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Abstract

The relevance weighted likelihood method was introduced by Hu and Zidek (Technical Report
No. 161, Department of Statistics, The University of British Columbia, Vancouver, BC, Canada,
1995) to formally embrace a variety of statistical procedures for trading bias for precision. Their
approach combines all relevant information through a weighted version of the likelihood function.
The present paper is concerned with the asymptotic properties of a class of maximum weighted
likelihood estimators that contains those considered by Hu and Zidek (Technical Report No. 161,
Department of Statistics, The University of British Columbia, Vancouver, BC, Canada, 1995, in:
Ahmed, S.E. Reid, N. (Eds.), Empirical Bayes and Likelihood Inference, Springer, New York,
2001, p. 211). Our results complement those of Hu (Can. J. Stat. 25 (1997) 45). In particular, we
invoke a di>erent asymptotic paradigm than that in Hu (Can. J. Stat. 25 (1997) 45). Moreover,
our adaptive weights are allowed to depend on the data.
c© 2002 Elsevier B.V. All rights reserved.
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1. Introduction

The weighted likelihood (WL) has been developed for a variety of purposes. The
underlying heuristics, in fact, are embraced by many inferential methods such as
weighted least squares and kernel smoothers. In particular, they seek to reduce the
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variance of estimators in exchange for increasing their bias, with the goal of reducing
their mean-squared-error (MSE), i.e. increasing their precision. Substantial gains in
precision are achievable, as evidenced by the celebrated James–Stein estimator, itself
a weighted likelihood estimator (WLE) with ‘adaptive’, i.e. estimated weights.
The inferential method described in this paper can be useful in practice since the

samples from some ‘surrogate’ populations may cost less than those from the popula-
tion of direct interest. For example, a survey sample drawn previously from the current
population, even though biased owing to the evolutionary change in that population,
provides relevant information. Since it is already in hand, it will essentially cost noth-
ing. It seems apparent that statisticians should use all relevant information available to
them in making statistical inference about a population so as to maximally reduce their
uncertainty about it. The WL helps statisticians to do just that.
Our theory suggests that as long as the amount of that other data is about the

same as obtained from the population of direct interest (and the weights are chosen
appropriately), the asymptotic theory will hold.
We present two examples to demonstrate our points. The Jrst one is an over-simpliJed

scenario in which two regression models are available, i.e.,

Xi = �1ti + �i; �i ∼ N(0; �2
1); i = 1; : : : ; n1; (1)

Yi = �2ti + �′i ; �′i ∼ N(0; �2
2); i = 1; : : : ; n2; (2)

where the {ti}ni=1 are Jxed. The {�i}’s are i.i.d. So are the {�′i}’s, while Cov(�i; �′j)=0
if i �= j; Cov(�i; �′i)= ��1�2 for all i. For the purpose of our demonstration we assume
�, �1 and �2 are known although that would rarely be the case in practice. Note that
a bivariate normal distribution is not assumed in the above model. In fact, only the
marginal distributions are speciJed; no joint distribution is assumed although we do
assume the correlation structure in this case. The parameter �1 is of primary interest.
The question is whether we can integrate the information from the second sample to
yield a more reliable estimate for the regression coeLcient of the Jrst one. The answer
is aLrmative. Wang et al. (2002) show that when �1 and �2 are close, the WLE for
�1 has a smaller MSE when compared with the traditional MLE,
The second example is more realistic and involves an important topic in disease

mapping. Wang et al. (2002) apply the maximum WL approach to parallel time
series of hospital-based health data. SpeciJcally, the WL approach is illustrated on
daily hospital admissions of respiratory disease obtained from 733 census sub-division
(CSD) in Southern Ontario over the May-to-August period from 1983 to 1988. Our
main interest is on the estimation of the rate of weekly hospital admissions of certain
densely populated areas. We assume that the total number of hospital admissions of a
week for a particular CSD follows a Poisson distribution, i.e., for year q, CSD i and
week j,

Y q
ij

ind:∼ P(�q
i ); j = 1; 2; : : : ; 17; i = 1; 2; : : : ; 733; q= 1; 2; : : : ; 6:

