation risk. Götmark () identified 

Sparrowhawk (Accipiter nisus) predation as the best explana-

tion for seasonal decline in fledgling survival for tits in Sweden. 

Seasonal patterns in survival of fledglings or juveniles may vary 

within a species from year to year as a result of fluctuations in 

predator abundance. For example, Monrós et al. () reported 

evidence for higher annual survival of earlier-fledged Great Tits in 

 of  years but higher survival in late nests during  years and an 

initial increase followed by a reduction in survival in the remain-

ing  years. Two radiotagged juveniles were killed by owls, but 

further radiotracking of juvenile Purple Martins would be neces-

sary to identify explicitly key predators in our study area and how 

causes of juvenile mortality prior to migration vary seasonally. 

FIG. 3. (A) Mean (± SE) distance that the 15 radiotagged fledgling Purple 
Martins in 2007 were detected from the natal colony and (B) percentage 
of birds (alive at that age) detected within 2–3 km of the colony versus 
postfledging age. On days when multiple locations were recorded for a 
bird the maximum distance was used.
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Although much is known about how timing of breeding af-

fects fledgling or annual juvenile survival, it is typically not known 

whether time of fledging affects fledgling survival and migration–

wintering survival of juveniles. We found strong evidence for a 

carryover effect of fledge week on migration–wintering survival. 

Despite our systematic search for banded birds over a large area 

we cannot rule out the possibility of permanent emigration out-

side of our study region or that late-fledged young were more likely 

to exhibit natal dispersal out of our study area. In Tree Swallows, 

however, dispersal distance was not related to date of fledging 

(Winkler et al. ). Late fledging may disadvantage juveniles in 

surviving migration if late-fledged young depart on migration at 

a similar time as early-fledged young (presumably in late August) 

and are therefore several weeks younger at the time of their first 

migration. Adult Purple Martins from our population fly rapidly 

to the southern Gulf Coast and cross the Gulf of Mexico on their 

way south (Stutchbury et al. b), traveling ≤, km in the 

first week. It is not known whether juveniles also do this or how 

timing of fledging affects timing of migration, migratory routes, 

or survival. The difference in age at migratory departure could 

also mean that earlier-fledged birds were more experienced and 

better at food acquisition or predator avoidance early in migration.

Brood size had an effect on apparent annual juvenile sur-

vival but not migration–wintering survival, which implies that 

individuals from large broods experience relatively low fledgling 

survival. Brood-size manipulation studies often show adverse ef-

fects on nestling body mass and growth of individuals from en-

larged broods (Shutler et al. , Siefferman and Hill ). 

If food is limiting then offspring growth may be lower in larger 

broods, which in turn could affect offspring survival once birds 

leave the nest (van Noordwijk et al. , Naef-Daenzer and Keller 

). However, Reid et al. () found that juveniles from larger 

broods had higher survival probability and were more likely to re-

cruit locally into the breeding population in Red-billed Choughs 

(Pyrrhocorax pyrrhocorax) (see also Müller et al. ). Wagner 

et al. () found evidence for food competition within broods 

of Purple Martins because there was a negative relationship be-

tween brood size and feeding rate per nestling and at least one 

nestling starved in % of nests. Nonetheless, our results suggest 

that young from larger broods that survive the fledgling period are 

not disadvantaged during migration. 

In Purple Martins ASY breeders arrive earlier in the spring 

and initiate nesting about  weeks before SY breeders (Morton 

and Derrickson ). Thus, time of breeding and female age 

class are closely related such that young fledged from the first 

nests of the year typically have older mothers whereas most 

late-fledged young have young mothers. Maternal effects as-

sociated with parental experience or reduced parental care by 

young parents may explain some seasonal variation in apparent 

juvenile survival. Disentangling these effects would require ma-

nipulation of fledge date by swapping eggs between SY and ASY 

females.

Juvenile survival before and after onset of migration.—Our 

study allowed us to partition annual mortality of juveniles into 

different portions of the annual cycle (Fig. ). Radiotracking of a 

small number of fledglings found very high survival during the 

first week postfledging (.) and to the roost (.), and survival 

analysis of band resighting at the roost and colonies also estimated 

high survival to onset of migration (ϕ
r
 = .). On the basis of 

observations of family groups near the colony, Brown () also 

reported high fledgling survival of Purple Martins in the first few 

days after fledging. 

Our survival estimates for fledgling (.) and premigra-

tory (., .) juvenile Purple Martins were higher than those 

reported for many other Neotropical migratory songbirds. For 

example, only % of fledgling Hooded Warblers (Wilsonia ci-

trina) survived  weeks (Rush and Stutchbury ) and % of 

fledgling Ovenbirds (Seiurus aurocapilla) survived  weeks (King 

et al. ). Small passerine nestlings typically fledge at a rela-

tively young age (< weeks posthatch) and survival probability 

is lowest during the first week after fledging (Dickcissels [Spiza 

americana], Berkeley et al. ; Western Bluebirds [Sialia mex-

icana], Wightman ; Rose-breasted Grosbeaks [Pheucticus

ludovicianus], Moore et al. ). Fledglings at this age cannot fly 

well and travel relatively short distances (< m; Kershner et al. 

, Rush and Stutchbury ). In Purple Martins young fledge 

at  weeks posthatch and can fly well, so they are presumably far 

less vulnerable to ground predators. We found radiotagged fledg-

lings an average of  km from their natal colony on the first day and 

the two documented cases of predation were attributed to owls. 

Grüebler and Naef-Daenzer () found that in Barn Swallows 

FIG. 4. Apparent survival probability of juvenile Purple Martins at dif-
ferent stages in their annual life cycle (ϕf: survival during the first week 
postfledging; ϕr: fledgling survival to the roost; ϕm: juvenile survival after 
onset of migration to South America and back to the breeding colony; ϕa:
annual juvenile survival). Data based on radiotelemetry (2007; dashed 
lines) and mark–recapture data (1998–2002; solid lines). 
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fledgling survival probability to  weeks was ., which suggests 

that premigratory survival may be generally high in swallows. 

