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Abstract—A typical and useful way to derive the dynamics 
equation of the tethered systems is by means of the Lagrange’s 
equations and various dynamic models of different tethered 
missions are established by the Lagrangian formulation. The 
Hamiltonian formulation is also widely used in the mechanical 
systems for its well-known symplectic structure property. 
With this in mind, the dynamics equation of the tethered 
system’s motion are deduced by Hamilton’s equations in this 
research. The relation between the Lagrangian and 
Hamiltonian is shown by Legendre transformation. The 
goodness of the Hamiltonian formulation is intuitive to reveal 
the Energy balance property that corresponds to the passivity 
property. Furthermore, the Hamiltonian energy function of 
tethered system is employed for facilitating the controller 
design. In order to bring the system into operations, the energy 
based control is to achieve the tethered system for precise 
positioning. Simulations are used to demonstrate the 
effectiveness of the designed controller. 

Keywords-Tethered satellite system; Passivity; Energy-based 
control. 

I.  INTRODUCTION 
Space tethered systems have been drawn great attention on 

its significant potential for the space missions utilization during 
the past decades. The tethered satellite system consists of two 
or more satellites which are connected by a long cable. The key 
challenge to bring the tethered space systems into operation is 
to successfully deploy the tether to the desired position in a 
stable and fast manner. However, the dynamics of the tethered 
systems are quite complex for the overall flexibility, then 
toward getting insight into the dynamics and control of the 
deployment for tethered systems, the simplified dumbbell 
model of the tethered systems are usually taken [1]. The mother 
and daughter satellites are considered as point mass connected 
by an inextensible massless tether. Thus, the important aspects 
of the dynamic behavior of the tethered system can be 
investigated by the simplified model without the involving the 
complicated mathematical equations.  

In the past researches, the dynamics and control of tethered 
satellite system are well studied. The dynamic model of 
tethered system is usually derived by the Lagrangian 
formulation because it is easy to apply and solve the equations 
of motion for such two-body problem. A lot of research 
achievement of tethered systems are gained space applications 
such as the debris towed by tether, tethered satellite formation, 
tethered robot, etc. Among these applications, space tether 
deployment is the key issue, which is still a hot topic. The 
deployment control of the tethered system is not easy because it 
is prone to swing or liberating due to the coriolis force induced 
by deployment. Sometimes, the fast deployment speed may 
cause too large swing amplitude, which should be avoided to 
proceed space tethered operations. Many researchers are 
focusing on the problem how to achieve the tether deployment 
fast and stable with suppressing the libration [2-7]. For 
example, a tension control law in terms of the tether length and 
its velocity was firstly raised by Rupp for tether deployment 
[2]. Then, Fujii proposed a mission function control for the 
tether deployment based on the Lyapunov function [3]. A 
linear tension control for tether deployment was presented by 
Pradeep through the linearization [4]. Sun and Zhu developed a 
fractional order control law to eliminate the overshooting [5]. 
Further, Wen proposed a saturated controller by imposing a 
special saturation function to deal with tension constraints [6]. 
Kang and Zhu design a fractional order sliding mode tension 
control to counter the perturbations or uncertainties [7]. 

In this study, we proposed a natural controller design 
approach which is closely related to the dynamics of the 
tethered system. The energy-based control is used for precise 
positioning and effective suppressing the libration. Firstly, the 
dynamic equations are derived by the Lagrange’s equations. 
The obtained dynamic equations of the tethered system are 
further represented in the compact form of Euler-Lagrange. 
The important passivity of the inherent aspect of tethered 
system’s dynamics is revealed with specific matrix. In addition, 
Hamiltonian formulation is used to derive the dynamic 
equations of motion, which is an equivalent way of Lagrangian. 
Hamiltonian formulation is also widely used in the mechanical 
systems for its well-known symplectic structure property. Thus, 
energy balance property of the tethered system equivalent to 
passivity is given. The property is generally founded by 
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Hamiltonian formulation rather than specifying the expressions 
of the matrix. Finally, the energy-based control is developed 
and asymptotic stability of the closed-loop system is proved to 
ensure the precise positioning. 

