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Abstract

The remarkable development of today’s financial and insurance products demands sound

methodologies for the accumulation and characterization of intertwined risks. As a result,

modern risk management emerges as a by product querying two key foundations. The first

is concerned with the aggregation of said risks into one randomness which is consequently

easily measured by a convenient risk measure and thereafter reported. The pooling is done

from the different business units (BUs) composing the financial entity. The second pillar

pertains to the opposite direction which concerns itself with the allocation of the total risk.

It seeks to accurately and concretely attribute the riskiness of each individual BU with re-

spect to the whole.

The aggregation process, on one hand, has been fairly well studied in the literature, im-

plemented in the industry and even embedded into the different accords. Risk capital al-

location, on the other, is generally much more involved even when a specific risk measure

inducing the allocation rule is assumed, let alone the case when a class of risk measures is

considered. And unlike the aggregation exercise, which is moderately determined by the

collection function, attributing capital is often more heavily influenced by the dependencies

among the different BUs.

In the literature, nonetheless, allocating capital can be categorized into two main camps.

One is built upon the pretence that the distribution of risk should satisfy certain regula-

tory requirements. This leads to an axiomatic approach which is quite often mathematically

tractable yet ignores the economic incentives of the market. The other school of thought is

economically driven, allocating risk based on a profit-maximizing paradigm. It argues that
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capital allocation should reflect the risk perception of the institution and not be imposed

by any arbitrary measure, for which its selection is dubious at best. However, the economic

approach suffers from complex relations that lack clear definitive forms.

At first glance the two perspectives may seem distant, as they arise naturally in their own

contexts and are justified accordingly. Nonetheless, they can coincide for particular losses

that enjoy certain peculiar model settings which are described thoroughly in the chapters

thereafter. Surprisingly, the reconciliation comes in connection with the concept of trivial

allocations. Triviality, in itself, attracts practitioners as it requires no discernible dependen-

cies leading to a convenient yet faulty method of attributing risk. Regardless, when used

in the right context it unveils surprising connections and conveys useful conclusions. The

intersection of the regulatory and profit-maximizing principles, for example, mainly utilizes

a milder version of triviality (proportional) which allows for distinct, albeit few, probabilistic

laws that accommodate both theories. Furthermore, when a stronger triviality (absolute)

condition is imposed, it yields another intriguing corollary, specifically that of restrictive

extreme laws commonly known for antithetic or counter-monotonic variates.

To address the framework hitherto introduced, in the first chapter of this dissertation, we

present a general class of weighted pricing functionals. This wide class covers most of the

risk measures and allocations found in the literature today and adequately represents their

various properties. We begin by investigating the order characteristics of the functionals

under certain sufficient conditions. The results reveal interactive relationships between the

weight and the aggregation make-up of the measures, which consequently, allow for effective

comparison between the different risks. Then upon imposing restrictions on the alloca-

tion constituents, we establish equivalent statements for trivial allocations that uncover a

novel general concept of counter-monotonicity. More significantly, similar equivalences are

obtained for a weaker triviality notion that pave the path to answer the aforementioned

question of allocation reconciliation.

The class of weighted functionals, though constructive, is too general to apply effectively

iii



to the allocation theories. Thus, in the second chapter, we consider the special case of condi-

tional tail expectation (CTE), defining its risk measure and the allocation it induces. These

represent the regulatory approach to allocation as CTE is arguably one of the most promi-

nent and frontrunner measures used and studied today. On the other side, we consider the

allocation arising from the economic context that aims to maximize profit subject to other

market forces as well as individual perceptions. Both allocations are taken as proportions

as they are formed from compositional maps which relate to the standard simplex in either

a stochastic or non-stochastic manner. Then we equate the two allocations and derive a

general description for the laws that satisfy the two functionals. The Laplace transform of

the multivariate size bias is used as the prime identifier delineating the general distributions

and detailing subsequent corollaries and examples.

While studying the triviality nature of allocations, we focused on the central element of

stochastic dependence. We showed how certain models, extremal dependence for instance,

enormously influences the attribution outcome. Thus far, nonetheless, our query started

from the point of allocation relations, be it proportional or absolute, then ended in law char-

acterizations that satisfy those relations. Equally important, on the other hand, is deriving

allocations expressions based on a priori assumed models. This task requires apt choices of

general structures which convey the desired probabilistic nature of losses. Since constructing

joint laws can be quite challenging, the compendium of probabilistic models relies heavily on

leveraging the stochastic representations of known distributions. This feat allows not only for

simpler computations but as well for useful interpretations. Basic mathematical operations

are usually deployed to derive different joint distributions with certain desirable properties.

For example, taking the minimum yields the Marshall-Olkin distribution, addition gives the

additive background model and multiplication/division naturally leads to the multiplicative

background model. Simultaneously, univariate manipulation through location, scale and

power transforms adds to the flexibility of the margins while preserving the overall copula.

In the last chapter of this dissertation, we introduce a composite of the Marshall-Olkin, addi-

tive and multiplicative models to obtain a novel multivariate Pareto-Dirichlet law possessing

a profound composition capable of modelling heavy tailed events descriptor of many extremal
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scenarios in insurance and finance. We study its survival function and the corresponding

moments and mixed moments. Then we focus on the bivariate case, detailing the intricacies

of its inherent expressions. And finally, we conclude with a thorough application to the risk

and allocation functionals respectively.
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Chapter 1

Introduction

The plethora of risk measures used today aim at capturing the inherent uncertainty exhibited

by the losses. The goal is to produce a scalar value capable of summarizing the underly-

ing risk. It is evident, therefore, that this task is quite broad as there are infinitely many

ways to define such a measure. Nonetheless, they all share the basic and common purpose

of risk collection or aggregation. Those risks are pooled together from their constituents,

generally referred to as business units (BU), into one loss that is subsequently gauged. In

all accounts, the fundamental object, in which risk measures as well as allocations operate,

is the randomness of the corresponding losses. If n ∈ N indicates the number of BUs with

a label set N = {1, . . . , n}, then the losses are represented as a non-negative random vector

X = (X1, . . . , Xn) ∈ X n where X n is the space of those losses. Since most measures used

today are described as expectations, usually one requires each loss to have a finite mean i.e.

Xi ∈ L1, ∀i ∈ N , however this is not necessary in general.

The process of aggregation, although abstract, can be explicitly defined via a collection

function, call it g, which maps the the realizations of the random vector X of losses into a

non-negative scalar, concretely g : Rn
+ 7→ R+. The choice of g and consequently the scalar

value it outputs demonstrates the financial entity’s decisions regarding its own structure and

the internal environment it manages. It is customary to endow g with certain desirable prop-

erties, most importantly, it should reflect the monotonicity of the losses it collects. Meaning,

if one loss increases, while the others are held constant, the total collection should increase.
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Normally, in actuarial science, the aggregation function is chosen to be the sum of the con-

stituent losses i.e. g(x) = x1+· · ·+xn. The sum, conveying the simplest form of aggregation,

is often-times easier to deal with as it respects most regularity conditions and requires no

additional assumptions. Finally, upon the determination of the proper compilation method

g, the next stage is to appropriately map the resulting collective into a meaningful positive

number. Typically, this procedure is crystallized by a functional, denoted by H, mapping

the space of losses to the non-negative reals, i.e. H : X n 7→ R+. Figure 1.1 shows a summary

of the mechanism involving risk aggregation and measurement.

Business unit 1
         loss

Business unit 2
         loss

Business unit 3
         loss

Business unit
         loss 

Aggregation through

then measurement by 

Figure 1.1: The process of risk aggregation and measurement

The choice of the risk measure H embeds all the inherent assumptions and properties

that we deem prudent and sensible. The techniques used vary widely depending on the study

objectives and justifications. For example, Artzner et al. (1999) defines coherent risk mea-

sures through a set of axioms. Coherence is synonyms with risk monotonicity, sub-additivity,

positive homogeneity and translation invariance which mimics the established laws of mod-

ern financial theory. Another development comes from Denneberg (1990) and Wang (1996)

through the introduction of a measurement method via distorting the underlying survival

function of the losses. Many subsequent works expanded on this notion and produced several
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characteristics under which a distortion might reflect the desirable financial incentives. Sev-

eral closely related concepts emerged such as that of spectral measures (Acerbi and Tasche,

2002) and most notably, which the second chapter of this dissertation is based on and gen-

eralized upon, that of weighted premiums put forth by Furman and Zitikis (2008a).

The body of literature associated with risk measures is quite vast. To the contrary, in the in-

dustry, due to operating and regulatory reasons, adoption has been intermittent and progress

is slow. Nevertheless, in recent years following the financial crises of 2007-2008, many strides

were taken to mitigate the catastrophic events through appropriately measuring and allo-

cating capital. Until recently and still today, throughout the landscape, determining risk

capital is predominately done through a quantile based manner or commonly referred to as

the Value-at-Risk (VaR) (Linsmeier and Pearson, 2000). Given a prudence level q ∈ [0, 1),

VaR is defined to be the smallest value of a (total) random loss Y = g(X), which is usually

taken to be the simple summation Y = X1 + · · · + Xn, for which the probability of not

exceeding this value is at least q, formally:

H(X) = inf{y : P(Y ≤ y) ≥ q}. (1.1)

Due to its popularity, it became a useful tool for traders and risk managers alike. However it

drew swaths of criticisms due to its inadequacy for non-normality and inability to properly

capture the tails (Jorion, 2006). Some critics went as far as blaming the VaR for the recent

financial crisis, arguing it created a false sense of security for banks as it is easily misunder-

stood and dangerously so.

The search for alternatives, simple computationally, yet robust enough to properly miti-

gate the VaR shortcomings, resulted in the recent adoption of a tail measure, frequently

referred to as the conditional tail expectation (CTE) or expected shortfall (ES). It is defined

to be the average of VaRs beyond the prudence level q ∈ [0, 1), mathematically:

H(X) =
1

1− q

∫ 1

q

VaRt[Y ] dt, (1.2)
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and when the distribution function FY of the aggregate random loss Y is continuous then

the CTE coincides with ES and can be compactly written as H(X) = E [Y |Y > VaRq[Y ]].

Remarkably, the CTE, through averaging VaRs, enjoys many advantageous attributes such

as coherence. It has been implemented in the recent Basel accords and drawn praise from

the academic community at large, see (e.g., Acerbi and Tasche, 2002; Tasche, 2002; Wang

and Zitikis, 2021; Yamai and Yoshiba, 2005) for relevant discussions on the subject.

Not surprisingly, the volume of works dedicated to risk measurement has been growing

quickly in the past decade as it has received its fair attention within the academic and

non-academic circles alike. Therefore, its theory and applicability is quite well understood

within the field of risk management. By comparison, when moving in the other direction,

the case of allocating the pieces of the total risk to the different BUs can be quite cumber-

some. Allocations, crucial to any healthy financial system, are used to gauge the riskiness,

and consequently, performance of the different BUs with respect to the whole. This function

serves multiple purposes. Through allocations, the financial entity can accurately distribute

resources as well as expenses based on the individual BU contribution to the overall risk

(Dhaene et al., 2012). Generally, allocations are represented as functionals, A : X n 7→ Rn
+,

delineating the link between the space of losses and aggregates to that of a non-negative vec-

tor, whose numbers, A(X) = (A1(X), . . . , An(X)), convey the allocations of the respective

BUs. For simplicity, often times, when a class of allocations is assumed, then each functional

Ai, i ∈ N , simply maps the product space X × X , comprised of the individual losses as

the first coordinate and the aggregate as the second, to the non-negative reals, succinctly

written as A(Xi, g(X)). Figure 1.2 shows the reverse procedure of capital allocation starting

with the joint losses and aiming at distributing the overall risk among the BUs.
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Business unit 1
    allocation

Business unit 2
     allocation

Business unit 3
     allocation

Business unit 
     allocation

     Joint losses

   and aggregate  
 

Figure 1.2: The process of risk allocation

Unlike risk measures, allocations are highly specialized mechanisms that require careful

considerations. Not only the aggregate and its law are considered, but also the individual

constituent relationship to them. As a result, most methodologies used today employ the

machinery of risk measures as a simplistic overarching shadow which allows for a systemic

derivations of the corresponding allocations. The ease of inducing allocations based on

an apriori risk measure is mathematically convenient as it requires minimal assumptions.

Mainly, the Euler rule, which we shall now define, is implemented in a form of a gradient

method that seeks to optimally attribute the contribution of each BU to the whole. The

only condition imposed on the risk measures is that of positive homogeneity. A measure H

is said to be possess that property if for each scalar α > 0, the riskiness of the scaled losses

αX is exactly the scaled riskiness of the original losses X, expressed as H(αX) = αH(X).

In financial terms, the scalar can represent a momentarily exchange rate and the riskiness of

certain random losses should be the same regardless of the denomination. If a risk measure

enjoys positive homogeneity then, for the fractional losses X(u) = (u1X1, . . . , unXn), ui ∈

[0, 1], ∀i ∈ N , H can be expressed as a combination of the gradient components, each
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weighted by the corresponding ui, precisely:

H(X(u)) = u1
∂H(X(u))

∂u1

+ · · ·+ un
∂H(X(u))

∂un

. (1.3)

Each term ∂H(X(u))
∂ui

is interpreted as the marginal attribution of the respective BU i to

the total risk H. The final allocation, consequently, is recovered by taking the marginal

attribution at full weight. In another words :

Ai(X) =
∂H(X(u))

∂ui

∣∣∣∣
uj=1, ∀j∈N

, ∀i ∈ N . (1.4)

If a risk measure is differentiable then Euler method is an elegant way to comprehensively

and simultaneously measure and allocate risk. Many allocations used today follow this

framework as they satisfy both positive homogeneity and differentiability. Since the VaR,

defined in (1.1), is positive homogeneous, then the CTE measure in (1.2) will be positive

homogeneous as well. Additionally, being differentiable, the CTE will induce the following

comparable CTE allocations:

Ai(X) = E [Xi|Y > VaRq[Y ]] , ∀i ∈ N , (1.5)

where the aggregate function Y is again the sum and FY is assumed continuous. Regularly,

allocations are reported as percentages (Belles-Sampera et al., 2016) indicating the share

of each BU to the complete 100% risk. The procedure usually involves normalizing the

allocation by the total measure. In the case of the CTE, one can disclose the proportional

risk as:

Ai(X) =
Ai(X)

H(X)
=

E [Xi|Y > VaRq[Y ]]

E [Y |Y > VaRq[Y ]]
, ∀i ∈ N . (1.6)

The CTE allocation inherits its popularity from its inducing measure, thus it is arguably one

of the most prominent rules used to attribute risk currently. It arises in multiple contexts,

ranging from game theory to optimal functionals, see (e.g., Denault, 2001; Dhaene et al.,

2012; Tasche, 2004) for pertinent references.
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Generating allocations based on risk measures can be regarded as an indirect method bypass-

ing the innate considerations of attributions. Certainly, starting with regulatory measures

has its own advantages, however, the axioms that govern them may be not applicable within

the context of allocations. Moreover, as the main object, choosing a risk measure is an

unclear task that can place a disproportionate bias on the mathematical properties ignor-

ing the evident economic forces. The selection, misleading as it can be, can have profound

consequences on the institution as it ultimately determines how it perceives and controls risk.

As allocations based on regulatory measures may fail to capture economic incentives, such

as profit maximization, several works have been authored in defining economic counterparts

that are constructed organically. Notably, in Cummins (1988); Phillips et al. (1998) and re-

cently in Bauer and Zanjani (2016), a thorough study of economic allocations were conducted

within the various niches of market settings. Generally speaking, economic allocations are

solutions to the maximization problem defined as the highest possible profit, being revenue

minus costs, subject to consumer utility and regulatory solvency constraints. After a change

of measure, that accounts for the marginal utility expressions, the risk measure inducing

those allocations can be conveniently recovered as:

H(X) = exp{E [log(Y )|Y > VaRq[Y ]]}, (1.7)

where Y is the sum of the losses. The risk measure in (1.7) is not coherent as it is not

translation invariant and may fail to satisfy sub-additivity. It also relates to geometric

means (Hardy et al., 1988) and tail quasi-linear risk measures as in Bäuerle and Shushi

(2020). Using Euler rule in (1.3), the equivalent economic allocations are expressed as:

Ãi(X) = E
[
Xi

Y

∣∣∣∣ Y > VaRq[Y ]

]
, ∀i ∈ N . (1.8)

The similarities between the CTE allocation in (1.6) and the economic allocation in (1.8)

is quite evident. Indeed, they both sum up to one and each express proportionality of risk

attributed to the respective BU. However, in the former the ratio is non-stochastic as it is

simply a division of the CTE allocation to that of the total risk, while in the latter, the
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proportionality is a stochastic variate taking into account the randomness of the ratio. In

terms of compositional maps, defined as C : Rn
+ 7→ ∆n−1, C(x) = (C1(x), . . . , Cn(x)) , with

Ci(x1, . . . , xn) = xi/y, ∀i ∈ N , y =
n∑

i=1

xi, which charts non-negative realizations to the

n-dimensional standard simplex, the proportional CTE and economic allocations can be ex-

pressed as Ai(X) = Ci (CTE1(X), . . . ,CTEn(X)), where CTEj(X) = E [Xj|Y > VaRq[Y ]],

and Ãi(X) = E [ Ci(X1, . . . , Xn) | Y > VaRq[Y ]], ∀i ∈ N , respectively. The difference, made

clear, lies in the order of the compositions i.e. whether placed outside or inside the expecta-

tion functional. Therefore, a natural question that arises, does there exists possible model

settings which are invariant to the compositional order ? or equivalently, can the CTE and

economic allocations coincide for certain choices of distributions ?

Surprisingly, the answer to the posed question is found in the language of trivial alloca-

tions. When an allocation is represented as a linear function of the related risk measure i.e.

Ai(X) = αi + βiH(X), αi ≥ 0, βi > 0, ∀i ∈ N , and for every distortion of the underlying

measure, then, under mild conditions, the laws that satisfy the linear relationship are exactly

those that equate both allocations (compositionally invariant). This type of triviality can be

referred to as proportional since Ai(X)
H(X)

= βi, ∀i ∈ N , where αi = 0,∀i ∈ N , because of the

aforementioned mild conditions. The constancy of proportional allocations allows for several

distributions that satisfy a certain multivariate size-bias relationship. Though being strin-

gent, it is not exceedingly so, as it allows for discernible dependence structures beyond the

degenerate extremes. If, however, the allocations are represented as an absolute constant,

under any measure distortion, i.e. Ai(X) = αi, αi > 0, ∀i ∈ N , then the only possible

law is that of the counter-monotonic extreme. In two dimensions, counter-monotonicity is

commonly known as the Fréchet lower bound which serves as the best possible dependence

for diversification. In higher dimensions, however, counter-monotonicity thus far does not

adhere to a unanimous definition and a unifying theory is very much needed. In this disser-

tation, we touch upon a possible encompassing definition, specifically that of non-increasing

sets. Loosely speaking, elements of non-increasing sets have coordinates that move in ”op-

posite directions”. This means when the random losses X follow this extreme law, then

absolute triviality of allocations is equivalent to their support being a non-increasing set

8



with P(g(X) = c) = 1, for some constant c > 0.

Both trivialities, proportional and absolute, imply the strong interplay between the allo-

cations and the underlying dependence structures. Law characterizations, as illuminating as

they can be, are not the only force operating within the capital allocation realm. Equally

significant, for instance, is deriving allocation expressions based on a carefully built models.

Constructing multivariate laws, therefore, is a necessary task that serves as a cornerstone

tool for prudent risk management. Since scholarly attention has been drawn extensively to

tail based measures and allocations, heavy-tailed laws embody a prime choice to properly

model extreme events in insurance and finance (Embrechts et al., 1997). Particularly, the

Pareto power law (Pareto, 1964) and its multivariate extensions (Arnold, 2015; Asimit et al.,

2010; Su and Furman, 2017) stand out as ideal powerhouse befittingly capturing the intrinsic

nature of the tails.

Due to the built-in complexity of multivariate distributions, scholars usually resort to ex-

ploiting stochastic representations to obtain novel distributions. Utilizing this machinery,

we start, ∀i ∈ N , with standalone losses Xi that possess a Pareto II distribution, which is

expressed as a ratio of two independent variates, one exponential Vi and the other gamma

Wi, i.e. Xi =
Vi

Wi
. Then using the location, scale and power transforms will yield the general

class of Pareto IV:

Xi = µi + σi

(
Vi

Wi

) 1
γi

, Xi > µi, (1.9)

where µi ∈ R, σi > 0 and γi > 0 are the location, scale and power parameters respectively.

The representation in (1.9), has its origins in the multiplicative background model as one

variate may convey a systemic while the other an idiosyncratic risk. So far, the stochastic

representation describes the form of the margins with no dependence imposed. Furthermore,

expressing Vi and Wi as operations of other independent variates will eventually incorporate

an elegant overarching joint structure. Commencing by letting Mv,Mw ⊆ P(N ), where

P(N ) is the power set of N without the empty set. Additionally, ∀i ∈ N , we will set Bi to

be a subset of either Mv or Mw representing the factors affecting the particular i−th BU.
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Then choosing:

Vi = min (EB : B ∈ Bi) , (1.10)

to be the minimum of independent exponentials EB ∼ exp(λB) indexed by a power-set Mv.

The dependence of V = (V1, . . . , Vn), when n = 2, is often referred to as Marshall-Olkin

(MO) (Marshall and Olkin, 1967), as it was pioneered by the two scholars studying simul-

taneous failure of jet engines. Nowadays, it has found its application within the actuarial

practice as it is used to model concurrent deaths in joint life insurance products. This feat is

characterized by the positive co-monotonic probability, P(V1 = · · · = Vn) > 0, that is baked

into the MO distribution.

Secondly, similar to V , each gamma variate Wi is represented as the sum of a collection

of independent factors i.e.:

Wi =
∑
B∈Bi

ZB, (1.11)

such that ZB ∼ Gamma(αB, 1) are gamma variables with different shapes and unit rate, and

all indexed by the corresponding power-setMw. Thus, the random vectorW = (W1, . . . ,Wn)

is tied by the additive gamma model that, due to its Laplace multiplicative structure, is

extensively used in modelling losses within life and non-life insurance alike. Combining V

and W results in a dependence structure of the joint losses X that is endowed with all

the peculiar properties of the MO, additive and multiplicative compositions. It retains the

heavy-tailed margins of Pareto IV, while serving as an encompassing rich law capable of

portraying the highly non-normal world of financial risk.
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Chapter 2

A primer on the generalized weighted

risk functionals

2.1 Introduction

Consider non-negative random variables (RVs) X, X1, . . . , Xn, n ∈ N, representing (insur-

ance) losses, and let X denote a collection of such losses. For a Borel-measurable non-negative

- and as a rule non-decreasing - ‘weight’ function x 7→ w(x), x ∈ [0, +∞), the functionals

Hw : X → [0, +∞) ∪ {+∞}, such that the ratio of expectations below is well-defined and

finite

Hw(X) =
E[Xw(X)]

E[w(X)]
, (2.1)

are often called ‘weighted’ risk measures; also called actuarial premium calculation principles,

if the bound Hw(X) ≥ E[X] holds for those RVs X ∈ X that have finite means (e.g.,

Sendov et al. (2011)) i.e. non-negative loading is satisfied. Recently. the class of weighted

functionals, Hw, has been connected to a theory of stress-testing, in which case weight

functions play the role of ‘stressing’ mechanisms (e.g., Millossovich et al. (2021)). In what

follows, Hw is referred to as the weighted risk functional(s) to recognize the manifold of

existing applications across risk management and insurance.

In actuarial science, weighted risk functionals, Hw, were introduced by Furman and

Zitikis (2007, 2008a) as a unifying class of risk functionals that comprises, e.g., the Value-
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at-Risk and Conditional Tail Expectation risk measures, Esscher’s, Kamps’, and - under

certain conditions - the distorted premiums, among other popular risk measures and actuarial

premiums (we refer to, e.g., Choo and de Jong (2009); Kaluszka and Krzeszowiec (2012) and

a more recent Castano-Martinez et al. (2020) and references therein, for examples of works

that explore properties of the class of weighted risk functionals).

Generalizations of (2.1) have been developed in several directions, with the arguably

simplest and most-popular of these directions having led to the rise of the notion of weighted

risk capital allocations, put forward in Furman and Zitikis (2008b). More specifically, let

S = X1 + · · ·+Xn denote the aggregate loss RV, then the functionals Aw(Xi, S) : X ×X →

[0, +∞) ∪ {+∞}, such that the ratio of expectations below is well-defined and finite

Aw(Xi, S) =
E[Xiw(S)]

E[w(S)]
, i ∈ {1, . . . , n}, (2.2)

are called weighted risk capital allocations (see e.g., Dhaene et al. (2012) as well as a more

recent Guo et al. (2018) for details).

An alternative generalization of (2.1), which is referred to as a generalized weighted risk

measure or premium in Furman and Zitikis (2009), is obtained by considering the class of

functionals Hv,w : X → [0,+∞) ∪ {+∞}, such that

Hv,w(X) =
E[v(X)w(X)]

E[w(X)]
, (2.3)

where v, w are non-negative and Borel-measurable functions, E[v(X)w(X)] ∈ (0,+∞), and

E[w(X)] ∈ (0,+∞) (see e.g.,Richards and Uhler (2019) for a study of the monotonicity of

the class of generalized weighted risk functionals).

Yet another generalization of weighted risk functionals (2.1) was considered in Millosso-

vich et al. (2021); Porth et al. (2014); Zhu et al. (2019) (also, Furman and Zitikis (2007) for

an earlier note in this respect). This generalization hinges on the assumption that the weight

function, w(·) ≥ 0 - non-decreasing in each variable and Borel-measurable - operates on vec-

tors of loss RVs, that is w : [0,∞)n → [0,∞). Clearly, if the weight function is chosen to be

the simple ‘sum’ aggregation function, that is w(x1, . . . , xn) = x1 + · · · + xn, x1, . . . xn ≥ 0,

then functional (2.2) is recovered. Zhu et al. (2019) focus on linear and log-linear combi-
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nations of rate-making factors as the weight functions of interest and derive properties of

what they call ‘multivariate’ weighted premiums (for various weight functions that arise in

the context of a multivariate stress-testing theory, we refer to Millossovich et al. (2021)).

Speaking generally, aggregate financial positions are not simple sums of loss RVs (e.g.,

Jaworski et al. (2010), Chapter 5). Namely, let the function g : [0,+∞)n → [0,+∞) be

non-decreasing in each variable, Borel-measurable, and, for x = (x1, . . . , xn) ∈ [0,+∞)n,

satisfy the boundary conditions

0 ≤ inf
x∈[0,+∞)n

g(x) < ∞, and 0 < sup
x∈[0,+∞)n

g(x) ≤ +∞,

that is the function x 7→ g(x) is a general aggregation function (e.g., Grabisch et al. (2009)),

and let Sg = g(X1, . . . , Xn) denote the g-aggregate loss RV. Examples of aggregate func-

tions are the already-mentioned (e.g., Zhu et al. (2019)) simple sum aggregation function

g(x1, . . . , xn) =
∑n

i=1 xi and the exponential aggregation function g(x1, . . . , xn) =
∑n

i=1 e
xi .

Other examples of aggregation functions are, e.g.,

� the maximum aggregation function - also, the largest order statistic - g(x1, . . . , xn) =

max(x1, . . . , xn);

� the minimum aggregation function -also, the smallest order statistic - g(x1, . . . , xn) =

min(x1, . . . , xn);

� the product aggregation function g(x1, . . . , xn) = x1 × · · · × xn;

� the log-sum-exp aggregation function g(x1, . . . , xn) = log(ex1 + · · ·+ exn);

� the p-norm g(x1, . . . , xn) = (xp
1 + · · ·+ xp

n)
1/p, where p ∈ R+.