Fledgling Purple Martins were highly mobile, consistent 

with other studies on this species (Brown , Morton and Pat-

terson ). Most radiotagged individuals were detected daily 

near the colony for the first  weeks after fledging, often return-

ing to the colony at night, but were rarely detected at the colony 

at older ages. Sleeping at the colony could benefit fledglings di-

rectly by extending the period of parental care, reducing noctur-

nal predation risk, and improving site familiarity. Juveniles may 

also visit active colonies prior to migration to gain information on 

reproductive success of adults and use these assessments of colony 

site quality for future choice of breeding site (Danchin et al. , 

; Miller et al. ; Sergio and Penteriani ). We did not 

systematically search for radiotagged juveniles at other colonies 

prior to migration, but auto-loggers could be used to monitor vis-

its to non-natal colonies remotely and then relate search patterns 

to subsequent recruitment.

On the basis of apparent fledgling survival to the roost 

(ϕ
r
 = .) and seasonal migration–winter survival (ϕ

m
 = .) we 

estimate that % of all annual juvenile mortality in Purple Mar-

tins occurred after fall migration began. Juvenile mortality after 

the onset of migration could be caused in part by parasitic infec-

tions by Haemoproteus, filaria parasites (larval nematodes de-

tected in blood smears), or both in naive birds. In migratory birds 

Haemoproteus parasite transmission likely occurs during fall 

migration or on the wintering grounds, with infection contribut-

ing to high levels of mortality before young birds return in the 

spring (Davidar and Morton , Hasselquist et al. ). Fur-

thermore, return rates of Purple Martins infected with just filaria 

or both filaria and Haemoproteus were ≤% lower than birds of 

the same age infected by Haemoproteus alone (Davidar and Mor-

ton , ). To our knowledge survival estimates after the 

onset of migration are not available for other juvenile migratory 

songbirds. However, in Black-throated Blue Warblers (Setophaga 

caerulescens) comparison of within-season versus annual survival 

indicated that >% of annual adult mortality occurred during mi-

gration rather than on the breeding or wintering grounds (Sillett 

and Holmes ). Purple Martins from our breeding population 

overwinter in the Amazon basin of northern Brazil (Stutchbury 

et al. b) but mark–recapture studies at wintering roosts to 

assess survival on the wintering grounds versus migration would 

not be practical given the large number of roosts in the region and 

individual movements between roosts.

Many aerial insectivore species (e.g., Common Nighthawks 

[Chordeiles minor], Chimney Swifts [Chaetura pelagica], and 

Barn Swallows) are experiencing population declines (Sauer 

et al. , Nebel et al. ), and for migratory species conser-

vation efforts should include identification of threats during mi-

gration and on the wintering grounds (Dionne et al. ). Data 

are needed that evaluate how breeding season disturbances to 

food supply through habitat loss, pesticides, climate change, and 

parental provisioning may affect nestling development compo-

nents of survival (Fig. ). Most annual mortality of juvenile Purple 

Martins occurred after, rather than before, the onset of fall mi-

gration, so survival during migration, on the wintering grounds, 

or both likely plays an important role in juvenile recruitment and 

population demography. Studies examining timing of migration, 

migratory routes, and destination (Stutchbury et al. b) will be 

important for understanding geographic patterns of juvenile sur-

vival and population differences in demographic trends.
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I compiled and digitized 15 years of written banding data from numerous 

sources into a modern database making this study possible. Starting in 2001, I also 

contributed thousands of my own observations of marked individuals and banded 

approximately 1200 nestlings and 200 adults annually.  
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SEX AND AGE-SPECIFIC ANNUAL SURVIVAL IN A NEOTROPICAL MIGRATORY 

SONGBIRD, THE PURPLE MARTIN (PROGNE SUBIS)

Resumen.—Estimamos la probabilidad de supervivencia anual aparente de los adultos de Progne subis empleando un conjunto de 

datos tomados a lo largo de  años en una población del noroeste de Pensilvania. Modelamos los efectos de la edad, del sexo y del año 

sobre la supervivencia de los adultos empleando aves de edad conocida ( machos y  hembras) anilladas por primera vez o vistas 

de nuevo como individuos de un año de edad en dos colonias de cría centrales. Vimos de nuevo a las aves anilladas en () las dos colonias 

de cría centrales, () otras colonias de cría a menos de  km de las colonias centrales y () un gran dormidero premigratorio que atrae 

adultos de P. subis desde colonias a  km de distancia. La probabilidad de supervivencia anual aparente de los individuos de un año 

de edad aumentó en . cuando incluimos los encuentros ocurridos fuera de las colonias centrales. El estimado de la probabilidad de 

supervivencia de los machos y las hembras más viejos no fue casi afectado debido a la alta fidelidad a los sitios de cría. El modelo que 

especificaba la supervivencia para cada edad ( año, – años,   años) y que consideraba la interacción edad*sexo tuvo el apoyo más 

fuerte cuando se incluyeron todos los encuentros. La supervivencia anual aparente de las hembras de un año de edad (.  . [EE]) 

fue menor que la de los machos de un año (.  .), pero no detectamos diferencias en la supervivencia entre las aves más viejas 

(– años de edad: hembras, .  .; machos, .  .). Encontramos evidencia de senescencia, porque las aves con al menos 

cinco años de edad presentaron menor supervivencia aparente (hembras: .  .; machos: .  .). Los modelos completamente 

dependientes del tiempo tuvieron un bajo apoyo, incluyendo aquellos que evaluaron la relación entre la variación anual en la prevalencia 

del virus del Oeste del Nilo y el Índice de Oscilación del Sur del Niño, una variable climática clave.

—  278  —

The Auk 126(2):278 287, 2009

 The American Ornithologists’ Union, 2009. 

Printed in USA.

The Auk, Vol. , Number , pages  . ISSN -, electronic ISSN -.   by The American Ornithologists’ Union. All rights reserved. Please direct 

all requests for permission to photocopy or reproduce article content through the University of California Press’s Rights and Permissions website, http://www.ucpressjournals.

com/reprintInfo.asp. DOI: ./auk..

