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Abstract

The ionization of simple molecular targets, such as molecular hydrogen, or even

the molecular hydrogen ion (H+
2 ) by strong laser fields has become the focus of

experimental research in the past few decades. On the theoretical side the problem

presents two challenges: on the one hand one has to solve the problem numerically

even in the one-electron case (H+
2 ), since no analytic closed-form solution is possible;

on the other hand there is the many-electron problem (H2 and other diatomic

molecules, such as N2, O2, etc.), which currently is at the limit of computational

feasibility (H2), or exceeds it for molecules with more than two electrons.

In this thesis the single-electron problem of the hydrogen molecular ion in in-

tense continuous-wave laser fields is addressed. The focus is on ionization rates of

the molecule as a function of internuclear separation within the framework that

the motion of the nuclei can be neglected (Born-Oppenheimer approximation).

First, the problem of the DC limit is considered, i.e., a strong static electric field

is applied along the internuclear axis. The field ionization rate is calculated by
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solving a stationary non-hermitean Schrödinger equation in a suitable coordinate

system (prolate spheroidal coordinates). Some previously obtained values from the

literature are reproduced; for larger internuclear separations improved values are

obtained.

For the more interesting case of an infrared (continuous-wave) laser field Floquet

theory is applied to transform the time-dependent Schrödinger equation for the elec-

tronic motion into a non-hermitean coupled-channel stationary problem. Ionization

rates are found as a function of laser frequency (ω), and the low-frequency limit is

pursued to understand how one can establish a connection to the DC limit. Results

are obtained for the two lowest electronic states, which are named the gerade and

ungerade (or even and odd) ground states in the field-free limit.

From the calculated results it is observed that the ionization rates peak at

certain internuclear separations, such that a dissociating H+
2 molecule will be pref-

erentially field ionized. In addition, the thesis reports on calculations of so-called

high harmonic generation - a process where photo-electrons acquire energy from the

laser field, are deflected back by the linearly polarized laser and recombine under

the emission of photons with energies that correspond to odd-integer multiples of

the laser photon energy.
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1 Theoretical methods

1.1 Introduction

Over the past few decades the ionization dynamics of the hydrogen molecular ion in

an intense laser field has attracted much interest, because this fundamental system

shows many interesting phenomena, such as, vibrational trapping, bond softening

(hardening), above-threshold dissociation, and enhancement of the ionization rates

as a function of internuclear separation R for the lowest two states while it is

exposed to an external electric field [1-9].

In this thesis we will consider theoretical studies of the enhancement of the

ionization rates as a function of R for the lowest two states of the ion in DC and

AC electric fields. Theoretical studies of this phenomenon were started by Bandrauk

and his cowokers [10], and later were continued by Shakeshaft et al [11], Plummer

and Madsen [12], and Chu and Chu [13]. Experimental data were obtained in [5, 9].

The main purpose of this thesis is to investigate the DC and AC Stark resonance

parameters for the lowest two states of the ion using a pseudospectral method
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combined with a complex absorbing potential, and to obtain more accurate values

of the resonance energies and widths (decay rates), and to explain the enhancement

using the obtained results. Furthermore, it is shown how the ionization rates as a

function of internuclear separation R in the case of a low-frequency laser field is

related to those obtained in the DC limit. Finally, high harmonic generation spectra

for the states are obtained using the Floquet wave function and an understating of

how the enhancement of the ionization rate at certain internuclear separations can

affect the harmonic generation rate is investigated.

In this chapter we introduce the theoretical methods which are used in the cal-

culations. Sect. 1.2 presents the concept of Siegert states and its connection to the

tunneling resonance phenomenon for atomic hydrogen and the hydrogen molecular

ion in a DC and AC electric fields. A complex absorbing potential method that is

used to solve the resonance problem is discussed in Sect.1.2, as well. The Floquet

theory for the AC case is explained in Sect. 1.3. In Sect. 1.4 a pseudospectral rep-

resentation is introduced by which the Schrödinger equation is solved in cylindrical

and prolate spheroidal coordinates. Sect 1.5 presents a summary. In this thesis

atomic units (~ = mc = e = 1) are used in the calculation.
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1.2 Siegert states and complex absorbing potential

1.2.1 The tunneling resonance phenomenon

Resonance phenomena are common in various fields of atomic, molecular and chem-

ical physics, such as, in electron-atom scattering, photoionization, and autoioniza-

tion, to name a few. In this thesis we study theoretically the following resonance

phenomena: resonant tunneling ionization of the H+
2 ion a DC electric field, as

well as the over-the-barrier and multiphoton mechanisms for the molecular ion in

intense low-frequency fields.

For the H+
2 ion, in the presence of an external (DC) electric field, the originally

symmetric Coulomb two-center potential experienced by the electron is distorted:

the outer edge of one well is raised, while the outer edge of the other well is lowered,

and the reflection symmetry of the electronic potential is lost. The lowest gerade

and ungerade states of the ion (which are nearly degenerate at large R in the

absence of the field) are strongly split: the lower state remains in the deeper well,

and the other ‘upper’ state is localized in the upper well. While the electron in

the deeper well can tunnel through the lower barrier, the electron which sits in the

higher well can be ionized by tunneling through the middle barrier or by escape

over the barrier (Figure 1.1).
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Figure 1.1: The Coulomb potential of the H+
2 ion at separation R = 6 au distorted

by an electric field of strength F = 0.0533 au, which is along the z-axis. The dashed

lines indicate the real parts of the quasienergy for the lower (red) and upper (blue)

states. The graph shows a cut along the internuclear axis.

Resonance states can be described by the complex eigenenergy (quasienergy):

Eres = ER − iΓ/2. (1.1)

Here the real part ER is the resonance position, and Γ is the resonance width, or the

full width at half maximum which is related the ionization rate. Thus the natural

decay time τ = 1/Γ of the resonance state follows Refs.[14, 15].

Note that the decay time or ionization rate is a concept within a time-dependent

approach: in the DC tunneling problem τ represents the time when an initially fully

populated quasi-static state reaches a population of e−1, (|ψ(τ)|2 = |ψ(0)|2e−Γτ =>

e−1 ). The resonance width Γ is associated with a scattering problem: scattering
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of photons with energy E from the potential of two protons separated by R as well

as the external field results in a Breit-Wigner profile centered at E = ER with

width Γ, which is superimposed on a slowly varying background scattering cross

section σbg(E). The non-Hermitean eigenvalue approach provides a link to the

quasi-stationary time-dependent decay problem as explained in subsection (1.2.2).

1.2.2 Siegert state

The tunneling resonance phenomenon discussed in Section 1.2.1 is closely related

to the problem of scattering of an electron off a (spherical) potential, since the

scattering cross section (1.2) shows a characteristic peak near the resonance energy

ER = <(Eres), which can be described by the so-called Lorentz or Breit-Wigner

formula:

σres(E) =
1

2π

Γ

[(E − ER)2] + (Γ/2)2
. (1.2)

where the width characterizes the decay property of the resonance state Γ =

−2=(Eres) [16].

This tunneling (decaying) resonance state is referred to as a Siegert [17] state,

for which the wave function is described only by the outgoing component of the

resonance wave function. This outgoing wave function is not in the Hilbert space of

square-integrable functions, and diverges at the complex resonance eigenvalue (cf.

Eq.(1.8) below).
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For the sake of simplicity, now consider within stationary scattering theory a

one-dimensional resonance (scattering) problem, such that, the radial Hamiltonian

with a short-range potential V (r) which supports resonances, defined on r ∈ [0,∞),

vanishing for r > r0 has the form

H = −1

2

d2

dr2
+ V (r). (1.3)

One model potential shown in Fig. 1.2a is

V (r) = Cr2e−λr, with λ > 0. (1.4)

Depending on the choice of C and λ it allows for one or more resonant states at

E > 0 (for details cf [18]). It has no truly bound states (Fig. 1.2a).

Another model potential

V (r) =



−V0, for 0 ≤ r < a,

V0, for a ≤ r < 2a,

0, for r ≥ 2a

(1.5)

(Fig. 1.2b) for the choice a = 1, V0 = 10 (atomic units) is shown to have one true

bound state and one quasi-bound resonant state. These properties were discussed

by Santra et al [19].
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Figure 1.2: Model potentials: (a) Eq.(1.4) with C = 7.5 and λ = 1; (b) Eq.(1.5)

with V0 = 10 and a = 1. The dashed (a, b) and the solid (b) lines indicate the

position of the first resonance state and the bound state respectively. These values

are obtained from for (a) in Ref.[18] and for (b) in Ref.[19].

According to the Siegert method [17], the radial resonance wave function, which

vanishes at the origin, has the following asymptotic (r > r0) behaviour:

u(r) ∼ eikr for r →∞, (1.6)

with the momentum k = (2Eres)
1/2. To obtain the Siegert resonance energy one

needs to use the Siegert boundary condition (logarithmic derivative condition) at

r = r0, such that

d

dr
u(r)|r=r0 = iku(r0). (1.7)

For complex momentum k, one can use k = |k|e−iβ, and β = 1
2
arg(Eres). Then
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equation (1.6) becomes

u(r) ∼ ei|k|re
−iβ

= ei|k|r cosβe|k|r sinβ. (1.8)

From the second exponential in equation (1.8) it is now obvious that the outgoing

wave function (1.6) diverges at the complex resonance energy Eres. Because of this

asymptotic divergence, it is difficult to solve the resonance problem in this way.

Alternative methods which do not involve the complications of continuum wave

functions or explicit scattering calculations have been developed and implemented,

in which one can directly calculate the complex energy of the resonance state.

1.2.3 Method of Complex Scaling

The first known approach in this class is the method of complex scaling (CS) or

complex rotation CR developed by Reinhardt and coworkers [20, 21] and [22, 23,

24, 25, 26, 27, 28, 29, 30]. In the CS method the complex scaling transformation of

the particle coordinate

r → reiθ (1.9)

is applied, where θ is called the rotation angle, which is real and positive. Under

this transformation, the spectrum of the rotated (complex scaled) Hamiltonian is

transformed in the following way: (i) the bound states on the negative real axis of

the complex Eres plane are invariant; (ii) the cuts representing the E > 0 continuum
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rotate downward with an angle of 2θ with respect to the real axis <(Eres), and thus

unveil the resonance poles when θ is larger than β. Figure 1.3 shows the spectrum

in the complex energy plane for a fixed value of θ. As the parameter θ is increased

from zero, the resonance states which are defined by θ-trajectories in the complex

Eres plane remain relatively stable within a certain range of θ values. The best

approximated value of the resonance energy is obtained by looking for stability of

the complex resonance energy along the θ-trajectory.

Figure 1.3: The bound-state energies are invariant; as the continuum energies rotate

when θ is varied, the complex resonance eigenvalue (×) is exposed. In this figure

an arbitrary choice was made (location of 5 bound states and one resonant state).

With the transformation (1.9), the asymptotically diverging resonance wave

(1.6) becomes

u(r) ∼ ei|k|e
−iβ |r|eiθ = ei|k||r|e

i(θ−β)
= ei|k||r| cos (θ−β)e−|k||r| sin (θ−β) (1.10)

which is asymptotically convergent, that is, square integrable (L2) for π/2 > (θ −

9



β) > 0. Thus the CS or CR method allows the conclusion that the resonance

parameters (both resonance position and width) can be obtained using bound-

state type wave functions (or so called L2 wave functions). This is true provided

the CR parameter θ is sufficiently large compared to the resonance width, i.e., that

the resonance pole is isolated from the continuum (Fig.1.3). This means that now

the resonance state is a quasi-bound state embedded in the continuum.

In this thesis, we employ this method for the Stark resonance problem for the

hydrogen molecular ion in an external electric field. A closely related approach to

CS that allows us to avoid the use of scattering wave functions is the complex ab-

sorbing potential (CAP) method, which will be discussed separately in the following

subsection.

1.2.4 Complex absorbing potential

In this subsection we will discuss the CAP method, which we have employed to

investigate the DC Stark resonance problem for atomic hydrogen and the hydrogen

molecular ion, as well the AC Stark resonance problem for the H+
2 ion. The CAPs

were first used to calculate resonance parameters due to the quasi-bound character

of the resonance state for a model potential by Jolicard and Austin [31]. Riss and

Meyer [32] gave a detailed mathematical investigation on the implementation of the

CAP method. The physical idea of the CAP method is to add a complex absorbing
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potential to the resonance Hamiltonian, which is responsible for a damping of the

outgoing wave in the asymptotic region, that is, making the Siegert states L2-

integrable. Then one only needs to calculate a complex eigenvalue problem to get

the resonance parameters (resonance position ER and width Γ = −2=(Eres)). For

the resonance Hamiltonian (1.3), we can add a complex absorbing term −iη W :

H(η) = H − iηW (r) (1.11)

where η is a small positive parameter determining the CAP strength, and W is a

positive (piecewise) potential function. The form of the W potential used in the

thesis is

W (r) = Θ(r − rc)(r − rc)2, (1.12)

where Θ is the Heaviside step-function and rc determines the point where the

absorber starts to dampen the outgoing resonance wave.

In analogy to the dependence on the parameter θ in the CS or CR method, as

we vary the strength parameter η, thereby creating an η-trajectory in the complex

plane, the complex eigenvalue Eres of a Siegert resonance state stabilizes in the

complex plane. Note that stabilization is observed in the vicinity of some finite

value η ≈ ηstab.

However to obtain a true accurate resonance parameter Eres we should avoid

this complex artifact, taking somehow a limit η → 0. The first approach to achieve
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this was given by Riss and Meyer [32]. They could show that: if there is an energy

E0 6= 0 and a family of eigenvalues E(η) such that

E(η)→ E0 for η → 0 (1.13)

then E0 is either the energy of a bound state or of a Siegert resonance state of the

(unperturbed) H(η). Indeed, performing the limit η → 0 is not meaningful within

a fixed finite real basis set representation: the smaller the value of η, the larger

the delocalization of the eigenfunctions ψ(η), so they cannot be represented with

a finite basis set if η becomes too small; a larger η is needed in order to spatially

restrict the wave function.

However, Riss and Meyer developed an iterative correction scheme to determine

an accurate Siegert eigenvalue from the CAP spectra at finite, somewhat larger η

values. They proposed a Taylor expansion of E(η) at any given η to remove η-

dependence order by order. In order to minimize the “total error” Efb(η)− E0, as

the difference between the complex energy eigenvalue Efb = Efb(η) obtained with

a finite basis and the exact value E0, there must be an optimal value η = η̃.

One can remove the lowest-order terms of an expansion in η̃ by defining the nth

order corrected energy as

E(n) = E(n)(η̃) = Efb(η̃) +
n∑
j=1

(−η̃)j

j!

djEfb
dηj

∣∣∣
η=η̃

, (1.14)
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The optimal value η̃(n) is found by

∣∣∣ ηn+1

(n+ 1)!

dn+1Efb
dηn+1

∣∣∣
η=η̃

= min, n = 0, 1, 2, . . . (1.15)

where the derivative is evaluated by finite differences along the η-trajectory.

