
DTM GENERATION IN FORESTED AREAS FROM 

FULL-WAVEFORM AIRBORNE LiDAR DATA 

 

 

 

 

Damir Gumerov 

 

 

 

 

A THESIS SUBMITTED TO THE FACULTY OF 

GRADUATE STUDIES IN PARTIAL 

FULFILLMENT OF THE REQUIREMENTS FOR 

THE DEGREE OF MASTER OF SCIENCE 

 

 

 

 

 

GRADUATE PROGRAM IN 

 EARTH AND SPACE SCIENCE 

YORK UNIVERSITY 

TORONTO, ONTARIO 

 

November 2014 

 

 

© Damir Gumerov, 2014 

 



 

 

ii 

Abstract 

This study was aimed at improving overall quality of Digital Terrain Model (DTM) 

extraction from full-waveform LiDAR data. Specifically, the primary goal was to develop 

a novel method to improve DTM extraction by utilizing low amplitude pulses that are 

generated by terrain under vegetation, but undetectable using traditional Gaussian 

decomposition techniques. The secondary objective was to validate the developed 

methodology using ground reference data. 

 

An integrated approach was developed to detect weak returns backscattered by the bare 

terrain using full-waveform data and implemented using Microsoft Visual Studio. In this 

approach, echo detection, identification of terrain points, and generation of the 

triangulated irregular network (TIN) were iteratively carried out. To validate the proposed 

method, airborne LiDAR datasets obtained from a Riegl’s LMS-Q560 over five study 

sites in the Great Lakes-St. Lawrence forest region near Sault Ste. Marie, Ontario, Canada 

were used. The generated DTMs were compared with those obtained from the 

commercial software, TerraSolid’s TerraScan, based on ground measurements. The 

validation results show that using the developed method, the improvement in DTM was 

up to 21% for the five study areas, but up to 29% only considering heavily wooded areas 

with variable terrain. In addition, the developed methodology demonstrated an increase in 

LiDAR density and coverage of terrain points detected (up to 10-15%), when compared 

to TerraScan’s ground extraction routine. 
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1 Introduction 

A Digital Terrain Model (DTM) is an indispensable product in a wide variety of 

applications. DTMs have become essential in geospatial analysis and are an important 

part of the workflow in such applications as building extraction, 3D urban modelling and 

planning, hydrological monitoring, and costal/forestry management (Gonga-Saholiariliva 

et al., 2011; Liu, 2008). Traditionally DTMs are generated using surveyed data, either by 

land surveyors or using photogrammetric sensors. In the past decade, airborne light 

detection and ranging (LiDAR) or airborne laser scanning (ALS) has emerged as the 

main tool in use for the acquisition of the data used for the generation of DTMs (Hodgson 

et al., 2005). The collected airborne LiDAR data, as well as the traditional 

photogrammetric data are capable of covering substantially more terrain at a fraction of 

the time compared with the traditional land surveying techniques (Glennie, 2007; Liu, 

2008). In terms of airborne LiDAR versus photogrammetric data, one is able to produce a 

terrain model with a higher resolution in vegetated and/or homogeneous areas using 

LiDAR data. In addition, processing LiDAR data is not labour intensive. These reasons 

make the LiDAR technique more suitable for DTM generation than digital imaging 

sensors (i.e., photogrammetric techniques). Research has indicated that the vertical 

accuracy of the DTM products generated from LiDAR data can be as high as 15 cm for 

open, flat, and hard surfaces (Su and Bork, 2006). However, the achievable accuracy of 

LiDAR-derived DTMs tends to deteriorate in vegetated landscapes, such as those areas 

covered with shrubs and trees. 
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As a result of some major improvements in data acquisition methods that have occurred 

over the past 10 years, a new type of LiDAR instrument, namely small footprint full-

waveform LiDAR, has become available. The increasing availability of the small 

footprint full-waveform airborne LiDAR system provides a good opportunity for the 

improvement of DTM generation. This new product offers certain advantages over the 

previous discrete LiDAR instrument. Full-waveform systems store the whole signature of 

the returned signal (Mallet and Bretar, 2009), and thus the shape of a waveform can be 

analyzed to achieve high multi-target resolution and range accuracy (Chauve et al., 

2007). In addition, waveform parameters such as the pulse width and the backscatter 

cross-section can be used to improve the separation between terrain and vegetation, 

which is a crucial step in DTM generation (Wagner et al., 2008). However, the 

classification of terrain points in a dense natural forest is still very difficult if one only 

uses the waveform parameters (Wagner et al., 2008). Based on these findings, Lin and 

Mills (2009) proposed a novel routine to integrate the pulse width information into the 

progressive densification filter developed by Axelsson (2000). This approach was 

demonstrated to be more effective at removing low vegetation points as well as being 

able to generate accurate DTM. In the methodology introduced by Lin and Mills (2009), 

it was necessary to derive the pulse information based on the Gaussian decomposition 

method (Lin et al., 2008, and Reitberger et al., 2008) before the integrated filter process.  

 

Most of the methods mentioned above, however, cannot be applied to the low amplitude 

pulses that are commonly associated with bare earth in the heavily wooded areas, since 
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the extracted parameters of the low amplitude echoes are not reliable (Wagner et al., 

2006). These weak echoes are too close to the noise threshold of the instrument which 

can cause erroneous results in the determination of the parameters through Gaussians 

fitting. Thus, weak echoes from the terrain may not be detected using the Gaussian 

decomposition method, which will be discussed in detail in Section 4. 

  

As an example of the problem this study was trying to solve, Figure 1.1 shows a full-

waveform signature produced by a tree and the underlying terrain (blue segmented line). 

The red curves in Figure 1.1 are the results of fitting four Gaussian functions to the 

observations. By examining the path of the emitted laser pulse, it could be seen that the 

weak echo circled in black was backscattered by the bare terrain under the tree; however, 

it could not be detected by the Gaussian decomposition method. On the other hand, if the 

Gaussian decomposition was constrained to only the circled interval, the weak terrain 

echo could be detected, as shown by the green curve. Figure 1.1 shows clearly if one 

knows where to look for a weak echo along the recorded full-waveform, one can detect it.  
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Figure 1.1 An example of a returned full-waveform of a laser pulse passing through a tree (blue line), 

and the modelled waveform obtained by fitting the summation of 4 Gaussian functions to whole 

waveform (red line). The circled echo was returned by the terrain and the green curve is the fitted 

weak echo. 

 

Inspired by the results demonstrated in Figure 1.1, I developed an integrated approach to 

detect weak returns backscattered by the bare terrain using full-waveform data. In this 

approach, echo detection, identification of terrain points, and generation of the TIN were 

iteratively carried out. Specifically, the initial TIN was built through the use of the 

identified terrain points. This TIN was then used to guide the detection of the weak 

echoes backscattered by the terrain, yet undetected by the initial Gaussian decomposition 

process due to the noise constraints. To accomplish weak echo detection, for every 

individual TIN facet, all the returns passing through this TIN facet (the seeded search 

region) were examined for terrain echoes. The newly detected returns together with the 

original terrain points were then used to start the next iteration of ground point detection. 

This iterative process was performed until no further terrain points were detected. 
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This integrated approach allowed for the inclusion of lower amplitude pulses 

corresponding to the location of the ground, and as a result improved the generated DTM 

by means of point densification. 

 

To test the developed method, airborne LiDAR datasets provided by GeoDigital 

International were used. These datasets were collected over northern Ontario from a 

helicopter platform using a Riegl’s LMS-Q560 LiDAR instrument and Applanix’ POS 

AV™ (a GNSS (Global Navigation Satellite System) aided inertial integrated navigation 

system) during a data acquisition campaign in August 2009. Except for the post-

possessed navigation solution, the SBET (smoothed best estimated trajectory), the raw 

data processing and the designed methodology for DTM extraction were realized using a 

software utility I implemented in C/C++ using Microsoft Visual Studio. In terms of 

validation of the obtained results, the results were compared with those obtained from a 

ground survey and by the commercially available software TerraSolid. 

 

The thesis structure is organized in the following manner: In Chapter 2, the background 

information on the LiDAR technology and DTM generation is provided. Chapter 3 

includes the description of the used LiDAR data and their preliminary processing. The 

procedures for direct geo-referencing of the full waveform data and the collection of the 

reference data are also described in Chapter 3. Chapter 4 describes an implementation of 

the commonly used Gaussian decomposition method. The strategy used to detect “the 

ringing effect” is also integrated to the Gaussian decomposition method. The novel 
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integrated approach is introduced in detail in Chapter 5. Chapters 6 and 7 outline the 

performed validation and conclude with error analysis and summary of findings, followed 

by a discussion of potential future work. 



 

 

7 

2 Background 

This chapter begins with an introduction to the fundamental principles of airborne 

LiDAR systems. An overview of full-waveform LiDAR systems, their operating 

principles and raw data processing techniques are then provided. Finally, an introduction 

to terrain modelling is presented, and existing methodologies for the extraction of bare 

ground from LiDAR data are discussed. 

2.1 The LiDAR technology 

Over the past decade, the acquisition and analysis of topographic data have seen a 

significant advancement in terms of technologies and methodologies associated with the 

use of LiDAR data. A LiDAR instrument is primarily designed for terrain mapping and 

general geospatial data collection. It is capable of collecting vast amounts of accurate 3D 

data and has been used more and more extensively over recent years, not only in the field 

of remote sensing and photogrammetry, but also in a wide variety of applications such as 

preservation of historical buildings and sculptures, aiding in the navigation of unmanned 

vehicles, and even as a tool to study the atmosphere on Mars (Whiteway et al., 2008).  

 

2.1.1 Basic principles 

A LiDAR instrument employs either continuous or pulsed lasers. The majority of 

commercially available LiDAR systems are operated by emitting short infrared (IR) 

pulses. It is these type of systems which the following discussion will be focused on. As 
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the emitted pulse propagates through space and interacts with the objects along its path, 

some of its energy is reflected back to the LiDAR instrument. The backscattered energy 

is then collected by the receiving sensor and recorded. A timing device in the instrument 

then time-tags the backscattered signal. The difference in time between when the emitted 

pulse leaves the LiDAR instrument and when the reflected signal arrives back to the unit 

is used to calculate the distance to the object as per Equation (2.1): 

2

t
cR   (2.1) 

wherein c is the speed of light and t is defined as the time of flight of the pulse from the 

emitter to the target and back. A comprehensive list of formulas and relations applicable 

to LiDAR is provided in Baltsavias (1999). 

 

In addition to obtaining range information from the backscattered signal, an intensity 

value can be obtained from (Wagner et al., 2004): 
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wherein: 

Pr  the received signal power,  

Pt  the transmitted signal power, 

Dr  the diameter of receiver aperture, 

R  the range from sensor to target,  

Β  the width of laser beam,  

ηsys  the system transmission factor, 
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ηatm  the atmospheric transmission factor, 

vg  the group velocity of the laser pulse, 

σ(R) the differential backscattering cross-section, and 

dR  the interval dR. 

 

Equation 2.2 shows that the power of the received signal is a function of the transmitted 

signal, the optical properties of the LiDAR system, the atmospheric conditions, and the 

properties of the objects in the beam’s path. The latter depends on the area of interaction 

with the beam and the reflective properties of the object (directionality and strength) 

(Wagner et al., 2004). These two factors are represented by a single variable, namely the 

backscatter cross-section. Since the scanned objects are not always flat and/or 

perpendicular to the path of the laser pulse, the integral is taken to include the full 

distance of the interaction of the beam with the target. 

 

In most LiDAR applications, the 3D coordinates of a target object need to be obtained. 

To obtain the coordinates, it is necessary to know the position of the LiDAR sensor at the 

time when the pulse is emitted and the corresponding attitude of the laser beam, in 

addition to the range from the instrument to the scanned object.. It is thus common with 

modern mobile geospatial data acquisition that a direct geo-referencing (DG) system is 

employed to provide the exterior orientation (EO) parameters for a LiDAR system or 

other imaging sensors at all times.  
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A high quality DG system is typically a GNSS aided inertial integrated navigation 

system, such as a POSTM (Position and Orientation System) manufactured by Applanix 

Corporation (www.applanix.com), which principally consists of GNSS receivers and 

Inertial Measurement Units (IMU) and estimates the 3D kinematic trajectory of a mobile 

platform. Although the EO of the LiDAR platform can be obtained in real-time, post-

processing is generally introduced in order to achieve a more accurate and reliable 

solution. To correctly apply the EO, additional information is required in order to 

properly connect the LiDAR sensor and the IMU sensor: the lever arms and boresight 

angles between the two. An implementation of DG along with corresponding 

mathematical equations is described in Section 3.4. 

 

2.1.2 Basic components of a LiDAR instrument  

A LiDAR instrument is composed of a laser transmitter, a receiver, scanning mechanism, 

storage medium, and an operating system for signal digitization and on-line data 

acquisition (Wagner et al, 2004). Figure 2.1 gives a simplified component diagram of a 

LiDAR scanner. 

http://www.applanix.com/
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Figure 2.1 A Sketch of basic components of a LiDAR system that is composed of an emitter unit (1), 

scanning mechanism (2), receiver components (photodiode and digitiser) (3), and a storage unit (4) 

 

The backbone of a LiDAR system is a laser (Light Amplification by Stimulated Emission 

of Radiation) which generates the emitted pulse. Every laser consists of three 

components: active material, a power system, and an optical system (Petrie et al., 2009). 

 

The first component of a laser, the active material, has electrons that can be excited to 

raise their energy level for the purpose of photon generation. There are two types of 

active materials that are commonly used for topographic application laser. They are solid-

state crystalline material such as neodymium-doped yttrium-aluminum garnet (Nd:YAG 
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λ=1046 nm) and a semiconductor material such as gallium arsenide (GaAs λ=835-840 

nm). Both provide a typical pulse length (width) of around 4-10 ns. 

 

To produce a pulse, energy is first pumped into the active material (which is referred to 

as "pumping" the laser). The solid-state laser uses a high intensity discharge lamp or a 

laser diode in the pumping process. In lasers that employ a semiconductor active 

material, an electrical power unit directly passes the current through the active material. 

This addition of energy is required in order for the electrons in the material to accumulate 

the energy required to jump to higher "metastable" states. Then, from these states, 

eventually the electrons will drop back to their lower (stable) states, at which time 

"spontaneous emission" occurs. "Spontaneous emission" causes the electrons to release 

energy in the form of photons of a certain wavelength. By chain reaction, other adjacent 

atoms also emit photons of the same frequency and phase. This process is referred to as 

the "stimulated emission". This whole process takes place in an enclosed chamber which 

is fully reflective on one side and semi-reflective on the other which allows the energy to 

build up inside the chamber. Once a critical amount of energy is reached, the energy is 

released in the form of a coherent beam or a short pulse. 

 

The emitted pulse travels through the optics to the scanning mechanism of the LiDAR 

instrument. Figure 2.2 demonstrates the most commonly used scanner mechanisms: 

rotating mirrors, osculating mirrors, Palmer scanners, and optical fibers. 
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Figure 2.2 Scanning mechanisms and their resulting scan patterns: (a) rotating polygon, (b) 

oscillating mirror, (c) Palmer scanner, (d) fiber scanner. (Wehr at el. 1999). 

 

Rotating mirror systems (also known as line scanners) produce sequential line by line 

scanning patterns (Figure 2.2a). The polygon mirror inside the LiDAR rotates at a 

constant rate, which makes it possible to produce uniform point sampling from line to 

line without errors associated with the changes of speed and accelerations of the mirror. 

The limitation of these scanning systems is their low flying height, as well as the swath 

width limitation based on the characteristics of the rotating mirror (time corresponding to 

distance traveled between the consecutive scan lines). The oscillating mirror can also be 

used as a scanner mechanism, in which the mirror moves back and forth to produce a 

zigzag scanning pattern (Figure 2.2b). These types of systems scan the ground 

continuously (no gaps as with the rotating mirror) and can be operated at high flying 

heights. However due to decelerations and accelerations of the mirror, which is 
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associated with a change of the scanning direction, some errors can be introduced into the 

data. In addition, the changes in velocities that the mirror experiences cause unequal 

spacing among the measured points, with higher point density occurring towards the 

edges of the scanning coverage and lower one at nadir (Wehr and Lohr, 1999). The third 

type of scanner mentioned above is the Palmer scanner, also called the nutating mirror, 

which produces an elliptical pattern (Figure 2.2c). With this pattern it becomes possible 

to measure the ground (closer to nadir) twice from different directions, once in the 

forward scanning position and once in the backward scanning position. This technique 

enables recording of points that might have been occluded if they were scanned from one 

direction only (Schaer, 2010). The drawback is that Palmer scanner systems do have a 

reduced field of view compared with the line or the oscillating mirror scanners. Another 

type of scanner is the optic fiber scanner, which is only employed by the company 

TopoSys, and uses an array of fibers to scan line by line. This type of scanners has a very 

narrow field of view compared with all the other systems. However they are able to scan 

lines at a substantially faster rate than any of the mirror scanners (Schnadt and 

Katzenbeisser, 2004). The fiber scanners produce systematic point coverage with high 

point densities. 

