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Abstract  

Single crystals of a complex Zintl compound with the composition Na4Ge13 were synthesized for 

the first time using a high-pressure/high-temperature approach. Single-crystal diffraction of 

synchrotron radiation revealed a hexagonal crystal structure with P6/m space group symmetry 

that is comprised of a three-dimensional sp3 Ge framework punctuated by small and large 

channels along the crystallographic c-axis. Na atoms are inside hexagonal prism-based Ge cages 

along the small channels, while the larger channels are occupied by layers of disordered six-fold 

Na rings, which are in turn filled by disordered [Ge4]4- tetrahedra. This compound is the same as 

“Na1-xGe3+z” reported previously, but the availability of single crystals allowed for more 

complete structural determination with a formula unit best described as Na4Ge12(Ge4)0.25. The 

compound is the first known example of a guest-host structure where discrete Zintl polyanions 

!  1



are confined inside the channels of a three-dimensional covalent framework. These features give 

rise to a temperature-dependent disorder, as confirmed by first principles calculations and 

physical properties measurements. The availability of single-crystal specimens allowed for 

measurement of the intrinsic low-temperature transport properties of this material and revealed 

its semiconductor behavior, which was corroborated by theoretical calculations.   

1. Introduction  

Zintl-phases are intermetallic compounds that are the product of the reaction between alkali / 

alkali-earth metals and elements of groups 13-16 [1, 2]. Zintl phases are ionic like the classic 

example of NaCl, and similarly, their component ions achieve an octet via electron transfer from 

the more electropositive to the more electronegative ion. In contrast, however, the constituent 

anions in Zintl phases are not necessarily isolated species, and are comprised of multiple atoms 

bonded together in order to achieve an electron octet. Understanding the science of compounds 

formed by group 14 elements is fundamental in the search for technologically important 

materials including photovoltaics, optoelectronics and thermoelectrics. Two important and 

related chemical systems that form Zintl compounds are those of Si and Ge. There are a variety 

of these materials with a range of compositions, some of which may have critical applications in 

energy conversion. Zintl phases in the Si and Ge systems can be generally classified into two 

families: polyanionic species and framework species [1-4]. Polyanionic species include cluster 

anions such as [Ge4]4-, as in the case of Na4Ge4 and Na12Ge17, or [Ge9]4- such as in Na12Ge17 

[1-4]. Framework species include compositions such as the clathrate-II NaxGe136 (0 ≤ x ≤ 24) [1, 

5]. Layered Zintl compounds of Si and Ge are also known, as well as Ge and SiGe alloy sheet 

polymers [6]. However, to the best of our knowledge no three-dimensional compounds that 

incorporate elements of both framework and polyanion types are known to date.  

Recently a new compound in the Na-Ge system, Na1-xGe3+z (x and z reflect variable Na and Ge 

occupancies), was synthesized by thermal decomposition of the Zintl-precursor Na4Ge4 under 

vacuum [7-9]. This material was initially synthesized as a microcrystalline powder that also 
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contained traces of amorphous Ge. Its structure, as determined by powder diffraction methods, 

has characteristics qualitatively analogous to aluminosilicate zeolites [9, 10] and Ge clathrates 

[5]. An unconventional covalent Ge framework accommodates Na atoms in two distinct channels 

giving rise to relatively high disorder, having implications on its physical properties.  

Using powder X-ray and neutron diffraction methods, four crystallographically distinct Ge sites 

with full occupancy were previously determined for the three-dimensional sp3 Ge framework, 

which contains 5-, 6-, and larger 24-membered Ge rings in the a-b plane that create small and 

large zeolite-like channels along the c-axis. Smaller six-membered rings form hexagonal prism-

based cages that host Na atoms with full occupancy. The large 24-member Ge rings form six 

“lobes” that are concave with respect to the channel center (like a flower with six petals) and 

each lobe contains one sodium atom (fully or partially occupied depending on the preparation 

conditions), forming six-fold Na rings that are layered every ~4 Å along the c-axis. The centers 

of the larger channels were suggested to contain two edge-aligned, hexagonal Ge rings separated 

along the c-axis by only ~1 Å. These hexagonal Ge ring pairs occur between each six-fold Na 

layer with the Ge ring vertices aligned towards the six Na atoms in the a-b plane. Unphysical Ge-

Ge distances of both in-ring and between ring pairs were rationalized by partial occupancies, 

although all Ge atoms comprising these rings are described by a single crystallographically 

unique site and no physical explanation to account for this type of chemical environment is 

available. It is therefore likely that the crystallographic description and chemical understanding 

of Na1-xGe3+z is incomplete. Based solely on Rietveld refinements of powder neutron and X-ray 

diffraction (XRD) data with partially-occupied Na and Ge sites, the compound was found to have 

a composition ranging from NaGe3.24 to NaGe4.34, and thus given the general formula Na1-xGe3+z, 

where the “base” structure (NaGe3) contains no Ge in the large channels, but is fully loaded with 

Na. Within this model, the ideal composition of the full-occupancy structure would be NaGe3.125. 

