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Abstract  
 

The desert locust faces similar dietary and environmental challenges to the adult 

mosquito in that water must be conserved during unfed states, whereas the expulsion of excess 

water and ions is necessary in post-fed states. The insect excretory system plays a vital role in 

maintaining the hydromineral balance of the haemolymph; the haemolymph is analogous to the 

blood of vertebrates.  The excretory system includes the Malpighian tubules and the hindgut, 

comprised of the anterior ileum and posterior rectum. The endocrine control of the excretory 

system is accomplished by diuretic and antidiuretic factors that promote fluid excretion and 

retention, respectively. Unfortunately, ion and water transport mechanisms in the hindgut of 

insects are not well understood. In the locust, S. gregaria, Ion Transport Peptide (ITP) was the 

first discovered antidiuretic factor acting on the insect hindgut. ITP was later uncovered in other 

insects including the mosquito, A. aegypti, the fruit fly, D. melanogaster, the silkworm, B. mori, 

and the tobacco hornworm, M. sexta. Amino acid sequence homology was shown to be 

conserved between insect ITPs and with the Crustacean Hyperglycaemic Hormones (CHHs) 

peptide family. Several fundamental properties of ITP have been delineated across insect species 

including its complete amino acid sequence, characteristic features at the protein level, tissue 

expression profiles, and its suspected intracellular second messengers. A putative model for the 

mechanism of ITP regulation on ion transport in the locust ileum has been suggested. The only 

ITP receptors that have been characterized to date belong to the silkworm, B. mori. This chapter 

will review the development of findings linked to the molecular and physiological characteristics 

of the neuropeptide, ITP.  
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CHAPTER I: PHYSIOLOGICAL PROPERTIES OF ION TRANSPORT 
ACROSS THE HINDGUT IN INSECTS 
 
Introduction 
 
Aedes aegypti as a Disease Vectors 

Aedes aegypti is an important mosquito species responsible for transmitting many of the 

world’s deadliest diseases. Specifically, A. aegypti mosquitoes are of great medical importance 

as they are the vectors of various arboviruses - viruses transmitted by arthropod vectors 

(Clemons et al., 2010a). Among these viruses include yellow fever, dengue, chikungunya, and 

Zika virus. All of these pathogens enter the mosquito through an infectious blood meal, penetrate 

through the midgut, and spread throughout other parts of the mosquito only to be passed onto 

their next vertebrate host (Kraemer et al., 2015).  Effective and sustainable vector control 

mechanisms are in urgent need as these mosquitoes continue to transmit arboviruses that can lead 

to potentially fatal diseases in humans.  

The yellow fever virus primarily occurs in tropical regions of Africa, as well as certain 

parts of South America. The severity of the disease ranges from a febrile illness to severe 

hepatitis and haemorrhagic fever (Clemons et al., 2010a). Yellow fever infections have been 

declining due to vector control programs and an effective vaccine developed nearly 80 years ago 

in 1937 by virologist Max Theiler. Unfortunately, the distribution and delivery of this vaccine is 

problematic and outbreaks often occur in regions where the vaccinations have not been 

administered (Clemons et al., 2010a; Kraemer et al., 2015). Extensive vaccination campaigns 

combined with effective vector-control strategies have significantly reduced the number of 

yellow fever cases worldwide. However, localized outbreaks continue to occur in parts of Africa 

and Central and South America, resulting in an estimated 84,000 to 170,000 severe cases and 

29,000 to 60,000 related deaths per year, according to the WHO (Paules and Fauci, 2017). In 
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early 2017, yellow fever virus had broken out in Brazil, with the majority of infections occurring 

in rural areas; 234 confirmed infections and devastatingly 80 confirmed deaths have been 

reported as of February 2017 (Paules and Fauci, 2017). This outbreak has been considered out of 

proportion in comparison to numbers reported in previous years, and has been shown to affect 

areas in close proximity to major urban areas where the yellow fever vaccine is not routinely 

administered, which has raised the concern of urban transmission in Brazil. This leads to the fear 

of travel-related cases of yellow fever occurring in the United States and Canada (Paules and 

Fauci, 2017). 

Threatening over 2.5 billion people worldwide, dengue is the most common arthropod-

borne viral infection in the world. It is an epidemic in more than 100 countries located in South-

East Asia, the Americas, and the Western Pacific. Shockingly, the dengue febrile illness is the 

most widespread and significant vector-transmitted disease in the world (Rodenhuis-Zybert et 

al., 2010). Roughly 400 million infections occur annually, with a mortality rate surpassing 5-

20% in some areas (Hasan et al., 2016). Dengue virus infection presents with a diverse clinical 

picture that ranges from asymptomatic illness to dengue fever to the severe illness of dengue 

hemorrhagic fever/dengue shock syndrome (DHF/DSS) (World Health Organization, 2009). 

Dengue has seen a 30-fold upsurge worldwide between 1960 and 2010 due to increased 

population growth rate, global warming, unplanned urbanization, inefficient mosquito control, 

frequent air travel, and lack of health care facilities (Hasan et al., 2016). Clinical symptoms most 

commonly begin within 5-8 days after an infected mosquito has bitten the patient. Moreover, 

abrupt onset of a high fever, severe headache, pain in muscles and joints, a skin rash, and overall 

weakness may last several weeks. Upon the manifestation of DHF and DSS, patients normally 

experience vomiting, shortness of breath, and haemorrhaging from the skin and the 
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gastrointestinal system, frequently leading to shock followed by death (Slosek, 1986).  

Outbreaks of the Chikungunya virus, as with all arboviruses, begin during the rainy 

season when vector density peaks (Pialoux et al., 2007). The disease was previously limited to 

Africa and Asia, but has more recently been reported in the Caribbean, South America, and 

Europe (Kraemer et al., 2015). In 2013, the first local transmission of chikungunya virus in the 

Western hemisphere was reported in Saint Martin. As of 2014, 576,535 laboratory confirmed 

chikungunya cases had been reported in the Americas (Staples and Fischer, 2014). The illness 

manifests itself as an acute illness with fever, skin rashes, and incapacitating arthralgia, or joint 

pain (Pialoux et al., 2007). There is currently no specific treatment, vaccine, or preventative drug 

for chikungunya and management includes rest, fluids, analgesics, and antipyretics (Staples and 

Fischer, 2014). 

The Zika virus was initially isolated from the rhesus monkey in the Zika forest of Uganda 

in 1947. Sporadic human infections were initially reported in Africa and Asia (Musso et al., 

2014). The classic infection resembles that of dengue fever and chikungunya manifested by 

fever, headaches, and skin rashes. Most notably, intrauterine transmission of the Zika virus may 

lead to fetal abnormalities such as microcephaly: this disease is characterized by abnormal 

smallness of the head, a congenital condition associated with incomplete brain development 

(Mlakar et al., 2016). The emergence of the first Zika virus disease cases in the Americas were 

reported in March 2015, when an outbreak occurred in Bahia, Brazil, thereafter it began to 

spread northwards at a rapid rate across South and Central America, reaching Mexico by late 

November 2015 (Gatherer and Kohl, 2017; Petersen et al., 2016). The World Health 

Organization subsequently issued alerts to the presence of Zika virus in several Latin American 

countries: Colombia, Surinam, Guatemala, El Salvador, Mexico, Paraguay, Venezuela and 
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Panama (Gatherer and Kohl, 2017). By March 2016, the virus had spread to at least 33 countries 

and territories in the Americas (Petersen et al., 2016). On 21 November 2015, the WHO notified 

the presence of 739 cases of microcephaly in nine states of north-eastern Brazil, the same region 

as the Zika virus outbreak in that country, by April 2016 these numbers reached an 

unprecedented total of 1912 noted cases of microcephaly. This lead to the hypothesis that there 

was a causal association with Zika virus infection during pregnancy (Gatherer and Kohl, 2017). 

On 1 February 2016, the World Health Organization declared the clusters of microcephaly in 

babies constituted a Public Health Emergency of International Concern (Heymann et al., 2016).  

A temporal and geographic relationship has been observed between Guillain-Barré 

syndrome and Zika virus outbreaks in the Pacific and the Americas (Oehler et al., 2014). 

Guillain-Barré syndrome (GBS) is a disorder in which the body's immune system attacks part of 

the peripheral nervous system. The first symptoms of this disorder include varying degrees of 

weakness or tingling sensations in the legs; in many instances, the symmetrical weakness and 

abnormal sensations spread to the arms and upper body. These symptoms can increase in 

intensity until certain muscles cannot be used at all and, when severe, the person is almost totally 

paralyzed (Pithadia and Kakadia, 2010; Yuki and Hartung, 2012). 

 

Aedes aegypti Life Cycle and Distribution  

It is now established that the ancestor of the domestic form of A. aegypti lived in sub-

Saharan Africa. The ancestral larval habitat was most likely tree holes, and non-human animals 

were the main source of blood meals for adult females (Tabachnick, 1991). Female A. aegypti 

mosquitoes lay their eggs just above the water line of natural pools such as tree holes or sitting 

water in human-generated containers (eg. flower pots, bird baths) (Powell and Tabachnick, 
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2013). The eggs remain dormant until flooded with water, and can survive desiccation for several 

months (Clemons et al., 2010a; Clemons et al., 2010b). This oviposition, or egg depositing 

behaviour, was adapted to natural conditions where rain is unpredictable. If a pool is drying, eggs 

remain dormant; if rain is plentiful, water rises to flood the eggs, they hatch, and are more likely 

to have water long enough to undergo development (Powell and Tabachnick, 2013). Upon the 

eggs hatching, their life cycle consists of four larval stages and one pupal stage, all of which are 

aquatic. During the larval stages, which last at least four days, larvae are often found at the water 

surface, as they need to breathe. In addition, larvae swim below the surface to feed on organic 

particulate matter such as algae and microscopic organisms. Following the fourth instar larval 

stage, they enter a mobile non-feeding pupal stage that lasts approximately 2 days. The adult 

lifespan of the A. aegypti mosquitoes varies depending on the environmental conditions, but 

ranges from two weeks to a month (Clements, 1999; Foster and Walker, 2009). A. aegypti adults 

have white scales on the dorsal surface of their thorax and brown to black abdomen also 

possessing white scales. Their hind legs also have white bands that appear to be stripes 

(Carpenter and La Casse, 1974) . Adults of both sexes feed on plant nectar, but females possess 

piercing mouthparts adapted for acquiring vertebrate blood meals that is needed for producing 

eggs prior to oviposition. Females prefer to blood feed at dusk and dawn, preying primarily on 

human hosts (Clements, 1999; Clemons et al., 2010b). 

Found throughout most tropical to subtropical world regions, A. aegypti mosquitoes have 

a preference for human habitats. This mosquito species is typically concentrated in northern 

Brazil and Southeast Asia, including all of India. There are relatively few areas of suitability in 

Europe (only Spain and Greece) and temperate North America (Rodenhuis-Zybert et al., 2010). 

The distribution of A. aegypti mosquitoes in Africa encompasses a much wider range, with 
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reports of the species in over 30 countries (Kraemer et al., 2015). The species distribution highly 

depends on the environmental temperature, which is a limiting factor for survival since these 

mosquitoes need a tropical to temperate environment for optimal survival conditions (Brady et 

al., 2013). Global expansion of these mosquitoes has been associated with trade and travel. The 

introduction of the species over long distances and between continents has been associated with 

international trade routes via shipping, human movement, and transport routes. Thus, the global 

spread of associated pathogens has undoubtedly been a consequence of increasing globalization 

(Clemons et al., 2010a; Kraemer et al., 2015; Powell and Tabachnick, 2013; Rodenhuis-Zybert et 

al., 2010; Tabachnick, 2010). 

 

Ion and Water Balance in A. aegypti Mosquitoes 

Haemolymph is a fluid that circulates the interior of the arthropod body remaining in 

direct contact with the animal’s tissues, analogous in many ways to the blood of vertebrates. 

Within the mosquito, haemolymph homeostasis is constantly challenged by feeding strategies 

and diet, habitat, and the metabolic state of the insect (Phillips et al., 1996). Adult mosquitoes 

face a similar challenge to other terrestrial insects, that being environmental stressors leading to 

desiccation; insects have a high surface-to-volume ratio that challenges their ability to conserve 

water (Coast et al., 2002; O’Donnell, 2011). Larval A. aegypti normally reside in fresh water and 

faces the challenge of gaining water from drinking and through the osmotic flux across the body 

surface; in sum, the aquatic environment possess stress for the dilution of the haemolymph 

(Clements, 2000; O’Donnell, 2011). These larvae must also deal with diffusional losses of 

haemolymph ions to the dilute external medium (Clements, 2000; O’Donnell, 2011; Patrick et 

al., 2006). Upon pupal eclosion into an adult mosquito, osmoregulatory challenges are sporadic 
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and dissimilar, varying with the constantly changing external environment and differing gut 

contents. The mosquito excretory system consists of the Malpighian tubules and the hindgut, 

including the ileum and rectum, and finally the anus from which the final waste is excreted. In 

adult mosquitoes, the rectum consists of a thin rectal sac housing six (female) or four (male) 

rectal pads that protrude into the lumen (O’Donnell, 2011; Patrick et al., 2006).  In larvae, the 

four anal papillae extend from the terminal segment and project into the external medium. Their 

walls are composed of a one cell thick epithelia, and the lumen is continuous with the 

haemolymph (Clements, 2000; Donini et al., 2007). The Malpighian tubules arise at the junction 

between the midgut and hindgut; their apical membrane faces the lumen while the basolateral 

membrane faces the haemolymph (Clements, 2000). The material eliminated by the anus of 

insects has been coined “excreta” and it consists of a mixture of undigested foodstuffs and 

urinary fluid secreted by the Malpighian tubules (Coast, 2007). 

Freshwater larvae eliminate an excess water load by producing a bountiful amount of 

dilute urine through the coordinated activity of the Malpighian tubules and hindgut. The primary 

urine produced in the Malpighian tubules of larval mosquitoes is a consequence of active 

potassium and sodium ion secretion from the haemolymph to the tubule lumen, thereafter, water 

follows down its osmostic gradient (Coast, 2007; Coast, 2009). The primary urine is later 

modified in specialized segments of the tubules themselves, and finally, in the hindgut (Coast, 

2007; Coast, 2009; O’Donnell, 2011). Prior to excretion, ions are actively absorbed from the 

urine by the rectal papillae back into the haemolymph (Ramsay, 1953).  

Non-feeding adult mosquitoes are primarily tasked with conserving body water to avoid 

the reduction in body volume and to preserve the concentration of haemolymph ions. However, 

when adult mosquitoes ingest a nectar meal they take on a significant water load and face the 
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challenge of haemolymph ion dilution. The elimination of this water load is initiated within 

seconds of feeding and occurs without significant loss of ions (Clements, 2000). The process of 

achieving ionic homeostasis within the excretory system is initiated at the distal, free-floating, 

end of the Malpighian tubule. The osmotic pressure of the primary urine secreted by A. aegypti 

Malpighian tubules is similar to that of the haemolymph, and reveals a concentration of Na+ that 

is lower, a concentration of K+ that is higher, and a concentration of Cl- close to that of the 

haemolymph (Evans et al., 2009). 

 The active transport of cations across Malpighian tubule principal cells depends on the 

activity of an apically located vacuolar-type H+ ATPase (V-type ATPase) that pumps protons 

into the lumen (Maddrell and O’Donnell, 1992). Primary active transport of H+ by the V-type 

ATPase energizes secondary active transport through alkali cation/H+ antiporters that drive Na+ 

and K+ export into the lumen. Protons extruded by the V-type ATPase into the lumen are cycled 

back within the cell through these exchangers driving cellular Na+/K+ secretion into the lumen 

(Pannabecker, 1995; Wieczorek, 1992). Na+/K+ transport is a result of secondary active transport; 

these H+/alkali cation exchangers are located both basolaterally and apically (Donini et al., 2006; 

Larsen et al., 2014; Pullikuth et al., 2006). Furthermore, the basolaterally localized Na+/K+/2Cl- 

co-transporter functions in response to the electrochemical gradient established by the reduction 

in cellular Na+; K+, Cl-, and these ions are brought into the principal cells from the haemolymph 

(Ianowski and O’Donnell, 2004; Ianowski et al., 2002; Larsen et al., 2014). Potassium ions can 

also enter the principle Malpighian tubule cells from the haemolymph through potassium 

channels, and are secreted into the tubule lumen by a K+/H+ antiporter (Wieczorek et al., 2009). 

At the basolateral membrane of principle cells, a type 3 Na+/H+ exchanger (AeNHE3) allows for 

the uptake of Na+ from the haemolymph in exchange for intracellular H+ (Pullikuth et al., 2006). 
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Finally, water movements during urine production are a passive osmotic consequence of active 

transepithelial ion secretion; osmotic gradients drive transcellular water transport through 

aquaporins (O’Donnell, 2009; Pacey and O’Donnell, 2014).  

Upon blood feeding, adult female mosquitoes face the extraordinary challenge of 

avoiding excess fluid and ion uptake from their vertebrate host. Adult females must gorge on a 

blood meal to harvest the proteins required for production of eggs. Consequently, females must 

eliminate large quantities of excess water and ions (such as sodium, potassium, and chloride 

ions) present in the blood plasma, as well as ions that are released from within the red blood cells 

upon digestion (Clements, 2000; Coast, 2009). Blood feeding insects, such as the well-studied 

Rhodnius prolixus, recover virtually no water during the process of diuresis (Larsen et al., 2014). 