The first derivative can be obtained by employing the generalized Hellman-

Feynman theorem [33]

dEfb
dη

= −i〈ψ(η)|W |ψ(η)〉 . (1.16)

The first-order corrected energy becomes

E(1) = 〈ψ(η̃)|H(η̃)|ψ(η̃)〉+ (−η̃)(−i〈ψ(η̃)|W |ψ(η̃)〉) = (1.17)

〈ψ(η̃)|H − iη̃W + iη̃W |ψ(η̃)〉 = 〈ψ(η̃)|H|ψ(η̃)〉. (1.18)

This remarkable result states that we simply need the complex expectation value

of the Hamiltonian H with respect to the eigenstate of the artificial Hamiltonian

H(η) evaluated for η ≈ η̃ given by (1.15). To put it differently, the contribution of

the CAP to the energy is removed to the first order by this perturbation theory.

Indeed, the nth order correction can be recognized as the removal of the artificial

CAP within nth order perturbation theory.

The trajectory Efb(η) itself thus contains the (n = 0) RM results as an accu-

mulation point. Similarly, for higher orders n > 0 one also obtains η-trajectories.

For higher orders n the optimal values η̃(n) can be larger since the artifact of the

CAP is removed ‘more completely’.
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The second approach to remove the artifact due to the CAP was given by Lefeb-

vre, Sindelka and Moiseyev [34], in which the complex eigenvalue is obtained by

using a Padé extrapolation, in the limit Eres(η)η→0. This method is well discussed

in [35], and was extended to calculate the Dirac-supercritical resonance problem in

[36]. Following Eq.(5) in Ref.[36], (cf Ref.[34]) the Padé approximant for Efb(η) is

obtained from

EPadé(η) =

N1∑
i=0

piη
i

1 +
N1+1∑
j=1

qjηj
, (1.19)

where pi and qj are complex coefficients, and Np = 2(N1+1) is the number of points

used in the approximant. The η = 0 limit is given by p0. In order to determine the

Padé coefficients {pi, qj} one selects a number of Efb(ηk), k = 1 . . . Np and solves a

linear system of equations.

Although the Riss-Meyer iterative correction scheme or the Padé approximation

enable us to remove the artifact from the CAP spectra and obtain an accurate

Siegert resonance energy, the wave function still remains η-dependent. However,

the most accurate resonance wave function is assumed to be ψ(η̃).

1.3 Floquet theory

For the case when the external field is a not static and provided by a laser we need

to solve the time-dependent Schrödinger equation (TDSE). If a time-dependent
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Hamiltonian is periodic in time, it is possible to make a certain general statement

for the solution of the time-dependent Schrödinger equation. The theory for this

system is known as Floquet theory [37].

Consider the TDSE in atomic units,

i
∂

∂t
Ψ(r, t) = H(r, t)Ψ(r, t) = [H0 + VL(r, t)]Ψ(r, t), (1.20)

where the Hamiltonian is periodic in time with period T = 2π/ω, that is, H(r, t+

T ) = H(r, t), and H0 is the unperturbed Hamiltonian and VL(r, t) is an external

(laser) electric field with frequency ω.

According to Floquet theory [37], the solution Ψα
F (r, t) can be written in the

form

Ψα
F (r, t) = e−iE

α
F tΦα

F (r, t), (1.21)

Φα
F (r, t+ T ) = Φα

F (r, t) =
∞∑

n=−∞

einωtφαn(r) ≈
NF /2∑
−NF /2

einωtφαn(r), (1.22)

where Eα
F is called the Floquet quasi-energy, and the φαn(r) obey time-independent

coupled-channel equations. The solution ansatz implies that the probability density

for adjacent periods maintains its shape, but the amplitude may decay exponentially

when =(Eα
F ) < 0, and when =(Eα

F ) > 0 the states are not square integrable.

Substituting the solution (1.21) into the Schrödinger equation (1.20) we obtain

an eigen problem with eigenvalues that does not depend on time:

HF (r, t)Φα
F (r, t) = Eα

FΦα
F (r, t), (1.23)
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where the Floquet (steady-state) Hamiltonian HF (r, t) is defined as

HF (r, t) = H(r, t)− i ∂
∂t
. (1.24)

Obviously HF is analogous to the Hamiltonian for stationary states of the time-

independent Schrödinger equation, that is, the time variable t is treated in analogy

to a coordinate variable, and the Schrödinger equation (1.23) is solved as for the sta-

tionary states of the time-independent Schrödinger equation. Once we find Φα
F (r, t)

from the steady-state Schrödinger equation (1.23), we obtain the solution Ψα
F (r, t)

to the time-dependent Schrödinger equation (1.20) via equation (1.21).

The Floquet eigenfunctions make up a complete set, and any solution to equa-

tion (1.20) can be expanded as

Ψ(r, t) =
∑
α

cαΨα
F (r, t), (1.25)

where the coefficients cα are independent of time.

It is convenient to define a composite Hilbert space in both position and time,

R
⊕

T [38, 39]. The spatial part R is spanned by square-integrable functions on

configuration space r, while the temporal part T is spanned by the complete, or-

thonormal set of functions einωt, where n = 0,±1,±2, . . .. Then the Floquet eigen-

states, Φα
n(r, t), satisfy the orthonormality condition

〈〈Φα
n(r, t)|Φβ

m(r, t)〉〉 ≡ 1

T

∫ T

0

dt

∫ ∞
−∞

Φα∗
n (r, t)Φβ

m(r, t)dr = δαβδnm, (1.26)
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and form a complete set in R
⊕

T :

∑
αn

|Φα
n〉〉〈〈Φα

n| = 1. (1.27)

We assume that the external field is provided by a linearly polarized monochro-

matic laser aligned with the internuclear axis of the diatomic molecule, and that

the dipole approximation is valid. Then the interaction VL(r, t) takes the form

V lg
L (r, t) = Fz cosωt, (1.28)

in length gauge, and

V vg
L (r, t) = i

F

ω
sinωt

∂

∂z
+
F 2

2ω2
sin2 ωt (1.29)

in velocity gauge, where F is the laser field strength.

With the help of the definitions (1.26-1.27) for the Floquet eigenstates and equa-

tions (1.22-1.23), we obtain the time-independent coupled-channel matrix equations

for φαn in the composite Hilbert space R
⊕

T

H0φ
α
n(r) +

1

2
Fz[φαn−1(r) + φαn+1(r)] = (EF − nω)φαn(r),

(n = 0,±1,±2 . . .) (1.30)

in length gauge, and

H0φ
α
n(r) +

F 2

2ω2

[1

4
φαn−1(r)− 1

2
φαn(r) +

1

4
φαn+1(r)

]
= (EF − nω)φαn(r),

(n = 0,±1,±2 . . .) (1.31)

in velocity gauge, respectively.
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1.4 Pseudospectral method

The name “spectral method” is given to a type of numerical approach for the solu-

tion of partial differential equations. In this approach the solution to the equation

is approximated by a truncated series of special functions which are the eigenfunc-

tions of some differential operator, often of Sturm-Liouville type. In contrast to the

finite-difference method which is a local method, the spectral methods are global, in

which computation is carried out at any point on the whole domain of computation,

not only at discrete neighboring points.

In a pseudospectral method the computational domain is discretized with a pre-

scribed quadrature for the integration measure. Basic descriptions of this method

are: (i) an approximation of a function u(x) is represented by a (Lagrange) inter-

polation polynomial, which is obtained using a discrete transform; (ii) once it is

expressed by the global cardinal function the differentiation matrix of any order is

obtained at any point of the interval.

In this thesis, we discuss two such methods in the following sections, since we use

the Fourier-sine and Legendre spectral methods to solve the Schrödinger equation

for the H atom and the H+
2 ion, respectively. Other polynomial spectral methods

are discussed in detail in [40-44].
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1.4.1 Fourier (Sine) Spectral Method

In general, the solutions of partial differential equations can be expressed in terms

of the Fourier series expansion. The full Fourier, cosine and sine series expansions

in practice are written in terms of truncated sums. Employing these truncated

Fourier series expansions leads to the Fourier Spectral Method to solve differential

equations in a straightforward way and allows to obtain convergent results using

relatively small basis sets because of the high-order approximation to derivatives as

compared to finite differences. The pseudospectral Fourier grid method is based on

the discrete Fourier transform, and it turns out that the truncated sum which arises

in the calculation can be expressed in closed form based upon the global polynomial

interpolant. The closed form, named the cardinal function for a given type of

interpolation represents the cornerstone of this method, and its k-th derivative at

the interpolation points produces the differentiation matrix.

The Fourier pseudospectral method is indeed preferable for a periodic problem,

and has been first implemented in a quantum mechanics context by Meyer [45] and

later by Marston [46]. For the sake of simplicity, now consider a one-dimensional

truncated spectral representation uN(x) of the function u(x) in interval x ∈ [0, π],

using the Fourier-sine series, which itself satisfies directly the physical boundary
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condition

uN(x) =
N∑
k=1

ak sin(kx). (1.32)

The discrete Fourier sine series expansion coefficients ak can be found by the trape-

zoidal rule:

ak =
2

N + 1

N∑
i=1

u(xi) sin(kxi), k = 1 . . . N. (1.33)

where xi is a set of N equidistant grid points

xi =
πi

N + 1
, i = 1 . . . N. (1.34)

Similarly, we obtain the inverse discrete Fourier transform, by inserting (1.33) into

(1.32)

uN(x) =
N∑
i=1

u(xi)gi(x). (1.35)

This polynomial equation (1.35) interpolates the function u(x) at the quadrature

points of the trapezoidal formula. Here gi(x) is the Fourier-sine cardinal function

gi(x) =
2

N + 1

N∑
k=1

sin(kxi) sin(kx), xi =
πi

N + 1
, i = 1 . . . N. (1.36)

The cardinal function gi(x) has the unique property

gi(xj) = δij. (1.37)

This implies that the solution vector contains the desired solution evaluated at the

grid points to the differential equation. In Figure 1.4a the cardinal functions gi(x)

are shown for N = 3.
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1.4.2 Polynomial (Legendre) Spectral Method

If the function u(x) or any of its derivatives are not periodic, it is useful to use a non-

periodic basis, such as a polynomial basis, usually based on the eigensolutions to

some Sturm-Liouville problem. We will consider here only the discrete polynomial

approximation of a function u(x) ∈ L2[a, b], where the interval [a, b] can be bounded

or unbounded.

The truncated expansion of any function u(x) ∈ L2[a = −1, b = 1] in real

orthogonal polynomials ϕk(x), which are complete in L2
ω, is given as

uN(x) =
N∑
k=0

ûkϕk(x), (1.38)

where the discrete polynomial coefficients are obtained using a Gauss quadrature

with weight ωi(x), under which the polynomials are orthogonal,

ûk =
1

γk

N∑
i=0

u(xi)ϕk(xi)ωi. (1.39)

Here γk is a normalization constant, found as

γk =
N∑
i=0

ϕ2
k(xi)wi, (1.40)

and xi are non-equally spaced quadrature points, obtained as the (N + 1) roots of

the polynomials ϕN+1(x) in general.

Inserting the discrete polyonomial transform (1.39) in the function expansion
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(1.38), we have

uN(x) =
N∑
i=0

u(xi)li(x), (1.41)

where the cardinal function li(x), is obtained as the Christoffel-Darboux formula

[44], and has the form

li(x) =
N∑
k=0

1

γk
ϕk(x)ϕk(xi)wi. (1.42)

Indeed, li(x) is the Lagrange interpolation polynomial based on the Gaussian

quadrature nodes, and again, (cf. (1.37)) has the unique property

li(xj) = δij. (1.43)
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Figure 1.4: Cardinal functions gj(x) (a), and lj(x) (b) with N = 3 and 8. These

functions are used to interpolate the solution in between grid points.

In this calculation we restrict ourselves to one of the special cases of Jacobi
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polynomials, the Legendre polynomial, ϕk(x) = Pk(x), and the Legendre-Gauss-

Lobatto grid points xi, which are determined as the roots of the first derivative of

the Legendre polynomial PN(x) with respect to x

P ′N(xi) = 0, i = 0, . . . , N. (1.44)

The pseudospectral representation of the truncated approximation of the function

u(x) can be written as

uN(x) =
N∑
i=0

u(xi)li(x), (1.45)

where the cardinal function li(x), is given in closed form

li(x) =
−1

N(N + 1)

(1− x2)

(x− xi)
P ′N(x)

PN(xi)
. (1.46)

In Figure 1.4b the cardinal functions li(x) are shown for N = 8.

1.4.3 Coordinate system and mapping function

In this thesis we will use two different coordinate systems: cylindrical and prolate

spheroidal. The former is applied to solve the resonance parameter problem for the

H atom, while the latter is chosen for the resonance problem of the H+
2 ion.

The cylindrical coordinates ρ, z and ϕ are related to the Cartesian coordinates

x, y and z as follows,

x = ρ cosϕ, y = ρ sinϕ, z, (1.47)

0 ≤ ρ <∞, −∞ < z <∞, 0 ≤ ϕ ≤ 2π.
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The transformations between prolate spheroidal coordinates {µ, ν, ϕ} and the Carte-

sian coordinates {x, y, z} are given as:

x =
R

2

√
(µ2 − 1)(1− ν2) cosϕ, y =

R

2

√
(µ2 − 1)(1− ν2) sinϕ, z =

R

2
µν, (1.48)

1 ≤ µ <∞, −1 ≤ ν ≤ 1, 0 ≤ ϕ ≤ 2π.

Before we implement the Fourier-sine and Legendre spectral methods we need to

employ a mapping for the coordinates. A coordinate mapping is essential for spec-

tral methods: it gives not only the opportunity to control the distribution of grid

points, but also allows to play with the length of the chosen interval. For a Coulomb-

type potential, expressing the interaction in atomic and molecular systems, the dis-

tribution of grid points near the singularity is controlled by a mapping function.

We choose the following mapping functions for the ρ and z axes:

ρ(θρ) = Lρ
θρ

π − θρ
, z(θz) = z0 + Lz tan(θz/2), 0 ≤ θρ < π, −π < θz < π, (1.49)

where Lρ and Lz are the mapping range parameters. The plot of this mapping

function is shown in Figure 1.5a. Different mappings for the ρ coordinate were also

implemented in [47, 48, 49].

For the independent variables µ, ν in prolate spheroidal coordinate we map only

the coordinate µ

µ(x) = 1 +
(1 + x)

2
(b− 1), (1.50)
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where x ∈ [−1, 1] and b is a mapping range parameter, which defines the size of the

elliptic region in which the problem is solved, and we keep ν = y, since ν ∈ [−1, 1].

The grid structure for the mapping (1.50) is shown in Figure 1.5b. Comparing with

Figure 1.4a, while we observe that the Fourier grid points are equidistant in the

interval [0, π], the Gauss-Legendre-Lobatto grid points are non-uniform, and more

densely distributed to both ends of the interval [−1, 1].
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Figure 1.5: Grid point distributions: cylindrical (a) and prolate spheroidal (b)

coordinates. case (b): Small values of Nµ = 10,Mν = 8 were chosen for clarity and

R = 2. In practical calculations N = 44,M = 12.