Supervivencia Anual Específica por Edad y Sexo en Proge subis, un Ave Canora Migratoria Neotropical

BRIDGET J. M. STUTCHBURY,1,4 JAMES R. HILL III,2 PATRICK M. KRAMER,1,2

SCOTT A. RUSH,3 AND SCOTT A. TAROF1

1Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada;
2Purple Martin Conservation Association, Tom Ridge Environmental Center, 301 Peninsula Drive, Suite 6, Erie, Pennsylvania 16505, USA; and

3Daniel B. Warnell School of Forestry and Natural Resources, University of Georgia, Athens, Georgia 30602, USA

4E-mail: bstutch@yorku.ca

Abstract.—We estimated apparent annual survival probability of adult Purple Martins (Progne subis) using a -year data set 

from a population in northwestern Pennsylvania. We modeled age, sex, and year effects on adult survival using known-age birds ( 

males and  females) first banded or resighted as one-year-olds in two core breeding colonies. We resighted banded birds at () the 

two core breeding colonies, () other breeding colonies within  km of the core colonies, and () a large premigratory roost that attracts 

adult Purple Martins from colonies  km away. Apparent annual survival probability for one-year-olds increased by . when we 

included encounters outside the core colonies. Survival probability for older males and females was largely unaffected, a result of their 

high breeding-site fidelity. The model with age-specific survival ( year old, – years old,   years old) and an age*sex interaction had 

the strongest support when all encounters were included. Apparent annual survival of one-year-old females (.  . [SE]) was lower 

than that of one-year-old males (.  .), but we detected no sex differences in survival among older birds (– years old: females, 

.  .; males, .  .). We found evidence of senescence, because birds at least five years old had lower apparent survival 

(females: .  .; males: .  .). Fully time-dependent models had low support, including those evaluating the relationship 

between annual variation in prevalence of West Nile virus and the El Niño Southern Oscillation Index, a key climate variable. Received 

 February , accepted  October .

Key words: annual survival probability, breeding dispersal, Progne subis, Purple Martin, senescence, Southern Oscillation Index, West 

Nile virus.

105



APRIL 2009 —  MIGRATORY SONGBIRD SURVIVAL — 279

in Great Tits (Parus major; McCleery et al. ), Willow Tits (P. 

montanus; Orell and Belda ), and Barn Swallows (Møller and 

Szép ). In the only study that has examined senescence in a 

Neotropical migratory songbird, Brown and Brown () found 

that annual survival probability for Cliff Swallows remained high 

in individuals three years of age and older.

Annual adult survival in migratory songbirds varies greatly 

from year to year (e.g., Sillett et al. , Cilimburg et al. ), 

but for most species little is known about the factors that drive 

these yearly fluctuations. We examined the relationships among 

annual variation in survival of Purple Martins, the El Niño South-

ern Oscillation (ENSO), and outbreaks of West Nile virus (WNV). 

Conditions on the wintering grounds of Neotropical migrants in 

Central America and South America are affected by the ENSO via 

changes in global precipitation and temperature patterns. In win-

tering Black-throated Blue Warblers, ENSO events reduced annual 

adult survival by causing a decreased insect food supply during the 

dry conditions that prevail in the Caribbean in El Niño years (Sil-

lett et al. ). Similarly, Mazerolle et al. () found that adult 

survival of breeding Yellow Warblers was lowest during El Niño 

years and highest during wetter La Niña years. In Bank Swallows, 

annual adult survival in Europe was related to precipitation on the 

wintering grounds in Africa (Szép ). Precipitation patterns 

during El Niño events vary greatly throughout Central America 

and South America (Kiladis and Diaz ). In southern Brazil, 

a major wintering area for Purple Martins, El Niño years result 

in wetter conditions, whereas La Niña years result in drier condi-

tions. Purple Martins migrate primarily to Brazil and are obligate 

aerial insectivores, so large-scale fluctuations in precipitation may 

also affect their annual survival.

The introduction of WNV has been linked to population de-

clines of North American songbirds (LaDeau et al. ), and lab 

experiments have shown a high risk of mortality in some species 

(Komar et al. ). However, the effects of this disease on wild 

populations of most species remain largely unknown (Kilpatrick 

et al. ). West Nile virus was first detected in northwestern 

Pennsylvania in , about half-way through our study, which 

created an opportunity for investigating whether WNV had sig-

nificant effects on annual adult survival. Many of the species most 

affected by WNV are common in residential areas where WNV 

vectors are known to be present (LaDeau et al. ). Purple Mar-

tins in eastern North America may also be vulnerable to WNV, 

because they depend on manmade housing that is typically pro-

vided in backyard habitat.

We estimated annual survival probability and recapture 

probability for known-age adult Purple Martins using a -year 

mark–recapture study in northwestern Pennsylvania. We com-

pared different models for the influence of age, sex, and year on 

apparent survival probability. Our long-term data set (–) 

and large sample size of known-age breeding Purple Martins (n

) also allowed us to examine senescence in both sexes.

METHODS

Study site and species.—Purple Martins in eastern North Amer-

ica breed exclusively in artificial housing (nest-box apartments 

and gourds) and form breeding colonies of up to several hun-

dred pairs (Brown ). For the present study, the Purple Martin 

Estimates of annual survival are critical for modeling popula-

tion dynamics and identifying the factors responsible for driving 

long-term population declines. Neotropical migratory songbirds 

are a group of particular interest because they are experiencing 

widespread population declines (Lloyd-Evans and Atwood , 

Sauer et al. ). The ecological and anthropogenic effects on 

population dynamics are fundamentally different for long-distance 

migrants than for resident species, because most annual mortal-

ity occurs during migration or on the wintering grounds (Sillett 

and Holmes ). Maximum-likelihood estimates of survival 

from mark–recapture studies (Lebreton et al. ) are now avail-

able for many Neotropical migratory songbirds (Chase et al. , 

Powell et al. , Cilimburg et al. , Sillett and Holmes , 

Gardali et al. ), particularly as a result of the continent-wide 

Monitoring Avian Productivity and Survivorship (MAPS) pro-

gram (DeSante and Kaschube ). However, the difficulty of 

marking and recapturing large numbers of known-age birds over 

many years has meant that we still know relatively little about how 

sex and age influence the annual survival of Neotropical migratory 

songbirds (Brown and Brown , Sillett et al. ). Given the 

importance of forecasting how introduced diseases, habitat loss, 

and climate change will affect population dynamics of songbirds 

(Sillett et al. , Kilpatrick et al. , Wilson et al. ), stud-

ies of adult survival in migratory songbirds are urgently needed. 