The following arrow diagram (2.1) shows the flow of the internal model of aggregation,

beginning with losses and ending with the weighted functionals (see Millossovich et al. (2021)

for similar discussion).
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Figure 2.1: Diagram on the internal aggregation mechanism

In this paper, we work with the class of g-aggregation functions, such that the projec-

tion onto the i-th variable, Pi, i ∈ {1, . . . , n}, equals that variable; namely, we require

Pi[g(x1, . . . , xn)] = g(xi) = xi. This additional condition, which by passing implies that the

class of weight functions and the class of aggregation functions do not generally agree, is

natural as an aggregation of a singleton is not really an aggregation. Keeping the above in

mind, in this paper we work with the following generalized weighted risk functionals

Hw(Sg) =
E
[
Sg × w ◦ g(X1, . . . , Xn)

]
E
[
w ◦ g(X1, . . . , Xn)

] (2.4)

and, for i ∈ {1, . . . , n},

Aw(Xi, Sg) =
E
[
Xi × w ◦ g(X1, . . . , Xn)

]
E
[
w ◦ g(X1, . . . , Xn)

] . (2.5)

Clearly, if the g-aggregation function is the simple sum aggregation, then weighted risk

functionals (2.4) and (2.5) reduce to the original ones. Summarized in Table 2.1 the weighted

functionals for the popular choices of weight functions.
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The rest of this paper is devoted to the study of various properties of functionals (2.4)

and (2.5). More specifically in Section 2.2, we investigate bounds for the pairs of weighted

risk functionals Hw(Sg1) and Hw(Sg2) as well as Aw(Xi, Sg1) and Aw(Xi, Sg2), i ∈ {1, . . . , n},

where the weight function is fixed and two distinct g-aggregation functions are considered.

Notably, by selecting the g-aggregation functions, g1 and g2, such that g2 = ξ ◦ g1 with the

appropriately chosen non-decreasing and Borel-measurable function ξ : [0,+∞) → [0,+∞),

the results in this section help compare the riskiness of aggregate losses subject to coverage

modifications. Then in Section 2.3, we repeat the exercise by comparing weighted risk

functionals Hw1(Sg) and Hw2(Sg) as well as Aw1(Xi, Sg) and Aw2(Xi, Sg), i ∈ {1, . . . , n},

which this time share the same aggregation function, but have different weight functions.

Not surprisingly, a departure from the simple sum aggregation function results in a significant

layer of complexity both when studying properties of generalized weighted risk functionals

(2.4) and (2.5) and when evaluating them. In Section 2.4, we characterise those loss RVs, for

which - irrespective of the choice of the g-aggregation function and the weight function - risk

functional (2.5) is either trivially obtained from risk functional (2.4) or equals a constant

(e.g., Guan et al. (2021) for a similar discussion).

2.2 Orders based on different aggregation func-

tions but the same weight function

In what follows, we fix an atomless probability space and denote by X and X n the set of

all non-negative RVs and the set of all non-negative random vectors X = (X1, . . . , Xn); in

both cases these are interpreted as losses in a portfolio of losses, N = {1, . . . , n}, n ∈ N.

The cumulative distribution function and the decumulative distribution function of the RVs

X ∈ X and X ∈ X n are denoted by FX(x) = P(X ≤ x), FX(x) = 1− FX(x) and FX(x) =

P(X ≤ x), FX(x) = P(X > x), respectively, for non-negative x and x = (x1, . . . , xn).

It is easy to see that the generalized weighted risk capital allocation as in Equation (2.5)

satisfies the no-unjustified loading property as well as the non-negative loading property

(Furman and Zitikis (2008b)) given that the weight function, w, is non-decreasing and the
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RVs Xi, i ∈ N and Sg are positively quadrant dependent (PQD) i.e. P(Xi ≤ z1, Sg ≤ z2) ≥

P(Xi ≤ z1) P(Sg ≤ z2) (see Lehmann (1966) for details). Also, while allocations, (2.5), are

fully additive,
∑n

i=1 Aw(Xi, Sg) = Hw(Sg), only if the g-aggregation function is the simple

sum aggregation function (Sg = S), they admit a special form of the no-undercut property.

Recall in this respect that the no-undercut property states that stand-alone losses are riskier

- require more risk capital - that those losses that are considered a part of a portfolio of

losses. The no-undercut property for the class of generalized weighted risk functionals (2.5)

is formulated in the following proposition, which holds due to the Jensen’s inequality.

Proposition 1. If the g-aggregation function is convex, then we have

g
(
Aw(X1, Sg), . . . , Aw(Xn, Sg)

)
≤ Hw(Sg) holds for all X ∈ X n and Sg = g(X). (2.6)

Proof.

g
(
Aw(X1, Sg), . . . , Aw(Xn, Sg)

)
= g
(
Ew(Sg)[X1], . . . ,Ew(Sg)[Xn]

)
,

≤ Ew(Sg)[g(X1, . . . , Xn)]

= Hw(Sg).

Where Ew(Sg)[ · ] =
E[ · w(g(X))]
E[w(g(X))]

.

Clearly, the p-norm, 1 ≤ p ≤ ∞, and log-sum-exp g-aggregation functions mentioned in

Section 2.1 satisfy the convexity condition in Proposition 1.

Next we turn to the study of how different choices of aggregation functions impact the

value of generalized weighted risk functionals. Two notational conveniences are in place.

First, let w(·) be a weight function and X and Y be two loss RVs in X , all such that the

weighted risk functional Aw(X, Y ) is well-defined and finite. Then, similar to the notation

in the proof of Proposition 1, Hw(X, Y ) =: Ew(Y )[X], where the left-hand side is a w-

biased expectation. Similarly, we can write (2.4) and (2.5) as Hw(Sg) = Ew(Sg)[Sg] and

Aw(Xi, Sg) = Ew(Sg)[Xi], where Sg = g(X) and i ∈ N . Second, let us define the following

regression functions, for X ∈ X n and y ≥ 0,
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h(y) = E
[
Sg1 |Sg2 = y

]
, where Sgi = gi(X), i = 1, 2

and

h̃(y) = E
[
w(Sg2) |w(Sg1) = y

]
.

Theorem 1. For a given weight function w which is assumed to be strictly increasing, let

Hj = Hw(Sgj), with Sgj = gj(X), j = 1, 2,

be the weighted risk measures associated with collection function g1 and g2. The following

relationships hold:

If h(y)

{
≥
<

}
y and the function y 7→ y

h̃(y)
, y ∈ R+, is

{
increasing

decreasing

}
, then H1

{
≥
<

}
H2.

In particular, H1 = H2 holds when h(y) = y and the function y 7→ y/h̃(y) is constant.

Proof. See appendix i.

Remark 1. The relationship between h(y) and y specified in Theorem 1 compares the order

of the realizations of Sg1 and Sg2, for a given portfolio X ∈ X n, in an average sense.

Clearly, the order between Sg1 and Sg2 implies the relationship between h(y) and y. Namely,

if g1(y) ≥ g2(y) for all y ∈ Rn
+, then h(y) ≥ y, ∀y ∈ R+. The same argument holds if the

inequalities are reversed.

Remark 2. In Theorem 1, we assume the weight function w to be strictly increasing. How-

ever, this assumption is violated when it comes to the tail conditional risk measures and

allocations in which the weight function is set to be w(y) = 1(y > d) for some d ≥ 0. In

this case, Theorem 1 remains true, but the monotone condition of y 7→ y/h̃(y) needs to be

replaced by that of

y 7→ w(y)

E
[
w(Sg2)|Sg1 = y

] , where Sgj = gj(X) and j = 1, 2.
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Remark 3. The function y 7→ y/h̃(y) is increasing if h̃(y) grows at a slower rate than y

does. Note that the monotonicity property of h̃ is related to the dependence structure between

S̃1 := w(Sg1) and S̃2 := w(Sg2). Specifically, if S̃2 is stochastically increasing in S̃1, i.e.,

P
(
S̃2 > x | S̃1 = y

)
is increasing in y ∈ R+ for all x ∈ R+,

then the function y 7→ E
[
S̃2 | S̃1 = y

]
is increasing. Whether h̃ increases faster or slower

than y depends on the marginal distributions and dependence of (S̃1, S̃2), which are jointly

determined by the choices of g1, g2, and w.

The following assertion further clarifies the monotonicity behavior of the function y 7→

y/h̃(y) when the dependence between S̃1 and S̃2 is chosen to be co-monotonic. Two variables

(X, Y ) are said to be co-monotonic if they can be written as non-decreasing functions of a

common variable i.e. (X, Y )
d
= (ξ1(Z), ξ2(Z)), for non-decreasing functions ξ1 and ξ2.

Theorem 2. For all y ∈ Rn
+, let ξ ◦ g1(y) = g2(y) where ξ : R+ → R+ is increasing, hence

S̃1 and S̃2 are co-monotonic. Moreover, suppose that the weight function w is diffentiable

and log convex.

If ξ(y)

{
≤
>

}
y with ξ′(y)

{
≤
>

}
1 for y ∈ R+, then we have H1

{
≥
<

}
H2.

Proof. See appendix ii.

Remark 4. Among the examples outlined in Table 2.1, the following principles are associ-

ated with a log convex weight function: Net, Esscher, Aumann-Shapley (when F is convex),

distorted (when h
′ ◦ F is log convex), and proportional hazard (when F is log convex).

The mere ordering of the g-aggregation functions is not sufficient in order to have the

generalized weighted risk functionals ordered, as becomes evident from the following example.

Example 1. Suppose that the risk collection g1(X) ∼ Pa(II)(α, θ), the Pareto distribution

of the second kind with shape parameter α > 0 and scale parameter θ > 0, whose probability

density function is given by

f(x) =
α

θ

(
1 +

x

θ

)−(α+1)

, x > 0.
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Moreover, let ξ(y) = max(0, c y−d) which represents the risk reduction due to the introduction

of a coinsurance factor c ∈ (0, 1) and a deductible d > 0. It is straightforward to check that

ξ(y) ≤ y and ξ′(y) ≤ 1, and thus the first set of assumptions about ξ in Theorem 2 are

satisfied. Meanwhile, let w(y) = yb, b > 0, hence the log-convexity condition on w required

in Theorem 2 is violated.

Let Sg = g1(X), then we have

H1 =
E
[
Sg

b+1
]

E
[
Sg

b
] = θ

1 + b

α− b− 1
,

in which we require α > 1 + b such that the expectations above are well-defined. Under the

same assumption, we have

H2 =
E
[
ξ(Sg)× w ◦ ξ(Sg)

]
E[w ◦ ξ(Sg)]

=
cb+1 E

[
(Sg − d/c)b+1 |Sg > d/c

]
cb E

[
(Sg − d/c)b |Sg > d/c

] .

Note that Sg
∗:=(Sg − d/c |Sg > d/c) ∼ Pa(II)

(
α, d/c+ θ

)
, thus

H2 = c
E
[
(Sg

∗)b+1
]

E
[
(Sg

∗)b
] = c (d/c+ θ)

1 + b

α− b− 1
= (c θ + d)H1.

Set θ = 1, then we obtain H1 ≥ H2 if c + d ≤ 1, and H1 < H2 if c + d > 1. Collectively,

this example shows that the order between g1 and g2 is not sufficient to determine the order

between H1 and H2.

Next we turn to study the impact of the choice of the g-aggregation function on func-

tionals (2.5). At the outset, let us define, for Sgj = gj(X), j ∈ {1, 2}, i ∈ N , and y ≥ 0, the

following regression function

ℓi,j(y) = E
[
w(Sgj)|Xi = y

]
.
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Theorem 3. For a given weight function w, let

Ai,j := Aw(Xi, Sgj), j = 1, 2, and i ∈ N ,

be generalized weighted risk functionals á la (2.5) associated with the aggregation functions

g1 and g2. The following relationships hold:

If the function y 7→ ℓi,1(y)

ℓi,2(y)
is

{
increasing

decreasing

}
on y ∈ [0,+∞), then Ai,1

{
≥
<

}
Ai,2.

In particular, Ai,1 = Ai,2 if y 7→ ℓi,1(y)/ℓi,2(y) is a constant function.

Proof. The result follows from Proposition 3.1 of Furman and Zitikis (2008b).

Knowing the order between g1 and g2 may not suffice to conclude the monotonicity

behavior of the ratio y 7→ ℓi,1(y)/ℓi,2(y). The following proposition further confirms the

critical role that the weight function w plays in shaping the order between functionals Ai,1

and Ai,2.

Theorem 4. Suppose that individual risks within a portfolio have marginal CDFs FXi
, i ∈ N

and are co-monotonic, namely Xi = F−1
i (U) almost surely, where U ∼ Uniform[0, 1]. Let

the element-wise increasing aggregation functions satisfy ξ ◦ g1(y) = g2(y) for y ∈ Rn
+,

where ξ : [0,+∞) → [0,+∞) is increasing. Further assume that the weight function, w, is

differentiable and log convex. The following relationships hold

If ξ(y)

{
≤
>

}
y with ξ′(y)

{
≤
>

}
1 for y ∈ [0,+∞), then we have Ai,1

{
≥
<

}
Ai,2 for i ∈ N .

Proof. See appendix iii.

In Theorem 4, the log convexity condition on the weight function w is again minimal,

which is reaffirmed in the example below.

Example 2. Consider two loss RVs distributed Pareto of the second kind, that is Xi ∼

Pa(II)(α, θi), α ∈ R+, θi ∈ R+, i = 1, 2, and assume that the RVs X1 and X2 are co-

monotonic. Set g1(x) = x1+x2 and g2(x) = ξ ◦g1(x), where ξ(y) = max(0, y−d) represents

the risk reduction function due to the inclusion of a deductible d > 0. Furthermore, consider

21



the same weight function as in Example 1, i.e., w(x) = xb, b ∈ R+, which is log concave and

thus violates the conditions on w in Theorem 4. Let Sg = g1(X) = X1 +X2, then since the

loss RVs are co-monotonic, we have Sg ∼ Pa(II)(α, θ∗), where θ∗ = θ1 + θ2. Finally, assume

that the succeeding expectations are well-defined and finite, or equivalently α > b + 1, and

have

Ai,1 =
E
[
Xi × w(Sg)

]
E
[
w(Sg)

]
=

E
[
Xi (X1 +X2)

b
]

E
[
(X1 +X2)b

]
=

E
[
X1+b

i

]
E
[
Xb

i

]
= θi

1 + b

α− b− 1
, i = 1, 2.

Also, we have, for i = 1, 2,,

Ai,2 =
E
[
Xi × w ◦ ξ(Sg)

]
E
[
w ◦ ξ(Sg)

]
=

E
[
Xi (X1 +X2 − d)b |X1 +X2 > d

]
E
[
(X1 +X2 − d)b |X1 +X2 > d/c

]
=

θi
θ∗

E
[
Sg (Sg − d)b |Sg > d

]
E
[
(Sg − d)b |Sg > d

]
=

θi
θ∗

E
[
(Sg − d)b+1 |Sg > d

]
+ dE

[
(Sg − d)b |Sg > d

]
E
[
(Sg − d)b |Sg > d

] .

Note that Sg − d |Sg > d ∼ Pa(II)(α, d+ θ∗), and so we obtain

Ai,2 =
θi
θ∗

[(
d+ θ∗

) 1 + b

α− b− 1
+ d
]
= Ai,1 +

α d θi
(α− b− 1) θ∗

≥ Ai,1, i = 1, 2.

In conclusion, we have seen in this example that if the log convexity assumption on the

weight function w is violated, then the desired relationship Ai,1 ≥ Ai,2 reported in Theorem 4

can not be guaranteed. Thereby, the order between the aggregation functions g1 and g2 is not
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sufficient to determine the order between the associated generalized weighted risk functionals.

Moreover, if the weight function, w, is not log convex, then (2.5) may fail to capture the risk

reduction due to the introduction of policy modifications.

2.3 Orders based on different weight func-

tions but the same aggregation function

We are now in a position to examine the role that the weight function plays in the deter-

mination of the order of risk functionals (2.4) and (2.5), given that they share the same

aggregation function. We start with the study of the former generalized weighted risk func-

tional, and our observations are summarized in the following theorem.

Theorem 5. For a given collection function g : [0,+∞)n → [0,+∞), let

H̃j = Hwj
(Sg), j = 1, 2

be two generalized weighted risk functionals associated with the weight functions w1 and w2.

Then the following relationships holds

If the function y 7→ w1(y)
w2(y)

, y ∈ R+, is

{
increasing

decreasing

}
, then H̃1

{
>

<

}
H̃2.

Particularly, if y 7→ w1(y)/w2(y) ≡ c, y ∈ R+, for some constant c ∈ R+, then H̃1 = H̃2.

Proof. The result follows from Theorem 4 of Patil and Rao (1978) and statement (4.3) of

Furman and Zitikis (2008a).

Interestingly, Theorem 5 shows that for a given loss position X ∈ X n with a fixed

aggregation function g, the monotonicity behaviour order of the ratio of the two weight

functions w1 and w2 can yield the order of the associated generalized weighted risk function-

als. Furthermore, suppose that the g-aggregate RV Sg has a continuous CDF, then Table 2.2

summarizes the conditions under which the ratio y 7→ w1(y)/w2(y) is increasing, and thus

Hw1(Sg) > Hw2(Sg) as per Theorem 5.
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Several observations pertaining to the conditions outlined in Table 2.2 are warranted.

First, note that the net premium risk functional and the modified variance risk functional

are special cases of the size-biased risk functional with t = 0 and t = 1, respectively (see,

Table 2.1). Thereby, Table 2.2 can be immediately used to study the order of these two risk

functionals as well as other size-biased risk functionals.

Second, the diagonal cells in Table 2.2 indicate that for any two weight functions belonging

to the same class, it is sufficient to use the value of the t parameter to determine the order

of the associated weighted risk functionals.

Third, when comparisons are made across different classes of weight functions, then the

monotonicity behavior of the function y 7→ w1(y)/w2(y) may depend on the support and/or

the probability distribution of the RV Sg, except for the comparison between the size-biased

and Kamps’ risk functionals. To be specific, for the comparison between the size-biased and

Esscher’s risk functionals, the function y 7→ w1(y)/w2(y) is increasing (resp. decreasing) only

when the g-aggregate RV Sg is bounded from above (resp. below) by t1/t2. When it comes

to the comparison between the size-biased and the Aumann-Shapley risk functionals, note

that commonly used continuous distributions such as the ones with unbounded supports

outlined in the distribution inventory of Klugman et al. (2012), have y 7→ f(y) y bounded

for all y ∈ R+, where f denotes the respective density. Therefore, we can find sufficiently

large t1 and/or small t2 such that the corresponding inequality condition is satisfied, and

thus the ratio w1(y)/w2(y) is increasing. On a different note, it is also worth mentioning that

y 7→ f(y) y is not always bounded from above. A counter example is the arcsine distribution,

or more generally a Beta distribution with the second shape parameter being less than one,

whose PDF is given by

f(y) =
1

π
√

y(1− y)
, y ∈ (0, 1);

it is evident that limy↑1 f(y) y = +∞. It is also possible that y 7→ f(y) y is bounded from

below by a positive value (e.g., the right-shifted uniform distribution). In this case, we can

find an appropriate pair of t1 and t2 such that f(y) y > t1/t2, thus y 7→ w1(y)/w2(y) is

decreasing for all y ∈ Sg. For common continuous distributions such as gamma, log-normal,
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Pareto, and Weibull, we have limy↓0 f(y) y = 0, thus it is impossible that f(y) y > t1/t2 for

all y ∈ R+, and y 7→ w1(y)/w2(y) can not be decreasing.

Turning to the Esscher functional, its comparison with Kamps functional suggests that

the support of collection RV Sg must have a positive lower (resp. upper) bound t2
−1 log (t2/t1 + 1)

such that y 7→ w1(y)/w2(y) is increasing (resp. decreasing). To implement the comparison

between the Esscher and Aumann-Shapley functionals, we require the PDF of Sg to be

bounded from above or from below by a positive value. When Sg has an unbounded sup-

port, then it is impossible that f(y) has a positive lower bound, thus y 7→ w1(y)/w2(y) can

not be increasing.

Penultimately, let us consider the comparison between the Kamps and Aumann-Shapley

functionals. The inequality for ensuring the increasing property for w1/w2 depends on both

the support of Sg and the behaviour of the PDF f . If the PDF f is unbounded at a positive

point, then log
(
t2(t1 f(y))

−1 + 1
)
→ 0 as y approaches to that point. So the corresponding

inequality condition specified in Table 2.2 holds, and the increasing property of w1/w2 can

be established in a neighbourhood of that positive point. However, when the PDF f(y)

converges to zero as y approaches to a finite point (e.g., the Gamma distribution having

PDF: f(y) = 1
2
y2e−y, y ∈ (0,∞)), then the function log

(
t2(t1 f(y))

−1 + 1
)
→ ∞ as y

approaches zero), it is impossible that y > log
(
t2(t1 f(y))

−1 + 1
)
for all y ∈ R+, thus the

function y 7→ w1(y)/w2(y) can not be increasing.

Finally, the comparison between the distortion functional and all others is quite simple as

it can solely depend upon h. The sufficient condition of positive first and second derivatives,

of h, ensures that y 7→ w1(y)/w2(y) is increasing. As h is usually chosen increasing, then

h
′
> 0 is automatically satisfied. The only remaining restriction is that imposed on the

second degree. If h is convex, meaning h
′′
> 0, then we get the desired monotonicity

behaviour of the ratio. In the literature, nonetheless, h is taken to be concave as it is

equivalent to the coherence of the underlying distorted risk functional. Thus, for the coherent

class, h
′′ ≤ 0, and therefore the function y 7→ w1(y)/w2(y) must not be monotonic.

In what follows, we proceed to studying the conditions for determining the order of

generalized weighted risk functionals (2.5) subject to different weight functions and common
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aggregation function. To this end, we need the following additional notation

ℓ̃i,j(y) = E[wj(Sg)|Xi = y], where Sg = g(X), j ∈ {1, 2}, i ∈ N , and y ≥ 0.

Theorem 6. For a given aggregation function g, let

Ãi,j = Awj
(Xi, Sg), with Sg = g(X), j = 1, 2

be the weighted risk functionals associated with the weight functions w1 and w2.

If the function y 7→ ℓ̃i,1(y)

ℓ̃i,2(y)
, y ∈ R+, is

{
increasing

decreasing

}
, then Ãi,1

{
>

<

}
Ãi,2.

In particular, if ℓ̃i,1(y)/ℓ̃i,2(y) ≡ c for some constant c ∈ R+, then Ãi,1 = Ãi,2.

Proof. The result follows from Proposition 3.1 of Furman and Zitikis (2008b).

Interestingly, for comontonic losses Theorem 6 simplifies significantly.

Theorem 7. Let us consider X = (X1, . . . , Xn) with Xi = F−1
Xi

(U), where U ∼ Uniform(0, 1)

and FXi
is the CDF of the RV Xi, i ∈ N . Fix a component-wise increasing aggregation func-

tion g, then following relationships hold

If the function y 7→ w1(y)

w2(y)
, y ∈ R+, is

{
increasing

decreasing

}
, then Ãi,1

{
>

<

}
Ãi,2.

Proof. See appendix iv.

Theorem 7 seems to suggest that the monotonicity behavior of ratios of the weight func-

tion may be a decisive factor as to the orders of risk functionals (2.5), as it is in the context of

risk functionals (2.4). The next example shows that it is not the case if the co-monotonicity

assumption on the losses of interest is removed.

Example 3. Consider the loss RV X = (X1, X2), whose joint probabilistic behavior is

governed by a two-component mixture of gamma distribution with joint PDF (Chen et al.,

2021):

fX1,X2(x1, x2) = p
2∏

i=1

Xαi1−1
i θαi1

i

Γ(αi1)
e−θiXi + (1− p)

2∏
i=1

Xαi2−1
i θαi2

i

Γ(αi2)
e−θiXi , x1, x2 > 0, p ∈ (0, 1).
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In this example, we set the aggregation function g(x) = x1 + x2, and consider two weight

functions wj(y) = ynj , where nj ∈ N, j = 1, 2, with n1 ≥ n2. Clearly, the function y 7→

w1(y)/w2(y) is increasing. Next, let us fix p = 0.5, α11 = 2, α12 = 1, α21 = α > 0, and

α22 = 8. Also, let n1 = 2 and n2 = 1. Figure 2.2 depicts the Pearson correlation of the

pair of losses, (X1, X2), and the corresponding weighted risk functionals (2.5) as functions

of α, which are computed based on Corollary 3 and Proposition 2 of (Chen et al., 2021). As

observed, the order Ã1,1 < Ã1,2 holds for smaller α ∈ R+. Hence, the increasing property

of w1/w2 is not sufficient to yield the desired order Ã1,1 > Ã1,2 as per Theorem 7 after the

co-monotonicity assumption is removed. Nevertheless, as the value of α rises, the loss RVs

X1 and X2 become more positively correlated, as demonstrated by the increasing pattern of

the Pearson correlation, and the order between Ã1,1 and Ã1,2 tends to coincide with the one

suggested by Theorem 7 for co-monotonic losses.

Figure 2.2: Plots of the Pearson correlation of the pair of loss RVs (X1, X2) and the weighted
risk functional (2.5) as a function of α ∈ (0, 10).

In summary, the study in this section suggests that while the monotonicity behavior of

the ratio of two weight functions, y 7→ w1(y) and y 7→ w2(y), can play a decisive role in

the determination of the orders of risk functionals (2.4), this is not generally the case in the

context of risk functionals (2.5).
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2.4 Afterthoughts and related results

The results we have established thus far suggest that the choices of g and w have rather

complex interactive effects on the amounts of total capital and allocations induced by the

weighted functional method. Selecting the appropriate aggregation function g to work with

should be driven by the business problem at hand, yet the choice of weight function w is more

subjective and ad hoc. When the weighted functional method is applied, ideally the portfolio

X is robust (in some senses to be specified below) to different choice of w. Characterizing

such risk portfolio is what we aim to study in this section.

Consider a general random pair (X,Sg) ∈ X 2, Furman and Zitikis (2008b) established

a sufficient condition in terms of the linearity of the regression function y 7→ E[X|Sg = y],

such that

Aw(X,Sg)− E[X]

Hw(Sg)− E[Sg]
≡ c (2.7)

for a constant c which depends only on the distribution of (X,Sg) but not the choice of weight

function w. Notably, relationship (2.7) is reminiscent of the capital asset pricing model widely

adopted in finance, in which the subjectivity of the decision maker utility function is avoided.

Meanwhile, relationship (2.7) implies a linear regression of the allocation on the total capital:

Aw(X,Sg) = α + β Hw(Sg), (2.8)

in which α and β depend on the distribution of (X,Sg) but not the choice of w. In this paper,

we consider a special case of (X,Sg) in which X = Xi and Sg = g(X) for a risk portfolio X.

The same relation in equation (2.8) has been previously studied in Furman et al. (2018b)

when g is the canonical sum i.e. g(X) =
∑n

j=1Xj. This additional dependence imposed

between X and Sg enables us to generalize the sufficient condition derived in Furman and

Zitikis (2008b) to a necessary and sufficient result for the desirable relationships (2.7) and

(2.8) to hold. Namely, fix the collection function g, and let Sg = g(X), we are interested in
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deriving a law characterization of the set:

T =
{
X ∈ X n : Aw(Xi, Sg) = αi + βi Hw(Sg), for any choice of w and i ∈ N

}
.

Where the set definition holds for some non-negative αi and βi, ∀i ∈ N . Particularly, we are

interested in characterising the set when αi = 0, ∀i ∈ N , denoted as:

A =
{
X ∈ X n : Aw(Xi, Sg) = βiHw(Sg), for any choice of w and i ∈ N

}
,

and when βi = 0, ∀i ∈ N , given by:

B =
{
X ∈ X n : Aw(Xi, Sg) = αi, for any choice of w and i ∈ N

}
.