The raw estimate of �q
i is highly unreliable due to the nature of disease data. Extra

variation in disease can arise from a variety of causes. In the simplest case, it may be
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that there are many underlying geographical factors that are unknown to
us. Extra variation leads to increased di>erences between estimates or measures at
di>erent locations. By combining information from adjacent CSD’s, this type of vari-
ation will be reduced in the mapping. The WLE with adaptive weights has shown
advantages over the traditional MLE in the study detailed in Wang et al. (2002).
The estimated MSE for WLE is signiJcantly smaller than that of the MLE. More
importantly, the WLE down-weights those CSDs which have similar pattern or large
correlation with the current one since the estimator realizes that there is not much to
be gained by incorporating almost redundant information.
To give a precise description of the WL in a reasonably general setting we suppose

we observe independent random response vectors X1; : : : ;Xm with probability density
functions f1(:; �1); : : : ; fm(:; �m), where Xi = (Xi1; : : : ; Xini)

t. Further suppose that only
population 1, in particular �1, an unknown vector of parameters, is of inferential interest.
The classical likelihood would be

L1(x1; �1) =
n1∏
j=1

f(x1j; �1):

However, assume that the remaining parameters, �2; : : : ; �m, are close to �1. This sug-
gests a WL deJned as

WL(x; �1) =
m∏
i=1

ni∏
j=1

f1(xij; �1)�i

for Jxed X = x, where � = (�1; : : : ; �m) is the ‘weight vector’ that must be speciJed
by the analyst. Note that the remaining parameters �2; : : : ; �m do not appear in the WL
deJned as above since the inferential interest is on �1, the parameter of population 1.
Instead, the samples generated from all the populations are incorporated into the WL.
It follows that

logWL(x; �1) =
m∑
i=1

ni∑
j=1

�i logf1(xij; �1):

We say that �̃1 is a maximum estimator WLE for �1 if

�̃1 = arg sup
�1∈�

WL(x; �1):

In many cases the WLE may be obtained by solving the estimating equation:

(@=@�1) logWL(x; �1) = 0:

Note that the uniqueness of the WLE is not assumed.
It can be seen that the WL is an extension of the local likelihood method of

Tibshirani and Hastie (1987) for non-parametric regression. In that method the weights
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are set to 0 or 1 according as the remaining x’s are near to the regressor of interest, x,
or not. More generally, kernel functions in the local likelihood are used. In other words,
the weights are merely indicator functions of proximity to x. However, restrictions to
such weights are relaxed when the WL is applied in that setting. A detailed discussion
of the local likelihood and associated properties can be found in Eguchi and Copas
(1998). Versions of the WL can be seen in a variety of contexts (cf. Newton and
Raftery, 1994; Rao, 1991). Following Hu (1997), Hu and Zidek (1995, 2001) extend
the local likelihood to a more general setting but with the similar aim of combining
relevant information in samples from other populations thought to resemble that whose
parameters are of interest. Let X=(X1; X2; : : : ; Xn) be random variables with probability
density functions f1; f2; : : : ; fn. The density of interest is f(:; �); �∈� of a study
variable X , � being an unknown parameter. At least in some qualitative sense, the
f1; f2; : : : ; fn are thought to be ‘like’ f(:; �). For Jxed X= x, the relevance weighted
likelihood (REWL) function is deJned as

n∏
i=1

f�ni(xi; �):

Here the �ni are the so-called relevance weights which depend on the relationship
between f1 and f(:; �). In their extension of the REWL, Hu and Zidek (1995) also
consider simultaneous inference for all the �’s.
The results reported in the present paper extend those of Wald (1949). They

di>er from those of Hu (1997) because we adopt a di>erent asymptotic paradigm.
Hu’s paradigm abstracts that of non-parametric regression and function estimation.
There information about �1 builds up because the number of populations grows with
increasingly many in close proximity to that of �1. This is the paradigm commonly in-
voked in the context of non-parametric regression but it is not always the most natural
one. In contrast, we postulate a Jxed number of populations with an increasingly large
number of observations from each. Asymptotically, the procedure can rely on just the
data from the population of interest alone. These results o>er guidance on the diLcult
problem of specifying �.
We also consider in this paper the more general version of the adaptively WL in

which the weights are allowed to depend on the data. Such a likelihood arises natu-
rally when the responses are measured on a sequence of independent draws on discrete
random variables. In that case the likelihood factors into powers of the common proba-
bility mass function at successive discrete points in the sample space. [The multinomial
likelihood arises in precisely this way, for example.] The factors in the likelihood may
well depend on a vector of parameters deemed to be approximately Jxed during the
sampling period. The sample itself now ‘self-weights’ the likelihood’s factors according
to their degree of relevance in estimating the unknown parameter vector.
In Section 2 we present our extension of the classical large sample theory for the

maximum likelihood estimator. Both consistency and asymptotic normality are shown
under appropriate assumptions. The weights may be ‘adaptive’ that is, allowed to
depend on the data. In Section 3 we consider examples that demonstrate how our
results may be applied. In particular, we show that our theory applies to the James–
Stein estimator. Concluding remarks are given in Section 4.
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2. Asymptotic results for the WLE

In this section we establish the existence of a consistent and asymptotically normal
sequence of WL estimators under appropriate conditions. In particular, throughout this
section Assumptions 2.1–2.5 stated below are assumed to hold except where otherwise
stated. Proofs of our results can be found in the appendix.