In addition, specimens with 65% of the theoretical density were obtained by careful hot-pressing 

to avoid decomposition, thus no intrinsic transport properties characterization exists for this 

material [7]. 
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High-pressure/high-temperature (HPHT) methodologies have emerged as promising synthetic 

routes for preparing new stable and metastable compositions that are otherwise inaccessible by 

more conventional solid-state synthesis or crystal growth methods [11-14]. The synthesis of 

single-crystal specimens is a prerequisite to gaining a better understanding of the intrinsic 

structural and physical properties of materials for a range of technologically important 

applications. Only a handful of binary Na-Ge compositions are known to date [15-20], and 

HPHT synthesis has not been explored so far for any of them.   

In this paper we report the HPHT synthesis of the “Na1-xGe3+z” phase in the form of high-quality 

single crystals. We propose an alternate structural model consisting of chains of disordered 

[Ge4]4- Zintl ions in the large channels, which results in a bulk composition of Na4Ge13. 

Specimens in the form of agglomerations of single crystals allowed for measurement of the 

intrinsic low-temperature transport properties, including electrical and thermal conductivity and 

the Seebeck coefficient, for the first time.  

2. Experimental Methods  

Synthesis 

Na4Ge13 was synthesized from a Na:Ge = 1:3 mixture that was ground using a ceramic mortar 

and pestle for one hour inside a high-purity Ar glovebox and loaded into a Ta capsule (Caution: 

Na and Na-Ge mixtures are highly reactive in air / moisture and should only be handled in an 

inert atmosphere). The capsule was then introduced into an 18/11 multianvil assembly using a 

graphite heater with ZrO2 insulation. A W-Re C-type thermocouple, imbedded in an Al2O3 plug, 

was used for accurate temperature control. The mixture was pressurized in a 1500 ton multianvil 

press at a rate of 10 bar/h (oil pressure) to a specimen pressure of 4 GPa, and reacted at 800 oC in 

two steps: preheating at 400 oC for 30 minutes, to avoid a blowout of the molten Na, followed by 

a reaction at the final temperature for one hour, after which the sample was quenched by 

switching off the power. The recovered sample was easily removed from the Ta capsule and then 

washed with distilled water to remove the unreacted Na. The stability of the crystals in water and 

air was verified by measuring identical XRD patterns over time (one year).  
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X-ray diffraction 

Initial powder X-ray diffraction (PXRD) analyses were performed on crushed specimens using a 

Bruker D8 diffractometer with Cu Kα radiation and Vantec 500 area detector. Single-crystal 

diffraction measurements were performed at the Advanced Photon Source, sector 16 (HPCAT) 

on beamline 16-BMD. Monochromatic X-rays (0.30998 Å) with a beam size of (5 × 5 µm2, 

FWHM) were focused on the sample and room-temperature diffraction was collected using a 

MAR345 image plate operating in 2300 mode. Oscillation scans were collected on one axis 

between omega = -30 to +25° and angular step scans were conducted every 1 degree. Peak 

positions and intensities were extracted and unit cell parameters were refined in GSE_ADA and 

RSV software packages, respectively [21]. Single crystal diffraction experiments were also 

conducted on Beamline 11.3.1 at the Advanced Light Source of Lawrence Berkeley National 

Laboratory. A blocky silver crystal with dimensions of ~0.05 × 0.05 × 0.02 mm3 was mounted on 

a MiTeGen® sample mount, then placed in the 100(2) K nitrogen cold stream provided by an 

Oxford Cryosystems Cryostream 700 Plus low-temperature apparatus. An approximately full 

sphere of data to 2θmax = 40° was collected using a Bruker D85 diffractometer equipped with a 

Photon 100 CMOS detector. Synchrotron X-rays were monochromated to a wavelength of 

0.7749 Å using silicon (111). The data were integrated using the program SAINT v8.27b.  A 

multi-scan correction for absorption was applied with the program SADABS v2014/5.  A total of 

46264 reflections were collected, of which 1410 were unique [R(int) = 0.0323], and 1371 were 

observed [I>2σ (I)].  