Excess ions that are absorbed across the midgut are rapidly eliminated by the Malpighian tubules 

and the hindgut (O’Donnell, 2009; Pullikuth et al., 2006). These excess ions and water from the 

blood meal are secreted from the haemolymph into the Malpighian tubules, through an active 

process moving these cations against their electrochemical potentials (Clements, 2000). The 

plasma composition of a blood meal is high in NaCl, and therefore, the primary urine produced 

by the Malpighian tubules is highly concentrated in NaCl (Coast, 2009; O’Donnell, 2011). K+ is 

released upon the lysis of red blood cells and, if absorbed into the haemolymph must also be 

eliminated. This may be achieved by expression of the basolateral P-type Na+/K+ ATPase (P-type 

ATPase) within the anterior hindgut that enhances K+ entry into cells at the expense of Na+ 

(Coast, 2009; O’Donnell, 2009; Patrick et al., 2006). However, the P-type ATPase has not been 

shown to specifically enhance the transcellular transport of K+ into the lumen of the hindgut, and 

may therefore play a role in maintaining the ion homeostasis of epithelial cells.  
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The Mosquito Hindgut 

As previously outlined in detail above, the osmo- and ionoregulatory mechanisms in the 

Malpighian tubules have been very well studied in both larval and adult mosquitoes. 

Unfortunately, this is not the case for the hindgut, and the exact mechanisms for ion and water 

transepithelial transport are yet to be determined. The Malpighian tubules will generate a 

variable load of primary urine that is then delivered to the hindgut to be modified prior to being 

voided as urine. Thereafter, the bulk of water, ion, and metabolite reabsorption occurs in the 

rectum. Ultimately, the hindgut will play a dominant role in determining the composition of the 

excreted matter (Coast, 2009; Larsen et al., 2014). The hindgut is an excretory organ, composed 

of the anterior ileum and posterior rectum, that completes the excretion process by selectively 

reabsorbing substances into haemolymph, allowing other substances to pass within the lumen, 

and actively secreting additional substances into the lumen (O’Donnell, 2011). The rectal cuticle 

lining has greater permeability than the cuticle lining of the foregut cells, and the epithelial cells 

of the hindgut are specialized for both active secretion and reabsorption (Nation, 2008). In the 

locust, the ileum is the major site for isosmotic fluid reabsorption and active Na+ and Cl- 

reabsorption (Phillips et al., 1988; Phillips et al., 1994). Furthermore, passive reabsorption of K+ 

can occur by electrical coupling with electrogenic Cl- transport (Hanrahan and Phillips, 1983). 

The ileum also plays a major role in acid-base balance by secreting H+ into the lumen and 

reabsorbing HCO3- (Phillips et al., 1994). 

The anterior hindgut, or the ileum, possesses an epithelium thicker than that of the rectal 

sac; nonetheless, both of these areas possess a well-developed basolateral surface rich in 

mitochondria to aid in the production of ATP necessary to feed ATPases localized on this 
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membrane. Patrick et al., (2006) were the first to examine specific ion transport proteins in the 

epithelia of the adult mosquito hindgut.  The previously mentioned apical V-type ATPase of the 

Malpighian tubules is also highly expressed on the apical surface of the anterior hindgut epithelia 

and the rectal pads (Patrick et al., 2006). Unfortunately, there is only scarce literature that 

explains how the proton gradient facilitates the reabsorption of important ions such as sodium, 

potassium and chloride in the adult mosquito hindgut.  Additionally, a P-type ATPase that is 

localized on the basolateral surface of the hindgut and rectum of adult mosquito was 

characterized (Patrick et al., 2006). Intense P-Type ATPase labelling on the basolateral infolding 

of rectal pads, shown with immunohistochemistry, indicated that the Na+ pump might be driving 

absorptive processes following a blood meal. These patterns of basolateral P-type ATPase and 

apical V-type ATPase localization in the adult hindgut further support the notion that the ileum 

and rectal pads are sites of ion and water movement (Patrick et al., 2006). As previously 

mentioned, it is also possible that these ATPases may be playing a role in epithelial cell 

homeostasis and not in transcellular ion transport, and further research is necessary to elucidate 

their precise function. Osmoregulation is achieved through the variable expression of aquaporins 

(AQP), or water channels. For example, it was recently demonstrated that the mosquito prevents 

reabsorbing water after a blood meal by down regulating the expression of AQPs 1, 2, and 5 in 

the hindgut (Drake et al., 2015). 

The rectum is the most terminally-localized excretory organ, and the major site for final 

reabsorption of ions, water, and nutrients - it is capable of reabsorbing fluid against strong 

osmostic gradients. Classical studies elucidated the role of the anal papillae in larval mosquitoes: 

the uptake of ions from dilute environments against a large concentration gradient (Koch, 1938; 

Ramsay, 1953). Rectal epithelia revealed a low expression of both ATPases, which helps support 
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the theory that this is a site solely responsible for reabsorption. Further support for the role of the 

ileum as absorptive and secretory and the rectum as solely absorptive derives from the epithelial 

cell structure of these organs. The ileum is composed of simple cuboidal cells, which are 

characteristic of both absorptive and secretory function. In contrast, the rectal pads are composed 

of simple columnar cells that function in absorption mechanisms (Clements, 2000; Hanrahan and 

Phillips, 1983; Piersol, 1897). 

 

The structure and function of the insect neuroendocrine system 

The processes in an insect’s life that require precisely coordinated control include, but are 

not limited to, embryonic and postembryonic development, reproductive activity, and changing 

metabolic and behavioural patterns (Raabe, 1989). Like vertebrates, insects share the use of two 

integrative control systems, the nervous and endocrine systems. The neuroendocrine system is 

composed of neurosecretory centers in which active material is synthesized and the neurohaemal 

structures where the neurosecretory material is stored and released. Many neurons of the central 

and peripheral nervous system produce hormones that are released locally in the extracellular 

space, as well as in the circulatory system (i.e. blood or haemolymph) (Hartenstein, 2006). 

Neurons that produce neurohormones are called neurosecretory cells (NSCs). Neurohaemal 

organs are responsible for storing and later releasing the products they receive from NSCs 

(Scharrer, 1987). The neuropeptides released by neurohaemal organs can be released into the 

bloodstream, or directly into the extracellular space in close proximity to target tissues 

(Hartenstein, 2006). Ultimately, NSCs and neurohaemal organs form the neuroendocrine system. 

Prior to exploring the function of the neuroendocrine system, it is important to clearly define the 

different classes of neuropeptide signalling molecules produced by neuronal tissues: 
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neurohormones, neurotransmitters, and neuromodulators (Burrows, 2012). Neurohormones are 

chemical messages released by neurons into the circulatory system, exerting their effects on 

distant peripheral targets. Neurotransmitters are released from neurons at anatomically 

specialized junction, diffuse across a narrow cleft, and finally bind appropriate receptors on a 

postsynaptic neuronal, muscle, or other effector cell. Neuromodulators can affect a group of 

neurons at various synapses, or effector cells located at further distances (Burrows, 2012). 

In insects, the neurosecretory system consists of several sets of NSCs located in the brain 

and the ventral nerve cord (VNC). The majority of NSCs in the brain are found in the dorso-

medial protocerebrum, or the pars intercerebralis (PI) and pars lateralis (PL) (Hartenstein, 2006). 

Other areas having an abundance of NSCs include the subesophageal ganglion (SEG) and VNC 

(Fig. 1). These NSCs project their axons to innervate the retrocerebral complex of endocrine 

glands, the corpora cardiaca (CC) and corpora allata (CA), both of which are located in close 

proximity to the dorsal vessel (Fig. 1), which is the main pulsatile organ (i.e. heart) that drives 

haemolymph throughout the open circulatory system of the insect. The NSCs located in the VNC 

terminate at neurohaemal release sites (Hartenstein, 2006). The axon bundles, or nerves, that 

innervate the CC include the nervi corpis cardiaci I (nccI) from the PI, nervi corpis cardiaci II 

(nccII) from the PL and nervi corpis cardiaci III (nccIII)  from the SEG (Fig. 1) (Hartenstein, 

2006). Notably in Drosophila melanogaster (the common fruit fly), the CC, CA, and a third 

(neuro)endocrine gland, the prothoracic gland (PTG) are fused into a single complex, the ring 

gland (Hartenstein, 2006). The ring gland surrounds the anterior end of the dorsal vessel, which 

provides a passageway for neuropeptides to be released directly into the circulatory system 

allowing efficient delivery to target cells and tissues (Talamillo et al., 2008). 
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Figure 1: Posterior–dorsal view of insect neuroendocrine system. Central NSCs are located in 
the pars intercerebralis (PI), pars lateralis (PL), the subesophageal ganglion (seg), and the ventral 
nerve cord (vnc).   The retrocerebral complex of endocrine glands receiving NSC axons consists 
of the corpora cardiaca (cc) and corpora allata (ca), both of which are located close to the dorsal 
vessel (dv). NSCs innervate the retrocerebral complex via the nccI nerve (from PI), nccII (from 
PL), and nccIII (from seg). Secretory axons of NSCs located in the ventral nerve cord terminate 
at neurohaemal release sites. The prothoracic gland (ptg) is responsible for the synthesis and 
release of ecdysteroids. The stomatogastric nervous system (sns) contains further NSCs and is 
functionally closely connected to the ca and cc. Adapted from Hartenstein, 2006. 
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Peripheral neuroendocrine glands in insects include the CC and the median nerve perivisceral 

organs (PVOs), while the CA and PTG are defined as peripheral endocrine glands. The CC is 

divided into two distinct lobes, an unpaired ventral neurohaemal storage lobe, containing the 

axon terminals of NSCs located in the PI and PL, and a lateral glandular lobe that is formed by 

its own respective NSCs (Dorn, 1998). However, not all insects possess a storage lobe, therefore 

the NSC terminal axons would pass through the CC and end in contact with the dorsal vessel 

(Schooneveld, 1998). PVOs are characterized as neurohemal organs, one of the most prominent 

sites for release of neurosecretory products into the haemolymph besides the retrocerebral 

complex (Braunig, 1987). The CA is responsible for the production of juvenile hormone, a fatty 

acid derivate that has profound effects on larval growth, metamorphosis, egg development, and 

sexual behaviour (Gilbert et al., 2000). The PL, via its projections to the CA, is the source for 

positive and negative control over juvenile hormone production. For example, the neuropeptide 

allatostatin that is produced in the PL inhibits juvenile hormone release (Stay et al., 1996). The 

PTG is responsible for the production and secretion of ecdysteroids. 20-hydroxyecdysone is well 

known as the major molting hormone that triggers metamorphosis, which is the transition from 

one stage of the insect to the next (e.g from larval to pupal stage) (Bollenbacher et al., 1975) . 

 

Endocrine Control of The Hindgut 

To ensure their survival, insects (and all animals for that matter) must ensure a precisely 

timed interplay between hormonal and membrane transport processes to facilitate the rapid 

removal of excess ions and fluids consumed in a food meal (Pullikuth et al., 2006). During this 

process known as diuresis, or urine production, diuretic hormones promote fluid formation and 

rapid secretion by the Malpighian tubules (MTs). The opposite mechanism is known as anti-
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diuresis, in which there is a reduction in the net volume of urine produced. Anti-diuretic 

hormones act upon the hindgut to promote water reabsorption, among other things (Phillips, 

1981) and can alternatively directly act upon the Malpighian tubules to inhibit the secretion of 

primary urine (Coast, 2002; Paluzzi, 2012). Factors that have been characterized to play a 

diuretic role promoting the secretion of primary urine from the MTs include the biogenic amines 

tyramine and serotonin, as well as peptides such as corticotropin-releasing factor (CRF)-related 

peptides, insect kinins, calcitonin-like peptides and the CAPA family of peptides (Paluzzi, 2012). 

The CAPA family of peptides have also been shown to inhibit fluid secretion in Rhodnius 

prolixus (the kissing bug), suggesting their role in anti-diuresis (Quinlan and O’Donnell, 1998). 

In Tenebrio molitor (the mealworm) native anti-diuretic factor (ADF) has been identified as a 

potent inhibitor of MT secretion via an increase of intracellular cGMP levels (Eigenheer et al., 

2002). T. molitor ADFa has also been shown to inhibit the fluid secretion rate of MTs in A. 

aegypti by signaling through intracellular cGMP (Massaro et al., 2004). Unfortunately, the 

endocrine control of the hindgut is an area that has been relatively unexplored in comparison to 

the other main excretory organs, namely the Malpighian tubules (Coast, 2009).  

The desert locust, Schistocerca gregaria, has been extensively studied and faces similar 

dietary and environmental challenges to the mosquito; water must be conserved during unfed 

states, whereas the expulsion of water and certain ions is necessary during fed states (Phillips et 

al., 1996; Robertson et al., 2014). With this rationale, the locust will be used as a model to 

delineate possible regulatory mechanisms within the hindgut of the adult mosquito, A. aegypti. 

Anti-diuretic hormones of the locust neuroendocrine system play an important role in 

maintaining the reabsorptive properties of the hindgut - some of which include the neuropeptides 

chloride transport stimulating hormone (CTSH) and ion transport peptide (ITP) (Phillips and 



 17 

Audsley, 1995). CTSH mediates its actions on the rectal epithelia through a cyclic adenosine 

monophosphate (cAMP)-mediated pathway, and has been shown to promote the active 

reabsorption of chloride ions by stimulating an electrogenic Cl- pump (Hanrahan and Phillips, 

1983). In addition, the energy for potassium ion reabsorption through channels on the apical 

membrane of the rectal epithelia is driven by the action of the Cl- pump. Finally, CTSH inhibits 

the active secretion of protons (Phillips and Audsley, 1995; Phillips et al., 1988) (Figure 2). ITP 

is also suggested to act through the second messenger cAMP to increase chloride, sodium, and 

potassium ion reabsorption across the hindgut of S. gregaria (Audsley et al., 2013). The driving 

mechanism for ion and water absorption is the electrogenic Cl- pump that establishes the 

electrical coupling necessary for K+ ion passive reabsorption (Phillips et al., 1986; Phillips et al., 

1988) (Figure 3). In the context of the hindgut, water reabsorption is achieved by following the 

osmotic gradient created by ion reabsorption (Clements, 2000; Nation, 2008). Both neuropeptide 

hormones act through cAMP-mediated pathways to recycle ions and water in the locust, 

ultimately regulating haemolymph homeostasis. Taken together, this provides insight on the 

action of neuropeptide hormones that have been less characterized in A. aegypti, which may 

control reabsorptive processes over the adult mosquito hindgut in a similar manner.  
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Figure 2: A model illustrating membrane ion transport mechanisms in locust rectal pad 
epithelial cells. The active entry of Cl- is enhanced by low luminal K+ concentration and by high 
intracellular cAMP, which is elevated by the neuropeptide Chloride transport-stimulating 
hormone (CTSH). cAMP has also been proposed to stimulate passive transport of K+ across the 
apical membrane (lumen-facing), and passive  Cl- exit across the basal membrane (haemolymph-
facing). A basolateral Na+/K+-ATPase transports potassium into the cell and sodium to the 
haemolymph. Ultimately, there is active fluid transport to the haemolymph side. Circles 
represent major ion pumps, rectangles represent ion channels, and two-sided arrows represent 
countertransport. Adapted from Hanrahan and Phillips, 1983 and Phillips et al., 1988. 
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Figure 3: A model for the control of ion transport across the locust ileum via intracellular 
cAMP. Schistocerca gregaria ion transport peptide (SchgrITP) binds to its receptor (a proposed 
GPCR) resulting in the elevation of intracellular cyclic AMP, stimulating Cl- (electrogenic 
pump), Na+ (unknown mechanism) and K+(ion channel) entry at the apical (lumen-facing) 
membrane. cAMP also stimulates the basolateral (haemolymph-facing) exit of Cl- (ion channels). 
Circles represent major ion pumps, rectangles represent ion channels, and diamonds represent 
unknown transporters. Adapted from Audsley et al., 2013. 
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The relatively novel-discovered heterodimeric glycoprotein hormone GPA2/GPB5 has 

been proposed to regulate ionic and osmostic balance in insects such as the fruit fly, D. 

melanogaster and mosquito, A. aegypti (Paluzzi, 2012; Paluzzi et al., 2014; Sellami et al., 2011). 

The transcript expression of its receptor, A. aegypti leucine-rich containing GPCR 1 

(AedaeLGR1), showed expression in tissues of the alimentary canal such as the midgut, 

Malpighian tubules, as well as the hindgut and expression was enriched in adult stage insects 

(Paluzzi et al., 2014).  Similarly, the LGR1 receptor in the D. melanogaster was shown to 

localize to hindgut epithelia by in situ hybridization (Sellami et al., 2011). Like CTSH and ITP in 

the locust, GPA2/GPB5 has been suggested to play an anti-diuretic role in both adult D. 

melanogaster and adult A. aegypti (Paluzzi et al., 2014; Sellami et al., 2011; Vandersmissen et 

al., 2014). Considering the adult hindgut tissue localization of the apical V-type H+-ATPase and 

basolateral P-type Na+/K+-ATPase (Patrick et al., 2006), it has been suggested that GPA2/GPB5 

may regulate the activity of these two transporters to enable the retention of Na+ ions towards the 

haemolymph and eliminate excess K+ in the urine. This theory was supported by Paluzzi et al., 

(2014) where the Scanning Ion-Electrode Technique (SIET) was used to determine the effect of 

treating the hindgut with a recombinant form of GPA2/GPB5.  The outcome of this study 

revealed that recombinant A. aegypti GPA2/GPB5 lead to a decrease in net secretion of Na+ by 

the ileum, measured as decreased lumen-directed sodium flux, and caused increased Na+ 

absorption in the rectum. There was a decrease in K+ absorption across all areas of the hindgut 

examined along the hindgut (Paluzzi et al., 2014). These findings revealed that GPA2/GPB 

inhibited natriuresis, or sodium excretion, and promoted kaliuresis, or potassium excretion, and 

provided insight on the first presumed anti-diuretic factor acting on the hindgut of the mosquito, 

A. aegypti (Paluzzi et al., 2014). 
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Discovery of Ion Transport Peptide in S. gregaria 

Prior to the purification and identification of Ion Transport Peptide, the entire central 

nervous system of S. gregaria was surveyed for stimulatory activity. Tissue extracts were 

prepared by harvesting brain, corpora cardiaca, corpora allata, subesophageal ganglia and all 

eight ventral ganglia from adult male locusts, 2-6 weeks past their final molt. Glands were 

immediately frozen on dry ice and protein extracts were prepared by mechanically homogenizing 

tissues in saline. Bioassays were conducted by measuring changes in transepithelial potential, or 

short-circuit current (ISC), upon voltage clamping of ileal tissue (Audsley and Phillips, 1990). 

