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Abstract — The discrete Fourier transform in Cartesian 

coordinates has proved to be invaluable in many disciplines. 

However, less theory has been developed for functions that are 

best described in polar coordinates. In this paper, a discrete 

2D-Fourier transform in polar coordinates is proposed and 

tested by numerical simulations with respect to accuracy and 

precision. Guidelines for choosing sample size are developed.  
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I.  INTRODUCTION  

The Fourier transform is a powerful analytical tool and has 
proved to be invaluable in many disciplines such as physics, 
mathematics and engineering. The development of the Fast 
Fourier Transform (FFT) algorithm [1], which computes the 
discrete Fourier transform with a fast algorithm, established the 
Fourier transform as a practical tool in diverse areas, most 
notably signal and image processing.  

In two dimensions, the FFT can still be used to compute the 
discrete Fourier transform in Cartesian coordinates. However, 
in many applications such as photoacoustics [2] and 
tomography ([3], [4], [5]), it is often necessary to compute the 
Fourier transform in polar coordinates. Moreover, for functions 
that are naturally described in polar coordinates, a discrete 
version of the 2D Fourier transform in polar coordinates is 
needed.  

There have been some attempts to calculate the Fourier 
transform in polar coordinates. Nonequally spaced FFTs 
(NUFFT, see [6], [7], [8], [9]) is one of the methods that can be 
implemented to compute the FFT in polar coordinates. 
However, due to local interpolations, the NUFFT can be 
prohibitively slow for large input sizes and is not easily 
inverted. Averbuch et al. [10] proposed a new discrete polar 
Fourier transform, where the original function was sampled on 
a near-polar grid called a pseudo-polar grid followed by 1D 
equispaced FFT and 1D interpolations. Based on Averbuch’s 
work, this new method was more accurate than the NUFFT 
method. 

It should be noted that prior work has focused on 
numerically approximating the continuous transform. This 

stands in contrast to approaches that have been taken with the 
continuous/discrete Fourier transform in two aspects: 1. both 
functions in the space and frequency domain of the DFT are in 
the same coordinates. 2. The DFT is defined as a transform in 
its own right, which means the existence of the DFT is valid 
even if without the existence of the continuous Fourier 
transform. In this paper, a new discrete 2D-Fourier transform in 
polar coordinates is proposed and tested by numerical 
simulations with respect to accuracy and precision.   

II. DEFNITION OF THE DISCRETE 2D FOURIER TRANSFORM 

IN POLAR COORDINATES 

A. Kernel of the discrete 2D Fourier transform in polar 

coordinates 

To propose and work with a 2D polar DFT, the following 
kernels are proposed  
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where , , , ,p k q l n， 1N  and 
2N  are integers such that 

M n M    , where 
22 1M N   , 

11 , , 1l k N    

and ,M p q M   .  nJ is the Bessel function of nth 

order and 
nkj  is the kth zero of the Bessel function of order n. 

The integers 
1N  and 

2N  represent the size of the spaces in 

which we work, with 
2N representing the dimension in the 

angular direction and 
1N  represents the dimension in the 
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radial direction. Since
2 2 1N M  , 

2N   must be an odd 

integer. 

B. Definition of the discrete transform 

The 2D-Discrete Fourier Transform in polar coordinates is 
defined as the discrete transform that transforms the matrix (or 

double-subscripted series pkf to the matrix (double-subscripted 

series) to the matrix qlF  according to 
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  (2) 

The notation for  ;E ql pk
  and  ;E ql pk

  are 

the discrete kernels for the forward and inverse transform, 

respectively. The subscript (+ or -) indicates the sign  on the 

exponent containing the p variable; the q variable exponent 

then takes the opposite sign. From a matrix point of view, both 

pkf  and qlF  are  2 1 1N N    sized matrices.  The inverse 

transform is then given by 
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C. Approximation to the continuous Fourier transform  

To approximate the continuous Fourier transform, the function 

needs to be sampled at some specific points. For a space 

limited function defined over continuous  ,r   space where 

0 r R  and 0      and the function is effectively 

zero elsewhere (that is the function can be made as close to 

zero as necessary, elsewhere in the plane), the sampling points 

are defined in the spatial domain as 
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And in the spatial frequency domain as 
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Equations (4) and (5) give the sampling grid in regular  ,r   

and frequency     space.  Clearly, the density of the 

sampling points depends on the numbers of points chosen, that 

is on 
1N  and 

2N .  Also clear is the fact that the grid is not 

equi-spaced in the radial variable.  It can be shown that the 

approximate relationship between sampled values of the 

continuous function  ,f r   and sampled values of its 

continuous forward 2D transform  F    is given by 
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Similarly, the inverse transform relationship is given as 
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Consider the case of a bandlimited function, such that the 

function is defined over continuous  ,   space where 

0 pW  and 0     and the function is effectively 

zero elsewhere (that is the function can be made as close to 

zero as necessary, elsewhere in the plane), the sampling points 

are defined as 
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The approximate relationship between sampled values of 

the continuous function and sampled values of its continuous 

forward 2D transform  F    can be shown to be given by 
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  (10) 

Similary, the inverse transform is given as 
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III. DISCRETE 2D FOURIER TRANSFORM TEST AND RESULTS 

A. Method for testing the Algorithm 

In this section, the ability of the 2D discrete Fourier transform 

is evaluated for its ability to estimate the continuous Fourier 

transform at the selected special sampling points in the spatial 

and frequency domains. 

