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Abstract—This paper studies the dynamic characteristics of an 

electric solar wind propulsion system. To study the coupled 

interaction of the orbital and self-spinning motions of an 

electric solar wind propulsion system, a high-fidelity model is 

built up by using the nodal position finite element method, 

where the axial elastic and transverse dynamic motions of 

tether with the electric effects are considered. The coupling 

effects between the orbital and self-spinning motions are 

identified and explained, its results show that they have a 

significant impact on the system dynamics. 
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I.  INTRODUCTION  

The electric solar wind sail (E-sail) is an innovative 

propulsion system to extract momentum from the high-speed 

plasma streams in the solar wind [1, 2]. The E-sail consists of 

a main spacecraft connected with a multiple of long and thin 

conductive tethers that are positively charged by a solar-

powered electron gun on the spacecraft. Each tether contains a 

remote unit at its end, which comprises a small gas or ion 

thruster to control the main tether’s angular velocity [3, 4].  

The precise dynamics of E-sail requires a high-fidelity 

model of the tethers. Since the length of main tethers is several 

orders of magnitude larger than dimension of the main 

spacecraft/remote units, the attitude dynamics of the main 

spacecraft and remote the units can be safely omitted. Thus, 

the E-sail model consists of inter-connected tethers with 

lumped masses at the center of E-sail and the tips of main 

tethers. Many efforts have been devoted to the modelling of E-

sail [3]. Initially, the E-sail was simplified as a spherical rigid 

pendulum model to investigate dynamic behavior of the 

sailplane attitude dynamics subjected to the tether voltage [5, 

6]. The complicated dynamic behavior of E-sail caused by the 

tether dynamics is completely omitted. Then, the initial study 

was expanded by modeling each main tether as a rigid bar to 

study the coupled orbital-attitude dynamics of E-sail in a 

heliocentric transfer mission [6-8]. However, the rigid bar 

model ignores the influence of spring effect of tether on the 

configuration and attitude of E-sail, which is critical for its 

application in space exploration. To address the challenge, the 

main tethers are modeled by elastic catenary theory, and the 

shape of the main tether is parameterized by the ratios of the 

E-sail force over the centrifugal force and the spin plane 

orientation over the solar wind direction [9]. Although 

effective, both the rigid bar and elastic catenary models cannot 

describe the slack phenomenon of tethers that may happen 

dynamically. Furthermore, the analytical solution of elastic 

catenary model exists in very limited cases, which is problem 

specific. To address the problem, the discretized model of 

tether has been proposed. A typical approach is to discretize 

tethers into a series of lumped mass connected by massless 

springs and dampers [4, 10]. It transforms the nonlinear partial 

differential equations of a tether into a set of ordinary 

differential equations, and it is actually a special case of the 

finite element method [11]. The finite element method is 

probably the most appealing technique among all numerical 

methods. It discretizes the continuous tether into a finite 

number of elements to approximate the solution within each 

element. The main advantage of the finite element method 

over the lumped method is its capability to handle the complex 

geometries with different tether properties along the tether 

length in an algorithmic fashion [11, 12].  

Once the high-fidelity model of the E-sail is developed, the 

coupled dynamics of the E-sail should be investigated, such as 

the coupling effect between the orbital motion and the self-

spinning motion around the principal axis of the E-sail [9, 10] 

 

II. FINITE ELEMENT FORMULATION OF ELECTRIC SOLAR 

WIND SAIL 

A. Coordinate Systems  

Consider an E-sail as shown in Fig. 1, where the main and 

auxiliary tethers are divided into finite number of elements. 

Each element is assumed to resist tensile load only. Both main 

spacecraft and remote units are modeled as lumped masses 

without attitude dynamics. The dynamic motion of the E-sail 

can be described by three generalized coordinate systems: the 

global heliocentric-ecliptic inertial coordinate system 
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(
g g g gO X Y Z ) and the orbital coordinate system (

o o o oO X Y Z )as 

shown in Fig.1. The origin of the heliocentric-ecliptic inertial 

coordinate system Og is at the center of the Sun, where the 

positive Xg-axis points in the vernal equinox direction, the 

positive Yg-axis is along the normal direction of the ecliptic 

plane, and the positive Zg-axis completes a right-hand 

coordinate system. The origin of the orbital coordinate system 

Oo is at the center of mass (CM) of the E-sail, where the 

positive Zo-axis points from the Sun to the CM of E-sail, the 

positive Xo-axis is perpendicular to the Zg-axis and Zo-axis, 

and the positive Yo-axis completes a right-hand coordinate 

system. 

