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Abstract 

 

Location-aware services have seen great demand recently and the availability of Global 

Navigation Satellite System (GNSS) has greatly contributed to that. However, GNSS 

is only reliably available in outdoor environments, leaving a large gap for a solution in 

indoor environments where people spend most of their time. With the increasing 

number and usage of mobile devices in people’s daily life, indoor positioning, using 

sensors and other information available on mobile devices, has attracted a lot attention 

from both academia and industry for the purpose of providing location-aware services.  

For the last decade, many research groups have reported successful indoor positioning 

using various sensors, primarily based on Wireless Local Area Network (WLAN) 

signal fingerprint matching (WSFM). However, the current success is limited to 

controlled environments and its effective adaptation at large-scale, supporting seamless, 

precise and long-term navigation in diverse indoor environments, still remains a 

challenging research problem. In this thesis, I present a novel indoor positioning system, 

using WSFM and a Path Evaluation and Retroactive Adjustment (PERA) module. The 

PERA module aims to improve the positioning accuracy by fusing the results obtained 

by WSFM with a multi-scale movement regularity evaluation. In this framework, my 

research focuses on how to implement and integrate smoothness regularity of human 

movement with conventional signal matching-based positioning, which often shows 

difficulty to regularize movement trajectories. The PERA module intends to improve 

the positioning accuracy of the system in a similar fashion to Pedestrian Dead 
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Reckoning (PDR) implemented along with WSFM. PDR algorithms implemented on 

mobile devices require high-frequency sampling of inertial sensors and coordinate 

transformations of each sample. The benefit of my approach is that it avoids the 

requirement of inertial sensor data, and its respective intensive computation and power 

use, while providing a similar accuracy improvement to PDR. In this thesis, I 

implemented an end-to-end positioning system, which include fingerprint data 

collection, as well as a real-time positioning system built based on WSFM and 

including the PERA module. Experimental results show that the WSFM algorithm 

yields room level positioning accuracy (less than 3-5 metres of error) 90% of the time 

across various environments. Furthermore, upon employing the PERA module, 

positioning error is reduced to less than 2-3 metres 95% of the time across all testing 

settings. In literature, state-of-the-art Sensor Fusion algorithms combining WSFM and 

PDR boast mean positioning errors of 1-3 metres, which is arguably sufficient for 

providing location-based services on mobile devices. With mean positioning errors of 

0.8-1.4 metres and the aforementioned upper bounds of positioning error, the 

experimental results presented herein demonstrate that this more lightweight algorithm 

requiring less resources is a viable novel approach for positioning using mobile devices 

in an indoor environment. 
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1. Introduction 

In this section, the motivation for and the objectives of this research are discussed, 

covering the general framework of the work, as well as the specific novel contributions 

proposed. Finally, an outline of the thesis is provided, as well as a list of academic 

achievements resulting from this work. 

 

1.1 Motivation 

Indoor positioning and navigation is a burgeoning field in the greater umbrella of 

location based services that has hit its stride in recent years, along with, and primarily 

because of, the ubiquity of smartphones. The major area of interest in the last few years 

has been the application of different indoor positioning methods on the smartphone 

(and tablet) platform. In addition, GNSS positioning and navigation has been very 

successful and dominant in the context of outdoor positioning on mobile devices, and 

in turn, has resulted in users demanding the same level of service in the indoor space. 

 

Due to the inherently smaller indoor spaces in relation to outdoor spaces, acceptable 

accuracy indoors is 1-5 m, as opposed to the 5-20 m acceptable accuracy outdoors 

(Senion IPS, 2016). In addition, there is no set-up cost for GNSS, just a receiver and 

positioning software built into the mobile device. This results in very high expectations 

set for indoor positioning solutions; an ideal solution should be sufficiently accurate, 

have low or no setup and maintenance costs, and should be a universal solution that 

can be used by most people (i.e., anyone with a smartphone) in most places. This 
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research looks to build on previous work and approaches to advance towards an ideal 

solution. 

 

1.2 Research Problem 

The current state-of-the-art indoor positioning algorithms are generally approaches that 

combine a wireless signal-based algorithm, which can provide absolute position 

estimates, with an inertial sensor-based algorithm that can more accurately describe the 

user’s relative motion. In literature, these algorithms generally boast positioning 

accuracy in the range of 0.5-3 metres mean positioning error (Guo et al., 2020). The 

limitations of these approaches are generally associated with the use of inertial sensors 

as they require high-frequency sampling and heavy computations, and are not 

standardized or high quality. Furthermore, no reasonable assumption can be made 

about how the device is attached to the user, which is an assumption that can greatly 

affect algorithm accuracy (Villien, Frassati and Flament, 2019). Wireless signal-based 

algorithms, on the other hand, are generally more lightweight, in terms of computation 

and resources, however, they are susceptible to more frequent outlier user position 

estimates and the data collection for the training/offline phase can be cumbersome (He 

and Chan, 2016). 
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1.3 Research Objectives  

1.3.1 General Framework 

The major objective of my research is to create a standalone positioning system 

utilizing the Wireless Local Area Network (WLAN) signals in the indoor environment. 

The system should be a suitable indoor location provider of location based services on 

mobile devices (e.g., map or navigation application for a shopping centre or university 

campus). This system offers the robustness and accuracy of the state-of-the-art hybrid 

methods while still utilizing the same resources as more lightweight WLAN-based 

algorithms. To arrive at this objective, I took a deep look into WLAN signal fingerprint 

matching (WSFM) methods to determine the ideal algorithms and parameters for an 

implementation on the smartphone platform. Research has shown that WSFM 

algorithms have a higher performance ceiling than their WLAN signal ranging 

counterparts, thus, my research aims to optimize the performance of WSFM methods 

and minimize their deficiencies and weaknesses.  

 

I implemented various matching algorithms, such as weighted and non-weighted k-

Nearest Neighbours (k-NN) as well as Bayes Maximum Likelihood (ML), assessing 

individual as well as cooperative performance. Within the scope of each of these 

implementations, a wide range of parameters were varied and I investigated their 

impact on performance. Parameters considered include definitions of the fingerprint 

and location model, histogram kernelization for ML algorithms, and proximity 

definition and weighting at various stages of k-NN computation. Finally, a novel Path 
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Evaluation and Retroactive Adjustment (PERA) module was developed to emulate the 

smoothness offered by Pedestrian Dead Reckoning (PDR) in hybrid algorithms, and 

location estimates of previous epochs are retroactively updated, based on several 

consecutive readings, to ensure more accurate paths and prevent the positioning system 

from getting stuck at local maxima. 

 

A secondary objective of my research is to improve the reference fingerprint database, 

one of the most cited disadvantages of WSFM methods. In general, the greater the 

human effort in the creation of the reference database, the greater the overall accuracy 

of the positioning system. While other approaches have focused on synthesizing the 

reference database to various degrees, many of these approaches suffer from the same 

problems as ranging algorithms (although to a lesser degree), as it is difficult to predict 

the WLAN signal path loss through complex environments such as large commercial 

buildings. I, instead, focus on making the data collection more efficient, still taking 

advantage of human effort but getting a better return from it. In general, my research 

focuses on making the data collection easier – therefore, requiring less professional 

effort – as well as gathering strategic data that better defines the WLAN signal as 

opposed to blindly increasing the quantity of surveyed data for redundancy. 

 

A third objective is the addition of various efficiencies and computational performance 

improvements to the physical implementations of the positioning system. Since the 

various algorithms to be tested will be implemented on Android as well as computer-

runnable Java applications, some of which will be able to function in real-time within 
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the experimental environment. It will be important to not only make sure that the 

implementations are fully functional but that they also run efficiently. Therefore, a final 

goal is to take advantage of the computing power of modern mobile devices and 

implement concurrency as well as efficient memory management in my applications. 

 

1.3.2 Contributions 

The main contribution that I have made in this thesis is to present a novel positioning 

method taking advantage of the smoothness and regularity of human motion. To my 

knowledge, the PERA module is the first kind of indoor positioning algorithm, which 

integrates smoothness regularity of human movement with WSFM. PERA addresses 

the limitation of locality to predict indoor position without considering smooth 

transitions of current position in relation to previous trajectory. To achieve this goal, I 

have made three contributions to address the limitations of state-of-the-art indoor 

positioning methods and implemented an end-to-end system for facilitating fingerprint 

data collection and real-time positioning.   

 

My first contribution is a study and experimental testing of some of the important 

parameters and sub-algorithms of WSFM. A variety of parameters were discussed in 

(Farshad et al., 2013), and sub-algorithms such as k-NN and ML were discussed in 

(Honkavirta et al., 2009; Dawes and Chin, 2011). Other works such as (Beder and 

Klepal, 2012; Laoudias, Zeinalipour-Yazti and Panayiotou, 2013) suggested particular 

improvements to improve WSFM that are experimentally tested to some degree in my 
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research. My research implements, tests and expands upon some of the findings 

discussed in the aforementioned works; the experiments also examine some parameters 

that have not yet been studied on the smartphone platform. In the end, my contribution 

can be summarized as the development of a novel WSFM algorithm inspired by 

previous research, employing some novel ideas and adapted to empirical findings; 

implementation and live testing was a constructive and iterative process until 

performance was deemed to be satisfactory through qualitative real-time testing. 

Experimental testing of the final iteration of the WSFM algorithm yielded room level 

positioning accuracy (3 – 5 metres) 90% of the time across various environments. 

 

My second contribution is the design, implementation and experimental testing of a 

path evaluation technique that adds another input to the real-time positioning 

algorithm, as well as retroactively repositions the user’s path over the previous several 

epochs. The purpose and goal of this path evaluation module is to smooth and improve 

the accuracy of WSFM results, ideally resulting in comparable performance to state-

of-the-art hybrid WSFM and PDR algorithms. Most recent smartphone-based indoor 

localization systems (Hafner et al., 2013; Ebner et al., 2014; Herrera et al., 2014; Subbu 

et al., 2014; Chen et al., 2015; Tian et al., 2015; Zhang, Chen and Xue, 2018; Dumbgen 

et al., 2019; Renaudin et al., 2019; Villien, Frassati and Flament, 2019; Guo et al., 

2020) use multi-sensor approaches to make up for the shortcomings of basic WLAN 

signal-based methods. On the other hand, my approach first improves the accuracy of 

the WSFM algorithm (by implementing optimizations based on the results of the initial 

experimentation), then addresses the remaining fundamental shortcomings through the 
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PERA module. This results in comparable performance to the hybrid approaches 

(positioning error is reduced to less than 2 – 3 metres 95% of the time across all testing 

settings), while being more energy and computationally efficient. 

 

My third contribution is in the implementation of the entire system on the smartphone 

platform, where I employ concurrency and memory management to improve the 

efficiency and responsiveness of mobile implementations of WLAN fingerprint 

matching systems. As discussed by (Subbu et al., 2014) in his review of smartphone-

based indoor localization systems, most of the solutions are constantly communicating 

with a central server that does the actual computations for the localization. The 

problems with this approach are firstly, that the constant communication requires active 

network connectivity and the communication itself has a significant energy cost; and 

secondly, relying on a server to perform the positioning will inevitably result in a delay 

between the sensing of the data and the localization result, making for a less responsive 

system. My work shows how taking advantage of the computing potential of modern 

mobile devices allows for more efficient implementations for all WLAN fingerprint 

matching approaches as well as hybrid multi-sensor approaches, resulting in the 

potential for more responsive client-side implementations. 

 

1.4 Thesis Outline 

Chapter 1 introduces the reader to the indoor positioning problem addressed herein, 

states the objective of the research and provides the motivation for pursuing it. Chapter 
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2 explores the subject of positioning in indoor environments using mobile devices; 

some context is provided regarding the devices used, location models employed, 

various existing location estimation methods, as well as, current state-of-the-art 

solutions in the field. Chapter 3 describes the physical study area of the research, 

including the buildings and their various relevant characteristics; it outlines the process, 

methods and tools of data collection, and it describes how the data are processed and 

arranged for use in the implemented positioning systems. Chapter 4 provides an 

overview of the entire final iteration of the positioning system implemented and 

experimented with as part of this research; it proceeds to explain the details of its 

various modules and components, describing the methods considered and chosen for 

each of the modules of the final positioning system presented. Chapter 5 focuses on the 

implementation of the positioning system explored and discussed in this research, as 

well as, the implementation of tools used for data collection, and finally, various 

performance improvements built into the implementation to ameliorate real-time use 

and analysis. Chapter 6 reviews the results of all of the experimentation performed as 

part of this research; it describes the methods used to assess the positioning 

performance of the system in a quantifiable manner and details positioning 

performance improvements offered by the novel portions of the positioning system. 