II. MODELING FORMULATION 
The widely used model of tethered space system control is 

the dumbbell model that is a long tether connecting two 
satellites at its ends, as shown in Fig.1 [8]. The system is 
moving in the orbit of the earth. The orbital motion coordinate 
is located as o-xyz. The y-axis directs toward the Earth center. 
The x-axis is perpendicular to the y-axis in the orbital plane and 
pointing at the velocity’s direction of the orbit. The z-axis 
complies with the right-hand rule. The mass of the Main 
satellite and Subsatellite is 1m  and 2m , respectively. To bring 
insight of space tether system, following assumptions are made 
usually. 

a) The field of the earth is central gravitational field and the 
Main and Sub satellites are particles. 

b) The mass ratio of the Subsatellite over Main satellite is 
sufficiently small such that coordinate o-xyz always remains in 
its nominal orbit. 

c) The tether is massless and its flexibility is ignored. 

d) The tether length l  is very short compared to the 
distance R  form coordinate o-xyz to the center of earth. 

e) External perturbation force is ignored. The orbit is 
circular and only motion in the orbital plane is considered.  

f) Tether tension is the only control force acts along the 
tether. The tether is deployed/retrieved through the tension 
control, i.e., the required tension is produced by the motor 
driving the tether reel in/out system. 

Based upon the assumptions, the TSS motion can be 
decomposed into the orbital motion of the system’s center of 
mass (CM) and the local libration motion θ  of tether about the 
CM in the orbital plane, as shown in Fig.1. 
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Figure 1.  Sketch of the space tether system 

Accordingly, the kinetic energy of the tethered system 
reads ( )22 2 2

0 1 2 0
2

00.5( ) 0.5 0.5 ( )K m m R m l m lθ′ ′= + ++ Ω+Ω , where 
the prime ( )'  denotes the derivative with respect to time t , and 
Ω  is the orbital angular velocity. 0 1 2 1 2( )mm m m + m=  is the 
equivalent mass. Due to l R<<  , the tethered system’s potential 

energy can be approximated as 
( )2 2 2

0 1 2
2

0
2( ) 0.5 1 3cosU m m R m l θ= − + +Ω Ω − . 

A. Lagrangian Formulation 
Take the Lagrangian function as  L K U= − , the dynamic 

equations of the tethered system can be straightly obtained 
according to the Lagrange’s Equation,  

 d L L Q
dt s s
∂ ∂

− =
∂ ∂

 (1) 

where { },s l θ=  is the generalized coordinates and the 
nonconservative force lQ T= −  and 0Qθ = . T  is the tether 
tension. Hence, the equations of motion are, 
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′′ ′ ′+ + + =

 (2) 

For sake of simplicity, the dimensionless variables are 
introduced to normalize the equations of motion [6, 7], such as, 

/ nl lλ =    2
0/ ( )nT T m l= Ω    tτ = Ω    d / ds s τ=  

where nl  is a nominal constant of tether length. T  is the 
dimensionless tension that is to regulate the tether deployment, 
τ  is the dimensionless time which equals to the true anomaly. 
Then, the dimensionless model of tethered system is presented 
as, 

 
2 2

2 2

[(1 ) 1 3cos ]

2 (1 ) 3 sin cos 0

Tλ λ θ θ

λ θ λλ θ λ θ θ

− + − + = −

+ + + =

 

  

 (3) 

It should be noted here, max min 0λ λ λ≥ ≥ >  to satisfy the 
physical real situation and avoid the singularity of second 
equation of the Eq.(3).  

Further, to show the properties of tethered system, (3) is 
represented as the general form of Euler-Lagrange mechanical 
system, 

 ( ) ( , ) ( )M q q C q q q G q u+ + =    (4) 

where ( )col ,q λ θ=  is the general coordinates, ( )M q  is the 
mass matrix, ( , )C q q  is the Coriolis and centrifugal force terms, 

( )G q  is the gravity term, and ( )col ,0u T= −  is the generalized 
force.  

( ) 2

1 0
0

M q
λ

 
=  
 

 ( )
( )

( )
0 2

,
2

C q q
λ θ

λ θ λλ

 − +
 =
 + 





 

 ( )
2

2

3 cos
3 sin 2
2

G q
λ θ

λ θ

 
 =  
 

−


 (5) 

From the dimensionless equations (4), a dimensionless 
Lagrangian ( ),L q q  could be obtained as follows, 

 ( ) ( ) ( ) ( )22 2 21 1 1 1 3cos
2 2

, ,L q q K q q U q λ λ θ θ=  + + − +  
− = 

   (6) 
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where ( ) ( )22 21 1, 1 1
2 2

K q q λ λ θ = + + −  
 

  and ( ) 2 23 cos
2

U q λ θ= −  

are the dimensionless kinetic energy and potential energy, 
respectively.  

Property 1. The inertia matrix ( )M q  is positively bounded, 
min max( )M qζ ζ≤ ≤ . minζ  and maxζ  are the minimum and 

maximum eigenvalue of inertia matrix, respectively. 