1) Accuracy 

In order to test the accuracy of the 2D-DFT and 2D-IDFT to 

calculate the continuous counterpart, the dynamic error has 

been used. It is defined as [11] 
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where (v)C  is the continuous forward or inverse 2D-Fourier 

transform and (v)D  is the values obtained from the discrete 

counterpart. The dynamic error is defined as the ratio of the 

absolute error to the maximum amplitude of the function, 

which is calculated on a log scale. Therefore, a large negative 

value represents an accurate discrete transform. The dynamic 

error is used instead of the percentage error in order to avoid 

division by zero.  

2) Precision 

The precision of the algorithm is another important evaluation 

criterion, which is tested by sequentially performing a pair of 

forward and inverse transforms and comparing the result to the 

original function. High precision indicates that the transform 

does not add much error by the calculations. An average of 

absolute error of each sample points between the original 

function and the calculated counterpart was used to measure 

the precision. It is given by 
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where f  is the original function and 
*f is the calculated 

counterpart. An ideal precision would result in the absolute 

error being zero. 

 

B. Test Functions 

1) Gaussian  

The first function chosen for evaluation is a circular 

symmetric function which is Gaussian in the radial direction. 

The function in the space domain is defined as 
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where a is some real constant. Since the function is circularly 

symmetric, the 2D-DFT is actually a zeroth-order Hankel 

Transform [12] and  can be written as 
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The graphs for the original function and its continuous 2D-

DFT (which is also a Gaussian) are shown with 1a   and 

shown in Figure 1. 

 
Figure 1.  The original Gaussian function and its 2D-Fourier Transform 

 

From Figure 1, the function is circular symmetric in the 

angular direction and fairly smooth in the radial direction. 

Moreover, the function can be considered as an effectively 

space limited function or an effectively band limited function. 

For the purposes of testing it, it shall be considered as a space 

limited function and (6) and (7) will be used to proceed with 

the forward and inverse transform in sequence. 

To perform the transform, the following variables need to 

be chosen:
2N , R and

1N . In the angular direction, since the 

function in the spatial domain is circularly symmetric, 
2N  

can be chosen to be small. Thus, 
2 15N   is chosen. 

In the radial direction, the effective space limit 40R   

and effective band-limit 30pW  are chosen, which 

gives
10 1200N pj R W   [13]. Therefore, 

1 383N   is 

chosen to satisfy this constraint.   

 

a) Forward Transform 

Test results for the forward transform are shown in Figure 2 

and Figure 3. The error gets bigger at the center as expected. 

However, the maximum value of the error is 

max 8.3842E dB   and this occurs at the center. The 

average value of the error is . 63.8031avgE dB  . 
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Figure 2.   Sampled Continuous forward transform &. Discrete forward 

transform of Gaussian Function with R=40, N2=15, N1=383 

 

 

 
Figure 3.  The error distribution of the forward transform of Gaussian 

Function with R=40, N2=15, N1=383 

 

b) Inverse Transform 

Figure 4 and Figure 5 show the test results for the inverse 

transform. The maximum value of the error is 

max 12.2602E dB    and this occurs at the center.  The 

average of the error is . 98.0316avgE dB  . 

 

 
Figure 4.  Sampled continuous inverse transform and discrete inverse 

transform of the Gaussian function with R=40, N2=15, N1=383 

 

Performing sequential 2D-DFT and 2D-IDFT results in 
174.1656 e     where   is calculated with (13). 

Therefore, performing the forward and inverse transforms 

does not add much error. 

 

 
Figure 5.  The error distribution of the inverse transform of Gaussian Function 

with R=40, N2=15, N1=383 

 

2) Square Donut 

The second chosen function is a circularly symmetric function 

which is a square wave in the radial direction. The function is 

given by   

 
0, 5 10

( , )
1, 5 10

r and r
f r

r


 
 

 
  (16) 

The continuous 2D-FT can be written as: 
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where ( )nJ x   is Bessel function of order n  . 

The graphs for the original function and its continuous 2D-

DFT (which is also a Gaussian) are plotted and shown in Figure 

6. 

 
Figure 6.  The original ‘Square Donut’ and its 2D-Fourier Transform 

 

a) Forward Transform 

Test results for the forward transform are shown in Figure 7 

and Figure 8. Similar to the previous case, the error gets 

bigger at the center as expected. The maximum value of the 

error is 
max 8.1664E dB    and occurs at the center area. 

The average of the error is . 34.5471avgE dB   . 

b) Inverse Transform 

Figure 9 and Figure 10 show the test result for the inverse 

transform. The maximum value of the error is 



 5 Copyright © 2018 by CSME 

max 1.5Error dB .The average of the error 

is 73averageError dB  .  

 

 
Figure 7.  Sampled Continuous forward transform &. Discrete forward 

transform of ‘Square Donut’ Function with R=40, N2=15, N1=383 

 

 
Figure 8.  The error distribution of the forward transform of ‘Square Donut’ 

Function with R=40, N2=15, N1=383 

 

 

 
Figure 9.  Sampled continuous inverse transform and discrete inverse 
transform of the ‘Square Donut’ function with R=40, N2=15, N1=383 

Performing sequential 2D-DFT and 2D-IDFT results in  
146.7253 e     where   is calculated with (13) . 

Therefore, performing forward and inverse transform does not 

add much error. 

IV. SUMMARY AND CONLUSION  

From the two test cases, both the forward and inverse 

transform showed good accuracy to approximate the 

continuous Fourier transform. Moreover, the good precision 

results indicated that the transform itself does not add much 

error.  

 
Figure 10.  The error distribution of the inverse transform of ‘Square Donut’ 

Function with R=40, N2=15, N1=383 
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