We shall associate the terms proportional and absolute triviality with the sets A and B,

respectively. To begin our characterization, the following lemma is of auxiliary importance.

Lemma 1. For a fixed collection function g, let Sg = g(X). It holds that X ∈ T if and

only if

E[Xi |Sg] ≡ αi + βi Sg, i ∈ N . (2.9)

Proof. The proof follows similar arguments as in Theorem 3.1 in Furman et al. (2018b).

Moreover, we need the following notion of multivariate size-biased transform.

Definition 1. Let X ∈ X n be a loss RV with positive univariate coordinates Xi ∈ L1, i ∈ N .

Then the multivariate coordinate-wise size-biased counterpart of X, denoted by X(i), is

P
(
X(i) ∈ dx

)
=

xi

E[Xi]
P
(
X ∈ dx

)
for all x = (x1, . . . , xn) ∈ Rn

+. (2.10)

Remark 5. When n = 1, then the multivariate size-biased transform considered in Definition

1 reduces to the classical notion of univariate size-biased transform (Patil and Rao, 1978).
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Namely, the size-biased conterpart of X ∈ X ∩ L1, denoted by X∗, has density function:

P
(
X∗ ∈ dx

)
=

x

E[X]
P
(
X ∈ dx

)
, x ∈ R+.

We also need some additional assumptions on the choice of collection function g. First,

for a risk portfolio X, suppose that

P
(
g(X) ∈ [0, ϵ)

)
> 0, for any ϵ > 0, (2.11)

meaning that it is possible the portfolio risk is arbitrarily small. Second, we require the

collection function to satisfy the following, call it the non-neglecting condition:

g(x) ↓ 0 only when max(x1, . . . , xn) ↓ 0. (2.12)

The non-neglecting condition ensures that no positive risks of a portfolio are neglected when

the collection function returns zero.

First we will start with the characterization of proportional triviality i.e. the set A.

Proposition 2. Consider a risk portfolio X with positive univariate coordinates Xi ∈ L1,

i ∈ N . Moreover, fix the collection function g. Suppose that the conditions in (2.11) and

(2.12) hold. Then X ∈ A if and only if

Sg
(1) d

= Sg
(2) d

= · · · d
= Sg

(n), (2.13)

where Sg
(i) := g

(
X(i)

)
, i ∈ N . Further, we have Sg

(1) d
= Sg

∗, where Sg
∗ is the size-biased

counterpart of Sg. What is more, it must hold that βi = E[Xi] /E[Sg] for all i ∈ N .

Proof. See appendix v

Remark 6. When the collection function g is additive, i.e., g(x) = x1 + . . . + xn, then the

results in Proposition 2 are analogous to the ones in Theorem 1 of Mohammed et al. (2021).

Remark 7. It is evident that if X is exchangeable and the collection function is symmetric,
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then condition (2.13) is satisfied. Moreover, under this case, Aw(Xi, Sg) = 1/n for all i ∈ N .

Thereby, (2.13) implies some symmetric structure inherent in both the distribution of X and

the choice of the collection function. When the notion of multivariate size-biased transform

as per Definition 1 is interpreted in terms of loading for model/sample risk, then (2.13)

signifies that the choice of loading direction would not impact the resulting distributing of the

collection risk.

Proposition 2 also tells that if a linear relationship between the allocated capital and

total capital required holds for any choice of w, then the intercept αi must be zero, and thus

Aw(Xi, Sg) is proportional to Hw(Sg). One may wonder under what conditions, the other

(extremal) relation in which αi > 0 and βi = 0, may hold. Namely, we are now interested in

studying the set B.

Proposition 3. Consider a risk portfolio X ∈ X n. Suppose that none of the coordinates of

X are degenerate (i.e., P(Xi = c) < 1, i ∈ N ). Then it holds that X ∈ B if and only if

P(Sg = c) = 1 with Sg = g(X) and c > 0 is some constant. (2.14)

Proof. See appendix vi.

While proposition 2 shows that proportional triviality allows for some flexibility, as the

characterization includes distributions of g beyond degeneracy, the case of absolute trivial-

ity, in proposition 3, is confined to the constant aggregate i.e. degeneracy. For both cases,

nonetheless, the underlying central condition is the regression function E[Xi|Sg] being ei-

ther linear or constant in Sg = g(X). The regression condition is intuitive in nature and it

draws similarities from other works such as Guan et al. (2021) where an axiomatic formula-

tion, in particular the axiom of shrinking independence, was used to reach absolute triviality.

Going back to proposition 3, there are two situations in which (2.14) can hold. The first

situation is that the collection function is degenerate, i.e., g(x) = c for any x ∈ Rn
+. Such

collection functions are not informative in the context of capital calculation and allocations.

What is more interesting to consider pertains to the second situation in which (2.14) implies
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some distributional properties of X. The following definition which plays an important role

in studying extremal negative dependence, is needed to facilitate the succeeding discussion.

Definition 2. A set W = (y1, . . . , yn) ∈ Rn
+ is said to be non-increasing if for any two points

y1 = (y11, . . . , y1n) ∈ W and y2 = (y21, . . . , y2n) ∈ W, if y1i < y2i for some i ∈ N then there

exists j ∈ N , j ̸= i, such that y1j ≥ y2j.

Proposition 4. If the collection function g is strictly increasing coordinate-wise, then the

set

W =
{
x ∈ Rn

+ : g(x) = c, for some constant c > 0
}

is non-increasing.

Proof. The proof is proceeded by contradiction. Assume that W is not non-increasing. Then

there exists two distinct points x1 = (x11, . . . , x1n) ∈ W and x2 = (x21, . . . , x2n) ∈ W such

that x1i ≤ x2i for all i ∈ N . Since g is strictly increasing coordinate-wise, we must have at

least one of g(x1) and g(x2) not equal to c, which contracts the fact that x1,x2 ∈ W . This

completes the proof.

Definition 3. (Bignozzi and Puccetti, 2015) We say that X ∈ X n admits a g-mixability

structure if P(X ∈ W) = 1.

Note that the dependence structure considered in definition 3 generalizes the negative

dependence concepts widely studied in the probability literature (e.g., Lee and Ahn, 2014;

Puccetti et al., 2012, 2013; Wang and Wang, 2011). In Bignozzi and Puccetti (2015), g

was thoroughly studied under the min, max and product operators. Additionally, when

g(x) =
∑n

i=1 hi(Xi), for increasing functions hi, then we get d-CTM defined in Lee and

Ahn (2014). If all hi are chosen to be the identity function i.e. we have the canonical

collection function g(x) = x1 + · · ·+ xn , then the g-mixability in definition 3 reduces to the

joint mixability structure. Consequently, the result of Proposition 3 yields that a constant

weighted allocation irrespective of the choice of weight function w is equivalent to a risk

portfolio X that admits an extremal negative dependence structure. This is precisely the

law governing the random vector X whose support is a non-increasing set.
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A Proofs

i Proof of Theorem 1

Proof. We only prove the first case in which h(y) ≥ y and the function y 7→ y/h̃(y) is

increasing. The other case holds based on the same argument. Let us write

H1 =
E
[
Sg1 × w(Sg1)

]
E
[
w(Sg1)

] =
Eh̃◦w(Sg1 )

[
Sg1 × w(Sg1)×

(
h̃ ◦ w(Sg1)

)−1]
Eh̃◦w(Sg1 )

[
w(Sg1)×

(
h̃ ◦ w(Sg1)

)−1] .

Since y 7→ y/h̃(y) is increasing, then using Chebyshev’s sum inequality we have

Eh̃◦w(Sg1 )

[
Sg1 × w(Sg1)×

(
h̃ ◦ w(Sg1)

)−1] ≥ Eh̃◦w(Sg1 )
[Sg1 ]

× Eh̃◦w(Sg1 )

[
w(Sg1)×

(
h̃ ◦ w(Sg1)

)−1]
.

Thereby, it holds that

H1 ≥ Eh̃◦w(Sg1 )
[Sg1 ] =

E
[
Sg1 × w(Sg2)

]
E
[
w(Sg2)

] =
E
[
h(Sg2)× w(Sg2)

]
E
[
w(Sg2)

]
≥

E
[
Sg2 × w(Sg2)

]
E
[
w(Sg2)

] = H2,

where the second inequality holds because of the condition h(y) ≥ y, y ∈ R+. The proof is

now completed.

ii Proof of Theorem 2

Proof. We only prove the first case in which ξ(y) ≤ y with ξ′(y) ≤ 1 for all y ∈ R+. A

repeated application of the same argument would yield the desired conclusion for the second

case.
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Recall that Sgj = gj(X) for j = 1, 2. Since ξ ◦ g1(y) = g2(y), we can write

w(y)

E
[
w(Sg2) |Sg1 = y

] = w(y)

w ◦ ξ(y)
,

which has the same monotonicity behavior as log
(
w(y)

)
− log

(
w ◦ ξ(y)

)
. Consider

d

dy

[
log
(
w(y)

)
− log

(
w ◦ ξ(y)

)]
=

d

dt
log
(
w(t)

)∣∣
t=y

− d

dt
log
(
w(t)

)∣∣
t=ξ(y)

ξ′(y).

By assumption, we have ξ′(y) ∈ (0, 1] for y > 0. Moreover, since ξ(y) ≤ y and t 7→ w(t) is

log convex, we have

d

dt
log
(
w(t)

)∣∣
t=y

≥ d

dt
log
(
w(t)

)∣∣
t=ξ(y)

.

Together with the assumption that y 7→ w(y) is increasing, we conclude

d

dy

[
log
(
w(y)

)
− log

(
w ◦ ξ(y)

)]
≥ 0,

thus the function y 7→ w(y)/E[w(Sg2) |Sg1 = y] is increasing.

Further, note that ξ(y) ≤ y implies h(y) ≥ y for all y ∈ R+ based on Remark 1. According

to Theorem 1 and Remark 2, we obtain H1 ≥ H2. The proof is now completed.

iii Proof of Theorem 4

Proof. Let Sg = g1(X), then the following string of equations holds for x ≥ 0

ℓi,1(x)

ℓi,2(x)
=

E
[
w(Sg)|Xi = x

]
E
[
w ◦ ξ(Sg)|Xi = x

]
=

E
[
w(Sg)|U = FXi

(x)
]

E
[
w ◦ ξ(Sg)|U = FXi

(x)
]

=
w ◦ g̃(x)

w ◦ ξ ◦ g̃(x)
, (15)

where g̃(x) = g1(x) with x =
(
F−1
Xj

(FXi
(x))

)
j∈N .
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Since the aggregation function is element-wise increasing, the monotonicity behaviour

of the ratio in (15) is same as that of y 7→ w(y)/w ◦ ξ(y). Evoking the argument used in

the proof of Theorem 2, we conclude that x 7→ ℓi,1(x)/ℓi,2(x) is increasing if ξ(y) ≤ y and

ξ′(y) ≤ 1, and the function is decreasing if ξ(y) > y and ξ′(y) > 1. Applying Theorem 3

yields the desired result and thus completes the proof.

iv Proof of Theorem 7

Proof. Fix an aggregation function g. Then let us write

ℓ̃i,1(x)

ℓ̃i,2(x)
=

E
[
w1(Sg)|Xi = x

]
E
[
w2(Sg)|Xi = x

]
=

E
[
w1 ◦ g(X)|U = FXi

(x)
]

E
[
w2 ◦ g(X)|U = FXi

(x)
]

=
w1 ◦ g̃(x)
w2 ◦ g̃(x)

, (16)

where g̃(x) = g(x) with x =
(
F−1
Xk

(FXi
(x))

)
k∈N .

Since the aggregation function g is component-wise increasing, the function x 7→ g̃(x) is

increasing. We can conclude that the function x 7→ ℓ̃i,1(x)/ℓ̃i,2(x) has the same monotonicity

behavior as the function y 7→ w1(y)/w2(y). An application of Theorem 6 yields the desired

result, which completes the proof.

v Proof of Proposition 2

Proof. Let us begin with the sufficiency of the statement. First note that conditions (2.11)

and (2.12) together imply E[Xi|Sg = y] ↓ 0 when y ↓ 0, i ∈ N . Then evoking Lemma 1

yields that if X ∈ A, then αi in (2.9) must be zero, and thus

E[Xi|Sg] = βi Sg, i ∈ N .
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Taking expectation on both sides of the above equation also implies βi = E[Sg] /E[Xi].

Collectively, the Laplace transform of Sg
(i) can be computed via, for t > 0,

E
[
Xi e

−tSg
]

E[Xi]
=

E
[
E[Xi|Sg] e

−tSg
]

E[Xi]

=
βi

E[Xi]
E
[
Sg e

−tSg
]

=
E
[
Sge

−tSg
]

E[Sg]
.

This readily implies the desirable relationship Sg
(1) d

= Sg
(2) d

= · · · d
= Sg

(n) d
= Sg

∗.

To prove the necessity direction, note that for any t > 0,

E
[
E[Xi|Sg] e

−tSg
]

E[Xi]
−

E
[
Sge

−tSg
]

E[Sg]
= 0

is equivalent to

E
[(

E[Xi|Sg]−
E[Xi]

E[Sg]
Sg

)
e−tSg

]
= 0, (17)

which in turn gives

E[Xi|Sg] ≡
E[Xi]

E[Sg]
Sg.

So X ∈ A, which finishes the proof.

vi Proof of Proposition 3

Proof. Base on Lemma 1 with βi = 0, i ∈ N , we can obtain that X ∈ B is equivalent to

E[Xi|Sg] ≡ αi. Moreover, αi = E[Xi].

Now, we are in the position to prove the sufficiency direction. Consider the Laplace

transform of Sg
(i):

E
[
Xi e

−tSg
]

E[Xi]
=

E
[
E[Xi|Sg] e

−tSg
]

E[Xi]
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=
αi

E[Xi]
E
[
e−tSg

]
= E

[
e−tSg

]
, t > 0. (18)

Since Xi’s are non-degenerate, (18) implies P(Sg = c) = 1 for some constant c > 0. The

implication holds since otherwise Sg
(i) d

= Sg which leads to a contradiction.

To prove the necessity direction, note that for any t > 0,

E
[
E[Xi|Sg] e

−tSg
]

E[Xi]
− E

[
e−tSg

]
= 0,

which is equivalent to

E
[(
E[Xi|Sg]− E[Xi]

)
e−tSg

]
= 0.

This implies

E[Xi|Sg] ≡ E(Xi),

or equivalently, X ∈ B, which finishes the proof.
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Chapter 3

Can a regulatory risk measure induce

profit-maximizing risk capital

allocations? The case of Conditional

Tail Expectation

3.1 Introduction

Consider positive random variables (RVs) X1, . . . , Xn, n ∈ N, which represent losses due

to distinct business units (BUs) of an insurer, and denote by the sets N = {1, . . . , n} and

X the collections of these BUs and losses, respectively. Then, for the aggregate loss RV

SX := X1 + · · · +Xn, the map A : X × X → [0, ∞), which assigns non-negative values to

random pairs (X,S) ∈ X × X , is called a risk capital (RC) allocation rule (e.g., Denault,

2001; Dhaene et al., 2012; Furman and Zitikis, 2008b). Additionally, if A(X,X) = H(X),

where the map H : X → [0, ∞) is called a risk measure and assigns non-negative values to

the random loss X ∈ X , then the allocation rule A is said to be induced by the risk measure

H.

RC allocation rules have gained major importance in risk management and insurance ap-

plications in the context of price determination, profitability assessment, budgeting decision
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making, to name just a few (Guo et al., 2018; Venter, 2004). Similarly, the academic signif-

icance of - also, interest in - the subject of RC allocations have been strong, as evidenced

by the large and growing body of scholarly literature (e.g., Boonen et al., 2019; Furman

et al., 2018a, 2020a; Kim and Kim, 2019; Shushi and Yao, 2020, for recent references in the

Insurance: Mathematics and Economics journal, alone).

Not surprisingly, therefore, numerous RC allocation rules have been proposed and stud-

ied, with the RC allocation rule induced by the conditional tail expectation (CTE) risk mea-

sure being arguably the most popular (Kalkbrener, 2005). More specifically, for q ∈ [0, 1),

sq := VaRq(SX) = inf
{
s ∈ [0, ∞) : P(SX ≤ s) ≥ q

}
, loss portfolio X = (X1, . . . , Xn) ∈ X n

and BU i ∈ N , the CTE-based RC allocation rule, when well-defined and finite, is given by

CTEq(Xi, SX) = E [Xi|SX > sq] . (3.1)

As it is common in real applications to use RC allocation (3.1) - also, other RC allocation

rules - to attribute the exogenous aggregate risk capital, say κ ∈ R+, to distinct BUs in

the set N , and, in order to guarantee the total additivity of the RC allocation rule, it is

beneficial to explore (e.g., Dhaene et al., 2012) the quantity, κi = κ× rq,i, where

rq,i =
CTEq(Xi, SX)

CTEq(SX)
, i ∈ N (3.2)

is the associated proportional RC allocation rule induced by the CTE risk measure CTEq(X) =

CTEq(X,X) for any X ∈ X and q ∈ [0, 1).

The RC allocation rule based on the CTE risk measure has been thoroughly studied on a

variety of fronts. Namely, allocation rule (3.1) was obtained as the gradient and the Aumann-

Shapley allocation induced by the CTE risk measure by Tasche (2004) and Denault (2001),

respectively. Also, for loss RVs with continuous cumulative distribution functions (CDFs),

allocation rule (3.1) coincides with the RC allocation rule induced by the Expected Shortfall

risk measure (Kalkbrener, 2005; Wang and Zitikis, 2021). Last but not least, allocation rule

(3.1) belongs to the class of distorted (Tsanakas and Barnett, 2003) and weighted (Furman

and Zitikis, 2008b) RC allocation rules and is optimal in the sense of Laeven and Goovaerts

(2004) and Dhaene et al. (2012).
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The number of works that evaluate allocation rule (3.1) for random losses having distinct

joint CDFs is really overwhelming. For just a few examples, we refer to: Panjer (2002) and

Landsman and Valdez (2003) for, respectively, normal and elliptical distributions; Cai and Li

(2010) for phase-type distributions; Furman and Landsman (2005) for gamma distributions;

Vernic (2006) and Hendriks and Landsman (2017); Vernic (2011) for, respectively, skew

normal and Pareto distributions; Furman and Landsman (2010) for Tweedie distributions;

Cossette et al. (2012) for compound distributions with positive severities; Cossette et al.

(2013); Ratovomirija et al. (2017) for mixed Erlang distributions; Furman et al. (2018a) for

Generalized Gamma Convolutions; this list is by no means exhaustive.

Despite the abundant relevant academic literature, RC allocation rule (3.1) - as well as

the CTE risk measure that induces it - have been employed in practice mainly due to the

inclusion in existing regulatory accords. When this aspect is put aside, the quantity rq,i raises

a number of concerns. First, it hinges on a contentious two-step procedure, as the numerator

and the denominator in Equation (3.2) must be computed separately for each BU i ∈ N ;

similar concerns have been brought in Chong et al. (2020) in the context of the quantity κi.

Second, it neglects the risk perception of the insurer and the economic environment in which

they operate (Bauer and Zanjani, 2016).

Admittedly, it is not surprising in any way that regulations, which are driven by the

notion of prudence, and insurers’ targets, which are profit-oriented, diverge. Nevertheless,

it is instrumental to determine whether or not there exist model settings under which the

RC allocation rule induced by the CTE risk measure yields outcomes that address the just-

mentioned two concerns. This is what we do in the present paper.

We have organized the rest of this papers as follows. In Section 3.2, we motivate in detail

and formulate the problem of interest. We then solve this problem in Sections 3.3 and 3.4,

which provide ample elucidating examples. Some of our analysis and conclusions carry over

to a family of risk measures that contains the CTE risk measure as a special case, which

is demonstrated in Section 3.5. Chapter 5 includes conclusions of the paper. In the sequel,

we routinely work with an atomless and rich probability space (Ω,F ,P), and we let Lα and

L∞ denote, respectively, the set of all RVs that have finite α-th moment, α ∈ [0, ∞), and

the set of all essentially bounded RVs on the probability space (Ω,F ,P). Unless specified
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otherwise, we work with the collection of integrable RVs, L1, so that the CTE risk measure

and its associated RC allocation are well-defined and finite. Finally, we denote by FX and

ϕX the CDF and the Laplace transform of the RV X, and we use 1 to denote the indicator

function.

3.2 Compositional allocation rules induced by

the Conditional Tail Expectation risk mea-

sure and a question that arises

Note that the CTE-based allocation exercise (3.2) can be framed within the context of the

standard n-dimensional simplex space (Aitchison, 1986):

Sn =
{
(r1, . . . , rn) : ri ∈ [0, 1], i = 1, . . . , n and r1 + · · ·+ rn = 1

}
.

Specifically, for x1, . . . , xn ∈ [0, ∞) and s := x1 + · · · + xn, as well as for the special map

C : [0, ∞)n → Sn with Ci(x1, . . . , xn) = xi/s, i = 1, . . . , n, proportional allocation rule (3.2)

is obtained via setting xi = CTEq(Xi, SX), and so (Belles-Sampera et al., 2016; Boonen

et al., 2019)

rq,i = Ci
(
CTEq(X1, SX), . . . ,CTEq(Xn, SX)

)
= CTEq(Xi, SX) /CTEq(SX), q ∈ [0, 1).

We note in passing that a similar reformulation of the RC allocation exercise in the context of

the n-dimensional simplex space can be achieved effortlessly for the whole class of weighted

RC allocation rules (Furman and Zitikis, 2008b), which are induced by the class of weighted

risk measures (Furman and Zitikis, 2008a) and of which allocation rule (3.1) is a special

case (Furman et al., 2020b). Additionally, the weighted RC allocations are those recovered

when the aggregation function of the generalized functionals is set to be the canonical sum,

g(X) =
∑n

i=1Xi, in Chapter 2.

An alternative way to determine the proportional contribution of the i-th BU of an insurer
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to the aggregate risk capital - under the assumption that it is the CTE risk measure that

induces the desired allocation rule - is by considering the ratio RV Ri = Xi / SX , i = 1, . . . , n,

directly. That is, while, for a fixed q ∈ [0, 1), the proportional allocation rq,i, confined with

the help of the normalizing constant CTEq(SX) ∈ R+ to the unit interval, I = [0, 1], operates

on random pairs (Xi, SX) ∈ X ×X , an alternative to rq,i proportional allocation, call it r̃q,i,

is chosen to operate on random pairs (Ri, SX) ∈ X × X , i = 1, . . . , n, and so

r̃q,i = CTEq (Ci(X1, . . . , Xn), SX) = CTEq (Ri, SX) , q ∈ [0, 1).

While various properties of the proportional allocation rq,i have been well-studied, this

is not so for its counterpart, r̃q,i. Further, we report a number of important properties of

the latter quantity. In this respect, our first proposition shows that the quantity r̃q,i agrees

with the economic capital allocation rule proposed recently by Bauer and Zanjani (2016).

Namely, while the motivation for the RC allocation rule rq,i is the central role that the CTE

risk measure plays in today’s (insurance) regulation, the proportional allocation r̃q,i turns out

to be a well-justified choice for a profit maximizing insurer with risk-averse counterparties

in an incomplete market setting with frictional capital costs.

Consider the aggregate loss RV SX ∈ X and the Geometric Tail Expectation (GTE) risk

measure:

GTEq(SX) := exp
{
E [log(SX)|SX > sq]

}
, q ∈ [0, 1). (3.3)

The connection of risk measure (3.3) to the notion of geometric means (e.g., Hardy et al.,

1952) motivates its name; also, risk measure (3.3) is a tail quasi-linear mean risk measure

in the sense of Bäuerle and Shushi (2020). It is not difficult to see that, for any q ∈ [0, 1),

risk measure (3.3) is at least as prudent as the Value-at-Risk risk measure and may be finite

even if the CTE risk measure is infinite. Namely, we have the following simple result.

Proposition 5. For any X ∈ X and q ∈ [0, 1), we have the bounds

VaRq(SX) ≤ GTEq(SX) ≤ CTEq(SX).
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Proof. By Jensen’s inequality, we have, for q ∈ [0, 1),

exp
{
E [log(SX)|SX > sq]

}
≤ E [exp{log(SX)}|SX > sq] = E [SX |SX > sq] ,

which proves the upper bound. In addition, for q ∈ [0, 1),

sq = exp
{
E [log(sq)|SX > sq]

}
≤ exp

{
E [log(SX)|SX > sq]

}
,

establishing the lower bound and, hence, proving the proposition.

Another immediate but worth-mentioning observation is that risk measure (3.3) is nei-

ther coherent in the sense of Artzner et al. (1999) nor convex in the sense of Föllmer and

Schied (2016), as it violates translation-invariance. Consequently, risk measure (3.3) is not

a monetary risk measure. Nevertheless, risk measure (3.3) belongs to the class of return risk

measures (Bellini et al., 2018). Moreover, when viewed through the prism of a profit max-

imizing insurer, risk measure (3.3) induces the optimal RC allocation outcome, r̃q,i, in the

sense of Bauer and Zanjani (2016); intuitively, this might be due to the decreasing marginal

effect of the increase in aggregate loss (Bauer and Zanjani, 2016). Our next statement about

the RC allocation induced by risk measure (3.3) is formulated as a proposition.

Before stating our next result, we note that, similarly to how the CTE-based risk capital

allocation is induced by the CTE risk measure, the GTE-based risk capital allocation,

GTEq(Xi, SX) := GTEq(SX)× r̃q,i, q ∈ [0, 1), i ∈ N ,

is induced by risk measure (3.3). The GTE-based RC is fully-additive, in the sense that the

sum of the allocations is equal to the inducing risk measure as can be seen in the following

equations:

n∑
i=1

GTEq(Xi, S) =
n∑

i=1

GTEq

(
SX

)
× r̃q,i = GTEq

(
SX

)
×

n∑
i=1

r̃q,i = GTEq

(
SX

)
,

for q ∈ [0, 1).
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Proposition 6. The GTE-based RC allocation is the gradient allocation in the direction of

the loss RV Xi ∈ X , i ∈ N induced by risk measure (3.3).

Proof. Since the GTE risk measure is positively homogeneous, by Euler’s theorem (1.3) we

have, for u = (u1, . . . , un) ∈ In and SX(u) := u1X1 + · · ·+ unXn,

GTEq

(
SX(u)

)
=

n∑
i=1

ui
∂

∂ui

GTEq

(
SX(u)

)
, with q ∈ [0, 1), i ∈ N .

Therefore, for 1 denoting the n-variate vector of ones, we obtain

∂

∂ui

GTEq

(
SX(u)

)∣∣∣∣
u=1

=
∂

∂ui

exp

{
E [log(SX(u))|SX(u) > VaRq(SX(u))]

}∣∣∣∣
u=1

,

=

(
GTEq

(
SX(u)

)
× E

[
Xi

SX(u)

∣∣∣∣ SX(u) > VaRq(SX(u))

]) ∣∣∣∣
u=1

= GTEq

(
SX

)
× r̃q,i, i ∈ N .

This completes the proof of the proposition.

The next assertion demonstrates that the proportional allocation induced by the CTE

risk measure is an approximation of the GTE allocation induced by risk measure (3.3).

Proposition 7. The proportional allocation rq,i is a linear approximation of the proportional

allocation r̃q,i for i ∈ N .

Proof. Consider the function g(xi, s) = xi/s for xi, s ∈ R+, i = 1, . . . , n, and denote its

partial derivatives by

gi(xi, s) =
∂

∂xi

g(xi, s) and gs(xi, s) =
∂

∂s
g(xi, s).

Then the first-order Taylor expansion of g around (x0, s0) =
(
CTEq(Xi , SX), CTEq(SX)

)
,

yields

xi / s = g(x0, s0) + gi(x0, s0) (xi − x0) + gs(x0, s0) (s− s0) +R1(xi, s),
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where R1(xi, s) is the reminder term for all xi, s ∈ R+, q ∈ [0, 1), i = 1, . . . , n. Consequently,

we have

r̃q,i ≈ rq,i+gi(x0, s0)E
[
(Xi − x0)| SX > sq

]
+ gs(x0, s0)E

[
(SX − s0)| SX > sq

]
= rq,i,

which establishes the desired approximation and thus completes the proof of the proposition.