 

B. Modeling of E-sail by the nodal position coordinates 

formulation 

The nodal position finite element method is applied to 

model the complex E-sail due to its advantages in handling 

large rigid-body motion coupled with small elastic deformation 

in a simple and accurate formulation

Considering a two-node straight element in the global 

heliocentric-ecliptic coordinate system. Taking the k-th 

element as an example, an arbitrary position inside the element 

can be expressed as, 

 ,k e k X N X  

where  , ,
T

X Y ZX  is the position vector inside the 

element in the global inertial coordinate system, and 

 , 1 1 1, , , , ,
T

e k k k k k k kX Y Z X Y Z  X  is the nodal coordinate 

vector with subscripts referring to the node numbers of the k-

th element, Nk is the shape function matrix defined in [11, 12] 

 

 
Figure. 1 Coordinate systems for E-sail 

 

From the Hooke’s law, the elastic stress of k-th element 

can be written as, 
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where the subscript k denotes k-th element, ,l k  is the 

longitudinal strain of element, Le0,k is the unstretched length of 
the element. Ek is the Young’s modulus of tether material, and 
Be,k is the element strain matrix defined in [11, 12]. 

The element mass matrix 
,e kM  can be derived from the 

kinetic energy, such as, 


,

, , , , , ,
0

1 1

2 2

e kL
T T

e k k k e k e k e k e k e kT A ds  X X X M X  

where ρk and Ak are the material density and cross-section area 

of the tether with the subscript k indicating the k-th element. 

The symbol  
.

 denotes the first order derivative with respect 

to time, and element mass matrix 
,e kM  is given in. It should 

be noted that the mass matrix is constant in the global inertial 

coordinate system. 

The strain energy due to the longitudinal deformation can 
be written as,  
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  (4) 

where Ke,k is the nonlinear element stiffness matrix and 
,k kF  is 

the generalized nodal force vector resulting from the elasticity 

of element in the global inertial coordinate system[11, 12]. 

The virtual work done by external forces including the 

gravitational and Coulomb forces can be written as, 


,

, ,
0,

e kL
T T

k c k e k g kg k A dsW      X g X F  


,

, ,
0,

e kL
T T

c e k c kc k dsW     X f X F  

where Fg,k and Fc,k are the vectors of equivalent nodal 

gravitational and Coulomb forces, respectively. 

Accordingly, the Hamilton’s principle for the E-sail from 

t1 to t2 can be obtained as, 

  
2

1
, , , , 0

t

e k e k
t g k c kT U dtW W           

Equation (7) yields the dynamic equation as, 
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 , , ,

, ,

, , ,

e k e k e k

g k c kT T T

e k e k e k
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Substituting Eqs. (3) and (4) into Eq. (8) and rearranging 

them into the matrix form yield the following dynamic 

equation for the k-th element, 

 , , , , , , ,e k e k e k e k k k g k c kX    M K X F F F  

The dynamic equations of E-sail can be obtained by 

assembling Eq. (9) with the standard assembly procedure in 

the finite element method [12, 13]. It is worth pointing out that 

the primary variables in the NPFEM are the nodal position 

coordinates instead of the nodal displacements in the 

conventional finite element method. It should be noted the 

internal damping of the tether is not considered in the flight 

dynamics due to the lack of experimental data in space. 

Nonetheless, the damping effect generally stabilizes the 

disturbance to the E-sail system. Thus, the neglect of damping 

will not affect the validation of current investigation. 

 

III. RESULTS AND DISCUSSIONLI 

In the current paper, the E-sail is assumed fully deployed and 

spinning. The dynamic equations of the E-sail are solved 

numerically by an implicit 4th order Runge-Kutta Gaussian-

Legendre scheme with a Symplectic property that is suitable 

for the long-term numerical integration [12]. The maximum 

iteration number and error tolerance of each iteration step are 

set to 10 and 10-9, respectively. The physical properties of the 

E-sail are listed in Table. I.  