Structure solutions were achieved using intrinsic phasing (SHELXT) and refinements were 

completed by full-matrix least-squares minimization of F2 using the SHELX-14 suite of 

programs within the PLATON software package [22]. 47 parameters were refined with one 

restraint [23, 24]. Space group assignment was based upon systematic absences, E-statistics, 

agreement factors for equivalent reflections and successful refinement of the structure. Atomic 

positions were standardized using the program STRUCTURE TIDY [25, 26].  Crystallographic 

images were made using the program CRYSTALMAKER (CrystalMaker Software Ltd., 

!  5



CrystalMaker®.) [27]. Further crystallographic details are given in Tables 1-2 and the supporting 

information (SI).  

Electron microprobe analysis 

Single-crystal specimens were mounted in epoxy and polished to a surface roughness <1 µm. 

The samples were analyzed using a JEOL 8530F field emission electron probe, operating at 10 

kV and 10 nA. The Na-Kα and Ge-Lα lines were measured in order to minimize peak overlap. 

The standards used were pure Ge metal and DJ35, a Na-bearing glass, and the detection limits 

were 70 ppm and 200 ppm for Na and Ge, respectively. A total of 27 analyses were collected on 

multiple crystals within a single analytical session.  

Raman Spectroscopy 

Raman spectra from samples were obtained in the back-scatter geometry using a 532 nm laser 

(~1 mW power) as the excitation source. Laser light was focused using a 20× Mitutoyo objective 

lens (0.40 NA) and scattered light was passed through a 50 µm spatial filter and low-frequency 

holographic notch filters. Raman light was dispersed off of an 1800 groove/mm grating and 

focused onto a liquid-nitrogen-cooled, charge-coupled device detector.  

Low-Temperature Transport Properties  

The steady-state thermal conductivity, κ, Seebeck coefficient, S, and four-probe resistivity, ρ, 

measurements on single-crystal specimens of approximate dimensions 0.1 mm × 0.1 mm × 0.1 

mm were conducted in a custom radiation-shielded vacuum probe in the temperature range 

between 12 and 300 K [28, 29]. Conservative estimates of the room temperature maximum 

uncertainties in the measurements of κ, S and ρ are 30%, 6%, and 30%, respectively. The large 

uncertainties estimated for the κ and ρ measurements are due to the relatively large contacts as 

compared to the size of the specimens.   

Calculations 
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Density functional theory calculations were performed using the Vienna ab initio simulation 

package (VASP-5.3.5) [30-33] with the PBE functional [34, 35], the projector augmented-wave 

(PAW) potentials [36, 37], and a 270 eV plane-wave energy cutoff. The Monkhorst-Pack scheme 

[38] was used to generate the K points. The density of K points was systematically increased 

until the convergence of 10-5 eV/atom in calculated enthalpy was reached. The LOBSTER-1.2.0 

program [39, 40] was used to calculate the projected density of states. The GAMESS-US 

program package [41, 42] was used for the molecular calculation, with the same functional and 

the cc-pVTZ basis set [43].  

Raman spectra were calculated using density functional perturbation theory (DFPT) using a 

Python code [44] in combination with VASP. In order to calculate off-resonance Raman activity 

of a mode, the derivative of the polarizability (or macroscopic dielectric tensor) with respect to 

that normal mode coordinate is needed. To obtain the Raman intensity for each mode, phonons at 

the Γ-point were calculated, followed by calculation of the macroscopic dielectric tensor [45].  

3. Results and Discussion   

Synthesis and initial characterization 

Single crystals of Na4Ge13 were synthesized for the first time using the HPHT approach 

discussed in the previous section. The resulting samples consisted of polycrystalline 

agglomerates of visibly reflective crystals with grain sizes ranging between ~50 - 500 µm. The 

crystals were found to be brittle upon mechanical agitation, but remained chemically stable in 

open air (for a period of >1 year). Several crystals were crushed into coarse powder and analyzed 

using PXRD. The resulting PXRD patterns were found to qualitatively agree with the JCPDS 

cards for the previously reported hexagonal Na1-xGe3+z structure with a ≈ 15.08 Å and c ≈ 3.98 

Å, although relative peak intensities were not accurately determined due to limited grain 

statistics. The slightly expanded lattice parameters at 298 K (+0.1% in a and +0.2% in b) could 

be related to the increased or more complete Na/Ge filling as compared with samples prepared at 

low pressure. We note that complete or increased guest filling was also observed in Na-Si 

clathrate samples produced at high pressure [13, 46].   
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Composition from WDS and EDS 

In order to measure the composition of this phase, Wavelength-Dispersive Spectroscopy (WDS) 

and Energy Dispersive Spectroscopy (EDS) analyses were performed using a JEOL 8530F 

electron probe at the Carnegie Institution of Washington (CIW) on multiple single-crystal 

specimens from two independent synthesis runs. The WDS results reveal a uniform composition 

across the 27 independent measurements, an indication of a pure phase of Na and Ge. The only 

other elements detected by EDS were carbon and oxygen, which originate from the carbon 

coating for electrical conductivity and the native oxide layer, respectively. The measured Na:Ge 

atomic ratio of 1:3.25 ± 0.05 indicates a nominal structural formula of Na4Ge13, which is 

consistent with the previous observations from PXRD analysis of Na1-xGe3+z. In terms of the 

previous model, we note, however, that 1:3.25 would require a significant number of Na 

vacancies and it is anticipated that vacancies would decrease at high pressure [13, 46].  