 

After a pulse travels out of the system and comes in contact with an object, some of the 

energy is scattered back towards the unit where it is picked up by a detector and recorded. 

The detector captures the pulse and converts the optical signal of the incoming 

backscatter into an electronic signal. A receiver is composed of a photodiode with a 
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specific detector diameter (this quantity is used for a variety of calculations), which is 

connected to the preamplifier. The preamplifier passes the signal to a digitizer, which 

then converts the analogue signal to a digital one and transfers the digitized data to the 

storage medium. 

2.2 Classification of LiDAR instruments 

The commercial LiDAR instruments can be classified into two broad categories: discrete 

and full-waveform (FW). This categorization is based on the ability of LiDAR 

instruments to record the returned pulses. A FW LiDAR instrument is able to record the 

full signature of a returned signal, while a discrete instrument only records the locations 

of trigger pulses (the suspected target locations). There are some FW instruments that can 

record discrete pulses at the same time as the full waveform of a returned signal is being 

recoded.  

 

2.2.1 Discrete return LiDAR instruments 

Discrete return LiDAR instruments detect targets by identifying discrete “trigger pulses” 

in real-time from the backscatter signal. This process is commonly referred to as the on-

the-fly range determination or pulse detection. This on-the fly  pulses detection is 

accomplished by the hardware triggers built into the instruments. The trigger pulses, 

which are the discrete return pulses measured by the LiDAR system, are the results of 

interactions between the LiDAR emitted signal and the objects in its path, where some of 

the emitted IR signal is reflected back to the detector. It is common for LiDAR systems 



 

 

17 

to store the time-stamped location of a trigger pulse (time of flight or range) as well as its 

amplitude. In the past, discrete LiDAR instruments had the capability of recording only a 

single return per emitted pulse (first or last). However, as the technology has matured, the 

ability to record multiple targets has become a state-of-art standard.  

 

Usually, the manufacturers of LiDAR instruments do not provide any information about 

the methods employed in their products for pulse detection (Mallet et al., 2009). In 

consequence, one may have no way of knowing the overall quality of the range 

measurements. There are a number of potential problems associated with the pulse 

detection methods used by discrete LiDAR instruments (Wagner et al., 2004). The 

shortcomings of the on-the-fly range determination utilized in discrete LiDAR systems 

are demonstrated in Figure 2.3. Firstly, the accuracy of the range estimation is often 

unreliable (Wagner et al., 2004), as certain algorithms do not necessarily detect the peak 

value of the return, but use thresholds to locate the “trigger pulses”. Secondly, the 

algorithms used in many cases are unable to distinguish multiple targets from the 

returning signal, if they are located too close to each other in the profile of the laser 

beam. Therefore, those targets that have a sub-metre vertical separation often become 

indistinguishable. In addition, there is data loss that occurs due to thresholds and 

constraints imposed on the real-time detection algorithm by the manufacturers. These 

thresholds do act as a safeguard from false detections, but can also cause some of the low 

amplitude returns not to be detected as a result of the thresholds. 
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Figure 2.3 Types of errors related to the pulse detection techniques (Wagner et al., 2004) employed 

by discrete LiDAR instruments: error in range to the target (return #1); returns that are not picked 

out due to its low amplitude (lower than the threshold, return #2); and multiple returns that are 

registered as a single return (return #3 and #4). 
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2.2.2 Full-waveform LiDAR instruments 

 

A full-waveform LiDAR instrument records the transmitted pulse and backscattered 

signal as a sampled waveform (Figure 2.4). This ability of a FW instrument offers certain 

advantages over a discrete return one. 

 

Figure 2.4 An example of the sampled waveform that is stored by the FW LiDAR, where both the 

transmitted and received signals are stored in 8 bit blocks for post processing. (Wagner et al., 2008) 

 

In 2004, the first small-footprint Airborne Laser Scanner (ALS) system with the 

capability to record the waveform of the backscattered signal became available in the 

commercial market (Hug et al., 2004). The recorded waveform provided the possibility 

for retrieval of accurate range measurements along with other physical properties of the 

objects that fall in the laser footprint. Waveform parameter extraction was accomplished 

by using the advanced algorithms to detect return pulses in the recorded full-waveform 

data, such as the Gaussian decomposition or Gaussian fitting algorithms. Low amplitude 
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returns could now be identified from the recorded data by using a more complex analysis 

than the one used in a discrete LiDAR instrument (Jutzi and Stilla, 2005). 

 

Although the full-waveform system does perform better than the discrete system in terms 

of distinguishing targets that are close together, there are still some limitations associated 

with the target separation. The range resolution for full-waveform LiDAR scanners is 

equal to vgτ/2, where τ is the emitted pulse duration and vg is the group velocity of the 

laser in the atmosphere (Wagner et al., 2006). With a 4 nanosecond pulse, the 

corresponding targets with the vertical separation of less than 0.6 m become difficult to 

distinguish. Low amplitude return pulses pose another problem: if the amplitude of a 

returned pulse is too close to the noise level of the signal, the standard procedures used 

for pulse detection will not be sufficient to detect this target.  

 

The commercial full-waveform pulse fitting algorithms impose thresholds and constraints 

to avoid false detection. One of the reasons for thresholds is to cope with the ringing 

effect of the scanner, which is caused by the detector electronics of the LiDAR 

(Magruder and Neuenschwander 2009). The Avalanche photodiode technology most 

commonly used by LiDAR is susceptible to this phenomenon. The ringing effect occurs 

when a backscatter signal is received by the photodiode from a highly reflective surface 

(or simply a high amplitude return). This high amplitude return causes oversaturation, as 

a number of the carriers associated with Avalanche process become trapped inside the 

electronics, and then subsequently released moments later. This delayed release causes 
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the appearance of an additional waveform in the recorded return signal. To ensure that 

the extracted points are of the best quality, the issues mentioned above have to be 

appropriately handled when the full-waveform data are processed. 

 

There are a number of small footprint systems with full-waveform capability currently 

available in the market, for example:  

 Riegl  – LMS Q560 (www.riegl.com/), 

 TopoSys – Falcon III (Now part of Trimble Geospatial), which is the only system 

to use fiber optics for transmitting/receiving the waveform, 

 TopEye/Blom – Mark II (www.topeye.com/), 

 Optech – ALTM 3100 (www.optech.ca/), and 

 Leica – ALS60 (http://www.leica-geosystems.com/). 

Part of their technical specifications are summarized in Table 2.1 

Table 2.1 Technical specifications of full-waveform LiDAR systems (Mallet et al. 2009) 

System 
Pulse 

energy 
(mJ) 

Pulse 
width 
(ns) 

Scan 
rate (Hz) 

Scan 
angle (˚) 

Beam 
divergence 

(mrad) 

Footprint 
size (m) 

Range 
accuracy 

(cm) 

Digitizer 
(ns) 

LMS Q560 0.008 4 5-160 45 0.5 0.5@1 km 2 1 

Falcon III - 5 165-415 28 0.7 0.7@1 km - - 

MarkII - 4 <50 14/20 1 1@1 km 2-3 1 

ALTM 3100 <0.2 8 <70 50 0.3/0.8 0.3/0.8@1 km 1 1 

ALS60 <0.2 5 <90 75 usually 0.22 0.22@1 km 2 1 

  

System 
Company 

manufacturer 
Platform 

Beam 
deflection 

Release 
year 

Wavelength 
(nm) 

Flying 
height 
(km) 

Pulse 
rate 

(kHz) 

LMS Q560 Riegl Airborne Polygon 2004 1550 <1.5 ≤100 

Falcon III TopoSys Airborne Fibers 2005 1560 <2.5 50-125 

MarkII TopEye Airborne Palmer 2004 1064 <1 ≤50 

ALTM 3100 Optech Airborne 
Oscillating 

mirror 
2004 1064 ≤3.5 ≤70 

ALS60 Leica Airborne 
Oscillating 

mirror 
2006 1064 0.2-6 ≤50 
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2.3 Full-waveform data processing 

A returned waveform can generally be represented as the sum of n components 

corresponding to n objects encountered by the beam as follows (Mallet et al., 2009): 


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wherein yi is the amplitude value of the waveform at time xi, k is the function describing 

each echo (return) at time xi, and bi is the noise. 

 

The most commonly used function for k is the basic Gaussian curve as follows (Mallet 

et al. 2009): 
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wherein Ak is the amplitude of the Gaussian function, σk is the pulse width (duration), and 

μk is the position of the centre of the pulse. 

 

In addition to these listed Gaussian functions, other functions such as the logarithmic and 

generalized Gaussian models can be used as well. The Generalized Gaussian model is 

(Chauve et al., 2007): 
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where α is the shape parameter that defines the “sharpness” of the peak (Figure 2.6, 

right). 
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The Lognormal Gaussian model is (Chauve et al., 2007): 

 











 


2

2

2

))(ln(
exp)(

k

kk

kk

sx
Ax




  (2.7) 

wherein Sk parameter is the measure of asymmetry of the Gaussian model (Figure 2.5. 

left). 

 

Figure 2.5 Left: Comparison between Gaussian (continuous line) and Lognormal (dashed black line) 

functions. Right: The generalized Gaussian functions with: α=1 is Laplace function (red dashed line), 

α=√2 is Gaussian function (continuous blue line), and α=2 a flattened shape (green dashed line) 

(Chauve et al., 2007) 

 

The influence of the parameter α is demonstrated in Figure 2.5. α provides another piece 

of information about the shapes of the echoes which could be used for classification 

purposes, in addition to echoes width and amplitude. In Chauve et al. (2007), the fitting 

of the abovementioned Gaussian models is compared and discussed, and the conclusion 

is made in favour of using the generalized Gaussian fit. 

 

The parameters used to describe the Gaussian curves (μ, σ, A) are linked to the geometric 

and radiometric properties of the target objects and the properties of the emitted pulse. 

The mean value (μ) is used to determine the range to the object from the LiDAR sensor, 

and thus is instrumental in determining the location of the target in space. The width (σ) 
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of the pulse provides information on the roughness of the target and is also influenced by 

the slope of the terrain. For a flat and “smooth” surface, the response will be similar to 

the emitted pulse in shape. When scanning objects that have more vertical variations 

(shrubs or grass), the return pulse will be wider. In addition, an increase in the angle of 

incidence at which the LiDAR’s emitted pulse strikes a flat surface, will also result in an 

increase in the width of the resulting return. The amplitude (A) of the returned pulse is 

affected by the roughness and reflectivity of the scanned objects and the incidence angle. 

2.4 DTM extraction 

One of fundamental products derived from LiDAR data is the digital terrain model 

(DTM) (Liu, 2008). An accurate terrain model is critical, since many LiDAR products are 

derived from or using the terrain model. To generate a DTM, LiDAR points 

corresponding to the terrain need to be extracted or filtered from the point cloud (Figure 

2.6). 

 

Figure 2.6 A demonstration of the DTM extraction provided in profile and in 3D views. Images on 

the left are of the original point cloud and on the right are the extracted terrain points. 
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As a result, the most essential step in the generation of DTM is the identification of the 

terrain points from the LiDAR data (Pfeifer et al., 2007). In general, the more ground 

points one has, the more accurate the resulting DTM will be. However, if points 

corresponding to low laying vegetation were included in the DTM generation, the 

resulting model might become erroneous. It is, therefore, important to separate LiDAR 

points generated by bare terrain from others, especially those resulted from low 

vegetation canopies. The question is how to separate the terrain points from the rest of the 

data, with minimal user input and lowest possible error, which is a critical issue that 

researchers try to solve in order to generate accurate DTMs, especially in vegetated areas. 

So far, many methods have been developed to generate DTMs from LiDAR data. The 

algorithms designed for the DTM extraction from discrete LiDAR data tend to utilize the 

geometrical properties of the point clouds. The filtering of the terrain using both the 

radiometric parameters and the geometrical properties has been substantially improved 

after the introduction of small footprint full-waveform LiDAR. This improvement is in 

large due to the fact that with full-waveform LiDAR a number of new parameters became 

available to the user. The use of these new parameters leads to an increased accuracy in 

the separation of terrain and non-terrain points. Generally full-waveform provides more 

points to work with and higher accuracy range determination - thus producing a better 

quality DTM than discrete return LiDAR instruments. The existing methods for the 

generation of DTMs can be classified into the following four categories: morphological 

filters, iterative surface models, segmentation/cluster based methods, and progressive 

TIN methods.  
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2.4.1 Morphological filters 

Basic morphological filters are simple in concept and operation. In order to prepare the 

dataset for a morphological filter, the point cloud often has to be gridded first (Meng et 

al., 2010). A window of a set size and shape is then used to traverse through the grid 

going over every cell. When the window is centred on a given cell, the lowest value 

within the range of the window is assigned to the centre cell. This is termed as erosion 

operator. After the minimum values are assigned, using the same procedure and shape, 

the resulting grid is traversed again, however this time the maximum value in the window 

is assigned instead, which is referred to as the dilation operator. The grid obtained has a 

low pass filtered “appearance” since the high frequency components are removed. The 

window size of the morphological filter dictates the maximum size of the object that will 

be removed from the scene. Thus, the filter preserves the features that are larger in size 

than the window used. However, the smaller variations of the ground surface would be 

smoothed out, and the detailed features of the surface would be lost (Chen et al., 2007). 

This problem with the morphological filters was resolved in Arefi and Hahn (2005) by 

using a window of variable size to gradually remove the non-terrain components, thus 

minimizing the low pass filtering effects on the terrain points. This gradual removal of 

non-terrain points by iterative resizing of the window improves the ability of the filter to 

preserve terrain features and object boundaries. 
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One of variations of morphological filters is the slope based filter. It operates on a 

premise that the likelihood of two nearby terrain points having a large height difference is 

minimal, while with increased separation between points the larger height difference 

becomes more probable (Vosselman, 2000). Instead of looking for a point with the lowest 

elevation in a predefined search area, a slope filter checks if there are any points below a 

given point through the use of a cone-shaped region search space. If no points are found 

under the cone, the point at the vertex of the cone is stored as a terrain point and the next 

point is checked. This type of algorithms takes into account the sloping characteristics of 

the terrain and thus is capable of preserving certain terrain features better than the regular 

morphological filters. However, slope filters contain more parameters and thus require 

more tuning for them to operate accurately (Sithole, 2001). 

 

2.4.2 Iterative surface model filters 

 

With the iterative surface model, the DTM is iteratively refined through the addition of 

the ground points at each iteration based on certain rules and thresholds. An example of 

such a filter can be found in Kraus and Pfeifer (1998), where the surface fitting 

interpolation is implemented based on a linear, least squares model. The weights for the 

points are re-estimated at each iteration by analyzing the residuals in order to arrive at the 

model that favours the low laying points. The drawback of this method lies on the fact 

that the object edges and sharp terrain features (i.e., cliffs) are often smoothed out. 
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Elmqvist (2002) described another type of iterative surface filter employing an “active 

shape model” which is a deformable model that is calculated using an “energy function”. 

The energy function defines the elasticity of the model and acts as a cost function to 

determine when the model no longer requires updating (i.e., when to stop the iteration 

process). The initial model is first attached beneath the terrain forming an envelope under 

the point cloud. The elasticity of the model then determines how far up into the point 

cloud the terrain will propagate attaching itself to the points in the scene which it suspects 

to be terrain points. The model is then updated iteratively by gradually adding the local 

minima points that minimize the energy function. The process is repeated until the energy 

function converges to a solution or the Z difference between consecutive iterations 

becomes less than a predefined threshold. The advantage of this method is that it allows 

for the preservation of sharp edges in the scene. To be effective however, it does require 

high density LiDAR data (10 points per metre) with a high percentage of points being 

terrain points. 

2.4.3 Segmentation/Cluster based methods 

Segmentation and cluster-based methods utilize the object’s geometric and radiometric 

properties to classify points as terrain or non-terrain. Classification of LiDAR points into 

object classes, such as: ground, vegetation, buildings, roads, etc., does not only help to 

identify terrain points but also adds substantial value to the dataset. The automation of 

this process in terms of minimization of user required input has been a topic of many 

works and publications. 
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Some of the classification algorithms take advantage of the full-waveform data extracted 

parameters (such as pulse width etc.). This additional information improves the accuracy 

of classification and thus improves the quality of the resulting DTM. Wagner et al. (2008) 

demonstrated how the classification of vegetation vs. terrain can improve DTM 

extraction using the full-waveform information through the removal of non-terrain points. 

The ability to remove points corresponding to vegetation translates into cleaner and more 

accurate terrain reconstruction from the remaining data. 

Nonetheless, difficulties with classification are still present. It would be rare for even a 

well-developed algorithm to execute without a single misclassification. The pulse width 

was found to be of small assistance in discriminating between the vegetation and building 

classes (Mallet et al., 2009). It is difficult to distinguish between vegetation and urban 

structures based on amplitude and width alone (Wagner et al., 2008). This difficulty can 

be overcome in urban environments by slope surface response modelling. 