1.4.4 Differentiation matrix based on the Fourier sine spectral method

Once we build an approximation of the function u(x) in the chosen interval using the

cardinal functions, we can obtain the derivative of u(x) at point xj by differentiating
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the global polynomials gi(x):

d

dx
uN(x)

∣∣∣
xj

=
N∑
i=1

u(xi)
d

dx
gi(x)

∣∣∣
xj

=
N∑
i=1

d
(1)
ij u(xi). (1.51)

Using equation (1.36), the entries of the first- and second-order Fourier-sine differ-

entiation matrix are given by

d
(1)
ij =

2

N + 1

N∑
k=1

k sin(kxi) cos(kxj), (1.52)

d
(2)
ij = − 2

N + 1

N∑
k=1

k2 sin(kxi) sin(kxj).

1.4.5 Differentiation matrix based on the Legendre spectral method

By differentiating the global polynomial, li(x) in the Lagrange interpolation poly-

nomial (1.41) the derivative of the function u(x) at the quadrature points can be

evaluated as:

d

dx
uN(x)

∣∣∣
xi

=
N∑
i=0

u(xi)
d

dx
li(x)

∣∣∣
xj

=
N∑
i=0

d
(1)
ij u(xi). (1.53)

The explicit form of the Legendre-Gauss-Lobatto differentiation matrix can be

written as

d
(1)
ij =

d

dx
li(x)

∣∣∣
xj

=



−N(N+1)
4

i = j = 0,

0 i = j ∈ [1, . . . , N − 1],

PN (xi)
PN (xj)

1
xi−xj i 6= j,

N(N+1)
4

i = j = N.

(1.54)
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The higher-order derivatives can be easily obtained by d
(n)
ij =

(
d

(1)
ij

)n
.

The transformations of derivatives for the mapping functions ρ(θρ) and µ(x) are

found as

ρ(n)(θρ) =
∂nρ(θρ)

∂θnρ
, µ(n)(x) =

∂nµ(x)

∂xn
, (1.55)

d2

dρ2
=
ρ(1)∂θρθρ − ρ(2)∂θρ

[ρ(1)(θρ)]3
,

d

dρ
=

1

ρ(1)

∂

∂θρ
,

d2

dµ2
=
µ(1)∂xx − µ(2)∂x

[µ(1)(x)]3
,

d

dµ
=

1

µ(1)

∂

∂x
.

The transformation of derivatives for the mapping function z(θz) is carried out in

analogy to that for ρ(θρ).

1.4.6 Discretization of the Schrödinger equation for atomic hydrogen

in cylindrical coordinates

Consider first the time-independent eigenvalue problem for the Schrödinger equa-

tion in cylindrical coordinates for atomic hydrogen. Using the ansatz ψ(r) =

u(ρ, z)eimϕ/
√
ρ to the Schrödinger equation, it has the form

[
− 1

2

d2

dρ2
+
m2 − 1/4

2ρ2
− 1

2

d2

dz2
− 1√

ρ2 + z2

]
u(ρ, z) = Eu(ρ, z), (1.56)

where u(0, z) = u(∞, z) = 0, and m is the azimuthal quantum number. In this

thesis only m = 0 is considered, since the field is assumed to be aligned with the z

axis. In order to solve the 2D equation (1.56) we choose the following expansion in
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analogy to equation (1.35)

uNρMz(ρ, z) =

Nρ∑
i=1

Mz∑
j=1

u(ρi, zj)gi(ρ)gj(z), (1.57)

where the cardinal functions gi(ρ) and gj(z) are defined by equation (1.36):

gi(ρ) =
2

Nρ + 1

Nρ∑
kρ=1

sin(kρθρi) sin(kρθρ), (1.58)

gj(z) =
2

Mz + 1

Mz∑
kz=1

sin(kρθzj) sin(kρθz).

Here Nρ and Mz are the number of grid points along the ρ and z axes, respec-

tively. With these Fourier-sine pseudospectral representations the eigenvalue prob-

lem (1.56) can be solved as:

Nρ∑
i′=1

Mz∑
j′=1

[
− 1

2
Tij;i′j′ −

1

8ρi
δii′δjj′ −

1√
ρ2
i + z2

j

δii′δjj′
]
ui′j′ = E δii′δjj′uij, (1.59)

where the kinetic energy operator is expressed as

Tij;i′j′ =
[
T

(ρ)
ii′ δjj′ + T

(z)
jj′ δii′

]
. (1.60)

The components T
(ρ)
ii′ and T

(z)
jj′ have the forms

T
(ρ)
ii′ =

1

[ρ(1)(θρi)]2
d

(2)
ii′ −

ρ(2)(θρi)

[ρ(1)(θρi)]3
d

(1)
ii′ (1.61)

T
(z)
jj′ =

1

[z(1)(θzj)]2
d

(2)
jj′ −

z(2)(θzj)

[z(1)(θzj)]3
d

(1)
jj′ , (1.62)

where the first- and second-order differentiation matrices d
(1)
jj′ and d

(2)
ii′ are given by

equation (1.52).

28



1.4.7 Discretization of the Schrödinger equation for the hydrogen molec-

ular ion in prolate spheroidal coordinates

The field-free electronic Hamiltonian of the H+
2 molecule can be written in atomic

units as

H = −1

2
∇2

r −
1

|r + R
2
ez|
− 1

|r− R
2
ez|

, (1.63)

where r is the electron position vector and R is the internuclear separation.

The kinetic energy operator and the Coulomb interaction become:

−1

2
∇2

r = −1

2

4

R2(µ2 − ν2)

( ∂
∂µ

[(µ2−1)
∂

∂µ
]+

∂

∂ν
[(1−ν2)

∂

∂ν
]+

µ2 − ν2

(µ2 − 1)(1− ν2)

∂2

∂ϕ2

)
,

(1.64)

V (µ, ν) = − 4µ

R(µ2 − ν2)
. (1.65)

The wave function can now be expressed in separable form,

Ψ(µ, ν, ϕ) = ψm(µ, ν)eimϕ, (1.66)

and separate eigenvalue problems for different |m| values are obtained:

−1

2

4

R2(µ2 − ν2)

[ ∂
∂µ

[(µ2 − 1)
∂

∂µ
] +

∂

∂ν
[(1− ν2)

∂

∂ν
]− (1.67)

m2

µ2 − 1
− m2

1− ν2

]
ψm −

4µ

R(µ2 − ν2)
ψm = Eψm.

Because the solution for Eq.(1.67) is found analytically in terms of Legendre

polynomials [50, 51, 52], it is natural to employ a Legendre-based pseudospectral
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method. This follows since the zeroes of the Legendre polynomials are more densely

distributed near ν = ±1 [41, 44]. In this work we will only consider Σ electronic

states (|m| = 0, no ϕ dependence), therefore, we will omit the subscript m from

now on.

By extending the 1D expansion (1.45) to the 2D case we can approximate ψ(µ, ν)

by ψNµ,Mν (µ, ν):

ψ(µ, ν) ≈ ψNµ,Mν (µ, ν) =

Nµ∑
i=0

Mν∑
j=0

φ(µi, νj)li[x(µ)]lj[y(ν)]. (1.68)

Both types of cardinal functions li[x(µ)] and lj[y(ν)] are defined by equation (1.46)

li(x) = − 1

Nµ(Nµ + 1)PNµ(xi)

(1− x2)P ′Nµ(x)

x− xi
, (1.69)

lj(y) = − 1

Mν(Mν + 1)PMν (yj)

(1− y2)P ′Mν
(y)

y − yj
. (1.70)

They are needed at the grid points xi and yj, which are defined as the roots of

equations

P ′Nµ(xi) = 0, P ′Mν
(yj) = 0, i = 0, . . . , Nµ, j = 0, . . . ,Mν . (1.71)

After the transformation, the two-dimensional discretized eigenvalue problem (Eq.(1.67)

to be satisfied exactly at grid points µi′ , νj′) can be implemented directly:

Nµ∑
i′=0

Mν+1∑
j′=0

[
− 1

2
Tij;i′j′ −

4

R
µiδii′δjj′

]
φi′j′ = E (µ2

i − ν2
j )δii′δjj′φij, (1.72)

Tij;i′j′ =
4

R2

[
T

(µ)
ii′ δjj′ + T

(ν)
jj′ δii′

]
. (1.73)
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Here the partial matrices T
(µ)
ii′ , T

(ν)
jj′ are related to the coordinates µ and ν, respec-

tively, and are defined as follows:

T
(µ)
ii′ = (µ2

i − 1)
1

[µ
(1)
i ]2

dµii′d
µ
ii′ + 2µi

1

µ
(1)
i

dµii′ , (1.74)

T
(ν)
jj′ = (1− ν2

j )dνjj′d
ν
jj′ − 2νjd

ν
jj′ . (1.75)

The matrices dµii′ and dνjj′ are the first-order differentiation matrices using the Leg-

endre Gauss-Lobatto points x(µi) and y(νj), and can be calculated by equation

(1.54).

1.5 Summary

In this chapter we have set up a solution method for the tunneling resonance prob-

lem for atomic hydrogen and the hydrogen molecular ion in DC and AC electric

fields. The complex absorbing potential method which enables us to avoid the use

of continuum wave functions in resonance calculations is presented.

The Floquet method that permits us to find a solution for the time-dependent

Schrödinger equation in terms of a matrix calculation is formulated for the AC

Stark resonance problem in dipole approximation.

The mapped Fourier-sine and Legendre spectral methods are developed in detail.

In this pseudospectral representation one needs to solve a matrix eigenvalue problem

(cf. Eqs. (1.59, 1.72)) to obtain the solution of the Schrödinger equation and the
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eigenvectors can give values of the wave function on chosen grid points. Then we

can build the wave function not only on the chosen grid points, but also at arbitrary

positions within the grid domain using the global Lagrange interpolation (cf. Eqs.

(1.57, 1.68)). This is particularly useful when small grids are used and properties

of the wave function are explored.
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2 DC Stark resonance parameters for the

hydrogen molecular ion in a static electric field

In this chapter we discuss the DC Stark resonance parameters for the H+
2 ion in

a static electric field using the theoretical methods described in chapter 1. We

start with a brief discussion of previously accomplished research in this field in

Sect. 2.1. The solution of the time-independent Schrödinger equation for the H+
2

ion in cylindrical and prolate spheroidal coordinates is discussed in Sect. 2.2 and

2.3, respectively. In Sect. 2.4 we present the Stark-resonance Hamiltonian and the

complex absorbing potential method. Sect. 2.5 contains the results for the Stark

resonance parameters for the two lowest states of the ion. A summary follows in

Sect. 2.6.

Originally published as Ts. Tsogbayar and M. Horbatsch, J. Phys. B: At. Mol.

Opt. Phys. 46 085004 (2013).
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2.1 Introduction

The study of dissociative ionization of diatomic molecules in intense laser fields

has been carried out both experimentally [1-9] and theoretically [10, 11, 12, 13, 53]

following the pioneering theoretical work of L. V. Keldysh Ref.[54]. The simplest

diatomic molecular ion H+
2 , is a prototype system which can be used to understand

intense-field phenomena. For the first excited state (which in the field-free case has

ungerade symmetry) the ionization rate as a function of internuclear separation

R shows maxima at some critical separations beyond the equilibrium separation.

This enhanced ionization at some larger internuclear separations has been observed

experimentally [5, 9] and was discussed on the basis of numerical calculations [10].

In the case of low-frequency AC fields, and in the static (DC) field limit explanations

were given for this phenomenon [10, 11, 12, 13].

Zuo and Bandrauk [10] observed that the over-the-barrier mechanism is the

main reason for the peak in the ionization rate for the upper state as R is in-

creased. Mulyukov et al., [11] extended the argument using a somewhat different

interpretation for this peak: their argument is based on the curves of the real and

imaginary parts of the quasienergy for varying R, which is due to the mixing of the

upper state with energetically nearby highly excited states that are localized in the

lower well. Xi Chu and Shih-I Chu [13] argued that the charge-resonance effect and
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multiphoton transitions to the excited electronic states represent the main mecha-

nism responsible for the enhanced ionization phenomenon. In addition, Plummer

and McCann [12] reasoned on the basis of localized electron density pictures of

the upper resonance state that the critical distances validate a Coulomb explosion

model [10, 55], while electron localization and simple over-the-barrier models of

electron release are not appropriate mechanisms to explain this phenomenon. Ban-

drauk and Lu [56] have used time-dependent Schrödinger equation calculations to

explore the DC Stark problem of H+
2 in the presence of an additional magnetic

field. Their reported findings and interpretations for the pure Stark problem are

also precursors to the present work.

We carried out resonance calculations for the lower and upper states of H+
2 in the

static electric field which are obtained using the complex absorbing potential (CAP)

method for varying internuclear distance R, to complement previous work [10, 11,

12, 13, 53]. To obtain more accurate values of the resonance parameters, the Riss-

Meyer iterative method [32] and the Padé approximation and extrapolation to η = 0

[34, 35, 36] were implemented in analogy to the computationally more restricted

work of Ref.[11]. We also obtain probability densities for both states to support the

interpretation of why the ionization rate peaks at particular internuclear separations

for two choices of strong-field parameters. The work is restricted to the case where

the DC field is aligned with the internuclear axis. This restriction is not considered
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to be severe, since the H+
2 molecule will align prior to ionization [1, 57].

2.2 The hydrogen molecular ion in cylindrical coordinates

We initially attempted to solve the time-independent Schrödinger equation in cylin-

drical coordinates using the mapped Fourier sine grid method (MFSGM) discussed

in Section 1.3.6. As a first test we worked on the Stark resonance problem for

atomic hydrogen and results were published in [58]. For the H atom it was difficult

to obtain convergence presumably due to the Coulomb singularity [49].

Following Eq.(1.56), the Schrödinger equation for the H+
2 ion in cylindrical co-

ordinates can be written as

[
− 1

2

d2

dρ2
+
m2 − 1/4

2ρ2
− 1

2

d2

dz2
− V (ρ, z)

]
u(ρ, z) = Eu(ρ, z). (2.1)

The Coulomb potential energy V (ρ, z) has the form

V (ρ, z) = − 1√
ρ2 + (z −R/2)2

− 1√
ρ2 + (z +R/2)2

. (2.2)

The discretization of equation (2.1) can be carried out as discussed in Section 1.3.6.

In Table 2.1 we show the eigenenergies for the ground 1sσg and first excited 2pσu

states of the H+
2 ion at R = 2.0 au while increasing the number of grid points Nρ and

Mz, along the coordinates ρ and z, respectively. This table shows that although

the MFSGM can work for the H+
2 ion, it gives slow convergence for the energy

eigenvalue. Kosloff et al solved equation (2.1) using the Fourier-sine grid method,
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but with a different mapping function for the ρ coordinate and obtained six-digits

accurate energy value of −1.10263 au for the ground 1sσg state of the H+
2 with a

16× 16 mapped grid [47].

Table 2.1: Eigenenergies for the 1sσg and 2pσu states of the H+
2 ion at an equilibrium

distance R = 2.0 au. The mapping parameters values are Lρ = 1, Lz = 1 and z0 = 0.