Single-crystal structure 

The crystal structure of Na4Ge13 is hexagonal and was solved in the space group P6/m (No. 175), 

which is the same space group obtained previously for Na1-xGe3+z [7]. The structural model was 

refined using synchrotron diffraction collected at 100 K.  Details of the crystallographic structure 

and refinement are given in Tables 1-2 and the SI.  

Refinement and solution of the framework structure for Na4Ge13 was straightforward, but the 

refinement of the Ge atoms in the channels was complicated by partial occupancies (Table 2).  

Refinement of the occupancies of the Ge1 and Ge6 sites gives partial occupancies of 0.116(1) 

and 0.242(4), resulting in 1.87 Ge1/Ge6 atoms per unit cell and an overall composition of 

Na4Ge12.935. As the elemental composition was determined to be Na4Ge13 from independent WDS 

measurements, and in order to achieve charge balance, a constraint equation of 2 = 12 f1 + 2 f2, 

where f1 and f2 are the occupancies of Ge1 and Ge6, was used.  Refinement using this constraint 

equation gives occupancies of 0.125(1) and 0.250(6) for Ge1 and Ge6, respectively.  Additional 

disorder is displayed by the Na atoms within the larger channel.  Initial refinements resulted in 
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one Na site on a 6j position.  The anisotropic displacement parameters were significantly 

elongated and indicated that the site should be split.  This splitting results in two Na1 sites, Na1a 

and Na1b, on 6j and 12l positions, with partial occupancies of ½ and ¼, respectively.  This 

structure results in a total composition of Na8Ge26 per unit cell.  The disorder of the Na1 sites 

might be further explained by modulation of the channel along c, but precession images of the 

data collection yielded no evidence of such modulation.  We note that it is possible to refine the 

data down to an R-factor of 0.0175 by removing the constraint on Ge1/Ge6 and by allowing the 

Na1a/b occupancy to fluctuate. This approach results in Ge1/Ge6 occupations that do not have 

reasonable chemical interpretations and gives an overall chemical compositions that is far 

outside of the independent WDS measurements.  

Table 1.  Crystallographic Details for Na4Ge13 

Crystal System Hexagonal

Space Group P6/m

a, b / Å 15.0275(5)

c / Å 3.9602(2)

V / Å3 774.50(6)

Formula unit composition Na4Ge12(Ge4)0.25

Z 2

Density, ρcalc (g/cm3) 4.441

T /K 100(2)

Wavelength (λ / Å) 0.7749

Absorption Coefficient (mm-1) 31.32

Reflections Collected 46264

Data/Parameters/Restraints 1410/48/1

Rint 0.0323

R(F) [I > 2σ(I)]a 0.0204

Rw(Fo2)b 0.0502
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aR(F) = ∑∣∣Fo ∣−∣Fc   ∣∣/ ∑∣Fo  ∣for Fo2  > 2σ(Fo2).  bRw(Fo2) = {∑ [w(Fo2 −Fc2)2] / ∑wFo4}½ for all 

data. w−1 = σ2(Fo2) + (0.0181Fo2)2 for Fo2 ≥ 0; w−1 = σ2(Fo2) for Fo2 < 0. 

Table 2: Atomic positions, Atomic Displacement Parameters (Ueq or Uiso), and Site Occupancy 

Factors (SOF) for Na4Ge13. 

The title compound is the same as the previously reported Na1-xGe3+z, but is more accurately 

described as Na4Ge13; the unit cell contains two formula units of Na4Ge12(Ge4)0.25 in the 

hexagonal space group C
1

6h
−P6/m (No. 175).  The structure is composed three of 

crystallographically independent Na sites and six Ge sites. All sites have symmetry m.., except 

for atoms Ge1, Ge6, Na1b and Na2, which have site symmetries of 1, 6.., 1 and 6̅ .., respectively.  