 

In Chauve et al. (2007), an extracted parameter α (the sharpness of detected echo) was 

evaluated for its effectiveness in classification. Its derivation can be found in Equation 

2.6. Chauve et al. (2007) used thresholds based on trained values to perform classification 

with parameter α to successfully differentiate between buildings, natural ground, and 

vegetative areas. Furthermore, α was proved to be less sensitive to radiometric changes 

than the other extracted waveform parameters. Chauve et al. (2007) suggested the use of 

α as a discriminative parameter when associated with other variables in a supervised 

classification. 
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In Mallet et al. (2008) an approach for classification using the combination of geometric 

and radiometric parameters was demonstrated for full-waveform LiDAR datasets. It 

made use of the difference between pulse range and lowest point nearby within a certain 

radius, residuals from a best fitted plane estimate, deviation of local normal vector from 

the vertical, altitude difference between first and last pulses, the number of echoes in the 

waveform, the amplitude, the width, and the shape of the waveform. These variables 

demonstrated their promising prospects for use in the classification of objects into the 

classes of building, vegetation, artificial ground and natural ground. 

 

The current research trend appears to attempt to de-couple the properties of geometry and 

radiometry, through efforts of precisely separating the two effects one from the other. For 

this task, iterative methodology has the definite benefit of being able to model the surface 

and then re-estimate the waveform properties form the model and classify the surface 

response. This iterative approach allows for parameters such as cross-section to be 

corrected for target’s geometry (angle of incidence etc.) and to be used for classification 

more effectively. 

 

Overall, the combination of the full-waveform data and the neighbourhood analysis 

methodologies takes advantage of both types of the classification techniques (radiometric 

and geometric). This combination allows for the effective use of the available data in 

order to provide better, more stable and consistent classification results. 
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2.4.4 Progressive TIN methods 

 

Described by Axelsson (2000), the progressive TIN is an iterative algorithm that builds 

up a DTM using a generated TIN model. A variation of the progressive TIN algorithm is 

deployed as a module in the TerraSolid’s software: TerraScan. The progressive TIN 

algorithm is also the method that was chosen to perform initial DTM extraction in this 

research. In particular, the progressive TIN algorithm implemented in this study is a 

simplistic realization of TerraSolid’s ground extraction tool and was developed based on 

Axselsson (2000) and the information extracted from TerraScan’s User Guide (Soininen, 

2010). The implementation is described in more detail in Section 5.2.1 

 

The developed routine initially creates a TIN surface model by locating the lowest points 

within a search space, where the size of these regions is defined by the “Maximum 

Building Size” variable. This variable determines the size of an area where a single local 

low point will be chosen from. It is similar to the window or disc size in the 

morphological filter’s erosion operation. From these low points, an initial TIN model is 

then constructed. During each iteration, the algorithm evaluates all the points against the 

TIN using the following threshold parameters: iteration angle, iteration distance, and 

terrain angle, all of which are supplied by the user. The iteration angle threshold is the 

maximum accepted value for an angle that is computed between the candidate terrain 

point, the closest vertex of the TIN and candidates point’s projection onto the surface of 
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the TIN facet (angle is labelled θ in Figure 2.7). The iteration distance threshold is the 

maximum allowable distance (in magnitude) of the normal vector computed between the 

TIN facet to the candidate point (labelled D in Figure 2.7). The third and final threshold 

parameter used in this research is the terrain angle, which is the threshold for the slopes 

of the three new TIN facets that form as a result of the addition of the candidate point. 

 

If a candidate point satisfies all three thresholds, it is accepted by the TIN model. Once 

all the points are evaluated, the new vertices are added to the TIN model. The algorithm 

runs until no new point is added to the model or until fewer points than a preset threshold 

are introduced into the model. 

 

 

Figure.2.7 Progressive TIN parameters: θ - iteration angle and D – iteration distance 

 

The progressive TIN algorithm itself does not differentiate between vegetation and non-

vegetation points. Thus, an appropriate classification is required in order to avoid 

inclusion errors due to addition of low laying objects (tree trunks, shrubs, etc.) into the 

derived terrain model causing inaccuracies. 
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3 Full-waveform LiDAR data and ground 

reference data 

In this Chapter the collected LiDAR data that was used in this study is introduced and the 

procedure for its direct geo-referencing is provided. Also included in this chapter is the 

procedure used for acquisition of the ground survey data, collected as a part of this 

research for validation of the developed algorithm. 

3.1 Full-waveform LiDAR data 

The full-waveform LiDAR data used in this study was acquired in August 2009 over an 

area near Sault Ste. Marie, Ontario, Canada (4630N, 8325W), with a Riegl LMS Q-

560 scanner mounted on an aircraft with an Applanix’ POS AV 310 system. The data 

were collected at the flight height of 150 - 300 m above the terrain by GeoDigital 

International (http://www.geodigital.com/). The terrain ranged in height from 220 to 410 

m above mean sea level. The flight configuration produced a point density of about 20 

points per square metre (4 pulses m-2) with a nominal footprint of approximately 10-20 

cm. Figure 3.1 provides an overview of the study sites which possess various natural and 

man-made objects such as trees of various species, dense vegetation, houses, etc. The 

detailed information on these study sites is listed in Table 3.1 
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Figure 3.1 The study area with 5 study sites identified 

 

 
Table 3.1 Characteristics of the selected study sites 

Site Terrain 
Ground vegetation cover 

(density & species) 

Calibration I Flat with minimal terrain variation 

Shrubs, predominantly 

spruce with some 

deciduous. 

Calibration II Flat Grass and some shrubs 

Maple Gently rolling hill 
Very dense cover, pure 

maple site 

Mixed Wood Steep hills 

Mix of coniferous (jack 

pine) and deciduous, with 

shrubs, dense cover 

Jack Pine Gently rolling hill 
Predominantly jack pine, 

dense cover 
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This LiDAR unit has two receiving sensors: one has high sensitivity (Hi) for recording 

weak return signals and the other has low sensitivity (Lo) for recording high strength 

return signals. The data from the Lo is recommended for use once the Hi sensor reaches a 

certain threshold at which the sensor over saturates and no longer accurately represents 

the signal strength. A single segment of the return is then created through the 

combination of the two channels (Hi and Lo) to avoid over saturation, and to retain the 

ability of the LiDAR to accurately record low amplitude returns. 

 

The LMS-Q560 uses the rotating polygon scanning mechanism. It scans in lines as 

demonstrated in Figure 2.2 (a). The polygon has four sides, each of which is calibrated 

and has its own transformation parameters. These are used to calculate the coordinates of 

the return waveform in 3D with respect to the LiDAR reference frame. 

 

The pulse emitted by the LMS-Q560 closely resembles a Gaussian function. A 2% 

discrepancy was reported in Wagner et al. (2008). Based on 1000 emitted pulses 

extracted from the data collected for this research, it was found that there was a 5% 

difference between the Gaussian model and the emitted pulse (Figure 3.2). This 

discrepancy is mainly due to the ringing effect, which will be described in detail in 

Section 4.3.  
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Figure 3.2 Left: the LMS-Q560 emitted waveform displayed in relative units. The plot on the right 

shows the deviations between the emitted pulse and a fitted Gaussian model. 

 

3.2 Geo-referencing of LIDAR data 

 

As mentioned in Chapter 2, for an airborne LiDAR system, the measured range from the 

LiDAR unit to a target is often converted to the required 3D coordinates in a real word 

coordinate system (referred as a mapping frame) through a series of coordinate 

transformation using the measurements from an on-board direct geo-referencing unit. The 

measured range is first converted to the 3D coordinates in the LiDAR sensor frame (s-

frame), then to the coordinates in the POS reference frame (r-frame); and last to 

coordinates in the selected mapping frame. In the following, the implementation of the 

transformations carried out in this study will be described.  

 

The first transformation implemented was to convert the range to the detected target and 

the angle between the laser beam and the scanner’s mirror to the Cartesian coordinates, to 

produce an XYZ vector, in the LiDAR sensor frame (s-frame). This transformation was 

accomplished through the use of the precise mirror angles and a number of calibrated 

offsets for the mirrors and range. Equations for this transformation, as well as the 
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corrections to the raw waveform, are not covered here since these are proprietary 

properties of Riegl GmbH. 

 

The conversion of the coordinates of a target point in the s-frame to the POS reference 

frame (r-frame) was achieved using the lever arm (ΔX, ΔY, ΔZ) and boresight angles (ω, 

θ, φ) between IMU and the LiDAR (Figure 3.3). 

 

Figure 3.3 Sensor (LiDAR) reference frames to POS reference frame transformation, using lever 

arms and boresight angles  

 

Mathematically, this conversion was accomplished by a 3D conformal transformation 

given in Equation 3.2. 
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The conversion of the coordinates of a target point in the r-frame to the mapping frame 

was performed by initially applying the roll, pitch and yaw angle rotations from the 

SBET solution to the r-frame coordinates In this intermediate step the Z-vertical was 

aligned with local gravity, (positive in the down direction), with Y pointing to 

geographical North, X pointing towards the East, and with the location of the origin 

remaining at the origin of the POS reference frame (Figure 3.4). Applying the angular 

rotations to the LiDAR data, already in the POS reference frame, using the Equation (3.3) 

aligns the LiDAR data with the mapping frame. The resulting transformation has 

essentially brought the LiDAR points into the local vertical North East Down (NED) 

frame. 
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wherein Roll= -ω, Pitch = -θ, Yaw = -φ, are the rotations applied to the coordinates in the 

reference frame to obtain the coordinates in the NED local vertical frame. NOTE: POS 

data frequency as used was 200 Hz, thus in order to obtain position and orientation at the 

required time, data between two consecutive POS data points were linearly interpolated. 
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The next step was to then transform the rotated coordinates from the local NED frame 

using the post processed SBET coordinates to the mapping reference frame. 

 

Figure 3.4 The geometry related to the coordinate transformation from the reference frame and the 

mapping frame. 
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The SBET coordinates given in WGS84 curvilinear frame were then converted to 

Cartesian ECEF frame using Equations 3.4 and 3.5. This conversion was performed as 

the ECEF coordinates were more easily combined with the local vertical coordinates then 

the geodetic. 
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wherein N is the radius of curvature and is measured from the surface of ellipsoid to the 

Z-axis along the ellipsoid normal, “a” is the semi major axis, and “e” is the eccentricity 

of the reference ellipsoid. 

 

With the help of the rotation matrix M, the transformation from the local vertical to the 

geocentric was preformed, via Equation 3.6. 
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wherein λ and Φ are the latitude and longitude from the post processed SBET solution, 

interpolated to sync to the LiDAR data.  
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Equation 3.7 could be expanded by inserting the expressions for M, N, E, and U, as 

shown in Equations 3.8 and 3.9.   
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3.3 The collection and processing of ground reference data  

To validate the developed method, ground surveys on the five study sites (Figure 3.1) 

were conducted in August and October 2011. The terrain models generated from the 

ground surveys were used as ground references in this study.  

 

To collect accurate surveying data, a geodetic network was established in order to 

connect each study site to a global frame of reference. Each study site was surveyed using 

relative static GPS positioning techniques and total station equipment. In the following 

section, I briefly discuss the created geodetic network composed of GPS baselines, and 

the local networks (local traverses) that were established using the total station equipment 

for the purpose of collection of the topographic data at each study site. The details of the 

data acquisition can be found in Appendix B. 
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To set up a geodetic network, the documented horizontal control points from the Ministry 

of Natural Resources in the area of the survey were extracted from the COSINE database 

(www.cosine.mnr.gov.on.ca/, coordinate report is provided in Appendix D). 

Unfortunately, there were only two control points available, one for the northern study 

sites (station – 00820000478), and the other for the southern sites (station – 

00819950063). Coincidently, the southern control station was also occupied with a GPS 

receiver during the 2009 LiDAR campaign as one of the base stations for post-processing 

of the POS data. 

 

To connect the control points to the pre-selected study sites, a network composed of GPS 

baselines was established, as shown in Figure 3.5. Upon arrival at each of the preselected 

study sites, two GPS stations were setup 30 metres apart (“GPS1” and “GPS2”) with the 

wooden steaks hammered into the ground as their marks (in order to establish a 

permanent point for the network station). The GPS receivers were run simultaneously to 

log the measurements for duration of at least half an hour for this short baseline. 

 

Both of the GPS1 and GPS2 stations were then connected to the nearest available 

geodetic control point. Two occupations of each baseline (GPS1 to control and GPS2 to 

control), under different satellite configuration were performed for each GPS point pair, 

that resulted in a total of four observations. The double run manner of the GPS baseline 

data acquisition was introduced to provide with redundant observations to check for any 

significant errors made in the GPS baseline observations. 

http://www.cosine.mnr.gov.on.ca/
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The GPS baseline network was finalized once all stations on the individual sites were 

connected to the nearby control points (Figure 3.5). The collected data was then 

processed and analyzed using Leica Geo Office and Columbus Best-Fit computing. The 

least square solution obtained can be found in Appendix C. 

 

 

Figure 3.5 The established GNSS network. On the left is the overview map of the established points 

(red triangles) and control points (black circles). On the right is the diagram of the baseline 

measurements performed with the GNSS receivers where the segmented line is the baseline 

measurement between the control points, drawn not to scale in order for both control points to fit 

onto the plot. 
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After the GPS survey was completed, the total station equipment was used to establish a 

local traverse at each site. The first entrance point into the forest (point “A” on the edge 

of the tree line) was setup in a way that provided an unobstructed line of sight going into 

the forest and towards the study area (location of point “B”) with both GPS network 

points also clearly visible. This setup allowed for the local traverse to be easily tied into 

the existing GPS network. 

Depending on how far into the forest the study site was, a number of intermediate 

traverse points were set up to reach the plot center. The traverse points were positioned in 

a manner that would keep the number of total station setups to minimum whilst 

maintaining an unobstructed line of site between consecutive setups. The traverse points 

were located as far away from trees as possible in order to obtain the best view of the 

study plot area. The visual representation of all the sites and their corresponding traverse 

networks can be found in Appendix B. 

 

To conduct the topographic survey (ground point collection), two local traverse points 

were used; one occupied by a reflector (to act as backsight) and the other occupied by the 

total station. The plot boundaries were defined using rope, which helped to navigate 

under the canopy and ensured systematic linear collection of the topographic points line 

by line across the plot, hence, providing an even distribution of terrain points. The use of 

small flags to mark the locations of surveyed points also greatly assisted with the data 

acquisition process. A group of 20 topographic points were collected at a time, and the 

backsight direction was checked before and after each group collection. The sharp tip of 
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the survey pole was rested on top of the foliage, and never forced into the ground in an 

attempt to obtain consistent point measurements. A summary of the total number of 

topographic points collected at each study site is provided in Table 3.2. 

 

Together with the topographic points, additional check points were also collected at each 

of the sites for the purpose of LiDAR data validation. The description of the check points 

is given in Appendix F, and the result of the data acquisition campaign together with 

more detailed information on procedures and analysis used can be found in Appendices B 

through E.  

Table 3.2 Topo points collected at each site 

Site Number of topo points 

Calibration 1 180 

Calibration 2 300 

Maple 400 

Mixed 250 

Jack Pine 300 

 

3.4  The assessment of ground reference data  

The accuracy assessment of the ground reference data collected was carried out using 

error propagation techniques. The results of this assessment are summarized in Table 3.3. 

 

To estimate the error of the ground reference data, both accuracies of the established 

network (traverse) and the topographic point collection had to be considered. For the 

latter, the survey equipment specifications were used to estimate the associated errors. 

The measurement uncertainties with a SOKKIA Set510 provided in the user manual were 
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±5” for angle and ± (2mm + 2ppm) for distance. Equation 3.10 was used to calculate the 

3D accuracy of a point measured by a total station. 
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wherein: 

S is the distance measurement, 

ξ is the horizontal angle measurement, 

ψ is the vertical angle measurement, 

σ is the associated errors of these parameters, and 

ρ is the convertor from radians to seconds: 206264.8. 

 

The maximum distance of 50 metres was observed, and for simplicity, vertical and 

horizontal angles of 0˚ were substituted into Equation 3.11, which yielded the following 

equation. 
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σpoint=±3.5 mm or ±0.7 cm at 2σ. With the components: ±0.67 cm error in horizontal and 

±0.22 cm in vertical. 

 

This calculated value was rather optimistic as it should be noted that the hand held survey 

pole was used to collect the topographic data. An additional error effect of 1 cm should 

be added to the horizontal component due to difficulties in levelling and poor visibility in 
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the dense brush. Also, due to the amount of foliage on the ground an error of up to 2 cm 

in the vertical direction for the measured points should be accounted for. Hence, the 

reasonable accuracy of the topographic points was assumed to be closer to ±1.67 cm in 

horizontal and ±2.2 cm in vertical in the densely forested areas. 

 

The positional accuracy of the GPS network stations and the established traverse points 

were also included in topographic point position accuracy estimation. From the analysis 

of the GPS observations, the uncertainty of the derived GPS network point coordinates 

was estimated to be around ±1.83cm horizontal and ±1.50 cm vertical (Appendix C). 