Nρ = Mz E1sσg (au) E2pσu (au)

16 -1.1014 -0.6712

32 -1.1018 -0.6671

64 -1.1023 -0.6672

∞ -1.1026 -0.6675

Indeed the slow convergence of the energy eigenvalues for the two lowest states

of H+
2 shown in Table 2.1 implies that the MFSGM would not be the right choice

to solve the Stark resonance problem for the ion because we need more digits of

precision to get a well-converged value of the ionization rate. Therefore, we decided

to make use of prolate spheroidal coordinates which were used by Xi Chu and S.

I. Chu in Ref.[13].
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2.3 The hydrogen molecular ion in prolate spheroidal co-

ordinates

The two-dimensional discretized Schrödinger equation (1.59) for the H+
2 ion can

be solved directly. Our approach is very similar to that implemented in Ref.[13].

However, instead of using the variational symmetrized method we employ a direct

collocation scheme here. The eigenvalues for low-lying Σ electronic states are ob-

tained, and the eigenvectors give the values of the wave functions at chosen grid

points {µi, νj}. Then we can interpolate the wave function on the whole computa-

tional domain using the computed eigenvectors and equation (1.68).
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Figure 2.1: Electronic energy as a function of internuclear separation R for the

lowest gerade (red) and ungerade (blue) states (a), and plots of |ψ|2 for the 1sσg

(b) and 2pσu (c) states for H+
2 at R = 2 au.

In Figure 2.1 we show some results for the ground and first excited states of
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the ion. In panel (a) we show the electronic energy as a function of internuclear

separation R for the gerade (red) and ungerade (blue) states of the ion. At large R

the two states become nearly degenerate. Panels (b, c) demonstrate the probability

density |ψ|2 for the two states at the equilibrium distance R = 2 au.

In Tables 2.2 and 2.3 we show the eigenenergy of the ground and first ex-

cited states and expectation values of the square of r = (R/2)
√

(µ2 + ν2 − 1) (dis-

tance from the origin located between the two protons to the electron) and of the

quadrupole moment Q = (3z2 − r2)/2 as a function of the grid parameters Nµ

and Mν at R = 2.0 au. The collocation method gives rapidly converging results for

moderate values of Nµ and Mν .

Table 2.2: Some solutions for the 1sσg state of H+
2 at R = 2.0 au for a = 1, b = 20.

Nµ Mν E1sσg (au) 〈r2〉 (au) 〈Q〉 (au)

12 10 -1.102 363 088 395 2.394 521 797 0.469 280 805

24 10 -1.102 634 214 495 2.394 529 332 0.469 351 782

Exact [59] -1.102 634 214 495 2.394 529 332 0.469 351 782
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Table 2.3: The same as in Table 2.2, but for the 2pσu state of H+
2 .

Nµ Mν E2pσg (au) 〈r2〉 (au) 〈Q〉 (au)

12 10 -0.667 581 425 111 4.808 027 665 2.306 704 155

24 10 -0.667 534 392 203 4.808 724 849 2.306 993 107

Exact [59] -0.667 534 392 203 4.808 724 849 2.306 993 107

2.4 Stark-resonance Hamiltonian and complex absorbing

potential method

The Stark Hamiltonian for the internuclear axis aligned with the field of strength

F written in prolate spheroidal coordinates is given (in atomic units) as:

Hres = −1

2
∇2 − 4µ

R(µ2 − ν2)
+ F

R

2
µν. (2.3)

We add an artificial complex absorbing potential to this Hamiltonian to avoid

the calculation of outgoing waves. One has to choose this complex absorbing po-

tential only for the coordinate µ:

H = Hres − iηW = −1

2
∇2 − 4µ

R(µ2 − ν2)
+ F

R

2
µν − iηW, (2.4)

W (µ) = Θ(µ− µc)(µ− µc)2.

Here Θ is the Heaviside step function, η is a small positive parameter, and µc

determines the ellipse outside of which the CAP dampens the outgoing wave in

the asymptotic region. This means that the eigenfunction of the resonance state
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can be solved for in a square-integrable basis, that is, one solves a complex matrix

problem to find complex energy eigenvalues. The real part yields the resonance

position, and the inverse of the imaginary part is associated with the lifetime of

the state (c.f Eq. (1.1)). Accurate complex energy eigenvalues can be obtained by

means of the Riss and Meyer (1.14), or by a Padé extrapolation method (1.19).

The discretization procedure for the complex Hamiltonian Eq.(2.4) is analogous to

the hermitean case discussed in Sect. 2.3.

2.5 Results and Discussion

In Fig. 2.2 we show the ionization rates for the lower and upper states as a function

of internuclear separation R for the field strength of F = 0.0533 au. The lower

state shown in panel (a) displays monotonic behavior where the small rate at the

equilibrium separation of R = 2 au rises gradually with R because the tunnelling

barrier is easier to penetrate, as will be shown in subsequent figures. For the upper

state the much larger ionization rate is non-monotonic and shows strong maxima

at R ≈ 5.5 au and at R ≈ 9 au (1 au corresponds to 0.53Å = 5.3× 10−11m).

In the latter graph we show how our results compare with the data of Chu et

al., [13] and Plummer and McCann [12]. Our data are in excellent agreement with

those at small and intermediate R, and confirm the results of Ref.[13] at large R.

Our extrapolation and higher-order Riss-Meyer results enable us to reach higher
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accuracy than Chu et al., and are presented below in Table 2.4.

(a) (b)

Figure 2.2: Ionization rates (in fs−1) for varying R for the lower (a), and the upper

(b) states of H+
2 for a field strength of F = 0.0533 au. Curves: present results, red

crosses: Chu et al., [13], green crosses: Plummer and McCann [12].

To understand the intriguing behavior of the upper-state ionization rate we show

plots that indicate the cross section through the potential along the internuclear

axis, and also density plots for the resonance states for a few internuclear separa-

tions. In Fig 2.3a we observe on the basis of the eigenenergies how the lower state

is trapped efficiently by the two-centre potential, while the upper state is above

the potential barrier along the internuclear axis. The density plots in parts (b,c)

of the figure display some preferential localization, as well as a still apparent nodal

structure in the upper state. Nevertheless, both states can still be thought of as

exploring the full two-centre potential. In the following we emphasize the behavior

42



found for the upper state, since the lower state follows a simple pattern: its tunnel-

ing barrier decreases gradually with separation R resulting in a monotonic increase

in ionization rate. The upper state, on the other hand, exhibits de-localization and

a shift in resonance position as compared to the barrier heights.
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Figure 2.3: Electronic potential and real parts of quasienergies for the lower and

upper states (a) and contour plots of log |ψ|2 for the lower (b) and upper (c) states

for H+
2 at R = 4 au and F = 0.0533 au

In Fig. 2.4 we move to the situation where the upper state has a maximum in

the ionization rate. The potential barrier between the two protons increases, while

the outer potential barrier is lowered. The upper-state energy eigenvalue moves up

with increasing R, which also results in a big increase of the ionization rate. The

density plots reveal further localization for the central parts of the resonance wave

function. The distant parts describe outgoing electron flux. Their relative weight is

increased due to the broadening of the resonance state, and the upper state begins

to lose its nodal structure.
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Figure 2.4: Same as in Fig. 2.3, but for R = 5.5 au and F = 0.0533 au

Fig. 2.5 shows what happens at R = 7 au, where the upper-state ionization rate

has a pronounced local minimum, but is still much larger than at R = 4 au. Panel

(a) shows that the energetic conditions are less favourable for the upper state than

in the R = 5.5 au case, because the inner barrier has risen faster than the energy

eigenvalue. The separation of the bound parts of the wave functions of the lower

and upper resonance states is now very distinct. The outflow of ionized electron

density is more de-localized than for smaller separations.
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Figure 2.5: Same as in Fig. 2.3, but for R = 7 au and F = 0.0533 au

In Fig. 2.6 we illustrate the situation for R = 9 au, where the absolute maximum
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in the upper-state ionization rate is achieved (at more than twice the level of the

first maximum). The energy diagram shows that the inner barrier is catching up

with the rising upper-state eigenvalue. From the density plot we can deduce that

diffractive scattering is happening from a well-localized bound upper state (note

that the lower state is very well confined in the left well), with sideways scattering,

and forward scattering being the preferred pathways for electron emission.
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Figure 2.6: Same as in Fig. 2.3, but for R = 9 au and F = 0.0533 au

Further increases in internuclear separation (Fig. 2.7 shows the situation for

R = 14 au) result in an increased inner barrier height for the upper state. Thus, its

ionization rate remains relatively low. The density pattern indicates more diffrac-

tive electron emission with less flow in the direction of the internuclear axis.

In order to understand whether these findings are universal it is useful to con-

sider other field strength values. We have carried out a detailed study of the case

of F = 0.04 au. The ionization rates for the lower and upper states are shown in

Fig. 2.8 (a,b) respectively. The upper-state ionization rate curve again has two
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Figure 2.7: Same as in Fig. 2.3, but for R = 14 au and F = 0.0533 au

maxima with an almost two-to-one ratio for the peak heights. Their positions are

shifted to R ≈ 7.3 au and R ≈ 11.2 au respectively. As demonstrated in Fig. 2.9

for R ≈ 9.25 au the minimum in the ionization rate for the upper state occurs when

the eigenvalue is ‘caught’ by the rising potential barrier. Interestingly, for larger

separations the barrier keeps rising, but the system ionizes efficiently by avoiding

this region with more sideways electron emission. When going to larger separations

(R > 13 au), however, the trapping of the upper state becomes efficient. These find-

ings mostly confirm the conclusions drawn by Plummer and McCann on the basis

of complex scaling calculations using an algebraic basis function representation.

In Figure 2.10 we show surface plots of log |ψ|2 for the upper state of the H+
2

ion which shows the largest peak at R = 9 au (Fig. 2.2b) and R = 11 au (Fig. 2.8b)

respectively (Fig. 2.6c is the equivalent of Fig. 2.10a). Both panels (Fig. 2.10a,

b) show that there is a large fold, which separates the electron flux along the

internuclear axis from a second component emitted in the 30 − 50 degree polar
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(a) (b)

Figure 2.8: Ionization rates (in fs−1) for varying R for the lower (a), and the upper

(b) states of H+
2 for a field of strength F = 0.04 au. Green crosses: results of

Plummer and McCann [12].

angle range. Note that the results were obtained with a small value for Mν (ν-axis)

in the matrix calculation, but the global cardinal interpolation (1.68) was used for

this axis to create the electron density plots.

We now turn to the problem of a more accurate determination of resonance

parameters. In order to reach higher accuracy one needs to investigate two aspects

of the problem. On the one hand, the solution of the discretized problem needs to

be analyzed with respect to the parameters defining the discretization. On the other

hand there is the issue that analytic continuation methods introduce the artifact of

complex scaling or complex absorption. It is this second issue for which we show

some detailed results.

In Fig. 2.11a we show four basic methods to extract information from the
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Figure 2.9: Same as in Fig. 2.3, but for R = 9.25 au and F = 0.04 au

complex eigenvalue trajectories. Shown as red diamonds are the original finite-basis

matrix eigenvalues Efb near the stabilization value ηst = η̃(0) (red crosses). For η-

values less than this stabilization value the trajectory displays erratic behavior,

since the numerical method cannot handle the demand to compute an outgoing

oscillatory solution. When using Np = 4 accurate eigenvalues from a range of

η > ηst values a Padé approximation eq.(1.19) is solved, and this functional form is

extrapolated to η = 0. This analytic η-trajectory is shown as a green curve.

Also shown in Fig. 2.11a are results from the first four orders n = 0, . . . , 3 of the

Riss-Meyer iterative correction scheme eqs. (1.14, 1.15). The trajectories E(n)(η)

are shown parametrically (η is incremented in discrete equidistant steps), and it is

evident that on the scale of the graph they have accumulation points eq. (1.15)

very close to each other, and that the complex energy values at the accumulation

points are very close for n = 1..3, but deviate from the stabilization method point

(n = 0). The proximity of the n = 3 result to the Padé extrapolated value (which
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Figure 2.10: Three-dimensional representation of log |ψ|2 for the upper state of the

H+
2 ion. (a) R = 9 au and F = 0.0533 au; (b) R = 11 au and F = 0.04 au.

is based on Efb(η)) is also evident.

A magnification of the region close to the n = 1..3 accumulation points is

shown in Fig. 2.11b. The acccumulation points given by eq.(1.15) are marked by

crosses and are coinciding with many data points that fall on top of each other.

With increasing order n the data are based on Efb(η) values calculated at larger

η. For n = 1 (blue symbols) the results near the accumulation point come from

the η = 0.007..0.01 range, for n = 2 (magenta symbols) from η = 0.009..0.024,

and for n = 3 from η = 0.013..0.042. The Padé extrapolated results were based

upon η = 0.007..0.015 with ηst = 0.003. The strength of the higher-n calculations

comes, therefore, from the effective removal of the complex-absorber artifacts while

using larger values of η. At these larger η-values the solution of the discretized
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(a) (b)

Figure 2.11: The η-trajectories for E(0) (red diamonds), E(1) (blue diamonds), E(2)

(magenta diamonds), and E(3) (black diamonds) for the upper state of the H+
2 ion

at R = 9 au and electric field strength F = 0.0533 au. The red, blue, magenta

and black crosses are for E(n)(η̃(n)) for n = 0 . . . 3 respectively, while the Padé

extrapolated value is shown as a green cross, and is the end point of the green line.

The computational parameters are N = 110,M = 14, µc = 2.2. Panel a gives a

global view (three crosses overlap), while panel b shows a zoomed-in view.

complex Schrödinger problem is closer to the continuum limit, since it involves

more localized wave functions which are more amenable to a finite representation.

Fig. 2.11b allows one to make an assessment of the accuracy level reached by

the calculations. Ideally, one would like to demonstrate the convergence of the Riss-

Meyer series, by showing higher-n results. In practice these results become affected

by differentiation errors along the complex trajectory of Efb(η). A conservative
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estimate of the error would be given by the difference between the n = 2 and n = 3

results. The Padé extrapolated value falls close to the n = 3 value. Further tests

were performed by varying the value of µc. Within the range 1.5 < µc < 3 (in a.u.)

the changes in the accumulation point value for n = 3 remained stable within the

tolerance limit mentioned above.
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Figure 2.12: Complex scaling result for the θ-trajectory of E(0) for the upper state

of the H+
2 ion at R = 9 au and electric field strength F = 0.0533 au. The red box

indicates the (n = 0) Riss-Meyer result, while the black box shows the converged

result. The grid parameters are N = 110 and M = 14.

As an implementation of the CS method in the thesis, we show in Fig. 2.12 the

θ-trajectory of the complex eigenvalue for the upper state of the H+
2 ion at R = 9 au.

This θ-trajectory is equivalent to the η-trajectory (red diamond) in Fig. 2.11a. The

complex eigenvalue is obtained from the diagonalization of the Stark Hamiltonian
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(2.3) with the complex scaled coordinate of µ → µeiθ (cf Eq.(1.9)). The red and

black boxes indicate the (n = 0) Riss-Meyer (red cross in Fig. 2.11a) and the

converged (n = 3) results. The widths obtained from the (n = 0) Riss-Meyer and

stabilization methods are Γ(0) = 5.2046 10−3 au and Γ(st) = 5.2082 10−3 au with

θst = 17.760, respectively. These values are seen to be accurate up to 3 significant

digits, when compared to the precise values shown in Table 2.4. It is evident that

the (n = 0) Riss-Meyer CAP result is not very close to the stabilized CS area, and

that the converged result is somewhat closer to that area (cf Fig. 2.12).