Proteinaceous factors detected in the brain, corpus cardiacum (CC), and the 4th and 7th ventral 

ganglia (VG) stimulated ileal ISC in a dose-dependent manner (Audsley and Phillips, 1990).These 

findings prompted Audsley et al., (1992) to purify the predominant ileal stimulant derived from 

the CC. Using reverse-phase high performance liquid chromatography, they isolated and purified 

this protein factor from CC extracts and named it Ion Transport Peptide (ITP) (Audsley et al., 

1992a). They used an ileal ISC bioassay, an indicator of Cl- transport, to show that purified ITP 

from CC extracts indeed stimulated Cl--dependent short circuit current across the locust ileum. 

Short-circuit current (ISC) is a direct continuous measure of electrogenic ion transport. The locust 

ilea ISC were previously reported to be Cl--dependent and a measure of electrogenic active 

transport of this anion (Irvine et al., 1988). The purified S. gregaria ITP (SchgrITP) was shown 

to have an unblocked amino-terminus (N-terminus), a molecular mass of approximately 8652 

Da, and the first 33 amino acid residues were discovered (Audsley et al., 1992a; Meredith et al., 

1996).  Further studies were conducted to compare the effects of purified ITP and crude CC 

extracts on ileal ISC, where both were found to increase Cl-, K+, and Na+ reabsorption. In 

addition, H+ secretion in the ileum (JH), was abolished by high concentrations of ITP (Audsley et 
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al., 1992b). 

In 1996, Meredith et al. sought to elucidate the entire amino acid sequence of SchgrITP. 

They utilized degenerate primers, and screened a locust brain complementary DNA (cDNA) 

library, to clone the cDNA that encoded the known partial 33 amino acid N-terminal sequence 

identified earlier (Audsley et al., 1992a). This group went on to identify the complete cDNA that 

contained 517 base pairs, and encoded the complete open reading frame for the ITP 

prepropeptide of 130 amino acid residues (Meredith et al., 1996). They further illustrated a 55-

residue leader sequence, within which lies the signal peptide, and the complete 72-residue 

sequence of the mature peptide. Six cysteine residues, proposed to participate in intramolecular 

disulphide bridge formation, were localized to positions 7, 23, 26, 39, 43, and 52 of ITP 

(Meredith et al., 1996). The three disulphide bridges are necessary for determining the distance 

between essential motifs and the N- or C-terminus. Thus, they were thought to be fundamental 

for the biological activity of ITP (King et al., 1999). When the disulphide bonds formed between 

cysteine groups were reduced by carboxymethylation, SynITP lost its biological activity, 

demonstrated by its inability to stimulate ileal ISC. Even if only one of the cysteine residues 

involved in disulphide bridge formation was mutated to an alanine, biological activity of SynITP 

was compromised as ISC was significantly reduced. Specifically, mutating a single cysteine to an 

alanine was shown to abolish up to 90% of SynITP’s biological activity (King et al., 1999).  

Meredith et al., (1996) also discovered ITP-Long form (ITPL), which contained a 121 

base pair insert at amino acid position 40 of ITP. The mature ITPL peptide was only 4 amino 

acids longer than ITP, and contained a unique carboxy-terminus (C-terminus) with only 36% 

sequence identity with ITP (Phillips et al., 1998). The six cysteine groups of locust ITP were 

found to be conserved in locust ITPL as well (Meredith et al., 1996). The Meredith group also 
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characterized the tissue localization of both ITP and ITPL; ITP mRNA was detected in the brain 

and CC, while ITPL mRNA was detected in flight muscle tissue, hindgut, and MTs. Notably, an 

ileal bioassay showed that ITPL had no stimulatory effect on ileal ISC in the locust, however, it 

inhibited the stimulatory effect of synthetic ITP on ileal ISC (Ring et al., 1998). 

 

Characterizing the ITP peptide domains 

In a review by Phillips et al., (1998) it was proposed that the shared N-terminus of ITP 

and ITPL is what permits the neuropeptide to bind to its receptor. The absence of both the C-

terminal alpha-helix and C-terminal amidation in ITPL was suggested to block receptor 

activation; ITPL may be functioning as an ITP receptor antagonist (Phillips et al., 1998). Coast et 

al., (2002) proposed that the function of the terminal 20 amino acids in ITPL are to disrupt the 

specific activation structure of the ITP C-terminus (Coast, 2002). A domain swap mutation 

replacing the SchgrITP N-terminus with that of shrimp CHH resulted in a complete loss in 

stimulatory activity of ileal short-circuit current (Zhao et al., 2005), solidifying the importance of 

the N-terminus in the biological activity of ITP. Increasing truncation of the C-terminus was 

used to investigate the role of the C-terminus in receptor binding and ileal activation (Wang et 

al., 2000). Simply removing the amidation and dibasic cleavage recognition site, -GKK, of the 

C-terminus reduced the biological activity of ITP by two orders of magnitude, shown through its 

inability to stimulate ileal ISC. Further truncation of one (-LGKK), two (-ILGKK), or five amino 

acids (-MVEILGKK) at the C-terminus all completely abolished the biological activity of ITP. 

Interestingly, in vitro amidation of ITP increased the specific biological activity, hence indicating 

that amidation of the C-terminus is required for full biological activity. Particularly, removal of 

the C-terminal leucine residue at position 72 not only abolished stimulatory activity, but also 
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reduced ITP-receptor binding (Wang et al., 2000). This lead to the proposal that binding and 

signal transduction sites in ITP overlap, and they are not exclusively located within either the N- 

or C-terminus (Wang et al., 2000). 

 

Characteristic features of all ITPs 

All insect ITPs and ITPLs share five conserved characteristics. (1) Six cysteine residues 

are located in the same position to allow for the formation of three intramolecular disulphide 

bonds. (2) The mature peptides are 72 amino acids in length, except for dipteran species that 

have one extra N-terminal amino acid. (3) The presence of aromatic amino acids (Phe or Tyr) in 

position 3 (or positions 2, 4 or 3 in dipteran ITPs) of the N-terminal alpha-helix are a conserved 

feature that has been proposed to be important for biological activity. (4) The highest 

conservation of amino acids lies within the core structure of the first 40 or 41 amino acids. (5) In 

regards to ITP only, C-terminal amidation confers protection against carboxypeptidase 

degradation (Dircksen, 2009).  

Markedly, four major groups of neurons produce ITP or ITPL: (1) pars lateralis NSCs in 

the protocerebrum that possess axonal projections with release sites in CC/CA (retrocerebral 

complex); (2) interneurons of the brain and ventral nerve cord (subesophageal ganglia, thoracic 

and abdominal ganglia) which may connect NSCs to other neurons; (3) efferent neurons such as 

those found in the abdominal ganglia of D. melanogaster, which innervate the hindgut directly; 

and (4) NSCs associated with neurohemal organs of the peripheral nervous system that likely 

only produce ITPL (Dircksen, 2009). 
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Tissue expression profile of ITPs 

Although the tissue expression profile of SchgrITP mRNA had been previously outlined 

in 1996, the peptide had not yet been detected in the locust tissue (Meredith et al., 1996). Macins 

et al., (1999) performed a western blot analysis using antibodies for SchgrITP and SchgrITPL to 

identify the tissue expression profile of the peptide. This study was the first to immunologically 

detect SchgrITP in the CC of other orthopteran insects, pertaining to the same order as the desert 

locust (Macins et al., 1999). Among these insects included Schistocerca gregaria (desert locust), 

Locusta migratoria (migratory locust), and Acheta domesticus (house cricket).  S. gregaria brain 

and CC tissue contained immunopositive material that co-migrated with SynITP at around 8700 

Da. The immunopositive material was presumed to be SchgrITP.  S. gregaria brain, ileal, or 

rectal tissue did not react with a SchgrITPL specific antibody, suggesting the absence of the 

longer peptide isoform in these tissues. CC tissue from other orthopteroids, including L. 

migratoria and A. domesticus, probed with antibodies raised to SchgrITP, all contained 

immunopositive bands that co-migrated with S. gregaria CC extracts or SynITP (Macins et al., 

1999). This was interpreted as evidence for ITP in the CC of these insects. The immunoreactivity 

of SchgrITP present in both the brain and CC implied that it is synthesized by neurosecretory 

cells in the brain, and stored in the CC. It would be later released from the CC into the 

haemolymph, where it would elicit its effects by binding to its specific receptor (Macins et al., 

1999). 

  In 2007, Dai et al. set out to uncover the expression of ITP gene products in the central 

and peripheral neurons of insects. Initially, RT-PCR was used with total RNA derived from 

either the brain or VNC to test for the presence of Manduca sexta ITP and ITPL 

(MasITP/MasITPL). Their results showed that both peptides were found in the brain, however 
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MasITP was absent from RNA extracts of the ventral nerve cord. With these preliminary 

findings, they performed fluorescence in situ hybridization (FISH) to observe the tissue specific 

expression of peptide transcripts in M. sexta, B. mori, and S. americana. In M. sexta, they found 

evidence for expression of ITPL, but not ITP in the neurons of the ventral ganglia and the 

peripheral nervous system. Additionally, neither ITP nor ITPL gene transcripts were observed in 

the cells of the subesophageal ganglion. Notably in larvae, a group of five dorsolateral 

neurosecretory cells in each hemisphere of the brain exhibited increased expression of 

MasITP/ITPL. Furthermore, their axons showed strong MasITP immunoreactivity, however 

neither CC nor CA stained for MasITP/ITPL transcripts. Immunohistochemistry was used to 

survey the presence of ITP/ITPL in the brain of B. mori and S. americana larvae. Very similar 

results were obtained in B. mori brain tissue where six pairs of dorsolateral cells showed 

ITP/ITPL immunoreactivity with their axon projections to the CC/CA complex having strong 

ITP but lacking any ITPL immunoreactivity. Unfortunately, they were unable to show specific 

staining in the CNS of S. americana as they used a primary antibody specific for the C-terminus 

of MasITP, which possesses considerable sequence differences to that of S. americana (Dai et 

al., 2007). 

 Later in 2008, Dircksen et al. investigated the localization of ITP in the central and 

peripheral nervous system of D. melanogaster throughout postembryogenesis. Western blots of 

larval CNS tissue and adult heads were used to confirm the existence of a single ITP-

immunoreactive band at approximately 8.2 kDa (expected 8.9 kDa). Using both 

immunohistochemistry and FISH, they uncovered two groups of ITP-immunoreactive neurons in 

the brain and abdominal ganglia that persisted throughout metamorphosis from the first larval 

stage into the adult stage. In larval brain, the most prominent and strongly staining group of ITP-
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immunoreactive cells was comprised of four bilateral pairs of neurons (ipc-1 neurons). In adult 

D. melanogaster, the four pairs of ipc-1 neurons always occur in posteriodorsal and mediolateral 

positions. Additionally, there are three more groups of ITP-immunoreactive neurons in the brain 

of adults: ipc-2 through ipc-4. All larval and prepupal stages contained a prominent pair of ITP-

immunoreactive subesophageal neurons located in a ventromedial position. In regards to 

abdominal neurons, one pair of strongly labelled dorsolateral and two or three pairs of faintly 

stained ventrolateral to ventromedial pairs of ITP neurons were found in the eighth abdominal 

neuromeres of larvae, pupae, and adults; it is important to note that their staining intensity varied 

considerably, and they were often not visible in larvae (Dircksen et al., 2008; Omoto et al., 

2016). Neuromeres are strictly defined regions of the central nervous system belonging to one 

body segment. Each neuromere contains the neural circuitry responsible for processing sensory 

signals and controlling the movements of the body segment they belong to (Niven et al., 2008). 

 

Conserved Ion Transport Peptide gene among insects 

Dai et al. (2007) were the first to identify conserved ITP genes, which by alternative 

splicing, can produce two different peptides (ITP and ITPL) in M. sexta (tobacco hornworm), 

Bombyx mori, and A. aegypti. A smaller transcript variant produces a peptide containing an 

amidated C-terminus (ITP), while the other longer transcript variant yields a peptide possessing 

an unblocked C-terminus (ITPL). In every insect that ITP/ITPL has been studied, it was 

uncovered that both peptides shared a common N-terminal sequences but had diverging C-

termini (Dai et al., 2007). Specifically, in two mosquito species, A. gambiae and A. aegypti, a 

relatively longer exon 2 containing an additional 3’ untranslated region differs from the 

equivalent exon sequence observed in M. sexta and B. mori. Furthermore, Dai and colleagues 
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found that one transcript arising from exons 1 and 3 encodes A. aegypti ITP (AedaeITP). 

Moreover, two possible transcript variants, encoding identical protein sequences, are involved in 

A. aegypti ITPL (AedaeITPL): exons 1 and 2, or exons 1, 2, and 3. Analysis of both cDNA and 

genomic DNA sequences of AedaeITP/ITPL indicated that exon 1 encodes a putative signal 

peptide of 23 amino acids, a propeptide of 7 amino acids, wherein lies a dibasic processing site 

(KR), and the N-terminal region of the mature peptide (amino acids 1-40). Exon 2 includes the 

remaining open reading frame (ORF) encoding the C-terminal mature peptide of AedaeITPL 

(amino acids 41-78) and finally the 3’UTR. Exon 3 includes the remaining ORF encoding the C-

terminus of AedaeITP (amino acids 41-73), followed by a GKK amidation and dibasic cleavage 

recognition sites, and the 3’UTR. To date, no studies have been conducted to localize AedaeITP 

and AedaeITPL within the central and peripheral neurons of larval and adult A. aegypti (Dai et 

al., 2007). 

 

Physiological actions of Ion Transport Peptide in S. gregaria 

To determine the physiological action of SchgrITP and SchgrITPL, Audsley et al., (2006) 

measured the concentration of both peptides in the CC and haemolymph of fed vs. starved 

locusts. Both peptides were found in similar amounts in the CC, however, it was noted that ITP 

was degraded faster and overall measurements were less reliable. There was a four-fold increase 

in haemolymph ITPL in recently fed locusts compared to starved animals, suggesting a role for 

ITPL in post-feeding osmoregulation (Audsley et al., 2006). The presence of ITPL in the 

haemolymph provided further evidence that ITPL may be released to antagonize the activity of 

ITP. An eighty-fold increase in haemolymph ITP was observed in fed locusts, however, less than 

3% of the total immunoreactivity was attributed to native ITP. Audsley et al. (2006) proposed 
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that this more hydrophobic immunoreactivity is neither native ITP nor a metabolic breakdown 

product; using high-performance liquid chromatography it was shown that over 95% of the 

immunoreactivity eluted later than synthetic ITP, implying that ITP binds something in the 

haemolymph that makes it appear more hydrophobic (Audsley et al., 2006). This study was the 

first to show immunoreactivity of ITP and ITPL in the haemolymph, further supporting that 

these peptides are released from the CC into the haemolymph (Audsley et al., 2006; Dai et al., 

2007; Dircksen et al., 2008; Drexler et al., 2007). 

The first model for the control of transepithelial ion transport in the ileum was proposed 

in the desert locust (Audsley et al., 2013). SynITP was shown to elevate intracellular levels of 

both cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) in 

a dose-dependent manner, measured over a 15-minute period. Additionally, 5 mM of cGMP was 

shown to increase the fluid reabsorption of the ileum, presumably through the stimulation of Cl- 

transport (Audsley et al., 2013). These findings lead Audsley et al., (2013) to propose that ITP 

may act on separate receptors in the ileum, to elicit the elevation of different intracellular 

signalling molecules. It was hypothesized that the receptors are most likely GPCRs with a 

membrane bound adenylyl or guanylyl cyclase causing an increase in intracellular cAMP and 

cGMP, respectively. When ITP binds to a GPCR on the basolateral, haemolymph-facing 

membrane, intracellular cAMP is increased. cAMP stimulates the apical, lumen-facing, Cl-

electrogenic pump and increases the uptake of Cl- ions from the lumen into the cell. These Cl- 

ions are then released into the haemolymph through Cl- channels on the basolateral membrane, 

which are also stimulated by cAMP. Passive transport of K+ at the apical membranes is enhanced 

by cAMP, and K+ ions are electrically coupled to the flow of Cl-. Finally, Na+ reabsorption is 

increased as cAMP stimulates Na+ conductance at the apical membrane. The result of increased 
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intracellular cAMP ultimately leads to the reabsorption of Cl-, K+, and Na+ into the haemolymph. 