Our aim in the present study was to investigate how age, sex, and 

year affect annual adult survival in a long-distance migrant, the 

Purple Martin (Progne subis).

The basic question of whether adult survival differs between 

the sexes is poorly understood for migratory songbirds. Female 

birds are expected to have lower annual survival than males, 

largely as a result of the higher cost of reproduction in females and 

a higher risk of predation (reviewed in Breitwisch ). For many 

Neotropical migrants, habitat segregation by sex on the non-

breeding grounds in Central America and South America results 

in females occupying relatively poor-quality habitat, which can re-

duce body condition and survival (Marra and Holmes ). High 

reproductive effort in females may also delay molt and migration 

(Evans Ogden and Stutchbury ), which has unknown conse-

quences for survival. Apparent annual survival was higher in male 

than in female Black-throated Blue Warblers (Dendroica caerule-

scens; Sillett and Holmes ) and Yellow Warblers (D. petechia;

Cilimburg et al. ), but this was not the case in Wilson’s War-

blers (Wilsonia pusilla; Chase et al. ) or Cliff Swallows (Pet-

rochelidon pyrrhonota; Brown and Brown ). In Europe, males 

had higher annual survival in migratory Sand Martins (i.e., Bank 

Swallows [Riparia riparia]; Szép ) but not in Barn Swallows 

(Hirundo rustica; Møller and Szép ).

Senescence is the decline in survival rate or reproduction of 

older individuals that results from decreased physiological func-

tion, increased disease, or both (reviewed in Ricklefs ). Short-

lived birds are predicted to experience relatively high rates of 

senescence, given that few individuals live to old age, but few stud-

ies of songbirds have examined senescence with formal survival 

estimates. Annual apparent survival declined steadily with age in 

Song Sparrows (Melospiza melodia; Keller et al. ), declined 

after at least three years of age in Black-capped Chickadees (Po-

ecile atricapillus; Loery et al. ) and Western Bluebirds (Sialia 

mexicana; Keyser et al. ), and declined after five years of age 
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Conservation Association (PMCA) intensively monitored two 

large breeding colonies (Troyer and Edinboro) from  to 

 by banding all nestlings, resighting color-banded adults, 

and, to a lesser extent, catching breeding adults. These “core” 

colonies were  km apart, and each colony consisted of clus-

ters of – nest houses and gourd racks. The Troyer colony 

(  . N,   . W) had – pairs year– and was 

located on the lawn of a home in a rural setting. The Edinboro 

colony (  . N,   . W) consisted of – pairs 

year– and was on the shore of Lake Edinboro in the small town of 

Edinboro, Pennsylvania. Nest houses had predator guards on the 

poles to prevent climbing nest predators.

Mark–recapture studies typically cannot distinguish perma-

nent emigration from actual mortality, and this results in under-

estimates of true survival (e.g., Zimmerman et al. ). Because 

dispersal is often female-biased and more common in young breed-

ers (Greenwood and Harvey ), age or sex differences in appar-

ent annual survival are difficult to interpret, in that true survival 

and permanent emigration are confounded. To reduce this prob-

lem, we systematically searched for banded birds over a large study 

area to document the extent of breeding dispersal and obtain a 

better estimate of true survival (e.g., Cilimburg et al. , Keyser 

et al. , Marshall et al. ). We analyzed three geographic 

scales to account for breeding dispersal in Purple Martins. We re-

sighted banded birds at () the two intensively studied core breed-

ing colonies, () other breeding colonies within  km of the core 

colonies, and () a large premigratory roost that is known to at-

tract Purple Martins from  km away (Fig. ). Monitoring ef-

fort at additional colonies varied from year to year and was most 

intense from  to . Each peripheral colony was visited at 

least once during the nestling period to read color bands of feed-

ing parents.

From late July to early September, Purple Martins in north-

western Pennsylvania gather in a premigratory roost at the 

base of Presque Isle Peninsula on the south shore of Lake Erie 

(  . N,   . W; Fig. ). The size of the roost typi-

cally peaks at , Purple Martins during mid-August 

(Hill ). Each year, the PMCA searched for banded adults 

perched on wires at several staging areas in Presque Isle State 

Park, –. km from the roost. We searched these staging areas 

on five to seven nights each week from the second week of July 

through the end of August. Up to  banded individuals were 

seen nightly, and adult Purple Martins from breeding colonies 

 km away used this roost site (J. Hill III unpubl. data). Con-

sequently, birds breeding in the local area but not encountered at 

a colony could nevertheless be encountered at the roost during 

the premigratory period.

Field methods.—All nestlings and captured adults were 

banded with a U.S. Geological Survey numbered band and a color 

band with a unique alphanumeric code. The identity of adults was 

determined primarily by using a telescope at close range to read 

the color-band number while birds were perched on their nest 

houses or on wires near the colony or roost. Purple Martins are 

highly conspicuous and perch in the open, which allowed us to 

read the alphanumeric codes with great accuracy. Observers vis-

ited the core breeding colonies several times each week from April 

through early August and recorded the color-band identification 

of all visible individuals. In some years, as part of other studies on 

diet and mating system, breeding adults were also captured while 

feeding young or sleeping in their houses at night.