Finally, our last proposition - which can be considered a follow-up on Proposition 7 -

delineates the difference between the allocations rq,i and r̃q,i. The proof is an immediate

consequence of the identity

Cov(Ri, SX | SX > sq) = E[Xi| SX > sq]− E[Ri| SX > sq]× E[SX | SX > sq],

which holds for all q ∈ [0, 1) and (Xi, SX) ∈ X × X , i = 1, . . . , n.

Proposition 8. Given that all the quantities below are well-defined and finite, we have

rq,i = r̃q,i +
Cov(Ri, SX | SX > sq)

CTEq(SX)
, q ∈ [0, 1), i ∈ N .

Proposition 8 implies that it is the sign of the covariance between the RVs Ri and SX ,

that determines the order of the allocations rq,i and r̃q,i; note that, as R1+· · ·+Rn = 1 almost

surely, we have
∑n

i=1Cov(Ri, SX | SX > sq) = 0 (Furman and Zitikis, 2010, for examples,

albeit in a different context, of the importance of covariances in insurance and finance).

Also, and more importantly, Proposition 8 suggests that the proportional allocation rules

induced by the CTE risk measure and those induced by risk measure (3.3) coincide if the

aforementioned covariance is nil. This motivates the following question that engages us in

the rest of this paper.

Question 1. For Xi ∈ X , i ∈ N , can we characterize those portfolios of losses X =

(X1, . . . , Xn) ∈ X n, for which the proportional allocations rq,i and r̃q,i agree for every q ∈

[0, 1)?
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At the outset, let us note that if the answer to the question above were in the affirmative,

then this would imply that the regulatory (e.g., Swiss Solvency Test) CTE risk measure

induces an optimal RC allocation rule for a profit maximizing insurer; the richer the class of

joint CDFs of the RV X ∈ X n sought in Question 1, the more common the just-mentioned

and apparently desirable agreement between the regulatory requirements and the risk per-

ceptions of insurers.

Speaking formally, our goal is to characterize the following collection of loss RVs:

W =
{
X = (X1, . . . , Xn) ∈ X n : rq,i = r̃q,i for all q ∈ [0, 1) and i ∈ N

}
. (3.4)

It is to be noted that the set W can not be empty. To see a trivial case in which r̃q,i =

rq,i for every q ∈ [0, 1) and i ∈ N , let the loss RV X = (X1, . . . , Xn) ∈ X n have

identically distributed coordinates, Xi ∈ Xi, and an exchangeable copula function, then

we have E[Ri| SX = s] = 1/n resulting in Cov(Ri, SX |SX = s) ≡ 0, and therefore

Cov(Ri, SX |SX > sq) = 0 for all q ∈ [0, 1) and i = 1, . . . , n. Consequently, the set of

all loss RVs X = (X1, . . . , Xn) ∈ X n, such that the proportional allocation rules rq,i and r̃q,i

coincide has at least one portfolio of losses in it.

We devote the following sections of this paper to studying what other random loss RVs

- besides the trivial example above - are members of the set W.

3.3 General considerations

In this section, we devise the necessary and sufficient conditions for the equality, r̃q,i = rq,i,

for all q ∈ [0, 1) and i ∈ N . For this, we need a few auxiliary notions first. That is,

Definitions 4 and 5 below introduce the univariate size-biased transform and its multivariate

extension (Arratia et al., 2019; Furman et al., 2020a; Patil and Ord, 1976), both playing

major roles in our analysis.

Definition 4. Let X ∈ Lα be a positive loss RV, then the size-biased counterpart of order
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α ∈ R+ of the loss RV X, call it X [α], is defined via:

P
(
X [α] ∈ dx

)
=

xα

E[Xα]
P (X ∈ dx) for all x ∈ R+. (3.5)

When α = 1, we simply write X∗ for the size-biased of order one variant of the RV X ∈ L1.

The RVs X and X [α] are independent by construction for all α ∈ R+.

Definition 5. Let X = (X1, . . . , Xn) ∈ X n be a loss RV with positive univariate co-

ordinates Xi ∈ Lαi , i = 1, . . . , n, then the multivariate size-biased counterpart of order

α = (α1, . . . , αn) ∈ Rn
+ of the loss RV X, call it X [α], is defined via

P
(
X [α] ∈ dx

)
=

xα1
1 × · · · × xαn

n

E[Xα1
1 × · · · ×Xαn

n ]
P (X ∈ dx) for all x = (x1, . . . , xn) ∈ Rn

+. (3.6)

The RVs X and X [α] are independent by construction (e.g. Arratia et al., 2019; Furman

et al., 2020a; Patil and Ord, 1976, for a similar discussion).

We next define the partial size-biased transform, which is a useful special case of the one

presented in Definition 5 (e.g., Arratia et al., 2019; Furman et al., 2020a, for a few recent

results in which the partial size-biased transform plays a central role but is not explicitly

defined).

Definition 6. Consider the size-biased RV X [α], α = (α1, . . . , αn) as per Definition 5.

Then, in the special case where the i-th coordinate of the vector α is equal to αi = α ∈

R+, i = 1, . . . , n, whereas all other coordinates of the vector α are equal to zero, we call the

implied transform, the i-th partial size-biased transform of order α, and denote the corre-

sponding RV by X [(α)i]. Namely, we have

P
(
X [(α)i] ∈ dx

)
=

xα
i

E[Xα
i ]

P (X ∈ dx) for all x = (x1, . . . , xn) ∈ Rn
+. (3.7)

The RVs X and X [(α)i] are independent by construction (e.g. Arratia et al., 2019; Furman

et al., 2020a; Patil and Ord, 1976, for a similar discussion). For the case α = 1 and Xi ∈ L1,

we simply write, X(∗)i, for the partial size-biased counterpart of the RV X. The notation

X(∗)i is equivalent to X(i) from Definition 1 of Section 2.4.
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The operation of size-biasing has an important interpretation in the context of actuarial

science and, more generally, in quantitative risk management, where it is considered loading

for model/sample risk. Indeed, it is not difficult to see that the size-biased loss RVs X [α]

and X [α] (also, X(α)i) dominate stochastically the loss RVs X and X, respectively.

Furthermore, the partial size-biased RV, X [(α)i], plays an important role for size-biasing

sums of RVs. Namely, let S∗
X = (X1 + · · · + Xn)

∗, then the distribution of the RV S∗
X

admits a finite-mixture representation (e.g., Arratia et al., 2019) in terms of the partial

size-biased RVs. Indeed, let ϕS∗
X

denote the Laplace transform of the RV S∗
X , then, for

pi = E[Xi] /E[SX ], we have

ϕS∗
X
(t) =

n∑
i=1

pi × ϕ
S
(∗)i
X

(t), Re(t) > 0, (3.8)

where S
(∗)i
X is the sum of the coordinates of the partially size-biased RV X(∗)i , i = 1, . . . , n.

The following lemma is a variation of Equation (3.8) that we find useful in this paper.

Lemma 2. Consider the RV X+ = (X1, . . . , Xn, Yn+1, . . . , Yn+m) ∈ X n+m, n,m ∈ N, and let

SX =
∑n

i=1 Xi, SY =
∑n+m

i=n+1 Yi, S+ = SX+SY , and S
(∗)X
+ = S∗

X+SY . Then the distribution

of the RV S
(∗)X
+ admits a mixture representation in the sense that we have S

(∗)X
+ =d S

(∗)K
+ ,

where the RV K ∈ {1, . . . , n} is such that P(K = k) = E[Xi] /E[SX ], k = 1, . . . , n

Proof. Let ϕ
S
(∗)X
+

denote the Laplace transform of the RV S
(∗)X
+ , then, with the help of

Equation (3.7), we have, for pi = E[Xi] /E[SX ],

ϕ
S
(∗)X
+

(t) =
E
[
SX e−tS+

]
E[SX ]

=
n∑

i=1

pi
E
[
Xi e

−tS+
]

E[Xi]
=

n∑
i=1

pi × ϕ
S
(∗)i
+

(t), Re(t) > 0,

which establishes the desired result and thus completes the proof.

The next assertion spells out the sufficient and necessary conditions for the loss portfolios

X = (X1, . . . , Xn) ∈ X n to belong to the set W, and hence it answers Question 1. The non-

technical interpretation of the assertion is that for loss portfolios in the set W and under the

paradigm of loading for model/sample risk, the choice of the load direction as per Definition

6 does not impact the distribution of the loaded aggregate loss RV.
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Theorem 8. Consider the loss RV X = (X1, . . . , Xn) ∈ X n and assume that Xi ∈ L1,

then we have the equality rq,i = r̃q,i for all q ∈ [0, 1), i ∈ N , which implies equality to

E[Xi]/E[SX ], if and only if S
(∗)i
X =d S

(∗)j
X (=d S

∗
X), i ̸= j ∈ N .

Proof. Assume that rq,i = r̃q,i for all q ∈ [0, 1) and i = 1, . . . , n. By Proposition 8, this is

equivalent to requesting that Cov(Ri, SX |SX > u) = 0 for all u ≥ 0, or, in other words with

the notation Gi(s) = E[Ri| S = s]− E[Ri], i = 1, . . . , n, that

E
[
SX Gi(SX)|SX > u

]
= E

[
Gi(SX)|SX > u

]
E[SX |SX > u] for all u ≥ 0,

Assuming the law of S is absolutely continuous then differentiating both sides w.r.t. u we

get:

(
E[Gi(S)S

k1S>u]
)′

=

(
E[Sk1S>u]

E[1S>u]
E[Gi(S)1S>u]

)′

,

−ukGi(u)fS(u) =
−ukfS(u)E[1S>u] + fS(u)E[Sk1S>u]

E[1S>u]2
E[Gi(S)1S>u]−

E[Sk1S>u]

E[1S>u]
Gi(u)fS(u),

Gi(u)(E[Sk|S > u]− uk) = E[Gi(S)|S > u](E[Sk|S > u]− uk),

from which we must have

Gi(u) = E[Gi(SX)| SX > u] for all u ≥ 0.

If S has a discrete law with support {u0, u1, . . . }, then we follow a similar procedure and we

get:

Gi(um) =
E[Gi(S)(S

k − uk
m)1S>um ]

E[(Sk − uk
m)1S>um ]

for all m ∈ N.

In both cases, Gi(u) ≡ const, which alongside the fact that E[Gi(SX)] = 0, implies Gi(u) ≡ 0.

Furthermore, as we assumed that rq,i = r̃q,i for all q ∈ [0, 1), we have r0,i = r̃0,i, and so

E[Ri|SX ] =
E[Xi]

E[SX ]
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or, equivalently,

E[Xi|SX ] =
E[Xi]

E[SX ]
SX

for i = 1, . . . , n. Finally, we have the following implication in terms of the Laplace transform

of the loss RV S
(∗)i
X and for i = 1, . . . , n,

ϕ
S
(∗)i
X

(t) =
E[Xi e

−tSX ]

E[Xi]
=

E
[
E[Xi|SX ] e

−t SX
]

E[Xi]
=

E[SX e−tSX ]

E[SX ]
= ϕS∗

X
(t), Re(t) > 0.

This implies S
(∗)i
X =d S

(∗)j
X for all 1 ≤ i ̸= j ≤ n and so completes the ‘only if’ direction of

the theorem.

In order to prove the ‘if’ direction of the theorem, let us assume that the distributional

equality S
(∗)i
X =d S

(∗)j
X (=d S

∗
X) holds for all i = 1, . . . , n, which means

E[Xi e
−tSX ]

E[Xi]
=

E[SX e−tSX ]

E[SX ]

or, equivalently,

E
[
E[Xi |SX ]

E[Xi]
e−tSX

]
= E

[
SX

E[SX ]
e−tSX

]
,

with the immediate implication

E[Ri|SX = u] =
E[Xi]

E[SX ]
for all u ≥ 0.

Therefore, we necessarily have E[Ri] = E[Xi] /E[SX ], i = 1, . . . , n. Finally, we obtain the

following string of equations:

Cov(Ri, SX |SX > u) = E[Ri SX |SX > u]− E[Ri |SX > u]E[SX |SX > u]

= E
[
E[Ri|SX ]SX

∣∣SX > u
]
− E

[
E[Ri|SX ]

∣∣SX > u
]
E[SX |SX > u]

=
E[Xi]

E[SX ]
E[SX |SX > u]− E[Xi]

E[SX ]
E[SX |SX > u]

= 0
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for all u ≥ 0 and i = 1, . . . , n. The ‘if’ direction of the theorem is then proved by evoking

Proposition 8. This completes the proof of the theorem.

Some properties of the portfolios of losses X ∈ W are studied next. Specifically, it turns

out that these portfolios are consistent in the sense that the answer to Question 1 must be

in affirmative for all their sub-portfolios. This is formulated and proved next.

Theorem 9. Consider the loss RV X+ = (X1, . . . , Xn, Yn+1, . . . , Yn+m) ∈ X n+m and assume

that X+ ∈ W, then the sub-portfolios (X1, . . . , Xn) and (Yn+1, . . . , Yn+m) also belongs to the

set W.

Proof. We prove that ifX+ ∈ W, thenX = (X1, . . . , Xn) ∈ W; the case Y = (Yn+1, . . . , Yn+m) ∈

W follows in the same fashion. Let SX =
∑n

i=1 Xi, SY =
∑n+m

i=n+1 Yi and S+ = SX + SY , as

in Lemma 2. Because X+ ∈ W and by Theorem 8, we have, for all i ̸= j ∈ {1, . . . , n} and

Re(t) > 0,

ϕ
S
(∗)i
+

(t) := E
[
exp{−t S

(∗)i
+ }

]
=

E
[
Xi e

−t(SX+SY )
]

E[Xi]

=
E
[
Xj e

−t(SX+SY )
]

E[Xj]
= E

[
exp{−t S

(∗)j
+ }

]
=: ϕ

S
(∗)j
+

(t). (3.9)

Therefore, we have

E

[
e−t SY E

[
Xi

E[Xi]
e−tSX

∣∣∣SY

]]
= E

[
e−t SY E

[
Xj

E[Xj]
e−tSX

∣∣∣SY

]]
for all Re(t) > 0,

from which we can conclude

E
[

Xi

E[Xi]
e−tSX

∣∣∣SY

]
= E

[
Xj

E[Xj]
e−tSX

∣∣∣SY

]
for all Re(t) > 0.

The assertion follows by the law of total expectation and evoking again Theorem 8.

Theorem 9 remains true if a split results in more than two loss portfolios and implies that,

when starting with a loss portfolio in the set W, the split operation yields loss portfolios

that are also in the set W.
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The next result emphasizes that the merge operation - an opposite of split - is more

intricate, but that the merge of loss portfolios belonging to the set W may result in a loss

portfolio that also belongs to the set W.

Theorem 10. Consider two independent loss portfolios, (X1, . . . , Xn) ∈ W and (Yn+1, . . . , Yn+m) ∈

W, and denote by SX and SY the corresponding sums of coordinates. Also, let X+ =

(X1, . . . , Xn, Yn+1, . . . , Yn+m) ∈ X n+m be the merged portfolio. Then, X+ ∈ W if and only

if, for i ∈ {1, . . . , n} and j ∈ {n+ 1, . . . , n+m},

ϕ
S
(∗)i
X

(t)

ϕ
S
(∗)j
Y

(t)
=

ϕSX
(t)

ϕSY
(t)

, Re(t) > 0. (3.10)

Proof. Let S+ = SX+SY . We need to show that S
(∗)i
+ =d S

(∗)j
+ for all i ̸= j ∈ {1, . . . , n+m}.

First, consider the case in which the indices i, j belong to either one of the sets {1, . . . , n}

or {n + 1, . . . , n + m}, say i ∈ {1, . . . , n} and j ∈ {n + 1, . . . , n + m}. Then by Lemma

2 with the addition of the independence assumption and since (X1, . . . , Xn) ∈ W and

(Yn+1, . . . , Yn+m) ∈ W, we have

ϕ
S
(∗)i
+

(t) = ϕ
S
(∗)i
X

(t)× ϕSY
(t) = ϕ

S
(∗)j
Y

(t)× ϕSX
(t) = ϕ

S
(∗)j
+

(t)

for all Re(t) > 0 if and only if Equation (3.10) is valid.

The case when i ̸= j are both in {1, . . . , n} or both in {n + 1, . . . , n + m} follows

using Theorem 8 instead of (3.10). The ”only if” part is immediate from Theorem 8. This

completes the proof of the assertion.

The assertion that concludes this section reveals that an amalgamation - on a BU basis

- of a collection of loss portfolios, each of which belongs to the set W, may result in a loss

portfolio that also belongs to the set W.

Theorem 11. Consider two independent loss portfolios, (X1, . . . , Xn) ∈ W and (Y1, . . . , Yn) ∈

W. Let S = (S1, . . . , Sn), where Si = Xi + Yi, i = 1, . . . , n. Then S ∈ W if and only if

E[Xi]

E[Xj]
=

E[Yi]

E[Yj]
for all i ̸= j ∈ N . (3.11)
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Proof. Let SX = X1 + · · ·+Xn, SY = Y1 + · · ·+ Yn, and S+ = SX + SY . By Lemma 2 with

the addition of the independence assumption, we have, for i = 1, . . . , n,

ϕ
S
(∗)i
+

(t) =
E
[
Si e

−t S+
]

E[Si]
=

E[Xi]

E[Si]
ϕ
S
(∗)i
X

(t)ϕSY
(t) +

E[Yi]

E[Si]
ϕ
S
(∗)i
Y

(t)ϕSX
(t) for all Re(t) > 0.

Then by Theorem 8:

ϕ
S
(∗)i
+

(t) =
E[Xi]

E[Si]
ϕ
S
(∗)j
X

(t)ϕSY
(t) +

E[Yi]

E[Si]
ϕ
S
(∗)j
Y

(t)ϕSX
(t) for all Re(t) > 0.

Condition (3.11) implies E[Xi]
E[Si]

=
E[Xj ]

E[Sj ]
and E[Yi]

E[Si]
=

E[Yj ]

E[Sj ]
thus the equality ϕ

S
(∗)i
+

(t) = ϕ
S
(∗)j
+

(t)

holds for all Re(t) > 0 and i ̸= j ∈ N . This completes the proof of the assertion.

We conclude this sub-section with the note that Theorems 10 and 11 stay valid even if

more than two loss portfolios are considered. Specifically, consider m(∈ N) loss portfolios

Xi = (Xi,1, . . . , Xi,ni
) ∈ X ni each have ni BUs, where ni ∈ N, i = 1, . . . ,m. Assume that each

portfolio Xi ∈ W, and (X1, . . . ,Xm) are mutually independent. Let SXi
= Xi,1+ . . .+Xi,ni

,

then X+ = (X1, . . . ,Xm) ∈ W if and only if

ϕ
S
(∗)ki
Xi

(t)

ϕ
S
(∗)kj
Xj

(t)
=

ϕSXi
(t)

ϕSXj
(t)

for all ki ∈ {1, . . . , ni}, kj ∈ {1, . . . , nj}, i ̸= j ∈ {1, . . . ,m}, Re(t) > 0,

which is a multi-portfolio adjustment of Condition (3.10). Moreover, let n1 = · · · = nm = n,

Sj = X1,j + · · ·+Xm,j, j ∈ {1, . . . , n}, then S = (S1, . . . , Sn) ∈ W if and only if

E[X1,i]

E[X1,j]
= · · · = E[Xm,i]

E[Xm,j]
for all i ̸= j ∈ {1, . . . , n},

which is a multi-portfolio adjustment of Condition (3.11).

3.3.1 Examples and further elaborations

In this section, we review a few examples of those loss RVs, X ∈ X n, for which the equality

rq,i = r̃q,i holds for all q ∈ [0, 1) and i ∈ N . That is, we now construct a few examples of
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the loss portfolios X ∈ X n, for which the RC allocations induced by the CTE risk measure

reflect the diminishing impact of large losses on the insurers’ perception of risk.

Our first example is the Liouville distributions (e.g., Gupta and Richards, 1987, for a

comprehensive treatment, and Hua, 2016; McNeil and Nešlehová, 2010, for applications in

the context of dependence modelling). To start with, for γ ∈ R+, denote by Γ(γ) the

complete gamma function, that is

Γ(γ) =

∫ ∞

0

xγ−1e−xdx.

Also, for γ1, . . . , γn ∈ R+ and γ• := γ1 + · · ·+ γn, define the multivariate Beta function as

B(γ1, . . . , γn) =

∏n
j=1 Γ(γj)

Γ(γ•)
.

Example 4. The positive and absolutely-continuous RV, X = (X1, . . . , Xn) ∈ X n, is said

to be distributed Inverted-Dirichlet, succinctly X ∼ IDn(γ1, . . . , γn, β) with the parameters

β, γ1, . . . , γn ∈ R+, if its probability density function (PDF) is:

fX(x1, . . . , xn) =
1

B(γ1, . . . , γn, β)

n∏
j=1

x
γj−1
j

(
1 +

n∑
j=1

xj

)−(γ•+β)

, x1, . . . , xn ∈ R+,

(e.g., Gupta and Song, 1996; Ignatov and Kaishev, 2004, for a general discussion and appli-

cations in actuarial science, respectively).

It is not difficult to show that ϕS(∗)i (t) = ϕ
S(∗)j (t), Re(t) > 0 for all 1 ≤ i ̸= j ≤ n, and

hence by Theorem 8, we have rq,i = γi/γ• = r̃q,i for q ∈ [0, 1) and i ∈ N .

An interesting observation that paves the way for a fairly general proposition, which

is stated next, is that for X ∼ IDn(γ1, . . . , γn, β), we have the stochastic representation

Xj = Z × Yj, j = 1, . . . , n, where the RV Z =
∑n

j=1Xj has a univariate inverted beta

distribution, Z ∼ IB(γ•, β), with the parameters γ•, β ∈ R+, and the RV Y = (Y1, . . . , Yn),

independent on the RV Z, is distributed multivariate Dirichlet (Ng et al., 2011).

The proof of the following assertion is readily obtained via the routine conditioning and

then evoking Theorem 8 and is thus omitted.
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Proposition 9. Let the RV Y = (Y1, . . . , Yn) be independent on the RV Z and such that,

for a constant b ∈ R+, the equality,
∑n

i=1 Yi = b, holds almost surely. Further, let the loss

portfolio X = (X1, . . . , Xn) ∈ X n admit the stochastic representation Xj = Yj × Z, j ∈ N .

Then X ∈ W.

Proposition 9 implies that the loss RVs X1, . . . , Xn that admit the Multiplicative Back-

ground Risk Model (MBRM) stochastic representation with the idiosyncratic risk factors

(RFs), Y1, . . . , Yn distributed Dirichlet with parameters γ1, . . . , γn ∈ R+ and the systemic

RF Z having the PDF fZ , such that

fZ(z) ∝ g(z) zγ•−1, z ∈ R+, (3.12)

where γ• =
∑n

i=1 γi, the function z 7→ g(z) is positive, continuous and integrable in the

sense of Gupta and Richards (1987), all belong to the set W. Some examples, in addition

to the already-mentioned inverted beta distribution, of the probability distribution of the

systemic RF, Z, are: the gamma distribution and the generalized mixture of exponential

distributions.

The class of multivariate probability distributions that admit the stochastic represen-

tation described in Proposition 9 is called the class of Liouville distributions, and these

distributions are one way to extend the multivariate Dirichlet distribution to the unbounded

domain, Rn
+. Another way is via the class of mixed-Gamma (MG) distributions, which has

recently been presented and studied in Furman et al. (2020b). Speaking briefly and avoid-

ing unnecessary technicalities - thus considering the simplest possible case - the loss RV

X = (X1, . . . , Xn) is said to be distributed n-variate MG distribution if it has the PDF:

fX(x1, . . . , xn) =
m∑
k=1

pk

n∏
i=1

x
γi,k−1
i

Γ(γi,k) θ
γi,k
i

e−xi/θi , x1, . . . , xn ∈ R+, (3.13)

where γi,k ∈ R+ and θi ∈ R+ are, respectively, the shape and scale parameters, and pk >

0, k = 1, . . . ,m are the mixture weights satisfying
∑m

k=1 pk = 1; succinctly, we write X ∼

MGn(γ,θ,p), where γ and θ are the n×m- and m- dimensional vectors of shape and scale

parameters, respectively, and p = (p1, . . . , pm).
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The class of MG distributions is a generalization of the popular class of multivariate

Erlang mixtures considered in Willmot and Woo (2014), albeit with (a) positive - and not

positive and integer - shape parameters, and (b) possibly distinct - and not all equal - scale

parameters (e.g. Lee and Lin, 2012; Verbelen et al., 2016). The class of MG distributions is

connected to Question 1 in the example and proposition that follow.

Example 5. Consider a loss portfolio X ∼ MGn(γ,θ,p) with the PDF as per Equation

(3.13), but with θi ≡ θ. Then, for i ∈ N , we have

ϕ
S
(∗)i
X

(t) = E[exp{−tS
(∗)i
X }] =

m∑
k=1

p
(∗)i
k (1 + θt)−γ•,k−1 , Re(t) > 0,

where

p
(∗)i
k =

γi,k∑m
l=1 γi,l × pl

pk, k = 1, . . . ,m,

which can be viewed as the i-th partial size-biased transform of the PMF underlying the

stochastic shape parameters. Consequently, for the equality S
(∗)i
X =d S

(∗)j
X to hold, we must

require (due to Theorem 8)

γi,1(∑n
j=1 γj,1

) = · · · = γi,m(∑n
j=1 γj,m

) (3.14)

for all i ∈ N .

The observation presented in Example 5 is strengthened in the following proposition,

which concludes this section.

Proposition 10. Let X ∼ MGn(γ,θ,p). Then we have X ∈ W if and only if both of θi ≡ θ

and Equation (3.14) hold true.

Proof. Example 5 establishes the ‘if’ direction. In order to prove the ‘only if’ direction,

we pursue proof by contradiction. To this end, consider X ∼ MGn(γ,θ,p) in which the

coordinates of the vector of parameters θ = (θ1, . . . , θn) are all distinct, and supposeX ∈ W.

(If some scale parameters were equal, then we would introduce the vector of distinct scales,
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θ̂ = (θ̂1, . . . , θ̂n′), n′ < n as well as, for d = 1, . . . , n′ and Td =
{
i ∈ {1, . . . , n} : θi = θ̂d

}
,

the corresponding shape parameters γ̂d,l =
∑

i∈Td
γi,l, l = 1, . . . ,m. We would then proceed

with the proof, as it is outlined below.) Further, without loss of generality, assume that the

shape parameters are ordered as γd,1 ≤ γd,2 ≤ · · · ≤ γd,m, d = 1, . . . , n.

With the above in mind and for any BU, j ∈ N , we have that the Laplace transform of

the RV S
(∗)j
X is:

ϕ
S
(∗)j
X

(t) =
m∑
k=1

p
(∗)j
k

(
1 + θj t

)−(1+γj,k)
n∏

d=1,d ̸=j

(1 + θd t)
−γd,k , Re(t) > 0.

Furthermore, as X ∈ W, we have that Theorem 8 implies, for 1 ≤ i ̸= j ≤ n and all

Re(t) > 0,

ϕ
S
(∗)i
X

(t) = ϕ
S
(∗)j
X

(t).

However, this is impossible, which is easily seen by comparing, e.g., the m-th terms of the

Laplace transforms ϕ
S
(∗)i
X

and ϕ
S
(∗)j
X

. Hence, we have arrived at a contradiction and the

proposition is proved.

3.4 The case of independent losses

In this section, we explore the loss portfolios X ∈ X n that have independent constituents.