After propagating the GPS network point error to the traverse points, the plot centre 

traverse point accuracies were estimated to be ±3.0 cm in horizontal direction and ±2.50 

cm in vertical. Combining the positional accuracy of plot centre point with the 

topographic point acquisition accuracies meant that the ground topographic mapping data 

was expected to have accuracies of ±4.67 cm horizontal, ±4.72 cm vertical - in heavily 

wooded areas and ±3.67 cm horizontal, ±2.72 cm vertical - in open areas.  

Table 3.3 Estimated Accuracy of the Topo Data 

Conditions 

Horizontal 

Accuracy 2σ 

(cm) 

Vertical 

accuracy 2σ (cm) 

GPS derived points 1.83 1.50 

Plot center, traverse point 3.00 2.50 

Topo points in wooded area 4.67 4.72 

Topo points open area 3.67 2.72 
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From Table 3.3 and the LiDAR platform error estimation described in Section 6.1, it is 

clear that the accuracy of the ground reference data is superior to that of the LiDAR point 

cloud. Hence, the collected topographic data can be used to validate the proposed DTM 

extraction algorithm. 

 

To assess the compatibility of the LiDAR derived point cloud data and the ground 

reference data, additional objects located in the vicinity of the study sites were collected 

during the ground survey data acquisition and were used as check points between the two 

datasets in the validation stage. A detailed description of these objects can be found in 

Appendix F. The check points mainly consisted of the lane markings on the roads that 

would be visible on a LiDAR point cloud intensity plots, as well as a number of road 

signs, utility poles, drainage pipes and vegetation free slopes, etc. Also, the Calibration II 

study site (open grass covered area) was used as a vertical control to check the agreement 

of the elevation values between the data collected by LiDAR and data surveyed with GPS 

and total station. 

 

During the time between the airborne LiDAR survey and the ground reference data 

acquisition, highway 129 was resurfaced. All tie-ins with the road were lost. However, a 

few of the targets chosen as the check points were still present at the sites so that there 

were a sufficient number of check points to provide the necessary information on the 

compatibility of the two datasets. 
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The comparative results between the ground reference points and the LiDAR datasets 

indicated the horizontal position offsets ranging from 5 to 20 cm with no distinct patterns 

in direction of the error observed. The vertical offset (as expected) was systematic at each 

site and varied from 2 cm at site Calibration II to 6 cm at Maple site. These vertical 

offsets could be due to the difference in processing technique employed for the LiDAR 

geo-referencing and ground survey data processing. 

 

The comparative results between the two datasets matched the expectation of the absolute 

accuracy for the platform used for the LiDAR data acquisition campaign. The accuracy of 

the ground reference data and the LiDAR data collected appear to be within the 

established limits. Thus, it can be inferred that the ground reference data can be used for 

the validation of the developed DTM extraction algorithm. 
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4 Implementation of Gaussian decomposition 

methods 

Even though Gaussian decomposition methods were well-described in the literature, their 

implementation was not trivial. In this chapter, my implementation of Gaussian 

decomposition methods is described. I also implemented a method for the detection of the 

ringing pulses (described in Section 2) which is described in the following as well. 

4.1 A general overview  

The Gaussian decomposition (Hofton et al., 2000; Wagner et al., 2006; and Lin et al, 

2010) is the most commonly used method to decompose the recorded full-waveform into 

several discrete echoes (equation 4.1): 
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wherein N is the number of the Gaussian functions used to fit the recorded signal, Ai is 

the magnitude of the ith Gaussian function (echo); and μi, and i  are its central position 

and echo width, respectively. N is commonly determined prior to the decomposition, 

while the variables Ai, μi and i (i=1,2..N) are solved by minimizing the cost function 

(Equation 4.2) using LM optimization method (Jutzi and Stilla 2005; Chauve et al. 2007), 

which is available in GSL (GNU Scientific Library): 
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wherein M is the number of the samples in the recorded echo; and Xj and fj are the 

magnitudes calculated by Equation 4.1 at each sample point j. 

4.2 Implementation of Gaussian decomposition 

The key to the Gaussian decomposition is to accurately determine the number of returns 

and the initial value of the parameters (position, width, and magnitude) associated with 

each return. This initialization process requires separating the signal from background 

noise. A pulse with its amplitude below a certain threshold (T) might be indistinguishable 

or could have a detrimental effect on the overall quality of the extracted data if it is fitted. 

In this study, the amplitude threshold (T) for potential returns was determined 

experimentally, any returns with amplitudes smaller than T were not considered. In Stilla 

and Jutzi (2008) and Lin et al., (2010), the threshold was set as three times the standard 

deviation of random noise (3n). The value for T in this research was calculated based on 

the mean and the standard deviation of the noise observed from the records of the emitted 

pulse. Accordingly, two different tests were carried out where 15,000 emitted waveforms 

were used for the computation of noise. For the first test, the amplitudes of all the 

recorded samples before and after the emitted pulse where evaluated (Figure 4.1, left). 

The mean value of the samples was found to be 3.5 and a 3 standard deviation of 5.4 

was observed. The second test was performed using only a region of the waveform near 

the emitted pulse (20 samples before and after the system generated pulse). This test 

yielded a mean value of 5 and standard deviation of 10 at 3  (Figure 4.1, right). 
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Based on the experiments, T was estimated to be 8 and 15 from the two tests, 

respectively. It is worth noting that threshold value is usually chosen to be higher so as to 

avoid the effect of noise. However, a bigger T value may also result in missing some of 

the weak echoes. Nonetheless, this is not an issue for the algorithm proposed by this 

research, since the weak echoes generated by terrain under vegetation canopies are 

detected in the subsequent steps.  

 

Figure 4.1 Left plot shows the waveform data (in red) used for noise calculation in Test 1 where all 

the samples not belonging to the identified pulse are used for noise estimation. Right plot shows the 

data points (in red) used for Test 2 where only the 20 samples before and after an identified pulse are 

used to calculate the systems’ background noise. 

 

 

The workflow of the implemented Gaussian decomposition algorithm is outlined in 

Figure 4.2. In order to initialize the LM algorithm for Gaussian fitting, the locations of 

the pulses were detected using a strategy described in this section, and named 

“initialization” (#1 in Figure 4.2). The results obtained from the LM algorithm (#2 in 

Figure 4.2) were then tested using a “condition check” (#3 in Figure 4.2). If the 

conditions were not met, the pulse locations were re-estimated (#4 in Figure 4.2). If the 
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conditions were satisfied, the resulting targets extracted through this algorithm were 

further tested for the presence of “ringing pulses” (Section 4.3).  

 

Figure 4.2 The workflow of the implemented Gaussian decomposition method.  

 

As in the example shown in Figure 4.3, the first step of “Initialization” was to segment 

the continuous waveform into clusters. Each cluster was composed of points (samples) 

with amplitudes above the threshold value T, which was set as 15 in this study (Figure 

4.4). 

 

Generally speaking, it requires at least five points for the fitting of a waveform. In case 

where there are fewer than five samples in a given cluster, the points on either side of the 

grouping that are below the preset threshold T can be included into the cluster. 
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Figure 4.3 Segments generated and used (highlighted)  

 

After the waveform was split into segments, the first, second, and third derivatives with 

respect to amplitude of the segments were computed (Figure 4.4). The zero crossings of 

first and third derivatives were used to locate the local maxima and points of inflection of 

the waveform respectively, which corresponded to the location of the targets, and were 

needed for the initialization of the LM algorithm.  

 

For the waveform returns with well pronounced peaks where the distance between targets 

is sufficient enough to avoid any overlapping of pulses (Figure 4.4), only the first 

derivative was used for pulse detection to initialize LM algorithm (step 2 in Figure 4.2).  
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Figure 4.4 Example of a simple case of Gaussian fitting, where the pulses are easily defined and are 

distinguishable (top). In this type of cases, using the local minima (zero crossing of first derivative) is 

sufficient to pick out the individual returns (bottom) 

 

Unfortunately, the situation depicted in Figure 4.4 was rare, especially so in the wooded 

areas where multiple returns from nearby objects (distance < pulse width) became 

virtually indistinguishable (see Figure 4.5 below). The procedures outlined in steps 3 and 

4 of Figure 4.2 were implemented to deal with these complex cases through the use of the 

third derivative. 
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Figure 4.5 Example of a complex case of Gaussian fitting (top), where the third derivative of the 

waveform had to be used to successfully seed the waveforms (bottom). 

 

Figure 4.6 demonstrates how the first and the third derivatives could be used to 

distinguish returns from the signature, if the pulses were overlapping. The first derivative 

was analyzed for the locations of zero crossing in the negative direction, as these were 

representative of local maxima points and provided an initial estimate of the number of 

waveforms. The third derivative was analyzed for the zero crossings in the positive 

direction, which corresponded to the points of inflection and provided the possible 

location of additional returns that might not be picked up by the first derivative. The 
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amplitude (A) and the time (μ) of the waveform corresponding to the location of the zero 

crossings were used to initialize the LM algorithm. The width of the emitted pulse (σ) 

was used as the approximation of the width of the return pulses to be fitted. 

 

Figure 4.6 A demonstration of how the distance between the consecutive pulses affected the chances 

to distinguish the two individual returns on analysis (simulated data) 

 

For the complex cases where the use of the third derivative was required, the initial pulse 

detection was still performed using only the first derivative zero crossings to initialize the 

LM algorithm. The parameters of the Gaussian functions obtained from the LM fitting 

were then checked to ensure that certain conditions were met (“Condition check” in 
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Figure 4.2). If the condition check failed, the third derivative of the waveform would be 

used for the re-evaluation of the location of the return pulses.  

 

The parameters of the Gaussian functions obtained from the initial round of LM fitting 

were checked to see if the following conditions were met (#3 in Figure 4.2): 

 The amplitude of a Gaussian function is bigger than 15 and less than 1.1 times the 

corresponding amplitude value of the original waveform, while all the estimated 

amplitude errors are less than 20 units. 

 The width is less than 8 ns and more than 1 ns with an associated error of less 

than 2 units. 

 The mean value is in an acceptable range (range of the waveform) with an 

associated error of less than 1 ns (15 cm). 

 The fitted Gaussian curves are separated by more than 2 ns (30 cm). 

It is worth mentioning that the analysis of the Chi-Squared value obtained from the LM 

algorithm demonstrated that this parameter might not be a good indicator for goodness of 

fit as it often indicated that the results were acceptable even when the condition check on 

the estimated parameters failed. For this reason the Chi-Squared value was not used to 

check the validity of the fitted waveform.  

 

If any of the specific conditions was not met, the following steps were further taken (#4, 

“re-estimation” in Figure 4.2). 
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1) Check if the segment was initially fitted with only two pulses whose amplitudes 

had a ratio of 7:1 or higher. This check was done because it was found that the 

higher amplitude returns were often not a good fit for the regular Gaussian model 

causing an error in the fitting of the trailing smaller pulse (Figure 4.7). The 

solution to the erroneous fit was to split the segment into two parts (based on local 

minima) and re-process each resulting sub-segment separately.  

 

Figure 4.7 An example of a case where fitting the return waveform (blue dashed line) with two 

Gaussian curves  (black solid lines) results in an erroneous fit. It can be seen that the second, lower 

amplitude pulse that has been fitted does not follow the initial waveform. 

 

2) In all the other cases (examples given in Figure 4.5), the third derivative was 

analyzed, and the negative direction zero crossings were used to identify potential 

additional returns. A new candidate, based on third derivative zero crossing with 

the steepest slope was chosen as a seed for an additional pulse. The reason for this 

selection was that the third derivative was susceptible to noise, and thus the most 

likely candidate pulses were the ones with the steepest slope. At this stage the LM 

algorithm was then re-run using the newly selected seed.  
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Once the results from the Gaussian fitting were obtained, they were then analysed for the 

ringing effect. This procedure is described in detail in Section 4.3. 

4.3 Detection of ringing 

The ringing effect is an important phenomenon to be analyzed when one performs a 

Gaussian decomposition (Roncat et al., 2008). This phenomenon causes the appearance 

of false weak pulses in the full-waveform signature that generally trail a strong return 

(high amplitude). The ringing effect is caused by LiDAR’s receiver electronics, 

specifically the saturation of the photo diode used for signal amplification which may 

make it output phantom pulses (Magruder and Neuenschwander, 2009). When these 

phantom (i.e., ringing) pulses are fitted with a Gaussian curve and geo-referenced, they 

often become points that are located visibly below the level of the terrain. These points 

are clear outliers compared with both the surrounding returns and the terrain data 

obtained during ground survey. A demonstration of the effect of ringing pulses on the 

generated DTM is shown in Figure 4.8. It is important, as a result, to detect and eliminate 

the echoes caused by the ringing effect. In this research, after the LiDAR data were 

initially processed, a number of pulses (from bare ground areas) were analyzed in order 

to extract the thresholds and parameters to be used for the identification of false returns. 

Two distinct patterns, in which “ringing” occurs were then identified. A workflow was 

then developed to enable identification of the two types of ringing pulses and this 

workflow is outlined in Figure 4.9 and will further be discussed in the subsequent 

paragraphs. These ringing pulses could be treated with a filtering algorithm designed 
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specifically for the pulses below the surface. However it was more practical to implement 

a conditional check to catch these occurrences. 

 

Figure 4.8 A demonstration of an outlier spike (dark blue) generated by an unhandled Type 2 

“ringing” pulse 

 

 

Figure 4.9 Flowchart and explanatory plot describing the workflow implemented for identification of 

the suspected Type 1 and Type 2 ringing pulses. Wherein μP and AP are the peak location and the 

amplitude of the fitted pulse tested for ringing, f(x)=A is the waveform from which the pulse was 

extracted from (where each sample x maps to an amplitude A). xj is the sample closest to the detected 
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peak, and (xk , Ak) is the location and magnitude of the maximum amplitude value within 13 samples 

of the fitted waveform. 

 

As shown in Figure 4.10, the first type of ringing pulses, henceforth denoted as Type 1, 

often occurs after strong returns and Type 1 ringing pulses trailed a strong return within a 

certain distance. In case of this research, this distance was determined experimentally to 

be 13 samples. As a rule, the Type 1 ringing pulses were a fraction of the amplitude of 

the initial pulse (1:7 or less) and the amplitude of these phantom pulses was found to be 

below the 25 units mark. 

 

Figure 4.10 Examples of Type 1 ringing pulses (red circles).  

 

As shown in Figure 4.11, the second type of ringing (denoted as Type 2) were the 

phantom pulses following two actual returned pulses. The two initial/actual consecutive 
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pulses had a separation of approximately 13 samples, similarly in patterns as that found 

in the case of Type 1 actual and ringing pulses. However due to their amplitude ratios, the 

first two pulses did not fall under the Type 1 ringing rule and neither did the second and 

third pulse. The Type 2 ringing pulses were found to be rare and occurred about once 

every 20,000 waveforms. If they were left unhandled, they would introduce errors into 

the DTM (Figure 4.8). 

 

 

Figure 4.11 Examples of Type 2 ringing pulses (red circles). 
 

To test for the Type 2 ringing pulses, the logic outlined in the flow chart (Figure 4.9) was 

used. If the check for Type 1 ringing pulses failed on the first two pulses based on their 

amplitudes (ratio of the amplitudes fell between 1:7 to 1:2), the third pulse would be 
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flagged as a Type 2 ringing pulse if it was less than 25 in amplitude, it fell within 13 

samples of the second pulse and was smaller than 1/3 of amplitude of the second pulse. In 

other words, a candidate point was classified as a Type 2 ringing pulse if the candidate 

pulse was smaller than 25 in amplitude and located within 13 samples of another pulse 

that was three or more times the amplitude of the candidate pulse, and this neighboring 

pulse itself had a third sharp return pulse within 13 samples before it (300+ in amplitude).  

 

For the implemented ringing detection method, experimental results demonstrated that 

the commission (Type I) error composed a high percentage of the detected ringing pulses 

(50-60%); the omission (Type II) error was minimal (a singular case was observed with 

approximately 500,000 evaluated waveforms). The reason for allowing large type I error 

was as follows. The inclusion of any ringing echoes in the DTM generation could cause 

significant errors, which has been demonstrated by Figure 4.8 the errors introduced by 

including ruining echoes. However, based on my experiments, the additional terrain 

pulses gained by reducing type II errors did not significantly affect the overall DTM 

quality. Thus it was determined that it was critical to keep the Type II error to the 

minimal, even if that meant an increased Type I error. 
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5 Integrated approach to DTM extraction 

5.1 Outline 

The method proposed in this research was an incorporation of the pulse detection of full-

waveform LiDAR data and the DTM extraction, in which the weak pulse waveform 

extraction was performed at the same time as the DTM generation was progressed. The 

workflow of the proposed method is given in Figure 5.1. The input was the pre-processed 

waveforms as described in Chapter 3. The first step in the workflow was the Gaussian 

decomposition, which is described in detail in Chapter 4. The candidates for the terrain 

points were identified from the resulting points (the detected pulses), where only the last 

return points that met pre-set amplitude and width thresholds were selected. The 

candidate terrain points were then filtered using a combination of morphological and 

progressive TIN filters. The resulting terrain points were then used to create the initial 

TIN approximation of the DTM, based on which the terrain model would be further 

refined and adjusted. The process of locating more points on the ground from full-

waveform LiDAR data allowed for the densification of the DTM to occur and thus 

delivered a more accurate representation of the ground surface. 
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Figure 5.1 The diagram of the developed DTM extraction method 

 

 

The digitized full-waveform data often contain returns that cannot be initially determined 

by the pulse detection and Gaussian fitting algorithms (weak echoes). On the basis of the 

initial DTM, it becomes possible to re-evaluate these candidate echoes embedded in the 

full-waveform through the proposed integrated method, which fully took advantage of the 

additional remaining data. The utilization of the initial DTM together with the geo-

referenced waveform data allows for an indication of the area of the waveform to search 

for additional ground returns. This process is referred to as the “seeded Gaussian 

decomposition” in this research.  