Property 2. There exists a positive constant gk  satisfying 

( ) / gG q q k∂ ∂ ≤ . 

Property 3. The time derivative of the mass matrix and the 
matrix of coriolis and centrifugal force terms are dependent 
with each other. Such that, ( ) ( )0.5 ,M q C q q−

  is a skew-
symmetry matrix. 

 ( ) ( )0.5 , 0Tq M q C q q q − = 


    (7) 

Define an energy function E  satisfying the transformation 
T LE q L

q
∂

= −
∂





, then one has, 

 ( ) ( )2 2 2 2 21 1 3 co
2 2

1
2

s
2

TE q M q q U qλ λ θ λ θ +== + −  

   (8) 

The derivative of the energy function can be directly obtained, 
such that, 

 

1
2

1
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T

E q Mq q Mq U
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q u Tλ
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 (9) 

The energy function is E  bounded from below, if 
P∃ ≥ −∞ , such that the potential energy function ( )U q P≥ . 

Then, system satisfies passivity property as follows, 
 

Property 4. Define the function 0S E P= − ≥  as the storage 
function, then the system (4) with inputs u  and outputs q  is 
passive in general, such that, 

 ( ) ( )
0

0 d t
t TS t S q u− ≤ ∫   (10) 

Assumption 1. The libration angle of the payload always 
remains in ( )/ 2, / 2π π− , / 2θ π< . 

B. Hamiltonian Formulation 
In Hamiltonian mechanics, the canonical coordinates ( , )q p  

is used to describe the physical system’s motion. Related to the 
Lagrangian formulation, the Hamiltonian is a function of ( , )q p  
instead of ( , )q q  in Lagrangian. It is understood that q  is 
replaced by q  and p , thus q  is in terms of ( , )q p . p L q= ∂ ∂   
is the generalized momentum.  

The generalized momentum ( )col ,p p pλ θ=  is obtained as, 

 Lpλ λ
λ
∂

= =
∂





  (11-a) 

 ( )2 1Lpθ λ θ
θ
∂

= = +
∂





 (11-b) 

Invoking the Legendre transformation, the Hamiltonian 
function can be derived by, 

 ( )( , ) , ( , )TH q p q p L q q q p= −   (12) 

The Hamiltonian of the tethered satellite system is obtained, 
such that 

 
( )

2 2 2 2 2

22
2

2

1 1 3(
2 2 2
1 1
2

, )

2

cH q os
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p

θ
λ

λ λ θ λ θ

λ
λ

=

=

+ −

 + − + 
 
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 (13) 

Hamilton Equations used for mechanical system is 
presented as follows, 

 
2 10

H
q I q

Ip H u
p

×

∂ 
   ∂    = +      − ∂     ∂ 





 (14) 

The motivation to use Hamiltonian formulation instead of 
Lagrangian formulation is the symplectic structure of 
Hamilton equations in (14). Then the equations of motion of 
the tethered system can be expressed as, 
 

 
( )

( )

2 2

2 2

1 3 cos

2 1 3 sin cos

Tλ λθ λ θ λ θ

λ θ λλ θ λ θ θ

= − + + + −

+ + = −

  

  

 (15) 

It is easy to find that (15) is equivalent to (3) which is 
derived by the Lagrangian formulation.  

Further, the time derivative of H  could be directly calculated 
as, 

( ),

, ,

T T

TT T T T T

H HH q p q p
q p

IH H H H H u
Iq p q p p

H T T
pλ

λ

∂ ∂
= +

∂ ∂

    ∂ ∂ ∂ ∂ ∂
= +    −∂ ∂ ∂ ∂ ∂    

∂
= − = −

∂



 



 (16) 

Equation (16) indicates the energy balance property of 
tethered system. The increase in energy (Hamiltonian 
quantity) of the system equals to the power supply. The 
relation shown in (16) is actually equivalent with passivity (9), 
Moreover, it is quite straight to observe the intrinsic property 
of tethered system (3) by the Hamiltonian formulation.  

III. ENERGY-BASED CONTROL 
The aim of controller design is to deploy the tethered 

system to its desired position. As well known, the stable 
equilibrium position of the tethered system lies in local vertical. 
Thus, the desired states of tethered system is usually set at the 
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downward equilibrium ( ) ( ), , , ,0,0,0dλ λ θ θ λ=  . dλ  is the desired 
tether length and tether angle is zero. By virtue of the passive 
property of the tethered system, the controller design for 
tethered system deployment is posed based on the energy 
modified Lyapunov function in this section.  