Finally, Chapter 7 provides some closure on the research, reviewing and explaining the 

findings, and exploring avenues of future work and research on this subject. 
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1.5 Achievements 

The research presented herein was published in the ISPRS - International Archives of 

the Photogrammetry, Remote Sensing and Spatial Information Sciences (Gulo, Sohn 

and Ahmad, 2018). A portion of this research was also awarded third place in the AOLS 

Annual Geomatics Graduate Student Poster Competition and was published in the 

Ontario Professional Surveyor magazine (Ontario Professional Surveyor, Volume 58, 

No. 2, 2015). 
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2. Background   

This chapter explores the subject of positioning in indoor environments using mobile 

devices; some context is provided regarding the devices used, location models 

employed, various existing location estimation methods, as well as, current state-of-

the-art solutions in the field. 

 

2.1 Mobile Devices  

2.1.1 Sensors  

Due to the multitude of sensors now offered by mobile devices, there is a vast amount 

of data that becomes available to exploit for the purpose of positioning (Lane et al., 

2010). The following is a list of the sensors that may be available in a standard 

smartphone: 

• WLAN Radio 

• Bluetooth Radio 

• Cellular Radio 

• Accelerometer 

• Gyroscope 

• Magnetometer 

• NFC (RFID) 

• Barometer 

• Camera 

• Microphone 

• Ambient Light Sensor 

• Proximity Sensor

 

The three radios provide three different sources of electromagnetic signals that can be 

used both for obtaining raw measurements for positioning purposes and for 

communication of positioning results. The accelerometer, gyroscope and 

magnetometer can be used to measure physical movement of the mobile device. NFC 
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is useful for close proximity wireless data transfer, for example to provide location 

specific information with a simple small NFC tag at the location. The camera provides 

a wealth of visual information that can be used both for positioning as well as extracting 

location specific information. The remaining sensors can be classified as environmental 

sensors and be used individually or in tandem to extract various information about the 

mobile device’s environment. 

 

2.1.2 Computing Capabilities 

Today’s smartphones and tablets can perform nearly the same computations as low-

end laptops. Furthermore, since 2012, mobile devices have had quad-core processors 

and more recently even octa-core devices are common. Along with the increase in 

performance that is possible by an increasing number of cores, energy efficiency has 

also been a concern of manufacturers. Due to the trend of progressively larger screens 

and thinner bodies on smartphones along with faster (and more power-hungry) data 

transmission technologies such as LTE radios, energy on mobile devices always seems 

to be in short supply. Thus, CPU’s have seen great power efficiency improvements, 

along with the performance improvements.    

 

2.2 Location Models 

In order to both estimate and present a location for the user, the positioning system 

must be set up within a defined location (or spatial) model, or in other words, a system 

that defines the space within which the user is being located. 
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2.2.1 Discrete Model 

A discrete location model means that the navigable space within the floor or building 

is partitioned into discrete generally equal spaces. Each individual space is then 

assigned a unique identifier and its location is generally set as the location of its 

geometric center. When the positioning algorithm estimates a position for the subject 

in this location model, it chooses one or more of the discrete spaces as the most likely 

location(s) of the subject. 

 

2.2.2 Continuous Model 

A continuous location model means that no partitioning of the navigable space occurs, 

the position of a subject can be estimated at any location in the navigable space. This 

type of location model is generally used with trilateration-based positioning systems, 

or any other algorithms that are not limited to estimating only the best candidate out of 

a discrete set. 

 

2.2.3 Hybrid Model 

A hybrid location model is any mix of the two aforementioned models, and can have 

various forms. The most trivial form is when the navigable space is partitioned into 

discrete spaces and the positioning algorithm estimates the user’s position by choosing 

multiple most likely discrete spaces. The discrete locations associated with the chosen 
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spaces are averaged and presented in a continuous location model as the user’s 

estimated position. 

 

2.3 Location Estimation Methods 

The multitude of sensors now incorporated in mobile devices opens the door to a vast 

amount of existing indoor positioning methods, and even inspires a few new methods 

(Subbu et al., 2014; Villien, Frassati and Flament, 2019; Guo et al., 2020). The 

following is a list of the most popular approaches to indoor positioning on a 

smartphone: 

• WLAN Fingerprint Matching 

• WLAN Ranging 

• Bluetooth Ranging 

• Pedestrian Dead Reckoning 

• Magnetic Fingerprint Matching 

• Image Recognition / Visual 

Odometry 

• Hybrid / Sensor Fusion 

 

The WLAN and Pedestrian Dead Reckoning approaches were significantly studied 

prior to the advent of smartphones, whereas the others were only studied in significant 

detail once smartphones arrived with an increasing variety of sensors. Furthermore, on 

the mobile platform it has become increasingly common for new research to focus on 

multi-sensor hybrid approaches, usually cooperatively employing various algorithms 

using different sensor data. 
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2.3.1 WLAN Ranging and Trilateration 

WLAN signal based approaches can be broadly categorized into two major categories, 

ranging and fingerprinting. Ranging methods use signal path loss models of varying 

complexity to estimate the distances to WLAN access points (APs) based on the 

received signal strengths of the APs. Trilateration is then used to position the user based 

on the computed distances to the various APs. These methods generally require detailed 

floor plans of the building and the locations of the APs in the building in order to model 

the signal propagation of the APs and determine the user’s distance to each of them 

(Torteeka, Chundi and Dongkai, 2014). Recent WLAN APs, however, have introduced 

support for the IEEE 802.11-2016 standard that includes the fine time measurements 

(FTM) protocol. The FTM protocol enables a ranging process based on round-trip time 

(RTT) that has begun to be implemented in trilateration positioning approaches (Yan 

et al., 2019). Once there is widespread public and commercial deployment of APs and 

mobile devices supporting the new standard, its viability for indoor positioning can be 

better quantified. 

 

Bluetooth ranging works in a manner very similar to WLAN ranging. The main 

difference is that Bluetooth signals are used as opposed to WLAN. This method 

requires Bluetooth beacons that constantly emit an identifying signal. The user’s device 

then computes the distances to the sensed beacons and trilateration is used to estimate 

a position for the user. Another key difference with WLAN ranging is that the number 

of beacons required for equivalent performance between the two methods is 
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significantly higher than the number of APs required because Bluetooth beacons have 

a much weaker signal – and therefore, range – due to the importance given to low cost 

and energy consumption (Martin et al., 2014). 

 

2.3.2 WLAN Fingerprint Matching 

On the other hand, fingerprinting methods require AP signal strength maps of the 

building, or in practical terms, a database of the expected signal strengths of APs at 

discrete locations in the building (reference fingerprint database); the density of these 

discrete locations may vary. The user takes a sample of the signal strengths of APs 

within range (live fingerprint) and various mathematical algorithms can then be used 

to match the live fingerprint to the most similar location in the database with respect to 

the signal strengths of the sampled APs. There have also been systems proposed that 

avoid some or all of the manual data collection by modeling the WLAN signals 

throughout the positioning area, however, these systems require accurate AP locations 

and detailed maps of the positioning area. Generally, it is very difficult to accurately 

model the signal propagation of APs in complex indoor environments, thus, resulting 

in degraded positioning performance (Honkavirta et al., 2009; Farshad et al., 2013; He 

and Chan, 2016).  

 

2.3.3 Pedestrian Dead Reckoning 

The pedestrian dead reckoning (PDR) algorithm has three components, step detection, 

step length estimation, and heading estimation. Steps are detected from the periodic 
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pattern of accelerometer readings while the user is walking; step length is estimated in 

real-time from the amplitude of the accelerometer readings or based on user 

characteristics; the user’s heading is determined by magnetometer readings and the 

gyroscope can be used to detect and correct erroneous magnetometer readings from 

magnetic anomalies due to the physical environment. This method essentially estimates 

the user’s movement based on the inertial sensor measurements provided by the mobile 

device. The starting location, however, needs to be provided by an external source for 

this system, or alternatively, the user may be located after a traversing a path 

sufficiently long and unique to be matched to a likely potential path in the floor plan 

(Durrant-Whyte and Bailey, 2006b, 2006a; Harle, 2013; Villien, Frassati and Flament, 

2019). 

 

2.3.4 Magnetic Anomaly Fingerprint Matching 

Magnetic fingerprint matching, as the name implies, has functional similarities to 

WLAN fingerprint matching. Some of the materials used in the construction of larger 

commercial buildings, as well as large pieces of furniture within them, can create local 

anomalies in Earth’s magnetic field measured in different areas of a building. The 

magnetometers available in modern smartphones are able to measure the magnetic field 

with enough precision to be able to distinguish local field anomalies throughout a 

building. Thus, a live sample of the magnetic field (fingerprint) is matched to the most 

similar location in a reference fingerprint database based on the magnetic field 

measured. Since these magnetometers measure the magnetic field in the three physical 
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dimensions, this method is functionally equivalent to a WLAN fingerprint matching 

system where the signal from three APs is sensed throughout the whole building (Li et 

al., 2012). 

 

2.3.5 Image Recognition and Visual Odometry 

Methods taking advantage of the mobile device’s camera sensor can be grouped into 

two broad categories, scene recognition and visual odometry. The former refers to 

methods that attempt to recognize the location of the user based on photo(s) taken by 

their mobile device in real-time. This can be accomplished by simple image matching 

if a considerable database of images with known location exists; alternatively, live 

images can be used to construct a three-dimensional model of the scene in view and 

that model then matched to a particular area of the building based on an existing 

accurate three-dimensional model of the building’s interior (Mautz and Tilch, 2011). 

Visual odometry, on the other hand, uses live video from the camera to estimate the 

user’s movement. By creating and continuously updating a three-dimensional model 

of the view in the live video, the change in perspective over time can convey the user’s 

movement. Visual odometry is thus very similar to PDR, with the main difference just 

being how the user’s movement is estimated (Nister, Naroditsky and Bergen, 2004). 

 

2.3.6 Sensor Fusion 

Finally, hybrid algorithms combine multiple individual positioning methods into a 

larger more complex positioning system (Hafner et al., 2013; Ebner et al., 2014; 
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Herrera et al., 2014; Subbu et al., 2014; Chen et al., 2015; Tian et al., 2015; Zhang, 

Chen and Xue, 2018; Dumbgen et al., 2019; Renaudin et al., 2019; Villien, Frassati 

and Flament, 2019; Guo et al., 2020). Some implementations employ as many 

individual algorithms as possible and then attain a final position by averaging all of the 

estimates, sometimes varying the influence of individual estimates depending on their 

expected accuracy. Other implementations choose the individual algorithms 

strategically so that they may reinforce each other’s weaknesses; a common example 

is a WLAN algorithm and PDR algorithm working cooperatively; the WLAN 

algorithm is preferred to estimate an initial location, while the PDR algorithm is 

generally superior in estimating the user’s movement relative to an initial location, and 

thus, is given precedence when the user is moving (Harle, 2013; Subbu et al., 2014; 

Villien, Frassati and Flament, 2019). A general overview of a state-of-the-art sensor 

fusion algorithm follows. 
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Figure 1. System Overview of a Typical Sensor Fusion Algorithm 
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3. Location Fingerprinting  

This chapter describes the physical study area of the research, including the buildings 

and their various relevant characteristics; it outlines the process, methods and tools of 

data collection, and it describes how the data is processed and arranged for use in the 

implemented positioning systems. 

 

3.1 Study Areas 

The positioning system was implemented on two floors of in each of the following 

three buildings: Petrie Science and Engineering Building (PSE), Chemistry Building 

(CB), and the Bergeron Centre for Engineering Excellence (BRG). Hallways on each 

floor were segmented into discrete symbolic locations and each symbolic location was 

individually fingerprinted. 

 

3.1.1 Building Floorplans and Symbolic Locations 

The Bergeron Centre of Engineering Excellence (BRG) building, built in 2015, has 

four floors. The first and second floor were sampled and reference WLAN RSS 

fingerprints were created for them. The first floor main narrow hallways accumulate to 

approximately 90m (sections of 40m, 20m, 20m and 10m) while the first floor main 

large hallway is 35m long and has two adjacent approximately 80m2 open areas. The 

second floor has a main hallway that is L-shaped and approximately 65m long (22.5m 

+ 42.5m) while the second floor secondary hallways accumulate to approximately 35m 
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(10m +15m + 10m). BRG 1st floor consists of 105 distinct symbolic locations and BRG 

2nd floor consists of 55 distinct symbolic locations. 

 

 
Figure 2. BRG 1st Floor and Symbolic Locations 
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Figure 3. BRG 2nd Floor and Symbolic Locations 
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Figure 4. CB 1st Floor and Symbolic Locations 

 

The Chemistry Building (CB), built in 1993, has four floors and is connected to the 

PSE building by through hallways on a few of its floors. The first and fourth floors 

were sampled and reference WLAN RSS fingerprints were created for them. The fourth 

floor main L-shaped hallway is approximately 100m long (55m + 45m) while the first 

floor main L-shaped hallway is approximately 105m long (40m + 20m + 45m), and the 
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first floor through hallway is approximately 25m long. CB 1st floor consists of 85 

distinct symbolic locations and CB 4th floor consists of 70 distinct symbolic locations. 