 

Integrated Approach 
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If an additional echo was found through the seeded Gaussian decomposition, it was then 

extracted and added to the list of candidate terrain points. Using these additional 

candidate points, the progressive TIN generation and the seeded decomposition were 

repeated. Once no more candidate points were located through the seeded Gaussian 

decomposition, the current TIN was stored as the latest updated DTM. As a result of this 

iterative process, the density of the ground points was increased so that the iteratively 

updated DTM could model the actual terrain better and better. In the following two 

sections, the two main components of the developed workflow: “Progressive Tin 

Filtering” and “Seeded Gaussian Decomposition” (SGD) are discussed in more detail. 

5.2 Progressive TIN filtering 

The identification of the initial terrain points was the first step in the developed method. 

In this research a pre-determined neighbourhood search algorithm was used to traverse 

through the terrain points as in Axelsson (2000) and Lin and Mills (2009). In this 

algorithm, the lowest points in the neighbourhood were treated as the initial terrain 

points. The morphological opening operation (Chen et al., 2007) (Soille, 2003) was 

applied to automatically identify the dominant object sizes in the scene of interest, which 

served as the basis for the determination of the neighbourhood size. The morphological 

operations, which are used to analyzing raster imagery, were adapted for LiDAR data in 

this research. 
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The window size of the morphological filter dictated the maximum size of an object that 

could be removed from the scene. In order to produce an optimal result, the filter size was 

determined automatically using an in-house algorithm developed by the Earth 

Observation Laboratory at York University (Jing et al., 2012). The algorithm worked by 

evaluating the effects of incrementing the diameter of the window and assessing the 

differences from one sized window to the next. In particular, the mean value of the 

difference of two consecutive morphologically filtered grids was computed. A series of 

disk shaped structuring elements (SEs) with diameters from 0.25 m to 10 m were 

employed in the opening operations (as per Section 2.4.1) to result in corresponding 

opened data clouds. In each opened dataset, the objects that fully contained the 

corresponding SE were retained, whereas the smaller ones were sifted. For each pair of 

the consecutive opened data, the mean of their differences was calculated by using the 

mean of the opened data with the smaller SE size as the minuend. 

 

The result obtained from the subtraction of consecutively opened point clouds for one of 

the sites is shown in Figure 5.2, where the Y-axis is the mean value obtained from 

differencing and the X-axis is the SE diameter used. The peaks in the plot indicate the 

presence of objects with that specific diameter in the scene, whereas a local minimum 

indicated that there was a large number of objects removed between two consecutive 

opened images. The slope of the plot can reveal the size distribution and the scale of the 

objects in the scene. As demonstrated by Figure 5.2, there is a wide range of objects of 

different size present in this scene clustered into multiple dominant size groups smaller 
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than 6 m in diameter. The identification of the last local minima, before the line started 

“levelling off”, provided the best SE size to use for a morphological filter in order to 

remove the high frequency components from the scene (i.e., shrubs and trees). In Figure 

5.2 it is noticeable that when the opening operator had radius of 6m, the variation of the 

line stops and the line approaches the zero difference mark. 

 

Figure 5.2 Difference between the mean values of the opened DSMs for Plot 1, ΔM(i) = M(i + 0.25) – 

M(i), where M(i) is the mean value of the opened DSM with the disk SE (structural element) of a 

diameter i metres 

 

Based on the results obtained from the algorithm described in Jing et al. (2012), a disk of 

an appropriate diameter was used as the search space for each LiDAR point (in terms of 

their horizontal position). If a LiDAR point was the lowest in its neighbourhood, it was 

considered as a candidate terrain point. It is worth mentioning that the size of the 

neighbourhood changes from iteration to iteration as well as from site to site. In this 
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study, the neighbourhood was often reduced to two metres on second iteration for most of 

the sites. 

 

Furthermore, the filtered points were taken as the base of the progressive TIN algorithm. 

This meant that the additional points were used to construct the resulting initial DTM, 

thus the terrain TIN model created would better fit the ground surface scanned. The TIN 

model generation was implemented using CGAL (Computational Geometry Algorithm 

Library, http://www.cgal.org/). This library made it possible to construct a TIN model 

from a given set of points. The progressive TIN algorithm was constructed as per the 

description provided in the background Section 2.4.4. 

 

In addition to selecting the neighbourhood size, input parameters for the progressive TIN 

algorithm were also required. The necessary input parameters for the progressive TIN 

algorithm were chosen based on pre-knowledge of the study sites. In this case they were 

chosen based on the fact that in most cases the terrain was gently rolling and the chosen 

study sites did not have abrupt changes (such as cliffs, steep banks, etc.). The maximum 

angle of iteration was set to 6 degrees; the maximum distance of iteration was set to 1.4 

metres, and the maximum resulting terrain angle chosen was 80 degrees (please see 

Section 2.4.4 for a review of these parameters). 

 

In the progressive TIN algorithm, the “Barycentric Technique” (Scott, 2006) outlined in 

Equation 5.4 was used in order to find all points falling within a specific TIN facet. By 
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only considering the X and Y coordinates of each vertex (denoted as A, B and C in Figure 

5.3) of the facet as well as only the X and Y coordinates of each test point (P), Equation 

5.4 yielded a logical test that allowed for the conclusion of whether or not point P fell 

inside or outside the facet. 

 

For the calculation of the iteration angle and the iteration distance, basic algebraic 

relationships were implemented: 
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wherein:  

A is the closest vertex to point P 

 A B and C are vertices of the facet (labelled clockwise) 

D is the vertical distance; and θ is the iteration angle 

 

Figure 5.3 Progressive TIN algorithm parameters: θ - iteration angle and D – iteration distance, P is  

point to be tested, and A, B and C are TIN facet vertecies. 

 

The terrain angle was computed for all the vertices as follows: 
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wherein the ΔXP, ΔYP and ΔZP are the components of the vector from a facet vertex to 

point P and Θ is the terrain angle. 

 

The progressive TIN algorithm traversed through all the candidate points to check if 

these could be classified as terrain. During each iteration, the newly identified terrain 

points were then used to recalculate the TIN model. The algorithm stopped, once no new 

points were added, producing a TIN model ready to be used in the seeded Gaussian 

decomposition. 

5.3 Seeded Gaussian Decomposition 

For every facet of the TIN model obtained from the progressive TIN algorithm, all of the 

laser waveforms passing through the facet were identified. To accomplish this, geo-

referenced waveform data was used, specifically the coordinates of the point of origin 

(Xo, Yo, Zo) and unit vector (Δx, Δy, Δz) parameters of the waveforms.  

 

Initially, the equation of the plane was computed using the three vertices of the facet. The 

point of intersection of the waveform with the plane that the facet created was then found 

by solving the systems of Equations 5.3a and 5.3b for parameter distance (dist) using 

Equation 5.3c. Substituting the derived distance back into the original equation of the 

vector (Equation 5.3b), the X, Y and Z of the point of intersection (with the facet plane) P 
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could be found. The computed points P were then tested to check if they fell inside the 

facet (and thus if the waveforms intersects the facet) using a “Barycentric Technique” 

Equation 5.4.  

 

If the waveform was found to intersect the facet, it would become possible to “seed” the 

potential location of ground returns (terrain points) within the intersecting waveform 

using the distance (dist) obtained previously from Equations 5.3. 
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wherein A B and C are the vertices of the facet (triangle in TIN) and P is the point being 

tested. 

 

With each consecutive facet, the number of possible intersecting waveforms was 

decreased which allowed to reduce the processing speed of the algorithm. 
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Figure 5.4 The full-waveform LiDAR signature passing through a facet of the terrain TIN model 

(top). The black circles are the peaks of the returns detected by the Gaussian decomposition method 

(bottom). The red line shows the location of the seed (point of intersection of the waveform and the 

TIN facet) used for the seeded Gaussian decomposition (SDG), and the green curve is the result of 

fitting one Gaussian function to the region near the seed. 

 

The location on the waveform where the laser pulse intersected with the facet was used as 

the seed for the SGD. For example, one of laser pulses passing through the red facet in 

the TIN model along with its full-waveform return is shown in Figure 5.4. For the 

waveform in Figure 5.4, three returns were detected (black dashed line with circle 

marking the peak) using the Gaussian decomposition method described above, and these 

returns were backscattered from a tree. The red dashed line shows the location of the seed 

in the full waveform (the seed location was the point of intersection of the facet and the 
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waveform). The SGD (algorithm is described in detail in Section below) was then used to 

fit a Gaussian function near the seed and an additional return (green curve) was detected. 

 

The implemented SGD algorithm (Figure 5.5) was used for detection of weak pulses in a 

specified (seeded) search region that was considered to most likely contain the returns 

associated with the terrain (visualized as a red dashed line in Figures 5.4). The proposed 

SGD algorithm also used LM algorithm for Gaussian parameter estimation, however the 

pulse detection process (step 1 in Figure 5.5) was substantially less involved than the one 

used for the Gaussian decomposition algorithm described previously. The seeded region 

(approximately one metre in either direction from the estimated terrain level) was 

evaluated from right to left in order to locate the cluster of points that best resembled a 

return pulse (green line in Figure 5.4). The rightmost maxima point in the seeded region 

was then identified as a first point of a segment to be fitted. The segment was grown 

recursively starting from the maxima point and expanded in both directions to include all 

the samples that were less in the amplitude than the samples added in a previous iteration.  

 

If the total length on the segment satisfied the minimum point requirement (7 samples 

minimum due to larger noise effects associated with lower amplitude pulses), the 

Gaussian fitting was performed on the extracted segment to fit one return only (step 2 in 

Figure 5.5). The fitted echo was then analyzed for the width and goodness of fit 

requirements (step 3 in Figure 5.5) and ringing effect. If the constraints were met, then 
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point was geo-referenced and included into the dataset. Otherwise, the next candidate 

cluster in the seeded region (going right to left) was evaluated (step 4 in Figure 5.5). 

 

Figure 5.5 The workflow for the developed SGD algorithm. 

 

After the SGD, a number of new candidate terrain points were detected. These new  

points were fed back into the module of “progressive TIN filtering” (Step 4 in Figure 5.1) 

together with previously derived ground points for the next iteration of the algorithm. If 

there were no new points detected by the SGD algorithm, the TIN terrain model used to 

initialize the SGD was stored as the final DTM. In general, running two iterations was 
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found to be sufficient for vast majority of the discernible low amplitude echoes to be 

included into the DTM. 
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6 Case study and validation 

In this Chapter, the accuracy assessment of the airborne LiDAR data is discussed and the 

two LiDAR DTMs of the study sites, one obtained via the developed algorithm and the 

other from the TerraScan software, are introduced. These two LiDAR DTM extraction 

methods were compared with each other and evaluated against the collected ground 

reference data. 

6.1 Accuracy assessment of the derived LiDAR data 

This section provides a description of the estimate of the expected platform accuracy for 

the LiDAR system used to collect data for this research. The estimated accuracy was used 

to establish a baseline for the expected absolute and relative errors of the DTMs derived 

from the LiDAR point cloud data. In particular, the errors were estimated for the DTMs 

that made use of low amplitude ground returns. In order to estimate the errors associated 

with the LiDAR platform, I analyzed the accuracies of both the direct geo-referencing 

component and the LiDAR component used to compute the incremental coordinates form 

the LiDAR to the targets. The result of this error analysis provided the estimate of the 

LiDAR point cloud accuracy in horizontal and vertical directions.  

 

The airborne platform contributed two types of errors to the final LiDAR derived point 

coordinates: the low frequency and the high frequency errors. The former was a 

systematic error, which caused the offset between the computed and absolute values to 
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slowly diverge. It was mainly a function of the SBET solution at each epoch and its 

deviation from the true position and orientation. The second part of the low frequency 

errors was driven by the constant errors due to minor systematic offsets of lever arms and 

boresight angles. This group of errors was responsible for systematic offsets and the slow 

drifts of the computed solution away from the true position and orientation values. 

However, since the drift changed slowly over time, its effect on the derived points would 

appear as a general directional offset form the true value rather than random noise. 

 

The high frequency “relative” errors were mainly caused by the uncertainty of the 

waveform fitting algorithm for the extraction of the target distances. There were also 

some high frequency errors introduced by the angular mirror and rangefinder. Due to the 

stability of the epoch to epoch solution that was produced by the POS, the resulting 

position and orientation data were consistent in the short term and did not appear to be 

visually disjointed. However, when the Gaussian decomposition algorithm was used to 

extract the targets from the waveform, the accuracies of the estimated parameters were 

unrelated to each other. Therefore, the accuracies of the derived points located in the 

same neighbourhood might vary, so might the offsets.  

 

Uncertainties associated with both the direct geo-referencing and the LiDAR range 

determination were considered here for estimation of positional accuracy of the final 

point cloud dataset. Specifically, the direct geo-referencing errors associated with the 

data collection and analysis were investigated, as these data were used to obtain the EO 



 

 

80 

parameters. In addition, errors related to the LiDAR system’s raw data acquisition were 

considered, as well as the LiDAR rangefinder error and data processing uncertainties due 

to target extraction form the full-waveform signatures were considered. 

 

The direct geo-referencing system used on the scanner platform was the Applanix POS 

AV 310 system with a dual-frequency GPS receiver and an IMU sensor. The system 

specifications provided by Applanix Corporation, (2012) for expected EO accuracies at 

1σ for 3D vector position was 0.05 m - 0.30 m, and for orientation the roll, pitch, and 

heading were 0.015, 0.015 and 0.035 degrees respectively. The specifications for the 

Applanix POS AV 310 provided above are a general guideline for the expected EO 

sensor error after the post-processing of the collected data using the POSPac MMS 

software. These values were used to estimate the approximate orientation accuracy for 

the LiDAR platform. For position accuracies, the average 3D RMS values (1σ) obtained 

from POSPac MMS software (provided by GeoDigital) were used: 0.03 m, 0.03 m and 

0.06 m for north, east, and up components respectively. 

 

The rangefinder accuracy associated with Riegl’s LiDAR was provided as 20 mm + 20 

ppm (Hug et al., 2004; Schaer, 2010). This rangefinder accuracy value was used as a 

measure of the accuracy of the time-tagging of the recorded raw waveform samples, and 

not as a measure of the error associated with target extraction. Instead, the error 

associated with the fitted mean value μ, which was used to calculate the distance to the 

target (one of the parameters that describe a Gaussian waveform as per Equation 1.5) was 
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used as a measure of accuracy for the extracted target ranges. Figure 6.1 demonstrates 

how the estimated error for μ was affected by the higher and lower amplitude pulses. This 

error was highly randomized and did not behave in a systematic manner. 

 

 

Figure 6.1 Histogram of standard deviation of the estimated error for the mean value (μ) obtained 

from Gaussian fitting using LM algorithm. Histogram on the bottom is from a site of mostly low 

amplitude (hence higher noise) pulses, while the histogram on the top is from an open area 

containing predominantly higher amplitude pulses. 

 

It is visible from Figure 6.1 that the majority of the standard deviation values associated 

with the Gaussian fitting of the mean (μ) fell below 0.03 ns for high amplitude returns 

and below 0.25 ns for low amplitude returns. Thus, the error associated with the 
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calculated mean values (μ) can be approximated as 0.5 cm at 1 sigma (0.03 ns at 15 

cm/ns) for strong (high amplitude) returns and 3.0 cm at 1 sigma (0.2 ns at∙15 cm/ns) for 

lower amplitude returns. Since the range to target was calculated as the distance between 

the emitted pulse (high amplitude) and the received pulse, the estimated range error 

component due to target extraction was computed to be: 3.5 cm at 1 sigma from the sum 

of the lower and higher amplitude pulses’ associated range determination errors (3 cm + 

0.5 cm). Therefore the total estimated range error component was estimated at 55 mm+20 

ppm at 1 sigma. 

 

To estimate the total error of the LiDAR points coordinates due to the accuracy of the EO 

solution and LiDAR’s range determination error, a Jacobian of a transformation matrix 

was computed and rigorous error propagation was performed. Substituting the LiDAR’s 

scan direction (i.e., forward pointing system) and associated accuracies, the error values 

attached to the extracted LiDAR points can be calculated. The specifications for the POS 

orientation accuracies provided above were used as the error estimates for the orientation 

accuracies of the platform, while the average of the position RMS values where used for 

the position error estimates. The results of these estimations are demonstrated in Figure 

6.2. 
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Figure 6.2 The RMSs in the positions of LiDAR points taking into consideration of the configuration 

of LiDAR used (forward pointing) at 300m flight height. For the calculation of the horizontal 

component error here, the footprint size of the LiDAR emitted pulse is not taken into consideration. 