2.1. Weak consistency

Consistency, a minimal requirement for any good estimator, is explored in this sub-
section. To that end, we let �01 ∈� denote the true value of �1. Let �0=(�01; �2; : : : ; �m),
for �2; : : : ; �m ∈�. Furthermore, we impose the assumptions stated next. We will then
show that consistency obtains.

Assumption 2.1. The parameter space � is compact.

Assumption 2.2. For each i = 1; : : : ; m assume {Xij : j = 1; : : : ; ni} are i.i.d. random
variables having a common probability density function fi(x; �i) with respect to a
�-Jnite measure �.

Assumption 2.3. Assume f1(x; �i) = f1(x; �′i) (a.e. �) implies that �i = �′i for any
�i; �′i ∈� and that the densities f1(x; �) have the same support for all �∈�.

Assumption 2.4. For any �01 ∈� and for any open set O ⊆ �, assume

sup
�1∈O

|log(f1(x; �01)=f1(x; �1))| inf
�1∈O

|log(f1(x; �01)=f1(x; �1))|;

sup
�1∈�

|log(f1(x; �01)=f1(x; �1))| inf
�1∈�

|log(f1(x; �01)=f1(x; �1))|;

are each measurable in x and

E�i

[
sup
�1∈�

∣∣∣∣log f1(Xij; �01)
f1(Xij; �1)

∣∣∣∣
]2
6K ¡∞;

where K ¿ 0 is a constant independent of �i; i = 1; 2; : : : ; m.

Assumption 2.5. Assume �(n1) = (�(n1)1 ; : : : ; �(n1)m )t satisJes

�(n1) → (w1; : : : ; wm)t = (1; 0; : : : ; 0)t

while

max
16k6m

n2k max
16i6m

|wi − �(n1)i |26O(n1−"
1 ) as n1 → ∞;

for some "¿ 0.
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Assumption 2.1 is relaxed in Theorem 2.3. To prove the measurability asserted in
Assumption 2.4 in the sequel, we may be able to rely on the easily established fact that
if, for all x; U (x; �1) is an upper semi-continuous function of �1 in Euclidean space,
then sup�1∈O U (x; �1) is measurable for any open set O. In particular, if f1(x; �1) is
upper semi-continuous in �1 and the open set is deJned as {�1 : |�1 − �01|¡R} for
some R¿ 0, then the Assumption 2.4 is automatically satisJed. The measurability of

inf
|�1−�01|¡R

∣∣∣∣log f1(x; �01)
f1(x; �1)

∣∣∣∣
also follows. Assumption 2.5 is the most important assumption. It implies that
�(n1)k 6Mn(1−")=2

1 =nk for some constant M and k = 2; : : : ; m. Thus it governs the
degree of combining information from other populations to yield a more reliable es-
timate of the parameter of interest without losing weak consistency and asymptotic
normality. For our proofs we need the following lemma.

Lemma 2.1. Let the functions Aij(x) be measurable in x; x∈Rp. If, for i = 1; : : : ; m;
j = 1; 2; : : : ; ni, E�i [Aij(Xij)]2 ¡Ko for some positive constant Ko independent of the
�i, then

1
n1

m∑
i=1

ni∑
j=1

(wi − �(n1)i )Aij(Xij)
P�→ 0

for any �= (�1; : : : ; �m), �i ∈�, i = 1; : : : ; m.

Let

1
n1

Sn1 (X; �1) =
1
n1

m∑
i=1

ni∑
j=1

(wi − �(n1)i ) log
f1(Xij; �01)
f1(Xij; �1)

:

Under Assumptions 2.1–2.5, it then follows from Lemma 2.1 that∣∣∣∣ 1n1 Sn1 (X; �1)
∣∣∣∣ P�0→ 0 (3)

for any �1; : : : ; �m ∈�:

Theorem 2.1. For each �1 �= �01,

lim
n1→∞P�0




m∏
i=1

ni∏
j=1

f1(Xij; �01)
�
(n1)
i ¿

m∏
i=1

ni∏
j=1

f1(Xij; �1)�
(n1)
i


= 1

for any �2; : : : ; �m ∈�:
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In the sequel, we will let ‖:‖, be the Euclidean norm,