 

 
Figure 5. CB 4th Floor and Symbolic Locations 
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Figure 6. PSE Basement Floor and Symbolic Locations 

 

The Petrie Science and Engineering (PSE) building, built in 1968, has five floors 

including the basement. The basement and third floor were sampled and reference 

WLAN RSS fingerprints were created for them. The third floor hallways form a square 

with approximately 40m sides, while the basement hallways consist of a 30m by 40m 

rectangle and two additional 18m hallways extending two of the rectangle’s sides. PSE 
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Basement floor consists of 115 distinct symbolic locations and PSE 3rd floor consists 

of 104 distinct symbolic locations. 

 

 
Figure 7. PSE 3rd Floor and Symbolic Locations 
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3.1.2 AP Locations 

PSE has 33 active APs distributed throughout the 3rd floor. They are mainly placed 

within the offices, with only a couple being in the hallways and only a couple more in 

the central labs. The distribution is most dense flanking the main hallway, thus it is 

expected that positioning based on WLAN signals will be relatively accurate here. 

 
Figure 8. AP Distribution on PSE Third Floor 
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Figure 9. AP Distribution on PSE Basement Floor 

 

PSE has 29 active APs distributed throughout the Basement floor. Similarly to the third 

floor, the distribution is most dense flanking the main hallway, thus it is expected that 

positioning based on WLAN signals will be relatively accurate here, except perhaps in 

the top-right section of the map and the long narrow hallway extending from there. 
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Figure 10. AP Distribution on CB Fourth Floor 

 

CB has 18 APs distributed throughout the 4th floor. The distribution is more sparse but 

still relatively uniform throughout the floor. Positioning based on WLAN signals is 

expected to be generally good here as well. 
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Figure 11. AP Distribution on CB First Floor 

 

CB has 31 APs distributed throughout the 1st floor. This floor has a similar area to the 

4th floor of CB, however, it has a much higher number of APs, resulting in a higher 

density. The distribution is similar to that of the 3rd floor of the PSE building, thus, 

WLAN based positioning accuracy is expected to be very good here. 
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Figure 12. AP Distribution on BRG Second Floor 

 

BRG has 45 APs distributed throughout the 2nd floor. The distribution of APs is quite 

uniform and dense throughout the navigable areas of this floor, thus, positioning based 

on WLAN signals is expected to be relatively accurate here. The large square space in 



32 
 

the middle left sixth of the floor is a large open industrial experiment lab in which no 

APs could be installed, and the far left hallway is open to below. 

 

 
Figure 13. AP Distribution on BRG First Floor 
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BRG has 39 APs distributed throughout the 1st floor. The distribution is relatively 

uniform and dense in the top and bottoms thirds of the floor, thus, WLAN based 

positioning is expected to be relatively accurate in these areas. However, the 

distribution is rather sparse near the far left hallway and the middle right sixth of the 

floor, which will result in relatively poorer performance of the positioning in these 

areas. The large square space in the middle left sixth of the floor is a large open 

industrial experiment lab in which no APs could be installed. 

 

3.1.3 WLAN Signal Characteristics 

The APs used by York University in their public WLAN infrastructure are set to 

transmit on both 2.4 and 5 GHz frequencies. Furthermore, they offer access to three 

different networks. This results in each physical AP presenting six virtual APs to users. 

The impact of virtual APs on WLAN fingerprint matching was discussed in (Farshad 

et al., 2013), and the results therein indicated that considering virtual APs as physical 

APs will have a similar positive effect on positioning accuracy to increasing the density 

of physical APs in the indoor space. 

 

Another finding from (Farshad et al., 2013) was that a 5 GHz AP signal is more reliable 

than its 2.4 GHz counterpart for WLAN fingerprint matching. In addition, in practice, 

WLAN scans on a mobile device become more frequent when the device is limited to 

using only one of the frequencies. The trade-off of using only fingerprints on one 

frequency is explored experimentally. 
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3.2 Data Collection 

3.2.1 Collection Tools 

An Android application was specifically developed for collecting WLAN AP 

fingerprints for this research.  

  
Figure 14. Screenshots of the application used to collect fingerprints. 

   

The application interface shows a constantly updating list of visible APs, showing their 

SSID, RSSI, and time of the reading. The interface also contains a text box for the name 

of this collection instance and a button to write the collected readings to a .txt file. 

Furthermore, options exist to timestamp the collection, filter out non-university 
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infrastructure APs, and to compute and record only the mean of the RSSI readings 

obtained for each AP. The scanning for APs can be paused/resumed, restarted, and 

manually refreshed if automatic scans stop occurring. The application was installed on 

multiple devices that were used for collecting fingerprints over the course of the 

research. Devices included the LG Nexus 4 and 5, Samsung Nexus 10, Sony Xperia Z3 

Compact, and OnePlus One.  

 

Table 1. Phones Used for Data Collection 

Phone CPU WLAN 

LG Nexus 4 
Qualcomm Snapdragon™ S4 Pro 

(APQ8064), Quad-Core 1.5GHz 

Dual-Band Wi-Fi (2.4G/5G) 

802.11 a/b/g/n 

LG Nexus 5 
Qualcomm Snapdragon™ 800 

(MSM8974), Quad-Core 2.26GHz 

Dual-band Wi-Fi (2.4G/5G) 

802.11 a/b/g/n/ac 

Samsung 

Nexus 10 

Exynos 5250, Dual-Core 1.7 GHz 

Cortex-A15 

Dual-Band Wi-Fi (2.4G/5G) 

802.11 a/b/g/n 

Sony Xperia 

Z3 Compact 

Qualcomm Snapdragon™ 801 

(MSM8974AC), Quad-Core 2.5 GHz 

Dual-band Wi-Fi (2.4G/5G) 

802.11 a/b/g/n/ac 

OnePlus One 
Qualcomm Snapdragon™ 801 

(MSM8974AC), Quad-Core 2.5 GHz 

Dual-band Wi-Fi (2.4G/5G) 

802.11 a/b/g/n/ac 

 

3.2.2 Collection Methods 

At each discrete symbolic location, fingerprint collection lasts approximately two 

minutes. The subject performing the data collection holds the mobile device in their 
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hand at about chest height, inputs the location information/name into the fingerprint 

collection app, resets the collection process (by clicking “restart”) and rotates their 

body 90˚ after every 30 seconds of data collection. After two minutes have passed and 

the subject has collected fingerprints in all four directions, the “Record Scans” button 

is pressed to record the collected data to a .txt file and complete the process for that 

particular symbolic location. 

 

3.2.3 Collected Data 

- Building 
o Floor 

§ Symbolic Location 001 
• AP1 (MAC, SSID, number of RSSI readings) 

o RSSI1:timestamp 
o RSSI2:timestamp 
o …  

•  AP2 (MAC, SSID, number of RSSI readings) 
o RSSI1:timestamp 
o RSSI2:timestamp 
o  … 

• … 
§ Symbolic Location 002 

• AP1 (MAC, SSID, number of RSSI readings) 
o RSSI1:timestamp 
o RSSI2:timestamp 
o …  

•  AP2 (MAC, SSID, number of RSSI readings) 
o RSSI1:timestamp 
o RSSI2:timestamp 
o  … 

• … 
§ … 

 
Figure 15. Format of Collected Data 
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3.3 Fingerprint Database 

3.3.1 Storage 

Primarily, the fingerprint database is stored on .txt files; each symbolic location has 

one text file from each device used to collect fingerprints at that location. The format 

of each file is as follows: 

 

Symbolic Location 001 (# of APs) 

o AP1 (MAC, SSID, number of RSSI readings) 
• RSSI1:timestamp 
• RSSI2:timestamp 
• …  

o  AP2 (MAC, SSID, number of RSSI readings) 
• RSSI1:timestamp 
• RSSI2:timestamp 
•  … 

o … 
 

Figure 16. Format of a Reference Fingerprint for a Symbolic Location 

 

Once the positioning algorithm is initialized (.txt files are read and a live database 

structure is created on memory), the positioning application can create a backup txt file 

of the database containing only the simplified information (see section 3.3.3) in order 

to speed up initialization for the next time positioning is attempted on the same floor 

with the same initialization parameters. 
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3.3.2 Filtering 

The main filtering that occurs is with respect to the APs that are considered. The data 

collection application collects readings from all APs in range, however, the positioning 

algorithm only uses readings from the APs that are part of the university’s WLAN 

infrastructure. When creating the live database, APs are filtered based on their SSID 

(whitelist of university infrastructure SSID’s used). Other filtering may also occur 

based on the initialization parameters, for example, APs with very erratic RSSI 

readings (beyond a certain threshold), or APs with very low mean RSSI (again, beyond 

a certain threshold), may be removed from the database. 

 

Finally, filtering generally also occurs for real-time readings during positioning as well 

as test readings used for performance evaluation. The filtering in these cases occurs on 

a fingerprint-by-fingerprint basis; a fingerprint may be discarded or combined with the 

following/preceding fingerprint depending on the number of APs represented in that 

fingerprint and/or the timestamps of RSSI readings contained in it. Occasionally, 

fingerprints read by the positioning algorithm are incomplete, thus, they will contain 

fewer RSSI readings than expected for that particular location; the remaining expected 

RSSI readings then come in the following fingerprint with timestamps a millisecond 

later than the previous fingerprint. Thus, in these cases, the two fingerprints are 

combined into one before being input in the positioning algorithm. In the much rarer 

cases where the incomplete fingerprint is not followed by its complementary 

incomplete fingerprint, the fingerprint is simply discarded as it is deemed unreliable. 
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The general criterion for designating a fingerprint as incomplete is a threshold for the 

minimum expected AP RSSI readings for any fingerprint attained on a particular floor; 

this threshold is based on the number of APs visible at any given position on that floor.  

 

3.3.3 Simplification 

In this context, simplification refers to the creation of the live fingerprint database used 

by the positioning algorithm in real-time. During initialization, the application reads 

all of the fingerprint txt files for all symbolic locations on the building and floor where 

the user is to be positioned. The application then creates a data structure that contains 

reference fingerprints for every symbolic location on that floor. Generally, a mean 

value is calculated from the multiple RSSI readings for each AP in the txt files; this 

mean value is then added to the data structure and the individual RSSI readings are 

discarded to conserve memory. Depending on the initialization parameters, the data 

structure could also contain the number of readings as well as a measure of the 

variability of the signal strength for each AP at each symbolic location. When the Bayes 

Maximum Likelihood algorithm is used for positioning, then normalized RSSI 

histograms are created for every AP at every symbolic location. To speed up 

initialization on future positioning sessions, all the info retained in the live fingerprint 

database is written to a new file, thus, allowing future initializations with the same 

parameters to recreate the live fingerprint database without having to do any of the 

computations in the first initialization. 
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3.4 Deployment Time 

Total deployment time including data collection, processing and inclusion in the 

system, to enable positioning on a floor was about one working day. Planning out 

symbolic locations in a floor would require about 2 hours. Collecting data on those 

points would require about 2 to 4 hours, or approximately 1 hour of data collection for 

every 200 metres squared of navigable area. Finally, the symbolic locations and their 

respective reference WLAN signal fingerprints are added to the positioning 

application, requiring 1 to 2 hours, before positioning is enabled on the floor. Thus, a 

turnaround time of one day per floor or one week for an average building on a 

university campus was possible using the system developed as part of this research. 
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4. Location Estimation 

In this thesis, I present a novel indoor positioning system that combines a conventional 

WSFM algorithm as a baseline positioning method, with which a novel concept of 

smooth movement regularity is integrated. In this chapter, the algorithmic details of the 

positioning system are discussed; it is further broken up into three subsections. The 

first two sections discuss each of the two general types of WSFM algorithms, 

deterministic and probabilistic, respectively; both types were implemented as part of 

this research, using k-NN and ML algorithms, respectively. The third subsection 

describes the details of the entirely novel PERA module and how it fits into the 

positioning system as a whole. 

 

4.1 Introduction 

The positioning system presented in (Bahl and Padmanabhan, 2000) is generally 

considered as the first using a WSFM algorithm. Since then, there have been many 

academic and commercial implementations, such as (Youssef and Agrawala, 2008; 

Martin et al., 2010; Bolliger, 2011; Mirowski et al., 2011; Beder and Klepal, 2012; 

Machaj and Brida, 2012; Laoudias, Zeinalipour-Yazti and Panayiotou, 2013; Bai et al., 

2014; Ekahau RTLS, 2015; He and Chan, 2016; Liu et al., 2019), aiming to improve 

upon it. Given the multitude and diversity of these implementations, there have also 

been many academic research works exploring the field as a whole or examining the 

effects of modifying various parameters of WSFM algorithms (Kjærgaard, 2007; 
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Curran et al., 2011; Dawes and Chin, 2011; Lemic et al., 2014; Zhou and Wieser, 

2018).  