The structure of Na4Ge13 can be described as a three-dimensional framework of Ge atoms with 

two types of channels, one being occupied by only Na and the other by both Na and Ge4 

tetrahedra, along the c-axis (Figure 1).  The Ge framework is composed of four Ge sites, three of 

which (Ge2, Ge4, and Ge5) are four-coordinate to other Ge atoms in distorted tetrahedral 

Atom Wyckoff 
position

x y Z Ueq or Uiso SOF

Ge1 12l 0.0271(2) 0.1088(2) 0.4074(9) 0.0302(8) 0.125(1)

Ge2 6k 0.0417(1) 0.4473(1) ½ 0.0048(1) 1

Ge3 6k 0.3695(1) 0.1033(1) ½ 0.0063(1) 1

Ge4 6j 0.1524(1) 0.5186(1) 0 0.0048(1) 1

Ge5 6j 0.4831(1) 0.1841(1) 0 0.0053(1) 1

Ge6 2e 0 0 0.0757(10) 0.0298(9) 1-6·Ge1

Na1a 6j 0.0696(3) 0.2739(3) 0 0.0237(6) ½

Na1b 12l 0.0636(4) 0.2427(4) 0.0626(15) 0.0237(6) ¼

Na2 2d ⅓ ⅔ ½ 0.0102(4) 1
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environment and one (Ge3) that is three-coordinate to other Ge atoms in a pyramidal 

environment, and is analogous to the Ge framework in Na1-xGe3+z. The four-coordinate Ge atoms 

have Ge−Ge distances ranging from 2.460(1) Å to 2.537(1) Å and the three-coordinate Ge atoms 

have distances of 2.494(1) Å to 2.497(1) Å (Table S1 in the SI). These distances may be 

compared to those seen in Ba6Ge25, which also has a three-dimensional Ge framework-like 

structure, and has three-coordinate Ge−Ge distances ranging from 2.498(1) Å to 2.552(2) Å and 

four-coordinate Ge−Ge distances ranging from 2.475(2) Å to 2.581(2) Å [47]. From this 

coordination and bonding environment, it is expected that the Ge atoms in the framework of 

Na4Ge13 will have formal charges comparable to those seen in Ba6Ge25, with three- and four-

coordinate Ge atoms having formal charges of −1 and 0, respectively.  This gives a Ge 

framework of [(3b)Ge−]3[(4b)Ge0]9 with a formal charge of  −3.  

!  
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Figure 1. Three-dimensional framework structure of Na4Ge13 with Na+ ions and [Ge4]4− 

tetrahedra within the smaller and larger channels, respectively. Purple and green- colored spheres 

represent Na and Ge atoms, respectively. The Na1 atom is shown as a single site in the large 

channel for clarity.  

           

The framework structure contains 5-, 6-, and 24-member Ge rings that create two types of 

zeolite-like channels along the c-axis. The smaller of these channels is occupied by Na2 atoms 

which are twelve-coordinate and located between two six-membered rings composed of Ge4 and 

Ge5 atoms.  These Na2−Ge4/5 distances range from 3.196(1) Å to 3.221(1) Å.  The larger 

channel is formed by rings of 24 Ge atoms, six of which are three-coordinate Ge3 atoms that are 

expected to carry a formal charge of −1 (Figure 2a).  This large channel is more complex with 

two Ge sites, Ge1 and Ge6, at the center of the channel. These central Ge atoms are surrounded 

by Na1a and Na1b atoms at the edges of the channel that each sit between two Ge3 atoms of the 

24-membered ring.  When not accounting for partial occupancies, the Ge1 atoms in the center of 

the channel form two edge-aligned, six-membered rings analogous to those seen in the Na1-

xGe3+z model with unreasonable inter- and intra-ring Ge−Ge distances of 0.733(7) Å to 1.647(4) 

Å and 1.475(2) Å. In the Na1-xGe3+z model, partial occupancy was used to explain these 

unreasonable distances, but no chemical explanation was suggested. Two Ge6 atoms sit between 

two sets of Ge1 six-membered ring dimers. Without partial occupancies, unreasonable 0.602(8) 

Å Ge6−Ge6 distances are observed. The closest Ge6−Ge1 distance is 1.974(4) Å. The Ge6 site, 

which is absent in the refinements for the Na1-xGe3+z model, is crucial to creating a reasonable 

chemical description that achieves charge balance. Refinement of the occupancies for Ge1 and 

Ge6 was described above and gives respective values of 0.125(1) and 0.250(6).  As Ge1 sits on a 

12-fold site and Ge6 sits on 2-fold site, these partial occupancies give an approximate ratio of 3:1 

for Ge1:Ge6.  This results in 1.5 Ge1 and 0.5 Ge6 atoms per unit cell and 0.75 Ge1 and 0.25 Ge6 

atoms per formula unit.   