Admittedly, the assumption of independence simplifies the problem postulated in Question

1 considerably, yet nor it means that the RV R = (R1, . . . , Rn) has independent coordinates,

neither that the RVs R and SX are independent, thus warranting a separate discussion.

Theorem 12. Assume that X = (X1, . . . , Xn) ∈ X n is a portfolio of independent losses,

then we have the equality rq,i = r̃q,i(= E[Xi] /E[S]) for all q ∈ [0, 1) and i ∈ N , if and only

if the equality

ϕXi
(t) =

(
ϕXj

(t)
)E[Xi]/E[Xj ]

holds for all i ̸= j ∈ N and Re(t) > 0.
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Proof. By Theorem 8 and assuming that the RVs X1, . . . , Xn are mutually independent, we

have X ∈ W if and only if the Laplace transforms of the RVs Xi +X∗
j and X∗

i +Xj agree

for all i ̸= j ∈ N . That is, we must have

1

E[Xj]

d
dt
ϕXj

(t)

ϕXj
(t)

=
1

E[Xi]

d
dt
ϕXi

(t)

ϕXi
(t)

,

for all i ̸= j ∈ N and Re(t) > 0. This, in turn, is equivalent to

d
dt
log ϕXj

(t)
d
dt
log ϕXi

(t)
=

E[Xj]

E[Xi]
, (3.15)

implying, for all Re(t) > 0,

log ϕXj
(t)

log ϕXi
(t)

=
E[Xj]

E[Xi]
. (3.16)

The fact that Equation (3.16) leads to Equation (3.15) is easy to check by routine differen-

tiation in the latter equation. This completes the proof of the theorem.

3.4.1 Examples and further elaborations

Examples of the loss portfolios X ∈ X n that have independent constituents and also belong

to the set W are really numerous. For instance, consider losses Xi, i ∈ N , that have

infinitely divisible distributions and such that the condition in Theorem 12 holds, then we

have r̃q,i = rq,i = E[Xi] /E[SX ] for any q ∈ [0, 1). The next example enumerates some of the

distributions of relevance, which play important roles in actuarial science and quantitative

risk management.

Example 6. Assume that the portfolio of losses X ∈ X n has independent constituents

X1, . . . , Xn, then it belongs to the set W given that these constituents have the following

probability distributions:

� Xi ∼ Negative-Binomial(βi, p), βi ∈ R+, p ∈ (0, 1), with mean E[Xi] = βi (1 − p) / p
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and Laplace transform

ϕXi
(t) =

( p

1− (1− p)e−t

)βi

, Re(t) > 0.

� Xi ∼ Gamma(γi, β), γi ∈ R+, β ∈ R+, with mean E[Xi] = γi β and Laplace transform

ϕXi
(t) = (1 + β t)−γi , Re(t) > 0.

� Xi ∼ Inverse-Gaussian(µi, µ
2
i ), γi ∈ R+, with mean E[Xi] = µi and Laplace transform

ϕXi
(t) = exp

{
µi(1−

√
1− 2t)

}
, Re(t) > 0.

3.5 Further generalizations and afterthoughts

We mentioned in Section 3.2 that the CTE risk measure is a member of the class of weighted

risk measures and that it induces the RC allocation rq,i, q ∈ [0, 1), i ∈ N . In fact, a more

encompassing class of risk measures - and hence a generalization of the CTE risk measure

- can be defined as follows (Furman and Zitikis, 2008a). Let v, w : [0, ∞) → [0, ∞)

be two (non-decreasing) functions, then the generalized weighted risk measure is the map

Hv,w : X → [0, ∞), which, when well-defined and finite, is given by

Hv,w(X) =
E
[
v(X)w(X)

]
E
[
w(X)

] , X ∈ X . (3.17)

This is a slight generalization of the weighted class, see chapter 2 equation (2.3) for details.

For w(x) = 1{x ≥ VaRq(X)} and v(x) = x, where x ∈ [0, ∞) and q ∈ [0, 1), we have that

the generalized weighted risk measure reduces to the CTE risk measure.

Further, for k ∈ N, set v(x) = xk, x ∈ [0, ∞) and keep the weight function x 7→ w(x)

equal the indicator function as before in order to emphasize the tail loss scenarios, then gen-

eralized weighted risk measure (3.17) yields the k-th order CTE risk measure. Furthermore,
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extending the notation in Section 3.2, let, for q ∈ [0, 1), k ∈ N and i ∈ N

r̃kq,i = E[Rk
i | S > sq] and rkq,i = E[Xk

i | S > sq] /E[Sk| S > sq].

In general, the proportional k-th order CTE-based allocation rkq,i is not fully-additive i.e.

the allocations do not sum up to the risk measure. Nevertheless, it is a meaningful quantity

in quantitative risk management (e.g., Furman and Landsman, 2006; Kim, 2010; Landsman

et al., 2016, for elaborations and applications).

It is not difficult to see that, for a fixed k ∈ N, the equality r̃kq,i = rkq,i holds for all

q ∈ [0, 1) and i ∈ N , if an only if we have Cov(Rk
i , S

k |S > sq) ≡ 0. Therefore, it is natural

to reformulate Question 1 as follows.

Question 2. For loss RVs Xi ∈ Lk, can we characterize those loss portfolios X = (X1, . . . , Xn) ∈

X n, for which the equality r̃kq,i = rkq,i holds for all q ∈ [0, 1), i ∈ N , and a fixed k ∈ N?

Question 2 seeks to characterize the RVs that belong to the set

Wk =
{
X = (X1, . . . , Xn) ∈ X n : rkq,i = r̃kq,i for all q ∈ [0, 1) and i ∈ N

}
, (3.18)

which we do next. To start off, note that if the equality rkq,i = r̃kq,i holds for all q ∈ [0, 1),

then setting q = 0, implies that for all loss portfolios in the set Wk, we must have rkq,i =

r̃kq,i = E[Xk
i ] /E[Sk

X ].

Theorem 13. If the portfolio of losses X = (X1, . . . , Xn) ∈ X n with Xi ∈ Lk belongs to the

set Wk and so the equality rkq,i = r̃kq,i(= E[Xk
i ] /E[Sk

X ]) holds for all q ∈ [0, 1), i ∈ N , and a

fixed k ∈ N, then S
(k)i
X =d S

(k)j
X , 1 ≤ i ̸= j ≤ n (where S

(k)i
X is the size-bias of the sum w.r.t.

xk
i ). The opposite direction does not hold.

Proof. The proof follows the same argumentation as in Theorem 8 with the quantities SX , Ri

and Gi(s) = E[Ri|SX = s] − E[Ri] replaced with the quantities Sk
X , Rk

i and Gk
i (s) =

E[Rk
i |SX = s]− E[Rk

i ], s ∈ [0, ∞).

To see that the distributional equality, S
(k)i
X =d S

(k)j
X , 1 ≤ i ̸= j ≤ n, does not imply

X ∈ Wk, consider the RV (X1, X2) ∈ X 2 that has independent and identically distributed
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constituents; Xi ∼ Uni[0, 1], i = 1, 2. Clearly, we have S
(k)1
X =d S

(k)2
X , k ∈ N. Nevertheless,

with some algebra we obtain, for i ∈ {1, 2},

E[Xk
i |SX = s] =

sk

1 + k
1{0≤s<1} +

1− (s− 1)k+1

(1 + k)(2− s)
1{1≤s≤2}, s ∈ R+,

which implies E[Rk
i | SX = s] ̸= const for k ̸= 1 and hence r̃kq,i ̸= rkq,i. The assertion holds

since the regression condition is the central link in the results of Theorem 8. This completes

the proof of the theorem.

According to Theorem 13, if the equalities rq,i = r̃q,i and r2q,i = r̃2q,i hold for all q ∈ [0, 1)

and i ∈ N , then we must have E[Ri| SX = s] ≡ const and E[R2
i | SX = s] ≡ const,

respectively. Therefore, the fact X ∈ W1 does not imply X ∈ W2 (also due to the counter

example in the proof of Theorem 13). Next example demonstrates that this statement, when

formulated in the opposite direction, does not hold either.

Example 7. Consider again the MG distribution as per Example 5, i.e., let X ∼ MGn(γ,θ,p),

and set θi ≡ θ ∈ R+ and

γi,1 (γi,1 + 1)(∑n
j=1 γj,1

)(∑n
j=1 γj,1 + 1

) = · · · = γi,m (γi,m + 1)(∑n
j=1 γj,m

)(∑n
j=1 γj,m + 1

)
for all i ∈ N . Then it is not difficult to check directly that r2q,i = r̃2q,i, i ∈ N , and therefore

we have X ∈ W2. However, the choice of parameters above does not guarantee Equation

(3.14), and consequently by Theorem 8, we do not necessarily have X ∈ W1.

We conclude this section by outlining a situation in which the fact, X ∈ W1, does

imply the fact, X ∈ W2, and vice versa; curiously, this connects Questions 1 and 2 to the

celebrated Lukacs’s proportion-sum independence theorem (Lukacs, 1955). For this, recall

that the fact that the loss portfolio X = (X1, . . . , Xn) ∈ X n belongs to the set Wk, k ∈ N,

or in other words, that the RVs Ri, i = 1, . . . , n, and SX are uncorrelated conditionally on

SX > s for all s ∈ [0, ∞), does not in general imply the fact that the loss RVs Ri and

SX are independent. This statement holds true even if the constituents of the loss portfolio

X ∈ X n are independent. The following assertion delineates the cases, in which the RVs Ri

62



and SX are independent in the context of Questions 1 and 2.

Corollary 1. Assume that the loss RVs X1, . . . , Xn ∈ X are independent. The loss portfolio

X = (X1, . . . , Xn) ∈ X n belongs to the sets W1 and W2 if and only if the loss RV Xi ∈ X

is distributed gamma with the shape and scale parameters γi > 0 and θ > 0, respectively,

i ∈ N . In this case, the RVs Ri and SX are independent.

Proof. In order to prove the ‘if’ direction, we note that by Lukacs’ theorem, the assumption

Xi ∼ Ga(γi, θ) implies Ri ⊥⊥ SX for all i ∈ N , which in turn implies X ∈ W1 ∩W2.

Further, let us prove the ‘only if’ direction. For this, fix i ∈ N and note that by Theorems

12 and 13 - with the assumption of independence made in the latter case - we arrive at the

following two equations, where ϕXi
(t) and ϕXj

(t) denote, respectively, the Laplace transforms

of the loss RVs Xi and Xj, and a := E[Xj] /E[Xi] and b := E[X2
i ] /E[X2

j ], 1 ≤ i ≤ j ≤ n,

for the simplicity of exposition

ϕXj
(t) = (ϕXi

(t))a , Re(t) > 0 (3.19)

and

ϕXj
(t)

d2

dt2
ϕXi

(t) = b ϕXi
(t)

d2

dt2
ϕXj

(t), Re(t) > 0. (3.20)

Rewriting the equations above in terms of the Laplace transform ϕXi
only, we obtain, for

Re(t) > 0,

(ϕXi
(t))a

d2

dt2
ϕXi

(t) = b ϕXi
(t)

[
a(a− 1) (ϕXi

(t))a−2

(
d

dt
ϕXi

(t)

)2

+ a (ϕXi
(t))a−1 d2

dt2
ϕXi

(t)

]
,

which, with some algebra and the notation c = a b (a− 1) (1− a b)−1, simplifies to

d2

dt2
ϕXi

(t)
d
dt
ϕXi

(t)
= c

d
dt
ϕXi

(t)

ϕXi
(t)

, Re(t) > 0.

After integration and some more algebra, we arrive at the following first-order non-linear

ODE

d

dt
ϕXi

(t) = −E[Xi] (ϕXi
(t))c , Re(t) > 0,
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with the solution

ϕXi
(t) =

[
1 + (c− 1)E[Xi] t

]−1/(c−1)

.

Finally, substituting the expressions for the first and second moments of the gamma distri-

bution in the constant c and hence noticing that c− 1 = 1/γi, we arrive at

ϕXi
(t) = (1 + θ t)−γi , Re(t) > 0,

which is the Laplace transform of the RV distributed gamma with the shape and scale

parameters γi > 0 and θ > 0, respectively. Hence, Xi ∽ Ga(γi, σ), i ∈ N . Also, for

γ• = γ1 + · · · + γn as before, we have SX ∼ Ga(γ•, σ), and by Lukacs’ theorem, the RVs

Ri = Xi / SX and SX are independent. This completes the proof of the ‘only if’ direction as

well as of the corollary as a whole.
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Chapter 4

One model to rule them all - A novel

Pareto-Dirichlet distribution

4.1 Introduction

The power law hallmark of the Pareto distribution (Pareto, 1964) took center stage in mod-

elling extreme events in insurance and finance. The well-known result of Balkema and

de Haan (1974) and Pickands III (1975) gives a powerful approximation for the excess-of-

loss probability , written as F Y (x) = P[X − u > x|X > u], in terms of a Pareto law. This

probability is precisely the survival of Y = X − u|X > u, which is the the random variable

of the conditional excess of losses, that are used throughout insurance, modelling life and

non-life products alike. The approximation appears when a large enough threshold u > 0 is

taken making the survival function expressible as:

F Y (x) ≈
(
1 +

x

ζ(u)

)−α

, (4.1)

for α > 0, x > 0 and an appropriately chosen scaling function ζ(u) (see Embrechts et al.

(1997) for details).

Given the popularity of the Pareto distribution, several univariate extensions have been

made, notably the Feller-Pareto - proposed by Arnold (2015) - which is a transformed Beta
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II law and represented as:

X = µ+ σ

(
V

W

) 1
γ

, X > µ, µ ∈ R, σ, γ > 0, (4.2)

where V and W are two independent gamma variates with different shapes and common unit

rate. And µ, σ, γ denote the univariate transforms of location, scale and power respectively.

Many well-known distributions fall under the umbrella of Feller-Pareto which made it a use-

ful computational tool in actuarial modelling (Arnold, 2015; Kleiber and Kotz, 2003). As

univariate manipulation proved convenient when studying standalone losses, the subsequent

inevitable objective is to generalize the Pareto law to higher dimensions, investigating the

multitude of its possible rich structures.

In the context of insurance, the need for higher dimensional dependence can not be over-

stated as modelling interdependent losses require such formulation. Luckily, many advances

have been made in this arena; See Asimit et al. (2010), Su and Furman (2017), Chiragiev

and Landsman (2009), and Chapter 6 of Arnold (2015) for a compilation of the numerous

generalizations and diverse structures of the multivariate Pareto.

Most generalizations regularly exploit the representation in equation (4.2) to construct

multivariate parallels. To illustrate, let’s fix a probability space (Ω,F ,P) and let N =

{1, 2, . . . , n}, n ∈ N, be a label set of constituents or frequently referred to as business units.

Then set X = (X1, . . . , Xn) to be a random vector defined stochastically as :

Xi = µi + σi

(
Vi

Wi

) 1
γi

, Xi > µi, µi ∈ R, σi, γi > 0, i ∈ N . (4.3)

When n = 2, and if we take each Wi to be equal to the same gamma random variable, i.e.

Wi = W ∼ Gamma(α, 1), α > 0, and

P(V1 > v1, V2 > v2) = exp{−λ1v1 − λ2v2 − λ12max(v1, v2)}, λ1, λ2, λ12 > 0, (4.4)
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which is the bivariate exponential of Marshall-Olkin (MO) (see Marshall and Olkin (1967)),

then the resulting survival function of the bivariate Pareto can be written as :

FX(x1, x2) =

[
1 + λ1

(
x1 − µ1

σ1

)γ1

+ λ2

(
x2 − µ2

σ2

)γ2

+ λ12max

((
x1 − µ1

σ1

)γ1

,

(
x2 − µ2

σ2

)γ2)]−α

,

(4.5)

(see equations 6.2.2 and 6.2.3 of Arnold (2015)).

On the other hand, when Vi’s are i.i.d. exponentials, i.e. Vi ∼ exp(1), and Wi’s are sums

of independent gamma variables with common unit rate (the variables are indexed by the

elements of the power set of N ) then we recover the following survival function :

FX(x1, . . . , xn) =
n∏

i=1

[
1 +

(
xi − µi

σi

)γi]−αi

×
∏
i1<i2

[
1 +

(
xi1 − µi1

σi1

)γi1

+

(
xi2 − µi2

σi2

)γi2
]−αi1i2

× · · · ×

[
1 +

n∑
i=1

(
xi − µi

σi

)γi
]−α12···n

, xi > µi, ∀i ∈ N . (4.6)

This is precisely the multivariate Pareto defined in equation 6.2.8 of Arnold (2015). We first

notice that the distribution in (4.5) allows for a singular probability, mainly co-monotonicity,

while the one in (4.6) is absolutely continuous with respect to the Lebesgue measure. Fur-

thermore, the single power and additive structure of (4.5) is restrictive, not admitting inde-

pendence for instance, while (4.6) enjoys a flexible multiplicative/additive form with indepen-

dence being a special case. The abundant number of parameters in (4.6), in addition, conveys

a more flexible yet complex choice. Each formulation, nonetheless, when used separately,

guarantees certain modelling advantages but concurrently comes with inherent drawbacks.

4.2 The Pareto-Dirichlet sub-mixture

To combine the best of (4.5) and (4.6), we extend (4.5) to have a general multivariate MO

distribution while retaining the additive gamma model of (4.6). Besides the useful amalgama-

tion, the motivation for such general construction is the interpretation of the multiplicative

structure within the background economy and common shock models (see Boucher et al.

(2008); Tsanakas (2008) for details). Formally, let P(N ) be the power set of N without the
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empty set s.t. Mv,Mw ⊆ P(N ), |Mv| = mv, |Mw| = mw, and mv,mw ≤ 2n − 1. Further-

more, consider the random vector X = (X1, . . . , Xn) defined stochastically as in equation

(4.3) with V = (V1, . . . , Vn) defined component-wise as Vi = min(EB : B ∈ Bi), ∀i ∈ N ,

where EB ∼ exp(λB), λB > 0, are independent exponentials. Similarly, W = (W1, . . . ,Wn)

have Wi =
∑
B∈Bi

ZB, ∀i ∈ N , where ZB ∼ Gamma(αB, 1), αB > 0, are independent gamma

variates. The sets Bi, ∀i ∈ N , are defined as the collection of the elements of Mv or Mw

which include the index i i.e. Bi =
⋃
{B ∈ M : i ∈ B}. In other words, Bi is the specific

subset of Mv or Mw which includes the factors affecting that particular i−th BU. In prac-

tice, most often, the additive gamma factors are chosen so that W ⊺ = AZ⊺. Meaning, Mw is

expressible as a matrix A, which is n×mw, composed of ones and zeros reflecting the choice

of factors by the risk managers. And Z = (ZB : B ∈ Mw) is the gamma random vector.

While it is more intuitive to use matrices for Mw, as W admits the additive structure, the

same can not be said for V . Thus, for consistency, ease of notation, and to accommodate

both W and V , representing the factors choice as (subsets of) power sets, Mw and Mv, is

more apt.

To have a well defined random vector we assume, for each Vi and Wi, Bi ̸= ∅. Lastly, we set

V and W to be independent. We notice that the random vector V ∼ MO(λB : B ∈ Mv)

follows a general MO structure while W follows the additive gamma model drawn from mw

independent factors. The two vectors are then joined through the multiplicative model. To-

gether with the location, scale and power transforms of the corresponding margins, we obtain

the composite vector X. For what follows, for any quantity ρ, we let ρ̃i =
∑
B∈Bi

ρB, ∀i ∈ N ,

and ρ+ =
∑
B∈M

ρB for M = Mv,Mw. Finally, for ease of notation, the subscript B in ρB

denotes an ascending enumeration of the elements, for example, if B = {1, 2} then ρB = ρ12.

Similar to many higher dimensional generalizations, the above formulation still maintains

Pareto margins. The next remark is a standard result showing that in our setting the margins

of (4.3) are of the Pareto IV kind.

Remark 8. Since Vi ∼ exp(λ̃i) and Wi ∼ Gamma(α̃i, 1), then the univariate survival func-
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tion can be easily obtained as (denoting yi =
(

xi−µi

σi

)γi
):

F i(xi) =
1

Γ(α̃i)

∫ ∞

0

P [Vi > yiwi|Wi = wi]w
α̃i−1
i e−widwi,

=
1

Γ(α̃i)

∫ ∞

0

wα̃i−1
i e−(λ̃iyi+1)widwi,

=
(
1 + λ̃iyi

)−α̃i

,

=

(
1 + λ̃i

(
xi − µi

σi

)γi)−α̃i

xi > µi.

(4.7)

Which is the Pareto IV family (See Arnold (2015)).

Remark 9. The k-th raw moment of Xi is given by:

E
[
Xk

i

]
=

k∑
j=0

(
k

j

)
µk−j
i

(
σiλ̃

−1
γi
i

)j Γ
(

j+γi
γi

)
Γ
(

α̃iγi−j
γi

)
Γ(α̃i)

, α̃i >
k

γi
, (4.8)

otherwise infinite (for α̃i ≤ k
γi
). In particular:

E[Xi] = µi + σiλ̃
−1
γi
i

Γ
(

1+γi
γi

)
Γ
(

α̃iγi−1
γi

)
Γ(α̃i)

, (4.9)

and

Var[Xi] =

(
σiλ̃

−1
γi
i

)2 Γ
(

2+γi
γi

)
Γ
(

α̃iγi−2
γi

)
Γ(α̃i)

−
(
σiλ̃

−1
γi
i

) Γ
(

1+γi
γi

)
Γ
(

α̃iγi−1
γi

)
Γ(α̃i)

×

µi +

(
σiλ̃

−1
γi
i

) Γ
(

1+γi
γi

)
Γ
(

α̃iγi−1
γi

)
Γ(α̃i)

 .

(4.10)

(See equation 3.3.7 in Arnold (2015)).

To unveil the richness of our proposed mixture model, in the next theorem, we will de-

rive the general dependence structure of X. Since µ, σ, γ are increasing transformations,

then the underlying copula is invariant. Thus, without loss of generality, we will assume

µi = 0, σi = 1 and γi = 1, ∀i ∈ N . We could retrieve the distributional results in terms of
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the univariate transforms simply by replacing xi with
(

xi−µi

σi

)γi
, ∀ i ∈ N , on the right hand

side of the equations.

Since the composite vector X contains the case of (4.5), it means it allows for a singu-

lar co-monotonic probability. The next two definitions deal with this case by showing the

necessary structural conditions on Mw and Mv, under which, a singular law is possible.

Definition 7. Let B ⊆ N , B not a singleton, then we say the random B-vector XB = (Xi :

i ∈ B) has a co-monotonic (singular) component if B ∈ Mw ∩Mv s.t. ∀B′ ∈ Mw, B
′ ̸=

B, B
′ ∩ B = ∅. This is due to the fact that the gamma B-vector WB = (Wi : i ∈ B) is

defined as a single common factor i.e. Wi = ZB, ∀i ∈ B. We will denote the collection of

those disjoint co-monotonic B’s by S.

Remark 10. If the random B-vector has a co-monotonic component then ∀B′ ∈ Mv, B
′ ⊆

B, B
′
not a singleton, the random B

′
-subvectors have a co-monotonic part as well. Let’s

denote the collection of those subsets of B (including B) by SB s.t. S = ∪B∈SSB.

Now we are ready to state the main theorem of this paper which depicts the survival

function of X as an elegant closed form of mixed distributions.

Theorem 14. The survival function FX of X is given as a finite sub-mixture of multivariate

Pareto distributions each weighted by a Dirichlet probability. Formally:

FX(x1, . . . , xn) =

n!∑
j=1

MP(j) (x1, . . . , xn) Dir(j) (x1, . . . , xn) , (4.11)

where :

MP(j) (x1, . . . , xn) =

∏
B∈Mw

1 +
∑
i∈B

λ
(j)
i xi +

∑
B′∈SB

λB′ max(xi : i ∈ B
′
)

−αB

, (4.12)

is a generalized multivariate Pareto distribution (which is a hybrid model of (4.5) and (4.6))

s.t. λ
(j)
i is a specific sum of λ’s that depend on the permutation-case (j) (see Proof i for
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details). And:

Dir(j) (x1, . . . , xn) =
1

β(α)

∫
∆(j)(x1,...,xn)

∏
B∈Mw

tαB−1
B dt, (4.13)

where α = (αB : B ∈ Mw) and β is the multivariate beta function. The Dir(j) terms are

integrals of the Dirichlet density over specific regions of the standard simplex denoted by

∆(j)(x1, . . . , xn), 1 ≤ j ≤ n! (see Proof i for definition). The integration regions ∆(j)s do not

span the whole simplex which consequently implies
∑n!

j=1 Dir
(j) (x1, . . . , xn) ≤ 1.

Proof. See appendix i.

The resulting distribution of theorem 14 (equation (4.11)) exhibits a peculiar form. It

has two characters of dependence. One is of a Pareto type and the other one is of the

quasi Dirichlet variety. It possesses a far greater flexibility through the sheer number of

parameters. While the mixture constitution allows for more dependence freedom. To our

knowledge, this is a novel structure that has not been studied in the literature. Henceforth,

we shall term it Pareto-Dirichlet.

Remark 11. For a fixed (x1, . . . , xn) the Dirichlet terms can be viewed as discrete distribu-

tion pj = Dir(j) (x1, . . . , xn) . It is a defective distribution since
∑n!

j=1 pj ≤ 1 with
∑n!

j=1 pj = 1

if and only if there is all permutations give identical MP terms i.e. the sub-mixture collapses

to a single MP term with
∑n!

j=1 pj = 1.

Remark 12. The form of the survival function of X is governed by both V and W . Where

the MO form in V determines the integration domain of the Dirichlet probability Dir i.e. the

cases, while the additive gamma vector W dictates the structure of the multivariate Pareto

part MP.

Next, we will elucidate some special cases of (4.11), explicitly, by setting Mw and Mv

to have a certain form.

Corollary 2. When Mv = {{1}, {2}, . . . , {n}} (singletons) and Mw ⊆ P(N ), then the
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survival function becomes:

FX(x1, . . . , xn) =
∏

B∈Mw

(
1 +

∑
i∈B

λixi

)−αB

.

which is the multivariate Pareto in (4.6).

When Mw = Mv = {{1}, {2}, . . . , {n}} we recover the independent case i.e. the survival

function can be written as:

FX(x1, . . . , xn) =
n∏

i=1

F i(xi) =
n∏

i=1

(1 + λixi)
−αi .

Corollary 3. When Mw = {{1}, {2}, . . . , {n}} (singletons) and Mv ⊆ P(N )), Mv ̸= Mw,

then the multivariate Pareto part simplifies to:

MP(j) (x1, . . . , xn) =
n∏

i=1

(
1 + λ

(j)
i xi

)−αi

.

i.e. the multivariate Pareto part disintegrates to independence and the dependence is solely

determined by the Dirichlet terms.

Corollary 4. When Mv = S∪{{1}, {2}, . . . , {n}} and Mw ⊆ P(N ), Mw ̸= Mv,S ⊆ Mw,

then the survival function can be written as:

FX(x1, . . . , xn) =

∏
B∈Mw

1 +
∑
i∈B

λixi +
∑

B′∈SB

λB′ max(xi : i ∈ B
′
)

−αB

.

i.e. there is only one case and the sub-mixture collapses to a single multivariate Pareto

distribution having co-monotonic parts. This is a generalization of the model in (4.5).

When Mv = S and Mw = S then we recover the purely co-monotonic survival function:

FX(x1, . . . , xn) =

∏
B∈S

1 +
∑

B′∈SB

λB′ max(xi : i ∈ B
′
)

−αB

.

Proposition 11. Suppose that B = N defines a B-vector with a co-monotonic part, and
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let AB (AB′ ) be the event when all elements of the B-vector (B
′
-sub-vectors) are equal.