‖x‖= (xtx)1=2 =

( q∑
i=1

x2i

)1=2
;

for any x = (x1; : : : ; xq)t. Furthermore, for any open set O, let

Zij(O) = inf
�′1∈O

log(f1(Xij; �01)=f1(Xij; �′1)):

Theorem 2.2. Suppose logf1(x; �) is upper semi-continuous in � for all x. Assume
that for every �1 �= �01 there is an open set N�1 such that �1 ∈N�1 ⊂ �. Then for any
sequence of maximum WLE �̃(n1)1 of �1, and for all �¿ 0,

lim
n1→∞P�0 (‖�̃(n1)1 − �01‖¿�) = 0;

for any �2; �3; : : : ; �m; �i ∈�; i = 2; 3; : : : ; m:

In the next theorem we drop Assumption 2.1 and replace it with a slightly di>erent
condition. At the same time we keep Assumptions 2.2–2.5.

Theorem 2.3. Suppose logf1(x; �) is upper semi-continuous in � for all x. Assume
that for every �1 �= �01 there is an open set N�1 such that �1 ∈N�1 ⊂ � . In addition,
assume that there is a compact subset C of � such that �01 ∈C and

0¡E�0

{
inf

�′1∈Cc∩�
log

f1(Xij; �01)
f1(Xij; �′1)

}
6KC ¡∞; (4)

where KC is a constant independent of the �i. Then for any sequence of maximum
WLE �̃(n1)1 of �01 and for all �¿ 0

lim
n1→∞P�0 (‖�̃(n1)1 − �01‖¿�) = 0

for any �2; : : : ; �m ∈�:

2.2. Asymptotic normality

In practice, the WLE will usually be found by computing the roots of the likelihood
equation. In this subsection we turn our attention to these roots and to that end restrict
our attention to vector valued parameters with real valued co-ordinates. We are then
able to address both the consistency and asymptotic normality of those roots.
To obtain the asymptotic normality of WLE, more restrictive conditions are needed.

In particular, some conditions will be imposed upon the Jrst and second derivatives of
the likelihood function.
For each Jxed sample size, there may be many solutions to the likelihood equation

even if the WLE is unique. However, as will be seen in the next theorem, there
generally exist a sequence of solutions of this equation that are asymptotically normal.
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Assume that �1 is a vector deJned in Rp with p a positive integer, i.e. �1 =
(�11; : : : ; �1p) and the true value of the parameter is �01 = (�011; : : : ; �

0
1p). As a nota-

tional convenience we will in the sequel take @=@�1 to mean the column gradient
vector obtained by co-ordinate-wise di>erentiation with respect to �1. Write

 (x; �1) =
@

@�1
logf1(x; �1) a p dimensional column vector

and

 ̇ =
@

@�1
 (x; �1) a p by p matrix:

Then, for any j, the Fisher Information matrix is deJned as

I(�01) = E�01
 (X1j; �01) (X1j; �01)

t :

Assuming that the Jrst partial derivatives can be passed under the integral sign in∫
f1(x; �01) d�(x) = 1, we then Jnd that, for any j,

E�01
 (X1j; �01) =

∫
@

@�1
f1(x; �01) d�(x) = 0; (5)

so that I(�01) is in fact the covariance matrix of  , I(�01)=cov�01
 (X1j; �01): If the second

partial derivatives with respect to �1 can also be passed under the integral sign then∫
(@2=@�21)f1(x; �01) d�(x) = 0, and

E�01
 ̇ (X1j; �01) =

∫ [
@

@�1

(@=@�1)f1(x; �01)
f1(x; �01)

]
f1(x; �01) d�(x)

= 0−
∫

 (x; �01) (x; �
0
1)

tf1(x; �01) d�(x):

Thus I(�01) =−E�01
 ̇ (X1; �01):

To simplify notation, let

ẆLn1 (x; �1) =
@

@�1
WL(x; �1) and ẆLn1 (x; �

0
1) =

@
@�1

WL(x; �1)|�1=�01

In the next theorem we assume that the parameter space is an open subset of Rp.

Theorem 2.4. Suppose:
(1) for almost all x the =rst and second partial derivatives of f1(x; �) with respect

to � exist, are continuous in �∈�, and may be passed through the integral sign in∫
f1(x; �) d�(x) = 1;
(2) there exist three functions G1(x), G2(x) and G3(x) such that for all �2; : : : ; �m,

E�0 |Gl(Xij)|26Kl ¡∞; l = 1; 2; 3; i = 1; : : : ; m, and in some neighborhood of �01
each component of  (x) (respectively  ̇ (x)) is bounded in absolute value by G1(x)
(respectively, G2(x)) uniformly in �1 ∈�. Further,

@3 logf1(x; �1)
@�1k1@�1k2@�1k3

;

k1; k2; k3 = 1; : : : ; p, is bounded by G3(x) uniformly in �1 ∈�;
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(3) I(�01) is positive de=nite.
Then there exists a sequence of roots �̃(n1)1 of the WL equation that is weakly

consistent and
√
n1(�̃

(n1)
1 − �01)

D→N(0; (I(�01))
−1) as n1 → ∞:

Remark. (1) If there is a unique root of the WL equation for every n, as in many
applications, this sequence of roots will be consistent and asymptotically normal.
(2) Realistically, the weight vector will often have to be estimated in practice.