During the present study, we banded , nestlings 

throughout the region, and most ( %) of the one-year-old 

breeders in our sample were first banded as nestlings. Purple Mar-

tins are strongly sexually dichromatic, and both the males and 

the females feature a distinct subadult plumage in their first year 

of breeding (Brown ). Thus, we were able to confidently sex 

all breeders and to classify breeders that had not been banded as 

nestlings as “one-year-olds,” rather than as older. Males that are 

at least two years old are entirely of a deep, iridescent, dark blue 

hue, whereas females that are at least two years old have brownish-

blue backs and white undersides washed with brown. One-year-

old males are female-like in appearance but typically have variable 

amounts of deep blue feathers in a mottled pattern on the throat, 

belly, under-tail coverts, and back. One-year-old females have less 

blue on the back than older females and whiter under-tail coverts.

For the survival analysis, we used known-age birds first banded 

or encountered as one-year-olds in a core colony (n   males, 

 females). Purple Martins are single-brooded at our study site, 

and we restricted encounters at breeding colonies to birds seen 

during the peak nesting period, between  May and  July. This 

reduced the bias attributable to early arrival and sighting of older 

birds (  years) in late April and early May and the possibility of 

transients early in the spring. Individuals in our sample were occa-

sionally found dead near colonies or inside their nesting compart-

ments (n  ) and were removed from the sample after their last 

encounter. These known-fate encounters represented only .% of 

our birds and included both sexes ( males and  females) and mul-

tiple age classes ( one-year-olds and  older birds).

Southern Oscillation Index (SOI) values, which indicate sea-

level pressure in the South Pacific Ocean, were obtained from the 

FIG. 1. Map of our study area in northwestern Pennsylvania, showing the 
locations of the two core breeding colonies (filled circles), the 33 addi-
tional breeding colonies that were surveyed annually for banded birds 
(open circles), and the premigratory roost (“R”) at Presque Isle Peninsula 
on the south shore of Lake Erie. Dotted lines show the boundaries of Erie 
County (northern) and Crawford County (southern), our main study area.
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National Oceanic and Atmospheric Administration (see Acknowl-

edgments). We used annual mean monthly values of the standard-

ized SOI for each calendar year (Sillett et al. ). El Niño years 

correspond with low negative SOI values, whereas La Niña years 

correspond with high positive SOI values.

For an index of WNV prevalence, we obtained data from 

the Pennsylvania West Nile Virus Surveillance Program (see Ac-

knowledgments) on the percentage of dead birds sampled in a 

given year that tested positive for WNV. These birds, representing 

a wide range of species, had been reported dead and were subse-

quently tested. The number of birds tested each year ranged from 

 to , (average   birds year–).

Statistical methods.—We estimated apparent annual sur-

vival probabilities using the program MARK, version . (White 

and Burnham , Cooch and White ). We constructed an 

a-priori set of  candidate models (see below) to examine the 

influences of age, sex, and year on adult survival. We used Akai-

ke’s information criterion adjusted for small sample sizes (AIC
c
;

Akaike , Lebreton et al. , Burnham and Anderson ) 

to compare models. When modeling mark–recapture data, a criti-

cal initial step requires testing the fit of the global model by calcu-

lating the variance inflation factor (ĉ) and then adjusting for any 

lack of fit if ĉ  . To assess goodness-of-fit (Lebreton et al. , 

Burnham and Anderson ), we used MARK to calculate me-

dian ĉ for the global model for each of the three data sets (core 

only, all colonies, colonies and roost).

A-priori models were ranked and compared using ΔAIC
c
 and 

AIC
c
 weights (w

i
). We used ΔAIC

c
 to estimate the relative differ-

ence between the top-ranked model and each other model, and 

w
i
 (normalized to sum to ) to assess a model’s relative probabil-

ity of being the best in the set of candidates. The model with the 

lowest AIC
c
 (and highest w

i
) is the model that best explains the 

data. Models with ΔAIC
c

  were considered equally parsimoni-

ous. Maximum-likelihood estimates of apparent survival ( ) and 

encounter probabilities (p) were calculated for models with high 

AIC
c
 weighting.

Our candidate model set was constructed to examine the 

influences of sex, age, and year on annual apparent survival of 

adults (Table ). First, we ran three different age models, with and 

without an interaction with sex (age*sex), and then with an addi-

tive model of age and sex (age sex). The first age model consid-

ered only two age classes ( year old vs.  years old; 
,

), because 

studies based on return rates at a colony in Maryland found that 

one-year-olds had a lower return rate (%) than older individu-

als (%; Davidar and Morton ). We examined senescence in 

survival using two models for age-specific survival among older 

birds. One model (
,–,

) lumped birds aged two to four years 

because studies of senescence in other short-lived passerines have 

found () no difference in survival of middle-aged birds and () a 

decrease in survival beginning at five years (McCleery et al. , 

Møller and de Lope , Orell and Belda ). A second model 

(
,,,,

) allowed age-specific survival for each age (Keller et al. 

) and pooled birds five years of age and older because of sample-

size considerations.

In addition to age and sex effects, we also examined two spe-

cific factors (SOI and WNV) that could explain annual variation in 

apparent survival of one-year-olds as compared with older birds. 

Our model set included a fully time-dependent model for each 

age class (
, *time

) and a global model with a sex interaction effect 

(
, *sex*time

). We then assessed the fit of models that constrained 

estimates of survival as a linear function of the local prevalence of 

WNV (
, *sex*WNV

) and SOI (
, *sex*SOI

).

Resighting effort varied among years and between the two 

core colonies, so we modeled encounter probabilities as a function 

TABLE 1. Model-selection results to assess effects of sex, age, year, and colony on apparent survival probability ( ) and 
encounter probability (p) for known-age adult Purple Martins in northwestern Pennsylvania, 1994–2007. All individuals 
in the sample (n  977) were first banded or encountered as one-year-olds at a core breeding colony. We show results for 
individuals encountered at (1) only a core colony, (2) a core or peripheral breeding colonies, and (3) any breeding colony 
or the premigratory roost. Columns give model notation, number of estimable parameters (K), second-order Akaike’s 
information criterion (AICc) values and AICc weights (wi). Recapture probability was modeled with a year*colony effect 
for all models. Subscripts describe parametization of  with three age-specific models ( 1,2 ; 1,2–4,5 ; 1,2,3,4,5 ) modeled 
alone and with a full interaction (age*sex) versus additive (age  sex) effect. We tested two models for full year effects 
( 1,2 *time, 1,2 *sex*time) and specific year effects of West Nile virus ( 1,2+*sex*WNV) prevalence and the Southern Oscillation 
Index ( 1,2 *sex*SOI). The full model set included 13 a-priori models, but only models with wi  0 are shown.