From the Hamiltonian formulation, the quantity of 
Hamiltonian energy function obtained by the Legendre 
transformation is lower bounded when the potential energy 
function ( ) 0U q P− ≥ , then one can take a function 

( ) ( ) 0P U q U q θ == =  to shift the Hamiltonian function to be 
positive such that,  

 2
1

2 2 2 2 21 1 3 3
2 2 2 2

V cH P osλ λ θ λ θ λ= − − += +   (17) 

It is obvious that (17) is always positive. Thus, one can 
select the function 1V  as the Lyapunov function candidate, and 
then controller is designed to make the closed-loop system 
stable. 

Take the derivative of the function 1V , 

 1 3V H P Tλ λλ= − = +−     (18) 

Thus, the closed-loop tethered system is passive if the one 
take output λ  and input T  as follows, 

 3 vT kλ λ= +  , 0vk >  (19) 

where vk  is an strictly positive constant. 
Then, substituting (19) into (18), which yields, 

 2
1 3 vH T kV P λ λλ λ+ = −= − = −      (20) 

It is straightforward to know that the closed-loop tethered 
system is Lyapunov stable under the controller (19). However, 
the final tether length is not certain since 1V  is not convex at 

, 0dλ λ θ= = . It is easy to check with the Hessian Matrix of 1V , 
at the desired position, such that, 

 ( )
( ) ( )

22
1

222
0

0

0 03sin 3 sin 2
0 33 sin 2 3 cos 2d

d d

V
q λ λ

θ λ λ
θ

θ λ θ
λλ θ λ θ=

= =
=

   ∂
= =   ∂     

 (21) 

It is obvious that the Hessian Matrix 
2

1
2

0
d

V
q λ λ

θ
=
=

∂
∂

 is not positive 

definite. Thus, even if the tether may arrive to the desired 
length but it will not be able to stay there.  

To achieve the desired final length along the vertical, the 
energy Lyapunov function should be modified so that it is 
convex at the desired position. For the purpose of this, we 
construct a Lyapunov function as follows, 

 ( )2
2 1

1
2 p dV V k λ λ= + −  (22) 

where pk  is an strictly positive constant. It is obvious to find 

that 2 0V ≥  and compared with 1V , a positive term ( )1
2 p dk λ λ−  

is added, which has the unique minimum at desired tether 
length. Then, at the desired equilibrium we have, 

 
( )

( )

2

2
2

0

0

3 sin
03 sin 2

2
d

d

p dkV
q λ λ

θ
λ λ
θ

λ θ λ λ

λ θ=
=

=
=

 + −
∂  = = ∂

  

 (23) 

 ( )
( ) ( )

22
2

222
0

0

03sin 3 sin 2
0 33 sin 2 3 cos 2d

d

pp

d

kkV
q λ λ

θ λ λ
θ

θ λ θ
λλ θ λ θ=

= =
=

 +  ∂
= =   ∂     

 (24) 

Thus, it indicates that 2V  is convex, then it is stable to stay at 
the desired equilibrium. Then, the controller (19) should be 
modified accordingly. The control law becomes, 

 ( )3 p d vT k kλ λ λ λ= + − +  , 0, 0p vk k> >  (25) 

Theorem 1: Under the controller (25) and Assumption 1, the 
deployment control of the closed-loop tethered system is 
asymptotically stable at desired downward equilibrium. 

Proof. Select the Lyapunov function candidate as 2V  and 
take the derivative of it, yields that, 

 ( )2 3 p dV T kλ λλ λ λ−= + +−    (26) 

Recall (25), one has, 

 2
2 0vV k λ− ≤=   (27) 

From (27), the Lyapunov function 2V  is non-increasing, 
then one has ( )2 2 0V V≤ . The trajectory of all the states will 

converge to the largest invariant set { }2| 0W q V= ∈ =  as the 

time approaches to infinity. The set W  indicates 0λ = , which 
further means the tether length keeps constant constantλ = . 
Then, recall (13) and (16), one can have, 

 2 2 2 21 3 constant
2 2

cosλ θ λ θ− =  (28) 

Combine (28) with first equation of (15), we can know that 
there are at most two isolate solutions of θ  for θ ∈  . Then, 
one can have that, 

 0θ =  (29) 

Substitute (29) into the second equation of (15), yields, 

 sin cos 0θ θ =   (30) 

Further, the solutions of tether angle can be obtained under 
the Assumption 1, we have 0θ = . Combine with (25) and (15), 
we have,  

 ( ) 0p dk λ λ− =   (31) 

Then, one can get the unique solution for tether length 
dλ λ= . Therefore, the deployment of tethered system has 

unique equilibrium at ( ) ( ), , , ,0,0,0dλ λ θ θ λ=   under the 
controller (25) with the Assumption 1. The equilibrium 
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( ) ( ), , , ,0,0,0dλ λ θ θ λ=   is concluded to be asymptotically stable, 
which completes the proof.    