We then refer to the WL as ‘adaptively weighted’. It turns out that our results on
consistency and asymptotic normality are easily extended to this more general case.
Assumptions 2.1–2.4 are required along with an additional condition:

Assumption 2.6. Assume:
(i) limn1→∞ ni=n1 ¡∞; for i = 1; 2; : : : ; m;
(ii) the adaptive weight vector �(n1)(X) = (�(n1)1 (X); : : : ; �(n1)m (X))t satisJes, for any

�¿ 0,

�(n1)i (X)
P�0→wi as n1 → ∞;

where (w1; w2; : : : ; wm)t
�
= (1; 0; : : : ; 0)t :

(3) By strengthening our assumptions one can obtain strong consistency even in the
adaptively weighted case (Wang, 2001). However, for brevity, these results will not
be included in this paper.

3. Examples

3.1. Restricted normal means

A simple but important example considered by van Eeden and Zidek (2001) is
presented in this subsection. Casella and Strawderman (1981) consider an estimation
problem of the same type. Let X11; : : : ; X1n1 be i.i.d. normal random variables each
with mean �1 and variance �2. We now introduce a second random sample drawn
independently of the Jrst one from a second population: X21; : : : ; X2n2 , i.i.d. normal
random variables each with mean �2 and variance �2. Population 1 is of inferential
interest while Population 2 is the relevant population. However, |�2 − �1|6C for a
known constant C ¿ 0. In practice, Jnding such C will not prove diLcult. But it is
not unique and the smallest allowable C, |�2 − �1| itself, is unknown. Assumptions
2.2 and 2.3 are obviously satisJed for this example. The condition (4) in Theorem 2.3
is satisJed as shown in Wang et al. (2002). If we show that Assumption 2.5 is also
satisJed, then all the conditions assumed will be satisJed for this example.
To verify the Jnal assumption, an explicit expression for the weight vector is

needed. Let ni RX i: =
∑ni

j=1 Xij; i = 1; : : : ; m, V = Cov(( RX 1:; RX 2:)t) and B = (0; C)t. It
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follows that:

V + BBt =


 �2

n1
0

0 �2

n2
+ C


 :

It can be shown that the ‘optimum’ WLE in this case, the one that minimizes the
maximum MSE over the restricted parameter space, takes the following form:

�̃(n)1 = �∗1 RX 1: + �∗2 RX 2:;

where

(�∗1 ; �
∗
2 )

t =
(V + BBt)−11
1t(V + BBt)−11

:

We Jnd that

(V + BBt)−1 =

( 1
�2=n1

0

0 1
�2=n2+C

)
:

It follows that

1t(V + BBt)−11=
1

�2=n1
+

1
�2=n2 + C

:

Thus, we have

�∗2 =
1=(�2=n2 + C)

1=�2=n1 + 1=(�2=n2 + C)
:

Finally

�∗1 = 1− �∗2

�∗2 =
1
n1

(
C
�2 +

1
n2

+
1
n1

)−1

:

Estimators of this type are considered by van Eeden and Zidek (2000).
It follows that |�(n1)i −wi|=O(1=n1), i=1; 2. If we have n2=O(n2−"

1 ), then Assumption
2.5 will be satisJed. Therefore, we do not require that the two sample sizes approach to
inJnity at the same rate for this example in order to obtain consistency and asymptotic
normality. The sample size of the relevant sample might go to inJnity at a much higher
rate. This fact is obtained in this example because we have been able to choose the
weights judiciously, we do not know how such high rate can be achieved in general.
Under the assumptions made in the subsection it can be shown that the conditions of
Theorem 2.4 are satisJed. The maximum likelihood estimator in this example is unique
for any Jxed sample size. Therefore, we have

√
n1(�̃

(n1)
1 − �1)

D→N(0; �2):
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3.2. Multivariate normal means

Let X = ( RX 1; : : : ; RXm), where for i = 1; : : : ; m; m¿ 2,

RX i =
ni∑

j=1

Xij=ni
ind:∼N(�i; 1=ni):