2.6 Summary

In this chapter we extended previous complex scaling calculations for the Stark

resonance problem of the hydrogen molecular ion, which were performed both in

algebraic [11, 12] and pseudospectral representations [13] to a higher degree of accu-

racy. This was achieved by implementing several orders of the Riss-Meyer correction

scheme to the complex eigenvalues obtained from a pseudospectral calculation with

complex absorbing potential and also by using the Padé extrapolation method.

The surprising behavior of the ionization rate of the upper state (localized in

the higher well) as a function of internuclear distance was illustrated by density

plots of the localized decaying state (whose long-range tails are suppressed by the

complex absorber). The computation in prolate spheroidal coordinates was found
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to be highly efficient.

A natural extension of this work is the AC Stark problem which can be accom-

plished using a Floquet approach. If one assumes that the strong modulation of the

upper-state ionization rate with intermediate separation described in this chapter

persists in the case of infrared laser fields, then it follows that the detailed analysis

of experiments [60] will be affected by this phenomenon. In the following chapter

we will investigate the AC Stark problem.
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Table 2.4: The calculated DC widths Γlow and Γup of the lower and upper states of H+
2

for field strength F = 0.0533 au using the stabilization method (SM), Padé extrapolations

(PE), and the order (n = 3) Riss-Meyer scheme. Also shown are the earlier calculations

of Zuo and Bandrauk [10], Mulyukov et al., [11], and Xi Chu and Shih-I Chu [13]: The

stablilization results (SM) are equivalent to the (n = 0) RM results, and the Padé ex-

trapolation is based on complex eigenenergies calculated directly from the non-hermitian

matrix problem for η-values not far from the SM result ηSM (η > ηSM).

R=6 au R=9 au

Γlow(au) Γup(a.u.) Γlow(au) Γup(au)

Ref.[10] 2.2(−6) 9.8(−4)

Ref.[11] 5.69(−6) 1.87(−3)

Ref.[13] 5.692(−6) 1.873(−3)

SM 5.645 17(-6) 1.870 80(-3) 2.958 14(-5) 5.204 57(-3)

PE 5.692 38(-6) 1.873 34(-3) 2.970 75(−5) 5.206 67(−3)

RM (n = 3) 5.692 38(−6) 1.873 34(−3) 2.970 75(−5) 5.206 67(−3)

R=10 au R=14 au

Γlow(au) Γup(au) Γlow(au) Γup(au)

Ref.[10] 1.3(−5) 1.5(−3) 2.5(-5) 2.8(-4)

Ref.[11] 3.92(−5) 2.20(−3) 7.30(-5) 6.78(-4)

Ref.[13] 3.922(−5) 2.197(−3) 7.305(−5)1 6.778(-4)

SM 3.896 99(-5) 2.197 47(-3) 7.304 87(-5) 6.778 81(-4)

PE 3.922 55(-5) 2.196 79(-3) 7.305 23(-5) 6.778 27(-4)

RM (n = 3) 3.922 55(−5) 2.196 79(−3) 7.305 23(-5) 6.778 27(-4)
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3 AC Stark resonance parameters for the

hydrogen molecular ion in an intense linearly

polarized laser field

In this chapter, we discuss the AC Stark resonance parameters for the hydrogen

molecular ion in an intense linearly polarized laser field. This theoretical investi-

gation can be seen as an extension of work discussed in Chapter 2. We begin with

an introduction to the problem in Sect. 3.1 and continue the basic formulation of

the AC Stark resonance Hamiltonian in Sect. 3.2. The computational results and

their discussion are presented in Sect. 3.3. which is followed by a summary.

Originally published as Ts. Tsogbayar and M. Horbatsch, J. Phys. B: At. Mol.

Opt. Phys. 46 245005 (2013).
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3.1 Introduction

The study of ionization of atoms and molecules by continuous-wave (CW) strong-

field lasers in the optical and infrared regimes has evolved to a good level of un-

derstanding. Dissociative ionization of small molecules was reviewed in [1]. Ex-

perimentally, the focus has shifted toward short pulses, since pulse compression

allows for stronger fields, but studies of the hydrogen molecular ion in intense laser

fields were also carried out in the CW regime [2], particularly for infrared light [61].

Theoretically, the continuous-wave case can be treated by standard Floquet theory,

while short pulses are dealt with by solving the time-dependent Schrödinger equa-

tion directly [62]. In addition, multi-mode Floquet analysis allows to take a pulse

envelope into account [63]. While much focus has shifted towards understanding

detailed phenomena, such as electron spectra and high harmonic generation from

many-electron molecules [64], there is still some need to explore ionization rates

as a function of internuclear separation R for the simplest molecule, namely the

hydrogen molecular ion H+
2 .

The interest in the R−dependent ionization rates for the lowest molecular eigen-

states arises for several reasons: in laser-pulse experiments the neutral molecule is

often ionized by the rising pulse and produces a molecular ion in a dissociating

state, i.e., a high vibrational mode of the molecule is excited [65, 66]. The strong

56



field may also mix the lowest two electronic eigenstates. As the molecule expands

the ionization rates for both states increase substantially, and the laser may ion-

ize the molecule efficiently at so-called critical separations Rc [61]. Vibrational

population trapping is also predicted [67]. It is possible to determine the actual

distance R when ionization occurred from a measurement of the kinetic energies of

the molecular fragments [2].

Experiments were thus able to confirm at least parts of the pattern of the

ionization rate vs R obtained from theoretical calculations. However, the structures

in the ionization rate predicted for larger internuclear separations R could not be

found in some experiments [9]. Other experiments with carefully prepared H+
2

ions with short (100 fs) laser pulses and a wavelength of 791 nm were able to find

evidence of three larger-R maxima in the ionization rate [68, 69].

Structures in the R−dependent ionization rate were found theoretically in the

DC limit [11, 12, 13, 58] for the upper state as demonstrated in Chapter 2. The

physical mechanism for strong-field ionization in this limit is tunneling for the lower

state, and small-barrier tunneling or over-the-barrier escape for the upper state

depending on the field strength and separation R. The calculations are deemed

mature, with different methods confirming earlier results, and resulting in a high

degree of precision in the resonance positions and widths for the single-electron

molecule. Interestingly, the peaking structures in the ionization rate for the upper
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state are quite similar to those of AC Stark calculations. It is therefore interesting

to search for a connection, and particularly to explore the small-ω limit of the AC

case.

In atomic photoionization one can distinguish between the tunneling and multi-

photon ionization regimes with the help of the Keldysh parameter, defined as

γ =
√
|Eb|/2Up where Eb is the electron binding energy and Up = (F/2ω)2 is

the pondermotive energy with F the laser electric field strength and ω the angular

frequency in atomic units. A value of γ � 1 corresponds to tunneling ionization,

γ ∼ 1 indicates the intermediate regime, and for γ � 1 we expect multiphoton

ionization. In Table 3.1 we show the values of the Keldysh parameter for some

chosen values of wavelength λ and a field intensity of I = 1014W cm−2, for the

ground and first excited states of the H+
2 ion.

It is known, however that in the molecular case matters are more complicated,

especially at intermediate internuclear separations R [70]. The complicated behav-

ior was associated with non-adiabatic electron localization near the nuclei. Some

peculiar electron localization was evident in results in Sect. 3.3.

The Floquet-analysis of the strong-field AC Stark problem was pioneered for

atomic hydrogen by Shakeshaft and co-workers [71]. For the hydrogen molecular

ion the R−dependent peak structures were analyzed by Madsen and Plummer [72]

with ideas based on Floquet channel couplings to identify which mechanism was
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Table 3.1: The values of the Keldysh parameter for the 1sσg and 2pσu states of the

H+
2 ion at various separations R (in au), and laser intensity I = 1014W cm−2.

λ (nm) ω R = 2 R = 4 R = 6 R = 8 R = 10 R = 12

1sσg 1064 0.0428 1.18 1.01 0.93 0.89 0.88 0.87

2280 0.02 0.56 0.47 0.44 0.42 0.41 0.40

4560 0.01 0.28 0.24 0.22 0.21 0.21 0.20

2pσu 1064 0.0428 0.93 0.95 0.92 0.90 0.88 0.87

2280 0.02 0.43 0.44 0.43 0.42 0.41 0.40

4560 0.01 0.22 0.22 0.21 0.21 0.21 0.20

responsible for them: as an alternative to tunneling they offered explanations in

terms of resonance-enhanced multi-photon ionization (REMPI).

In a naive, intuitive picture one might think that in the presence of a tunneling

barrier the small-ω limit implies that ionization is effective only during the peak of

the field: during a cycle this will occur twice (once to each side), and re-scattering

of electrons ionized during earlier cycles will also take place. The Floquet picture,

on the other hand, suggests that photo-ionization in a small-ω CW laser field is

a complicated process, requiring the coupling of very many channels to make an

accurate prediction. It also suggests that the lower and upper states become highly

mixed. It appears then that the Keldysh parameter values which decrease with ω

are perhaps misleading in the molecular case. This is obviously the case for the

upper state which is not affected by an outer potential barrier at intermediate and
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large R. As will be shown below, the lower state is mixing with the upper state

in this R-regime, and, thus, the Keldysh argument has to be used carefully in the

molecular intermediate-R case even for the lower state.

The purpose of our work is to illustrate the Floquet results systematically in

the limit of small laser frequency. Using a methodology similar to previous work at

λ = 1064nm, we confirm a number of prior results and also find some discrepancies.

New features are found as the IR wavelength is pushed further into the µm regime.

3.2 AC Stark-resonance Hamiltonian and CAP method

Since we gave basic descriptions of how the Floquet method is applied for a time-

periodic physical system in Section 1.2, and for the computational procedures to

solve the Schrödinger equation for the H+
2 ion in subection 1.3.7, we will not discuss

them in this subsection.

Following Eqs. (1.30-1.31) we have the time-independent coupled-channel ma-

trix equations for the AC Stark-resonance problem for the H+
2 ion:

[H0(µ, ν)− iη(0)W (µ)]φn(µ, ν) +
1

2
Fz[φn−1 + φn+1] = (EF − nω)φn(µ, ν),

(n = 0,±1,±2 . . .) (3.1)
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in length gauge, and

[H0(µ, ν)− iη(0)W (µ)]φn(µ, ν) +
1

2

F

ω

∂

∂z

[
φn−1 − φn+1

]
= (EF − nω)φn(µ, ν),

(n = 0,±1,±2 . . .)(3.2)

in velocity gauge. Here H0(µ, ν) is the field-free Hamiltonian (c.f Eq. (1.67)) and

∂/∂z is given as:

∂

∂z
=

2

R(µ2 − ν2)

[
ν(µ2 − 1)

∂

∂µ
+ µ(1− ν2)

∂

∂ν

]
, (3.3)

and the form of the CAP W (µ) can be chosen as given in (2.4).

In equation (3.2) we removed the overall phase proportional to F 2, as it does

not affect the results. The discretization of equations (3.1) and (3.2) is carried

out similarly as we discussed in Section 1.3.7, that is, we do not symmetrize the

Hamiltonian, which yields improved computational efficiency. We arrived at this

conclusion by comparing the convergence properties of bound-state pseudospec-

tral representations given in Ref.[73]. Photoionization of H+
2 by short UV laser

pulses has been treated recently by analogous grid methods for the time-dependent

Schrödinger equation [74, 75, 76].

The real part of the complex energy eigenvalue from equation (3.1) or (3.2) gives

the Stark shift due to the external laser field, while the imaginary part enables to

obtain the ionization rate for any particular state of the ion. Therefore, one can

view the AC Stark Floquet treatment as an extension of the DC case to a coupled-
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channel problem. Interestingly, however, it will turn out that in the ω → 0 limit

of the AC case the number of Floquet channels to be taken into account increases

as 1/ω. This implies that the connection between the ω → 0 AC limit and the DC

case is formally non-trivial.

3.3 Results and Discussion

In Fig. 3.1 we show results for the previously studied case of λ = 1024nm where

the Keldysh parameter is of order unity (the intensity of the laser field equals

1014W/cm2). The ionization rates as a function of separation R (obtained as

−2=(EF ) (cf. Sect. 1.2.1)) are shown in panel (a) for the lower and upper states

starting from the equilibrium value (R = 2 au). The lower state has a very small

ionization rate for R < 4 au due to the large outer tunnelling barrier. The upper-

state ionization rate has a complicated pattern with distinct peaks at R = 5.5 au

and R = 7.75 au. The lower-state ionization rate rises to match the upper-state rate

between the peaks, and then surpasses the upper-state rate (peak at R = 9.5 au).

Our results are in reasonable agreement with those of Chu and Chu [13] with

some notable differences in the region beyond the first peaks. We carried out

a substantial convergence analysis to confirm our results in both the length and

velocity gauges. The convergence properties of the Floquet calculations in velocity

vs length gauge can be characterized as follows. As is shown in Table 3.2 for larger
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(a) (b) (c)

Figure 3.1: (a) The ionization rates (in fs−1) as functions of R for the lower and

upper states of H+
2 . Curves: present results, solid red for the lower state, and

dashed blue for the upper state; crosses: Chu et al [13]: (b) for the lower and upper

states of the ion, the field-dressed diabatic potential red (lower) and blue (upper)

curves are dashed, respectively, and the corresponding adiabatic potential curves

are presented by solid green (lower) and black (upper) curves: (c) the magnified

detail of (b), showing clearly true and avoided crossings for the adiabatic potential

curves. The field parameters are F = 0.0533 au and ω = 0.0428 au.

ω than of interest in this work, such as ω = 0.2 au at the equilibrium proton

separation of R = 2 au we found convergence in resonance position and width for

the upper state to be better than seven digits for 21 channels in velocity gauge, and

25 channels in length gauge. At a wavelength of λ = 1024nm, or ω = 0.0428 au

57 channels were required in length gauge to achieve this accuracy, while a 65-

channel calculation in velocity gauge only resulted in absolute 5-digit accuracy. For
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ω = 0.02 au the length gauge calculation was 7-digits accurate at 49 channels, while

the velocity gauge yielded poor results even at 65 coupled channels. Therefore, the

length gauge was deemed most appropriate for the low-ω work which we pursue

here to connect with the DC limit.

Table 3.2: Resonance parameters for the upper state of the H+
2 ion at R = 2 au as

a function of the number of Floquet channels NF for field strength F = 0.0533 au.