Additionally, assume µi = 0, σi = 1 and γi = 1, ∀i ∈ B. Then:

∑
B

′∈SB

P (AB′ ) = 1−

k!∑
j=1


k∏

s=2

λ
(j)
ls

s∑
t=1

λ
(j)
lt

 .

Where λ
(j)
lp

are case and order dependent sums of λ’s (see proof ii for details ).

Proof. See appendix ii.

Remark 13. Similar to setting of proposition 11, assume B ⊆ N defines a B-vector with a

co-monotonic part. Then:

P (AB) =
λB

λB +
∑

B′∈Mv :B
′⊂B

λB′
.

Example 8. Let n = 4 i.e. N = {1, 2, 3, 4} with Mw = {{1, 2}, {3, 4}} and Mv = {{i1, i2} :

i1 < i2, i1, i2 ∈ N}, then the survival function can be written as:

FX(x1, x2, x3, x4) =

(1 + (λ13 + λ14)x1 + (λ23 + λ24)x2 + λ12max(x1, x2))
−α12 (1 + λ34max(x3, x4))

−α34

×
(
1− β max(x3,x4)

max(x3,x4)+min(x1,x2)

(α12, α34)

)
+(1 + (λ12 + λ∨3 + λ∨4)max(x1, x2) + λ∧∧min(x1, x2))

−α12

× (1 + (λ34 + λ∧∨)max(x3, x4))
−α34

(
β max(x3,x4)

max(x3,x4)+min(x1,x2)

(α12, α34)

− β
max

(
max(x3,x4)

max(x3,x4)+max(x1,x2)
,

min(x3,x4)
min(x3,x4)+min(x1,x2)

) (α12, α34)

)

+(1 + (λ12 + λ∨∧)max(x1, x2))
−α12 (1 + (λ34 + λ1∨ + λ2∨)max(x3, x4) + λ∧∧ min(x3, x4))

−α34

×

(
β

max
(

max(x3,x4)
max(x3,x4)+max(x1,x2)

,
min(x3,x4)

min(x3,x4)+min(x1,x2)

) (α12, α34)− β min(x3,x4)
min(x3,x4)+max(x1,x2)

(α12, α34)

)

+ (1 + λ12max(x1, x2))
−α12 (1 + (λ13 + λ23)x3 + (λ14 + λ24)x4 + λ34max(x3, x4))

−α34
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× β min(x3,x4)
min(x3,x4)+max(x1,x2)

(α12, α34)

+ (1 + (λ12 + λ∨3 + λ∨4)max(x1, x2))
−α12 (1 + λ∧3x3 + λ∧4x4 + λ34max(x3, x4))

−α34

×max

(
0, β min(x3,x4)

min(x3,x4)+min(x1,x2)

(α12, α34)− β max(x3,x4)
max(x3,x4)+max(x1,x2)

(α12, α34)

)
+ (1 + λ1∧x1 + λ2∧x2 + λ12max(x1, x2))

−α12 (1 + (λ34 + λ1∨ + λ2∨)max(x3, x4))
−α34

×max

(
0, β max(x3,x4)

max(x3,x4)+max(x1,x2)

(α12, α34)− β min(x3,x4)
min(x3,x4)+min(x1,x2)

(α12, α34)

)
. (4.14)

Where λ∨• = λ1•, λ∧• = λ2• when x1 > x2 and vice versa when x2 > x1. Similarly, when

x3 > x4 then λ•∨ = λ•3, λ•∧ = λ•4 and the opposite when x4 > x3. And βz (p, q) is the

regularized incomplete beta function.

The sub-mixture expression of example 8 reveals the modelling power of the Pareto-

Dirichlet. It possesses versatile combinations with both absolutely continuous and {{1, 2}, {3, 4}}

co-monotonic relations.

4.3 The bivariate case of Pareto-Dirichlet

Describing all cases in higher dimensions is certainly an interesting exercise. However, due

to its complexity and vastness, we turn to the bivariate case to shed some light into the

workings of the mixture structure of X. In the following examples, we will derive the

detailed expressions of the bivariate case in regards to the survival functions and the product

moments.

Example 9. Let n = 2 i.e. N = {1, 2} and set Mw = Mv = P(N ) = {{1}, {2}, {1, 2}}.

Then the survival function can be written as:

FX(x1, x2) =

2∑
j=1

MP(j) (x1, x2) Dir(j) (x1, x2) ,
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Where:

MP(1) (x1, x2) = (1 + (λ1 + λ12)x1)
−α1 (1 + λ2x2)

−α2 (1 + (λ1 + λ12)x1 + λ2x2)
−α12

When x1 ≥ x2 :

Dir(1) (x1, x2) =
1

β(α)

∫ a1(x1,x2)

0

∫ b1(x1,x2;t1)

0

tα1−1
1 tα2−1

2 (1− t1 − t2)
α12−1dt2 dt1,

+
1

β(α)

∫ 1

a1(x1,x2)

∫ 1−t1

0

tα1−1
1 tα2−1

2 (1− t1 − t2)
α12−1dt2 dt1,

When x1 < x2 :

Dir(1) (x1, x2) =
1

β(α)

∫ 1

a1(x1,x2)

∫ 1−t1

0

tα1−1
1 tα2−1

2 (1− t1 − t2)
α12−1dt2 dt1,

+
1

β(α)

∫ a1(x1,x2)

c1(x1,x2)

∫ b1(x1,x2;t1)

0

tα1−1
1 tα2−1

2 (1− t1 − t2)
α12−1dt2 dt1,

s.t. a1(x1, x2) =
x2((λ1+λ12)x1+1)

x1((λ1+λ2+λ12)x2+1)+x2
, c1(x1, x2) =

(x2−x1)((λ1+λ12)x1+1)
x2((λ1+λ2+λ12)x1+1)

and b1(x1, x2; t1) =
(λ2x2+1)(x1(x2(λ1(t1−1)+λ2t1+λ12(t1−1))+(λ1+λ12)x1+1)+(t1−1)x2)

x1((λ1+λ12)x1+1)((λ1+λ2+λ12)x2+1)
.

Similarly, for j = 2:

MP(2) (x1, x2) = (1 + λ1x1)
−α1 (1 + (λ2 + λ12)x2)

−α2 (1 + λ1x1 + (λ2 + λ12)x2)
−α12

When x1 ≥ x2 :

Dir(2) (x1, x2) =
1

β(α)

∫ a2(x1,x2)

0

∫ 1−t1

b2(x1,x2;t1)

tα1−1
1 tα2−1

2 (1− t1 − t2)
α12−1dt2 dt1,

When x1 < x2 :

Dir(2) (x1, x2) =
1

β(α)

∫ c2(x1,x2)

0

∫ 1−t1

0

tα1−1
1 tα2−1

2 (1− t1 − t2)
α12−1dt2 dt1,

+
1

β(α)

∫ a2(x1,x2)

c2(x1,x2)

∫ 1−t1

b2(x1,x2;t1)

tα1−1
1 tα2−1

2 (1− t1 − t2)
α12−1dt2 dt1,

s.t. a2(x1, x2) =
x2(λ1x1+1)

x1((λ1+λ2+λ12)x2+1)+x2
, c2(x1, x2) =

(x2−x1)(λ1x1+1)
x2((λ1+λ2+λ12)x1+1)

and b2(x1, x2)
((λ2+λ12)x2+1)(x1(x2(λ1(t1−1)+(λ2+λ12)t1)+λ1x1+1)+(t1−1)x2)

x1(λ1x1+1)((λ1+λ2+λ12)x2+1)
.
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The images below show the Dirichlet integration domain (on the regular 2-simplex) for

the two cases x1 ≥ x2 and x1 < x2. Each image labels the regions of j = (1) and j = (2)

accordingly. For both images the parameters are λ1 = λ2 = λ12 = 1. While (x1, x2) are

chosen to be x1 = 2, x2 = 1 for (a) and x1 = 1, x2 = 2 for (b).

(a) x1 ≥ x2 (b) x1 < x2

In the following examples, we will explore the other special cases of the bivariate setting.

Unlike example 9, where Mw = Mv = P(N ), in examples 10 and 11 the aim is to show

what happens when Mw ⊂ Mv = P(N ) and Mv ⊂ Mw = P(N ) respectively.

Example 10. Set Mv = P(N ) = {{1}, {2}, {1, 2}}. Then:

FX(x1, x2) =

2∑
j=1

MP(j) (x1, x2) Dir(j) (x1, x2) ,

Case 1: For Mw = {{1}, {2}}:

MP(1) (x1, x2) = (1 + (λ1 + λ12)x1)
−α1 (1 + λ2x2)

−α2 ,

Dir(1) (x1, x2) =
1

β(α)

∫ 1

a1(x1,x2)

tα1−1(1− t)α2−1dt,
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MP(2) (x1, x2) = (1 + λ1x1)
−α1 (1 + (λ2 + λ12)x2)

−α2 ,

Dir(2) (x1, x2) =
1

β(α)

∫ 1

a2(x1,x2)

tα1−1(1− t)α2−1dt,

s.t. a1(x1, x2) =
x2((λ1+λ12)x1+1)

x1((λ1+λ2+λ12)x2+1)+x2
and a2(x1, x2) =

x1((λ2+λ12)x2+1)
x1((λ1+λ2+λ12)x2+1)+x2

.

Case 2: For Mw = {{1}, {1, 2}}:

MP(1) (x1, x2) = (1 + (λ1 + λ12)x1)
−α1 (1 + (λ1 + λ12)x1 + λ2x2)

−α12 ,

When x1 ≥ x2 :

Dir(1) (x1, x2) = 1,

When x1 < x2 :

Dir(1) (x1, x2) =
1

β(α)

∫ 1

a1(x1,x2)

tα1−1(1− t)α12−1dt,

MP(2) (x1, x2) = (1 + λ1x1)
−α1 (1 + λ1x1 + (λ2 + λ12)x2)

−α12 ,

When x1 ≥ x2 :

Dir(2) (x1, x2) = 0,

When x1 < x2 :

Dir(2) (x1, x2) =
1

β(α)

∫ a2(x1,x2)

0

tα1−1(1− t)α12−1dt,

s.t. a1(x1, x2) =
(x2−x1)((λ1+λ12)x1+1)
x2((λ1+λ2+λ12)x1+1)

and a2(x1, x2) =
(x2−x1)(λ1x1+1)

x2((λ1+λ2+λ12)x1+1)
.
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Case 3: For Mw = {{2}, {1, 2}}:

MP(1) (x1, x2) = (1 + (λ2 + λ12)x2)
−α2 (1 + (λ2 + λ12)x2 + λ1x1)

−α12 ,

When x1 > x2 :

Dir(1) (x1, x2) =
1

β(α)

∫ 1

a1(x1,x2)

tα2−1(1− t)α12−1dt,

When x1 ≤ x2 :

Dir(1) (x1, x2) = 1,

MP(2) (x1, x2) = (1 + λ2x2)
−α2 (1 + λ2x2 + (λ1 + λ12)x1)

−α12 ,

When x1 > x2 :

Dir(2) (x1, x2) =
1

β(α)

∫ a2(x1,x2)

0

tα2−1(1− t)α12−1dt,

When x1 ≤ x2 :

Dir(2) (x1, x2) = 0,

s.t. a1(x1, x2) =
(x1−x2)((λ2+λ12)x2+1)
x1((λ1+λ2+λ12)x2+1)

and a2(x1, x2) =
(x1−x2)(λ2x2+1)

x1((λ1+λ2+λ12)x2+1)
.

Example 11. Set Mw = P(N ) = {{1}, {2}, {1, 2}} then:

FX(x1, x2) =

2∑
j=1

MP(j) (x1, x2) Dir(j) (x1, x2) ,

Case 1: For Mv = {{1}, {1, 2}}:

MP(1) (x1, x2) = (1 + (λ1 + λ12)x1)
−α1−α12 ,

When x1 > x2 :

78



Dir(1) (x1, x2) =
1

β(α)

∫ 1

a1(x1,x2)

∫ 1−t1

0

tα1−1
1 tα2−1

2 (1− t1 − t2)
α12−1dt2 dt1,

+
1

β(α)

∫ a1(x1,x2)

0

∫ b1(x1,x2;t1)

0

tα1−1
1 tα2−1

2 (1− t1 − t2)
α12−1dt2 dt1,

When x1 ≤ x2 :

Dir(1) (x1, x2) =
1

β(α)

∫ 1

a1(x1,x2)

∫ 1−t1

0

tα1−1
1 tα2−1

2 (1− t1 − t2)
α12−1dt2 dt1,

+
1

β(α)

∫ a1(x1,x2)

c1(x1,x2)

∫ b1(x1,x2;t1)

0

tα1−1
1 tα2−1

2 (1− t1 − t2)
α12−1dt2 dt1,

MP(2) (x1, x2) = (1 + λ1x1)
−α1 (1 + λ12x2)

−α2 (1 + λ1x1 + λ12x2)
−α12 ,

When x1 ≥ x2 :

Dir(2) (x1, x2) =
1

β(α)

∫ a2(x1,x2)

0

∫ 1−t1

b2(x1,x2;t1)

tα1−1
1 tα2−1

2 (1− t1 − t2)
α12−1dt2 dt1,

When x1 < x2 :

Dir(2) (x1, x2) =
1

β(α)

∫ a2(x1,x2)

c2(x1,x2)

∫ 1−t1

b2(x1,x2;t1)

tα1−1
1 tα2−1

2 (1− t1 − t2)
α12−1dt2 dt1,

+
1

β(α)

∫ c2(x1,x2)

0

∫ 1−t1

0

tα1−1
1 tα2−1

2 (1− t1 − t2)
α12−1dt2 dt1,

s.t. a1(x1, x2) =
x2((λ1+λ12)x1+1)

x1((λ1+λ12)x2+1)+x2
, a2(x1, x2) =

x2(λ1x1+1)
x1((λ1+λ12)x2+1)+x2

, b1(x1, x2; t1) =
(t1−1)x2+x1

x1((λ1+λ12)x2+1)
,

b2(x1, x2; t1) = (λ12x2+1)(((t1−1)x2+x1)(λ1x1+1)+λ12t1x1x2)
x1(λ1x1+1)((λ1+λ12)x2+1)

, c1(x1, x2) = 1 − x1

x2
and c2(x1, x2) =

(x2−x1)(λ1x1+1)
x2((λ1+λ12)x1+1)

.

Case 2: For Mv = {{2}, {1, 2}}:

MP(1) (x1, x2) = (1 + λ12x1)
−α1 (1 + λ2x2)

−α2 (1 + λ12x1 + λ2x2)
−α12 ,

When x1 ≥ x2 :

Dir(1) (x1, x2) =
1

β(α)

∫ 1

a1(x1,x2)

∫ 1−t1

0

tα1−1
1 tα2−1

2 (1− t1 − t2)
α12−1dt2 dt1,
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+
1

β(α)

∫ a1(x1,x2)

0

∫ b1(x1,x2;t1)

0

tα1−1
1 tα2−1

2 (1− t1 − t2)
α12−1dt2 dt1,

When x1 < x2 :

Dir(1) (x1, x2) =
1

β(α)

∫ 1

a1(x1,x2)

∫ 1−t1

0

tα1−1
1 tα2−1

2 (1− t1 − t2)
α12−1dt2 dt1,

+
1

β(α)

∫ a1(x1,x2)

c1(x1,x2)

∫ b1(x1,x2;t1)

0

tα1−1
1 tα2−1

2 (1− t1 − t2)
α12−1dt2 dt1,

MP(2) (x1, x2) = (1 + (λ2 + λ12)x2)
−α2−α12 ,

When x1 ≥ x2 :

Dir(2) (x1, x2) =
1

β(α)

∫ a2(x1,x2)

0

∫ 1−t1

b2(x1,x2;t1)

tα1−1
1 tα2−1

2 (1− t1 − t2)
α12−1dt2 dt1,

When x1 < x2 :

Dir(2) (x1, x2) =
1

β(α)

∫ a2(x1,x2)

c2(x1,x2)

∫ 1−t1

b2(x1,x2;t1)

tα1−1
1 tα2−1

2 (1− t1 − t2)
α12−1dt2 dt1,

+
1

β(α)

∫ c2(x1,x2)

0

∫ 1−t1

0

tα1−1
1 tα2−1

2 (1− t1 − t2)
α12−1dt2 dt1,

s.t. a1(x1, x2) =
x2(λ12x1+1)

x1((λ2+λ12)x2+1)+x2
, a2(x1, x2) =

x2

x1((λ2+λ12)x2+1)+x2
,

b1(x1, x2; t1) =
(λ2x2+1)(x1(λ2t1x2+λ12((t1−1)x2+x1)+1)+(t1−1)x2)

x1(λ12x1+1)((λ2+λ12)x2+1)
, b2(x1, x2; t1) =

(λ2+λ12)t1x2x1+(t1−1)x2+x1

x1
,

c1(x1, x2) =
(x2−x1)(λ12x1+1)
x2((λ2+λ12)x1+1)

and c2(x1, x2)
x2−x1

x2((λ2+λ12)x1+1)
.

Case 3: For Mv = {{1}, {2}}. Then the survival functions can be written as:

FX(x1, x2) = (1 + λ1x1)
−α1 (1 + λ2x2)

−α2 (1 + λ1x1 + λ2x2)
−α12 ,

In the previous examples, the survival distribution was absolutely continuous w.r.t. the

Lebesgue measure. Since co-monotonicity in two dimensions can only manifest in one form,

the next example shows this case.

Example 12. Set Mv = {{1}, {2}, {1, 2}} while Mw = {{1, 2}}. We notice that this is the
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only full setting with co-monotonic parts in the bivariate case. Then survival functions can

be written as:

FX(x1, x2) = (1 + λ1x1 + λ2x2 + λ12max(x1, x2))
−α12 ,

which is the bivariate Pareto specified in (4.5).

It is possible, as in the case of the bivariate MO, to split the distribution in example 12

into an absolutely continuous and singular parts. The next proposition shows the details of

the decomposition.

Proposition 12. Let Mv and Mw be defined as in example 12 then the following decompo-

sition holds:

FX(x1, x2) = τF
a

X(x1, x2) + (1− τ)F
s

X(x1, x2),

s.t.:

F
a

X(x1, x2) =
λ1 + λ2 + λ12

λ1 + λ2

FX(x1, x2)−
λ12

λ1 + λ2

(1 + (λ1 + λ2 + λ12)max(x1, x2))
−α12 ,

F
s

X(x1, x2) = (1 + (λ1 + λ2 + λ12)max(x1, x2))
−α12 ,

τ =
λ1 + λ2

λ1 + λ2 + λ12

with FX(x1, x2) = (1 + λ1x1 + λ2x2 + λ12max(x1, x2))
−α12, τ = P[X1 ̸= X2] =

λ1+λ2

λ1+λ2+λ12
,

and

(1− τ) = P[X1 = X2] =
λ12

λ1+λ2+λ12
(see 11). And F

a

X and F
s

X are the absolutely continuous

and singular parts of the survival function respectively.

Proof. By differentiation and integration we get F
a

X , then F
s

X = FX − F
a

X (see Marshall

and Olkin (1967)).

Convolutions play a central role in risk aggregation and allocation. Admittedly, due to

its complexity, it is usually not expressible as a closed form. In the special case of example

12, nonetheless, a general expression can be derived, as the next proposition delineates.
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Proposition 13. Let Mv and Mw be defined as in example 12 and set µi = 0, σi = γi =

1, ∀i ∈ N , and S = X1+X2. Then the convolution survival function, for λ1 ̸= λ2+λ12 and

λ2 ̸= λ1 + λ12, is expressible as:

F S(s) =
((λ1 + λ12) s+ 1) −α12 ((λ2 + λ12) s+ 1) −α12 ((λ1 + λ2 + λ12) s+ 2) −α12−1

(λ1 + λ2 + λ12) 2 ((λ1 − λ2) 2 − λ2
12)

×
(
((λ2 + λ12) s+ 1) α12+λ5

1s ((λ1 + λ12) s+ 1) α12 ((λ1 + λ2 + λ12) s+ 2) α12
(
λ2 (λ2 + λ12)

3

((λ2 + λ12) s+ 2) ((λ1 + λ2 + λ12) s+ 2) α12 − 2α12+1λ12 (λ2 + λ12)
(
λ2
12s (2α12 + λ2 + 2)

+ λ2

(
−2λ2 (α12s+ s− 1) + λ2

2s− 4
)
+ 2λ12

(
λ2 + λ2

2s+ 2
) )

((λ1 + λ12) s+ 1) α12
)
+ 2λ2

1

(
−λ12

(
λ12 (−2α12s+ 5λ2s− 2s+ 4) + 2λ2 (s (α12 + λ2) + s+ 1) + 3λ2

12s− 4
)
(2 (λ1 + λ12) s+ 2) α12

((λ2 + λ12) s+ 1) α12 − (λ2 + λ12) ((λ1 + λ2 + λ12) s+ 2) α12((
−2λ2

12s− λ12 (λ2s+ 3) + λ2 (λ2s+ 1)
)
((λ1 + λ12) s+ 1) α12 + λ2 ((λ2 + λ12) s+ 1) α12

) )
+ λ4

1

(
((λ1 + λ2 + λ12) s+ 2) α12 − 2α12+1λ12s ((λ1 + λ12) s+ 1) α12 ((λ2 + λ12) s+ 1) α12

2 (λ2s+ 2λ12s+ 1) ((λ1 + λ12) s+ 1) α12 − λ2s ((λ2 + λ12) s+ 1) α12
)
+ 2λ3

1

(
((λ1 + λ2 + λ12) s+ 2) α12 − λ12 (−2α12s+ 2λ2s+ 3λ12s− 2s+ 2) (2 (λ1 + λ12) s+ 2) α12

((λ2 + λ12) s+ 1) α12
(
λ2 + 3λ2

12s+ 3λ12 (λ2s+ 1)
)
((λ1 + λ12) s+ 1) α12−λ2 ((λ2 + λ12) s+ 1) α12+1

)
+ λ1

(
− 2α12+1λ12

(
2λ2

12 (α12s+ 2λ2s+ s+ 1) + λ2λ12 (4α12s+ 5λ2s+ 4s+ 4)

+ 2λ2 (λ2 (s (α12 + λ2) + s+ 1) + 4) + λ3
12s
)
((λ1 + λ12) s+ 1) α12 ((λ2 + λ12) s+ 1) α12

+ (λ2 + λ12)
2 ((λ1 + λ2 + λ12) s+ 2) α12

(
2λ2 ((λ2 + λ12) s+ 1) α12+1

− (λ2 − λ12) ((λ2 + λ12) s+ 2) ((λ1 + λ12) s+ 1) α12
)))

. (4.15)

Proof. Integration w.r.t. Z12 of the MO convolution (Nadarajah and Kotz, 2005) yields the

result.

Remark 14. The survival function of the special cases of proposition 13 can be easily derived.

Specifically, 1) when one of λi = λj + λ12, i ̸= j ∈ N , holds or 2) when both conditions hold

(in which case λ12 = 0 and λ1 = λ2 = λ).

1):
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F S(s) =
1

2λ12 (λj + λ12)
2

(
α12λ12s (λj + λ12)

(
(λj + λ12)

2 + 2λ12

)
((λj + λ12) s+ 1) −α12−1

+((λjs+ 2λ12s+ 1) ((λj + λ12) s+ 1)) −α12
( (

λ3
j + 4λ12λ

2
j + λ3

12 + 2 (2λj + 1)λ2
12

)
(λjs+ 2λ12s+ 1) α12

− λj (λj + λ12)
2 ((λj + λ12) s+ 1) α12

))
. (4.16)

2):

F S(s) = (1 + λs)−α12−1 (1 + (1 + α12)λs) . (4.17)

These examples are not exhaustive by any measure. Expressions of the joint distributions

when Mw and Mv are strict subsets can be straightforwardly derived leading to a more

parsimonious models. In the next propositions, we will turn our attention to calculating the

product moments and describing the resulting correlations.

Proposition 14. Set Mw = Mv = P(N ) and let k1, k2 ∈ N, then the k1, k2- raw product

moment of (X1, X2) can be expressed as
(
given α1 +α12 >

k1
γ1
, α2 +α12 >

k2
γ2

and α1 +α2 +

α12 >
k1
γ1

+ k2
γ2

)
:

E
[
Xk1

1 Xk2
2

]
=

k1∑
j1=0

k2∑
j2=0

(
k1
j1

)(
k2
j2

)
µk1−j1
1 µk2−j2

2 σj1
1 σj2

2 Ψ(j1, j2, γ1, γ2, λ1, λ2, λ12, α1, α2, α12)

(4.18)

s.t.:

Ψ =



1, when j1 = j2 = 0,

Γ
(

j1
γ1

+1
)
Γ
(
α1+α12− j1

γ1

)
(λ1+λ12)

j1
γ1 Γ(α1+α12)

, when j1 ̸= 0, j2 = 0,

Γ
(

j2
γ2

+1
)
Γ
(
α2+α12− j2

γ2

)
(λ2+λ12)

j2
γ2 Γ(α2+α12)

, when j1 = 0, j2 ̸= 0,

Γ
(

j1
γ1

+
j2
γ2

)
Γ
(
α1+α12− j1

γ1

)
Γ
(
α2+α12− j2

γ2

)
(λ1+λ2+λ12)

j1
γ1

+
j2
γ2 Γ(α1+α12)Γ(α2+α12)

[
j1
γ1 2F1

(
1, j1

γ1
+ j2

γ2
; j2
γ2

+ 1; λ2

λ1+λ2+λ12

)
+ j2

γ2 2F1

(
1, j1

γ1
+ j2

γ2
; j1
γ1

+ 1; λ1

λ1+λ2+λ12

)]
when j1 ̸= 0, j2 ̸= 0,

× 3F2

(
α12,

j1
γ1
, j2
γ2
;α1 + α12, α2 + α12; 1

)
,

(4.19)

where 2F1 and 3F2 are hyper-geometric functions (see Gradshteyn and Ryzhik (2014)).
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Proof. See appendix iii

Corollary 5. The product moment of X = (X1, X2) can be written as:

E [X1X2] = µ1µ2+µ2σ1

Γ
(

1
γ1

+ 1
)
Γ
(
α1 + α12 − 1

γ1

)
(λ1 + λ12)

1
γ1 Γ (α1 + α12)

+µ1σ2

Γ
(

1
γ2

+ 1
)
Γ
(
α2 + α12 − 1

γ2

)
(λ2 + λ12)

1
γ2 Γ (α2 + α12)

+σ1σ2

Γ
(

1
γ1

+ 1
γ2

)
Γ
(
α1 + α12 − 1

γ1

)
Γ
(
α2 + α12 − 1

γ2

)
(λ1 + λ2 + λ12)

1
γ1

+ 1
γ2 Γ (α1 + α12) Γ (α2 + α12)

[
1

γ1
2F1

(
1,

1

γ1
+

1

γ2
;
1

γ2
+ 1;

λ2

λ1 + λ2 + λ12

)

+
1

γ2
2F1

(
1,

1

γ1
+

1

γ2
;
1

γ1
+ 1;

λ1

λ1 + λ2 + λ12

)]
× 3F2

(
α12,

1

γ1
,
1

γ2
;α1 + α12, α2 + α12; 1

)
.

(4.20)

s.t. α1 + α12 >
1
γ1
, α2 + α12 >

1
γ2

and α1 + α2 + α12 >
1
γ1

+ 1
γ2
. Then for α1 + α12 >

2
γ1

and

α2 + α12 >
2
γ2

the Pearson correlation is given as:

Corr[X1, X2] =
Cov[X1, X2]√

Var[X1]
√
Var[X2]

, (4.21)

where:

Cov[X1, X2] = σ1σ2

Γ
(
α1 + α12 − 1

γ1

)
Γ
(
α2 + α12 − 1

γ2

)
Γ (α1 + α12) Γ (α2 + α12)

[
Γ
(

1
γ1

+ 1
γ2

)
(λ1 + λ2 + λ12)

1
γ1

+ 1
γ2

[
1

γ1

× 2F1

(
1,

1

γ1
+

1

γ2
;
1

γ2
+ 1;

λ2

λ1 + λ2 + λ12

)
+

1

γ2
2F1

(
1,

1

γ1
+

1

γ2
;
1

γ1
+ 1;

λ1

λ1 + λ2 + λ12

)]

× 3F2

(
α12,

1

γ1
,
1

γ2
;α1 + α12, α2 + α12; 1

)
−

Γ
(

1
γ1

+ 1
)
Γ
(

1
γ2

+ 1
)

(λ1 + λ12)
1
γ1 (λ2 + λ12)

1
γ2

]
.