Assume that the �i are ‘close’ to each other. The objective is to obtain a reasonably
good estimate of �1 using all the RX i’s. If the sample size from the Jrst population is
relatively small, we choose WLE as the estimator. In the normal case, the WLE, �̃1,
takes the following form:

�̃1 =
m∑
i=1

�i RX i:

Strawderman (2000) considers the James–Stein estimator of the parameter
�= (�1; : : : ; �m) for the unequal variance case 5(X) = (51(X); : : : ; 5m(X)), where

5i(X) =

(
1− 1

ni

m− 2∑m
j=1

RX 2
j n

2
j

)
RX i:

The quantity,

1− 1
ni

m− 2∑m
j=1

RX 2
j n

2
j
;

can be viewed as a weight function derived from the weight in the James–Stein
estimator.
Hu and Zidek (2001) consider simultaneous estimation of the parameters �1; : : : ; �m.

They derive James–Stein type weights in their paper. Since we are combining means
to yield a more reliable estimate of �1, it is natural to choose weights of James–Stein
type since they are controlled by ni

∑m
j=1

RX 2
j n

2
j , which measures the overall similarity

of the populations and possible di>erent sample sizes. Consider the following weights:

�1(X) = 1− 1
ni

m− 2∑m
j=1

RX 2
j n

2
j
;

�i(X) =
1

m− 1

(
1
ni

m− 2∑m
j=1

RX 2
j n

2
j

)
; i = 2; 3; : : : ; m

for some "¿ 0 and c¿ 0. It can be veriJed that
∑m

i=1 �i=1 and �i¿ 0; i=2; 3; : : : ; m:
Assume that limn1→∞ n1=nk ¡∞, it follows that:

P�0

(∣∣∣∣∣ 1n1
m− 2∑m
j=1

RX 2
j n

2
j

∣∣∣∣∣¿�

)
6

m− 2
n31

E�0

∣∣∣∣ 1∑m
i=1

RXi
2(ni=nj)2

∣∣∣∣=O
(

1
n31

)
:

Thus asymptotic normality of the WLE using adaptive weights will follow in this case.
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Fig. 1. Q–Q plots for sample size of 10 and 50.

We perform a simple simulation study to verify the asymptotic results. Consider
three populations while the Jrst is of primary interest. First, we set the mean of the
Jrst population to 0 and pick two values between −1 and 1 and assign them to the
means of the other two populations. Then for any Jxed sample size n, we generate n,
2n and 3n random variables from N(0; 1);N(62; 1) and N(63; 1), respectively. We then
compute the WLE. This process is repeated for 100 times. The Q–Q plots of WLE for
sample size of 10 and 50 are shown in Fig. 1. It can be seen that the Q–Q plot for
sample size of 50 is very close to a straight line while the Q–Q plot for sample size
of 10 has very heavy tails.

4. Concluding remarks

In this paper we have shown how classical large sample theory for the maximum
likelihood estimator can be extended to the adaptively WLE. In particular, we have
proved the weak consistency of the latter and of the roots of the likelihood equation
under more restrictive conditions. The asymptotic normality of the WLE is also proved.
Observations from the same population are assumed to be independent although the
observations from di>erent populations obtained at the same time can be dependent.
In practice weights will sometimes need to be estimated. Assumption 2.6 states

conditions that insure the large sample results obtain. In particular, they obtain as long
as the samples drawn from populations di>erent from that of inferential interest are of
the same order as that of the drawn from the latter.
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Appendix A. Proofs of main results

Proof of Lemma 2.1. The proof can be found in Wang et al. (2002).

Proof of Theorem 2.1. The proof can be found in Wang et al. (2002).

Proof of Theorem 2.2. The proof of this theorem given below resembles the proof of
weak consistency of the MLE in Schervish (1995, p. 239). For each �1 �= �01, let
N (k)

�1
; k=1; 2; : : : be a sequence of closed balls centered at �1 and of radius at most 1=k

such that for all k,

N (k+1)
�1

⊆ N (k)
�1

⊂ �:

It follows that

∞⋂
k=1

N (k)
�1

= {�1}:

We then have

lim
k→∞

E�0Z1j(N
(k)
�1

) = E�0 lim
k→∞

Z1j(N
(k)
�1

)¿E�0

{
log

f1(X1j; �01)
f1(X1j; �1)

}
¿ 0:

Thus, we can choose k∗ = k∗(�1) so that E�0Z1j(N
(k∗)
�1

)¿ 0. Let N ∗
�1 be the interior of

N (k∗)
�1

for each �1 ∈�. Let �¿ 0 and N0 be the open ball of radius � around �01. Now,
� \ N0 is a compact set since � is compact. Also,

{N ∗
�1 : �1 ∈� \ N0}

is an open cover of � \ N0. Therefore, there exist a Jnite sub-cover, N ∗
�11
; N ∗

�21
; : : : ; N ∗

�p
1

such that E�0Z1j(N ∗
�l
1
)¿ 0; l= 1; 2; : : : ; p.