From the diagram it is visible that the error associated with range is responsible for almost 50% of 

the total error in the vertical component (the z coordinate value). 

 

The overall positional accuracy for the LiDAR points extracted from the low amplitude 

returns was estimated to be 0.20 m (1σ), with the vertical relative error component at 0.06 

m and absolute error component at 0.08 m (1σ). 

 

The absolute accuracy of the LiDAR dataset did not greatly affect the geometries of the 

overlapping scans for one main reason; opposite direction scan lines were flown within 

10 minutes of each other. Thus, not enough time elapsed between scan lines for the 

solution to drift substantially and make it visibly problematic to overlap the datasets. The 
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vertical offset in the datasets flown over the same site in opposite direction was a few 

centimetres in some sites – a difference that was essentially unnoticeable when 

processing the LiDAR data. 

 

The discussion of the accuracy assessment provided in this section is very general, and 

does not include many contributing factors such as the LiDAR footprint size or the 

methodology involved in obtaining the EO solution. From the final post-processed 

navigation dataset, only the estimated errors associated with accuracy of the position and 

orientation were used. In addition, only the errors associated with the target extraction 

from full-waveform data were used to obtain the plot above, to provide a general 

demonstration of the LiDAR platform’s accuracies. 

6.2 DTM extraction algorithm evaluation and validation 

The generated DTMs for the study sites were validated using the ground survey data as 

well as being compared with the results obtained from commercial TerraScan software. 

The results of the DTM extraction were measured against three different criteria: 

assessment of the produced point densities; point coverage; and the analysis of the quality 

of the terrain height estimation of DTMs compared with the ground reference data in five 

study sites. Detailed plots and descriptions of these five sites can be found in Appendix 

B. The DTMs for these five sites generated by the developed method and by TerraScan 

are shown in Figure 6.3.  
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Figure 6.3 TIN representations of the DTM models created from LiDAR data using the developed 

algorithm (Left) and TerraScan (Right). 
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To clearly show the results, I provide a subset of the DTM of each forest site in Figure 

6.4. From these figures it can be seen that there were more points detected using the 

developed algorithm and thus the mounds under trees were better defined. 

 

 

Figure 6.4 TIN representations of the DTM derived from LiDAR, zoomed in to a small mounts on 

(top to bottom) Jack Pine, Mixed Woods, Maple sites with developed algorithm DTM (Left) and 

TerraScan DTM (Right) 
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For visualization of the ground reference data coverage, a TIN model of the Mixed 

Woods site with the survey collected points projected on top of it is provided in Figure 

6.5. 

 

Figure 6.5 The ground reference points projected onto the extracted DTM model 

 

By overlaying the ground points extracted using the two methods (shown in Figure 6.6), 

it is evident that the terrain points detected by the developed algorithm visually appeared 

to have more coverage and higher density than those derived with the TerraScan 

software.  
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Figure 6.6 Point distribution from three different terrain models, in blue are the points form 

developed algorithm, in green are from TerraScan software and in red are ground reference points 
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Table 6.1 demonstrates the density of the detected terrain points at each site. Both DTM 

methods are evaluated by simply dividing the total number of terrain points detected by 

the area of the study site. 

 

Table 6.1 Comparison of two different sets of LiDAR derived DTM's point densities 

 Average of Site Ground Point Density (points m-2) 

Study Site 
Ground Classification 

tool - TerraScan 
Developed algorithm Improvement 

Calibration I 1.6 2.5 +56% 

Calibration II 5.7 21 +250% 

Jack Pine 2.1 2.9 +38% 

Maple 1.3 2.5 +92% 

Mixed Woods 1.8 2.3 +28% 

 

 

The improvements in point density were mostly due to the addition of low amplitude 

points that were not included in the TerraScan model. The reason for the lack of low 

amplitude points in the TerraScan model was due to processing constraints in commercial 

software that were used in a LiDAR processing workflow. Table 6.2 shows the number of 

additional points (points that were not initially detected altogether using the commercial 

software) that were detected by the algorithm developed in this work. 

Table 6.2 Newly detected points that were not picked up by Gaussian decomposition performed with 

commercial software and were detected (and classified as ground points) as a result of processing 

done by the developed algorithm. 

 Calibration 

I 

Calibration 

II 

Jack 

Pine 

Mixed 

Woods 
Maple 

Newly detected Points 675 150 795 1245 2591 

Total Ground Points 2385 9000 2161 2395 6419 

New points as a % of total 28% 1.67% 37% 52% 40% 
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The number of new points detected for the Maple and Mixed Woods study sites was 

larger than for the rest of the sites mainly due to the presence of heavy foliage top cover 

in these plots. This dense top layer of the canopy meant that the pulses that reached the 

ground were generally low in amplitude and were not detected by existing processing 

methodology as shown through these tests. The Jack Pine and Calibration I study sites 

contained a large number of evergreen trees. These coniferous trees did not permit the 

LiDAR pulses to travel through and thus as a result the waveform did not reach the 

ground. In addition, the Jack Pine and Calibration I study sites also had thick underbrush 

which can further impede the LiDAR penetration to ground, thus the number of new 

points detected in these study sites was not as substantial. Finally, the Calibration II study 

site saw the least improvement since it was an area of open terrain. Hence, most 

waveforms are one target returns resulting in very few additional low amplitude pulses. 

 

To analyze the point coverage of the resulting DTMs, each site was assigned a one by 

one metre grid and the number of points that fell within each grid cell was calculated. A 

ratio of the number of cells containing at least one point to the total number of cells was 

computed for each DTM. This ratio provided the information on coverage of the derived 

terrain model while the visualization of the grid demonstrates the distribution of gaps in 

coverage. Figure 6.7 contains the results of this analysis for all the study sites for both 

DTM’s extraction methods. 
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Figure 6.7 The grid of point densities and coverage at each site, with the densities from developed 

algorithm on the left and the TerraScan on the right. The red color represents cells where there was 

no points detected for the given terrain model, and points ranging from black to white representing a 

range from 1 point per cell to 4+ points per cell. 



 

 

92 

Table 6.3 Comparison of coverage between two DTM generation methods. 

Site 
Coverage 

TerraScan (%) 

Coverage 

developed 

algorithm (%) 

Calibration I 47 57.1 

Jack Pine 65.5 77.9 

Mixed Woods 64.7 78.8 

Maple 55.1 70.2 

 

The plots in Figure 6.7 and Table 6.3 demonstrate that the developed method generated a 

better point coverage than TerraScan. This overall improvement in coverage can be more 

beneficial for terrain reconstruction than the detection of a large number of points in areas 

that already had ground points detected. By minimizing gaps in coverage, there was a 

greater probability of detecting terrain variations that could have been missed otherwise, 

and therefore a more accurate representation of the terrain could be obtained as a result. 

 

The accuracy assessment of the LiDAR derived terrain models was accomplished using 

the inverse distance weighting (IDW) and TIN distance analysis techniques. Detailed 

description of these techniques can be found in Appendix G. Figure 6.8 is a visual 

representation of the spatial residual distribution obtained as a result of TIN distance 

analysis of LiDAR DTMs versus ground surveyed data. These plots demonstrate the 

distribution and scale of residuals for the developed algorithm and TerraScan 

respectively, overlaid on the contour map of the Jack Pine study site. The histograms of 

the residual distributions along with spatial residual distribution plots for the rest of the 

sites can be found in Appendix H. 
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Figure 6.8 The spatial distribution of residuals obtained using TIN model distance comparison of the 

LiDAR derived DTMs with the ground reference data. The colour of the error bars signifies the sign 

of the residual value, red – negative, blue – positive. 

 

The quantitative results of DTMs accuracy assessment are summarized in the Table 6.4. 

The measure of accuracy used here was the standard deviation of the vertical residual 

values, resulting from differencing of the LiDAR derived models with the ground 

reference data. 

 

Table 6.4 demonstrates that the accuracies of the DTMs generated from LiDAR data for 

the wooded areas had vertical residual values that were higher than the estimated errors in 

Section 6.1. This outcome is expected due to the aforementioned difficulties associated 

with DTM generation under forest canopy. On the other hand, the vertical residuals 

associated with the DTM of the Calibration II site (an open field) were  much smaller 

than the estimated error values. This site is located in an open area and the DTM consists 

mostly of strong ground return pulses, thus the resulting DTM is expected to be more 

accurate. 
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Table 6.4 The standard deviation and the mean values of the residuals calculated when comparing 

the generated terrain models from LiDAR data with the ground reference data for the preselected 

study sites using the TIN model distance method and IDW with interpolation making use of (a) all 

points within 2.5 metre search radius or (b) only using 5 closest points. 

Site Algorithm 
TIN σ 

(cm) 

TIN 

mean 

(cm) 

IDW(a) 

σ (cm) 

IDW(a) 

mean 

(cm) 

IDW(b) 

σ (cm) 

IDW (b) 

mean 

(cm) 

Calibration 

I 

Developed 5.7 1.1 6.9 6.7 7.4 4.1 

Terra Scan 5.5 2.3 8.2 2.0 8.8 1.4 

Improvement -2.91%  15.18%  15.18%  

Calibration 

II 

Developed 3.6 4.5 3.8 4.5 3.4 4.4 

Terra Scan 3.6 2.3 3.6 2.3 3.2 2.2 

Improvement -0.56%  -5.52%  -8.86%  

Jack Pine 

Developed 8.4 -1.7 9.1 -2.1 8.6 -2.1 

Terra Scan 9.9 -0.8 10.4 -1.8 9.5 -1.5 

Improvement 15.15%  12.50%  9.47%  

Mixed 

Woods 

Developed 11.4 -5.1 13.7 -6.1 14.8 -6.8 

Terra Scan 14.5 2.2 18.1 -0.9 19.3 -1.0 

Improvement 21.34%  24.35%  23.29%  

Maple 

Developed 8.9 -7.7 9.9 -8.1 11.3 -8.2 

Terra Scan 9.2 -7.2 10.7 -7.1 12.1 -7.6 

Improvement 3.26%  7.48%  6.94%  

 

It is also visible from the Table 6.4 that there was an overall improvement in accuracy for 

the terrain models that were generated by the developed algorithm in comparison with the 

ones generated by the TerraScan software. However, the DTMs obtained using the 

developed algorithm performed poorly for both Calibration study sites. This was likely 

because the Calibration study sites generally contained flat terrain that did not greatly 

benefit from densification of the ground points. The gently rolling terrain did not need a 

large point density to be accurately represented. On the other hand, it is observed that 

more accurate DTMs were generated by the proposed method for terrains exhibiting 

higher elevation variations, such as small hills. For example, in Figure 6.8, the area with 

higher terrain variation (the earth mound) was more accurately represented by the 
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developed algorithm. Table 6.5 provides the results of analysis of the generated terrain 

models for the sharply sloping terrain of the Mixed Woods site, as well as the subsections 

of the Jack Pine and Maple sites which contained small hills (earth mounds, shown in 

Figure 6.5). These results showed improvements. However, more datasets are required 

for a more definitive conclusion. 

Table 6.5 The residuals calculated for subsections of the generated terrain models using TIN model 

distance. Subsets contained small earth mounds located at each site 

Site Algorithm TIN σ(cm) 

Small hill Jack Pine site 

Developed 9.9 

Terra Scan 13.3 

Improvement: 25.12% 

Small hill Mixed Woods 

site 

Developed 10.7 

Terra Scan 15.1 

Improvement: 29.10% 

Small hill Maple site 

Developed 11.5 

Terra Scan 12.4 

Improvement:    7.7% 

 

The linear regression plots which are provided in Figure 6.9 were generated to compare 

the elevation values from the LiDAR DTMs with the ground surveyed ones for all study 

sites. When comparing the correlation (R2) values at each site for the two sets of DTMs, 

it can be seen that for the sites containing dense vegetation and variable terrains, the 

DTMs obtained through the developed algorithm demonstrated higher R2 values. The 

RMSE values also tend to be lower for DTMs generated using methodology developed in 

this research. This further demonstrates the improved performance of the developed 

algorithm over existing methodology in the forested areas with high terrain variation.  
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Figure 6.9 The linear regression plots comparing the elevation values for LiDAR extracted DTM 

with ground survey data. A TIN model of the LiDAR DTM’s was used to derive the elevation at the 

coordinates corresponding to the ground survey points. 

 

An observation on the overall accuracy can be made based on the flat unobscured terrain 

of the Calibration II study site. This segment provided a good baseline indication of the 

vertical accuracy values to be expected from the airborne LiDAR system. The Calibration 

II site has the lowest probability to contain errors associated with classification of low 

vegetation as terrain. In addition, this site predominantly contains only high amplitude 

returns, which generally have substantially less range error then the lower amplitude 

returns (as per Figure 6.1). The residual values for both DTM generation methods 

evaluated here against the ground reference data had 1σ standard deviation of 3.6 cm, 
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with mean residual value of approximately 3 cm. These results fall well within the ranges 

for theoretical error evaluation of LiDAR data provided in Section 6.1. 
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7 Conclusion and future work 

Throughout this research, I developed an integrated approach to improve the DTM 

generation in vegetated area by detecting the weak pulses (with low amplitudes) 

generated from the terrain under trees. These weak echoes cannot be detected by 

commonly used Gaussian decomposition methods; but are very important for accurate 

DTM generation in wooded areas. The integrated approach incorporated the echo 

detection, terrain identification, and TIN model generation in an iterative process. In such 

a way, the built TIN model guided the echo detection in terms of its location and 

provided a constraint on Gaussian decompositions. As a result, the weak echo in a 

recoded full waveform that usually was generated by the terrain under vegetation was 

detected. In heavily forested areas, the extraction of low amplitude return pulses from 

full-waveform LiDAR signatures provided a denser point sampling of the terrain and thus 

a more accurate DTM. 

 

More ground echoes were detected by the developed method compared with TerraScan’s 

ground extraction routine. The point distribution and density plots (Figure 6.6 and 6.7) 

demonstrated the consistent improvements (by an average of 12%) in point coverage of 

the derived DTMs. The denser LiDAR point detection with the developed method 

contributed to more accurate DTM, especially for areas containing hilly or variable 

terrain. 
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The definite benefits of the addition of low amplitude, lower accuracy pulses to the DTM 

generation were clearly exhibited in the study sites of Jack Pine, Mixed Woods, and 

Maple (Table 6.3). The standard deviations of residuals in the DTM generated by the 

developed method were less than 11.4 cm for these three sites, while those corresponding 

to the TerraScan were up to 14.5 cm. Compared with TerraScan, the developed method 

improved the DTM accuracy by up to 21%. The improvement was even more significant 

(up to 29%) if only considering small areas in the three sites that have hills or mounds 

(Table 6.5). 

 

As expected, the DTM generated for the study sites of the Calibration I and Calibration II 

did not benefit from the introduction of lower amplitude points. For the Calibration study 

sites, the introduction of noisy points into the flat terrain could have offset the results of 

improved accuracy due to increased coverage, thus leaving the quality of the derived 

DTM practically unchanged. When extracting features that would not be discernible 

otherwise, such as low amplitude pulses, careful consideration has to be made to find a 

balance between introducing errors into the model by sacrificing range accuracy and 

improving the quality of the generated DTM. For further development of the algorithm 

designed in this research, one potential is the addition of a cost-benefit analysis to 

evaluate how much point position accuracy can be sacrificed in order to extract additional 

terrain features. This decision making process would subdivide the scanned area into 

zones and identify areas that would benefit from having additional point coverage. This 

classification would assist in determining where the inclusion of the lower amplitude 
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pulses would benefit the terrain extraction and where it would be detrimental to quality of 

the derived DTM. There certainly is a need to monitor the accuracy of the derived points, 

and to have an error value assigned to the coordinates of each point extracted from the 

LiDAR waveform. In addition, the error estimation methodology introduced in Section 

6.1 can be further enhanced and included into the waveform range extraction algorithms. 

This information will allow the end user to have more flexibility with point cloud data, 

providing the possibility of selecting points based on the user’s accuracy requirements in 

order to achieve the desired DTM quality. This type of accuracy assessment is generally 

not considered in LiDAR data processing and could be a potential topic of future work. 

 

In summary, an integrated approach was developed in the course of this research 

designed to improve the DTM generation from full-waveform LiDAR data. Clear 

improvement (up to 29%) was demonstrated over an existing methodology in the areas of 

heavy vegetation and variable terrain. 

 

 The software implemented in this research was a result of a top to bottom 

implementation of the designed methodology. Our approach provided a significant 

control and flexibility for the algorithm development as most of the aspects of the 

software were coded internally and thus could be modified and evaluated individually to 

fulfill the setout objectives. 
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9 Appendices 

Appendix A - Implementation of the LM algorithm 

 

As mentioned before, the LM (Levenberg-Marquardt) optimization method is commonly 

used in the Gaussian decomposition of full-waveform LiDAR returns (e,g, Jutzi and 

Stilla, 2005 and Chauve et al., 2007) and thus employed in this study as well, and was 

implemented using the GNU online scientific library. With the key points having been 

described in the main texts, I will, in this appendix, provide the general workflow and 

some of the equations used. 