Var[X1] = σ2
1

Γ
(

2
γ1

+ 1
)
Γ
(
α1 + α12 − 2

γ1

)
(λ1 + λ12)

2
γ1 Γ (α1 + α12)

− σ1

Γ
(

1
γ1

+ 1
)
Γ
(
α1 + α12 − 1

γ1

)
(λ1 + λ12)

1
γ1 Γ (α1 + α12)

[
µ1+

σ1

Γ
(

1
γ1

+ 1
)
Γ
(
α1 + α12 − 1

γ1

)
(λ1 + λ12)

1
γ1 Γ (α1 + α12)

]
.

Var[X2] = σ2
2

Γ
(

2
γ2

+ 1
)
Γ
(
α2 + α12 − 2

γ2

)
(λ2 + λ12)

2
γ2 Γ (α2 + α12)

− σ2

Γ
(

1
γ2

+ 1
)
Γ
(
α2 + α12 − 1

γ2

)
(λ2 + λ12)

1
γ2 Γ (α2 + α12)

[
µ2+
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σ2

Γ
(

1
γ2

+ 1
)
Γ
(
α2 + α12 − 1

γ2

)
(λ2 + λ12)

1
γ2 Γ (α2 + α12)

]
. (4.22)

Example 13. Set Mw and Mv as in example 9 s.t. µi = 0, σi = 1, i = 1, 2. Define

Corr[X1, X2;
1
2
], Corr[X1, X2; 1] and Corr[X1, X2; 2] to be the correlations when γ1 = γ2 =

1
2
,

γ1 = γ2 = 1 and γ1 = γ2 = 2 respectively. Then:

Corr
[
X1, X2;

1
2

]
=

(√
6Γ (α2 + α12 − 4) Γ (α2 + α12)− Γ (α2 + α12 − 2) 2

)−1

√
6Γ (α1 + α12 − 4) Γ (α1 + α12)− Γ (α1 + α12 − 2) 2

× Γ (α1 + α12 − 2) Γ (α2 + α12 − 2) (λ1 + λ2 + λ12)
−3
((

(λ1 + λ2)
3 + 10λ2

12 (λ1 + λ2) + 6λ3
12

+
(
5λ2

1 + 12λ2λ1 + 5λ2
2

)
λ12

)
3F2 (2, 2, α12;α1 + α12, α2 + α12; 1)− (λ1 + λ2 + λ12)

3
)
.

(4.23)

Corr [X1, X2; 1] =
(λ1 + λ2 + 2λ12) 3F2 (1, 1, α12;α1 + α12, α2 + α12; 1)− (λ1 + λ2 + λ12)√

α1+α12

α1+α12−2

√
α2+α12

α2+α12−2
(λ1 + λ2 + λ12)

(4.24)

Corr [X1, X2; 2] =
4Γ
(
α1 + α12 − 1

2

)
Γ
(
α2 + α12 − 1

2

)√
4Γ(α1+α12)2

(α1+α12−1)(λ1+λ12)
− πΓ(α1+α12− 1

2)2
(λ1+λ12)

√
4Γ(α2+α12)2

(α2+α12−1)(λ2+λ12)
− πΓ(α2+α12− 1

2)2
(λ2+λ12)

×

(
1

2

sin−1
( √

λ1√
λ1+λ2+λ12

)
√
λ1

√
λ2 + λ12

+
sin−1

( √
λ2√

λ1+λ2+λ12

)
√
λ2

√
λ1 + λ12


3F2

(
1

2
,
1

2
, α12;α1 + α12, α2 + α12; 1

)

− π

4
√
λ1 + λ12

√
λ2 + λ12

)
. (4.25)

Proposition 14 deals with the case of full parameters i.e. when Mw = Mv = P(N ). The

other possibilities involve either Mv ⊂ P(N ) or Mw ⊂ P(N ). Simply taking λB = 0 or

αB = 0 will not reflect the simplified form. The following two propositions investigate these

two limiting cases.
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Proposition 15. Let Mv = P(N ) and Mw ⊂ P(N ) then the k1, k2- raw product moment

of (X1, X2) can be expressed similarly to Equation (4.18) s.t.:

Case 1) Mw = {{1}, {2}}
(
for α1 >

k1
γ1
, α2 >

k2
γ2

)
:

Ψ =



1, when j1 = j2 = 0,

Γ
(

j1
γ1

+1
)
Γ
(
α1− j1

γ1

)
(λ1+λ12)

j1
γ1 Γ(α1)

, when j1 ̸= 0, j2 = 0,

Γ
(

j2
γ2

+1
)
Γ
(
α2− j2

γ2

)
(λ2+λ12)

j2
γ2 Γ(α2)

, when j1 = 0, j2 ̸= 0,

Γ
(

j1
γ1

+
j2
γ2

)
Γ
(
α1− j1

γ1

)
Γ
(
α2− j2

γ2

)
(λ1+λ2+λ12)

j1
γ1

+
j2
γ2 Γ(α1)Γ(α2)

[
j1
γ1 2F1

(
1, j1

γ1
+ j2

γ2
; j2
γ2

+ 1; λ2

λ1+λ2+λ12

)
+ j2

γ2 2F1

(
1, j1

γ1
+ j2

γ2
; j1
γ1

+ 1; λ1

λ1+λ2+λ12

)]
when j1 ̸= 0, j2 ̸= 0,

(4.26)

Case 2) Mw = {{1}, {1, 2}}
(
for α12 >

k2
γ2
, α1 + α12 >

k1
γ1

+ k2
γ2

)
:

Ψ =



1, when j1 = j2 = 0,

Γ
(

j1
γ1

+1
)
Γ
(
α1+α12− j1

γ1

)
(λ1+λ12)

j1
γ1 Γ(α1+α12)

, when j1 ̸= 0, j2 = 0,

Γ
(

j2
γ2

+1
)
Γ
(
α12− j2

γ2

)
(λ2+λ12)

j2
γ2 Γ(α12)

, when j1 = 0, j2 ̸= 0,

Γ
(

j1
γ1

+
j2
γ2

)
Γ
(
α1+α12− j1

γ1
− j2

γ2

)
Γ
(
α12− j2

γ2

)
(λ1+λ2+λ12)

j1
γ1

+
j2
γ2 Γ

(
α1+α12− j2

γ2

)
Γ(α12)

[
j1
γ1 2F1

(
1, j1

γ1
+ j2

γ2
; j2
γ2

+ 1; λ2

λ1+λ2+λ12

)
+ j2

γ2 2F1

(
1, j1

γ1
+ j2

γ2
; j1
γ1

+ 1; λ1

λ1+λ2+λ12

)]
when j1 ̸= 0, j2 ̸= 0,

(4.27)
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Case 3) Mw = {{2}, {1, 2}}
(
for α12 >

k1
γ1
, α2 + α12 >

k1
γ1

+ k2
γ2

)
:

Ψ =



1, when j1 = j2 = 0,

Γ
(

j1
γ1

+1
)
Γ
(
α12− j1

γ1

)
(λ1+λ12)

j1
γ1 Γ(α12)

, when j1 ̸= 0, j2 = 0,

Γ
(

j2
γ2

+1
)
Γ
(
α2+α12− j2

γ2

)
(λ2+λ12)

j2
γ2 Γ(α2+α12)

, when j1 = 0, j2 ̸= 0,

Γ
(

j1
γ1

+
j2
γ2

)
Γ
(
α2+α12− j1

γ1
− j2

γ2

)
Γ
(
α12− j1

γ1

)
(λ1+λ2+λ12)

j1
γ1

+
j2
γ2 Γ

(
α2+α12− j1

γ1

)
Γ(α12)

[
j1
γ1 2F1

(
1, j1

γ1
+ j2

γ2
; j2
γ2

+ 1; λ2

λ1+λ2+λ12

)
+ j2

γ2 2F1

(
1, j1

γ1
+ j2

γ2
; j1
γ1

+ 1; λ1

λ1+λ2+λ12

)]
when j1 ̸= 0, j2 ̸= 0,

(4.28)

Case 4) Mw = {{1, 2}}
(
for α12 >

k1
γ1

+ k2
γ2

)
:

Ψ =



1, when j1 = j2 = 0,

Γ
(

j1
γ1

+1
)
Γ
(
α12− j1

γ1

)
(λ1+λ12)

j1
γ1 Γ(α12)

, when j1 ̸= 0, j2 = 0,

Γ
(

j2
γ2

+1
)
Γ
(
α12− j2

γ2

)
(λ2+λ12)

j2
γ2 Γ(α12)

, when j1 = 0, j2 ̸= 0,

Γ
(

j1
γ1

+
j2
γ2

)
Γ
(
α12− j1

γ1
− j2

γ2

)
(λ1+λ2+λ12)

j1
γ1

+
j2
γ2 Γ(α12)

[
j1
γ1 2F1

(
1, j1

γ1
+ j2

γ2
; j2
γ2

+ 1; λ2

λ1+λ2+λ12

)
+ j2

γ2 2F1

(
1, j1

γ1
+ j2

γ2
; j1
γ1

+ 1; λ1

λ1+λ2+λ12

)]
when j1 ̸= 0, j2 ̸= 0,

(4.29)

Proof. Similar to proof iii of proposition 14.

Proposition 16. Let Mw = P(N ) and Mv ⊂ P(N ) then the k1, k2- raw product moment of

(X1, X2) can be expressed similarly to Equation (4.18) s.t.
(
given α1+α12 >

k1
γ1
, α2+α12 >

k2
γ2

and α1 + α2 + α12 >
k1
γ1

+ k2
γ2

)
:
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Case 1) Mv = {{1}, {2}}:

Ψ =



1, when j1 = j2 = 0,

Γ
(

j1
γ1

+1
)
Γ
(
α1+α12− j1

γ1

)
(λ1)

j1
γ1 Γ(α1+α12)

, when j1 ̸= 0, j2 = 0,

Γ
(

j2
γ2

+1
)
Γ
(
α2+α12− j2

γ2

)
(λ2)

j2
γ2 Γ(α2+α12)

, when j1 = 0, j2 ̸= 0,

Γ
(

j1
γ1

+1
)
Γ
(

j2
γ2

+1
)
Γ
(
α1+α12− j1

γ1

)
Γ
(
α2+α12− j2

γ2

)
(λ1)

j1
γ1 (λ2)

j2
γ2 Γ(α1+α12)Γ(α2+α12)

when j1 ̸= 0, j2 ̸= 0

×3F2

(
α12,

j1
γ1
, j2
γ2
;α1 + α12, α2 + α12; 1

)
,

(4.30)

Case 2) Mv = {{1}, {1, 2}}:

Ψ =



1, when j1 = j2 = 0,

Γ
(

j1
γ1

+1
)
Γ
(
α1+α12− j1

γ1

)
(λ1+λ12)

j1
γ1 Γ(α1+α12)

, when j1 ̸= 0, j2 = 0,

Γ
(

j2
γ2

+1
)
Γ
(
α2+α12− j2

γ2

)
(λ12)

j2
γ2 Γ(α2+α12)

, when j1 = 0, j2 ̸= 0,

Γ
(

j1
γ1

+
j2
γ2

)
Γ
(
α1+α12− j1

γ1

)
Γ
(
α2+α12− j2

γ2

)
(λ1+λ12)

j1
γ1

+
j2
γ2 Γ(α1+α12)Γ(α2+α12)

[
j1
γ1

+ j2
γ2 2F1

(
1, j1

γ1
+ j2

γ2
; j1
γ1

+ 1; λ1

λ1+λ12

)]
when j1 ̸= 0, j2 ̸= 0,

× 3F2

(
α12,

j1
γ1
, j2
γ2
;α1 + α12, α2 + α12; 1

)
,

(4.31)

Case 3) Mv = {{2}, {1, 2}}:

Ψ =



1, when j1 = j2 = 0,

Γ
(

j1
γ1

+1
)
Γ
(
α1+α12− j1

γ1

)
(λ12)

j1
γ1 Γ(α1+α12)

, when j1 ̸= 0, j2 = 0,

Γ
(

j2
γ2

+1
)
Γ
(
α2+α12− j2

γ2

)
(λ2+λ12)

j2
γ2 Γ(α2+α12)

, when j1 = 0, j2 ̸= 0,

Γ
(

j1
γ1

+
j2
γ2

)
Γ
(
α1+α12− j1

γ1

)
Γ
(
α2+α12− j2

γ2

)
(λ2+λ12)

j1
γ1

+
j2
γ2 Γ(α1+α12)Γ(α2+α12)

[
j2
γ2

+ j1
γ1 2F1

(
1, j1

γ1
+ j2

γ2
; j2
γ2

+ 1; λ2

λ2+λ12

)]
when j1 ̸= 0, j2 ̸= 0,

× 3F2

(
α12,

j1
γ1
, j2
γ2
;α1 + α12, α2 + α12; 1

)
,

(4.32)
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Case 4) Mv = {{1, 2}}:

Ψ =



1, when j1 = j2 = 0,

Γ
(

j1
γ1

+1
)
Γ
(
α1+α12− j1

γ1

)
(λ12)

j1
γ1 Γ(α1+α12)

, when j1 ̸= 0, j2 = 0,

Γ
(

j2
γ2

+1
)
Γ
(
α2+α12− j2

γ2

)
(λ12)

j2
γ2 Γ(α2+α12)

, when j1 = 0, j2 ̸= 0,

Γ
(

j1
γ1

+
j2
γ2

)
Γ
(
α1+α12− j1

γ1

)
Γ
(
α2+α12− j2

γ2

)
(λ12)

j1
γ1

+
j2
γ2 Γ(α1+α12)Γ(α2+α12)

[
j1
γ1

when j1 ̸= 0, j2 ̸= 0,

+ j2
γ2

]
3F2

(
α12,

j1
γ1
, j2
γ2
;α1 + α12, α2 + α12; 1

)
.

(4.33)

Proof. Similar to that of proposition 15.

Remark 15. Similar to Corollary 5 we can derive the product moments (k1 = k2 = 1) and

consequently the correlations for the different cases of propositions 15 & 16.

Remark 16. When Mw ⊂ P(N ) and Mv ⊂ P(N ) i.e. both are strict subsets, then their

k1, k2-raw product moments are a combination of those in propositions 15 and 16. This works

since V and W are independent.

Example 14. Set µi = 0, σi = 1, γi = 1, i = 1, 2. Then the correlations for examples 10,

11 and 12 are (given α1 > 2, α2 > 2, α1 + α12 > 2 and/or α2 + α12 > 2):

Example 10:

Case 1 : Corr[X1X2] =
λ12

(λ1 + λ2 + λ12)

√
(α1 − 2)(α2 − 2)

α1α2

.

Case 2 : Corr[X1X2] =
λ1 + λ2 + (α1 + α12)λ12

(α1 + α12) (λ1 + λ2 + λ12)

√
(α1 + α12)(α12 − 2)

α12 (α1 + α12 − 2)
.

Case 3 : Corr[X1X2] =
λ1 + λ2 + (α2 + α12)λ12

(α2 + α12) (λ1 + λ2 + λ12)

√
(α2 + α12)(α12 − 2)

α12 (α2 + α12 − 2)
.

Example 11:

Case 1 : Corr[X1X2] = ( 3F2 (1, 1, α12;α1 + α12, α2 + α12; 1)− 1)

√
(α1 + α12 − 2) (α2 + α12 − 2)

(α1 + α12) (α2 + α12)
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Case 2 : Corr[X1X2] = ((λ1 + 2λ12) 3F2 (1, 1, α12;α1 + α12, α2 + α12; 1)− (λ1 + λ12))

×

√
(α1 + α12 − 2) (α2 + α12 − 2)

(α1 + α12) (α2 + α12)

Case 3 : Corr[X1X2] = ((λ2 + 2λ12) 3F2 (1, 1, α12;α1 + α12, α2 + α12; 1)− (λ2 + λ12))

×

√
(α1 + α12 − 2) (α2 + α12 − 2)

(α1 + α12) (α2 + α12)

Example 12:

Corr[X1X2] =
λ1 + λ2 + α12λ12

α12(λ1 + λ2 + λ12)
.

Granted that the Pareto-Dirichlet extension suffers from the usual non-negative corre-

lations. However, in its generality, it reflected assorted forms capable of grasping different

modelling choices. We conclude our study with an application to the pricing functionals,

calculating the different risk measures and allocations when the joint law is of the Pareto-

Dirichlet type.

4.4 Application in premium pricing function-

als

Risk measures are of utmost importance for risk managers, especially in insurance. They

are used to gauge the riskiness of the financial entity determining its economic capital re-

quirements. Two of the most prominent measures are the Value-at-Risk (VaR) (Linsmeier

and Pearson, 2000) and the Conditional Tail Expectation (CTE) (Acerbi and Tasche, 2002;

Tasche, 2002; Wang and Zitikis, 2021; Yamai and Yoshiba, 2005) with the latter superseding

the former.

Definition 8. For a prudence level q ∈ [0, 1) the VaR and CTE are defined as:

VaRq[Y ] = inf{y : FY (y) ≥ q}, (4.34)
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CTEq[Y ] =
1

1− q

∫ 1

q

VaRt[Y ] dt, (4.35)

When the CDF FY of Y is continuous, then CTEq[Y ] = E [Y |Y > VaRq[Y ]] .

Proposition 17. Since Xi ∼ Pareto IV then the two measures for standalone losses can be

written as:

VaRq[Xi] = µi + σi

(
(1− q)

− 1
α̃i − 1

λ̃i

) 1
γi

. (4.36)

CTEq[Xi] = µi +
σiα̃i

λ̃
1
γi
i (1− q)

β
(1−q)

1
α̃i

(
α̃i −

1

γi
,
1

γi
+ 1

)
, α̃i >

1

γi
. (4.37)

Where βz (p, q) is the regularized incomplete beta function.

Proof. Straightforward evaluations.

Corollary 6. When µi = 0 and σi = γi = 1 then the two measures simplify to:

VaRq[Xi] =
(1− q)

− 1
α̃i − 1

λ̃i

, (4.38)

CTEq[Xi] =
1

α̃i − 1

[
α̃iVaRq[Xi] +

1

λ̃i

]
, α̃i > 1. (4.39)

Albeit the forms of VaR and CTE are compact for each Xi, risk measures usually deal

with aggregates of losses. Regrettably, under the Pareto-Dirichlet structure, the convolution

S =
∑n

j=1Xj is quite cumbersome to calculate, let alone computing the respective risk

measures. However, in some particular cases, such as the one in example 12, the CTE

measure can be discerned as a function of VaR.

Proposition 18. Let X = (X1, X2) be Pareto-Dirichlet, s.t. Mw, Mv and the univariate

transformations as in proposition 13. Additionally, set λ1 = λ2 = λ, λ12 ̸= 0, and α12 > 1.

Then the CTE risk measure of the aggregate S = X1 + X2, in terms of VaR denoted by

sq = VaRq[S] for a prudence level q ∈ [0, 1), is given by:

CTEq[S] = sq +
2

(1− q) (α12 − 1)λ12 (2λ+ λ12) 3

(
− λ (2λ+ λ12)

3
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×(λ+ λ12)
−α12−1 (λsq + λ12sq + 1)

(
1

λ+ λ12

+ sq

)
−α12+2

(
λ+

λ12

2

)
−α12

(
2

2λ+ λ12

+ sq

)
−α12

λ12

(
λ12 (2α12λsq + λ12 (α12 + λ+ 1) sq + λ ((5λ+ 2)sq + 2) + 4) + 2λ2 (4λsq + 3)

)
+4λ3 (λsq + 1)

)
.

(4.40)

Proof. Integration of the survival function in proposition 13 yields the result.

Corollary 7. The CTE of the convolution for the special cases in remark 14 can be straight-

forwardly obtained. Given α > 1 and q ∈ [0, 1):

1) When one of λi = λj + λ12, i ̸= j ∈ N holds, then:

CTEq[S] = sq+
1

2(1− q) (α12 − 1)λ12 (λj + λ12) 3

(
λ12

(
(λj + λ12)

2 + 2λ12

)
((λj + λ12) sq + 1) −α12

× (α12 (λj + λ12) sq + 1) +
(
λ2
12 (4λj + 2) + 4λ12λ

2
j + λ3

j + λ3
12

)
((λj + λ12) sq + 1) 1−α12

− λj (λj + λ12)
3 ((λj + 2λ12) sq + 1) 1−α12

λj + 2λ12

)
. (4.41)

2) When both conditions hold, then:

CTEq[S] = sq +
(λsq + 1) −α12 ((α12 + 1)λsq + 2)

(1− q) (α12 − 1)λ
. (4.42)

For similar reasons, inverting the survival function of S in proposition 13 is not attain-

able. Thus the VaR can only be deduced numerically. Nonetheless, a compact form is

obtainable for some choices of parameters. For example, let α12 = 1 then the VaR of (4.17),

as a function of q, is straightforwardly derived as VaRq[S] =
1
λ

√
q

1−√
q
.

On the opposite direction of risk aggregation, when the goal is to gauge the riskiness of

distinct business units or conduct marginal economic capital analysis, then we revert to risk

capital allocations (CAs) (Denault, 2001; Dhaene et al., 2012; Furman and Zitikis, 2008b).

CAs are an important tool in quantitative risk management, as they capture the performance

of the individual with respect to the others. As a consequence, interdependence plays a

crucial role in determining their outcome. Henceforth, we consider two main allocations, the
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first gauges the riskiness of one BU to another, also called a regression CA, and the second,

induced by the CTE measure, which deals with the relationship of the respective BU to the

whole (aggregate).

Definition 9. A regression CA (RCA) is defined as:

Ai1(Xi1 , Xi2) = E [Xi1|Xi2 > y] , y ≥ 0. (4.43)

Proposition 19. Let X = (X1, X2) be Pareto-Dirichlet s.t. Mw = Mv = P(N ). Further-

more set µi = 0 and σi = γi = 1, ∀i ∈ N . Then for y ≥ 0:

E [Xi1|Xi2 > y] =
(1 + (λi2 + λ12)y )αi2

+α12

λi1(λi1 + λ12)(αi1 + α12 − 1)

[
(λi1 + λ12) (1 + (λi2 + λ12)y )−αi2

× 2F1 (α12, αi1 + α12 − 1;αi1 + α12;−(λi2 + λ12)y)− λ12 (1 + (λi1 + λi2 + λ12)y )−αi2

× 2F1 (α12, αi1 + α12 − 1;αi1 + α12;−(λi1 + λi2 + λ12)y)
]
, (4.44)

given αi1 + α12 > 1.

Proof. See appendix iv.

Following the setting of proposition 19, the next assertions discuss the limiting cases of

Mw ⊂ P(N ) and Mv ⊂ P(N ). Their proofs are similar to that of iv.

Proposition 20. If Mw ⊂ P(N ) and Mv = P(N ), then:

Case 1: Mw = {{i1}, {i2}} ( given αi1 > 1 ) :

E [Xi1|Xi2 > y] =
(1 + (λi2 + λ12)y )αi2

λi1(λi1 + λ12)(αi1 − 1)

[
(λi1 + λ12) (1 + (λi2 + λ12)y )−αi2

− λ12 (1 + (λi1 + λi2 + λ12)y )−αi2

]
, (4.45)

Case 2: Mw = {{i1}, {1, 2}} ( given αi1 + α12 > 1 ) :

E [Xi1 |Xi2 > y] =
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(1 + (λi2 + λ12)y )α12

λi1(λi1 + λ12)(αi1 + α12 − 1)

[
(λi1 + λ12) 2F1 (α12, αi1 + α12 − 1;αi1 + α12;−(λi2 + λ12)y)

− λ12 2F1 (α12, αi1 + α12 − 1;αi1 + α12;−(λi1 + λi2 + λ12)y)
]
. (4.46)

Case 3: Mw = {{i2}, {1, 2}} (given α12 > 1):

E [Xi1 |Xi2 > y] =
(1 + (λi2 + λ12)y )αi2

+α12

λi1(λi1 + λ12)(α12 − 1)

[
(λi1 + λ12) (1 + (λi2 + λ12)y )1−αi2

−α12

− λ12 (1 + (λi1 + λi2 + λ12)y )1−αi2
−α12

]
, (4.47)

Case 4: Mw = {{1, 2}} (given α12 > 1):

E [Xi1 |Xi2 > y] =
(1 + (λi2 + λ12)y )α12

λi1(λi1 + λ12)(α12 − 1)

[
(λi1 + λ12) (1 + (λi2 + λ12)y )1−α12

− λ12 (1 + (λi1 + λi2 + λ12)y )1−α12

]
, (4.48)

Proposition 21. If Mv ⊂ P(N ) and Mw = P(N ), then ( given αi1 + α12 > 1 ):

Case 1: Mv = {{i1}, {i2}}:

E [Xi1|Xi2 > y] =
(1 + λi2y )α12

λi1(αi1 + α12 − 1)
2F1 (α12, αi1 + α12 − 1;αi1 + α12;−λi2y) .

(4.49)

Case 2: Mv = {{i1}, {1, 2}}:

E [Xi1|Xi2 > y] =
(1 + λ12y )αi2

+α12

λi1(λi1 + λ12)(αi1 + α12 − 1)

[
(λi1 + λ12) (1 + λ12y )−αi2

× 2F1 (α12, αi1 + α12 − 1;αi1 + α12;−λ12y)− λ12 (1 + (λi1 + λ12)y )−αi2

× 2F1 (α12, αi1 + α12 − 1;αi1 + α12;−(λi1 + λ12)y)
]
. (4.50)

Case 3: Mv = {{i2}, {1, 2}}:
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E [Xi1|Xi2 > y] =
(1 + (λi2 + λ12)y )α12−1

λ12

[(1 + (λi2 + λ12(1 + α2))y )

(αi1 + α12 − 1)

× 2F1 (α12, αi1 + α12 − 1;αi1 + α12;−(λi2 + λ12)y) +
α12λ12 (1 + (λi2 + λ12)y ) y

αi1 + α12

× 2F1 (α12 + 1, αi1 + α12;αi1 + α12 + 1;−(λi2 + λ12)y)
]
, (4.51)

Case 4: Mv = {{1, 2}}:

E [Xi1 |Xi2 > y] =
(1 + λ12y )α12−1

λ12

[(1 + λ12(1 + α2)y )

(αi1 + α12 − 1)

× 2F1 (α12, αi1 + α12 − 1;αi1 + α12;−λ12y) +
α12λ12 (1 + λ12y ) y

αi1 + α12

× 2F1 (α12 + 1, αi1 + α12;αi1 + α12 + 1;−λ12y)
]
, (4.52)

Parallel to remark 16 when Mw ⊂ P(N ) and Mv ⊂ P(N ), then their RCA regressions

are a combination of those in propositions 20 and 21. The next corollary show how to retrieve

the regression functions from their RCAs counterparts.