Core colonies All breeding colonies Colonies or roost

Model K AICc wi AICc wi AICc wi

1,2 *sex 30 0.00 0.376 0.00 0.271 4.63 0.042

1,2–4,5 *sex 32 0.87 0.245 0.20 0.246 0.00 0.423

1,2,3,4,5 *sex 36 1.64 0.167 1.01 0.164 3.98 0.058

1,2,3,4,5 sex 32 3.60 0.063 1.28 0.143 1.93 0.161

1,2,3,4,5 31 4.32 0.049 3.43 0.049 3.52 0.073

1,2–4,5 sex 30 4.97 0.032 3.27 0.053 2.06 0.151

1,2 sex 29 5.45 0.024 4.86 0.024 8.45 0.006

1,2–4,5 29 5.72 0.022 5.46 0.018 3.69 0.067

1,2 28 6.24 0.017 7.04 0.008 10.05 0.003

1,2 *sex*WNV 32 8.94 0.004 4.82 0.024 6.53 0.016
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of the interaction between year and colony (p
year*colony

). Prelimi-

nary analyses had confirmed that models with a year*colony in-

teraction always had higher AIC weighting than the same model 

with only a year-dependent encounter probability. There was no 

reason, a priori, to expect that encounter probability varied by sex 

or age, given that all breeders at a colony are highly visible, so we 

omitted these factors from consideration.

RESULTS

Colony site-fidelity was high among one-year-olds that bred at a 

core colony; % of females and % of males that were encoun-

tered the next year returned to a core colony (Table ). Site-fidelity 

was even higher among two-year-olds that bred in a core colony in 

both their first and second year; % of those females and % of 

the males were subsequently encountered at a core colony in their 

third year. We anticipated, therefore, that between-year breed-

ing dispersal would have an important influence on apparent-

survival estimates for one-year-olds, but not for older individuals. 

A small percentage of individuals were sighted at the premigra-

tory roost but not at a breeding colony (Table ). This may have 

resulted from incomplete sampling of breeding colonies, from in-

dividuals breeding outside our study region, or from the individu-

als in question being nonterritorial floaters.

The global model (
, *sex*time

p
year*colony

) for adults encoun-

tered at core colonies fit the data well (P  .), and there was no 

evidence of overdispersion (median ĉ  .). This global model 

also fit the data for encounters at any breeding colony (P  ., 

median ĉ  .) and for all encounters, including the premigratory 

roost (P  ., median ĉ  .). Therefore, we did not adjust for 

overdispersion and used AIC
c
 as a criterion to evaluate the relative 

plausibility of each model in our set.

We found that apparent adult survival was strongly related 

to both age class and sex but that the best-fitting age-class model 

depended on whether we accounted for local breeding dispersal. 

Using the data set for encounters only at core colonies (Table ), 

the encounter probability ranged from . to . among years 

and averaged . for the Troyer colony and . for the Edinboro 

colony. The top three models (
, *sex

,
,–, *sex

, and 
,,,, *sex

)

had AIC
c
 values that differed by ., which indicates that they 

were equally parsimonious (Burnham and Anderson ). Mod-

els that include two age classes (
,

) had stronger support (total 

w
i

 %) than three-age-class models (
,–,

; total w
i

 .%) 

and five-age-class models (
,,,,

; total w
i

 .%). Models 

that included an interaction effect between age and sex (
, *sex

,

,–, *sex
, and 

,,,, *sex
) had total w

i
 % and had   the sup-

port of models with an additive age and sex effect (.%).

When encounters at all breeding colonies were included, the 

same three models (
, *sex

, 
,–, *sex

, and 
,,,, *sex

) had the 

strongest support and were equally parsimonious (Table ). For 

encounters including the premigratory roost, however, the model 

with three age classes (
,–, *sex

) fit the data far better than any 

other model (ΔAIC
c

 .), and models with three age classes 

(combined w
i

 %) fit the data twice as well as models with five 

age classes (
,,,,

; w
i

 %).

Using the model with three age classes (
,–, *sex

), the ap-

parent survival estimate for one-year-olds increased by . when 

we included all encounters outside the core colonies (Table ). Ap-

parent annual survival probability for one-year-old females (. 

.) was lower than that for one-year-old males (.  .) and 

older females (.  .), even when local breeding dispersal 

were taken into account (Fig. ). Apparent survival probability of 

birds that are at least two years old did not differ between females 

and males (Fig. ). Using resightings at the core colonies only, sur-

vival probability for one-year-old males was . lower than that 

for males two to four years of age, but this difference diminished 

to . when all encounters were included (Table ). There was 

strong evidence of senescence in Purple Martins, in that apparent 

survival probability dropped by .–. for individuals at least 

five years of age (Fig. ).

Models with time dependence in adult survival had no sup-

port (Table  and Fig. ). Prevalence of WNV increased dramat-

ically in Pennsylvania in ; if this had caused widespread 

mortality among Purple Martins, we would expect to see a sud-

den drop in apparent annual survival beginning that year. How-

ever, there was little support for the linear model including WNV 

TABLE 2. Between-year dispersal by one- and two-year-old Purple Martins 
encountered at a core colony as a one-year-old, showing the number that 
were encountered the next year at a core colony, a peripheral breeding 
colony or were sighted only at the roost (i.e., breeding colony unknown). 
Birds first encountered in the final two years of the study (2006–2007) 
were excluded because their return history was not yet complete.