Further, flowing down its osmostic gradient, water is reabsorbed as well (Audsley et al., 2013). 

It has been reported that ITP may bind to a second distinct receptor, activating a 

membrane-bound guanylyl cyclase, leading to increased intracellular levels of cGMP. cGMP 

likely directly stimulates an apical Cl- electrogenic pump and activates the opening of channels 

in the basolateral membrane to increase the reabsorption of Cl- (Audsley et al., 2013) (Figure 4). 

This is supported by the observation that the addition of cGMP has been shown to stimulate Cl-

dependent short circuit current across locust ilea (Audsley and Phillips, 1990). By an unknown 

mechanism, it has been proposed that cGMP stimulates lumen-directed H+ transport at the apical 

membrane (Audsley et al., 2013). These models proposed by Audsley et al., (2013) are 

preliminary and should be interpreted with caution, as no receptor for SchgrITP has been 

discovered in the locust to date. In 2014, the first presumed receptors for ITP and ITPL were 

elucidated in B. mori (Nagai et al., 2014). Nagai et al., (2014) identified three B. mori orphan 

neuropeptide G-protein coupled receptors (GPCRs), BNGR-A4, -A24, and -A34, as receptors for 

ITP and ITPL. All receptors were shown to respond to recombinant ITPs. Interestingly, 

recombinant ITP was shown to elevate intracellular levels of cGMP upon receptor binding 

(Nagai et al., 2014). The finding that the receptors for ITP in B. mori are GPCRs that elevate 

intracellular cGMP lends support to the model of ITP action on ileal ion transport in S. gregaria, 

postulated earlier by Audsley et al., in 2013 (Audsley et al., 2013; Nagai et al., 2014). More 

recently, this same group identified that the orphan B. mori GPCR BNGR-A24 is an ITPL 

receptor that also acts as a receptor for all five B. mori tachykinin-related peptides (TRPs); ITPL 

and TRPs are endogenous orthosteric, or primary, ligands of BNGR-A24 that may activate 

discrete intracellular signalling pathways (Nagai-okatani et al., 2016). 
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Figure 4: A model for the control of ion transport across the locust ileum via intracellular 
cGMP. Activation of a potential membrane-bound guanylyl cyclase causes increased cGMP 
stimulating Cl- (electrogenic pump) entry at the apical (lumen-facing) membrane, and basolateral 
(haemolymph-facing) exit of Cl- (ion channels). cGMP stimulates apical lumen-directed transport 
of H+  (unknown mechanism), which is responsible for expelling H+ into the excreta. Circles 
represent major ion pumps, rectangles represent ion channels, and diamonds represent unknown 
transporters. Adapted from Audsley et al., (2013). 
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Research objectives and Hypotheses  

It has been well characterized that the adult mosquito A. aegypti is a renowned primary 

vector for many harmful diseases (Clemons et al., 2010a). Since these diseases inflict serious 

harm on millions of people worldwide annually, it is imperative that their physiology is 

meticulously explored to provide new avenues geared towards disease-vector control. 

Unfortunately, most research to date has been centered on the larval life stage. In addition, most 

research on the excretory system has been focused on the midgut and Malpighian tubules. 

Nevertheless, the hindgut plays a key role in maintaining osmotic and ionic homeostasis. Iono- 

and osmoregulation are necessary processes for the mosquito to maintain haemolymph 

composition within narrow limits, further retaining constant internal conditions, or homeostasis. 

Moreover, the neuropeptides mediating control of the mosquito ileum are yet to be identified. As 

mentioned above, ITP was the first characterized major stimulant of ileal reabsorption and was 

described in the desert locust, S. gregaria (Audsley et al., 1992a; Audsley et al., 1992b). The 

desert locust faces similar dietary and environmental challenges to the adult mosquito; water and 

ions must be conserved during unfed states, whereas the expulsion of excess water and ions is 

necessary in post-fed states (Phillips et al., 1996). With this rationale, research conducted in the 

locust was used to model possible regulatory mechanisms within the hindgut of the adult 

mosquito, A. aegypti. 

The primary goal of my research was to investigate the localization and physiological 

role of ITP in the adult mosquito, A. aegypti. My first objective included (i) generating a 

functional ITP recombinant peptide, utilizing an endocrine-derived cell culture system involving 

mouse anterior pituitary (AtT-20) cells to express either A. aegypti ITP (AedaeITP) or D. 

melanogaster ITP (DromeITP). The AtT-20 cell line is a mouse pituitary tumour cell line that 
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secretes adrenocorticotropic hormone (ACTH), therefore, it has been used widely to study 

peptide secretion. In particular, AtT20 anterior pituitary cells were shown to secrete ACTH into 

the media bathing the cells (Buonassisi et al., 1962). I hypothesized that using an endocrine-

derived cell culture model, AtT20, would allow for the optimal production of recombinant 

AedaeITP or DromeITP in comparison to a non-endocrine-derived cell line, specifically 

HEK293T. This prediction was reinforced by previous studies that used the endocrine AtT-20 

cell culture system to study secreted peptides; results showed peptides were secreted into the 

culture medium post-transfection (Gamby et al., 1996; Macdonalds et al., 1989). 

The distribution and localization of AedaeITP has not been examined in A. aegypti, 

therefore (ii) using immunohistochemistry, I investigated the localization of AedaeITP within the 

nervous system of A. aegypti, particularly in the brain, thoracic, and abdominal ganglia. I 

hypothesized that AedaeITP peptide would be distributed throughout neurosecretory cells of the 

nervous system. In particular, I predicted to find significant staining in neurons of the central 

nervous system (site of production), and the CC (site of storage and release). This hypothesis 

was formulated on the basis of past research conducted on the localization of DromeITP in adult 

D. melanogaster, where it was shown that ITP-immunoreactive neurons were found in the brain, 

CC, and in the terminal abdominal ganglia (Dircksen et al., 2008). 

Finally, to determine the physiological role of AedaeITP, (iii) the Scanning Ion-selective 

Electrode Technique (SIET) was utilized to investigate whether AedaeITP and its putative 

second messengers, cAMP and cGMP, influenced ion transport across the adult A. aegypti 

hindgut epithelium. Using SIET allowed for measurement of epithelial transport of potassium 

and sodium using their respective ion-selective ionophores. In the desert locust, synthetic ITP 

was shown to elevate intracellular levels of both cAMP and cGMP. Additionally, cGMP was 
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shown to increase the fluid reabsorption of the ileum, presumably through the stimulation of Cl- 

transport (Audsley et al., 2013). With respect to the physiological action of ITP, this 

neuropeptide has been well characterized as an anti-diuretic factor acting on the locust ileum 

(Phillips et al., 1998). As a result, I hypothesized that ITP would play a role in promoting 

haemolymph-directed ion transport (i.e absorption) of K+ and Na+ in the adult mosquito, A. 

aegypti. Furthermore, it was expected that ITP’s putative second messengers, cAMP and cGMP, 

would have similar actions on increasing ion reabsorption. 
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CHAPTER II: REVEALING THE DISTRIBUTION OF ION TRANSPORT 
PEPTIDE AND FUNCTION OF ITS PROSPECTIVE SECOND 
MESSENGERS, CYCLIC AMP AND CYCLIC GMP, ON THE HINDGUT 
OF THE ADULT MOSQUITO, AEDES AEGYPTI 
 
Abstract  
 

In the locust, Ion Transport Peptide (ITP) was the first characterized antidiuretic factor 

shown to act on the hindgut, which was later discovered in other insects including the 

mosquito, Aedes aegypti. The present study aimed to delineate the function of ITP within the 

hindgut of the mosquito, A. aegypti – the vector responsible for spreading a range of diseases, 

such as dengue and yellow fever. In order to generate a functional ITP recombinant peptide, an 

endocrine-derived cell culture system involving mouse anterior pituitary (AtT-20) cells was used 

to express both Drosophila melanogaster ITP (DromeITP) and A. aegypti ITP (AedaeITP). 

Protein extracts were isolated from AtT-20 cells transiently expressing either AedaeITP or 

DromeITP, and samples were processed through western blot analysis using a primary antiserum 

against the C-terminal region of DromeITP (42% homology to the AedaeITP C-terminus). A 

band size of approximately 9 kDa was detected in protein samples from both ITP-transfected 

cells, however a higher molecular weight band at approximately 13 kDa was detected in protein 

samples from DromeITP-transfected cells. This higher molecular weight band was suggested to 

be a glycosylated variant of ITP, as shown by its loss upon PNGase F treatment. Using 

wholemount immunohistochemistry surveying the central nervous system of adult A. aegypti, 

ITP-like immunoreactivity was revealed in cells located in the brain, thoracic ganglia, and 

posteriorly within each of the abdominal ganglia. Using SIET to measure ion transport across the 

hindgut, the influence of recombinant AedaeITP and its suspected second messengers, cAMP 

and cGMP, were investigated. Results indicate that application of cAMP generally promoted 

haemolymph directed Na+ flux (i.e absorption), while it generally inhibited K+ absorption. 
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Conversely, cGMP generally promoted lumen-directed Na+ flux (i.e secretion). Recombinant 

AedaeITP did not have a significant effect on Na+ flux across the hindgut of either sex. 

Introduction 

Insects are constantly faced with fluctuating environmental conditions, which are 

particularly detrimental considering their high surface-to-volume ratio, challenging their ability 

to maintain internal homeostasis of ions and water (O’Donnell, 2011). For example, unfed 

terrestrial insects must avoid desiccation by conserving internal water and ion levels. Conversely, 

fed insects are challenged with the potential dilution of their haemolymph, requiring them to 

expel excess water and ions (O’Donnell, 2011). The excretory system of mosquitoes plays a 

pivotal role in maintaining hydromineral balance of the haemolymph, which is analogous to the 

blood of vertebrates. Haemolymph is a fluid that circulates the interior of the arthropod body, 

remaining in direct contact with the animal’s tissues (Phillips et al., 1996). Haemolymph 

homeostasis is maintained by the mosquito excretory system consisting of the Malpighian 

tubules and the hindgut, the latter of which is subdivided into the anteriorly located ileum and 

posteriorly positioned rectum, and lastly the anus from which the final waste product is excreted 

(O’Donnell, 2011). MTs arise at the junction between the midgut and the hindgut (Coast, 2002). 

The process of achieving ionic homeostasis within the excretory system is initiated at the distal, 

free-floating, end of the MTs. MTs secrete a primary urine at the midgut-hindgut junction, that is 

isosmotic to the haemolymph, and is directed posteriorly towards the ileum (O’Donnell, 2009). 

Primary urine production is driven by active cation (K+/Na+) transport into the lumen, 

establishing a transepithelial voltage favoring passive entry of the counter ion Cl-. Osmotically 

obliged water enters the lumen down the transepithelial osmotic gradient created by the net 

secretion of KCl and NaCl (Coast, 2007). Tubules of blood feeders produce a final urine rich in 
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NaCl, however with time, Na+ excretion falls and K+ excretion rises. Additionally, in the desert 

locust, Schistocera gregaria, the MTs secrete a KCl-rich primary urine (Phillips and Audsley, 

1995). The normal action of the unstimulated cell will return Na+ to the haemolymph, which 

exits through the Na+/K+-ATPase, and only K+ and Cl- will be transported from cell to lumen. 

This explains why unstimulated tubules secrete fluid composed largely of KCl (Beyenbach, 

2003; O’Donnell, 2011). After a blood meal, MTs of the mosquito A. aegypti secrete primary 

urine high in Na+ to rid the insect of excess Na+ from the plasma portion of a blood meal. K+ 

secretion may be stimulated later, as K+ enters the haemolymph only after red blood cells are 

digested (Williams and Beyenbach, 1983). 

The most extensively studied insect hindgut is that of the desert locust, S. gregaria 

(Phillips et al., 1986). Upon entry to the hindgut, the primary urine undergoes selective 

reabsorption of water, ion, and metabolites (Coast, 2002). The main driving force of ion 

reabsorption within the hindgut is the apical (lumen-facing) electrogenic Cl--pump. K+ is the 

major counter cation absorbed, which follows Cl- passively by electrical coupling (Phillips and 

Audsley, 1995). Transport of Na+ is driven by the basolateral Na+/K+-ATPase, and movement of 

Na+ from the lumen to the cell is coupled to the excretion of ammonium (O’Donnell, 2011). The 

activity of the organs comprising the insect excretory system is controlled by diuretic and 

antidiuretic hormones. Generally, diuretic hormones stimulate primary urine secretion by MTs, 

whereas antidiuretic hormones increase fluid reabsorption from the hindgut (Coast, 2002). 

However, CAPA peptides were found to inhibit fluid secretion from the MTs of larval A. 

aegypti, and Rhodnius prolixus (a vector of Chagas’ disease), suggesting their role as antidiuretic 

factors acting on MTs (Ionescu and Donini, 2012; Orchard and Paluzzi, 2009). More recently, 

GPA2/ GPB5 has been the first suggested antidiuretic hormone acting on the hindgut of both 
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adult Drosophila melanogaster (fruit fly) and adult A. aegypti (Paluzzi et al., 2014; Sellami et al., 

2011; Vandersmissen et al., 2014). In A. aegypti, the Scanning Ion-Electrode Technique (SIET) 

was used to determine that treating the hindgut with a recombinant form of GPA2/GPB5 caused 

a decrease in net secretion of Na+ by the ileum, measured as decreased lumen-directed sodium 

flux, and caused increased net Na+ absorption in the rectum. There was a decrease in K+ 

absorption across all areas of the hindgut examined along the hindgut (Paluzzi et al., 2014).  

Unfortunately, the endocrine control of the insect hindgut has been relatively unexplored 

in comparison to the MTs (Coast, 2009). Hindgut epithelial mechanisms, including its endocrine 

control responsible for reabsorption, have been well characterized only in the desert locust, S. 

gregaria (Phillips and Audsley, 1995). The desert locust faces similar dietary and environmental 

challenges to the adult mosquito; water must be conserved during unfed states, whereas the 

expulsion of excess water and ions is necessary in post-fed states (Phillips et al., 1996). With this 

rationale, the locust will be used to model possible regulatory mechanisms within the hindgut of 

the adult mosquito, A. aegypti. Early bioassay work measuring the Cl--dependent short circuit 

current (ISC) of locust ilea showed that extracts of the CNS, particularly the brain and 

retrocerebral complex, increased ion and fluid reabsorption; electrogenic Cl- transport was 

stimulated which results in the net absorption of NaCl, KCl, and osmotically obliged water 

(Audsley et al., 1992b; Phillips et al., 1986). In 1992, Ion Transport Peptide (ITP) was the first 

identified antidiuretic hormone mediating its effects on the ileum of S. gregaria. Audlsey et al. 

isolated ITP from crude CC extracts, and it was found to be closely related to crustacean 

hyperglycaemic hormones (CHHs) (Audsley et al., 1992a; Audsley et al., 1992b). The purified S. 

gregaria ITP (SchgrITP) was shown to have an unblocked amino-terminus (N-terminus), a 

molecular mass of approximately 8652 Da, and the first 33 N-terminal amino acid residues were 
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determined (Audsley et al., 1992a).  Further studies were conducted to compare the effects of 

purified ITP and crude CC extracts on ileal ISC, where both were found to increase Cl-, K+, and 

Na+ reabsorption. In addition, H+ secretion in the ileum (JH), was abolished by high 

concentrations of ITP (Audsley et al., 1992b).  

Using a molecular biology approach, Meredith et al. identified the complete amino acid 

sequence of SchgrITP that is encoded by the cloned cDNA containing the complete open reading 

frame for the ITP prepropeptide of 130 amino acid residues (Meredith et al., 1996). They further 

illustrated a 55-residue leader sequence, within which lies the signal peptide, and the complete 

72-residue sequence of the mature peptide. Six cysteine residues, proposed to participate in 

disulphide bridge formation, were localized in positions 7, 23, 26, 39, 43, and 52 of SchgrITP 

(Meredith et al., 1996). The three disulphide bridges are necessary for determining the distance 

between essential motifs and the N- or C-terminus, therefore, they were thought to be 

fundamental for the biological activity of ITP (King et al., 1999). Meredith et al., (1996) also 

discovered an ITP-Long form (ITPL), which contained a 121 base pair insert at amino acid 

position 40 of ITP. The mature ITPL peptide was only 4 amino acids longer than ITP, and 

contained a unique carboxy-terminus (C-terminus) with only 36% sequence identity with ITP; 

the C-terminus of ITP but not ITPL is amidated (Dircksen, 2009; Phillips et al., 1998). The six 

cysteine groups of locust ITP were found to be conserved in locust ITPL as well (Meredith et al., 

1996). In a review by Phillips et al., (1998) it was proposed that the shared N-terminus of ITP 

and ITPL is what permits the neuropeptide to bind to its receptor. The absence of both the C-

terminal alpha-helix and C-terminal amidation in ITPL was suggested to block receptor 

activation (Phillips et al., 1998). ITPL, not being hindgut bioactive alone is considered a 

competitive inhibitor of ITP action on putative hindgut ITP receptors (Phillips et al., 2001). 
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Upon stimulation of the locust hindgut with either crude CC extracts or cAMP, 

electrogenic Cl- transport is stimulated approximately 10-fold. It was proposed that cAMP likely 

directly stimulates the apical Cl- pump and opens K+ and Cl- channels in both apical and 

basolateral membranes to cause increased ion and water reabsorption (Phillips et al., 1998). 