As described above, the Ge framework will have an overall charge of −3 and each of the four Na 

atoms is expected to have a formal charge of +1.  This leaves a net charge of +1 to be balanced 
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by the one Ge1/Ge6 atom per formula unit.  In order to achieve an average formal charge of −1 

for Ge1 and Ge6, it is reasonable to expect some real Ge1−Ge6 bonding interactions. Within the 

six-membered rings, reasonable Ge1−Ge1 distances of 2.554(4) Å are seen between Ge atoms 

residing at any of the first, third or fifth (meta) ring positions. To account for the appropriate 

Ge1:Ge6 composition, further Ge1−Ge6 interactions with distances of 2.417(4) Å and 2.522(4) 

Å allow for the formation of [Ge4]4− tetrahedra (Figure 2b). These are comparable with the 

distances of 2.545(1) Å to 2.583(1) Å seen in A14ZnGe16 (A = K, Rb) [48]. When accounting for 

the partial occupancies for Ge1 and Ge6, none of the unusually short distances will persist with 

the proposed model of (Ge4)4− tetrahedra.  It should also be noted that it is not unreasonable to 

expect (Ge4)4− tetrahedra in the present compound as the original synthesis of Na1-xGe3+z 

p r o c e e d e d f r o m N a 4 G e 4 . T h u s , N a 4 G e 1 3 m a y b e c h a r g e b a l a n c e d a s 

[Na+]4[(3b)Ge−]3[(4b)Ge0]9[(Ge4)4−]0.25.  Discrete ordering of these [Ge4]4- tetrahedra within 

individual channels would alleviate the need to split the Na1 position, however, it appears that 

the occupation is likely not ordered, either within or between channels, as no evidence for 

modulation was observed in the pseudo-precession diffraction images (Figure 2c-d). 

!  

Figure 2. a) Occupation of the large channels along the c-axis by Na+ and [Ge4]4− tetrahedra. 

Na1 atoms are shown on a single site for clarity. b)  View of the [Ge4]4− tetrahedra without partial 

occupancies.  Tetrahedra can adopt eclipsed or staggered conformations by rotating 60° around 
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the c-axis. c) Partial occupation of the Ge1 and Ge6 sites with ordering of discrete [Ge4]4− 

tetrahedra within or between channels. d) Partial occupation of Ge1 and Ge6 sites without 

ordering of discrete [Ge4]4− tetrahedra within or between channels.   

Raman spectroscopy 

Na4Ge13 exhibits a complex Raman spectrum, similar to other Ge-based framework structures 

[49-51] (Figure 3). Group theoretical analysis predicts 10Ag + 112E2g + 51E1g + 111E2g + 52E1g 

Raman active modes for the Ge framework and Na atoms within the structure, with an additional 

18 Raman active modes possible for the channel [Ge4]4- tetrahedra. Given the complex nature of 

the spectra, we performed density functional perturbation theory (DFPT) calculations to aid in 

the mode assignments and to better understand the nature of the atomic vibrations.  

The Raman spectrum of Na4Ge13 is almost entirely described by contributions from the covalent 

Ge framework and encapsulated Na atoms. This is not unexpected given the ratio of framework 

atoms to tetrahedra within the unit cell. The most intense mode at 130 cm-1 is dominated by 

symmetric framework bending motion. Broad contributions at higher frequencies of 184 cm-1 

and 223 cm-1 represent modes associated with in-phase and out-of-phase ring breathing, while 

the highest frequency modes grouped near 245 cm-1 and 268 cm-1 are dominated by in-plane and 

out-of-plane Ge-Ge stretching. Contributions from the [Ge4]4- tetrahedra occur at similar 

frequencies to other M4Ge4 Zintl compounds [52-54], but exhibit strong overlap with the 

framework modes. A sharp contribution at 270 cm-1 could be a signature of the Zintl ion’s 

symmetric stretch, but it is difficult to isolate the contributions from the tetrahedra 

experimentally, given the dominance of the framework modes.  
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Figure 3. Experimental Raman spectrum (black) of Na4Ge13 compared with DFPT calculations. 

Calculated spectra are separated into contributions from the Ge framework with Na atoms (blue) 

and [Ge4]4- tetrahedra (red). A scaling factor of 1.06 was applied to the frequencies of the 

calculated spectra, which are shown as Gaussian profiles with an arbitrary width. Graphical 

representations of the character of prominent modes are shown, where arrows indicate the 

eigenvectors of the atomic displacements. The asterisk indicates a minor contribution from d-Ge 

impurity. 

Stability, chemical bonding and electronic structure 

Density Functional Theory (DFT) calculations were performed in order to investigate the 

electronic structure of Na4Ge13. As mentioned above, every unit cell of the crystal contains only 

half of a [Ge4]4- tetrahedron. A supercell with twice the lattice parameter along the c-axis was 

therefore used to account for the tetrahedral disorder, labeled as “c×2” in Figure 4. 
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Figure 4. Unit cell of the c×2 structure (Na16Ge52). Na and Ge atoms are represented by purple 

and green spheres, respectively. 