Location of encounter the following year

Known
age (year) Sex Core colony

Peripheral
colony Roost

1 F 107 (84.2%) 11 (8.7%) 9 (7.1%)
1 M 213 (87.4%) 17 (7.3%) 13 (5.3%)
2 F 50 (90.9%) 2 (3.6%) 3 (5.5%)
2 M 111 (94.0%) 5 (4.3%) 2 (1.7%)

TABLE 3. Estimates of apparent annual survival (  SE) for three age classes of males and females ( 1,2–4,5 *sex). Survival estimates are shown for encoun-
ters at core colonies only, encounters at all breeding colonies, and encounters at any colony or the premigratory roost.

1 year old 2–4 years old 5 years old

Encounter location Female Male Female Male Female Male

Core colony 0.40  0.03 0.51  0.02 0.64  0.03 0.60  0.02 0.52  0.07 0.54  0.05
All colonies 0.44  0.03 0.56  0.02 0.64  0.03 0.61  0.02 0.52  0.07 0.53  0.05
Colonies or roost 0.48  0.03 0.59  0.02 0.64  0.03 0.62  0.02 0.51  0.07 0.52  0.05
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prevalence (
, *sex*WNV

; w
i

 %). Similarly, the SOI varied from 

–. to . from  to , but the linear model including the 

SOI had no support (w
i

 %).

DISCUSSION

Age and sex differences in apparent survival of passerines could 

reflect local breeding dispersal rather than true survival, but few 

studies have systematically quantified local breeding dispersal 

to evaluate its effect on apparent survival (e.g., Cilimburg et al. 

). We found strong age- and sex-specific patterns in appar-

ent annual survival probability for Purple Martins, even after tak-

ing local breeding dispersal into account (Fig. ). Apparent annual 

survival probability for one-year-olds increased by . when en-

counters away from the core breeding colonies were included, but 

this had little effect on survival estimates for older birds because 

of their high site-fidelity (Tables  and ). For all spatial scales of 

encounters, apparent annual survival probability for one-year-old 

females was lower than that for either yearling males or older fe-

males. There were no sex differences in apparent survival prob-

ability for birds at least two years old, and we found evidence of 

senescence in both sexes after five years of age (Fig. ).

Transients do not likely explain the lower apparent survival 

of one-year-olds, because floaters are far less common in Purple 

Martins than in other obligate cavity-nesting swallows, owing 

to the apartment-style housing that allows most yearlings to 

claim unused nesting cavities (Stutchbury and Robertson , 

Stutchbury ). High visibility of banded birds and our ability 

to identify individuals without capturing them typically resulted 

in multiple encounters with individuals during each breeding sea-

son at the core colonies. Despite our systematic search for banded 

birds away from the core breeding colonies, we cannot rule out the 

possibility of permanent emigration from our study region, but it 

is unlikely that individuals in our older age classes, in which col-

ony fidelity is high (Table ), permanently emigrated.

Swallows have been the focus of many demographic stud-

ies, in part because adults can be captured in large numbers be-

cause many species breed in colonies and artificial housing. Most 

survival studies of swallows have searched nearby colonies for 

banded birds (Szép , Brown and Brown , Møller and Szép 

), so estimates of apparent annual survival account for local 

breeding dispersal to some extent, which facilitates interspecific 

comparisons. In Cliff Swallows, no sex difference in survival was 

detected and survival of older birds was relatively high (Brown 

and Brown ). In European Barn Swallows, there were also no 

sex differences in survival, but senescence occurred in older birds 

(Møller and de Lope , Møller and Szép ).

Adult survival in migratory songbirds could be influenced 

by vulnerability to blood parasites, resulting in higher mor-

tality of one-year-olds. Most species of Neotropical migratory 

songbirds are infected with blood parasites, and, during spring 

migration, individuals are most likely to be infected with the he-

matozoan Haemoproteus (Garvin et al. ). Transmission of 

Haemoproteus likely occurs during fall migration or on the win-

tering grounds, and the initial acute infection, which results in 

high mortality, typically occurs before the first breeding season 

(Davidar and Morton , Hasselquist et al. ). There is evi-

dence, however, that blood parasites may also affect the survival 

of one-year-old Purple Martins after their first breeding season. 

At a colony in Maryland, % of one-year-old Purple Martins 

were infected with a filarial nematode, and % were infected 

with Haemoproteus prognei (Davidar and Morton , ). 

The return rate of one-year-olds infected with Haemoproteus

was high (%), but individuals infected with filaria had very low 

return rates (%), as did those cross-infected with both parasites 

(%). None of the two-year-old Purple Martins sampled at the 

breeding colony was cross-infected, which further suggests high 

mortality of co-infected one-year-olds (Davidar and Morton 

). If infection by, and resistance to, blood parasites is a 

major determinant of overwinter survival in Purple Martins, 

then heterozygosity, particularly at major histocompatibility 

complex (MHC) genes, should be related to an individual’s infec-

tion prevalence and subsequent survival (Davidar and Morton 

, Westerdahl et al. ).

High female mortality in other species of migratory song-

birds has been attributed to low-quality wintering habitat occu-

pied by females (Marra and Holmes ), but this is unlikely for 

Purple Martins, which are not territorial in the nonbreeding sea-

son. Males and females appear to mix freely in wintering roosts in 

Brazil (B. Stutchbury and J. Hill III pers. obs.), and the sex ratio of 

captured birds was equal during blanket mist netting at several 

roosts (Davidar and Morton ). Spring arrival times of two-

year-old male and of female Purple Martins differed by only five 

days, on average (Morton and Derrickson ), which suggests 

that inclement spring weather during migration and soon after ar-

rival at the breeding colony (Brown ) would present a similar 

mortality risk for both sexes.

The pronounced low apparent survival probability for one-

year-old female Purple Martins could instead reflect a high cost 

of reproduction in their first breeding season. Only females 

incubate eggs, and virtually all females obtain territories and 

FIG. 2. Apparent annual survival probability (  SE) of age classes of male 
and female Purple Martins ( 1,2–4,5 *sex; Table 1), based on individuals 
breeding in the core colonies as one-year-olds (585 males and 392 fe-
males) and encountered in future years at any colony or the premigratory 
roost, 1994–2007. Ages 5–9 were pooled.
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breed. In one population, for instance, % of yearling males 

but % of females were unmated, even though both defended 

nesting compartments (Wagner et al. ). Young females 

may experience a greater overlap with the energetically expen-

sive activities of molt and migration than older females (Evans 

Ogden and Stutchbury , Norris et al. ). In our study 

population, one-year-olds arrive, nest, and fledge young two to 

three weeks later than older birds. Late breeding may impose 

higher physiological and energetic costs that, in turn, decrease 

overwinter survival. In Cliff Swallows, for instance, an individ-

ual’s corticosterone level at the end of the breeding season was 

strongly related to annual survival (Brown et al. ). If a high 

cost of reproduction explains low annual survival of first-time 

breeders, timing of egg laying and brood size should be related 

to apparent annual survival.