 

The comparative survey conducted by (Honkavirta et al., 2009) was found to be 

particularly insightful; it provided detailed descriptions of the various algorithms it 

examined and was a useful reference for the design process of the WSFM algorithm 

discussed herein. On the other hand, findings in (Farshad et al., 2013) addressed some 

of the questions regarding particular aspects of the implementation of the algorithm on 

the smartphone platform and in a university building setting. In addition to the above, 

previous research from this lab in indoor positioning utilizing WLAN signals (Chan, 

2013), and its findings, also served to inspire the WSFM algorithm discussed in this 

work.  

 

4.2 Positioning System Overview 

The positioning algorithm posited in this research is principally made up of two 

separate algorithms, WLAN Signal Fingerprint Matching (WSFM) algorithm and a 

Path Evaluation (PE) algorithm. An overview of the entire positioning system 

described above is illustrated in Figure 17. 
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Figure 17. System Overview of k-NN + PERA Algorithm 

 

Initially, the WSFM algorithm estimates the k most likely locations where the user may 

be located; these k locations are input for the second PE algorithm which determines 

the most likely recent path of the user based on the movement pattern in each of the 

permutations of the last few epochs of WSFM estimates. The user’s recent path is then 

adjusted to correspond to the most likely estimate of the PE module and the path’s end 

point is presented to the user as their current location. Each of the modules and sub-

modules of the positioning system will be described in detail in this chapter. 
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4.3 k-Nearest Neighbours 

4.3.1 k-Nearest Neighbours Algorithm 

The k-Nearest Neighbours (k-NN) algorithm is a simple machine-learning algorithm, 

generally used in pattern recognition. The algorithm consists of searching through a set 

of reference points for the k-nearest points of that set to a query point in the same 

dimensional space. If there are multiple query points, the algorithm is repeated for each 

one. Nearness or proximity can be arbitrarily defined, although often Euclidean or 

Manhattan distance is used as a metric of proximity. Upon the identification of the k 

nearest reference points, those points can be used to either assign a class (k-NN 

classification) or assign a value (k-NN regression) to the query point. 

 

 
Figure 18. Diagram of k-Nearest Neighbours 
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4.3.2 Application to WLAN Fingerprint Matching 

The k-NN algorithm can be utilized in WLAN Signal Fingerprint Matching (WSFM), 

a method of positioning in (mostly indoor) areas with WLAN infrastructure. WSFM 

requires a database or map of the signal strength of all WLAN access points (APs) 

throughout the area where positioning is possible. The user then obtains a sample of 

the signal strengths of all APs (fingerprint) at their particular location, and the WSFM 

algorithm matches the fingerprint to the most similar location (based on the AP signal 

strengths) in the database. A fingerprint typically contains the information in the table 

below, with the set of RSSI readings, denoted by RSSIS = {RSSI1, RSSI1, RSSI1, … , 

RSSIn}, used as the input/measurement for k-NN. 

 

Table 2. Information Typically Collected in a Fingerprint 

Time Received AP Network Name AP Identifier Signal Strength 

t1 

SSID1 

BSSID1 RSSI1 

BSSID2 RSSI2 

BSSID3 RSSI3 

SSID2 BSSID4 RSSI4 

SSID3 
BSSID5 RSSI5 

BSSID6 RSSI6 

SSID4 
BSSID7 RSSI7 

BSSID8 RSSI8 

SSID5 BSSID9 RSSI9 
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The k-Nearest Neighbours algorithm (k-NN) is used to match the subject’s fingerprint 

to the symbolic location with the reference fingerprint most similar to it. Every location 

estimation, that is, whenever the subject collects a new fingerprint, k -NN compares 

the subject’s fingerprint to every single symbolic location in the reference fingerprint 

database and returns the k symbolic locations that are nearest to it in terms of AP signal 

strengths. 

 

When using k-NN, the database is set up as a set of reference points (or reference 

fingerprints) in signal space that correspond to particular locations in the positioning 

area. Thus, let the reference database be 𝐿 = #𝑙!, 𝑙", … , 𝑙#', where p represents the 

number of specific locations represented in the database and 𝑙$ typically contains the 

information in the table below. Also contained in 𝑙$ is RSSIR = {RSSI1, RSSI1, RSSI1, 

… , RSSIm}, the reference point in signal-space used in k-NN. Finally, once all the 

distances are calculated between RSSIS and every RSSIR, they are sorted and the k 

points in L with the smallest distances to the fingerprint are selected to estimate a 

location for that fingerprint. In my research, I am also experimenting with a modified 

version of this algorithm (WSDFM) that uses a different definition of the fingerprint, 

namely the differences between the signal strengths, as opposed to the absolute signal 

strengths, of all visible APs. Therefore, distance calculations in this version of the 

algorithm are in d(d − 1)/2 dimensions when d APs are visible in the fingerprint. 
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Table 3. Table of Reference Fingerprints 

Symbolic 
Location 

Geometric 
Location 

AP Network 
Name 

AP 
Identifier 

Mean Signal 
Strength 

001 (x,y)001 

SSID1 

BSSID1 RSSI1 

BSSID2 RSSI2 

BSSID3 RSSI3 

SSID2 BSSID4 RSSI4 

SSID3 
BSSID5 RSSI5 

BSSID6 RSSI6 

SSID4 
BSSID7 RSSI7 

BSSID8 RSSI8 

SSID5 BSSID9 RSSI9 

 

 

4.3.3 Definition of Proximity 

Based on empirical findings during my experimentation and similar findings in prior 

research from our lab (Chan, 2013), the metric of proximity chosen for my 

implementation is a normalized Manhattan distance; for each fingerprint’s RSSIS, the 

distances are calculated between it and the RSSIR of every reference fingerprint in L. 

The proximity metric, 𝑑%%(𝑙), is described by the equation below. 

𝑑%%(𝑙) =
∑ ,𝑅𝑆𝑆𝐼$

&(() − 𝑅𝑆𝑆𝐼$%,*
$+! + 2𝛽,(𝑚 − 𝑛)6

𝑚 																									(1) 

𝐿-./0 = arg 𝑘min(
-+1

𝑑%%(𝑙) , 𝐿-./0 ⊂ 𝐿																																	(2) 
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The symbolic locations corresponding to the k-smallest distances in signal space (Lkmin) 

are identified. Furthermore, the dimension mismatch penalty (𝛽, ) is discussed in 

subsection 4.3.4.3. 

 

4.3.4 Mismatch In Distance Dimensions  

It should be noted that RSSIS and RSSIR are often not defined in the same dimensions, 

that is to say n and m, the APs represented in RSSIS and RSSIR, respectively, are often 

not the same. Not all APs are necessarily visible in every location of the positioning 

area, thus, the potential mismatch of dimensions must be dealt with. 

 

4.3.4.1 Normalization 

One way to deal with a mismatch of dimensions is to normalize the proximity metric, 

in this case, Manhattan distance. This allows the proximity metric to represent the 

average distance per dimension as opposed to the combined distance in all dimensions. 

A solution that relies solely on normalization will compute a distance using only the 

dimensions that match between RSSIS and RSSIR, i.e., those that correspond to the 

same APs. This means that non-matching dimensions are simply ignored and this can 

result in outliers and generally poor accuracy when the number of matching dimensions 

is very low. 
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4.3.4.2 Artificial RSS 

Another way to deal with dimension mismatch is to insert artificial values into RSSIS 

for the dimensions of RSSIR that are not represented in RSSIS. In this case, the value 

inserted (RSS*) is usually the lowest possible RSS value that can be sensed, often set 

to -100 dBm. This solution makes the assumption that RSS* is practically equivalent 

to the real RSS in that spot (which is too low to be sensed by the subject’s device). 

Supporting rationale for this method is that by inserting a set minimum value (RSS*), 

the penal impact on the metric for that reference location will be proportional to the 

strength of the missing AP signal (missing dimension). 

 

4.3.4.3 Hybrid Solution for Mismatch 

The two methods of dealing with dimension mismatch discussed above can be used 

together in a hybrid solution where the artificial RSS* readings are inserted into the 

RSSIS and then the Manhattan distance is also normalized. The rationale for the latter 

is that even RSSIR of different symbolic locations will vary in the dimensions 

represented (APs visible), thus, normalization can still help make the proximity 

comparison fairer. 

 

This hybrid method certainly improves the accuracy of positioning of the k-NN 

algorithm, however, during performance testing, a different hybrid method 

(penalization method) was also tested and showed to further improve accuracy. The 

penalization method opts to add a set penalty to the Manhattan distance for every 
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dimension mismatch as opposed to employing artificial RSS readings. This penalty is 

essentially an artificial difference between RSSIR and RSSIS in one dimension. The 

actual penalty was found heuristically by trying various values, and tests showed that 

using one constant value for the penalty resulted in better accuracy than the varying 

penalization resulting from inserting the artificial RSS values. This penalization 

method is demonstrated in the mathematical definition of our proximity metric in the 

(𝛽,(𝑚 − 𝑛)) term. Here, 𝛽, is the penalty value and (𝑚 − 𝑛) determines how many 

times to add the penalty to the proximity metric (i.e. how many dimensions are 

represented in RSSIR but not in RSSIS. 

 

4.3.5 k-NN Weighting 

Whether performing k-NN classification or regression, when k > 1, there needs to be 

some kind of scheme to combine the input/effect of all k neighbours. In the simplest 

case, an equal weighted mean of the neighbours is computed. Another very common 

method is to take a weighted mean of the neighbours, where the weight of each 

neighbour is inversely proportional to its rank or k-value. Other, more complex, 

methods can also take into account the actual metric (e.g. Euclidean distance) of the 

nearest neighbours calculation for each of the neighbours to determine that neighbour’s 

weight, or simply retain all of the neighbours and use an additional algorithm to obtain 

a single estimate from the k neighbours. The various methods of assigning weight to 

the neighbours can also be broadly categorized into two categories, a priori and a 



51 
 

posteriori weighting; however, some complex methods can even perform both types of 

weighting. 

 

4.3.5.1 A Priori Weighting 

A priori weighting generally refers to scalar constant weights applied to the neighbours. 

This generally includes the trivial case, where all neighbours are equally weighted, and 

cases where the weights are based on the rank. Rank based weights will generally be 

something along the lines of 1/Rank, or in other cases, each rank can have a specific 

arbitrarily predefined weight (i.e. 1st = 1.0, 2nd = 0.8, 3rd = 0.6, and etc.) generally based 

on some prior knowledge about the likelihood of each neighbour being correct. 

 

4.3.5.2 A Posteriori Weighting 

A posteriori weighting generally refers to the determination of weights for the 

neighbours after the k-nearest neighbours have been determined. This can be 

accomplished in a number of ways. The simplest way is to use the distance metric of 

each neighbour that determined its proximity to the query point (e.g. the weight could 

be 1/di). A more complex way is to use an alternate algorithm to determine the weights 

of the neighbours. The secondary algorithm can be entirely independent of the k-NN 

metric, and thus, can result in weights that are not proportional to the k-NN ranks of 

the neighbours. In my experimentation, I attempted the use of a Bayes Maximum 

Likelihood algorithm to calculate a posteriori weights of the k-nearest neighbours, 
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however, the algorithm was not able to improve accuracy significantly over the use of 

a priori or k-NN based a posteriori weights. 

 

4.3.6 Uncertainty 

Given that this positioning system is based on calculating a position from measured 

data, it stands to reason that there is some uncertainty in the measurement and that 

uncertainty could be used to estimate the level of confidence or uncertainty in the 

estimated position. Unfortunately, in the implementation of this algorithm on mobile 

devices, determining and propagating uncertainty is not possible. In early versions of 

WSFM algorithms, WLAN signal measurements were taken on computers, where 

software allowed for high frequency sampling of signals in the order of 10-100 Hz. On 

the other hand, mobile devices only allow access to the wireless radio tools built into 

the operating system, which only allow for the retrieval of WLAN signal measurements 

at frequencies of 0.1-1 Hz, varying between different devices. With frequencies this 

low, it is not possible to calculate any sort of uncertainty value from the spread of 

readings, as each individual reading must be used for a separate positioning estimate. 