We then have

P�0 (‖�̃(n1)1 − �01‖¿ �)

=P�0 (�̃
(n1)
1 ∈N ∗

�l
1
for some l)

6
p∑

l=1

P�0 (�̃
(n1)
1 ∈N ∗

�l
1
)
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6
p∑

l=1

P�0


 1

n1

m∑
i=1

ni∑
j=1

�(n1)i Zij(N ∗
�l
1
)6 0




=
p∑

l=1

P�0


 1

n1

n1∑
j=1

Z1j(N ∗
�l
1
) +

1
n1

m∑
i=1

ni∑
j=1

(�(n1)i − wi)Zij(N ∗
�l
1
)6 0


 :

Since E�0Zij(N ∗
�l
1
)26E�i [sup�1∈�|log(f1(Xij; �01)=f1(Xij; �1))|]26K ¡∞ by Assump-

tion 2.4, it follows from Lemma 2.1 that

1
n1

m∑
i=1

ni∑
j=1

(�n1
i − wi)Zij(N ∗

�l
1
)
P�0→0 as n1 → ∞:

Also,

1
n1

n1∑
j=1

Z1j(N ∗
�l
1
)
P�0→E�0Z1j(N ∗

�l
1
)¿ 0 for any �l

1 ∈� \ N0;

by the Weak Law of Large Numbers and the construction of N ∗
�l
1
. Thus, for any

�l
1 ∈� \ N0,

P�0


 1

n1

n1∑
j=1

Z1j(N ∗
�l
1
) +

1
n1

m∑
i=1

ni∑
j=1

(�(n1)i − wi)Zij(N ∗
�l
1
)6 0


→ 0 as n1 → ∞:

This implies that

p∑
l=1

P�0


 1

n1

n1∑
j=1

Z1j(N ∗
�l
1
) +

1
n1

m∑
i=1

ni∑
j=1

(�(n1)i − wi)Zij(N ∗
�l
1
)6 0


→ 0

as n1 → ∞:

Thus the assertion follows.

Proof of Theorem 2.3. Let N0 and � be as in the proof of Theorem 2.2, and let
N ∗

�11
; N ∗

�21
; : : : ; N ∗

�p
1
be an open cover of C \ N0 with E�0Z1j(N ∗

k )¿ 0. Then

P�0 (‖�̃(n1)1 − �01‖¿ �)

6
p∑

k=1

P� 0 (�̃(n1)1 ∈N ∗
�k
1
) + P�0 (�̃

(n1)
1 ∈Cc ∩�)



X. Wang et al. / Journal of Statistical Planning and Inference 119 (2004) 37–54 51

6
p∑

k=1

P�0 (�̃
(n1)
1 ∈N ∗

�k
1
)

+P�0


 1

n1

n1∑
j=1

Z1j(Cc ∩�) +
1
n1

m∑
i=1

ni∑
j=1

(�(n1)i − wi)Zij(Cc ∩�)6 0


 :

It follows from the proof of Theorem 2.2 that the Jrst term of last expression goes to
zero as n goes to inJnity.
By the Weak Law of Large Numbers, we have

1
n1

n1∑
j=1

Z1j(Cc ∩�)
P�0→E�0

{
inf

�1∈Cc∩�
log

f1(X1j; �01)
f1(X1j; �1)

}
¿ 0 by assumption:

Observe that

1
n1

m∑
i=1

ni∑
j=1

(�(n1)i − wi)Zij(Cc ∩�) =
m∑
i=1

ni

n1
(�(n1)i − wi)

1
ni

ni∑
j=1

Zij(Cc ∩�):

By the Weak Law of Large Numbers, it follows that

1
ni

ni∑
j=1

Zij(Cc ∩�)
P�0→E�0

{
inf

�1∈Cc∩�
log

f1(Xij; �01)
f1(Xij; �1)

}
; (6)

where E�0{inf �1∈Cc∩� log(f1(Xij; �01)=f1(Xij; �1))} is a Jnite number by the hypotheses
of this theorem. By Assumption 2.5, it follows that

ni

n1
(�(n1)i − wi) → 0 as n1 → ∞: (7)