The cost of reproduction in young males includes male–male 

competition for social mates and extrapair mates. Purple Martins 

have an extrapair mating system in which most extrapair young 

occur in nests of one-year-old males and extrapair sires are males 

that are at least two years old (Morton et al. , Wagner et al. 

). Young males who guard their mates intensively (by follow-

ing the mate to the ground when gathering nest material) achieve 

high paternity (Wagner et al. ). It is unknown whether this 

intense competition early in the breeding season affects annual 

survival.

In Purple Martins, we found strong evidence of senes-

cence at five years of age (Table  and Fig. ). During mark–

recapture studies, the average age of the sample population will 

increase over time as the number of older, marked individuals in-

creases. Thus, apparent senescent decline could occur as a result 

FIG. 3. Annual variation in (A) apparent annual survival (Table 1: 1,2 *time) of two age classes of Purple Martins breeding in the core colonies as one-
year-olds (n  977) and encountered in future years at any colony or the premigratory roost, (B) percentage of dead birds of various species sampled in 
Pennsylvania that tested positive for West Nile virus (WNV), and (C) the standardized Southern Oscillation Index (SOI). “Year” refers to the beginning 
of the interval over which survival was estimated.

111



APRIL 2009 —  MIGRATORY SONGBIRD SURVIVAL — 285

of environmental deterioration over the duration of the study, 

rather than because older individuals have lower survival (Nis-

bet ). No such deterioration was detectable in our study in 

terms of weather conditions, nesting success, or annual survival 

of younger age classes.

Senescence has not been widely studied in short-lived pas-

serines (Orell and Belda ), but most studies have found de-

clines in adult survival probability either continuously with age 

(Keller et al. ) or after a threshold age at three to five years 

(Loery et al. , McCleery et al. , Orell and Belda , 

Keyser et al. ). The only other study of a Neotropical migra-

tory songbird found no evidence of strong senescence in Cliff 

Swallows (Brown and Brown ). Possible causes of senescence 

include the expression of late-acting deleterious alleles in older 

individuals as a result of mutation accumulation, delayed nega-

tive pleiotropic effects of alleles that are beneficial at a young age, 

or both (Partridge and Barton ). In a resident population of 

Song Sparrows, inbreeding depression reduced male survival 

and increased with age, which indicates that late-acting delete-

rious alleles may be a factor (Keller et al. ). In our popula-

tion of Purple Martins, the probability of juvenile survival and 

recruitment to a core breeding colony is relatively high (.; B. 

Stutchbury et al. unpubl. data), so inbreeding depression could 

occur, especially given that Purple Martins have an extrapair 

mating system (Morton et al. ). The other primary cause of 

senescence is the long-term cost of high reproductive effort early 

in life, and several studies have shown that in short-lived birds, 

individuals that delay the onset of reproduction or do not breed 

have slower senescence (McCleery et al. , Sanz and Moreno 

, Orell and Belda ). This could be tested in Purple Mar-

tins by experimentally manipulating reproductive effort of one-

year-olds (e.g., Gustafsson and Pärt ).

Apparent annual survival probability varied with time (Fig. ), 

but models including general year effects were not well supported 

by our data (Table ). Models that included the specific effect of 

WNV prevalence each year had little or no support (Table ). Sur-

vival probability of birds at least two years of age was particularly 

low in  and  (Fig. ), but no such effect was seen in one-

year-old birds even though young birds are typically more sus-

ceptible to WNV than older birds (Kilpatrick et al. ). LaDeau 

et al. () found a significant decline, following the introduc-

tion of WNV, in numbers of individuals per Breeding Bird Survey 

(BBS) route of several species predicted to be affected by this vi-

rus. Long-term BBS trends for Purple Martins in the Great Lakes 

Plains region show a significant decrease (–.% year–) since 

 but an increasing trend ( .% year–) for the larger north-

eastern U.S. region (U.S. Fish and Wildlife Service [USFWS] Re-

gion ; Sauer et al. ). There is no sharp drop in Purple Martin 

numbers associated with the spread of WNV into the region in 

either case.

Determining the influence of ENSO on annual survival of 

Neotropical migratory songbirds is important because increases 

in global surface temperatures are predicted to increase the fre-

quency of El Niño events (Kerr , Timmermann et al. ; 

but see Collins ). Two studies have found a strong link be-

tween ENSO and adult survival of Neotropical migrants (Sillett et 

al. , Mazerolle et al. ). However, for Purple Martins, we 

found no evidence that ENSO influences adult survival (Table  

and Fig. ). The winter range of Purple Martins extends from 

northeastern South America to southern Brazil (Brown ), 

encompassing regions that are dry and wet, respectively, during 

El Niño years. Thus, the influence of ENSO depends on where a 

particular breeding population overwinters and the degree of mi-

gratory connectivity. A study conducted by the USFWS marked 

Purple Martins in several wintering roosts in southern Brazil 

with fluorescent micro-dots and asked owners of martin houses 

throughout eastern North America to collect feathers during the 

breeding season (Coulson , Klimkiewicz and Knittle ). 

Purple Martins that had occupied a single large roost in Brazil 

were subsequently found in widely scattered breeding colonies 

from Texas to Maryland, which indicates low migratory con-

nectivity. The effects of global climate change on the survival of 

Neotropical migratory songbirds are difficult to predict, because 

for most species we know little about the connectivity of breed-

ing and wintering populations or how weather on the wintering 

grounds affects survival.
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