ω (au) NF E(0) (au), (len.g) E(0) (au), (vel.g)

0.2 5 -0.669 911 377 - 0.001 943 7960i -0.679 278 4768 - 0.000 072 5227i

9 -0.678 498 1385 - 0.004 863 1700i -0.673 211 56140 - 0.005 028 3890i

13 -0.674 426 0573 - 0.004 846 4693i -0.674 297 3716 - 0.005 435 1860i

17 -0.674 279 7154 - 0.005 426 1126i -0.674 292 5023 - 0.005 439 3768i

21 -0.674 292 4336 - 0.005 439 3471i -0.674 292 5623 - 0.005 439 3323i

25 -0.674 292 5620 - 0.005 439 3325i -0.674 292 5621 - 0.005 439 3322i

0.0428 17 -0.671 701 3524 - 0.000 092 9366i -0.671 440 5537 - 0.000 000 3390i

25 -0.671 731 0589 - 0.000 061 6783i -0.671 709 5922 - 0.000 004 1644i

33 -0.671 720 1980 - 0.000 058 1504i -0.671 686 5629 - 0.000 071 8933i

41 -0.671 721 9121 - 0.000 058 3764i -0.671 721 6609 - 0.000 058 8151i

49 -0.671 721 8571 - 0.000 058 4393i -0.671 719 7192 - 0.000 059 0233i

57 -0.671 721 8556 - 0.000 058 4388i -0.671 719 9086 - 0.000 058 9689i

65 -0.671 721 8556 - 0.000 058 4388i -0.671 719 9214 - 0.000 058 9881i

0.02 17 -0.671 603 3844 - 0.000 019 7701i -0.666 165 0263 - 0.000 000 0018i

33 -0.671 603 9417 - 0.000 019 1176i -0.666 854 7369 - 0.000 000 0897i

49 -0.671 603 9751 - 0.000 019 1690i -0.670 274 1425 - 0.000 000 8449i

65 -0.671 603 9544 - 0.000 019 1759i -0.670 316 3958 - 0.000 011 3380i

In Fig. 3.1b we show the Floquet potential energy curves. One can understand
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the mixing of the lower and upper states for R > 4 au on the basis of this diagram.

The field dressed diabatic potential curves for the lower and upper states are shown

by dashed red (lower) and dashed blue (upper) curves, which are obtained from Eqs

(3.1) or (3.2) in the absence of an external field, i.e, for F = 0. The non-diagonal

coupling term caused by the external field vanishes in this limit, and the eigenvalues

of the hermitean Hamiltonian yield the diabatic curves. These diabatic curve pairs

are shifted from each other by ±nω, where n is the number of photons absorbed or

emitted [72]. The bold dashed red and blue curves represent the zero-photon lower

(1sσg − 0ω) and upper (2pσu − 0ω) states. While the lowest diabatic curve for the

lower state shown in (b) corresponds to the 1sσg − 2ω state, the highest diabatic

curve for the upper state represents the 2pσu + 2ω state.

The lower/upper state curves for different values of n undergo true crossings.

The corresponding adiabatic potential curves for the lower and upper states are

represented by solid green (lower) and solid black (upper) curves, which are obtained

in presence of the external field, that is, from the full non-hermitean resonance

Floquet Hamiltonian calculation (3.1) or (3.2). These adiabatic curves undergo

avoided crossings where true crossings occur in the diabatic levels. The complex

energies are not allowed to cross (the Hamiltonian depends adiabatically on R). The

crossings have to be of avoided type since degeneracies in a Hamiltonian spectrum

correspond to some symmetry. No symmetry is, however, expected when varying
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R in the Hamiltonian.

In panel c) of Fig. 3.1 the potential energy curves for the n = 0 Floquet channel

are shown on a fine scale. Following the methodology of Madsen and Plummer [72]

(based on [71]) we tracked carefully the real and imaginary parts of the Floquet

eigenvalues as a function of R. The crossing is avoided either in the real or in

the imaginary part. A true crossing in the real part of of the complex energy is

associated with an avoidance structure in the imaginary part, i.e., the ionization

rate acquires complicated behaviour with maxima and minima as a function of R.

Then it should be noted that according to the methodology of Madsen and

Plummer [72] the first peak shown in Fig 3.1 (a) is indeed a REMPI peak, because

it is fully characterized by either an avoided crossing in <(Eres) and a true crossing

in =(Eres) of the Floquet eigenenergy as the internuclear separation R varies, or

the reverse situation.

(a) (b) (c)

Figure 3.2: The same as in Figure 3.1, but F = 0.0533 au and ω = 0.02 au.
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In Figs. 3.2 and 3.3 we proceed with the same strategy to understand the

behaviour as the laser wavelength is moved further into the infrared regime. The

following picture emerges: starting with R > 4 au the ionization rates for the two

states intertwine; in the first peak region (R ≈ 5.5 au) this intertwining phenomenon

is oscillatory with the number of oscillations increasing with decreasing ω. In the

second peak region (R ≈ 9.5 au) the ionization rates for the upper and lower states

track each other with apparently a better match as ω is lowered.

(a) (b) (c)

Figure 3.3: The same as in Figure 3.1, but F = 0.0533 au and ω = 0.01 au.

Panels b) and c) of Figs. 3.2 and 3.3 show the systematic reasons for the

observed behaviour. On the energy scale set by the two molecular eigenstates as

a function of R the number of participating Floquet channels increases as ω is

reduced. While the panels (b, c) of the figures show only a limited number of

Floquet channels, converged resonance parameter values were calculated on the
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basis of at least NF = 64 (ω = 0.0428 au), NF = 80 (ω = 0.02 au) and NF = 100

(ω = 0.01 au) channel calculations.

We have carried out calculations for smaller ω (further reduced by a factor of

2) with the finding that the number of oscillations in the region of the first peak

keeps increasing (Figure 3.4). These calculations are more time-consuming, as the

number of Floquet channels to be coupled increases correspondingly.

Figure 3.4: The same as in Figure 3.1a, but F = 0.0533 au and ω = 0.005 au.

From the comparison of the ionization rates shown in Figs 3.1-3 (a) and 3.4 we

can make an interesting observation: the scale of the ionization rate appears to be

quite independent of ω. We note that the widths of the Floquet resonances are still

quite reasonable (below 10−3 au), which means that the assumption of exponential

decay which is built into the theory is reasonable.

A physical reason for the independence of the ionization rate on the laser fre-
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quency ω can be given on the basis of the ionization mechanism. In the strong-field

regime ionization can be understood via tunneling or as over-barrier escape mech-

anisms occurring for certain periods of time during the laser cycle (when the field

is close to its peak value). Strong ω dependence can be expected in a multi-photon

regime. From the present work it becomes clear that electron localization in one of

the two wells is happening near the critical radii, and this is determining the upper-

and lower-state ionization rates. The ω parameter plays an important role in the

technical aspects of the calculation only, since it controls the number of Floquet

channels which participate.

In Chapter 2 it was shown for the DC Stark problem how the peak structures

in the ionization rates were associated with changes in the pattern of the localized

probability density of the decaying Siegert states. For the AC case an analogous

presentation is more complicated due to the time-dependence (during one period

of the laser field T = 2π/ω). We provide such a presentation in Figs 3.5 and 3.6 for

the case of ω = 0.01 au in order to illustrate the oscillatory pattern in the ionization

rate. We chose two separations: in Fig. 3.5 for R = 5.5 au the lower state has a

local maximum, while the upper state has a minimum in the ionization rate; in Fig.

3.6 for R = 6 au the situation is reversed.

The plots represent the time when the field is at its peak, i.e., they represent

a snapshot of the density which has moved to the left with the laser field. For the
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range of small ω values used in this work these (left-right) oscillations track the

field oscillation reasonably well.
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Figure 3.5: (a) Electronic potential and real parts of electronic quasienergies for

the lower and upper states (reference channel n = 0) and (b,c) contour plots of

log |Φ(r, t = 0)|2 for the lower, and upper states for H+
2 at R = 5.5 au, and F =

0.0533 au and ω = 0.01 au. The x- and z-axis are labeled in au.

Panels a) of Figs 3.5 and 3.6 show cuts through the potential along the molecular

axis (at t = 0, T ), as well as the resonance positions for both states (which are

averaged over one cycle). They show the lower state as trapped (internal and

external barrier), and the upper state as untrapped for both separations.

A comparison of the densities for the lower state shows that at R = 5.5 au (Fig.

3.5b) the state is more concentrated in the right well, and therefore ionizes rather

easily (over-the-barrier mechanism). At R = 6 au (Fig. 3.6b), on the other hand,

the lower state displays more localization in the left well, resulting in a reduced
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Figure 3.6: The same as in figure 3.5, but at R = 6 au, and F = 0.0533 au and

ω = 0.01 au.

ionization rate. This shows that the simple diagram (Fig. 3.6a) is insufficient to

explain the ionization rate behaviour: the fact that the lower state localizes in the

right-hand well for R = 5.5 au gives it apparently the ’over-the-inner-barrier’ higher

ionization property rather than tunneling behaviour.

This localization (or state-mixing) issue is the main reason why one has to be

careful in applying the Keldysh parameter argument, which usually works well for

atoms and equilibrium-R molecules. In the language of Floquet theory this state

mixing is referred to as resonance enhanced multiphoton ionization [72].

The upper-state densities (Fig. 3.5c and 3.6c) show a reversed behaviour. The

lower- and upper-state densities are distinct from each other: one can clearly see

the remnants of a nodal structure of the field-free upper state (low-density region

to the left of z = 0), while the lower state resembles the symmetry character of the
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field-free state in the internuclear region.
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Figure 3.7: The same as in figure 3.5, but at R = 9.25 au, and F = 0.0533 au and

ω = 0.01 au.

Therefore, one can argue on the basis of the density plots that Floquet channel

couplings occur in such a way that in the region of the first peak in the ionization

rate the states maintain some of their identity even though their complex ener-

gies become intertwined. As one varies the separation R the lower-state density

has maxima at either nucleus that vary dramatically in height. This causes the

ionization rate to be strongly modulated as R is varied. The upper state has a

complementary oscillation pattern. These density plots give support to the ideas

of adiabatic electronic localization raised in Ref.[70].

For large R, when there is an inner tunneling barrier, the density localized near

the nuclei oscillates with period T = 2π/ω. For small ω it can, in fact, oscillate out

of phase with the external field. While the individual stationary Floquet channel
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functions φn(r) are either symmetric or anti-symmetric, their superposition with

complex amplitudes einωt can display tunneling oscillations with period T .

Finally, we show in Fig. 3.7 also a density plot for the larger-R peak region,

namely near the maximum in the ionization rate (R = 9.25 au). The energy levels

superimposed on a snapshot of the potential along the molecular axis show that

both states are energetically above the outer barrier in this case, but that there is

an inner barrier to overcome. Both states have similar density patterns, i.e., the

upper state has lost its nodal structure completely (as was observed for the DC

case in Chapter 2). Thus, we can assume that complete state-mixing occurs in the

region of the larger-R peak. Eventually, with increasing R the inner barrier rises,

and ionization becomes less effective.

From Figs. 3.5-7 (a) it can be seen that the first peak in the ionization rate

can be naively explained by the over-the-barrier mechanism: as R varies, the lower

state shifts up and experiences less of an outer barrier. The second peak in the

ionization rate is associated with the charge-resonant enhanced ionization (CREI)

according to Bandrauk et al [10]. According to this theory the charge-resonant

(CR) states are responsible for this anomalous enhancement and for these states

the time-independent dipole moment diverges linearly as R/2 for large R where the

charge distributions of the two states are almost the same (charge resonance) and

their energies become nearly degenerate. While looking at the plots of the charge

73



density shown in panels (b,c) of Figure 3.7, they have almost the same features,

which indeed supports the CREI mechanism.

(a) (b) (c) (d)

Figure 3.8: The ionization rates (in fs−1) as functions of R for the lower and upper

states of H+
2 . Curves: present results, solid red for the lower state, and dashed blue

for the upper state. (a) F = 0.05968 au: (b) F = 0.06538 au: (c) F = 0.07062 au:

(d) F = 0.07549 au, and ω = 0.0428 au.

In Fig. 3.8 we present some additional results to show how the ionization rates

change with laser intensity. It can be seen that for moderately stronger fields some

changes in the ionization patterns can be found for small and intermediate R values.

While the lower state for R << 4 au is still governed by tunnelling ionization, the

regime where it mixes with the upper state begins at R ≈ 4 au for the doubled

intensity. The ionization rate for the upper state increases dramatically even at

the equilibrium separation. For the outer critical radii we notice that they are

also somewhat reduced with the lower state experiencing a less dramatic increase
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in ionization rate. When we average the outer peaks for the two states we find

approximately a seven-fold increase in ionization rate with doubled intensity. The

intermediate cases (panels b, c) indicate that the changes occur gradually.

(a) (b)

Figure 3.9: The DC-limit ionization rates (in fs−1) as functions of internuclear

separation R for the lower (red) and upper (blue) states of H+
2 . The DC field

strengths are F = 0.06538 au (a) and F = 0.07549 au (b).

In order to test our conclusions about the relation of the results to those for

the DC limit for the upper state we show the latter results for two laser inten-

sities in Fig. 3.9. These results (which are much easier to obtain technically, as

there is no channel convergence to worry about and the analysis of the complex

eigenvalue spectrum is straightforward) also show similar features as the field in-

tensity increases: at the outer critical radius (Rc ≤ 8 au) we find an approximately

seven-fold increase in ionization rate (for the upper state) when doubling the field
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(a) (b)

Figure 3.10: The same as in figure 3.8, but the field parameters are ω = 0.02 au (a)

ω = 0.01 au (b) and F = 0.07549 au.

intensity, the peak structure narrows and moves slightly towards smaller R. For

R > 12 au the ionization rates for the upper and lower states become competi-

tive. In the large-R limit the rates approach each other, since the two complex

eigenvalues become nearly-degenerate.

In figure 3.10 the ionization rates as a function of internuclear separation R

are shown for two laser frequencies at the increased field intensity of I = 2.0 ×

1014Wcm−2. The results for the lower and upper states merge for large R as

ω → 0. They do resemble the DC limit for the upper state near R = 8 au with the

AC rate for both states approaching 15% of the DC upper-state value.

In Figure 3.11 we show the ionization rate vs R, but the field parameters are

λ = 800nm and I = 3.2× 1014W cm−2, which means the wavelength is somewhat
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(a) (b) (c)

Figure 3.11: The same as in figure 3.8, but the field parameters are ω = 0.05695 au

and F = 0.0533 au (a) F = 0.095489 au (b, c). (a) green crosses: Bandrauk and Lu

[77]. (c) the black crosses are experimental results [5] which have been normalized

to our theoretical values; the red curve shows the lower state data from panel (b).

shorter and the intensity is larger than for the previously used values of λ = 1064nm

and I = 2×1014W cm−2. In both panels (a, b) of Figure 3.11 the ionization rate for

the upper state of the ion is much increased, which is due to the fact that the upper

state does always stay well above the middle barrier and can be ionized easily. The

peak in the ionization rate for the lower state moves towards smaller values of R,

because a stronger field distorts the double-well Coulomb potential more deeply.

We should note that the increased field strength causes a vanishing of the second

peak in the ionization rate for the lower state of the H+
2 ion. In panel (a) the

ionization rate for the lower state is compared with the theoretical value previously
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obtained (green crosses) [78]. In panel (b) at larger R the two states are mixed

strongly and oscillate. Panel (c) shows a comparison of the lower state results with

experimental data obtained by Gibson et al [5]. The experimental measurements

are normalized to the theoretical calculations since they were recorded as relative

data only.