Remark 1: In the proof, the LaSalle’s invariance theory is used 
to prove the asymptotic stability of the closed-loop system. 
However, it should be noted that it actually can’t be directly 
applied because of unboundedness of tether angle. But it can be 
circumvented by variable transform as in [6, 10], which is 
omitted in the proof because it has no effect on the conclusion 
of asymptotic stability. 

Remark 2: The convex of the function in (24) actually implies 
the asymptotically stable of the closed-loop system. Because 
the convex of the function at desired equilibrium means that 
any state of motion in the small domain near desired 
equilibrium has the minimum at desired equilibrium. That is 
the reason we construct the function to make the energy 
Lyapunov function have minimum at the desired equilibrium. 

IV. SIMULTION AND DISCUSSION  
In this section, numerical experiments are carried on to 

verify the effectiveness of the proposed controller. The 
simulations are conducted in MATLAB R2017a using the 
numerical integrator ODE45. The tethered satellite system is 
assumed to orbit circularly with an altitude of 220 km and the 
orbital velocity is 31.18 10−×  rad/s. The maximum tether length 
is 100 km. The corresponding initial and final parameters of the 
tether system are selected as 0 0 0 0( , , , ) (0.01,0.5,0,0)λ λ θ θ =   and 
the desired states ( , , , ) (1,0,0,0)d d d dλ λ θ θ =  , respectively.  

Define two potential energy functions 1 0U U P= +  and 

( )2
2 1

1
2 p dU U k λ λ= + −  according to the Lyapunov function 1V  

and  2V . Parameters in these functions are set as 4pk =  and 
1dλ = . Then, sketch the graph of the function in configuration 

space of λ θ− , see Fig. 2. As shown in the graph of first 
subplot, the function 1U  has the minimum if the tether angle is 
zero but it is not depending on tether length. It indicates that 
the tethered system is able to deploy to the vertical direction 
but the deployed tether length is not certain maybe any value. 
However, seen from the second subplot, the function 2U  has 
the unique minimum at desired position. It can be observed that 
the function 2U  is convex around the small neighborhood of 
the desired equilibrium. 

Further, the control laws (19) and (25) are used to clarify 
the stability of the closed-loop tethered system. The control 
gains are chosen as 1vk =  in (19) and 2pk = , 4vk =  in (25). 
The profiles of the position states and tension in tether are 
presented in Figs.3-5. Seen in Fig. 3, the length profiles show 
that both two proposed controller can achieve a stable tether 
deployment. The controller (25) fulfill the tether deployment to 
desired length successfully, however the controller (19) does 
not. It can be found that the tether angle profiles converge to 
zero as we want for both two controllers, see Fig. 4. The 
tension in tether for two controllers are shown in Fig.5, tension 
is positive and finally equal to the static balance force. In 
conclusion, the simulation results agree with the theoretical 

analysis given in Section III and the proposed controller (25) 
can perform the asymptotic stability for deployment control of 
the tethered system.  

 
Figure 2.  1U  and 2U  in configuration space λ θ−  

 
Figure 3.  The deployed dimensionless tether length  

 
Figure 4.  The tether angle during tether deployment  
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Figure 5.  Tether tension during tether deployment 

 

V. CONCLUSTION 
In this study, we focus on the dynamics and control of 

space tethered system’s deployment in two dimensional space. 
In order to get insight of the dynamic behavior of the tethered 
system, the dynamic model is formulated by the way of 
Lagrangian and Hamiltonian, respectively. In Lagrangian 
formulation, the dynamic equation is written into the Euler-
Lagrange form and the passivity property is further presented 
by the specifically chosen matrix of coriolis/centrifugal force. 
In alternative way, the equivalent property of energy balance in 
the tethered system is performed by Hamiltonian formulation, 
which is much more intuitively due to the symplectic structure. 
This property is actually in general rather than depending on 
specified coriolis/centrifugal matrix. By virtue of the Hamilton 
formulation, the deployment control of the tethered system is 
studied based on Energy-based control methodology. 
Controllers are proposed for stabilizing tether deployment. The 
Lyapunov stability and asymptotical stability are analyzed for 

each controller, respectively. Finally, the results are verified by 
the numerical simulations.  
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