Furthermore, if the operating system is collecting multiple readings and only outputting 

an average value, it does not offer any method of retrieving the individual samples or 

their variance. For this reason, uncertainty of measurements is not considered in the 

proposed positioning system. 
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4.4 Bayes Maximum Likelihood 

4.4.1 Bayes Maximum Likelihood Classifier 

A probabilistic framework was also explored in the search for the ideal algorithm for 

this application; the one implemented was a Bayes classifier with naïve Bayes 

conditional probability model and maximum likelihood decision rule. In short, the 

algorithm chooses the most likely class of a measurement vector based on the product 

of the probabilities of each of the vector’s elements belonging to a particular class. This 

algorithm assumes all variables (elements of the measurement vector) are independent, 

each measurement is independent, and all class labels have a uniform prior distribution.  

 

Let the measurement vector be x, where x = (x1, x2, … , xn), thus, the probability of 

each class label, Ck, given x is p(Ck | x1, x2, … , xn). We can decompose the conditional 

probability using Bayes’ Theorem to get  

𝑝(𝐶- 	|	𝐱) = 	
𝑝(𝐶-)𝑝(𝐱	|	𝐶-)

𝑝(𝐱) 																																															(3) 

We assume that 𝑝(𝐶-)  and 𝑝(𝐱)  are effectively constant, thus the numerator is 

equivalent to the joint probability model. Furthermore, using the chain rule for repeated 

applications of the definition of conditional probability and provided the assumption 

that each element xi is conditionally independent of every other element xj for j ≠ i 

given the category Ck, we can express the probability as 

𝑝(𝐶- 	|	𝐱) ∝ 𝑝(𝐶- , 𝑥!, 𝑥", … , 𝑥2) = 𝑝(𝐶-)𝑝(𝑥!|𝐶-)𝑝(𝑥"|𝐶-)…𝑝(𝑥2|𝐶-)								(4) 
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Using Maximum Likelihood as the decision rule the simplified equation for the 

classifier is 

𝑦K = argmax
-∈{!,",…,7}

M𝑝(𝑥$ 	|	𝐶-)
2

$+!

																																									(5) 

where 𝑦K is the class label of the most likely class 𝐶-. 

 

4.4.2 Application to WLAN Fingerprint Matching 

To apply the Bayes Maximum Likelihood Classifier to the WLAN Fingerprint 

Matching problem the set of symbolic locations in the positioning space become the 

class labels, the measurement vector is WLAN fingerprint where each AP’s RSSI value 

is considered an independent variable, and 𝑝(𝑥$ 	|	𝐶-)  is calculated based on the 

histogram of the AP’s RSSI values in the reference fingerprint for the symbolic 

location. The aforementioned probability is equal to the count of the measured RSSI 

value in the histogram divided by the total number of samples described by the 

histogram. By default, each possible RSSI value in the histogram has a count of 1 in 

order to avoid probabilities of zero, which would, in turn, result in the product being 

equal to zero. Finally, the symbolic location with the maximum product of probabilities 

of measured RSSI values is chosen as the best estimate of the user’s position at the time 

of the WLAN scan. Furthermore, we can also generalize the equation above for k most 

likely symbolic locations, and use the relevant symbols discussed above to attain 

𝐿-./0 = arg𝑘max
#∈{!,",…,9}

M𝑝2𝑅𝑆𝑆𝐼$ 	O	𝑙#6
2

$+!

,										𝐿-./0 ⊂ 𝐿																			(6) 

where                                      𝑝2𝑅𝑆𝑆𝐼$%	O	𝑙#6 = 𝐻$
(!2𝑅𝑆𝑆𝐼$%6																																											(7) 
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4.4.3 Histogram Kernelization 

Given that the histogram of the AP’s RSSI values in the reference fingerprint for the 

symbolic location (used to calculate the probability of a measured RSSI value) are 

based on a finite number of samples, there are certain RSSI values that have a non-zero 

probability but do not exist in the reference sample. Unchanged, these histograms 

would result in live measurement values being erroneously given a default probability, 

as well as disproportionately differing probabilities for similar live measurement values 

(i.e. -75 dBm receiving a 0.2 probability while -76 dBm receives a 0.01 probability). 

In order for the reference histograms to have accurate counts for every single possible 

discrete RSSI value, the amount of samples required would be infeasible. Thus, one 

way to ameliorate this issue is to smooth out the histograms using a kernelization 

technique; the count for each possible discrete value becomes the mean of the counts 

of all the values in the local neighbourhood (i.e. the count of -80 dBm is the mean of 

the counts for -78 dBm to -82 dBm). This significantly improved positioning accuracy 

and the ±1 dBm (3 discrete values) kernel was heuristically determined to be the best 

kernel size. 

 

4.5 RSS Differences vs. Absolute RSS 

The aforementioned k-NN and ML algorithms are generally run with absolute RSSI 

measurements as they are provided by the device taking the readings and as they have 

been described in the sections above. It is possible, however, to redefine the fingerprint 
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to represent the signal strength differences between the various visible APs and run the 

aforementioned algorithms. This was posited by Laoudias in (Laoudias, Zeinalipour-

Yazti and Panayiotou, 2013) to circumvent the problem of the heterogeneity of the 

devices (and their WLAN antennas). Since different devices contain different antenna 

designs and different WLAN chipsets, the signal strength received by different devices 

in the same location will inevitably vary, however, the signals from all detected AP’s 

are affected equally (i.e. the signals from all detected AP’s will be stronger or weaker 

depending on the capabilities of each specific device). The algorithm computes the 

differences between the RSSI values for any two AP’s in range. By using the 

differences as opposed to the raw RSSI values, the device’s specific bias on the 

measured RSSI will be eliminated. In addition, this also increases the number of 

readings fed into the algorithm, from n RSSI readings from n AP’s in range to n(n-1)/2 

RSSI differences. A detailed description follows.  

 

To begin, as we have described in the prior sections, the fingerprint database contains 

a set of symbolic locations (i.e. rooms of a building) defined as 

𝐿 = {𝑙!, 𝑙", 𝑙:, …	 , 𝑙-}																																																					(8) 

and for each 𝑙 there is a set of RSSI readings, one for every AP within range in that 

particular location, defined as 

𝑅𝑆𝑆𝐼( = {𝑅𝑆𝑆𝐼!( , 𝑅𝑆𝑆𝐼"( , 𝑅𝑆𝑆𝐼:( , …	 , 𝑅𝑆𝑆𝐼*( }																															(9) 

where:  𝑙 denotes a symbolic location 
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𝑅𝑆𝑆𝐼$( denotes a pre-recorded signal strength in the database from the i-

th AP in dBm, at location 𝑙 

  𝑚 denotes the total number of AP’s within range at location 𝑙 

When the subject’s device is being localized, it takes a set of RSSI readings of all AP’s 

in range at that location, defined as 

𝑅𝑆𝑆𝐼; = {𝑅𝑆𝑆𝐼!;, 𝑅𝑆𝑆𝐼";, 𝑅𝑆𝑆𝐼:;, …	 , 𝑅𝑆𝑆𝐼2;}																											(10) 

where:  𝑠 denotes the subject’s location 

𝑅𝑆𝑆𝐼$; denotes the signal strength observed by the subject from the i-th 

AP in dBm, at location 𝑠 

  𝑛 denotes the total number of AP’s within range at location 𝑠 

Then, differences in signal strength between every possible pairing of AP’s are 

calculated, or in other words, two new sets are created with the differences of every 

possible unique pairing of RSSI readings in each of the two RSSI sets above. These 

two new sets are defined as 

∆𝑅𝑆𝑆𝐼( = {∆𝑅𝑆𝑆𝐼!( , ∆𝑅𝑆𝑆𝐼"( , ∆𝑅𝑆𝑆𝐼:( , …	 , ∆𝑅𝑆𝑆𝐼*(*<!)/"( }																(11) 

∆𝑅𝑆𝑆𝐼; = {∆𝑅𝑆𝑆𝐼!;, ∆𝑅𝑆𝑆𝐼";, ∆𝑅𝑆𝑆𝐼:;, …	 , ∆𝑅𝑆𝑆𝐼2(2<!)/"; }																(12) 

where:  𝑙, 𝑠,𝑚, 𝑛 as previously defined 

∆𝑅𝑆𝑆𝐼>(  denotes the difference between the pre-recorded signal 

strengths of the j-th possible pairing of AP’s in the database, in dBm, at 

location 𝑙  

∆𝑅𝑆𝑆𝐼>; denotes the difference between the signal strengths of the j-th 

possible pairing of AP’s observed by the subject, in dBm, at location 𝑠  
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At this point, the input data for the localization algorithm is ready, and we proceed to 

compute the classification metric, in this case, a slightly modified Manhattan distance.  

𝑑?@2∗ =
∑ O∆𝑅𝑆𝑆𝐼>( − ∆𝑅𝑆𝑆𝐼>;OB
>+!

𝑤 																																					(13) 

𝑙!"#$∗ = arg kmin
-+!;	(&∈E

(𝑑?@2∗)																																										(14) 

Where:  𝑤 denotes the quantity of AP pairings seen in both ∆𝑅𝑆𝑆𝐼( and ∆𝑅𝑆𝑆𝐼; 

 𝑙!"#$∗  denotes the symbolic location most closely representing the 

subject’s real location, based on our modified Manhattan distance metric 

In cases where a particular pairing of AP’s is only present in one of the sets of RSSI 

differences, that signal strength difference is ignored in the computation of the 

Manhattan distance metric. The final equation, then, determines the symbolic location 

(𝑙!"#$∗) that most closely represents the subject’s real location by choosing that which 

corresponds to the smallest normalized Manhattan distance (𝑑?@2∗).  

 

The above algorithm was implemented and a number of data sets were run through it 

to determine how effective it was for minimizing the effect of device heterogeneity on 

positioning accuracy. Our testing initially found that the signal strength difference 

definition of the fingerprint was fairly resilient to device heterogeneity, and positioning 

performance was fairly consistent regardless of which device was used to create the 

reference dataset and which was used for positioning. After initially making the 

assumption that device heterogeneity had a significant effect when using traditional 
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absolute signal strength fingerprints, based on Laoudias’ findings (Laoudias, 

Zeinalipour-Yazti and Panayiotou, 2013), we decided to perform our own testing and 

found that the effect was actually not significant. The algorithm was also tested in real-

time in our local testbed; we found no discernible difference between the performances 

of the two different fingerprint definitions. It is possible that device heterogeneity was 

once a significant problem, but with the devices tested in our experiments (smartphones 

and tablets released as early as 2010) its effect was smaller than the effect of noise in 

the signal measurements. Device heterogeneity could be a problem when readings are 

taken by different types of devices (i.e. a combination of mobile devices, laptops and/or 

IoT devices), however, that is beyond the scope of our research.  

 

4.6 Path Evaluation and Retroactive Adjustment 

The possible paths of the subject over the last five epochs are assessed based on three 

criteria; these can be briefly described as k-NN score/proximity, and short-term and 

long-term movement regularity. 

 

4.6.1 k-NN Proximity 

Although the top k locations from k-NN are attained, this does not mean that they are 

equally valued. Thus, their proximity measures are also retained so that they may be 

considered in the k-NN proximity criterion of the path assessment stage. This criterion 

can be scored in three ways; the first is relative score by comparing each of the k 
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locations (𝑙$ ) to the nearest location (𝑙! ), the second is an absolute score of the 

proximity, and the third is another more complex relative score. 

𝑘𝑁𝑁𝑃(𝑙$F) =
𝑑%%(𝑙!)
𝑑%%(𝑙$)

																																																(15) 

𝑘𝑁𝑁𝑃(𝑙$F) =
1

𝑑%%(𝑙$)
																																																	(16) 

𝑘𝑁𝑁𝑃(𝑙$F) =
𝑑%%(𝑙!)

1 + 𝑑%%(𝑙$) − 𝑑%%(𝑙!)
																																					(17) 

 

Heuristically, it was determined that the first way of scoring this criterion was the most 

effective. 

 

4.6.2 Short-Term Movement Regularity 

The second criterion scored in the path evaluation is the short-term movement 

regularity. This criterion essentially represents how likely it is that the subject moved 

between two locations in the time between two epochs. This is scored by comparing 

the physical distance between the two locations with the distance that can be walked at 

an average walking speed during the time between the two location estimates (i.e. time 

between consecutive k-NN estimates). The score is calculated with the equation below, 

where ∆t is elapsed time in seconds, wS is an average walking speed in m/s, and dPS(li,lj) 

is the Euclidean distance between the symbolic locations with t being the epoch.  

𝑆𝑀𝑅2𝑙$F , 𝑙>F<!6 =
𝑤𝑆 ∙ ∆𝑡

𝑑9%2𝑙$F , 𝑙>F<!6
																																											(18) 

Thus, the score is at a maximum when dPS is less than (i.e. subject is stationary [dummy 

1 cm value inserted for dPS in this situation to avoid division by 0] or moving slowly) 
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or equal to the average distance walked in the elapsed time between the consecutive 

epochs. On the other hand, the score decreases as the physical distance between the 

locations increases (once it is above the expected walked distance). 