The model unit cell is constructed following the crystal structure previously discussed using only 

a single site (6j) for Na1. The number of the respective atoms is doubled along with the c-axis. 

36 of the 52 Ge atoms are 4-coordinated (4c). The leftover 16 are 3-coordinated (3c). A purely 

ionic Zintl-Klemm picture will have each of the 16 3c Ge atoms take an electron from the Na 

atoms to form a lone pair to satisfy the octet structure. The optimized unit cell has space group 

symmetry P3 (No. 143). The lattice parameters are 15.27 Å and 8.08 Å for (a, b) and c, 

respectively. They are slightly larger than the 15.03 Å and 3.96 × 2 Å in Table 1. The bond 

lengths are also slightly larger. For instance, within the tetrahedral [Ge4]4-, the Ge-Ge distance 

between the tip and the trigonal base atoms is 2.66 Å, larger than the 2.52 Å experimental value 

(the cif file is provided in the SI). The Ge-Ge distances in the trigonal base are 2.60 Å, longer 

than the 2.55 Å of the experimental counterpart. The calculated Ge-Ge distances are close to the 

value of 2.67 Å for the Td [Ge4]4- obtained from molecular calculations (see SI).  

Taking the body centered cubic (BCC) Na and diamond-like Ge (d-Ge) structures at 1 atm 

pressure as references, the enthalpy of formation for  
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16BCC-Na + 52d-Ge = Na16Ge52 

is exothermic  by 0.31 eV / Na atom. Compared to the Zintl-precursor Na4Ge4 [1], the formation 

of the Na16Ge52 structure with the following reaction formula 

4Na4Ge4 + 36d-Ge = Na16Ge52 

is exothermic by 0.16 eV / Na atom. The Na4Ge4 structure has ~4 Å adjacent Ge-Ge distances, 

which negates any covalent interaction. The Ge-Ge covalent bonding in Na16Ge52 is responsible 

for the energy lowering and it seems likely that Na4Ge13 is a thermodynamically stable 

compound on the convex hull. The experimental observation of its formation from both 

decomposition of Na4Ge4 and directly from the elements supports this postulation, but the 

presence of another, as-of-yet undiscovered germanium-rich binary with lower formation 

enthalpy could change this understanding. 

The electronic density of states (DOS) for the c×2 structure is shown in Figure 5(a). There is a 

small gap of 0.16 eV, an indication of the semiconductor nature of Na16Ge52. The direct band gap 

is at the K point in the first Brillouin zone (see Figure S5 in SI for the band structure). The 

projected DOS (pDOS) on the different types of atoms are shown in Figure 5(b). The figure is 

obtained from calculations using the LOBSTER package. Different binning and smearing used in 

the calculation results in band gap closure. This does not impact our conclusion on the 

semiconductor nature of the material since the pDOS delivers a qualitative picture only. The two 

types of 3c Ge atoms are differentiated as those forming the tetrahedra (th) and those at the sides 

(side) of the large channel containing the 6-membered Na-rings. The two types of Na are also 

differentiated based on their Wyckoff positions in the original (before taking twice the c-length) 

unit cell with the P6/m space group symmetry.  

!  17



!  

Figure 5. DOS (a) and the projected DOS (b) of the c×2 Na16Ge52 structure. The units of the 

DOS plot are states/eV/unit cell. The DOS and pDOSs have been shifted so that the Fermi 

energy is at 0 eV. The numbers following the [Ge4]4- cluster orbital labels are their orbital 

energies in eV obtained through molecular DFT calculation. The 1e energy has been taken as the 

zero reference. 

The pDOS of the 3c(th) Ge atoms correspond well with the valence molecular orbitals of [Ge4]4-, 

as indicated by the arrows in Figure 5(b) (see Figure S1 in SI for larger figures of the orbitals). 

To be consistent with the Fermi energy setting, we have chosen the energy of the highest 

occupied molecular orbitals, 1e, as zero. [Ge4]4- is isoelectronic and isostructural to the classic P4 

molecule. Their valence orbitals are hence in one-to-one correspondence. The cyan pDOS peaks 

of 3c(th)Ge at -10.5 eV and -6.5 eV in Figure 5 correspond to the 1a1 and 1t2 orbitals. The hump 

ranging from -3 to 0 eV consists of three peaks, corresponding to the 2a1, 2t2, and 1e orbitals. 

The area under each of the five peaks correlate well with the degeneracy of the corresponding 

orbital, e.g., the 1a1 peak area is 0.92 state/unit cell, while the 1t2 peak area is 2.67 states/unit 

cell, about three times larger.  
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Figure 6. –ICOHP vs. Ge-Ge distance. The dashed line is added to guide comparison. 