 

TABLE I.  PHYSICAL PROPERTIES OF E-SAIL 

Parameters Values 

Mass of main satellite (kg) 100 

Number of main tethers (auxiliary tethers) 10 

Length of each main tether (km) 10 

Material type of main/auxiliary tether Aluminum/Kapton 

Material density of main tether (kg/m3) 2700 

Material density of auxiliary tether (kg/m3) 1420 

Elastic modulus of main tether (109N/m2) 70 

Diameter of main tether (m) 7.3810-5 

Elastic modulus of the auxiliary tether (109N/m2) 2.5 

Width of auxiliary tether (m) 0.03 

 

A. The steady state of self-spinning E-sail  

The initial equilibrium conditions, such as the tension of 

tether, for the given initial position and velocity of E-sail are 

unknown. Consequently, a special start-up procedure is 

developed with very small numerical damping to damp out the 

initial transient oscillation until the steady state of spinning E-

sail is obtained. In this case, the main and auxiliary tethers of 

E-sail are modeled by one truss element respectively. The 

tethers are assumed spinning and subjected to a central 

gravitational field, but the center of E-sail is stationary in the 

space. The numerical damping is removed after 500 s and then 

the simulation continued for another 5,900 s. The results of the 

steady state of a spinning E-sail are shown in Fig. 5. As shown 

in Fig. 2(a), the numerical damping successfully damps out the 

transient oscillation in the first 500 s. Then, the system state 

maintains constant as expected. The same phenomenon can be 

observed in the tensions of the main and auxiliary tethers, and 

the angular velocities of the remote units, seen in Figs. 2(b)-

2(c). 
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Figure. 2.  Steady state of a self-spinning E-sail (a) energy (b) tension in main 
and auxiliary tethers (c) angular velocity of remote unit. 

B. The coupled orbital and attitude dynamics of E-sail  

The coupling effect between the orbital and spinning 

motions of E-sail is investigated. The E-sail is temporally 

assumed to move in a circular orbit with a radius of R = 1 AU. 

Accordingly, the orbital angular velocity Ω of E-sail can be 

calculated by 3

s R  , where 
s  and R are the 

gravitational constant and orbital radius, respectively. In this 

case, the main and auxiliary tethers are modeled with one truss 

element respectively. The initial spin rate ω and the time step 

in the simulation are set as 0.24 deg/s and 0.01 s, respectively. 

 

 

Figure.3.  The results of the orbital dynamic motion of E-sail 

The characteristics of the coupled motion between the orbital 

and spinning motions of E-sail is analyzed for a period of 

36,000 s. The simulation results are shown in Figs. 3 to 4, 

where the time scale is changed from seconds to the number of 
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period of self-spinning, 
0 / (2 )t  . First, it can be found in Fig. 

3 that the orbital radius and angular velocity of E-sail subject 

to the gravity are constant as expected. It shows that the 

assumption of constant orbital radius R and orbital angular 

velocity Ω is reasonable. Second, Fig. 4 shows that the spin 

rate, the length of main tether, and the tension in the main and 

auxiliary tethers change periodically at the frequency of spin 

rate of E-sail, which is corresponding to the term of  L Ω ω  

for the spin rate. Fig. 4(a-b) shows the variations of main 

tether length and its rate vs the time. They are all very small. 

Thus, the induced Coriolis effects 2 ω L  and 2 Ω L  are 

negligible in the short term. Fig. 4(c) shows the spin rate 

changes from the maximum to minimum in every period. This 

phenomenon is caused by the coupling between the orbital and 

spinning motions of E-sail as presented in section 2.3. 

Moreover, it is seen that the tension variation in the auxiliary 

tether is in phase with the spin rate, while it is out of phase 

with the tension in the main tether, see Fig. 4(d). The reason is 

that the periodic motion of the spin rate induces the periodic 

motion of the auxiliary tether and remote unit within one 

period. Furthermore, the centrifugal force  ω ω L  causes 

periodical variation of tension in the main tether. Finally, three 

conclusions can be drawn from the above results: (i) the 

coupling effect between the orbital and spinning motions of E-

sail will induce a periodic oscillation of the spin rate. Then, 

the oscillation of spin rate induces the oscillation of tension in 

the main and auxiliary tethers. This phenomenon is not 

observed in previous references [5, 10]. (ii) for the short-term 

analysis, the assumption of constant value of orbital radius and 

angular velocity is reasonable. (iii) the Coriolis effects 

2 ω L  and 2 Ω L  are the long-term effect [5]. 
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Figure.4.  The results of spinning of E-sail. (a) Spin rate (b)-(c) Tether 
length and rate of length changing of Main tether (1st) (d) Tension in the 

main (1st) and auxiliary tethers (1st). 

 

CONCLUSION  

A high-fidelity model of an electric solar wind sail is 

developed by using the nodal position finite element method. 

The coupling effects between the orbital and self-spinning 

motion are analyzed when the system subjects to the 

gravitational force only, and major coupling terms are 

identified and examined. The numerical simulations show that 

the coupling effect between the orbital and self-spinning 

motions causes a periodic variation of the spin rate and tension 

in the tethers.  
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