Combining Eqs. (6) and (7), we then have

1
n1

m∑
i=1

ni∑
j=1

(�(n1)i − wi)Zij(Cc ∩�)
P�0→0:

Proof of Theorem 2.4. (1) Existence of consistent roots. The proof of existence of
consistent roots resembles the proof in Lehmann (1983, pp. 430–432). It can be found
in Wang et al. (2002).
2. Asymptotic normality. The proof in this part resembles that in Ferguson (1996,

p. 121). The di>erence is that we need to prove the convergence of an extra term
introduced by the weighted likelihood. Expand @=@�1 logWL(x; �1) as

log ẆLn1 (x; �1) = log ẆLn1 (x; �
0
1)

+
∫ 1

0

m∑
i=1

ni∑
j=1

�(n1)i  ̇ (xij; �01 + t(�1 − �01)) dt(�1 − �01);

where log ẆLn1 (x; �
0
1) =

∑m
i=1

∑ni
j=1 �

(n1)
i  (xij; �01).
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Now let �1 = �̃(n1)1 , where �̃(n1)1 is any weakly consistent sequence of roots satisfying
log ẆLn1 (x; �̃

(n1)
1 ) = 0, and divide by

√
n1 to get

1√
n1

log ẆLn1 (x; �
0
1) = Bn1

√
n1(�̃

(n1)
1 − �01); (8)

where

Bn1 =− 1
n1

∫ 1

0

m∑
i=1

ni∑
j=1

�(n1)i  ̇ (xij; �01 + t(�̃(n1)1 − �01)) dt:

Note that

ẆLn1 (x; �
0
1) =

m∑
i=1

ni∑
j=1

wi (Xij; �01) +
m∑
i=1

ni∑
j=1

(�(n1)i − wi) (Xij; �01)

=
n1∑
j=1

 (X1j; �01) +
m∑
i=1

ni∑
j=1

(�(n1)i − wi) (Xij; �01):

By (8), it follows that

1√
n1

n1∑
j=1

 (X1j; �01) +
1√
n1

m∑
i=1

ni∑
j=1

(�(n1)i − wi) (Xij; �01) = Bn1
√
n1(�̃

(n1)
1 − �01):

From the Central Limit Theorem, because E�0 (X1j; �01)=0 and cov�01
 (X1j; �01)=I(�01),

we Jnd that

1√
n1

n1∑
j=1

 (X1j; �01)
D→Z ∼ N(0; I(�01)) [P�01

]:

If we show 1=
√
n1
∑m

i=1

∑ni
j=1(�

(n1)
i − wi) (Xij; �01)

P�0→0 and Bn1
P�0→I(�01), then by the

Slutsky’s theorem (see for example, Sen and Singer, 1993, p. 130) we have

1√
n1

(�̃(n1)1 − �01) = B−1
n1

1√
n1

ẆL1
n1

D→I(�01)
−1Z ∼ N(0; I(�01)

−1):

Now we prove

(i) 1=
√
n1
∑m

i=1

∑ni
j=1(�

(n1)
i − wi) (Xij; �01)

P�0→0.

Let V̇ n1 =
∑m

i=1

∑ni
j=1(�

(n1)
i − wi) (Xij; �01). We then have

P�0

(
1√
n1

‖V̇ n1‖¿�
)
6

4K2
1

�2n1

m∑
i=1

m∑
i′=1

ni∑
j=1

ni′∑
j′=1

|�(n1)i − wi‖�(n1)i′ − wi′ |

6O
(

1
n"
1

)
→ 0; as n1 → ∞;

by hypothesis (2) of this theorem.
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(ii) Bn1
P�0→I(�01) as n1 → ∞:

Let Bn1 = BI
n1 + BII

n1 , where

BI
n1 =− 1

n1

∫ 1

0

n1∑
j=1

 ̇ (X1j; �01 + t(�̃(n1)1 − �01)) dt;

BII
n1 =− 1

n1

∫ 1

0

m∑
i=1

ni∑
j=1

(�(n1)i − wi) ̇ (Xij; �01 + t(�̃(n1)1 − �01)) dt:

First, we prove BI
n1

P�0→I(�01) as n1 → ∞: The proof can be found in Wang et al. (2002).

Next we prove BII
n1

P�0→(0; : : : ; 0)t as n1 → ∞.
By Lemma 2.1, every component of BII

n1 goes to 0 in probability. Thus

|BII
n1 |6

∫ 1

0

1
n1

m∑
i=1

ni∑
j=1

|(wi − �(n1)i ) ̇ (Xij; �01 + t(�̃(n1)1 − �01))| dt
P�0→0 as n1 → ∞:

This completes the proof.
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