 

The library provides the tools needed to perform the LM optimisation on data. The user 

still needs to specify the least squares fitting model (Equation 9.1), the partial derivatives 

with respect to the parameters being estimated, the Jacobian matrix (Equation 9.2), the 

initial values of the parameters, the waveform data to be fitted and the associated 

stochastic information. 

 

The partial derivatives of the Gaussian model (Equation 2.5) with respect to μ, A and σ 

are given by: 
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The Jacobian matrix with N components is given by: 
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The outputs from the LM algorithm are waveform parameters and their associated 

variance values, as well as the index of goodness-of-fit. These parameters are tested to 

ensure proper pulse detection. 

 

The LM algorithm is very sensitive to the initial values of parameters. Inadequate initial 

parameter estimation may cause the solution to diverge due to non-linearity of the initial 

model. The more accurate the initial estimation of parameters is, the fewer iterations the 

algorithm will require to converge to a solution. 

 

Correct estimation of number of Gaussians to fit a waveform is essential not only for the 

overall accuracy of the estimated Gaussian parameters (to avoiding over or under fitting), 

but also is important for accurate determination of the objects in the beam’s path. Errors 

in under or over fitting at this stage will lead to omission and commission errors. 
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Appendix B - Site description and statistics  

Table 9.1 Site description1 

Site 
Terrain 

Slope 
Species Type Canopy Cover 

Other 

Comments 

M
ap

le
 

Smooth, 

intermediate 

90% Sugar 

maple – 

Shade-tolerant 

deciduous; 

15% oak. 

Maple dominant top canopy, 

dense and closed; 

Seldom intermediate canopy; 

A few low understory 

vegetation which is mostly 

deciduous. 

Younger 

generation, 20-

40 years old 

Ja
ck

 P
in

e 

Flat 

90% Jack pine 

– shade-

intolerant 

coniferous; 

10% sugar 

maple, red 

maple and 

balsam fir. 

Closed canopy; Jack pine 

dominant top canopy, 

relatively open; most of the 

intermediate foliage of jack 

pines is dead; other 

intermediate species are young 

generation deciduous; definite 

understory with grass and 

bushes 

40 – 50 years old 

or more. Most 

trees are mature. 

A few dead 

small jack pines 

due to natural 

competition 

within 

community. 

M
ix

ed
 

Sharp 

60% White 

birch – shade-

intolerant 

deciduous; 

40% Sugar 

maple – 

Shade-tolerant 

deciduous; 

Open mixed deciduous forest; 

isolated white birch occupy 

high level canopy, but half of 

them are dead; 

Maple dominates intermediate 

canopy; 

Dense understory cover. 

The shape of the 

birch trees is 

very irregular. 

Most of the 

birch is mature 

however maple 

trees are young. 

Fallen trees are 

normal in this 

area. Age of 

trees cannot be 

anticipated. 

C
al

ib
ra

ti
o
n

 

Flat 

45% Black 

spruce – 

shade-

tolerant; 45% 

Sugar maple; 

10% balsam 

fir. 

Mixed forest; 

Open canopy, canopy height is 

lower. 

Black spruce and maple both 

dominant in the top canopy, 

with intermediate deciduous 

which are mostly young maple 

trees. 

Very little understory or grass. 

Forest has been 

disturbed by 

human activities 

or managed. 

Average height 

is about 15 

metres. 

                                                 
1 Provided by Jili Li after the survey of the study sites for use in this thesis 
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The Maple site 

Maple is the northernmost site selected. Data were collected in two flight lines; SDF file 

code 185601 and 186531, north and south flight direction were made available for this 

research. The density of these scans was 45 points m-2 (2 scans overlay). This site has a 

small hill in the middle of the study site, an earth mount from original highway 

construction from 1950’s. 

 

From ground reference, the following positioning information was made available: 

1) 400 Topo points (Acquired Aug 2011) 

2) 35 Road points (Acquired Aug 2011) 

3) 20 points on side railing poles (Acquired Oct 2011) 

4) 75 topo the banks along the highway for determination of the vertical offset 

(Acquired Oct 2011) 

The local traverse for this site is given in Figure 9.1 below. 
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Figure 9.1 Local traverse (top), and ground reference points collected (red) overlaid the LiDAR data 

(bottom) Maple site 
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The Mixed woods site 

Data were collected in two flight lines (SDF file 184724 and 195317, NORTH and 

SOUTH flight direction) and have the density of scans of 34 points m-2 (2 scans overlay). 

The site is situated on a steep slope, (part of a larger hill) and contains small hill in the 

middle, an earth mount is from original highway construction from 1950’s. 

 

From ground reference, the following positioning information was made available: 

1) 250 topo points (Acquired Aug 2011) 

2) 30 road points (Acquired Aug 2011) 

The local traverse for this site is shown in Figure 9.2. 
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Figure 9.2 Local traverse (top), and ground reference points collected (red) overlaid the LiDAR data 

(bottom) Mixed Woods site 
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The Jack Pine site 

For this site, data acquisition was carried out along two flight lines (SDF file 184902 and 

185151 in the north and south flight directions, respectively), which resulted in the scan 

density of 36 pulses m-2. 

 

This site is located on gently rolling terrain and has a small hill on the edge of the study 

site; the mount is from original highway construction from 1950’s. The topographic data  

made available from Survey are as follows: 

1) 300 Topo points (Acquired Aug 2011) 

2) 30 Road points (Acquired Aug 2011) 

3) 6 points on a drain pipe, to check the horizontal accuracy (Acquired Aug 2011) 

The local traverse for this site is given in Figure 9.3 below. 
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Figure 9.3 Local traverse (top), and ground reference points collected (red) overlaid the LiDAR data 

(bottom) Jack Pine site 
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The calibration site 1 and 2 

These two study sites are located few tens of metres apart. Data acquisition was carried 

out along two flight lines (SDF file code 153758 and 154207, south and north flight 

directions, respectively), which resulted in the scan density of 40 pulses m-2 . 

 

One section (Calibration Site 1) contains a small forested area, predominantly spruce 

trees, with some deciduous and dense understory. From ground reference, the following 

positioning information was made available: 

1) 180 topo points (Acquired Aug 2011) 

2) 30 Road points (Acquired Aug 2011) 

 

Second section (Calibration Site 2) contains gently rolling terrain section of an open field. 

This site was selected for the purposes of determination of vertical datum used in initial 

data acquisition campaign, as well as a validation of accuracy of LiDAR data. 

 

From ground reference, the following positioning information was made available: 

1) 300 topo points (Acquired Aug 2011) 

2) 30 Road points (Acquired Aug 2011) 

3) 4 posts, to check the accuracy of the survey, and tie the survey with 

LiDAR (Acquired Aug 2011) 

 

The local traverse for this site is given in Figure 9.4 below. 
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Figure 9.4 Local traverse (left), and ground reference points collected (red) overlaid the LiDAR data 

(right) Calibration I and II site  

Total time of the ground survey 

The ground survey was conducted by a two person team, for 7 days in Aug 2011 

and then 2 days in Oct 2011. 
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Appendix C – Data processing 

Equipment selection 

To provide a good reference data set to validate the generated DTM, the data measured 

on the ground (referred to as ground reference or topographic data) must have a high 

accuracy and thus it is important to choose the appropriate equipment. Due to a lack of 

feature objects in forests which could be used as potential tie points between the 

topographic measurements and the LiDAR dataset, and also in order to geo-reference the 

topographic data, Leica 1200 GPS Receivers were used to establish a GPS control 

network, which linked the surveying area with the closest existing geodetic control 

points. 

 

Each site was then surveyed using the SOKKIA Set510 total station with Carlson Survey 

CE data collector, to acquire the topographic data of the area, using the following 

auxiliary equipment: 

Instruments list 

Leica 1200 GPS Receivers 

SOKKIA Set510 

 Angular accuracy 5” 

 Distance accuracy ±(2 + 2xD[km])mm for distances up to 100m 

Carlson Data Collector SurvCE 

Adaptors/Tribrachs/Tripods 
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Reflectors 

Telescopic rod 

Tape 

Total station data analysis 

The raw files from the data collector were read using the software provided by Carlson 

(X-Port), the formatted output was then passed to Matlab, where only the needed data 

were extracted. 

 

Equipment calibration 

The following steps were taken to reduce equipment systematic errors. Zero error tests 

were performed, and the zero error constants for all the total station prism pairings were 

calculated. All prisms had virtually the same constant value of around 1.2 mm. The 

collimation and index errors were also computed. Collimation, the horizontal angle 

misclosure, was calculated to be around 0.5”. The index error was variable, due to re-

calibration of the Sokkia instrument in the field due to the malfunction of the 

compensator. There were three different values for index error used for data processing 

since the re-calibration of the compensator was acknowledged in the field notes. 
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Traverse data analysis 

Station adjustment 

Station adjustment was performed on each individual group of observations (from the 

same station) separately, to produce the final horizontal and vertical angles and distances 

at each station, which were then used for the traverse calculations. These computations 

were performed to identify gross outliers and exclude erroneous data from later 

calculations. The readings for both vertical and horizontal angles at each station were 

estimated and analyzed.  

 

Since a data collector was used to record the traverse data, the data collection was 

accomplished in the following manner: Face right BD – FD, Face left FD – BD. To 

calculate the horizontal angles, the differences between the two consecutive readings 

(face right and face left) were used (Equation 9.3). If the difference in horizontal angle 

between face left – face right was more than 10” the angles were discarded. If the 

difference was less than 10”, the two faces were averaged and the resulting values were 

compared between sets, at which point their standard deviation from the mean value was 

considered. 

 

For vertical angles, the readings to a target in a single set were averaged and then 

checked for consistency with other sets. The distances readings to targets were consistent 

(mm difference) and were just averaged over all the sets. 
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Wherein: F.R. is face right, F.L. is face left,  AB is the horizontal angle between A-B 

and ξA is the vertical angle of A 

 

After each set was processed separately the different sets were compared. The average 

was taken over all the readings and the standard deviation was then calculated. If a gross 

outlier was found it was removed from the set of observations. 

 

Traverse network analysis 

The curvilinear coordinates from GPS1 and GPS2 stations were converted to Cartesian 

coordinates, using the Equation (9.4). 
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Wherein N is the radius of curvature and is measured from the surface to the Z-axis along 

the ellipsoid normal, where “a” is the semi major axis and “e” is the eccentricity of the 

reference ellipsoid. 

 

After the station adjustment was completed for multiple sets of total station 

measurements, the vertical and horizontal angles, as well as the target heights and 

instrument heights were used to calculate the NEU incremental coordinates from the 

instrument station to a target point (Equation 9.6).  
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(9.6) 

 

wherein S is the slope distance corrected for atmospheric conditions, ξ is the vertical 

angles from the station to the target,   is the azimuth of the target direction  = 0  + 

 AB, in which  AB is the horizontal angle between the backsight and the target 

direction, and 0  is the azimuth of the backsight direction. And finally 

.... HTHIH  , which is the difference of the instrument height  and the target height. 

 

These NEU values are added to the geocentric coordinates of the “at” station, (Equation 

9.7) to obtain the target ECEF coordinates: 
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Wherein: 





























sin0cos

sincoscossinsin

coscossincossin

T  (9.8) 

  is the latitude at the station 

  is the longitude at the station 

The corresponding variance covariance (VCV) matrix of the station coordinates can be 

calculated using the Equation (9.9): 
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The resulting variance-covariance matrix NEU  is then combined where applicable 

between consecutive stations to compute the propagated error. 
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Topographic data analysis 

The initial step in coordinate calculation of the topographic points is to apply the 

applicable corrections. The zero error of the EDM instrument was applied to the distance 

measurements, as well as the index error in the vertical angle reading was added.  

 

On the basis of the azimuths of the backsight direction calculated from the traverse, the 

incremental coordinates of the topographic points in NEU were calculated using the 

horizontal and vertical angle and slope distance measurements from total station for all 

the topo points with respect to the instrument station as in Equation 9.6. The only 

difference ΔH of a topo point was calculated as ΔH =H.I-H.P., wherein the H.P. was the 

height of the survey pole at the topo point. These incremental coordinates in NEU were 

then converted to the incremental coordinates in ECEF frame using Equation 9.6. 

GPS Data Processing 

The GPS data processing was performed in two steps: the individual baseline solution 

using Leica Geo-Office and the least square adjustment of the GPS baseline network 

using Columbus Best Fitting Software. 

Individual Baseline Solution 

The GPS collected base station data, were initially processed using the Leica Geo Office 

software to compute the baselines between two stations. Baseline output from Leica Geo-

Office is given in the Table 9.2 
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Table 9.2 GPS baselines, with standard deviations attached, as per processing with Leica Geo Office 

From To dX [m] dY [m] dZ [m] 
σX 

[mm] 
σY [mm] σZ [mm] Duration 

MIXED2 478 -195.892 -282.175 -249.165 0.1 0.2 0.3 43' 31'' 

50026 478 -3909.729 12287.786 12155.341 0.2 0.3 0.3 6h 01' 37'' 

478 JACKPINE2 -9.140 -972.794 -946.561 0.2 0.3 0.3 33' 21'' 

478 MAPLE2 -725.269 713.450 740.507 0.1 0.2 0.3 38' 18'' 

478 MAPLE2 -725.263 713.444 740.51 0.2 0.3 0.4 30' 56'' 

478 MIXED2 195.891 282.177 249.16 0.2 0.3 0.3 39' 43'' 

478 JACKPINE2 -9.165 -972.786 -946.573 0.3 0.6 0.7 42' 11'' 

MAPLE2 MAPLE1 85.188 -6.793 -7.993 0.2 0.3 0.3 1h 24' 05'' 

MAPLE2 MAPLE1 85.189 -6.792 -7.997 0.1 0.1 0.1 6h 26' 30'' 

MIXED1 MIXED2 16.162 21.420 18.941 0.1 0.1 0.1 4h 13' 21'' 

JACKPINE1 JACKPINE2 -0.363 23.649 22.574 0.1 0.2 0.2 4h 12' 16'' 

478 JACKPINE1 -9.506 -949.093 -924.007 0.2 0.5 0.5 1h 53' 45'' 

CALIB1 CALIB2 -2.159 -62.929 -59.354 0.2 0.3 0.3 1h 22' 32'' 

50026 CALIB2 -1071.294 614.819 700.867 0.2 0.4 0.4 1h 58' 09'' 

478 MIXED1 179.73 260.766 230.230 0.2 0.4 0.5 1h 23' 55'' 

478 MAPLE1 -640.089 706.670 732.517 0.2 0.4 0.5 1h 57' 36'' 

Adjustment of GPS Baseline Network 

The GPS baseline network constructed from the baseline measurements was then 

adjusted using the Columbus Best Fit Computing. The chosen horizontal control was the 

control point 00819950063, since the other control point: 00820000478, was found to be 

compromised (most likely shifted during re-pavement of the highway 126). The adjusted 

geodetic coordinates of topographic mapping control points are given in Table 9.3: 

Table 9.3 Final station coordinates and errors from Columbus ITRF 2005 

Station 
Latitude (N) 

(d m s) 
SD (m) 

Longitude (W) 
(d m s) 

σ (m) 
Ellip. Height 

(m) 
SD (m) 

478 46-34-40.05952 0.009 83-25-14.36061 0.0074 291.802 0.009 

50026 46-25-11.80741 0 83-23-18.41225 0 186.466 0 

CALIB1 46-25-47.45895 0.0138 83-24-04.49872 0.0105 188.380 0.0138 

CALIB2 46-25-44.67315 0.0104 83-24-04.93784 0.0074 188.292 0.0104 

JACKPINE1 46-33-57.34057 0.0119 83-25-19.91023 0.0092 268.183 0.0119 

JACKPINE2 46-33-56.28435 0.0112 83-25-20.02064 0.0089 267.981 0.0112 

MAPLE1 46-35-14.60047 0.011 83-25-40.42475 0.0088 290.997 0.0111 

MAPLE2 46-35-15.16643 0.0106 83-25-44.36325 0.0083 285.469 0.0106 

MIXED1 46-34-50.79247 0.0111 83-25-04.57192 0.0089 295.126 0.0111 

MIXED2 46-34-51.67093 0.0105 83-25-03.70257 0.0084 295.530 0.0106 
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Note: Station 00820000478 (control point) has a 7 cm difference in ellipsoidal height, if 

calculated using the GPS baseline instead of being fixed as a control station.  
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Appendix D – The control points 

 

The two control points were obtained from COSINE Online Service 

(http://www.cosine.mnr.gov.on.ca/cosine) as follows: 

 

STATION: .................................................................... 00820000478 

Horizontal datum: ........................ NAD-1983:CSRS:CBNv3-1997.0 

Accuracy: ..................................................................... CSRS class D 

Latitude: ................................................................ N46°34'40.05648" 

Longitude: ............................................................ W83°25'14.37228" 

Ellipsoidal elevation: ............................................................. 291.876 

UTM-17 Easting: .......................................................... E314526.317 

UTM-17 Northing: ...................................................... N5161094.064 

UTM-17 Cmbd sc-fact: .................................................... 0.99997710 

UTM-17 Mrdnl convg: .................................................... -1°45'31.1" 

 

STATION: .................................................................... 00819950063 

Horizontal datum: ........................ NAD-1983:CSRS:CBNv3-1997.0 

Horizontal accuracy: .................................................... CSRS class D 

Latitude: ................................................................ N46°25'11.80741" 

Longitude: ............................................................ W83°23'18.41225" 

Ellipsoidal elevation: ............................................................. 186.466 

UTM-17 Easting: .......................................................... E316463.658 

UTM-17 Northing: ...................................................... N5143480.156 

UTM-17 Cmbd sc-fact: .................................................... 0.99998485 

UTM-17 Mrdnl convg: .................................................... -1°43'50.5" 

http://www.cosine.mnr.gov.on.ca/cosine
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Appendix E – Horizontal datum and orthometric height 

NAD 1983 CSRS: CBN v3-1997 

The coordinates of control points were provided in NAD 1983 CSRS:CBN v3-1997. A 

transformation was required in order to have these coordinates with WGS84 ITRF 2005.  