Remark 17. We can easily deduce the regression function from the results of propositions

19, 20 and 21, simply by differentiation. Namely:

E[Xi1|Xi2 = y] =

d

dy
E
[
Xi11{Xi2

>y}
]

d

dy
P[Xi2 > y]

= − 1

fXi2
(y)

d

dy
(P[Xi2 > y]× E[Xi1|Xi2 > y]) . (4.53)

Example 15. Set Mw and Mv as in example 12 ( case 4 of proposition 20 ), then the

regression function is ( given α12 > 1 ):

E[Xi1|Xi2 = y] =
1

α12λi1 (λi1 + λ12) (λi2 + λ12)

(
(λi1 + λ12) (λi2 + λ12) (1 + (λi2 + λ12) y)

− λ12 (λi1 + λi2 + λ12) (1 + (λi2 + λ12) y)
α12+1 (1 + (λi1 + λi2 + λ12) y)

−α12

)
. (4.54)

We notice that E[Xi1|Xi2 = y] is increasing for y ≥ 0, and when λi2 + λ12 >> λi1 then
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E[X1|X2 = y] behaves almost linearly, specifically:

E[Xi1|Xi2 = y] ≈ λi2 (1 + (λi2 + λ12) y)

α12 (λi1 + λ12) (λi2 + λ12)
. (4.55)

Similar conclusions can be made for the other cases of proposition 20. The following figure

show two plots of the regression function when a) normal b) almost linear choice of param-

eters. The blue curves represent the regression functions, each compared with a straight line

in orange.

(a) α12 = λi1 = 2 and λi2 = λ12 = 1 (b) α12 = λi2 = 2 and λi1 = λ12 = 1

We notice that in 4.2a the regression function is concave while in 4.2b is almost linear

compared to the respective straight lines.

The second, and the most prominent CA used today, is the one induced by the CTE risk

measure (see Mohammed et al. (2021)). The CTE allocation quantifies the sensitivity of the

part with respect to the aggregate S.

Definition 10. A CTE capital allocation (CCA) is defined as:

Ai(Xi, S; q) = E [Xi|S > sq] , sq ≥ 0. (4.56)

Where S =
∑n

j=1Xj and sq = VaRq[S], q ∈ [0, 1).

Due to the complexity and intractability of the aggregate distribution, computing (4.56)

96



and sq (as the VaR of equation (4.15) illustrates) is generally confined to numerical evalu-

ations. There are, however, some special cases where closed forms for (4.56) in terms of sq

are possible. The next remark and subsequent example provide an illustration.

Remark 18. If X = (X1, X2) is Pareto-Dirichlet, s.t. µi = 0, σi = γi = 1, ∀i ∈ N ,

with Mw = {{1, 2}} and Mv = {{1}, {2}, {1, 2}} then the CCA allocation is already quite

complex. For any n > 2, the CCA allocation is very cumbersome and involves integrations

of exponentials along different domains. Since those domains depend on ZN as well (which

is integrated over in order to obtain some tractable form) representing the CCA as a general

expression is almost impossible. However when n = 2, and under simplified settings, such as

if λ1 = λ2 = λ12 = λ, then a closed form is obtainable. Specifically:

E[Xi|S > sq] =

((
3λsq
2

+ 1
)
(2λsq + 1)

)
−α
(
(2λsq + 1) α (3αλsq + 2)−

(
3λsq
2

+ 1
)

α (2αλsq + 1)
)

2(1− q)(α− 1)λ
.

(4.57)

The following example, under different simplified assumptions, provides additional illustra-

tions.

Example 16. Let X = (X1, X2) be Pareto-Dirichlet, s.t. µi = 0, σi = γi = 1, ∀i ∈ N . Set

Mw = {{1, 2}} with α12 > 1 then for the different choices of Mv, the CCA allocation can

be written, in terms of the VaR sq, as:

Case 1: Mv = {{i1}, {i2}} :

E [Xi1|S > sq] =

((1 + λi1sq) (1 + λi2sq))
−α12

(1− q) (α12 − 1)λi1 (λi1 − λi2)
2

(
λ2
i2
(1 + λi2sq)

α12 + λi1λi2 (α12λi2sq − 2) (1 + λi2sq)
α12

+ λ2
i1
((1 + λi1sq)

α12 + λi2sq ((1 + λi1sq)
α12 − α12 (1 + λi2sq)

α12 − (1 + λi2sq)
α12))

)
. (4.58)

Case 2: Mv = {{i1}, {1, 2}} :

E [Xi1|S > sq] =

(
(1 + λ12sq)

(
1 + 1

2
(λi1 + λ12) sq

)) −α12

2(1− q) (α12 − 1) (λi1 − λ12) 2 (λi1 + λ12)
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×

(
λ2
12 (2 + α12λ12sq) (1 + λ12sq)

α12+2λi1λ12

(
−3 (1 + λ12sq)

α12+

(
1 +

1

2
(λi1 + λ12) sq

)
α12

+ λ12sq

((
1 +

1

2
(λi1 + λ12) sq

)
α12 − (1 + λ12sq)

α12

))
+ λ2

i1

(
2

(
1 +

1

2
(λi1 + λ12) sq

)
α12

− λ12sq

(
α12 (1 + λ12sq)

α12 + 2 (1 + λ12sq)
α12 − 2

(
1 +

1

2
(λi1 + λ12) sq

)
α12

)))
. (4.59)

Case 3: Mv = {{i2}, {1, 2}} :

E [Xi1 |S > sq] =
2α12−1 ((1 + λ12sq) (2 + (λi2 + λ12) sq))

−α12

(1− q) (α12 − 1) (λi2 − λ12) 2λ12

×

(
λ2
12 (2 + α12λ12sq) (1 + λ12sq)

α12 + 2λ2
i2
(1 + α12λ12sq)

(
1 +

1

2
(λi2 + λ12) sq

)
α12

−λi2λ12

(
4

(
1 +

1

2
(λi2 + λ12) sq

)
α12+λ12sq

(
2

((
1 +

1

2
(λi2 + λ12) sq

)
α12 − (1 + λ12sq)

α12

)

+ α12

(
(1 + λ12sq)

α12 + 2

(
1 +

1

2
(λi2 + λ12) sq

)
α12

))))
. (4.60)

Case 4: Mv = {{1, 2}} :

E [Xi1 |S > sq] =

(
1 + λ12sq

2

)
−α12 (2 + α12λ12sq)

2(1− q) (α12 − 1)λ12

.

(4.61)

The following figure includes plots of sq 7→ E [Xi1|S > sq] for the 4 cases of example 16. The

exponential parameters are chosen to reflect the respective cases. For all plots, the gamma

shape α12 is set at 2.
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(a) Case 1a (b) Case 1b
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(c) Case 2a (d) Case 2b

(e) Case 3a (f) Case 3b

(g) Case 4

As expected, for all cases, sq 7→ E [Xi1|S > sq] is an increasing function. Interestingly,

the behaviour of the allocation varies for the different choices of λ. In addition, since W

is a common independent factor, then the allocation structure , for the individual loss given

the sum S = 1
W
(Vi1 + Vi2), is mostly influenced by the MO joint law of the random vector

V = (Vi1 , Vi2) = (min (Ei1 , E12) ,min (Ei2 , E12)).
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For case 1 (independent Vi1 = Ei1 and Vi2 = Ei2): a) as λi1 goes up, the allocation curve

shifts downward for all sq due to the lower overall exponential mean of the corresponding

random variable Ei1. b) On the other hand, the opposite happens when λi2 is augmented.

This is a consequence of Ei2 taking smaller values and most contribution for the sum comes

from Ei1, i.e. Vi1 takes larger values to compensate, rendering a larger expectation.

In case 2 (Vi1 = min (Ei1 , E12) and Vi2 = E12): a) the role of λi1 is similar to that of case

1a. b) When it comes to varying λ12, the effect on E [Xi1|S > sq] is quite mixed. If sq is on

the lower-end then E [Xi1 |S > sq] ≈ E
[
min(Ei1

,E12)
W

]
. This implies a larger allocation for a

smaller λ12 due to the larger overall mean. As sq increases, and crosses a certain threshold,

the reverse order holds. This is justified by the co-monotonic effect between (Xi1 , S). It is

higher when λ12 is larger.

Case 3 (Vi1 = E12 and Vi2 = min (Ei2 , E12)): a) the role of λi2 is similar to that of case 1b.

b) similar to case 2b.

For case 4 (Vi1 = Vi2 = E12): as λ12 increases the mean decreases, which in turn yields

smaller allocation.
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A Proofs

i Proof of Theorem 14

Proof.

FX(x1, . . . , xn) =
∏

B∈Mw

1

Γ(αB)

∫
Rmw
+

P

 n⋂
i=1

{Vi > xiz̃i|Wi = z̃i}

 ∏
B∈Mw

zαB−1
B e−zBdz,

=
∏

B∈Mw

1

Γ(αB)

∫
Rmw
+

exp

{
−

∑
{i}∈Mv

λixiz̃i −
∑

{i1,i2}∈Mv

λi1i2 max(xi1 z̃i1 , xi2 z̃i2)

− · · · − 1{N∈Mv}λN max (xiz̃i : i ∈ N )

} ∏
B∈Mw

zαB−1
B e−zBdz,

By the change of variables (ZB : B ∈ Mw) → ((RB : B ∈ Mw), S), s.t. S = Z+ and

RB = ZB

S
, we get:

FX(x1, . . . , xn) =
∏

B∈Mw

1

Γ(αB)

∫
∆mw−1

∫
R+

sα
+−1 exp

{
− s

( ∑
{i}∈Mv

λixir̃i

+
∑

{i1,i2}∈Mv

λi1i2 max(xi1 r̃i1 , xi2 r̃i2) + · · ·+ 1{N∈Mv}λN max(xir̃i : i ∈ N )

)}

×
∏

B∈Mw

rαB−1
B e−srBdsdr,

=
∏

B∈Mw

1

Γ(αB)

∫
∆mw−1

∏
B∈Mw

rαB−1
B

∫
R+

sα
+−1 exp

{
− s

(
1 +

∑
{i}∈Mv

λixir̃i

+
∑

{i1,i2}∈Mv

λi1i2 max(xi1 r̃i1 , xi2 r̃i2) + · · ·+ 1{N∈Mv}λN max(xir̃i : i ∈ N )

)}
dsdr,

=
1

β(α)

∫
∆mw−1

∏
B∈Mw

rαB−1
B(

1 +
∑

{i}∈Mv

λixir̃i + · · ·+ 1{N∈Mv}λN max(xir̃i : i ∈ N )

)α+ dr
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Where ∆mw−1 is the standard (mw − 1)-simplex.

The number of terms of the denominator 1+
∑

{i}∈Mv

λixir̃i+· · ·+1{N∈Mv}λN max(xir̃i : i ∈ N )

is mv + 1 and they depend on the elements of the set Mv.

Let’s assume x1r̃1 ≥ x2r̃2 ≥ · · · ≥ xnr̃n, we will call this case j = 1, and denote λ
(1)
1 ={ ∑

B∈Mv\S
λB : 1 ∈ B

}
, λ

(1)
2 =

{ ∑
B∈Mv\S

λB : 2 ∈ B and 1 ̸∈ B

}
,

λ
(1)
3 =

{ ∑
B∈Mv\S

λB : 3 ∈ B and 1, 2 ̸∈ B

}
and so on until λ

(1)
n = λn1{n}∈Mv\S . For j =

2, 3, . . . , n! we follow the standard permutation ordering and follow the same procedure

as above. For instance, for the last case j = n! we have λ
(n!)
n =

{ ∑
B∈Mv\S

λB : n ∈ B

}
,

λ
(n!)
n−1 =

{ ∑
B∈Mv\S

λB : n− 1 ∈ B and n ̸∈ B

}
, and so on until λ

(n!)
1 = λ11{1}∈Mv\S . We will

follow the convention λ
(j)
i = 0 whenever λ

(j)
i =

{ ∑
B∈Mv\S

λB : . . .

}
= ∅.

When n = 3, then the permutation cases (and order) are j = 1, x1r̃1 ≥ x2r̃2 ≥ x3r̃3,

j = 2, x1r̃1 ≥ x3r̃3 ≥ x2r̃2, j = 3, x2r̃2 ≥ x1r̃1 ≥ x3r̃3, j = 4, x2r̃2 ≥ x3r̃3 ≥ x1r̃1,

j = 5, x3r̃3 ≥ x1r̃1 ≥ x2r̃2 and j = 6, x3r̃3 ≥ x2r̃2 ≥ x1r̃1. The number of cases will depend

on Mv and S. It is less than n!, i.e. some cases will fuse together, whenever Mv ⊂ P(N )

or S ≠ ∅.

Define ∆(1)(x1, . . . , xn) = {(rB)B∈Mw ∈ ∆mw−1 : x1r̃1 ≥ x2r̃2 ≥ · · · ≥ xnr̃n} ,

∆(2)(x1, . . . , xn) = {(rB)B∈Mw ∈ ∆mw−1 : x1r̃1 ≥ x2r̃2 ≥ · · · ≥ xnr̃n ≥ xn−1r̃n−1} and so on

until case j = n! we have ∆(n!)(x1, . . . , xn) = {(rB)B∈Mw ∈ ∆mw−1 : xnr̃n ≥ xn−1r̃n−1 ≥ · · · ≥ x1r̃1} .

Each

∆(j)(x1, . . . , xn) is a region (subset) of the standard simplex determined by the tuple (x1, . . . , xn)

s.t. ∪n!
j=1∆

(j)(x1, . . . , xn) = ∆mw−1.
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Using all of the above we get:

FX(x1, . . . , xn) =
1

β(α)


n!∑
j=1∫

∆(j)(x1,...,xn)

∏
B∈Mw

rαB−1
B(

1 +
n∑

i=1

λ
(j)
i xir̃i +

∑
B∈S

rB
∑

B′∈SB

λB′ max(xi : i ∈ B′)

)α+ dr

 ,

With the change of variables (RB : B ∈ Mw) → (TB : B ∈ Mw) s.t.

TB =

(
1 +

∑
i∈B

λ
(j)
i xi +

∑
B′∈SB

λB′ max(xi : i ∈ B
′
)

)
RB

1 +
n∑

i=1

λ
(j)
i xiR̃i +

∑
A∈S

RA

∑
A′∈SA

λA′ max(xi : i ∈ A′)
.

We notice that
∑

B∈Mw

TB = 1 a.s. Let

⋆∏
B∈Mw

(
1 +

∑
i∈B

λ
(j)
i xi +

∑
B′∈SB

λB
′ max(xi : i ∈ B

′
)

)
be

the unique product (without repetitions) of
∏

B∈Mw

(
1 +

∑
i∈B

λ
(j)
i xi +

∑
B′∈SB

λB′ max(xi : i ∈ B
′
)

)
.

Then define:

θB =

⋆∏
A∈Mw

(
1 +

∑
i∈A

λ
(j)
i xi +

∑
A′∈SA

λA′ max(xi : i ∈ A
′
)

)
(
1 +

∑
i∈B

λ
(j)
i xi +

∑
B′∈SB

λB′ max(xi : i ∈ B′)

) ,

which changes depending on the corresponding case j. Then RB in terms of TB is:

RB =
θBTB∑

A∈Mw

θATA

.
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Furthermore, define the transformed region of the simplex as:

∆(j)(x1, . . . , xn) =

(tB)B∈Mw ∈ ∆mw−1 :

 θBtB∑
A∈Mw

θAtA


B∈Mw

∈ ∆(j)(x1, . . . , xn)

 .

We notice that {∆(j)(x1, . . . , xn)}1≤j≤n! are disjoint except on a subset of measure zero.

Putting everything together we get::

FX(x1, . . . , xn) =
1

β(α)

[ n!∑
j=1

∏
B∈Mw

1 +
∑
i∈B

λ
(j)
i xi +

∑
B′∈SB

λB′ max(xi : i ∈ B
′
)

−αB

×

∫
∆(j)(x1,...,xn)

∏
B∈Mw

tαB−1
B dt

]
,

=

n!∑
j=1

MP(j) (x1, . . . , xn)
1

β(α)

∫
∆(j)(x1,...,xn)

∏
B∈Mw

tαB−1
B dt,

=

n!∑
j=1

MP(j) (x1, . . . , xn) Dir(j) (x1, . . . , xn) .

To prove the last claim of
n!∑
j=1

Dir(j) (x1, . . . , xn) ≤ 1. Since r̃i ∝
∑

i∈B∈Mw

θBtB, we notice

that going through the cases, j = 1 to j = n! i.e. x1r̃1 ≥ · · · ≥ xnr̃n to xnr̃n ≥ · · · ≥

x1r̃1, the θB’s decrease in the increasing r̃i terms while they increase in the decreasing

terms. This implies that the union of the (disjoint) cases do not span the whole simplex i.e.

∪n!
j=1∆

(j)(x1, . . . , xn) ⊆ ∆mw−1. The inclusion is strict with the equality attained if and only

if there is only one case. All of which implies
n!∑
j=1

Dir(j) (x1, . . . , xn) ≤ 1.
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ii Proof of Proposition 11

Proof. Similar to proof i of theorem 14, let’s assume x1 > x2 > · · · > xn.We will call this case

j = 1, and denote λ
(1)
l1

=

{ ∑
B′∈SB

λB′ : 1 ∈ B
′

}
where SB = SB∪G, G ⊆ {{1}, {2}, . . . , {n}},

λ
(1)
l2

=

{ ∑
B′∈SB

λB′ : 2 ∈ B
′
and 1 ̸∈ B

′

}
,

λ
(1)
l3

=

{ ∑
B

′∈SB

λB′ : 3 ∈ B
′
and 1, 2 ̸∈ B

′

}
, and so on until λ

(1)
ln

= λn1{n}∈SB
. For j =

2, 3, . . . , n! we follow the standard permutation ordering and follow the same procedure as

above. The subscripts ls of each λ(j) correspond to the position of the case order and not of

the index shared (unlike theorem 14). Finally, integrating the absolutely continuous parts

of the Marshall-Olkin B-vector (Vi : i ∈ B), we get the desired result.

iii Proof of Proposition 14

Proof. We first notice that E
[
Xk1

1 Xk2
2

]
involves combinations of E

[(
V1

W1

) j1
γ1

]
, E
[(

V2

W2

) j2
γ2

]
and E

[(
V1

W1

) j1
γ1

(
V2

W2

) j2
γ2

]
. Since the first two are a direct result of remark 9, and absorb-

ing the j1, j2 into the γ1, γ2, it suffices to prove the expression of E
[(

V1

W1

) 1
γ1

(
V2

W2

) 1
γ2

]
. By

independence:

E

[(
V1

W1

) 1
γ1

(
V2

W2

) 1
γ2

]
= E

[
(V1)

1
γ1 (V2)

1
γ2

]
E

[(
1

W1

) 1
γ1

(
1

W2

) 1
γ2

]
.

We will handle each expectation separately.

E
[
(V1)

1
γ1 (V2)

1
γ2

]
=

1

γ1γ2

∫
R2
+

u
1
γ1

−1

1 u
1
γ2

−1

2 exp{−λ1u1 − λ2u2 − λ12max(u1, u2)}du1du2,

=
1

γ1γ2

[∫ ∞

0

u
1
γ2

−1

2 exp{−λ2u2}
∫ ∞

u2

u
1
γ1

−1

1 exp{−(λ1 + λ12)u1}du1du2

+

∫ ∞

0

u
1
γ2

−1

2 exp{−(λ2 + λ12)u2}
∫ u2

0

u
1
γ1

−1

1 exp{−λ1u1}du1du2

]
,
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=
1

γ1γ2

[
1

(λ1 + λ12)
1
γ1

∫ ∞

0

u
1
γ2

−1

2 exp{−λ2u2} Γ

(
1

γ1
, (λ1 + λ12)u2

)
du2

+
1

λ
1
γ1
1

∫ ∞

0

u
1
γ2

−1

2 exp{−(λ2 + λ12)u2} γ

(
1

γ1
, λ1u2

)
du2,

where Γ(·, ·), γ(·, ·) are the upper and lower incomplete gamma functions respectively. Then

using equations 6.455 - (1)(2) in Gradshteyn and Ryzhik (2014) we get the desired result

i.e.:

E
[
(V1)

1
γ1 (V2)

1
γ2

]
=

Γ
(

1
γ1

+ 1
γ2

)
(λ1 + λ2 + λ12)

1
γ1

+ 1
γ2

[
1

γ1
2F1

(
1,

1

γ1
+

1

γ2
;
1

γ2
+ 1;

λ2

λ1 + λ2 + λ12

)

+
1

γ2
2F1

(
1,

1

γ1
+

1

γ2
;
1

γ1
+ 1;

λ1

λ1 + λ2 + λ12

)]
.

We now turn to the second expectation:

E

[(
1

W1

) 1
γ1

(
1

W2

) 1
γ2

]
=

1

Γ(α1)Γ(α2)Γ(α12)

∫
R3
+

uα1−1
1 uα2−1

2 uα12−1
12

(u1 + u12)
1
γ1 (u2 + u12)

1
γ2

× exp{−u1 − u2 − u12}du1du2du12,

=
1

Γ
(

1
γ1

)
Γ
(

1
γ2

) ∞∫
0

∞∫
0

s
1
γ1

−1

1 s
1
γ2

−1

2 (1 + s1)
−α1(1 + s2)

−α2

(s1 + s2 + 1)α12
ds1ds2,

=
1

Γ
(

1
γ1

)
Γ
(

1
γ2

) ∞∫
0

s
1
γ2

−1

2

(1 + s2)α2
2F1

(
α12, α1 + α12 −

1

γ1
;α1 + α12;−s2

)
ds2,

=
Γ
(
α1 + α12 − 1

γ1

)
Γ (α1 + α12) Γ

(
1
γ2

) 1∫
0

t
1
γ2

−1

2 (1− t2)
α2− 1

γ2
−1

× 2F1

(
α12, α1 + α12 −

1

γ1
;α1 + α12;

1

t2

)
dt2,

=
Γ
(
α1 + α12 − 1

γ1

)
Γ (α1 + α12) Γ

(
1
γ2

) 1∫
0

t
1
γ2

−1

2 (1− t2)
α12+α2− 1

γ2
−1
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× 2F1

(
α12,

1

γ1
;α1 + α12; t2

)
dt2,

=
Γ
(
α1 + α12 − 1

γ1

)
Γ
(
α2 + α12 − 1

γ2

)
Γ (α1 + α12) Γ (α2 + α12)

× 3F2

(
α12,

1

γ1
,
1

γ2
;α1 + α12, α2 + α12; 1

)
,

given α1 + α12 >
1
γ1
, α2 + α12 >

1
γ2

and α1 + α2 + α12 >
1
γ1

+ 1
γ2
. Where in the 3rd, 5th and

last equalities we used equations 9.111, 9.131 and 7.512 - (2), respectively, of Gradshteyn

and Ryzhik (2014).

iv Proof of Proposition 19

Proof.

E[Xi1|Xi2 > y] =
1

P[Xi2 > y]
E
[
Xi11{Xi2

>y}
]
,

The first part is 1
P[Xi2

>y]
= (1 + (λi2 + λ12)y )αi2

+α12 and the second one:

E
[
Xi11{Xi2

>y}
]
= E

[
E
[
Vi1

wi1

1{Vi2
>ywi2

}

∣∣∣Wi1 = wi1 , Wi2 = wi2

]]
,

=
1

λi1(λi1 + λ12)
E
[

1

Wi1

[
(λi1 + λ12)e

−y(λi2
+λ12)Wi2 − λ12e

−y(λi1
+λi2

+λ12)Wi2

]]
,

=
1

λi1(λi1 + λ12)(αi1 + α12 − 1)

[
(λi1 + λ12) (1 + (λi2 + λ12)y )−αi2

× 2F1 (α12, αi1 + α12 − 1;αi1 + α12;−(λi2 + λ12)y)− λ12 (1 + (λi1 + λi2 + λ12)y )−αi2

× 2F1 (α12, αi1 + α12 − 1;αi1 + α12;−(λi1 + λi2 + λ12)y)
]
,

given αi1 + α12 > 1.
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Chapter 5

Conclusions

The deep connection between the allocation exercise and the inherent dependence structures

of the losses is unmistakable and most fascinating to say the least. In this dissertation we first

uncovered several associations pertaining to the interplay between these concepts. Mainly,

through the lens of trivial allocations, interesting questions were answered and many oth-

ers arose. Often dismissed as a futile and meaningless practice, triviality, used in the right

context, elucidated both illuminating mathematical and profound economical consequences.

Second, a quest was undertaken to construct a new joint distribution, possessing versatile

properties, which can be used to capture the fickle character of financial risk. The outcome

was a novel multivariate Pareto law that conveyed a peculiar mixture. It was fairly general

to accommodate the bulk of the Pareto distributions studied thus far, while tractable enough

to allow for useful expressions for the moments, measures and allocations.

To achieve the aforementioned outline, our investigation began in chapter 2. A class

of generalized weighted functionals were introduced and studied. It covered most of the

functionals used and examined today and the extension is done via an arbitrarily chosen ag-

gregation function g. The functionals were primarily used as an overarching object, drawing

a broad picture and allowing for meaningful subsequent results. Within the second chapter,

additionally, a thorough analysis of the relationship between the aggregation and weight

functions, g and w, were considered. Specifically, several theorems were proved detailing

conditions for which the order between the functionals could or couldn’t be possible. The
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comparison was delineated in two facets. First, when g was varied and w was taken to be

common, and second, when the reverse set-up is carried out. Lastly, the chapter concludes

with a study of the different characterizations for both proportional and absolute triviality of

allocations. The multivariate size-bias and the Laplace transform were deployed as the prin-

cipal tools in obtaining the corresponding representations. Proportional triviality showed

a leeway that allowed for non-degenerate distributions, while absolute triviality implied a

general extreme law of negative association suggesting a possible lower bound for all joint

dependencies.

In chapter 3, a more careful consideration was conducted on proportional triviality. Par-

ticularly, when the weight function is set to be the indicator function of the sum above the

VaR sq threshold, written as 1S>sq , while g is given as the canonical sum
∑n

i=1 xi, then the

functional outcome becomes that of the conditional tail expectation. The CTE allocation,

normalized by the CTE risk measure, represented the regulatory perspective of allocations.

It is axiomatic driven, consequently mathematical, with no discernible economic interpreta-

tion. On the other side of the coin sits an organic view of allocation. It is a result of an

insurers profit maximization problem subject to market and utility constraints. Therefore, it

embodies the economic justification of capital allocation. We, then, undertook the obvious

task of reconciling the two paradigms. Their alignment was shown to exactly coincides with

the concept of proportional triviality. Under a certain size-bias symmetry of the joint law,

if a random vector of losses possesses such dependence, then the two allocations are the

same. Several examples for both exchangeable and non-exchangeable risk were illustrated

as well as a thorough characterization of the independence case. Thereafter, we generalized

the size-bias identification for a polynomial function of the risks and delineated their com-

monalities and differences with the original linear case. Finally, we showed, through Luckacs

theorem, an interesting intersection between the linear and the second order case, where the

only possible laws were those of the independent common rate gammas.

Seeing how allocations and dependence interact, finally, in chapter 4, the second part

of the objectives was contemplated. We employed the powerful machinery of stochastic
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representations to unveil a rich structure descriptor of many extreme financial phenomena.

Distinctly, we put forth a novel multivariate law, termed Pareto-Dirichlet, that is a com-

posite of three elementary mathematical procedures. The simple quotient, constituting the

multiplicative background model, between the Marshall-Olkin and the additive gamma laws

yielded a mixture of multivariate Pareto, where each term is weighted by a corresponding

Dirichlet probability. Through the MO joint law, we utilized the minimum operator while

addition served as the binary operation in the additive gamma model. Consequently, both

the stochastic depiction and the compact form of the Pareto-Dirichlet allowed for the com-

putation of ample distributional quantities as well as explicit expressions of the joint laws.

We, then, touched on the two dimensional case and derived almost all possible distributional

forms with the respective product moments and correlations. Finally, we applied the new

model to the standard risk measures and allocations illustrating several of the special cases

for CTE risk measure as well as for both the regression and CTE allocations.

To conclude, the quest for prudent risk practices is an on-going endeavour. Much of

it, is walked on uncharted territory. Expectedly, the different paths should be investigated

with caution but concurrently explored with vigour to the lowest depths. The answers to

the different financial and economical challenges do not only inform a robust ecosystem but

reach out to include intriguing mathematical discoveries.
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