 

4.6.3 Long-Term Movement Regularity 

The third and final criterion scored in the path assessment is long-term movement 

regularity. Since the path assessment is performed for a recent portion of the subject’s 

estimated path, namely the 5 last epochs, this criterion represents how well the subject’s 

movement matches its net displacement over the 5 epochs. This criterion is scored by 

summing up the total distance travelled by the subject as they move (or stay stationary) 

from epoch to epoch, then comparing it to the net displacement of the subject over the 

5 most recent epochs. The score is calculated with the equation below, where dPS(li,lj) 

is the Euclidean distance between the symbolic locations and t is the epoch. 

𝐿𝑀𝑅 =
𝑑9%(𝑙$F , 𝑙F<1)

∑ 𝑑9%2𝑙$G , 𝑙>G<!6F<H
G+F

																																													(19) 

This score is at a maximum for this criterion when the total distance travelled is equal 

to the net displacement; conversely, it is at a minimum when there is a lot of movement 

but no net displacement. This essentially discourages a path with stuttering (i.e. one 

step forward, one step back, two steps forward, while subject only walked two steps 

forward), and tends to smooth the subject’s estimated path. To make the comparison 

less cumbersome, the net displacement considered in the equation is direction-less; 

furthermore, the code implemented also automatically inserts a value of 1 for the score 

if the total movement (and therefore also the net displacement) is 0. 
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4.6.4 Final Score 

The aforementioned three scores all have different ranges and they do not follow the 

same curve. Thus, sigmoid functions are employed to reconcile the distributions of 

each of the movement regularity scores. Furthermore, the sigmoid functions allow for 

each of the scores to have a more precise and intended effect on the final overall score 

for the path segment being considered. The following are the sigmoid functions used 

for each criterion score and their respective graphs. 

 

𝑆𝑀𝑅%2𝑙$F , 𝑙>F<!6 =
3(𝑆𝑀𝑅 − 0.5)

2b9(𝑆𝑀𝑅 − 0.5)" + 1
+ 0.5																									(20) 

 

 
Figure 19. SMR Sigmoid Function 
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As can be seen in the graph, the SMR sigmoid function greatly favours situations where 

the subjects is moving at a normal pace (SMR is approximately 1) or staying stationary 

(SMR is significantly greater than 1), with the latter being slightly more favoured. As 

the movement increases, the score drops to discourage very fast (and likely incorrect) 

movement. The function outputs about half a maximum score when the subject has 

moved twice as far as expected and a quarter of the maximum score when the 

movement is three times what’s expected. 

 

On the other hand, the LMR sigmoid function does not need to deal with input LMR 

values greater than 1, and additionally, the score drops much faster than the SMR 

sigmoid function. The scoring function is intentionally more punitive for the LMR 

because the distances being compared in the LMR function are larger than those in the 

SMR function, thus, the LMR sigmoid scoring function needs to penalize even small 

relative differences. 

𝐿𝑀𝑅% =
15(𝐿𝑀𝑅 − 0.75)

8b9(𝐿𝑀𝑅 − 0.75)" + 1
+ 0.6																														(21) 
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Figure 20. LMR Sigmoid Function 

 

Once all the criteria are scored for all of the position estimates in a particular potential 

path, the final path score for that segment (5 epochs) is given by the following function. 

 

𝑃𝑎𝑡ℎ𝑆𝑐𝑜𝑟𝑒 = 𝑘𝑁𝑁𝑃(𝑙$F–H) ⋅ 𝑆𝑀𝑅%2𝑙$F–H, 𝑙>F–16 ⋅ 𝑘𝑁𝑁𝑃(𝑙$F–:) ⋅ 𝑆𝑀𝑅%2𝑙$F–:, 𝑙>F–H6

⋅ 𝑘𝑁𝑁𝑃(𝑙$F–") ⋅ 𝑆𝑀𝑅%2𝑙$F–", 𝑙>F–:6 ⋅ 𝑘𝑁𝑁𝑃(𝑙$F–!) ⋅ 𝑆𝑀𝑅%2𝑙$F–!, 𝑙>F–"6

⋅ 𝑘𝑁𝑁𝑃(𝑙$F) ⋅ 𝑆𝑀𝑅%2𝑙$F , 𝑙>F–!6

⋅ (𝐿𝑀𝑅%):																																																																																																	(22) 

 

As mentioned earlier, the k chosen locations from each of the previous five epochs are 

retained. Thus, when we say all potential paths, we mean all possible ways to traverse 
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the following matrix from left to right starting from the final chosen location at epoch 

t-5 (𝑙!F–1 in the following example). 

 

 
Figure 21. Hypothetical Matrix Representation of the Path Evaluation at t = 5 

 

Once every possible path is scored, the path with the highest score is chosen as the best 

path and its final location (at t) is presented to the subject as the subject’s current 

position. Say, for example, that the following was the highest scoring path: 

 

 
Figure 22. Hypothetical Matrix Representation of the Highest Scoring Path at t = 5 

 

At the next epoch (new set of k locations provided by k-NN), shown in the matrix 

below, the starting location on the left side of the matrix is 𝑙"F–1 . This is the same 
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location as 𝑙"F–H from the previous matrix, and was the only one retained from that epoch 

after being in the best path the last time the recent paths were assessed. 

 

 
Figure 23. Hypothetical Matrix Representation of a Path at t = 6 

 

Another way to describe the path assessment process is to think of a tree created by all 

the locations suggested by k-NN over the number of epochs considered. The following 

simplified example considers k-NN (where k=3) over 3 epochs. All the possible paths 

to go from root to leaf, in the tree below, represent all possible recent paths the user 

could have traversed. These paths are scored and then ranked and the discrete locations 

of the highest ranked path, from root to leaf, are chosen as the subject’s most likely 

path over the course of the epochs considered. 

 

 
Figure 24. Hypothetical Tree Representation of the Path Evaluation at t = 3 
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5. Implementation 

This chapter focuses on the implementation of the positioning system explored and 

discussed in this research, as well as, the implementation of tools used for data 

collection, and finally, various performance improvements built into the 

implementation to ameliorate real-time use and analysis. 

 

5.1 WLAN RSS Collection Android Application 

In order to collect RSS samples of APs (fingerprints) in our positioning environment, 

an Android application was developed as a part of this research. Given that the actual 

objects being localized are mobile devices, it follows logically that the environment 

should also be sampled with mobile devices. This application has four main 

components: the first component polls the Android system for a WLAN scan and 

receives the scan results; the second component filters the scan results to attain only 

samples from the official university APs; the third component creates and maintains a 

small database of all the attained information in the current collection session; and 

finally, the fourth component, upon completion of the collection session, formats the 

attained information and writes it to a text file. In addition to these internal components, 

the user interface of the application is another important aspect that will be described 

herein. 
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The first component attains and uses an instance of the WiFiManager Android class to 

poll the WLAN radio for a scan. A BroadcastReceiver class is implemented in the 

WiFiReceiver nested class to receive the scan results provided by the WiFiManager. 

The scan results contain various identifying information about the APs along with the 

RSSI; for each AP, these include the BSSID (a unique identifier for the AP, also known 

as a MAC address), the SSID (the name of the network being broadcasted by the AP) 

and a timestamp of when the AP’s signal was sensed by the radio. Scan results also 

contain various other pieces of information about the frequency, capabilities, and 

operator of the AP, however, that information is not used. The RSSI is a measure of 

the strength of the AP signal received by the WLAN radio. On Android, RSSI is 

provided in integer dBm and values can range from 0 (strongest) to -100 (weakest), 

although values generally observed only range from -30 to -90. The BSSID is a series 

of 6 8-bit hexadecimals separated by colons, and as aforementioned, is a unique 

hardware address for the AP. The SSID is the name of the network broadcasted by the 

AP. This field is empty if the AP does not broadcast its network name, and in this case, 

the WiFiReceiver class assigns a dummy network name to the AP. Finally, the 

timestamp in the scan results is provided as an integer number of microseconds (long 

type to avoid overflow) since the device was turned on. The provided timestamp value 

is converted to the number milliseconds since January 1st 1970, in order to have an 

absolute time and be able to compare between various recording sessions; the 

WiFiReceiver class also does this conversion. 
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The second component is relatively straightforward. The university WLAN 

infrastructure APs are easily distinguishable from other personal APs due to the fact 

that they each broadcast one of a few specific different network names (SSIDs). As 

mentioned above, the SSID broadcasted by each AP is available from the WLAN scan 

results, thus, this filtering of irrelevant APs is simply a matter of checking each AP’s 

broadcasted SSID against a whitelist of university infrastructure SSIDs. All data 

collected from AP’s that do not broadcast a whitelisted SSID is simply discarded at this 

step. The application, however, also offers an option to toggle this component on or 

off, allowing the user to retain all collected data and skip this filtering step. 

 

Once the set of scan results has passed through the second filtering component, the 

third component organizes the retained information into a data structure consisting of 

an ArrayList of AccessPoint objects. The AccessPoint class is a custom nested class 

created for the purpose of containing all the information attained about a particular AP 

into one neat object. Each instance of the class contains fields for the BSSID and SSID, 

as well as two equal length ArrayLists, one containing the various RSSI readings 

captured for that AP and the second containing the respective timestamps of each 

readings. Each AccessPoint object can be created with or without a set of RSSI readings, 

and has its own methods for the addition or removal of RSSI readings. The data 

structure is continuously populated as scan results come through the first two 

components. 
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Once the collection session is completed, the fourth component reads all of the attained 

information in the data structure and proceeds to format and then write all the 

information into a text file. The data structure is read one AccessPoint object at a time, 

and the information for that AP is sorted in the following format then written to a file. 

The next AP’s information is then written below the preceding AP’s information. 

 

Figure 25. Format of Collected RSS Data 

 

The final important aspect of the application is the user interface. The largest portion 

of the user interface shows a constantly updating list of visible APs, showing their 

SSID, RSSI, and time of the reading. In order to name the information gathered in a 

particular collection session there is a text box at the top of the interface; the button to 

the right of it instructs the aforementioned fourth component to write the readings 

collected thus far to a .txt file with the provided name. The row of checkboxes below 

presents the user with options to timestamp the collection, filter out non-university 

infrastructure APs, and to compute and record only the mean of the RSSI readings 

obtained for each AP (this function, if toggled on, is performed in the fourth 

component). Finally, the overflow menu allows the user to pause/resume the scanning 

AP1 (BSSID, SSID, number of RSSI readings) 
RSSI1:timestamp 
RSSI2:timestamp 
…  

  
AP2 (BSSID, SSID, number of RSSI readings) 

RSSI1:timestamp 
RSSI2:timestamp 
 … 
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for APs, restart the collection session, and manually refresh if automatic scans stop 

occurring. Screenshots of the application are provided below. 

   
Figure 26. Screenshots of the Data Collection Application 

 

 

5.2 Live Self-Positioning Android Application 

The main application for this research was the live self-positioning application running 

on Android, named MobilePosition. This was the application used to test the real-time 

performance of the algorithm. Given that it also requires the RSSI readings for all the 

various APs within range, this application borrows some of the main components from 
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the ScanTest (WLAN RSS Collection) application. The MobilePosition application 

essentially has two main functions and two activities to perform each of them, 

respectively. The initial function is to build a reference fingerprint database to be later 

used for positioning. The second and primary function is to actually position/localize 

the user within the building floor based on the real-time WLAN RSSI readings being 

captured by the mobile device. As with the ScanTest application, each of the two 

activities have their own respective user interface. The initial setup activity offers the 

user a number of options to choose regarding the positioning functionality of the 

primary activity. On the other hand, the positioning activity offers the user a map of 

the building’s floor plan indicating the user’s estimated location. 

 

The two main functions of the setup activity are the reading of all of the reference 

fingerprint text files, and the creation and population of a reference fingerprint database 

data structure. A single nested class (RSSRecordReader) within the activity 

accomplishes both of these functions; this was necessary in order to achieve the 

concurrent/parallelized implementation of the functions, and will be further explained 

in the next subsection. To begin, the text files containing the reference fingerprints are 

organized in such a way that each text file contains all of the reference fingerprints for 

a particular symbolic location. Furthermore, the text files are named in such a way that 

they are ordered by the symbolic location number, and each floor of each building has 

its own folder of reference fingerprint text files. Thus, once the setup activity receives 

the instructions from the user, it sets the folder corresponding to the user’s choice of 

building and floor, and proceeds to create the empty shell of the reference fingerprint 
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database data structure. This time, the data structure is an ArrayList of LocationCell 

objects, LocationCell being a custom class created to hold all of the reference 

fingerprint information for a particular symbolic location. Instances of 

RSSRecordReader are then run to read the aforementioned text files and insert the 

fingerprint information into the reference fingerprint database. 