Preliminary observations by Audsley et al. (1992b) reported that ileal tissue levels of 

intracellular cyclic AMP were increased one hour after treatment with purified native ITP 

(Audsley et al., 1992b). Taken together, these findings suggested that cAMP is the principal 

second messenger for ITP acting on locust ileum (Phillips et al., 1998). Interestingly, ITP was 

shown to inhibit H+ secretion, a process not mimicked by cAMP, which lead to the suggestion 

that ITP may also act through a different second messenger (Audsley et al., 2013). Upon 

incubating whole locust ilea with variable amounts of SchgrITP, cyclic AMP and cyclic GMP 

competitive ELISA assays were used to measure levels of cyclic nucleotides. It was discovered 

that intracellular levels of both cGMP and cAMP were elevated in locust ilea incubated with 

crude CC extracts or SchgrITP, suggesting that both these cyclic nucleotides are involved in the 

signal transduction pathway initiated SchgrITP (Audsley et al., 2013). 

Evidence for differential tissue expression of ITP and ITPL was provided by Dai et al. 

(2007), in the moths Manduca sexta and Bombyx mori. It was shown than ITP is expressed in 

bilaterally-paired lateral brain neurosecretory cells in the brain, with projections to the 

retrocerebral complex (CC/CA). ITPL is expressed in peripheral neurosecretory cells and 

neurons of the ventral ganglia (Dai et al., 2007). Dircksen et al. investigated the localization of 

D. melanogaster ITP (DromeITP) in the central and peripheral nervous system of D. 

melanogaster throughout postembryogenesis. In all postembryonic stages, 

immunohistochemistry and FISH techniques revealed the presence of four NSCs in the lateral 
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protocerebrum that project to the CC and partly to the CA (Dircksen et al., 2008).  

In the adult brain, these NSCs come to lie in a posterior dorsal–lateral positions, from where they 

innervate the retrocerebral complex (CC and CA). In larvae and pupa only, a strongly staining 

ITP-immunoreactive interneuron occurs in the subesophageal ganglia. In regards to abdominal 

neurons, one pair of strongly labelled dorsolateral and two or three pairs of faintly stained 

ventrolateral to ventromedial pairs of ITP neurons were found in the eighth abdominal 

neuromeres.  The axons of the strongly stained abdominal neurons leave the ventral nerve cord 

through the eighth abdominal nerve (Dircksen et al., 2008).  

Dai et al. (2007) were the first to identify conserved processing of ITP genes in insects, 

which by alternative splicing, can produce two different peptides (ITP and ITPL) in A. aegypti. A 

smaller transcript variant produces a peptide containing an amidated C-terminus A. aegypti ITP 

(AedaeITP), while the other longer transcript variant yields a peptide possessing an unblocked C-

terminus A. aegypti ITPL (AedaeITPL). In every insect that ITP/ITPL has been studied, it was 

uncovered that both peptides share a common N-terminal sequence but had diverging C-termini 

(Dai et al., 2007). However, nothing is known on the expression pattern, tissue distribution, or 

putative physiological function of ITP in A. aegypti. The objective of the present investigation 

was to confirm the existence, delineate the localization, and explore the potential physiological 

function of ITP in adult A. aegypti mosquitoes. Thus, we sought to characterize the sex- and 

nervous tissue-specific distribution patterns of ITP at the protein level for the first time in adult 

A. aegpti. The current study sought to develop a cell culture system to produce recombinant 

AedaeITP as conventional peptide synthesis for ITP is not feasible due to its length and 

significant cost. Furthermore, to determine the physiological role of ITP on putative target 

tissues, the Scanning Ion-selective Electrode Technique (SIET) was utilized to investigate 
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whether ITP and its proposed second messengers, cAMP and cGMP, influence ion transport 

across the adult A. aegypti hindgut epithelium. The results show that the endocrine derived cell 

culture system serve as an appropriate model for the production of native recombinant ITP. For 

the first time, DromeITP has been suggested to undergo a posttranslational modification 

involving N-glycosylation. Immunohistochemistry has revealed the distribution of AedaeITP in 

the central nervous system of adult A. aegypti mosquitoes in the brain, thoracic and abdominal 

ganglia.   

 

Materials and Methods 

Dissection and Preparation of Hindgut Tissues  
 

Adult mosquitoes, between 1-4 days old, were anesthetised on ice for 5 minutes, after 

which they were pinned in the thorax into a Sylgard-lined petri dish. Mosquitoes being tested for 

K+ transport by SIET were dissected under Ca2+-free Aedes saline consisting of 153.4 mM NaCl, 

3.4 mM KCl, 1.8 mM NaHCO3, 1 mM MgSO4, 25 mM HEPES, and 5 mM glucose adjusted to 

pH 7.1. Ca2+-free saline was used to reduce spontaneous contractions of the hindgut while ion 

flux measurements were recorded (Paluzzi et al., 2014). For measurements of Na+ transport by 

SIET, mosquitoes were dissected under Ca2+-free Aedes saline containing 153.4 mM NaCl, 3.4 

mM KCl, 1.8 mM NaHCO3, 1 mM MgSO4–7H2O, 25 mM HEPES, and 5 mM glucose. Saline 

pH was adjusted to 7.1, and Na+ concentration was reduced to 20 mM with equimolar 

substitution of 130 mM N-methyl-D-glucamine to improve the signal to noise ratio during Na+ 

SIET recordings (Pacey and O’Donnell, 2014). Forceps were used to grip the most posterior 

abdominal segment, peel away the cuticle, and excise the hindgut from the mosquito. The 

dissected hindgut was then transferred from the dissection dish to a 35mm Petri dish (BD 
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Biosciences Canada, Missisauga, ON) filled with either of the saline solutions described above 

for measurements of each respective ion. The 35 mm Petri dishes were pre-coated with 100 µl 

droplets of 0.01% poly-L-lysine (150-300 kDa, Sigma-Aldrich, Oakville, ON), and then air-dried 

to promote adhesion of the gut to the bottom of the dish. Furthermore, hot melt glue arenas 

surrounded the poly-L-lysine coated area to facilitate the use of small saline volumes in the range 

of 200-300µL.  

 

Ion-selective Microelectrodes 

 To measure ion flux across the basolateral surface of the hindgut, ion-selective 

microelectrodes were constructed with glass capillary tubes (TW-150-4, World Precision 

Instruments, Sarasota, FL, USA). The glass capillaries were pulled into micropipettes on a Sutter 

P-97 Flaming Brown pipette puller (Sutter Instruments, San Rafael, CA, USA). Thereafter, the 

micropipettes were silanized with N,N-dimethyltrimethylsilylamine (Fluka, Buchs, Switzerland) 

applied to the interior of a glass petri dish which was inverted over the group of micropipettes 

(1:2 ratio of number of probes to µL of silanizing solution; for 15 probes, 30 µl of 

dimethyltrimethylsilylamine was used). Silanization was performed at 350°C for one hour, upon 

which the micropipettes were cooled before use. For potassium ion measurements, the 

micropipette was backfilled with 150 mM KCl and frontloaded with K+ ionophore (potassium 

ionophore I cocktail B; Fluka, Bachs, Switzerland). The microelectrode was calibrated before 

each preparation using 150 mM KCl and 15 mM KCl with 135 mM NaCl. For sodium ion 

measurements, the micropipette was backfilled 150 mM NaCl and frontloaded with Na+ 

ionophore (sodium ionophore II cocktail A; Fluka, Buchs, Switzerland). The microelectrode was 

calibrated before each preparation using 150 mM NaCl and 15 mM NaCl with 135 mM KCl. 
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Reference electrodes were prepared by filling a capillary tube with 3M KCl containing 3% agar 

(thanks to Dr. Donini for the preparation of reference electrodes). The reference electrode was 

connected to the headstage with an electrode holder containing a silver pellet and filled with 3M 

KCl; it was allowed to rest within the saline bath surrounding the hindgut preparation. 

 

Scanning Ion-selective Electrode Technique (SIET) 

 The ion-selective microelectrode was fitted onto an Ag/AgCl wire electrode holder that 

was connected to a headstage. The headstage was connected to an amplifier (Applicable 

Electronics, Forestdale, MA, USA) whose motion was controlled by three computerized stepper 

motors, which allowed the electrode to move along the X, Y, and Z-axes. Automated Scanning 

Electrode Technique (ASET) software version 2.0 was used to make SIET measurements and to 

control the motion of the motors. Measurements of voltage gradients were achieved by placing 

an ion-selective microelectrode within 5 µm of the hindgut tissue, and moving the 

microelectrode tip perpendicularly to the tissue surface between two points separated by 100 µm. 

The sampling protocol used a wait time of 4 seconds after microelectrode movement and a 

recording time of 1 seconds following the wait period. Upon sampling within 5 µm of the tissue 

surface, the microelectrode was then moved to a position 100 µm perpendicular to the tissue, 

where another wait and sample period was completed. This sampling protocol was repeated three 

times at each measurement site along the hindgut, and the voltage difference between the two 

sites was used to calculate a voltage gradient by the Automated Scanning Electrode Technique 

software (ASET; Science Wares, East Falmouth, MA, USA). Three independent measurements 

(each consisting of three move, wait, and sample cycles) were made consecutively at each site. 
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SIET Measurements  

 Recordings were taken beginning at the rectum-ileum junction, which served as an 

anatomical landmark, and then moving anteriorly towards the ileum, and posteriorly towards the 

rectum in 50 µm intervals for measurements with cAMP and cGMP (see Figure 5). 

Measurements with recombinant AedaeITP were taken in 200 µm intervals across the ileum and 

100 µm intervals across the rectum. The number of measurement sites varied between hindgut 

preparations due to their varying lengths; however, measurements were taken over the majority 

of the hindgut’s total length.  
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Figure 5: Still images of the dissected mosquito hindgut adhered to the bottom of a poly-L-
lysine coated Petri dish. The images show the position of the ion-selective microelectrode 
relative to the tissue during a typical SIET experiment. As shown in (A), measurements were 
initiated at the ileum-rectum junction (J) and proceeded with measurements (B) anteriorly over 
the ileum (IL) and subsequently in the (C) posterior direction over the rectum (R). 
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For potassium and sodium measurements with either cAMP or cGMP, control measurements 

were taken by adding 300 µL of the appropriate saline to the hot melt glue arenas surrounding 

the tissue preparation. Measurements with 8-bromo cAMP (8-bromoadenosine 3’, 5’-cyclic 

monophosphate; Sigma-Aldrich, Oakville, ON, CA), a membrane permeable analog of cAMP, 

were made by adding 3µL of 100 mM 8-bromo cAMP to 297µL of saline to achieve a 1 mM 

final concentration. Similarly, a final concentration of 1 mM of 8-bromo cGMP (8-

bromoguanosine 3’, 5’-cyclic monophosphate; Sigma-Aldrich, Oakville, ON, CA), a membrane 

permeable analog of cGMP, was made by adding 3µL of 100 mM 8-bromo cGMP to 297µL of 

saline.  

Measurements containing the recombinant A. aegypti ITP were taken with sodium only. 

All cell transfections to prepare the desired recombinant A. aegypti ITP are outlined below. 

Based on a previous study utilizing SIET that used a concentration of 1 nM of FGLamide 

allatostatins to determine their effects on K+ transport in the locust gut (Robertson et al., 2014), a 

concentration of 1 nM of recombinant A. aegypti ITP was used with SIET for sodium ion flux 

recordings. Control trials were prepared by adding an equivalent volume of concentrated 

untransfected AtT-20 cell media with saline into a 300 µL total volume. Recombinant ITP trials 

were prepared by adding an appropriate volume of A. aegypti ITP-transfected concentrated AtT-

20 cell media with saline into a 300 µL total volume to achieve a 1 nM final concentration. 

Control and experimental trials with cAMP, cGMP or ITP, were compared between male and 

female adults. 

To obtain background voltage readings, the microelectrode tip was positioned at a 

reference site located several hundred micrometers away from the tissue, and the same sampling 

protocol described above was followed; this was performed for all tissue preparations. SIET 
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measurements of the ileum and rectum were initiated immediately after the completion of 

reference scans. Measurements along the hindgut with cAMP and cGMP treatments were made 

in 50 µm intervals; a maximum of 16 site recordings (equating to 800 µm anterior to the 

rectum/ileum junction) were taken of the ileum, and a maximum of 8 site recordings (equating to 

400 µm posterior to the rectum/ileum junction) were taken of the rectum. Due to the 

homogeneity of ion flux recordings across the length of either the ileum or rectum observed with 

cAMP/cGMP, the intervals sampled across the hindgut were increased. For recombinant A. 

aegypti ITP preparations, recording in 200 µm intervals, a maximum of 4 site recordings 

(equating to 800 µm anterior to the rectum/ileum junction) were taken of the ileum. Recording in 

100 µm intervals, a maximum of 4 site recordings (equating to 400 µm posterior to the 

rectum/ileum junction) were taken of the rectum for recombinant ITP preparations. Up to 100 

minutes were required to complete SIET measurements on each tissue sample for cAMP/cGMP 

and up to 30 minutes were required for AedaeITP preparations. 

 

Calculation of Ion Flux  

 Calculation of ion flux used in this study has been described previously (Paluzzi et al., 

2014; Robertson et al., 2014). The measured voltage gradients obtained from the ASET software 

program were converted into a concentration gradient for Na+ or K+ using the equation: 

ΔC = CB10(ΔV/S) – CB 

ΔC represents the concentration gradient between the two points measured at the hindgut tissue 

in µmol cm-3, CB represents the background ion concentration (the average of the concentrations 

at all points) in µmol cm-3, ΔV represents the voltage gradient measured at the tissue surface less 

the voltage gradient at the reference site in µV, and S is the Nernst slope of the electrode in µV. 
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Fick’s first law of diffusion was used to calculate the Na+ or K+ flux based on the concentration 

gradient through the equation: 

J = DΔC/ΔX 

J represents the net flux of the ion in pmol cm-2 s-1, D is the diffusion coefficient of the ion 

(1.92x10-5 cm2 s-1 for K+; 1.55x10-5 cm2 s-1 for Na+) (Lide, 2002), ΔC represents the 

concentration gradient in µmol cm-3, and ΔX represents the excursion distance, expressed in 

centimeters, separating the points where voltage was recorded by the microelectrode. 

 

PCR, Gel Separation, and Preparation of expression vectors 

 PCR reactions were used to test AedaeITP primers previously outlined by Dai et al., (2007) 

(Table 1) as well as DromeITP primers (Table 2). Amplification was performed using Q5 High 

Fidelity DNA Polymerase, following manufacturer guidelines (New England Biolabs, Whitby, 

ON, CA), and whole adult 3-day-old male and female A. aegypti cDNA as template. RNA was 

extracted from whole adult 7-day-old male and female D. melanogaster using the DNAaway 

RNA mini-prep kit (Bio Basic Canada Inc., Markham, ON, CA) following the manufacturers 

protocol. Total RNA (~100ng) was used for cDNA synthesis using iScript™ Reverse 

Transcription Supermix (Bio-Rad Laboratories, Mississauga, ON, CA) following recommended 

guidelines including primer annealing at 25 °C for 5 min and reverse transcription at 42 °C for 

20 min. The resultant PCR product specificity was confirmed through gel electrophoresis and 

remaining sample was purified using a PureLink PCR purification kit (Life Technologies, 

Burlington, ON, CA), and A-tailed using Taq polymerase.  Products were then cloned into the 

pGEM-T Easy Vector (Promega, Madison, WI, USA) and transformed into competent survival 

strain E. coli cells, and subsequently the bacterial cells were diluted into SOC media. This 
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solution then applied onto agar plates containing ampicillin and X-gal, at different plating 

volumes (e.g.100 µL and 200µL) and colonies were grown overnight in a 37°C incubator. Inserts 

were excised from pGEM T-Easy by NotI digestion and subcloned into the mammalian 

expression vector, pcDNA 3.1(+) (Life Technologies, Burlington, ON, CA) that was previously 

digested with NotI and dephosphorylated to reduce non-recombinants, after which expression 

constructs were screened for directionality by colony PCR using gene-specific forward primers 

and the BGH vector-specific reverse primer. Overnight cultures were grown to increase the copy 

number of the expression vector, which was subsequently purified (PureLink-midiprep kit; 

Invitrogen, Burlington, ON, CA). Expression constructs were sequenced to determine base 

accuracy (Center for Applied Genomics, Hospital for Sick Children, Toronto, ON, CA) prior to 

use for cell culture transfection.  
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Table 1: PCR primers for AedaeITP/ITPL 

Primer Name Primer Sequence (5’-3’) Expected 

Product Size 

(BP) 

AedaeITP/AedaeITPL1 Forward: CAACGAGAGTTTTCATTTCTGG 

Reverse: TTACTTCTTCCCCAACATTTCG 

1069  

384 

AedaeITPL1 Forward: CAACGAGAGTTTTCATTTCTGG 

Reverse: TGTGAAGTTCAACGCGATAG 

1091 

AedaeITPL2 Forward: CAACGAGAGTTTTCATTTCTGG 

Reverse: GGCTGCTTATAACGTGTTTGGA 

405 

 

Table 2: PCR primers for DromeITP 

Primer Name  Primer Sequence (5’-3’) Expected 

Product Size 

(BP) 

DromeITP-kozak2 

& DromeITP-rev 

Forward: 

GCCACCATGTGTTCCCGCAACATAAAG 

Reverse: GCACTTTACTTGCGACCCA 

332 
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Wholemount Immunohistochemistry  
 

To visualize the spatial distribution of AedaeITP in the central nervous system of adult 

mosquitoes, four-day-old adult male and female A. aegypti were used. Mosquitoes were 

anesthetized with brief exposure to carbon dioxide, punctured in the thorax with forceps, and 

then incubated in 4% paraformaldehyde fixative overnight at RT. Tissue dissections of the 

central nervous system, keeping the brain, thoracic ganglia, and the ventral nerve cord (including 

the abdominal ganglia) intact, were performed in 1x PBS. Samples were then incubated on a 

rocker for 1h at RT in 4% Triton X-100, 10% normal sheep serum (NSS) (v/v) and 2% BSA 

(w/v) prepared in PBS. Three subsequent washes were performed in PBS, incubating for 15 

minutes each in between washes, after which the dissected nervous tissue was incubated on a 

rocker for 48 h at 4°C in a 1:500 dilution of primary antiserum solution (0.4% Triton X-100, 2% 

NSS (v/v) and 2% BSA (w/v) in PBS), which was prepared one day before use to reduce non-

specific binding. Anti-DromeITP rabbit primary antiserum was used, prepared against an antigen 

sequence from the C-terminal region of DromeITP, which shares 41.7% sequence identity and 

75% sequence similarity to the homologous C-terminal region of AedaeITP (Figure 6). 