Indeed it is amazing to note that the experimental data and theoretical calcula-

tions show together a dominant peak around R = 6 au, and they agree reasonably

well with each other. From the previous discussion we know that the first peak can

be simply interpreted by the over-the-barrier mechanism. Then as R varies, the

lower state shifts up gradually and around R ≈ 3.5 au it rises above the outer bar-

rier of the two-well potential, and around R ≈ 4.75 au it gets caught by the middle

barrier of the electronic potential. At the large R calculation does not show a dom-

inating second large peak for the lower state, but shows several sharp structures

while mixing with the upper state.

The absence of the second peak is still under discussion and the subject of

investigations from both theoretical and experimental points of view. Ben-Itzhak

et al [9] argued that one reason for the disappearance in reality can be the nuclear

motion (non-adiabatic effects), washing out the structure.

Moreover, in the case of field intensity I = 1.5 × 1015W cm−2, Gibson et al [5]

obtained experimental data for the ionization rate for the lower state of the ion,
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and theoretical calculations were carried out [53, 79, 80]. The experimental data

and theoretical calculations have not shown any sign of the second peak in this

case.

3.4 Summary

Floquet calculations in a pseudospectral representation for the lowest two H+
2 eigen-

states are shown to display rather different behaviour in the small-ω limit for the

two peak regions in the ionization rate.

For the first peak region (R ≈ 5 au) the density plots of the coupled-channel

Floquet eigenfunctions demonstrate that while the upper state has remnants of a

nodal structure (near z = 0), the ionization rates oscillate against each other as a

function of R. The oscillation pattern becomes more rapid as ω → 0.

The outer peak region (R ≈ 9 au) shows a different situation. The upper- and

lower-state density plots have similar structures in between the nuclei. The inner

tunneling barrier causes localized density to oscillate from one nucleus to the other

as a function of time. The ionization rates for the upper and lower states become

the same in this region.

Finally, we note that for the large-R peak the calculated ionization rates seem

to approach an ω → 0 limit. The rates are approximately 10 − 15% of those

found in the DC limit for the upper state in Chapter 2. This should be considered
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reasonable, since in the AC case the field is at a strength close to its peak value for

about one tenth of the laser cycle.

We tested our findings in a limited range of intensities for which the lower state

at equilibrium separation R = 2 au has a small ionization rate due to the large

tunneling barrier. The upper state, however, ionizes quite readily even for R = 2 au

via an over-the-barrier mechanism. Since lasers of higher intensities are becoming

available, it will be of interest to extend these calculations to stronger fields to

explore the regime where the lower state will also experience strong ionization at

small R.
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4 High-order harmonic generation for the

hydrogen molecular ion in an intense linearly

polarized laser field

In this chapter we discuss Floquet calculations of high-harmonic generation (HHG)

for the lowest two electronic states of H+
2 by strong continuous-wave laser fields. The

chapter starts with a discussion of the physical mechanism of this phenomenon in

Sect 4.1. Sect. 4.2 presents the framework to calculate harmonic generation spectra

from the non-Hermitian Floquet approach. Results are presented and discussed in

Sect. 4.3. A summary follows in Sect. 4.4.

Originally published as Ts. Tsogbayar and M. Horbatsch, J. Phys. B: At. Mol.

Opt. Phys. 47 115003 (2014).
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4.1 Introduction

From both theoretical and experimental points of view, HHG is one of the most

studied nonlinear phenomena for atoms and molecules interacting with an intense

laser field, in which the system emits radiation at multiples of the laser frequency

[81]. The physical mechanism of HHG is well understood for atoms using a three-

step model [82, 83, 84] (Figure 4.1): (i) the electron is released by tunnel ionization

from the atom core; (ii) the free electron is accelerated by the oscillating laser field,

and later is driven back to the core; (iii) the electron can recombine with the core to

emit a high-energy photon. This semiclassical formulation for the three-step model

is based on the strong-field approximation (SFA) by Lewenstein et al [84].

Figure 4.1: Three-step model for the HHG: (i) tunneling ionization; (ii) acceleration

of the electron by the oscillating laser field; (iii) recombination with the core to emit

a high-energy photon.

In the SFA one considers a direct coupling between the initial bound state

and the continuum, i.e., one ignores step-wise excitation via higher bound states.
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The model predicts a plateau in the harmonic spectra where many harmonics have

similar strength, and it ends with a sharp cutoff. At the cutoff the maximum energy

of the returning electron which is released at time tion = 0.05T and collides at tcoll =

0.7T is well approximated by the simple and universal formula Ip + ∆v2(t)/2 =

Ip + 2Up[sin(ωtcoll)− sin(ωtion)]2 = Ip + 3.17Up, where Ip is the ionization potential

of the atom and Up is the pondermotive potential with F the laser electric field

strength and T is a period of laser field, and ω the angular frequency in atomic

units, respectively. The velocity of the electron v(t) is obtained as a solution of the

equation of motion for a free electron, ẍ = −F cos(ωt). The cutoff position can be

estimated by

Nmax = (Ip + 3.17Up)/ω. (4.1)

For symmetric diatomic molecules Kopold et al [85] extended the discussion

of this (semi)-classical cutoff formula. They investigated two phenomena, which

can become particularly important if one considers dissociating molecules, i.e., sys-

tems at large internuclear separation R. The so-called simpleman formula (4.1) is

modified, since the ionized electron produced at nucleus A upon re-collision can

be re-combining either at nucleus A or B. This can lead to a cutoff that is higher

than the atomic one given in Eq. (4.1). In addition, there is the possibility that

the field ionizes an electron at atom A, accelerates it, and recombination occurs di-

rectly at atom B. These classical cutoff positions have to be taken carefully, since
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they ignore the potential role of the Compton profile of the initial state, and the

argumentation based on electron localization during ionization and recombination

makes sense only at large R, if the molecular orbital nature of the states is taken

into account. Nevertheless, Ref.[85] serves to illustrate that the cutoff energies rep-

resent stationary points at which enhanced HHG should be observed. Evidence

is presented in [85] from quantum calculations in a zero-range model potential for

molecular cutoffs higher than Eq.(1), increasing the coefficient from 3.17 by up to

a third for the cases considered.

Theoretical investigations for diatomic molecules, such as, the H2 molecule and

the H+
2 ion were initially carried out by Krause et al [86] and Zuo et al [78, 87]. They

performed a direct numerical solution of the TDSE to obtain the HHG spectra. An

alternative approach is the Floquet formalism which was employed successfully

by Potvliege and Shakeshaft [88] to obtain the HHG spectra for H atoms using

Sturmian basis functions. A treatment of HHG for complex atoms in intense laser

fields based on R-matrix-Floquet theory has been given by Burke et al [89, 90]. Yet

another method for time-periodic systems is the Floquet approach combined with

complex rotation of the coordinate [91, 92].

For atomic hydrogen, the hydrogen molecule and molecular ion calculations of

HHG spectra within the Floquet method combined with a complex rotated coor-

dinate have been extensively investigated by S-I. Chu and his co-workers [93, 94,
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95, 96, 97]. In those works a generalized pseudospectral approach was used for

the spatial discretization of the resonant Hamiltonian, and a non-Hermitian split-

operator technique was implemented for the time-evolution operator. Telnov and

Chu presented benchmark results for HHG for monochromatic intense laser fields

for the H+
2 ion in [96].

In this chapter our goal is to report on HHG spectra for the lowest two states

of H+
2 in a linearly polarized intense laser field (with electric field aligned with the

molecular axis), using the Floquet approach combined with a CAP. This method-

ology was implemented in Chapter 3 to calculate the ionization rates for the lowest

two electronic states of the ion by strong continuous laser fields in the low-frequency

limit. Given that the ionization rates reported in Chapter 3 vary strongly with R

it is of interest to explore HHG, since the first step in the harmonic generation

process is ionization. We compare our rates for the R-dependence of HHG with

those obtained in [78] and [96]. Our method differs from that of Ref.[96] in that

we do not use a time propagator, but assemble the wave function from the Floquet

eigenstates.
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4.2 Calculation of HHG spectra from the non-Hermitian

Floquet approach

Once we have found the time-dependent Floquet wave function Ψ(r, t) via equation

(1.21), we can compute the time-dependent dipole moment along the internuclear

axis, d(t), as

d(t) = 〈Ψ(r, t)|z|Ψ(r, t)〉 . (4.2)

Following [96, 98], the nth-order harmonic generation rates Γn (the number of

photons with frequency nω emitted per unit time) are calculated by the Larmor

formula

Γn =
4n3ω3

3c3
|dn|2, (4.3)

where c is the speed of light, and dn is the Fourier transform of the time-dependent

dipole moment (4.2) according to

dn =
1

T

∫ T

0

dt exp(inωt) d(t). (4.4)

It is common in the literature to either show the rates (4.3) or to show the HHG

spectrum as

Dn = log(|dn|2). (4.5)

which has a stronger fall-off with n.
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As shown by Telnov and Chu [96] in Floquet theory the HHG rates are obtained

to the same accuracy irrespective of whether one uses the dipole operator (4.2) or

the velocity or acceleration forms.

4.3 Results and Discussion

4.3.1 HHG rates for the equilibrium separation R = 2 au

We first attempted to reproduce the HHG spectra previously reported by Telnov

and Chu [96]. In our grid representation we have two main parameters, and the

results for the harmonic spectra appear to be sensitive to them, implicitly via

the Floquet wave function Ψ(µ, ν, t). One of two (artificial) parameters which

control the wave function is µc, which determines the region where the CAP starts.

Another one is the absorbing strength parameter η. Ideally, the results ought to

be insensitive to these two parameters. It is obvious that the value of µc should

be larger than the quiver radius of a free electron α0 = F/ω2 (in atomic units),

because the main contribution to the harmonic generation spectra comes from the

free electron driven back to its parent ion or two-centre core. The concern is that

strong absorption of outgoing flux may weaken HHG spectra.

In analogy to the η-trajectory in the calculation of the resonance parameter

E
(0)
F in Chapter 3, we initially obtain the HHG rate Γn for varying η(0). Within a
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certain range of the η(0)-trajectory, namely where the complex eigenenergy value

E
(0)
F stabilizes, the resonance wave function is assumed to be accurate, and in turn,

it should yield accurate HHG spectra.
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Figure 4.2: The HHG rate for the lower state of H+
2 at internuclear separation

R = 2 au, and for wavelength λ = 532nm: (a) I = 5× 1013W/cm2, Γ15 rate vs η(0)

for various values of µc, namely 13.5 (diamonds), 14.5 (squares), 15.5 (plus signs)

and 16.5 a.u. (crosses); the green line shows the value from Telnov and Chu [96];

(b) plot for more harmonics than shown in (a); here Nmax ≈ 15; (c) for intensity

I = 1 × 1014W/cm2, for which Nmax ≈ 17. The green line in (b, c) connects

the theoretical data of [96] while the red line connects the present data. The blue

error bars are based on the calculations with different µc. The vertical dashed lines

indicate the semi-classical cutoff values Nmax.

In panel (a) of Fig. 4.2 we show the HHG rate Γ15 vs η(0) for the lower state

of the H+
2 ion at the equilibrium separation (R = 2 au) in a field of intensity

88



I = 5 × 1013W/cm2 and wavelength λ = 532nm. In panel (a) we show results

for Γ15 for η(0) ≥ 0.05 (for η(0) ≤ 0.05 the computation is inaccurate). We chose

four different µc values, in the range 13.5 ≤ µc ≤ 16.5 au, which are much larger

than α0 = 5.15 au. The bottom green line shows the result obtained by Telnov

and Chu [96]. Our results for Γ15 are higher by up to a factor of 2.5, as compared

to the value Γ15 = 4.17 × 10−22 au given in [96]. In panel (b) we show the HHG

spectrum. We note that for orders n < 15 the agreement with the results of [96] is

good and is independent of the chosen value of µc. In all plots showing HHG rates

we omit results for order n = 1, because they are usually much higher. The cutoff

position as predicted by Eq.(4.1) is around n = 15, which is indeed consistent with

our result. For each harmonic order we use four different values of µc to compute

Γn, and use them to define an average value with standard deviation. Panel (c)

shows the same plot for the HHG rate for the doubled intensity, 1 × 1014W/cm2.

The cutoff law is clearly obeyed around n = 17 by both the present and previous

[96] results. As compared to Ref.[96] our HHG rates are higher above the cutoff

but also less certain.

In Fig. 4.3 data are shown for increased laser intensities. In panel (a) of Fig. 4.3

in the HHG spectra the cutoff position moves up to 19, but the calculated spec-

trum extends the plateau to higher orders. Our result agrees well with that ob-

tained by Telnov and Chu [96]. In panel (b) of Fig. 4.3 we show the same plot for
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Figure 4.3: The same plot as shown in Figure 4.2 (b, c), however the laser intensities

are I = 2 × 1014W/cm2 (a), and I = 5 × 1014W/cm2 (b). In (c) the same plot

is shown as in (b), but the number of Floquet channels is chosen to be NF = 72

(diamonds), 82 (squares) and 86 (circles), respectively. The classical cutoff positions

are around 19 (a), and 31 (b, c) and are indicated by vertical dashed lines.

I = 5 × 1014W/cm2. In this case although the general features of the obtained

HHG spectrum follow those of Ref.[96], it does show significant deviation at cer-

tain harmonic orders, namely for n = 5, 11 and 27. To check our answer carefully,

we gradually increased the number of Floquet channels, because the HHG rates

at higher harmonic orders require a higher number of photon couplings. In panel

(c) of Fig. 4.3 we display the same plot as shown in panel (b), but the number of

Floquet channels NF is 72, 82 and 86, respectively. Thus we know that the results

are converged at NF = 86 in the HHG order range presented in our plots. The data

in Fig. 4.3c are based on a matrix diagonalization with NF = 86, with the specified
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truncation imposed in eqn (1.22) when computing (4.2).
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Figure 4.4: HHG rates for the lower (red) and and upper (blue) states of the H+
2 ion

at R = 5 au (a) and R = 10 au (b). Panel (c) shows the HHG spectrum (Eq. (4.5))

for the lower state (red) at R = 10 au to be compared with the result obtained in

[78] (green). The laser field parameters are F = 0.0533 au and ω = 0.0428 au.