 

Once the reading of the reference fingerprint text files is completed, the fully populated 

reference fingerprint database is stored as a static variable in a custom Database class. 

The aforementioned class also keeps static variables for several other algorithm and 

performance parameters; these parameters are mostly chosen by the user in the set up 

screen and are also set at this time. Finally, once all of the variables in the Database 

class are populated/set, the PositionActivity is started to begin positioning the user. 

 

Upon start up, the PositionActivity grabs all of the parameters set in the Database class 

and initializes all of its variables and components. It employs a WiFiReceiver nested 

class (very similar to the one in the ScanTest application) which, upon receiving new 

WLAN scan results, creates a Fingerprint object with the data and begins the process 

of computing an estimate for the user’s location. The first step in the positioning 

process is running the subject’s newly acquired fingerprint through the nearest 

neighbours algorithm to determine the k-nearest symbolic locations to the subject in 

signal space. The indices corresponding to these are then added to a matrix of nearest 

neighbours that holds the determined k-nearest neighbours from the last five epochs. 

During the first five epochs of the current positioning session, the user is simply 
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presented with the location corresponding to the nearest neighbour; from the sixth 

epoch onwards, the path assessment module is used to determine the most likely path 

based on the moving regularity criteria as described in section 4.4 and the user is 

presented with the location corresponding to the end point of the most likely path.  

 

   

Figure 27. Screenshots of the MobilePosition Application 

 

Every time the user’s position is estimated anew, it is shown to the user by a red 

crosshair placed on the estimated location on the building’s floor plan that’s displayed 
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on the screen. In addition to this, the position’s index and timestamp of estimation is 

presented below the floor map. Finally, the application also keeps a log of the estimated 

positions and various other data that was used to assess performance and debugging 

purposes. All of the logged data is written to a file upon termination of the positioning 

session. 

 

5.3 Concurrent Implementation 

The live positioning application was later improved to take advantage of the multi-core 

computing available on most modern day smartphones. Two parts of the application 

were modified to process the computations in a parallelized manner. Firstly, the reading 

of the reference fingerprint text files is split amongst multiple threads so that they may 

be read concurrently. Various instances of RSSRecordReader are then run on parallel 

threads, each reading a portion of the aforementioned text files one by one and inserting 

the fingerprint information into the reference fingerprint database. Secondly, the 

computation of the distance matric for the k-NN algorithm is also parallelized. Given 

that the distance needs to be computed for each symbolic location, this can be split into 

multiple threads with each thread computing a portion of the distances each time there 

are new scan results from the WiFiManager. 

 

5.4 Java Version of Positioning Application 

The live positioning application on Android was also written as a Java application that 

could be run on a computer. The two main reasons for this undertaking were to have 
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an implementation where experimental changes to the algorithm could be made and 

tested more easily, and where pre-recorded test readings can be easily run through the 

algorithm to evaluate performance. As a result, the Java version of the positioning 

algorithm is not capable of running in real time, but instead can only process pre-

recorded RSS readings. However, it was very helpful for clearly seeing the effect of 

minor and major algorithm changes on positioning accuracy and performance; large 

data sets of pre-recorded readings could be fed into the algorithm, run very quickly, 

and thoroughly logged to gather detailed insight into the effect of the algorithmic 

changes being tested. Furthermore, the fact that the Android MobilePosition 

application’s algorithm was also written in Java allowed for very quick and easy 

porting of algorithmic improvements. 
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6. Results and Discussion 

This chapter reviews the results of all of the experimentation performed as part of this 

research. It describes the methods used to assess the positioning performance of the 

system in a quantifiable manner and details positioning performance improvements 

offered by the novel portions of the positioning system. 

 

6.1 Introduction 

The WLAN Fingerprint Matching and Path Evaluation and Retroactive Adjustment 

positioning system was deployed on multiple floors of multiple buildings on York 

University’s Keele Campus, and the developed Mobile Position application could be 

installed on any Android device to qualitatively assess the positioning performance. 

The quantitative testing of the positioning algorithms was performed using two distinct 

data sets in order to quantify its positioning accuracy. Both data sets input into the 

positioning system for testing consist of real RSS measurements gathered on-site using 

the same WLAN RSS data collection application. The differences between the two 

collection methods and creation of the testing data sets are described in the following 

sections. In the charts detailing the results: 

1. k-NN refers to the first implementation was our improved WLAN 

Fingerprint Matching algorithm.  

2. k-NN + PERA refers to the second implementation including the Path 

Evaluation and Retroactive Adjustment module in addition to the WLAN 

Fingerprint Matching in the first implementation.  
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6.2 Deployment  

The methods discussed in Chapter 3 were used to deploy the positioning system on six 

floors across three buildings. Once these methods were finalized, total deployment time 

including data collection, processing and inclusion in the system, to enable positioning 

on a floor was about one working day. Planning out symbolic locations in a floor would 

require about 2 hours; collecting data on those points would require about 2-4 hours, 

or approximately 1 hour of data collection for every 200 metres squared of navigable 

area. Finally, the symbolic locations and their respective reference WLAN signal 

fingerprints are added to the positioning application, requiring 1-2 hours, before 

positioning is enabled on the floor. A turnaround time of one day per floor or one week 

for an average university campus building is comparable to commercial indoor 

positioning solutions (Senion IPS, 2016; HERE Indoor Positioning, 2016).  

 

In addition to the deployment time, it should be noted that the data storage and 

application implementation was also quite space efficient and responsive. The entire 

application and data for the three buildings where positioning was enabled was under 

5 MB in size. Position estimates were also provided to the user instantly after every 

WLAN RSS measurement provided by the device, resulting in a very responsive 

experience; this was achieved through a client-side implementation and the use of 

parallel computing utilizing the device’s multi-core processor. 
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6.3 Real-Time Positioning 

Much of the testing of the positioning system was performed in person, by using the 

MobilePosition application within the various areas where positioning was enabled 

across campus. Using the application for real-time positioning required choosing your 

building and floor on the Database Setup page of the application; within seconds the 

positioning algorithm was activated and the user’s current estimated location was 

displayed on a map of the chosen floor. As showcased in Figures 28 and 29, positioning 

accuracy was very good the majority of the time. Position estimates during real-time 

use of the application were very rarely noticeably incorrect; that is to say that the 

estimated location, when it was incorrect, was close enough that the user usually would 

not notice that there was any error. On occasion, when a noticeable egregious error was 

made by the positioning system, it would often recover to an accurate position on the 

following live fingerprint reported to the algorithm by the device. The PERA module 

further reduced the occurrence of egregious positioning errors, making the 

aforementioned situations increasingly rare. The only area where some instability of 

position estimates was noticed was in large open areas in the BRG building; this is 

expected, to some extent, due to the homogeneity of WLAN RSS in open areas, as 

there are no physical obstacles to the radiation distinctively attenuating the signals of 

the various APs visible to the user’s mobile device. Overall, the positioning 

performance of the application in real-time use was very good and the experience was 

comparable to GNSS-based positioning outdoors. 
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Figure 28. Real-Time Positioning in the Chemistry Building 
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Figure 29. Real-Time Positioning in the Petrie Science and Engineering Building 
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6.4 Synthetic Path RSS Measurements 

The first set of RSS measurements gathered for testing the positioning system, were 

acquired in the same fashion as the reference RSS measurements. The collection was 

done by standing stationary for a period, collecting multiple sets of RSS measurements, 

saving the results, then moving to the next spot to gather another set of measurements. 

In order to simulate positioning performance for a user walking along a path, the 

collected test data was rearranged such that a series of RSS measurements collected at 

consecutive adjacent locations could be fed into the positioning system. These 

rearranged testing data are referred to as synthetic paths; they were created by taking 

one set of RSS measurements from each location (where such measurements were 

collected) and arranging them so that they are fed into the order they would be seen by 

the user’s device if they were traversing a path across the positioning area. Since many 

sets of RSS measurements were collected, this allowed for a multitude of synthetic 

paths with entirely unique measurements.  

 

To be clear, although dubbed synthetic paths in this work, these testing datasets are 

entirely comprised of real collected WLAN RSS measurements; the synthetic adjective 

simply means the measurements have been temporally rearranged to simulate a user 

traversing a path along the hallways of one of the buildings where the positioning 

system is deployed. This method of testing was necessary due to the difficulty of 

acquiring testing data with frequent and reliable location ground truth while the user is 
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moving. It was extremely difficult, if not impossible, to associate individual WLAN 

RSS measurements with their respective location ground truth (i.e. the physical 

location of the user when the measurement was reported by the device) if the user is 

walking a path along the hallways of a building. Since individual WLAN RSS 

measurements are independent of each other, by arranging measurements with accurate 

ground truth locations as a series of consecutive measurements taken along a path, it 

becomes possible to accurately test the performance of the positioning system for a 

moving user. 

 

Table 4. Summary of Positioning Performances Evaluated with k-NN and k-NN + 
PERA in three buildings at York University 

 Positioning Error (Metres) 

Building - Floor PSE-L3 CB-L4 BRG-L2 

               Algorithm 
 
% of Est. Pos. 

k-NN k-NN + 
PERA k-NN k-NN + 

PERA k-NN k-NN + 
PERA 

Mean 1.3 0.8 1.3 0.8 2.2 1.4 

80% < 1.5 < 1.5 < 1.5 < 1.5 < 3.7 < 1.8 

90% < 3.0 < 1.5 < 3.0 < 1.5 < 5.5 < 3.7 

95% < 4.6 < 1.5 < 3.4 < 3.0 < 7.1 < 3.7 

99% < 6.1 < 3.0 < 6.0 < 3.0 < 9.2 < 8.6 

100% < 10.6 < 6.1 < 13.5 < 9.0 < 14.6 < 11.0 

 

By running these synthetic paths through the positioning system, we collected 

thousands of positioning data points from the two aforementioned versions of our 
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implemented positioning system. Table 4 shows a summary of positioning performance 

evaluated with two different algorithms of k-NN and k-NN + PERA in three buildings 

including Petrie Science and Engineering Building (PSE), Chemistry Building (CB) 

and the Bergeron Centre for Engineering Excellence (BRG) at York University’s Keele 

Campus. Furthermore, Figures 30, 31 and 32 show comparisons of cumulative 

positioning error between the two algorithms. We observed that k-NN + PERA results 

in significantly improved consistency of positioning accuracy compared to k-NN. This 

level of positioning accuracy can certainly be useful for location-aware applications in 

the indoor space. 

 

 
Figure 30. Cumulative Positioning Error on the 3rd Floor of PSE 
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Figure 31. Cumulative Positioning Error on the 4th Floor of CB 

 

We see the greatest accuracy within the PSE building, mean positioning error for k-NN 

was 1.3 m, while mean error for k-NN + PERA was 0.8 m; positioning error was less 

than 1.5 metres 90% of the time for both k-NN and k-NN + PERA. Meanwhile, at 99% 

of the estimates, upper bound of positioning error was 6.1 metres for k-NN, while for 

k-NN + PERA positioning error was less than 3.0 metres 99% of the time. We believe 

this is due to the fact that it is the oldest of the three buildings and has thick concrete 

walls throughout; this results in greater heterogeneity of RSS from the various access 

points throughout the positioning area, therefore resulting in better performance 
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primarily by the k-NN algorithm. The main influence of the PERA module is 

preventing some of the rare egregious errors of the k-NN algorithm. 

 

We see similar accuracy within the Chemistry building, mean positioning error for k-

NN was 1.3 metres, while mean error for k-NN + PERA was 0.8 metres; positioning 

error was less than 1.5 metres 80% of the time for both k-NN and k-NN + PERA. 

Meanwhile, at 99% of the estimates, upper bound of positioning error was 6.0 metres 

for k-NN, while for k-NN + PERA positioning error was less than 3.0 metres 99% of 

the time. Chemistry building is much newer than the PSE building, but has similar 

sized hallways and likely relatively similar structural materials and access point 

distribution. Similarly, we see the influence of the PERA module in preventing some 

of the more egregious positioning errors of the k-NN algorithm. 

 

In BRG mean positioning error for k-NN was 2.2 metres, while mean error for k-NN + 

PERA was 1.4 metres; we observed lower accuracy compared to the other two 

buildings, with positioning error less than 3.7 metres 80% of the time for k-NN and 

positioning error less than 1.8 metres 80% of the time for k-NN + PERA. Meanwhile, 

at 95% of the estimates, upper bound of positioning error was 7.1 metres for k-NN, 

while for k-NN + PERA positioning error was less than 3.7 metres 95% of the time. 

The most likely reason for the poorer performance in this building is the fact that it is 

a brand new building with large open hallways and a general open concept style. This 

results in more homogeneity in the RSS of the access points in large swaths of the 

positioning area; in open areas where the signal can travel unimpeded, it becomes 
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difficult for WLAN Fingerprint Matching algorithms, in general, to differentiate 

between adjacent locations. 