Following the incubation in primary antiserum, tissues were washed three times with 1x PBS, 

incubating for 15 minutes in between washes. The samples were then incubated on a rocker 

overnight at 4°C with Cy3-labelled goat anti-rabbit secondary antibody (1:200 dilution; Sigma-

Aldrich, Oakville, ON, CA) in 10% NSS made up in PBS and protected from light. Nervous 

tissues were mounted on cover slips with mounting media containing a 1:500 dilution of 4′,6-

Diamidino-2-phenylindole dihydrochloride (DAPI) made up in a 1:1 solution of PBS and 

glycerol. DAPI was used to allow for the visualization of cell nuclei and tissue preparations were 

analyzed using a Lumen Dynamics X-Cite™ 120Q Nikon fluorescence microscope (Nikon, 
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Mississauga, ON, CA). Image stitches of the entire CNS were obtained using an EVOS FL Auto 

live-cell imaging system (Life Technologies, Burlington, ON, CA).  
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Figure 6: Amino acid sequence alignment of AedaeITP and DromeITP. Complete amino acid 
sequence alignment of AedaeITP and DromeITP (A), and amino acid sequence alignment of the 
antigen, and the antigen region of DromeITP and AedaeITP (B). Given the antigen is 12 
residues, there is only 5/12 identity (41.7%) and 9/12 (75%) similarity between the Drosophila 
antibody antigen and the homologous region in the Aedes ITP. 
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Transient expression of ITP in AtT-20 and HEK293T cell lines 
 

Mouse pituitary AtT-20 cell lines (AtT-20/D16vF2) and human embryonic kidney cells 

(HEK293T) (ATCC, Manassas, VA, USA) were grown and maintained in a water-jacketed 

incubator at 37 °C, 5% CO2. AtT-20 cells were cultured in complete media containing 90% 

Dulbecco’s Modified Eagle’s Medium (DMEM), 10% fetal bovine serum, 1X antimycotic-

antibiotic. DMEM used to make complete media for HEK293T cells contained nutrient mixture 

F-12 (DMEM/F12; 1:1) (Thermo Fisher, Rockford, IL, USA). Cells were grown to 

approximately 90% confluency and were transiently transfected using Lipofectamine LTX 

transfection reagent (Life Technologies, Burlington, ON, CA) following a 3:1 transfection 

reagent (µL) to plasmid DNA (µg) ratio. The pcDNA 3.1(+) expression vector possessing either 

AedaeITP or DromeITP were used. Protein for western blot analyses was purified and 

concentrated from the media the cells grew in 24 and 48 h post-transfection using Amicon Ultra-

0.5 Centrifugal Filter Unit with Ultracel-3K; filters had a 3 kDa molecular weight cut off (Merck 

Millipore Ltd., Cork, IRL).  

 

Recombinant ITP peptide quantification using Enyzme-Linked Immunosorbent Assay (ELISA) 

Final protein concentrations were calculated using an enzyme-linked immunosorbent 

assay (ELISA). 96-well plates were coated with 100 µL/well of a 1:1000 dilution of anti-

DromeITP rabbit primary antiserum made up in carbonate buffer (15 mM Na2CO3-H2O and 35 

mM NaHCO3 in water; pH 9.4) and incubated overnight at 4 °C. Plate contents were discarded, 

blotted, and washed two times with 250 µL/well of carbonate wash (0.05% TWEEN 20 (v/v), 

350 mM NaCl, 2.7 mM KCl, 1.5 mM KH2PO4, 5.15 mM Na2HPO4-H2O in water). Thereafter, 

wells were blocked for 1.5h at RT with 250 µL/well of carbonate block comprised of 0.5% skim 
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milk powder (w/v) and 0.5% BSA (w/v) in PBS. The carbonate block was discarded and wells 

were incubated on a rocker for 1h at RT with 100 µL/well standard Drome-ITP amidated antigen 

or the homologous Aedae ITP amidated sequence or unknown samples secreted from AtT-20 

cells (all made up in carbonate block). Afterwards, 100 µL/well of 0.5x10-9M biotinylated-

DromeITP amidated antigen (in carbonate block) was added and incubated overnight at 4°C. The 

following day, plate contents were discarded, blotted, and washed four times with 250 µL/well 

carbonate wash, and incubated at 4ºC for 1.5 h with 100 µL/well Avidin-HRP (1:2000; Bio-Rad, 

Mississauga, ON, CA). Finally plate contents were discarded, blotted and washed three times 

with 250µL/well of carbonate wash. 100µL/well of 3,3’,5,5’-tetramethylbenzidine (TMB) 

substrate (Sigma-Aldrich, Oakville, ON) were added and incubated for 5-15 minutes at RT and 

monitored for color development. Reactions were stopped with 100µL/well 2N HCl and 

absorbance was measured at 450 nm using a Synergy 2 Modular Multi-Mode Plate Reader 

(BioTek, Winooski, VT, USA). Due to the poor binding of AedaeITP, the concentration 

determined for DromeITP was used to estimate the concentration of AedaeITP in the unknown 

protein samples. 

 

Western blot analyses 

Protein electrophoresis was performed using a 15% SDS-PAGE gel under reducing 

conditions. Protein samples were loaded with a 1:1 ratio of 2X Laemmli buffer (beta-

mercaptoethanol 1:100). Gels were migrated at 120 V for 90 min before being transferred to 

methanol-activated polyvinylidene difluoride (PVDF) membranes (Thermo Fisher, Rockford, IL, 

USA) using a wet transfer system at 100 V for 75 min. Following transfer, PVDF membranes 

were blocked for 1h at RT in PBS containing 0.1% Tween-20 (BioShop, Burlington, ON, 
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Canada) and 5% skim milk powder (PBSTB). Blots were incubated on a rocking platform 

overnight at 4 °C with either a 1:500 and 1:1000 dilution of anti-DromeITP rabbit primary 

antiserum made up in PBSTB for AedaeITP and DromeITP blots, respectively. The next day, 

membranes were washed three times, incubating for 15 minutes between washes, in PBS 

containing 0.1% Tween-20 (PBST). Blots were then incubated with PBSTB containing a 1:100 

dilution of goat anti-rabbit HRP conjugated secondary antibody (Life Technologies, Burlington, 

ON, CA) for 1h at RT. Blots were subsequently washed three times, changing the wash every 5 

minutes, with PBST. Finally, blots were incubated with Clarity Western ECL Blotting Substrate, 

and images were acquired using a ChemiDoc MP Imaging System (Bio-Rad Laboratories, 

Mississauga, ON).  

Initial blots unveiled an additional unpredicted higher molecular weight band at 

approximately 13 kDa for DromeITP protein samples. In silico analysis using the NetNglyc 

server, which predicts N-Glycosylation sites, revealed that DromeITP but not AedaeITP contains 

a predicted glycosylation site (http://www.cbs.dtu.dk/services/NetNGlyc/) (Figure 7). To validate 

whether ITP undergoes glycosylation, samples were treated with N-glycosidase F (PNGase F) 

(New England Biolabs, Whitby, ON, CA), following manufacturer guidelines, to validate if the 

peptide contained asparagine-linked (N-linked) carbohydrate side chains indicative of 

glycosylation during post-translational modification. A modification made to the manufacturer 

guideline being that samples were not heated at 100 °C prior to PNGase F treatment. Control 

reactions were treated similarly, but did not include PNGase F enzyme.  
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Figure 7: In silico analysis of predicted N-glycosylation sites for AedaeITP (A) and DromeITP 
(B) using the NetNglyc server. 
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Results 
 
Western blot analyses 
 
 Protein extracts were isolated from either AtT-20 or HEK293T cells transiently 

expressing A. aegypti ITP (AedaeITP) and incubated with a primary antibody against the C-

terminal region of D. melanogaster ITP (DromeITP), which shares 41.7% similarity to the 

AedaeITP C-terminal region. A band size of approximately 9 kDa was detected in protein 

samples isolated 24 h post ITP-transfection from AtT-20 cells (Figure 8a), however, this band 

was absent when the media was collected 48 h post AedaeITP-transfection from AtT-20 cells 

(Figure 8b). Interestingly, there was no band detected in protein samples isolated 24 or 48 h post 

ITP-transfection from HEK293T cells (Figure 8a, b). In untransfected negative control samples 

of either cell type, no bands were detected (Figure 8a, b). 

 A similar band size of approximately 9 kDa was recognized in protein isolations purified 

24 or 48 h post DromeITP-transfection from AtT20 cells (Figure 9a, b). Additionally, a higher 

molecular weight band at approximately 13 kDa was detected in protein samples from 

DromeITP-transfected cells (Figure 9a, b). Based on in silico predictions, this higher molecular 

weight band was believed to be a glycosylated variant of DromeITP (Figure 7).  Indeed, this was 

confirmed to be the case as shown by the loss of the higher molecular weight band (13 kDa) 

upon PNGase treatment with only the 9 kDa band remaining (Figure 10). When both AedaeITP 

and DromeITP protein isolations were loaded on the same blot, there was a loss of the previously 

observed band at approximated 9 kDa in protein isolated from AedaeITP-transfected cells 

(Figure 9a, b). 
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Figure 8: Western blot analysis of protein isolated from AtT-20 and HEK cells. Protein was 
isolated after 24 h (A) and 48 h (B) from media bathing AtT-20 and HEK AedaeITP-transfected 
(TRANS) and untransfected (UN) cells. An expected sized band at ∼9 kDa was only observed in 
lanes containing protein isolations from AedaeITP-transfected AtT20 cells 24 h post-transfection 
(A).  
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Figure 9: Western blot analysis of protein isolated from AtT-20 cells transfected with AedaeITP 
or DromeITP. (A) Protein isolated from AtT-20 cells transfected with AedaeITP or DromeITP 
and untransfected cells (UN) harvested after 48 h and (B) protein isolated from AtT-20 cells 
transfected with AedaeITP or DromeITP and untransfected cells (UN) collected after 24 h. An 
expected band size at ∼9 kDa was only observed in lanes containing protein isolations from 
DromeITP-transfected AtT20 cells 24 and 48 h post-transfection (A, B). Additionally, a band 
was observed in protein fractions from DromeITP-transfected cells 24 and 48 h post-transfection 
at ~13kDa (A, B). 
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Figure 10: Western blot analysis of DromeITP glycosylation. Protein samples isolated 48 h post 
DromeITP-transfection from AtT20 cells were treated with PNGase F (N-glycosidase F). 
DromeITP undergoes N-linked glycosylation as treatment with PNGase F eliminates the 13 kDa 
band and intensifies the band present at 9 kDa. 
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AedaeITP-immunoreactivity in the central nervous system of adult A. aegypti 
 

Using whole mount immunohistochemistry, the central nervous system (CNS) of four-

day-old adult A. aegypti was surveyed for ITP-immunoreactivity. Areas of the CNS explored for 

ITP-immunoreactivity included the brain, thoracic ganglia, and the ventral nerve cord (housing 

the six abdominal ganglia). Similar staining was observed in the CNS of both adult males and 

females. In the adult brain, ITP-immunoreactivity of cells located laterally in the posterior region 

of each brain hemisphere was observed (Figure 11, 12a, 18). Findings indicate ITP-

immunoreactive cells located medioposteriorly and ventrally on each of the six abdominal 

ganglia of the ventral nerve cord (Figure 11-17). ITP may exit the proposed neurosecretory cells 

of the abdominal ganglia through processes; visualizing the same abdominal ganglia through 

different focal planes revealed ITP-immunoreactivity migrating anteriorly on the ganglia and 

emanating laterally through projections to putative neurohaemal sites (Figure 13, 14). It is 

difficult to determine how many ITP-immunoreactive neurosecretory cells are present within 

each of the abdominal ganglia, therefore, counting how many DAPI-stained neurosecretory cell 

nuclei that resided closely with the ITP-immunoreactivity was used to predict the number of 

cells. ITP-immunoreactivity was seen to co-localize with both one and two nuclei, suggesting the 

presence of either one (Figure 15a, 16a) or two neurosecretory cells (Figure 15b, 16b). Findings 

in the terminal abdominal ganglion (i.e. the sixth abdominal ganglion) suggests that there are two 

(Figure 17a) to three ITP-immunoreactive neurosecretory cells (Figure 17b) present in females 

and males, respectively. Finally, the presence of one ITP-immunoreactive cell located 

medioposteriorly in the thoracic ganglia was reported in both sexes (Figure 12a, b). Whole 

mounts of central nervous system tissue (including the brain, thoracic ganglia, and ventral nerve 

cord) from 4th instar larvae showed no immunoreactive staining (data not shown). 
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Figure 11: Distribution of ITP-like immunoreactivity (red) in the female central nervous system 
(CNS) of 4-day-old adult A. aegypti. ITP-immunoreactivity is present in the brain, thoracic 
ganglia (TG) as well as the posterior region of each abdominal ganglia (AG). Stitched image of 
the CNS was obtained using an EVOS FL Auto live-cell imaging system.  
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Figure 12: Distribution of ITP-like immunoreactivity (red) in the male (A) and female (B) 
central nervous system (CNS) of 4-day-old adult A. aegypti. ITP-immunoreactivity is present in 
the brain, thoracic ganglia (TG) as well as the posterior region of each abdominal ganglia (AG). 
Stitched images of the CNS was obtained using an EVOS FL Auto live-cell imaging system.  
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Figure 13: Distribution of ITP-like immunoreactivity (red) and DAPI (blue) in the female 
abdominal ganglia of adult 4-day-old A. aegypti. ITP-immunoreactivity was shown in the 
posterior end of the abdominal ganglia. Images (A-D) show the same abdominal ganglia in 
different planes of focus. This allows for the visualization of ITP-immunoreactivity exiting 
proposed neurosecretory cells into processes of the abdominal ganglia. Scale bars 100 µm 
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Figure 14: Distribution of ITP-like immunoreactivity (red) in the female abdominal ganglia of 
adult 4-day-old A. aegypti. ITP-immunoreactivity was shown in the posterior end of the 
abdominal ganglia. Images (A-D) show the same abdominal ganglia in different planes of focus. 
This allows for the visualization of ITP-immunoreactivity exiting proposed neurosecretory cells 
into processes of the abdominal ganglia. Scale bars 100 µm 
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Figure 15: Distribution of ITP-like immunoreactivity (red) and DAPI (blue) in the female 
abdominal ganglia of adult 4-day-old A. aegypti. ITP-immunoreactivity was shown in the 
posterior end of the abdominal ganglia in what is suggested to be one cell (A) versus two cells 
(B). Scale bars 100 µm 
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Figure 16: Distribution of ITP-like immunoreactivity (red) and DAPI (blue) in the male 
abdominal ganglia of adult 4-day-old A. aegypti. ITP-immunoreactivity was shown in the 
posterior end of the abdominal ganglia in what is suggested to be one cell (A) versus two cells 
(B). Scale bars 100 µm 
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Figure 17: Distribution of ITP-like immunoreactivity (red) and DAPI (blue) in the female (A) 
and male (B) terminal abdominal ganglia of adult 4-day-old A. aegypti. ITP-immunoreactivity 
suggests that there are two cells (A) versus three cells (B) in the terminal abdominal ganglia of 
females and males, respectively. Scale bars 100 µm. 
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Figure 18: Distribution of ITP-like immunoreactivity (red) in the brain of male 4-day-old adult 
A. aegypti. ITP-immunoreactivity was observed in cells localized laterally and posteriorly in both 
left and right hemispheres of the brain. Similar results were observed for female mosquito brain 
preparations (not shown). Stitched image of the CNS was obtained using an EVOS FL Auto live-
cell imaging system.  
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Scanning Ion-selective Electrode Technique (SIET): measuring ion transport across the hindgut 
 

Using Scanning Ion-selective Electrode Technique (SIET) to measure ion transport 

across the adult hindgut epithelia, the influence of recombinant AedaeITP and its suspected 

second messengers, cAMP and cGMP, were investigated. Notably, average ion flux values 

greater than zero correspond to haemolymph-directed ion transport (i.e. absorption), and average 

ion flux values less than zero (i.e. negative values) correspond to lumen-directed ion transport 

(i.e. secretion). Prior to measuring the effect of test factors on the ion flux across the hindgut of 

adult mosquitoes, control trials were performed by exposing the hindgut to Ca2+-free Aedes 

saline to record the basal ion flux of untreated hindgut tissue. Experimental trials were performed 

with the addition of either cAMP or cGMP having a final concentration of 1mM, or alternatively,  

recombinant AedaeITP was applied with an estimated effective concentration of 1nM bathing the 

hindgut preparation. Electrical recordings indicative of ion transport were taken beginning at the 

rectum-ileum junction, which served as an anatomical landmark, and subsequently 

measurements were taken moving either anteriorly over the ileum, or posteriorly over the 

rectum.    