There is no conversion from specific transformation from CBN v3 at 1997.0 to WGS84. 

There is however the Helmert transformations from the fundamental realizations of 

NAD83(CSRS) reference frame (which was 1997.0) to the various realizations of ITRF. 

And WGS84 is derived from specific ITRF's (Craymer 2006). 

 

Depending on ITRF needed, the transformations are performed using that epoch’s 

specific parameters, an example of these parameters are given in Table 9.4. 

 

Table 9.4 Example of ITRF2005 transformation parameters 

Items TX m TY m TZ m RX mas RY mas RZ mas DS ppb 

Parameters 0.9963 -1.9024 -0.5219 -25.915 -9.426 -11.599 -0.775 

Items 
dTX m/y dTY m/y dTZ m/y 

dRX 

mas/y 
dRY 

mas/y 
dRZ 

mas/y 
dDS 
ppb/y 

Parameters 0.0005 -0.0013 0.0019 -0.067 0.757 0.051 -0.102 

 

The transformations and the relationship between NAD83(CSRS) and ITRF is 

demonstrated by the formulas 9.11 and 9.12 below. 
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wherein, XN, YN, ZN  are the geocentric Cartesian coordinates in NAD83(CSRS) at epoch 

of observation. XI(t),YI(t),ZI(t) are the geocentric Cartesian coordinates in ITRF at epoch 

t. 

 

The constants in the equation above are calculated using the following formulas. 

ppbtdDSDStDS

kradtdRRtR

kradtdRRtR

kradtdRRtR

mttdTTtT
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mttdTTtT

ZZZ

YYY

XXX

ZZZ

YYY
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)0.1997()(

)]0.1997([)(
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)]0.1997([)(
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)0.1997()()(


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


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

 (9.12) 

wherein, t is the epoch of ITRF coordinates and constant k is given as 4.84813681 x 10-9 

rad/mas. 

 

In summary, in order to compute the WGS84 coordinates in a relevant ITRF realization, 

one needs to use the correct transformation parameters, which are determined by the 

epoch in which the final ITRF needs to be, and the epoch of observation. 

 

Orthometric and ellipsoidal heights 

The heights determined from GPS measurements are generally ellipsoidal heights with 

WGS84. The heights of the LiDAR dataset that was acquired in 2009 were the 

orthometric heights. Unfortunately the specific vertical system (orthometric height) used 
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for calculation of navigational solution was not provided with the dataset, thus the 

vertical offset had to be computed from the collected data and compared to a known 

database of height offsets in order to find a match. 

 

The offsets between the ellipsoidal and orthometric heights were gathered from the 

following online service: The Natural Recourses Canada’s (NRCan) GPS vH 2.1 Geoid 

Height Transformation Program2. NRCan’s GPS H v2.1 software supports multiple 

Geoid Models (different years and sources). The orthometric elevations obtained from the 

software for the surveyed stations are listed in Table 9.5. 

Table 9.5 The different geoid heights for the stations, obtained via GPS H 3.1 Software 

 

                                                 
2 webapp.geod.nrcan.gc.ca/geod/tools-outils/index.php 

Station Latitude (N) Longitude (W) 
Ellipsoidal 

 Height 

EGM95 

NAD83 

(CSRS) 

EGM95 

ITRF 

(2005) 

CGVD28 

NAD83 

(CSRS) 

CGVD28 

ITRF 

(2005) 

EGM08 

NAD83 

(CSRS) 

EGM08 

ITRF 

(2005) 

LiDAR 

minus 
Survey 

Data 

00820000478 46-34-40.05952 83-25-14.36061 291.8018 -35.633 -36.625 -36.54 -37.532 -36.126 -37.118 N/A 

00819950026 46-25-11.80741 83-23-18.41225 186.466 -35.88 -36.877 -36.822 -37.819 -36.371 -37.368 N/A 

CALIB1 46-25-47.45895 83-24-04.49872 188.3796 -35.868 -36.865 -36.806 -37.803 -36.359 -37.356 36.84 

CALIB2 46-25-44.67315 83-24-04.93784 188.2919 -35.869 -36.866 -36.807 -37.804 -36.36 -37.357 36.82 

JACKPINE1 46-33-57.34057 83-25-19.91023 268.1827 -35.655 -36.647 -36.566 -37.559 -36.15 -37.143 36.54 

JACKPINE2 46-33-56.28435 83-25-20.02064 267.981 -35.656 -36.648 -36.567 -37.559 -36.151 -37.143 36.54 

MAPLE1 46-35-14.60047 83-25-40.42475 290.9971 -35.615 -36.606 -36.523 -37.515 -36.111 -37.103 36.44 

MAPLE2 46-35-15.16643 83-25-44.36325 285.4689 -35.615 -36.607 -36.524 -37.515 -36.112 -37.104 36.44 

MIXED1 46-34-50.79247 83-25-04.57192 295.1256 -35.625 -36.617 -36.531 -37.523 -36.118 -37.110 36.47 

MIXED2 46-34-51.67093 83-25-03.70257 295.5312 -35.625 -36.617 -36.531 -37.523 -36.117 -37.109 36.47 
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From the table, the orthometric height correction CGVD28 in NAD83 (CSRS) was found 

to be the best fit to the LiDAR data (Table 9.5, column: “LiDAR minus survey data”). 

This correction was the closest in value to the discrepancy encountered when the 

elevation data from the field survey is compared with the airborne LiDAR data. Thus the 

ground data vertical values were transformed using the CGVD28 NAD83(CSRS) height 

transformation to make them compatible to the LiDAR data collected. 
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Appendix F – Tie points 

 

In order to provide a measure of consistency in horizontal coordinates between LiDAR 

collected data and ground survey acquired points, an attempt was made in the field to 

collect features that were discernible in the LiDAR dataset. Due to the passage of time 

since the data acquisition and the re-pavement of the highway 129, many of the collected 

points could not be used for the purposes of validation. Below the full list of objects 

collected for the horizontal accuracy assessment is provided at each site. 

 

Maple site 

 

Road Centreline 

Although the road was repaved, the center line was close to the surveyed position (Figure 

9.5). 

 

Figure 9.5 LiDAR intensity image, road Maple with survey points overlay 
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The measured road markings in the east section of the plot were less than 10 cm south of 

the LiDAR acquired center line, and in the west section these were around 15 cm north of 

the LiDAR acquired center line. 

 

Road Fence Posts 

The images from 2009 and 2011 demonstrated that new posts and fence were installed. 

Thus no comparison could be made. Figure 9.6 demonstrates that the locations of the 

posts on the intercity LiDAR plot and collected by ground survey do not coincide. 

 

Figure 9.6 LiDAR intensity image, road fence posts Maple with survey points overlay 

Mixed woods site 

Road Centreline 

Again, even though the road was repaved, the center line seems to be close to the original 

position with an offset ~15 cm (Figure 9.7). Due to the inconsistencies with the data 

collection other points could not be used for the comparison.  
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Figure 9.7 LiDAR intensity image, road Mixed site with survey points overlay 

Calibration I and II sites 

Road Centreline 

No center line was visible on the intensity plot, however good vertical alignment was 

obtained, with standard deviation value of ~1 cm (1σ) and a mean offset of few mm. 

 

Utility Poles 

Locations of four utility posts were surveyed at the Calibration site. Out of four utility 

poles surveyed one was seemingly replaced since the data acquisition campaign (visually 

looked new from site photos). The remaining three posts matched well across the two 

datasets. There was also a road sign on the site that was visible from the acquired LiDAR 

data. Upon comparison to the survey data the horizontal coordinates matched the LiDAR 

data very well. The offsets between the ground truth and the LiDAR data are provided in 

Table 9.6. 
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Table 9.6 Posts and sign coordinate comparison, collected as part of accuracy assessment of 

Calibration Site. Pole 1 has been replaced since the original LiDAR survey. 

Point 
ID 

Physical 
location on the 

object 

LAS Dataset Coordinates[m] 
Easting, Northing, Height 

Surveyed Coordinates [m] 
Easting, Northing, Height 

*Pole 1 South-East Side 776474.420 5148020.850 228.67 776474.591 5148020.723 189.113 

Pole 2 South Side 776463.580 5148194.390 226.16 776463.624 5148194.413 187.973 

Pole 3 South Side 776459.640 5148265.800 227.00 776459.742 5148265.821 189.610 

Pole 4 North-West Side 776484.370 5148145.660 228.70 776484.368 5148145.730 189.236 

Sign 1 Tip 776476.110 5148052.420 228.21 776476.188 5148052.415 187.953 

 

Point ID dE dN Horizontal[m] 

*Pole 1 -0.127 0.171 0.213 

Pole 2 0.023 0.044 0.050 

Pole 3 0.021 0.102 0.105 

Pole 4 0.070 -0.002 0.070 

Sign 1 -0.005 0.078 0.078 
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Jack Pine site 

Road Centreline 

Due to the re-pavement of the road, the surveyed position of the center line was far from 

the position in the LiDAR intensity plot. The centreline in the northern section (Figure 

9.8) of the study site was deviated about 40 cm to the East from the LiDAR data. 

 

Figure 9.8 LiDAR intensity image, road (northern segment) jack pine site with survey points overlay 

The south section (Figure 9.9) appeared to have the difference of less than 10 cm with the 

centreline. 

 

Figure 9.9 LiDAR intensity image, road (southern segment) jack pine site with survey points overlay 
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GPS1 and GPS2 markers 

There were GPS ground check points present at this site, covered by about 1 m by 1 m 

check board pattern reflective material (Figure 9.10). These targets were installed during 

the initial data acquisition in 2009 and had survived until ground reference acquisition 

campaign in 2011. The GPS point (mark in red in Figure 9.10) fit the LiDAR data well. 

 

Figure 9.10 Ortho photo, Jack Pine GPS2 (red triangle) overlaid with LiDAR data 

 

Drainage pipe 

A drainage pipe, running perpendicularly under the road having a diameter of 1.1 m, was 

clearly visible in the scan. Six points were surveyed along the pipe: two corresponding to 

the left and right most tips, two more at the location where the pipe disappeared under the 

pavement, and two between on either side (Figures 9.11 and 9.12). 

 

Figure 9.11 Orthophoto, Jack Pine drainage pipe, with survey data overlay 
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Figure 9.12 Drainage pipe LiDAR data with survey points overlaid (survey points are in red), 3D 

view, profile view and top view. 

 

From the LiDAR dataset, the points corresponding to the tip of the pipes were extracted, 

and their coordinates were compared. 

 

Table 9.7 Pipe edge tie points comparisont 

 LAS File Coordinates [m] Surveyed Coordinates [m]  

Point ID E N E N Displacement [m] 

Pipe 1 774175.100 5163231.990 774175.055 5163231.990 0.045 

Pipe 6 774195.860 5163230.980 774195.877 5163230.945 0.039 

 

The LiDAR points corresponding to the ridge of the pipe were fitted using equation of 

the line to have produced the following best fit equation: 

Y = -0.0497226X + 5201734.529 
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Using the equation of the line of best fit together with the Easting coordinates obtained 

from the survey, the Northing coordinates of the pipe were re-estimated. The obtained 

displacement between the survey derived coordinates and the LiDAR points are given in 

Table 9.8.  

Table 9.8 Pipe tie points comparison to linear fit 

 Surveyed Coordintaes [m] Derived using equation of the line  

Point ID E N Est. N 
Displacement 

Surveyed N – Est. N 

Pipe 1 774175.055 5163231.990 5163231.961 -0.029 

Pipe 2 774176.058 5163231.937 5163231.912 -0.025 

Pipe 3 774177.116 5163231.909 5163231.859 -0.050 

Pipe 4 774194.345 5163230.957 5163231.002 0.046 

Pipe 5 774195.071 5163230.981 5163230.966 -0.015 

Pipe 6 774195.877 5163230.945 5163230.926 -0.019 

 

The horizontal control in N-S direction indicated a good degree of accuracy. The tips of 

the pipe demonstrated that the E-W direction matched well between the ground reference 

and LiDAR data. 
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Appendix G – Quality assessment tools used 

To run a comparative analysis on the derived DTM’s to assess the quality of resulting 

product a set of functions specified in this chapter was implemented in Matlab. Two 

different methods were used to analyze the quality of the DTMs obtained; one method 

involved using the IDW (inverse distance weighting) and another TIN distance analysis. 

These were used to interpolate the DTMs obtained from LiDAR to estimate the heights at 

coordinates corresponding in location to ground reference points, in order to perform a 

valid comparison to the survey collected elevation values. 

 

IDW (inverse distance weighting), algorithm first assigns weights based on distance to 

the points located in the neighbourhood of the point whose height is being estimated 

(Equation 9.13, Figure 9.13). The inverse square distance weighting relationship was 

used here. 
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 (9.13) 

Wherein dpi is the radial distance from point estimated p to a neighboring point i. The 

neighbourhood is composed of a total of n points (thus the bottom of the equation is a 

sum of square of distances to the n nearest points), resulting in a weight wi assigned to the 

Z value at point i.  
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Figure 9.13 IDW, using distance to assign weights to points 

 

By applying the weights obtained in Equation 9.13 to the height of each neighbourhood 

point and summing these values up as per Equation 9.14 the estimate for the Z value of 

the new point p can be obtained. 
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 (9.14) 

It is possible to impose further conditions on this algorithm, here we chose to restrict the 

neighbourhood search space to 5 m and only use 5 closest points for calculation of 

elevation. 

 

TIN model distance analysis is accomplished by initially generating a TIN model and 

then extracting the elevation value at the horizontal coordinate corresponding in location 

to the point being interpolated. Here the ground truth points collected are compared to the 

TIN generated from LiDAR point cloud.  

 

In order to find the facet where the point P falls in, Equation 5.4 for Barycentric 

Technique is again used from Section 5.2.2 above.  
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Figure 9.14 Projecting a point P onto a surface of a TIN facet to estimate the height difference (ΔZ) 

between the point on the surface of the facet Pi and initial point P 

 

Substituting the X, Y coordinate pair of point P (Xp, Yp) into the equation of the plane 

(for the facet) as per Equation 9.15, produces the Z value at that location, thus the 

residual can be easily obtained via: 
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 (9.15) 

Wherein ai, bi, ci, are parameters describing equation of the plane for facet i, Zpi was the 

projected value for Z on facet i for point P, ΔZ was the resulting residual from 

differencing the original value of height at point P and calculated projected height. 

 

For both assessment methods described above, the horizontal X and Y coordinates of the 

ground reference data were used to calculate the Z value by interpolating the LiDAR 

derived DTMs. The final obtained residual values are the offsets from the vertical of the 

ground reference data to the location of the derived Z value of the LiDAR DTMs with the 

same X and Y coordinates. A positive residual demonstrates that LiDAR DTM is above 

the ground reference data thus negative residual show that the DTM derived point is 

below the survey data. 
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Appendix H – Additional experimental result plots 

Figure 9.15 provides the histogram distribution of the residuals at each site. A positive 

residual demonstrates that LiDAR DTM is above the ground reference data and a 

negative residual indicates that the DTM derived point is below the surveyed data. 
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Figure 9.15 Histogram distribution of residuals obtained using TIN model distance comparison of the 

LiDAR derived DTMs with the ground reference data. 

 

All the histograms of the residual distributions in Figure 9.15 appear to follow a normal 

distribution pattern. 
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Below are the plots of spatial distribution of residuals obtained using TIN model distance 

comparison of the LiDAR derived DTMs with the ground reference data. The colour of 

the error bars signifies the sign of the residual value, red – negative, blue – positive. The 

scale of the residuals is: 5:1 (1 metre plot distance is a 0.2 m residual magnitude). 
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Figure 9.16 Spatial representation of residual distribution at each site The scale of the residuals is: 

5:1 (1 metre plot distance is a 0.2m residual magnitude). 

 

All the residual distributions in Figure 9.16 appear to be mostly random in nature, with 

the developed algorithm residual values showing improvement in the areas of higher 

terrain variations. 