 

 
Figure 32. Cumulative Positioning Error on the 2nd Floor of BRG 
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6.5 Real Path RSS Measurements 

 

Figure 33. Cumulative Positioning Error of All Real Paths 
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timestamps so that they may be compared with the correct positioning estimate (nearest 

in time) to evaluate the accuracy of the positioning system. The ground truth for each 

route was broken down into the discrete symbolic locations best representing the route 

based on the arrangement of symbolic locations of that floor; the symbolic locations 

representing the anchor points had accurate recorded timestamps, whereas the symbolic 

locations in-between had interpolated timestamps based on the two surrounding 

anchors. Due to the above, there’s a bit more uncertainty in the accuracy of the ground 

truth; seemingly resulting in greater positioning error for these measurements.  

 

In total, the real path testing data set consisted of 966 individual WLAN RSS 

measurements reported by 3 devices over the course of 33 walked paths. Figure 33 

displays the positioning system’s cumulative error for these measurements. As 

expected, due to the inaccuracy of the ground truth locations of these measurements 

both k-NN and k-NN + PERA have a greater degree of positioning error for the real 

path measurements compared to the synthetic path measurements. The median 

positioning error in these testing datasets was 2.5 metres for k-NN and 1.5 metres for 

k-NN + PERA; we observed positioning error under 5.1 metres 80% of the time for k-

NN, while positioning error was under 3.2 metres 80% of the time for k-NN + PERA. 

More significantly, we observed positioning error under 10.3 metres 95% of the time 

for k-NN, while positioning error was under 5.5 metres 95% of the time for k-NN + 

PERA. As we can see, k-NN + PERA still provides significantly better positioning 

accuracy than k-NN; just as with the synthetic path measurements, the upper bound of 

positioning error is most significantly decreased in k-NN + PERA compared to k-NN.  
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Figure 34. Visualizations of Some of the Real Path Testing Positioning Results 
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This highlights, once again, that the primary benefit of the PERA module is to avoid 

egregious positioning errors, and to generally make the positioning of a subject in 

motion more stable. Some examples of paths where this effect was clear can be seen in 

Figure 34. In this figure, the green lines represent the ground truth of the paths, the blue 

lines represent the series of position estimates provided by the k-NN algorithm, while 

the red lines represent the series of position estimates provided by the k-NN + PERA 

algorithm. The z-axis in each plot is time, in order to show the progression of the user 

along the path walked. In each path there is at least one occasion where the k-NN 

algorithm makes an egregious error that is not present in the corresponding estimated 

path from the k-NN + PERA algorithm. As those errors would constitute very irregular 

or unusual movement on the part of the user, they score low on the PERA module’s 

criteria and thus do not get chosen as part of the user’s most likely recent path. 

 

Generally, WSFM algorithms provide accurate positioning, however they will 

occasionally provide unusually erroneous results; this can be caused by a few factors, 

the most common of which being incomplete or inaccurate RSS measurements. To 

elaborate, incomplete RSS measurements refer to situations where the mobile device 

taking the readings provides an incomplete set of the RSS that’s expected in a particular 

area, that is to say, some AP’s that should be visible in a particular area are not seen in 

the set of RSS values provided by the mobile device’s WLAN Manager. Inaccurate 

RSS measurements refer to situations when RSS readings from one or more of the AP’s 

visible in a particular area are much different from the values expected. This can be 

due to unusual obstructions causing the signal to be seriously reflected or absorbed, 
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malfunction or displacement of the AP, or more rarely, inadequate sampling of the 

signal by the mobile device’s WLAN radio. When these situations occur, the PERA 

module will choose the most realistic of the erroneous position estimates provided by 

the WSFM algorithm, thereby minimizing the error in the final positioning result. 
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7. Conclusions 

This final chapter provides some closure on the research. In the first part, the findings 

of this work are reviewed and explained. The context of the research process is 

discussed, and its success is evaluated. The second part of this chapter explores avenues 

of future work and research on this subject, breaking down potential future research 

into three separate categories. 

 

7.1 Conclusions 

In this work, I presented a positioning system, primarily based on wireless signal 

fingerprint matching, and including a module that evaluates the movement regularity 

of the subject being positioned. Initially, a WSFM algorithm estimates the k most likely 

locations where the user may be located; these k locations are input for the second 

PERA algorithm which determines the most likely recent path of the user based on the 

movement pattern in each of the permutations of the last few epochs of WSFM 

estimates. The user’s recent path is then adjusted to correspond to the most likely 

estimate of the PERA module and the path’s end point is presented to the user as their 

current location. A system overview of the entire positioning system was illustrated in 

Figure 17.  

 

The WSFM algorithm was gradually developed based on general concepts and inspired 

by experimental implementations found in literature. It was also developed empirically, 
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with adjustments made and features added or omitted based on findings during 

implementation and testing. In some cases, solutions or features proposed in previous 

research were found to be either ineffective or counter-effective, while in other cases, 

they improved performance more than expected. Similarly, my own intuitions resulted 

in improvement and degradation of performance in equal parts. Once the performance 

of the WSFM algorithm was satisfactory, the objective became to create a novel 

algorithm or module to complement it and substantially improve the overall positioning 

accuracy of the system.  

 

The inspiration for the new module came from sensor fusion positioning systems that 

utilize a WSFM algorithm along with a PDR module. As described in Chapter 2, these 

positioning systems effectively adjust the output of the WSFM module based on the 

movement of the user described by the PDR module. They have two important 

downsides, however; PDR algorithms can be inaccurate due to unreliable or imprecise 

sensor data and, given the required frequency of inertial sensor readings required, PDR 

modules can be quite computationally heavy and power hungry for mobile devices. 

Thus, the objective for the PERA module was to find a way to offer a correction or 

adjustment to the WSFM module’s output without accidentally degrading accuracy nor 

substantially increasing computational load or energy use. 

 

The entire end-to-end positioning system was implemented on the Android platform 

and deployed across several floors of multiple buildings on York University’s Keele 

campus. The ScanTest Android application was developed as part of this research for 
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the purpose of data collection. The MobilePosition Android application was developed 

to be able to use the proposed positioning system in real-time, as well as, determine 

computational improvements that could be made to further enhance the user’s 

experience. Positioning was enabled on two floors on each of the PSE, CB and BRG 

buildings. Finally, a Java application, that could be run on computers, was also 

developed to rapidly test and evaluate large datasets of testing measurements in order 

to provide performance evaluations of the positioning system. 

 

As can be seen in the experimental results, the WSFM algorithm, referred in the 

previous section as k-NN, has respectable performance in its own right, achieving 

room-level accuracy (less than 3 - 5 metre error) 90% of the time, despite all positioning 

experiments taking place in open hallways. Furthermore, we show that with the PERA 

module, positioning accuracy is improved to less than 2 - 3 metre error about 95% of 

the time. In most applications, this level of accuracy is adequate for indoor positioning 

on the smartphone platform and comes without the added energy and computation cost 

of using the inertial sensors in a PDR algorithm. This sort of performance can also be 

considered practically equivalent, in my opinion, to the performance of GNSS 

positioning on smartphones in outdoor use cases. I believe such a system can be 

employed for providing location based services in indoor environments and given the 

relatively small data and computational requirements, it can become the ubiquitous 

positioning method if there is buy-in by the major players in the smartphone industry 

(e.g., Google, Samsung, Apple and etc.). 
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7.2 Future Research  

Looking towards the future, this work has opened up several doors for further research 

in this field. Firstly, a deep sensitivity analysis is possible, if not warranted, as there 

were many parameters and aspects of the algorithm determined empirically during the 

implementation phase. Future research can also fall into a few different categories; it 

could explore methods of making the solution more accurate, more scalable, or more 

general and universally applicable. 

 

7.2.1 Sensitivity Analysis 

In the experiments performed as part of this research, the occupancy of the building 

was never at sufficient degree to significantly affect positioning performance. However, 

positioning performance can suffer at very high occupancy levels where hundreds of 

people may be simultaneously connected to individual APs; no such level of occupancy 

was observed in this research. Measurements were collected and testing was done at 

various times of the year, week, and day with different devices and, as such, some of 

the variance in positioning performance could be due to the occupancy level of the 

building. A sensitivity analysis could isolate and quantify the effect of high occupancy, 

if any, on the positioning accuracy of the proposed system. 

 

If there is a rearrangement of the APs on a floor or building, positioning performance 

will degrade. The offline phase would need to be repeated as new data collection would 

be required. The degree to which this is necessary or when depends on the degree of 
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change in the configuration of the APs and could fall under a deeper sensitivity analysis 

of the proposed positioning system. It would be possible to quantify how much change 

the proposed system is resilient to and how much new data would be required to return 

to the initial positioning performance. This question is also addressed in existing 

research works, however, the answer can be specific to the individual implementation 

of the algorithm studied. 

 

Another aspect of the arrangement of the APs is that it may have an effect on 

positioning performance. In the experimental settings in this study there were relatively 

dense and uniform distributions of APs; that is another aspect that could be studied in 

a sensitivity analysis. Furthermore, in settings where a new Wi-Fi network is about to 

be set up, the aforementioned sensitivity analysis can inform the arrangement of the 

APs in order to better support WSFM positioning systems. 

 

Spatial resolution of the symbolic locations and data collection was chosen empirically 

based on the desired positioning precision and an expectation that more data would 

result in better positioning accuracy. A sensitivity analysis could study how much could 

data collection be reduced without deteriorating positioning performance. Data 

collection for some percentage of symbolic locations could be skipped, interpolating 

data instead, and the effect on positioning performance could be quantified with respect 

to the reduction in deployment time and cost. 
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7.2.2 Accuracy 

One of the most important aspects of a positioning system is how accurate it is. 

Although I was content with the performance of the positioning system described in 

this work, there was certainly room for improvement. Particularly, I felt that accuracy 

suffered in large open areas as the WSFM algorithm was not able to distinguish position 

as precisely due to the homogeneity of WLAN RSS. As for the PERA module, it is not 

as effective in cases of unusual user movement and may be temporarily detrimental to 

accuracy. To this end, future work could explore the inclusion of additional data 

sources or further sophistication of existing algorithms. For example, inertial sensors 

could be incorporated as part of a dead reckoning module informing the PERA module; 

alternately, BLE signals could be incorporated into the WSFM algorithm to increase 

the variety of its inputs. The PERA module could also potentially be improved through 

the use of deep learning, making a future version of the PERA module more elaborate, 

context-aware, robust and decisive in its effect on the final estimate of the user’s 

position and recent path.  

 

7.2.3 Generality 

Another possible extension to this research is making it more general and universally 

applicable as a positioning solution. Current deficiencies, in this regard, are a lack of 

any mechanisms for automatically determining the building that the user is currently in 

(in a potential multi-building deployment), or whether they are, in fact, inside; nor is 

there a mechanism to determine the floor the user is currently on (in a potential 
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deployment in a multi-floor building). These are both uniquely difficult problems that 

require robust solutions in order to develop a comprehensive indoor positioning system. 

This makes these problems excellent extensions of this research; future research 

towards this end could explore the adaptability of the existing algorithm for these 

problems, or alternately, explore other algorithms and sources of data. For example, an 

indoor-outdoor detection module could examine WLAN, BLE and GNSS signals in 

order to determine whether the user is inside a particular building. On the other hand, 

barometric pressure data could be used to detect when the user transfers from one floor 

to another. Finally, the algorithm could also be adapted to use high-band 5G cells in a 

similar fashion to WLAN APs, allowing the system to be deployed in even more places 

and take advantage of more reliable sources of data. 

 

7.2.4 Scalability 

The final logical extension of this research is an exploration of its scalability; can the 

positioning system be enabled across several buildings as part of a single deployment, 

and how can deployment become faster and easier? The primary obstacle to 

deployment, in the work presented here, is the segmentation of the positioning area and 

collection of reference fingerprints. Although this work features some innovation in 

these respects, they still remain a substantial part of the work required for deployment, 

and some of it requires a professional to execute. Future research could explore further 

simplifying the deployment process, such that it no longer requires professional work 

or perhaps becomes fully or mostly automated. Crowdsourcing could also be useful in 
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this regard with a potential solution employing RFID tags or QR codes to quickly 

identify location and begin data collection. The other consideration that pertains to the 

scalability of this, or any other, indoor positioning system is how will it perform in very 

large buildings or a multi-building deployment. Performance, in this context, refers not 

only to positioning accuracy but also the computational performance on the user’s 

device. As the size of the deployment is scaled up, the amount of data processed by the 

positioning system increases, both in total and for each instantaneous position estimate. 

Although, computational efficiency was addressed in this research, I suspect there is 

still much more room for improvement. 
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