Results indicate that application of cAMP generally promoted haemolymph directed Na+ 

flux (i.e absorption) in the hindgut of adult males, and the rectum of adult females (Figure 19a, 

b); cAMP inhibited Na+ absorption in the ileum of adult females (Figure 19a). A general trend 

whereby the application of cAMP inhibited K+ absorption in the hindgut of males and the ileum 

of females was noted (Figure 20a, b). Particularly, K+ absorption was significantly inhibited in 

the ileum of males (Figure 20a). This trend was not observed in the rectum of females, where 

cAMP promoted K+ absorption (Figure 20b).  
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Figure 19: Effect of 1 mM cAMP on Na+ transport across the adult hindgut of A. aegypti.  
Female and male adult mosquitoes, between 1-4 days old, were dissected and the excised hindgut 
tested for Na+ transepithelial transport across the ileum (A) and rectum (B). Control treatments 
consisted of Aedes saline solution alone whereas experimental treatments involved 1 mM cAMP 
applied to the hindgut. A total of 20 female and 20 male adult mosquitoes were tested for each 
treatment. The ion flux calculated at each site, and along the entire ileum or rectum, were 
averaged across all preparations and SEM was calculated, n=20. cAMP inhibited haemolymph-
directed Na+ transport (i.e. absorption) across the ileum of females and promoted haemolymph-
directed Na+ transport across the ileum of males (A). cAMP promoted haemolymph-directed Na+ 
transport (i.e. absorption) across the rectum of both female and male adult mosquitoes (B). 
Ultimately, cAMP reduced natriuresis in males. Unpaired t-tests were used to compare control 
and experimental treatments, and differences between treatments were considered statistically 
significant if p<0.05.  
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Figure 20: Effect of 1 mM cAMP on K+ transport across the hindgut of adult Aedes aegypti. 
Female and male adult mosquitoes, between 1-4 days old, were dissected and the excised hindgut 
tested for K+ transepithelial transport across the ileum (A) and rectum (B). Control treatments 
consisted of Aedes saline solution alone whereas experimental treatments involved 1 mM cAMP 
applied to the hindgut.  A total of 20 female and 20 male adult mosquitoes were tested for each 
treatment. The ion flux calculated at each site, and along the entire ileum, were averaged across 
all preparations and SEM was calculated, n=20. cAMP inhibited haemolymph-directed K+ 
transport (i.e. absorption) across the ileum of females and males as well as the rectum of males 
(A, B). Conversely, cAMP promoted K+ absorption across the rectum of females (B). cAMP 
promoted kaliuresis in males. Unpaired t-tests were used to compare control and experimental 
treatments, and differences between treatments were considered statistically significant if 
p<0.05*. 
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The application of 1 mM cGMP significantly promoted lumen-directed Na+ flux (i.e 

secretion) in both the ileum and rectum of adult females (Figure 21a, b). The same trend, 

although not significant, was noted in both the ileum and rectum of adult males: 1mM cGMP 

promoted Na+ secretion (Figure 21a, b). Opposing trends were observed on the effects of 1 mM 

cGMP on K+ transepithelial transport in females vs. males. The addition of 1 mM cGMP 

inhibited K+ absorption in both the ileum and rectum of females (Figure 22a, b). Conversely, 1 

mM cGMP promoted K+ absorption in the ileum and rectum of males (Figure 22a, b).  
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Figure 21: Effect of 1 mM cGMP on Na+ transport across the hindgut of adult Aedes aegypti. 
Female and male adult mosquitoes, between 1-4 days old, were dissected and the excised hindgut 
tested for Na+ transepithelial transport across the ileum (A) and rectum (B). Control treatments 
consisted of Aedes saline solution alone whereas experimental treatments involved 1 mM cGMP 
applied to the hindgut. A total of 20 female and 20 male adult mosquitoes were tested for each 
treatment. The ion flux calculated at each site, and along the entire ileum or rectum, were 
averaged across all preparations and SEM was calculated, n=20. cGMP promoted lumen-directed 
Na+ transport (i.e. secretion) across the ileum and rectum of both males and females (A, B). 
Unpaired t-tests were used to compare control and experimental treatments, and differences 
between treatments were considered statistically significant if p<0.05*.  
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Figure 22: Effect of 1 mM cGMP on K+ transport across the hindgut of adult Aedes aegypti. 
Female and male adult mosquitoes, between 1-4 days old, were dissected and the excised hindgut 
tested for K+ transepithelial transport across the ileum (A) and rectum (B). Control treatments 
consisted of Aedes saline solution alone whereas experimental treatments involved 1 mM cGMP 
applied to the hindgut. A total of 20 female and 20 male adult mosquitoes were tested for each 
treatment. The ion flux calculated at each site, and along the entire ileum, were averaged across 
all preparations and SEM was calculated, n=20. cGMP inhibited haemolymph-directed K+ 
transport (i.e. absorption) across the ileum and rectum of females (A, B). Conversely in males, 
cGMP promoted K+ absorption in both the ileum and rectum (A, B). Unpaired t-tests were used 
to compare control and experimental treatments, and differences between treatments were 
considered statistically significant if p<0.05. 
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SIET analysis of hindgut following treatment with recombinant AedaeITP 
 

Control trials containing an equal volume of concentrated untransfected cell media to the 

volume used in recombinant AedaeITP trials, promoted the secretion of Na+ in both the ileum 

and rectum of males and females (Figure 23a, b). The application of 1 nM recombinant 

AedaeITP did not cause a change in the secretion of Na+ in either the ileum or rectum of both 

sexes (Figure 23a, b).  
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Figure 23: Effect of 1 nM recombinant ITP on Na+ transport across the hindgut of adult Aedes 
aegypti. Female and male adult mosquitoes, between 1-4 days old, were dissected and the 
excised hindgut tested for Na+ transepithelial transport across the ileum (A) and rectum (B). 
Control treatments consisted of untransfected cell media in Aedes saline solution alone whereas 
experimental treatments involved 1 nM recombinant AedaeITP  applied to the hindgut. A total of 
12 female and 12 male adult mosquitoes were tested for each treatment. The ion flux calculated 
at each site, and along the entire ileum, were averaged across all preparations and SEM was 
calculated, n=12. AedaeITP did not have any significant effect on the lumen-directed Na+ 
transport (i.e. secretion) across the ileum and rectum of either sex (A, B). Unpaired t-tests were 
used to compare control and experimental treatments, and differences between treatments were 
considered statistically significant if p<0.05. 
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Discussion  

 The discovery of the first antidiuretic hormone mediating its effects on the hindgut of 

insects was made in 1992 by Audsley et al., when Ion Transport Peptide was purified from the 

corpora cardiaca of the locust, S. gregaria. Later, a conserved ITP gene was uncovered in the 

genome of the mosquito, A. aegypti, suggesting it might play a similar role in maintaining iono- 

and osmoregulation (Dai et al., 2007). Up to this point however, the mRNA expression and 

peptide localization of ITP in A. aegypti has not been explored. As such, the physiological role of 

ITP in the mosquito remains unclear. In an attempt to elucidate the function of ITP in the adult 

mosquito A. aegpti, the nervous tissue-specific localization of ITP was investigated. The 

Scanning Ion-selective Electrode Technique (SIET) was utilized to investigate whether ITP and 

its putative second messengers, cAMP and cGMP, influenced ion transport across the adult A. 

aegypti hindgut epithelium.  

 

Production of ITP using a neuroendocrine derived cell line: AtT-20 

 Mouse pituitary AtT-20 cell lines were used to produce both A. aegypti ITP (AedaeITP) 

and D. melanogaster ITP (DromeITP) for the first time. Western blot analysis of protein isolated 

from the media the cells grew in 24 h post-transfection revealed an immunoreactive band at 

approximately 9 kDa for both insect ITPs. In the locust, S. gregaria, the molecular mass of ITP 

was shown to be 8.6 kDa (Meredith et al., 1996). In D. melanogaster, previous western blot 

analysis from 3rd instar larvae revealed a ITP-immunoreactive band at 8.9 kDa (Dircksen et al., 

2008). Interestingly, protein isolated from DromeITP-transfected cells revealed a second band at 

approximately 13 kDa, which has not been previously documented and was suspected, based on 

in silico analysis of the prepropeptide, to represent a glycosylated form of DromeITP. 
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Glycosylation is the covalent attachment of an oligosaccharide chain to a protein backbone and is 

considered to be a very common protein modification. Glycosylation of proteins modulates 

various processes such as subcellular localization, protein quality control, cell-cell recognition 

and cell-matrix binding events (Vandenborre et al., 2011). Treatment with Peptide-N-

Glycosidase F (PNGase F), a native glycoaminidase cleaving the link between asparagine and N-

acetylglucosamines, allowed for the study of N-linked carbohydrates in ITP. PNGase F treatment 

caused the loss of the higher molecular weight band (13kDa), while the lower molecular weight 

band was preserved (9 kDa). These findings provided strong evidence that DromeITP is 

glycosylated, and that its glycosylation may be imperative for its physiological function. A study 

by Vandenborre et al. (2011), studying the glycoproteomes of various insect species, predicted 

that there are roughly 118 proteins that undergo N-glycosylation in D. melanogaster. 

 Western blot analysis containing protein isolated from both AedaeITP-transfected and 

DromeITP-transfected cells did not contain a band in the lanes containing protein isolated from 

AedaeITP-transfected cells. A probable explanation for this finding lies in the fact that the 

antibody used for detecting both insect ITPs was generated against the specific antigen sequence 

from the C-terminal region of DromeITP. The homologous region in AedaeITP possessed only 

41.7% sequence identity to the DromeITP antigen sequence (5/12 amino acids were identical). 

Due to the poor specificity of the antibody for AedaeITP, DromeITP protein isolations on the 

same blot likely sequestered the antibody due to its 100% sequence identity.  

 

Distribution pattern of ITP in the CNS 

 Previous limited research done on the presence of ITP in the mosquito, A. aegypti, simply 

confirmed its existence in the genome; however, transcript or protein-level expression profiles of 
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A. aegypti ITP (AedaeITP) had not been examined previously. Immunohistochemistry has 

provided evidence suggesting the presence of ITP peptide in all regions of the central nervous 

system studied: the brain, thoracic ganglia, and ventral nerve cord that houses the six abdominal 

ganglia. ITP-like immunoreactivity in the brain was localized to two lateral neurosecretory cells. 

Similar staining was observed for A. aegypti adipokinetic hormone (AedaeAKH) where two 

pairs of lateral neurosecretory cells were localized to the same brain region reported here 

(Kaufmann et al., 2009). Neuropeptides of the AKH family induce the mobilization of energy 

stores to fuel flight (Wilps and Gade, 1990). Furthermore, allatotropin, allatostatin-A, and 

allatostatin-C were all found to localize to cells found in a similar posterior lateral region of the 

brain in A. aegypti (Hernández-Martínez et al., 2005). Allatostatins (AS) and allatotropins (AT) 

were first described as modulators inhibiting  juvenile hormone biosynthesis in the corpora allata 

(Bellés et al., 1999; Kramer et al., 1991; Woodhead et al., 1989). Subsequently, they have been 

recognized to play multiple physiological roles such has controlling heart rate, gut motility, 

nutrient absorption, among other roles (Nässel, 2002). Additionally, in all postembryonic stages 

of D. melanogaster, strongly ITP-immunoreactive and fluorescence in situ hybridization (FISH)-

positive cells always occurred in the lateral protocerebrum (Dircksen et al., 2008). Our findings 

herein, along with the localization of other A. aegypti neuropeptides noted earlier, suggest that 

neuropeptide-producing cells are often localized to the lateral posterior region of the brain. We 

did not observe immunostaining in the nerves extending from the brain to the retrocerebral 

complex (corpora cardia-corpora allata), or inside this complex, suggesting that ITP is neither 

produced nor stored in the retrocerebral complex.  Another and more likely explanation for this 

result is due to poor antibody cross-reactivity, since the Drome-ITP antigen sequence that was 

used to generate the antibody shares only 41.7% identity to the equivalent region on the C-
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terminus of Aedes-ITP. 

ITP-like immunoreactivity was found in one cell localized to the posterior region of the 

fused thoracic ganglia. A single AKH-immunoreactive cell was also observed in the thoracic 

ganglia of A. aegypti (Kaufmann et al., 2009). Interestingly, the thoracic ganglia did not possess 

AS- or AT-immunoreactive cells (Hernández-Martínez et al., 2005). ITP-immunoreactivity in 

the thoracic ganglia suggests the presence of neurosecretory cells or interneurons. Interneurons 

can be located entirely within a ganglion or can send axonal processes through the ventral nerve 

cord to synapse with other neurons. Neurosecretory cells, on the other hand, are generally 

monopolar; axonal processes often project to peripheral tissues, suggesting that they carry their 

products to functional sites (Nation, 2002). Limited literature exists on the presence of 

neurosecretory cells in the thoracic ganglia, as they have been most often characterized within 

the brain and ventral ganglia (Nation, 2002). If a more specific Aedes-ITP antibody becomes 

available in the future, it will be interesting to confirm if ITP-immunoreactivity exists in 

processes emanating from the thoracic ganglia and onto target organs (e.g. gut, reproductive, fat 

body) as this would help to elucidate possible functions of ITP in A. aegypti.  

Finally, ITP-like immunoreactivity was revealed in the posterior region of all six 

abdominal ganglia (AG), particularly these cells lie in a ventral and medioposterior location. 

Some AG appeared to possess one ITP-immunoreactive cell, while other AG appeared to contain 

two ITP-immunoreactive cells, as shown by co-localization with either one or a pair of nuclei. 

Notably, the terminal AG (AG 6) contained two or more ITP-immunoreactive cells. Similar to 

the current results, the distribution patterns of AS and AT varied in the ventral nerve cord. AS-A 

immunostaining was observed in one cell located medioposteriorly in each AG except for the 

terminal AG in which eight cells were stained. AS-C immunostaining was observed in two 
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lateroposterior cells in each AG, and four posterior cells in the terminal ganglion (Hernández-

Martínez et al., 2005). The larval ventral nerve cord possesses 8 AG, whereas in the adult stage 

A. aegypti, the first AG fuses to the posterior region of the thoracic ganglia and AG 7 and AG 8 

fuse into a single larger terminal ganglia (Brown and Cao, 2001). The presence of multiple ITP-

immunoreactive neurosecretory cells in the terminal abdominal ganglia suggests that when AG 7 

and AG 8 become fused, the number of ITP-positive neurosecretory cells in the terminal ganglia 

of adults increased reflecting this ganglionic amalgamation. This also provides evidence 

supporting that the ITP-like immunoreactivity observed in the thoracic ganglia may be 

representative of neurosecretory cells that presumably would be localized to the posterior region 

of AG 1 in larval stage A. aegypti. Taken together, these findings suggest the presence of 

neurosecretory cells in the posterior region of each abdominal ganglia producing ITP, among 

other neuropeptides. Weak ITP-immunoreactivity in processes emanating from these suggested 

neurosecretory cells is observed projecting anteriorly and emerging laterally, where it may exit 

via the AG lateral nerves. AT, AS-A, and AS-C immunoreactive processes projecting from 

labelled cells of the AG were shown to emerge laterally and innervate various abdominal tissues 

(hindgut, heart, and oviducts), reproductive tissue (oviducts, bursa, and spermatheca), and the 

dorsal vessel (Hernández-Martínez et al., 2005). ITP-like immunoreactive cells in the terminal 

ganglia of D. melanogaster contain immunoreactive projections that innervate the hindgut 

(Dircksen et al., 2008). It will be interesting to see whether similar ITP-like immunoreactive 

projections exiting the AG exist in A. aegypti, and which tissues they innervate in order to better 

predict ITP’s functional target sites. A representative schematic diagram of ITP-like 

immunoreactive staining in the central nervous system of adult A. aegypti provides a summary of 

immunohistochemical findings from the current investigation (Figure 24). 
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Figure 24: Representative diagram of ITP-like immunoreactive distribution in the central 
nervous system of A. aegypti. The CNS includes the brain, thoracic ganglia (TG), and the six 
abdominal ganglia (AG) of the adult ventral nerve cord. ITP staining in the abdominal ganglia is 
shown as one cell in AG 1-5, however some ganglia showed two ITP-immunoreactive cells. 
Additionally, the terminal AG6 has been shown to contain a minimum of two ITP-
immunoreactive cells, and multiple cells in some preparations.  
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Effect of cAMP on ion transport across the ileum of adult A. aegypti 

Upon treating adults of both sexes with the membrane permeable analog of cAMP, 8-

bromo-cAMP, a general trend of increased ileal haemolymph-directed transport (i.e. absorption) 

was observed. Application of 8-bromo-cAMP resulted in Na+ absorption in male ilea, while Na+ 

absorption was inhibited in females. Application of 8-bromo-cAMP caused a decrease in K+ 

absorption in both male and female ilea. Notably, cAMP significantly inhibited K+ absorption in 

male ilea relative to control preparations treated with physiological saline. This suggests the 

inhibition of haemolymph-directed K+ transport, and thus the inhibition of K+ absorption within 

the ileum of both sexes.  