Next we continue with HHG rates while moving towards the low-frequency

limit. In Fig. 4.4 we show the rates for the lower (red) and upper (blue) states

for the H+
2 ion for laser fields of I = 1 × 1014W/cm2 and λ = 1064nm. All

HHG calculations are carried out with η(0) = 0.25. Panel (a) shows the rates at

internuclear separation R = 5 au, while panels (b, c) demonstrate corresponding

results at R = 10 au. Given that ω = 0.0428 au, the cutoff positions given by

the classical formula (4.1) are found around n = 45 and n = 43 at R = 5 au and

R = 10 au, respectively, and are shown by vertical dashed lines for the lower state

in Figure 4.4 (for the upper state, the cutoff position is close to it, since both states
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have almost the same ionization potential at large internuclear separations). As

discussed by Bandrauk and co-workers in [78, 87], these classical cutoff positions

are referred to as the atomic plateau. They argue that a first plateau region can

be identified as a molecular plateau: its cutoff occurs at harmonic order

nM =
2ΩR

ω
=

2d0F

ω
≈ RF

ω
, (4.6)

where ΩR is the Rabi frequency for driving transitions between the 1σg and 1σu

states and the transition dipole moment d0 grows towards R/2 with increasing R

(for details cf [78]). According to this model in which the two lowest states are

driven resonantly, since ω ≥ ε1σu − ε1σg , the values of the cutoff positions can be

found at nM = 5 for R = 5 au, and nM = 11 for R = 10 au, respectively. These

calculated values of nM can be observed in the data given in Figure 4.4. Panel (c)

of Figure 4.4 shows the HHG spectrum calculated by equation (4.4) for the lower

state of the ion and its comparison with that obtained in [78] (green). We note that

the agreement between the Floquet result and the calculation for a finite 30- cycle

pulse is excellent up to order 39. Beyond this order the harmonics for the finite

pulse with square envelope continue to be strong, while the Floquet results fall off.
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4.3.2 Harmonic generation rates as a function of internuclear separa-

tion R

In this subsection we present HG rates for moderate orders n, i.e., in the molecular

plateau region at the intensity 1 × 1014W/cm2 as a function of internuclear sep-

aration R. The ionization rates for the lower and upper states of the ion for two

wavelengths of the laser field, 1064nm and 800nm are shown in panel (a) of Figs

3.1 and 3.11. Our goal is to demonstrate how the enhancement of the ionization

rate in certain R-regions affects the HG rates within the region of the molecular

plateau, i.e., for n ≤ nM (4.6).

In Figure 4.6 we show the rates Γn as functions of R for the lower (red) and

upper (dashed blue) states of the ion using a common linear scale. As can be

seen in Fig. 4.6c, when R varies from the equilibrium separation 2 to 12 au, the

fifth harmonic for the lower and upper states has very similar large peaks around

R ≈ 5 au, where the first enhancement of the ionization rate (Figure 3.10a) occurs.

Note, however that the ionization rate patterns for the two states are not as similar

as those of Γ5. Observing Γ7 and Γ9 in panels (d, e) we find a shift in the peaks

towards larger R. For the lower state a large peak in the ionization rate appears

around R ≈ 9 au (Figure 3.1a), and Γ9 also displays a peak there (Figure 4.6e).

Meanwhile, the upper-state Γ9 rate deviates for R > 8 au, somewhat in accord with
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Figure 4.5: Harmonic generation rates as functions of internuclear separation R for

the lower (solid red) and upper (dashed blue) states of the H+
2 ion. The harmonic

order is shown on each plot. The laser field parameters are F = 0.0533 au and

ω = 0.0428 au.

its decrease in ionization rate.

The HG rates for higher orders of n (beyond n = 11) become smaller, thus

we do not show them here. Together Figures 3.1a and 4.6 demonstrate that the

enhancement of the ionization rate for the lower and upper states of the hydrogen

molecular ion can be linked to an enhancement of the harmonic generation rates in

certain R-ranges. This happens for harmonic orders within the molecular plateau
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region n < nM .

As a further demonstration of the correspondence we show the HG rate as

function of R for λ = 800nm in Figure 4.7, while the ionization rates are given

in Figure 3.11a. The upper state shows a very prominent ionization peak around

R = 8 au.
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Figure 4.6: The same plots shown as in Figure 4.5, however for ω = 0.05695 au and

F = 0.0533 au.

As can be observed from Figure 4.6b, Γ3 displays strong peaks around R ≈

4 au for both states in a region where the ionization rates are not strong. This is

particularly true for the lower state. This behavior, thus, must come from bound-
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state populations [78]. However, a major peak can be observed in Γ7 around R ≈

8 au (Figure 4.7d) for the upper state, where a strong enhancement of the ionization

rate does occur (Figure 3.10a). A significant feature around R ≈ 8 au is also visible

in Γ9 for the upper state (Figure 4.7e).

Compared to the λ = 1064nm case Fig. 4.7f shows a much weakened Γ11 rate.

This is a consequence of the molecular cutoff law (4.6). Naively, one might think

that a reduced wavelength λ (increased ω) will simply push the cutoff to higher R.

However, at R > 10 au the ionization rates drop (cf. Fig. 3.10a). One reason why

the dynamics change at large R is that the upper and lower states become nearly

degenerate, i.e., ω � ε1σu − ε1σg , and the strong-coupling regime [78] is reached.

From the behavior of the n < nM rates Γn shown in Figs. 4.6-7 it is obvious

that the dipole moment Eq.(4.2) is a complicated periodic function of time when

R � 2 au. It is no longer dominated by the fundamental frequency ω, as is usual

for atomic HG spectra.

4.4 Summary

We have presented non-Hermitian Floquet calculations of HHG for the lowest two

H+
2 eigenstates in monochromatic strong laser fields using the length gauge. A pseu-

dospectral representation of the Hamiltonian was applied, and the CAP method was

used to avoid the calculation of an oscillatory tail in the coupled-channel resonance
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wave function. In this approach even though we needed to solve a large non-

Hermitian matrix problem to get the solution for the TDSE, we avoided problems

that are associated with time-stepping algorithms, particularly the accumulation

of phase errors.

The results for the HHG rates for the lower state of H+
2 in strong laser fields were

compared with previous calculations in the literature [78, 96]. The cutoff positions

in the HHG spectra were examined and compared with the classical cutoff formula

given in [84]. Good agreement was found for I ≤ 1014W/cm2 and some deviations

were observed at higher intensities for high harmonic orders.

In the region of the molecular plateau, n < nM , (cf. Eq.(4.6)), while considering

separations R = 4− 10 au it is shown that the enhancement of the ionization rate

for the lower and upper states at R ≈ 8 au causes an enhancement of the harmonic

generation rate in the following way: Γ5 for both states and Γ9 for the lower state of

H+
2 in a field of I = 1014W/cm2 and λ = 1064nm show peaks; similarly Γ7 for the

upper state of H+
2 in a field of I = 1014W/cm2 and λ = 800nm displays peaks at

Rc ≈ 8 au. The lower bound of this enhanced HG region R = 4 au is characterized

by near-resonant coupling ω ≈ ε1σu − ε1σg . It is bounded at R ≈ 10 au by the

decrease in ionization rate (cf. Fig. 3.1a). On the other hand, for λ = 800nm Γ3

dominates the HG spectra around R ≈ 4 au for the upper and lower states, which

cannot be associated with an enhanced ionization rate, but with strong resonant
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coupling, as explained in Ref.[78].
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5 Future outlook

5.1 Summary

In this dissertation we have investigated systematically the DC and AC Stark res-

onance parameters for the lowest two states of the H+
2 ion in moderately strong

fields.

Previous calculations were based on the complex scaling method, while the

present work was performed using a complex absorbing potential. The DC Stark

resonance parameters obtained here improve upon previous results. An enhance-

ment of the ionization rate as a function of internuclear distance R for the upper

state at so-called critical distances Rc is observed in these calculations and is inter-

preted by means of the over-the-barrier mechanism using electron density plots.

An enhancement of ionization rates as a function of R for both the lower and

upper states of the molecular ion in a low-frequency AC field have been obtained

using Floquet theory and compared with literature results. Our results show that

this enhancement is independent of the laser wavelength (or frequency) and that

99



the two states mix strongly as R varies. The interpretation for the enhancement is

supported by the appearance of avoided and true crossings of the complex Floquet

energy eigenvalues.

The electronic Born-Oppenheimer Hamiltonian depends parametrically on R.

Thus, when a true crossing occurs in the real part of the complex-valued Floquet

quasi-energy eigenvalue, the imaginary part which yields the ionization rate un-

dergoes an avoided crossing. This structure gives rise to maxima in the ionization

rates as a function of R.

Furthermore, harmonic generation rates were calculated for the lower and up-

per states of the ion and the results were compared with those in the literature.

It was shown that the enhancement of the ionization rate at critical internuclear

separations has an effect on harmonic generation rates of moderate orders, namely

within the molecular plateau region.

A further interest of this work is to apply it to many-electron molecules, the

simplest of which is H2. Dissociation dynamics of the H2 molecule have been carried

out extensively theoretically [99, 100, 101] and experimentally [102, 103, 104].

Based on previous experience we begin with the calculation of the energy eigen-

value for the ground 1σ2
g state of the H2 molecule. The initial approach is to use the

self-consistent-field (SCF) method, and then to generalize to the simplest approx-

imation in density-functional theory (DFT), a local density approximation (LDA)
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for other molecules, such as N2 and O2. In the following section we show some first

results for the H2 molecule.

5.2 Self-consistent field method for the H2 molecule

For the simplest molecule H2, consisting of two hydrogen atoms, a solution to the

stationary Schrödinger equation can not be found analytically. We shall not discuss

the Hartee-Fock or Hartree-Fock-Slater approximation in detail here, but it can be

found in [105, 106].

The HF wave function for the ground 1σ2
g state of H2 can be written as

Ψ =
1√
2
ψ(1)ψ(2) {α(1)β(2)− α(2)β(1)}, (5.1)

where α and β are single-electron spin wave functions and ψ(i) are spatial wave

functions. The two electron spins form a combined spin-singlet state, which is

anti-symmetric under particle exchange.

We first consider the Hartree-Fock equation which for a two-electron spin singlet

system is local, since the exchange term cancels one half of the direct Poisson term:

[H(r) +G(r)]ψ(r) = ε ψ(r) (5.2)

where ε is orbital energy and the Hamiltonian H(r) is a one-electron Hamiltonian

(cf Eq. (1.63)). Since the two electrons are distinguished by their spin we have

ψ(1) = ψ(2) = ψ, and only the ground state of (5.2) is populated.
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The interelectronic Coulomb potential G(r) satisfies the Poisson equation

∇2G(r) = −4πρ(r), (5.3)

where ρ(r) is the single-electron density, ρ = |ψ|2.

The Hartree-Fock equation (5.2) is solved (self-consistently) iteratively together

with the Poisson equation (5.3). Since the Hartree-Fock equation is solved for one

electron only, the computational method is almost the same as for H+
2 .

The total energy for the ground 1σ2
g state of the hydrogen molecule in the

Hartree-Fock approximation can be found as:

EHF = 2ε− 〈Vee〉+
1

R
, (5.4)

where 〈Vee〉 is the electron-electron repulsion interaction given by

〈Vee〉 =

∫ ∫
ρ(1)ρ(2)

r12

dv1dv2. (5.5)

In Table 5.1 we show some results for the ground state of H2 obtained in the

Hartree-Fock approximation and their comparison with literature values. The con-

vergence criterion in interelectronic potential was set to ∆〈Vee〉 = 10−8 au and 15

iterations were needed to achieve this criterion.

The Hartree-Fock method does not give the correct dissociation limit at large

R, therefore one needs to take into account so-called configuration interaction (CI)

to get the correct dissociation limit. The multiconfiguartion SCF method for the

H2 molecule is discussed in [111].
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Table 5.1: Summary of the SCF calculation for 1σ2
g state of H2 at R = 1.40 au and

b = 120 au.

N M ε (au) 〈Vee〉 (au) EHF (au) 〈r2〉 (au) 〈Q〉 (au)

48 12 -0.594 658 585 396 0.658 598 141 163 -1.133 629 597 668 2.573 929 832 565 0.243 288 900 824

56 12 -0.594 658 570 253 0.658 598 145 515 -1.133 629 571 735 2.573 929 832 594 0.243 288 900 824

64 12 -0.594 658 569 993 0.658 598 145 769 -1.133 629 571 469 2.573 929 832 556 0.243 288 900 823

72 12 -0.594 658 569 991 0.658 598 145 756 -1.133 629 571 453 2.573 929 832 556 0.243 288 900 823

Ref. [107] -1.133 629 2.573 6 0.243 3

Ref. [108] -0.594 658 567 -1.133 629 57 2.573 930 0.243 2888

Ref. [109] -0.594 658 5694 -1.133 629 5717

Ref. [110] -0.594 658 5687 -1.133 629 571 456

After implementing the SCF method for the hermitian Hamiltonian of the H2

molecule we continued with the calculation for the non-hermitian Hamiltonian

which describes the DC Stark problem. This problem is solved similarly as the DC

problem for H+
2 discussed in Chapter 2. In Figure 5.1 we show the ionization rate as

a function of the field strength F for the ground 1σ2
g state of the H2 molecule at in-

ternuclear separation R = 1.46 au and their comparison with those obtained by Ku-

drin and Krainov [112] and Saenz [113]. Kudrin and Krainov obtained their results

using an analytic formula obtained from a simple Heitler-London wave function (for

detail cf [112]). Saenz’s result is based on the modified Ammosov-Delone-Krainov

(MADK) model which includes a barrier-suppression mechanism [114]. This plot
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Figure 5.1: Ionization rate as a function of the electric field strength F for the 1σ2
g

state of the H2 molecule at R = 1.46 au. Curves: present results (dashed red with

plus signs) and literature values (dashed blue with crosses) [112] and (dashed blue

with asterisks) [113].

shows that for field strengths F < 0.06 au the difference between the MADK and

SCF results is small compared to analytically obtained values [112], and that all

values rise gradually as the electric field strength F increases. For F ≈ 0.1 au our

calculated and the analytic rates [112] are comparable, and for stronger fields the

difference grows again. Overall, one can say that the differences between different

model calculations are large. This is to be expected, because tunneling processes

are sensitive to details such as resonance position and barrier heights.

To obtain the ionization rate for the state of the molecule at larger R, one needs

to take into account CI, combining at least the ground and first excited states. An
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enhancement of the ionization rate for the ground state of H2 in a strong DC

electric field at R = 6 au has been shown by Saenz [99], in which he used the exact

wave functions for the ground and excited states which were obtained originally by

Kolos et al [107]. The enhancement is associated with a mixing with an excited

state which can dissociate into H+ and H−. This mixing does not occur, however,

in the adiabatic limit.
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[108] L. Laaksonen, P. Pyykkö, and D. Sundholm, Two-Dimensional Fully Numer-
ical Solutions of Molecular Schrodinger Equations. II. Solution of the Poisson
Equation and Results for Singlet States of H2 and HeH+, Int. Jour. Quan.
Chem., 23, 319, 1983.

[109] D. Heinemann, B. Fricke, and D. Kolb, Solution of the Hartree-Fock-Slater
equations for diatomic molecules by the finite-element method, Phys. Rev. A,
38, 4994, 1988.

[110] A. V. Mitin, Exact solution of the Hartree-Fock equation for the H2 molecule
in the linear-combination-of-atomic-orbitals approximation, Phys. Rev. A, 62,
010501(R), 2000.

[111] J. D. Bowman, Jr., J. O. Hirschfelder and A. C. Wahl, Extended HartreeFock
Calculations for the Ground State and HartreeFock Calculations for the First
Excited State of H2, J. Chem. Phys., 53, 2743, 1970.

[112] A. A. Kudrin and V. P. Krainov, Tunneling ionization of a Hydrogen Molecule,
Laser Physics, 13, 1024, 2003.

[113] A. Saenz, Behavior of molecular hydrogen exposed to strong dc, ac, or low-
frequency laser fields. II. Comparison of ab initio and Ammosov-Delone-
Krainov rates, Phys. Rev. A, 66, 063408, 2002.

[114] V. P. Krainov, Ionization rates and energy and angular distributions at the
barrier-suppression ionization of complex atoms and atomic ions, J. Opt. Soc.
Am. B, 14, 425, 1997.

114