The model of K+ and Na+ transepithelial transport in the desert locust, S. gregaria, serves 

as the best model for similar processes in A. aegypti mosquitoes (Audsley et al., 2013). In the 

locust, exogenous cAMP stimulated KCl, NaCl, and fluid absorption several fold across the 

locust ileum (Audsley et al., 1992b). More specifically, the electrogenic transport of Cl- can be 

stimulated 10-fold by the addition of exogenous cAMP, which is the driving force for 

transepithelial transport of other ions (Phillips & Audsley, 1995). In the locust, the ileum is the 

predominant site of Na+ absorption. S. gregaria ITP (SchgrITP) acts specifically on the ileum 

and results in an elevation of intracellular cAMP upon binding to its proposed G-protein coupled 

receptor (Phillips & Audsley, 1995; Audsley et al., 2013). Audsley et al. (2013) proposed a 

model for the mechanism of ITP action in the locust ileum, whereby the peptide acts via cAMP 

to stimulate the ileal absorption of Cl-, K+, Na+, and osmotically obliged water. cAMP increases 

the uptake of Cl- across the ileum by stimulating the apical electrogenic Cl- pump and through the 

opening of Cl- ion channels on the basolateral surface. cAMP also stimulates K+ channel opening 

on the apical membrane to enhance the passive flow of K+ ions into the haemolymph through 
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electrical coupling. Finally, the reabsorption of Na+ is increased through cAMP as it increases 

the conductance of Na+ in the apical membrane (Audsley et al., 2013). In adult A. aegypti 

mosquitoes, the basolateral P-type Na+/K+ ATPase was highly expressed in the anterior hindgut 

(i.e. the ileum); the ATPase enhances K+ entry into the cell while expelling Na+ into the 

haemolymph (Patrick et al., 2006). More recently, Robertson et al. (2014) observed that the 

membrane-permeable analog of cAMP, 8-bromo-cAMP, stimulated haemolymph-directed K+ 

transport at the locust ileum (Robertson et al., 2014). The increase in K+ and Na+ absorption 

caused by cAMP may be explained through a similar mechanism by which hormones bind to 

their receptors and cause an increase in intracellular cAMP. Given that the locust and adult stage 

mosquito both face similar challenges to maintaining hydromineral homeostasis during unfed 

states (Phillips et al., 1998), it is probable that they share similar transcellular transport 

mechanisms; when both locusts and adult mosquitoes are unfed they must retain water and ions 

in their haemolymph (Coast 2007; Robertson et al., 2014). Taken together, extensive studies 

conducted in the locust along with the current report that cAMP stimulated Na+ absorption in the 

ileum of male A. aegypti mosquitoes supports a reabsorptive role for the ileum.  

Our results also presented contrary findings for the role of cAMP in promoting ion 

reabsorption; cAMP inhibited ileal K+ absorption in both sexes and Na+ absorption in females. 

The inhibition of K+ and Na+ haemolymph-directed transport is contrary to previous studies 

conducted on the effects of cAMP on transcellular transport in the locust. Our data suggests the 

necessity to expel K+ ions in particular. As cAMP is the putative second messenger of the 

ancient glycoprotein hormone, GPA2/GPB5 (Sudo et al., 2005), our findings are congruent with 

Paluzzi et al. (2014) who observed that exposure of the ileum to GPA2/GPB5 (200nM) 

significantly reduced K+ absorption below control levels.  It is possible that since K+ levels in the 
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haemolymph of A.aegypti are relatively low in comparison to Na+, the level of K+ must be 

closely controlled to not reach an excessive concentration, which has the potential to disrupt the 

resting membrane potential of electrically excitable cells such as muscle and neurons (Hoyle, 

1953).  It is important to note that transepithelial transport in the locust ileum serves only as a 

model, and a similar model has not yet been proposed for the ileum of adult A. aegypti. There is 

a possibility that alternate ion channels and pumps exist within the hindgut epithelia of the adult 

mosquito. In addition, it is possible that the addition of exogenous cAMP is mimicking the 

elevated levels of intracellular cAMP triggered by the activation of receptors that are yet to be 

elucidated within the ileum of the adult mosquito; these receptors upon activation may signal to 

inhibit transcelluar transport through intracellular cAMP elevation. Furthermore, there are 

prominent morphological differences between A. aegypti and the locust, primarily, the locust has 

a larger size and contains many more Malpighian tubules, in comparison to mosquitoes 

(Hanrahan and Phillips, 1983; Phillips et al., 1988).  

It is important to note that the locust does not blood feed while adult female mosquitoes 

do. In the presence of a blood meal, Na+ from the plasma content and K+ released upon lysis of 

red blood cells poses a challenge to the hydromineral balance of the organism (Clements, 2000; 

Coast, 2009). These ions must be removed and therefore, it is expected that their absorption 

would be inhibited while their secretion would be promoted in the ileum. We did not measure the 

transepithelial ion transport of blood-fed females; however, the potential for adult females to 

blood feed may lead to sex-specific differences in ion transport mechanisms and/or putative 

receptor expression, and result in the expulsion of Na+ upon cAMP treatment; this scenario is 

supported by the decreased Na+ absorption observed across the ileum of cAMP-treated females.  
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Effect of cAMP on ion transport across the rectum of adult A. aegypti 

Addition of 1 mM 8-bromo-cAMP generally caused an increase in rectal Na+ 

haemolymph-directed transport (i.e. absorption) in both male and female mosquitoes, although 

this was not found to be significant. K+ absorption was promoted in females and inhibited in 

males, however variance in transepithelial transport of ions may be influenced sex-specifically 

due to the presence of six rectal pads in adult females whereas only four occur in adult males 

(Patrick et al., 2006). Phillips (1964) showed that chloride, sodium, and potassium are actively 

reabsorbed from the lumen of the rectum in situ, in the locust (Phillips, 1964). It was later shown 

that the neuropeptide Chloride transport-stimulating hormone (CTSH) acts via stimulating 

intracellular cAMP levels to result in the reabsorption of ions and fluid by the rectum (Phillips et 

al., 1988). As modeled initially in the desert locust (see Figure 3), CTSH, through elevated levels 

of intracellular cAMP, stimulates the electrogenic Cl- pump at the apical membrane, which drives 

K+ transport through electrical coupling (Hanrahan & Phillips, 1983). The rate of KCl transport 

depends on its lumen concentration because K+ directly stimulates the active entry of Cl- via the 

electrogenic pump. Cl- exits the rectum passively via basolateral cAMP-stimulated ion channels, 

and K+ follows passively by electrical coupling through cAMP-stimulated apical and basolateral 

channels. There is considerable Na+/K+ ATPase localized to the basolateral membranes; 

however, active Na+ absorption across this epithelium is relatively low because of the low 

luminal levels of Na+ that commonly enter this organ (Phillips & Audsley, 1995).  

Research done on A. aegypti shows that the haemolymph-facing basolateral membrane of 

adult female rectal pads highly express the P-type Na+/K+-ATPase, which has been suggested to 

serve as the entry step of Na+ into the haemolymph (Patrick et al., 2006). It was confirmed that 

the anal papillae of larval A. aegypti serve as the major site for Na+, Cl- and K+ uptake with the 
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use of self-referencing ion-selective microelectrodes (SeRIS) (Donini and O’Donnell, 2005). 

Using the locust model of transcellular rectal ion transport along with findings specific to A. 

aegypti, the proposed role of the rectum in adult mosquitoes is to absorb K+ and Na+ prior to 

excreting the final urine. The rectal pads are composed of simple columnar cells that function in 

absorption mechanisms (Hanrahan & Phillips, 1983), suggesting that the rectum only function to 

absorb, and not secrete, ions within the hindgut.  

Recently, the candidate for CTSH, the heterodimeric hormone consisting of a 

glycoprotein A (GPA) and a glycoprotein B (GPB) was identified first in D. melanogaster and 

then in A. aegypti (Sudo et al., 2005; Paluzzi et al., 2014). Its receptor is expressed in the hindgut 

and couples positively with cAMP (Sellami et al., 2011). Testing the effects of 200 nM 

GPA2/GPB5, Paluzzi et al. (2014) observed an increase in Na+ absorption in both the anterior 

and posterior regions of the rectum upon glycoprotein hormone exposure. Similar to these 

previous studies, the results herein suggest the action of cAMP on the rectum supports the role of 

GPA2/GPB5 in inhibiting natriuresis in the rectum of adult mosquitoes, thus promoting the 

retention of Na+ ions. Additionally, Paluzzi et al. (2014) showed that GPA2/GPB5, presumably 

through increased intracellular cAMP, inhibited the absorption of K+ in the rectum; this finding 

is similar to the current study that shows cAMP inhibits K+ absorption in the rectum of males. 

Ultimately, the congruence of these findings supports the previous literature that suggests cAMP 

may act as second messenger for GPA2/GPB5.  

 

Effect of cGMP on ion transport across the hindgut of adult A. aegypti 

The addition of exogenous cGMP promoted the lumen-directed transport (i.e. secretion) 

of Na+ across the ileum and rectum of both sexes. As previously mentioned, the rectal pads are 
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comprised of epithelia specific for absorptive mechanisms (Piersol, 1897); therefore, our data is 

incongruent with the currently accepted physiological function of the rectum. The effect of 

cGMP on K+ transepithelial transport was negligible as average flux values were close to zero. 

In a preliminary locust model proposed by Audsley et al., (2013), if SchgrITP binds to a 

yet-to-be-identified receptor activating a membrane-bound guanylyl cyclase, then intracellular 

levels of cGMP are increased. cGMP likely directly stimulates an apical Cl--electrogenic pump 

and activates the opening of channels in the basolateral membrane to increase the reabsorption of 

Cl-. This is supported by the observation that the addition of cGMP stimulates Cl--dependent 

short circuit current across locust ilea (Audsley and Phillips, 1990). By an unknown mechanism, 

it has been proposed that cGMP stimulates lumen-directed H+ transport at the apical membrane 

(Audsley et al., 2013). Unfortunately, this model does not specify whether there is a net 

absorption or secretion of Na+ and K+ ions. No similar study has looked at the role of cGMP on 

the transepithelial transport of Na+ and K+ across the hindgut of adult A. aegypti. Therefore, the 

preliminary findings reported here are the first to suggest cGMP promotes ion secretion in the 

hindgut of mosquitoes. 

Recently, Nagai et al. identified three Bombyx mori orphan neuropeptide G protein-

coupled receptors (BNGRs) (Nagai et al., 2014).  In particular, BNGR-A2 and BNGR-A34 were 

proposed as candidate receptors for B. mori ITP as this neuropeptide elicited an increase in 

intracellular cGMP upon receptor binding. RT-PCR analysis revealed the expression of both 

BNGR-A2 and BNGR-A34 genes in the hindgut of B. mori (Nagai et al., 2014). Future research 

should investigate whether ITP stimulates an increase in intracellular cGMP in the hindgut of A. 

aegypti, providing insight on whether ITP activates two distinctive receptors as was shown in B. 

mori, which may utilize different second messengers. In the end, this would bring us one step 
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closer to characterizing the elusive receptors for ITP in A. aegypti.  

To date, the only neuropeptide receptor identified in the hindgut of the mosquito, A. 

aegypti, is the Aedes kinin receptor (AeKR). Three leukokinin-like peptides have been identified 

in A. aegypti: kinins I, II, and III, all of which are released from the abdominal ganglia and 

interact with AeKR to stimulate hindgut contraction and diuresis in the Malpighian tubules 

(Pietrantonio et al., 2005). Pietrantonio et al. (2011) identified the presence of AeKR in the 

haemolymph-facing side of the rectal pads, or the basolateral membrane, using 

immunohistochemistry. Additionally, AeKR dsRNA was used to knockdown ileal and rectal 

AeKR, after which in vivo fluid excretion assays were performed to measure the total urine 

volume excreted by RNA silenced females. In AeKR silenced females, a significant decrease in 

fluid excretion rate was observed, suggesting that under normal conditions AeKR plays a role in 

post-feeding diuresis (Kersch and Pietrantonio, 2011).  

 

Effect of recombinant ITP on ion transport across the hindgut of adult A. aegypti 

The addition of 1 nM recombinant AedaeITP did not have a significant effect on Na+ 

transepithelial transport across the hindgut of males or females. Future research should test 

higher doses, if possible, of the neuropeptide to see if an effect on ion transport is induced. This 

will further provide insight as to whether ITP functions as a regulator of the hindgut where it 

could act as neurohormone or a neurotransmitter. It is important to note that neuropeptides are 

present in tissues at much lower concentrations than classical neurotransmitters, but are also 

active at receptors at correspondingly lower concentrations (Mains and Eipper, 1999). For 

example, the concentration of neurotransmitters in synaptic vesicles is in the 100 mM range, 

while the concentration of neuropeptide in a large dense core vesicle is 3 to 10 mM at most. 
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Correspondingly, the affinity of a neurotransmitter for its receptors is in the 100 µm to 1 mM 

range, while peptides typically bind to their receptors with nanomolar to micromolar affinities 

(Mains and Eipper, 1999). 

The axons of the strongly stained ITP-immunoreactive abdominal ganglia extend, leaving 

the VNC through the eighth abdominal nerves. Ultimately, these abdominal hindgut-innervating 

ITP neuronal axons were clearly shown to terminate at the hindgut (Dircksen et al., 2008). This 

localization of ITP-immunoreactivity found to innervate the hindgut suggests that ITP functions 

as a neurotransmitter, released at the synapse between axon terminals and the hindgut membrane. 

Initial studies on the effects of ITP on ileal short circuit current (ISC) showed that 1.0-5.0 

corpus cardiacum (CC) equivalents, corresponding to 0.487-2.44 nM purified ITP, significantly 

elicited an increase in ISC. At 5 CC equivalents, or 2.44 nM purified ITP, the maximum increase 

in ISC was observed. The maximum increase in ISC caused by ITP is quantitatively similar to that 

caused by 5 mM cAMP (Audsley et al., 1992b). A study that sought to characterize the 

haemolymph concentration of ITP in the locust used an enzyme-linked immunosorbent assay to 

reveal the presence of 120 fmol of ITP per CC (Audsley et al., 2006). The haemolymph volume 

of adult locusts has been shown to be 12% of the total body weight, and adult locusts weigh 

approximately 2 g (Chapman, 1998). Assuming the haemolymph volume is 250 µL, 120 

fmol/CC of ITP, if all were to be released into the hemolymph, would equate to a concentration 

of approximately 0.48 nM ITP, a concentration that was previously shown to increase ileal ISC 

(Audsley et al., 1992b). A subsequent study showed that 10 nM synthetic S. gregaria ITP 

(SchgrITP) stimulated fluid reabsorption across everted ileal sacs in vitro; the rate of fluid 

absorption across control tissues was 3.98 ± 0.48 nl/h, which significantly increased to 10.89 ± 

0.64 nl/h when incubated in the presence of SchgrITP. A 3.3-fold significant increase in fluid 
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transport was measured over a one hour period after the addition of 5 mM 8-bromo cGMP to the 

haemolymph side of the locust ileum (Audsley et al., 2013). The dose–response relationship 

between synthetic SchgrITP and intracellular levels of cGMP and cAMP was such that 100 nM 

ITP was required to induce an increase in cAMP or cGMP tissue levels in the locust ileum 

(Audsley et al., 2013). Taken together, the available data on the effectiveness of ITP at eliciting 

ion transport actions in the hindgut and modulating intracellular second messengers (i.e. cAMP 

and cGMP) warrants further study on determining physiologically relevant concentrations of ITP 

in A. aegypti. 

 

Concluding remarks and future directions 

Ultimately, it is difficult to make any conclusions on the global effects of AedaeITP 

within the hindgut of A. aegypti, as there are many gut region-specific and sex-specific effects on 

ion transport. Future research on the specific ion transporters within the hindgut epithelia of A. 

aegypti is critical to furthering our knowledge on the role of the hindgut in hydromineral balance, 

and the neuroendocrine regulation of ion transport mechanisms across this highly unstudied 

component of the insect excretory system. Additionally, further research on the effects of ITP on 

the transepithelial transport of other ions such as Cl- and H+ will aid in the proposal of a model 

illustrating the mechanisms responsible for ion transport over the adult A. aegypti hindgut 

epithelia. Furthermore, research should focus on elucidating potential gut region-specific 

receptors that may modulate hydromineral balance in the hindgut of adult mosquitoes. Notably in 

the locust, different neuropeptides mediate their effects on different regions of the hindgut; 

SchgrITP modulates ionoregulation in the ileum, while CTSH functions within the rectum 

(Audsley et al., 2013). Taking this potentially complex regulatory scheme into consideration, it 
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suggests that different receptors may also exist within the ileum and rectum of A. aegypti. It will 

be of interest to investigate the potential role of the Aedes kinin receptor on post-feeding diuresis 

in the rectum of A. aegypti mosquitoes (Kersch and Pietrantonio, 2011). 

Furthurmore, SchgrITP itself has been proposed to act upon separate receptors, one 

resulting in increased intracellular cAMP and the other increasing cGMP (Audsley et al., 2013). 

As AedaeITP has been postulated to modulate ion balance in the hindgut of mosquitoes, it will 

be of interest to investigate whether it functions on multiple receptors and whether it activates 

different intracellular second messenger pathways. On a broader scale, elucidating the effects of 

neuropeptide hormones has future implications as possible targets for the development of disease 

vector control agents, as suggested by Van Hiel et al. (Van Hiel et al., 2010). Furthermore, Ruiz-

Sanchez and O’Donnell (2015) suggest that the insect excretory system is an appropriate target 

for novel pest control strategies. However, extensive understanding of the mechanisms involved 

in ion and water transport across the epithelia of the hindgut is necessary to provide the 

foundation to develop novel pest management strategies (Ruiz-Sanchez and O’Donnell, 2015). 
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