We also calculated the integrated crystal orbital Hamilton populations up to the Fermi level [55] 

for symmetrically unique Ge-Ge pairs using the LOBSTER package. For the atoms Ge2-5, only 

the symmetrically unique pairs in the P6/m space group are considered. The results are presented 

in Table S2 and Figure 6. Please note that the more negative the ICOHP value (more positive –

ICOHP), the stronger bonding interaction will be. In Figure 6, we clearly see the general trend 

that a longer distance corresponds to a weaker bonding interaction. It is interesting to compare 

the –ICOHP of Ge1-Ge6 (2.66 Å, 2.68 eV / bond) with those of the Ge pairs with similar 

distances in BaGe3 calculated by Zurek and Yao [56]. The three pairs with 2.68 Å distances in 

Table 2 of Ref. [56] have ~1.8 eV / bond –ICOHPs. The bonding interactions are weaker than the 

Ge1-Ge6 here. The difference in bonding interaction reflects the difference in stability between 

the [Ge3]2- moieties in BaGe3 and the [Ge4]4- clusters in Na4Ge13.   

The atomic charges are evaluated using Bader’s Quantum Theory of Atoms in Molecules 

(QTAIM) scheme [57, 58]. The 3c(th) Ge charges are evaluated to be -1.0 for the three atoms in 

the triangular base and -0.8 for the one at the top, consistent with the [Ge4]4- description of the 

tetrahedron. The charges of the twelve 3c(side) Ge atoms are all around -0.4. Their -1 formal 

charges are shared by the 4c Ge atoms, especially the twenty four that form the 6-membered 

rings perpendicular to the c-axis in the small channels. Half of the twenty four are calculated to 

possess -0.4 effective charge, while the other half -0.3. They are the closest to the Na atoms (by 

~3.2 Å) in the small channels and are hence the easiest to accept the electrons lost by the Na 

atoms. The leftover 4c Ge atoms possess -0.1 effective charge. The effective charges of all Na 
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atoms are 0.0. The ionic Zintl picture is pronounced. The 3c(th) Ge atoms in the trigonal base are 

almost coplanar as the six 3c (side) Ge atoms. They provide electrostatic stabilization for the Na 

ions above and below (Figure 7).  

The crystal structure of Na4Ge13 shows a large degree of static disorder for the [Ge4]4- tetrahedra, 

which can adopt a number of configurations that are related by simple rotations. To investigate 

the possibility of flipping these tetrahedra within the large channels, calculations for a Na32Ge104 

unit cell were conducted wherein the lattice parameter along the c-axis was quadrupled (called 

c×4 structure below). This second doubling along the c-direction does not lead to any Peierls 

distortion. The energy of the optimized c×4 structure is exactly twice of the c×2. It takes only 

0.06 eV / unit cell to flip one of the tetrahedra to have the structure shown in Figure 7. Such a 

head-to-head arrangement of the tetrahedra is symbolically labeled by “><”, where the tip of “>” 

denotes the tip of the tetrahedron. The 0.06 eV energy difference corresponds to 10% Boltzmann 

population at room temperature. It can be seen that the tetrahedron only needs to rotate by 

approximately 70° to have any of its three trigonal Ge atoms point in the opposite direction, i.e., 

a flipping. The entropy favorability and the slight 0.06 eV / unit cell enthalpy unfavorability 

suggest that the tetrahedra can tumble and have the tip-to-tip/base-to-base arrangement within 

one chain along the c-axis. The tumbling is not a free rotation. Otherwise, a significant amount of 

diffuse scattering would be observed in the XRD-it would appear to be chains of Ge4 spheres. 

Note that the 0.06 eV / unit cell enthalpy cost is for forming the “><><><” type of configuration, 

which is of higher energy than the “<<<>>>” and “>>><<<” counterparts. The two chain-

symbols here just indicate a random flipping, not that every second tetrahedron flips as in Figure 

7. The 0.06 eV / unit cell should hence be taken as the maximum enthalpy in flipping once every 

second tetrahedron. More likely, the XRD has revealed the Ge4 distribution with random 

tetrahedral flipping. 
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Figure 7. The c×4 unit cell with one Ge4 tetrahedron flipped. 

For the c×4 structure, we have also examined the possibility of rotating the tetrahedron about the 

c-axis, i.e., to change from the eclipsed to staggered configuration. The “<<<<” tetrahedra 

arrangement is maintained in this case. The optimized supercell structure with the staggered 

arrangement is only 0.003 eV / unit cell lower in enthalpy, essentially isothermic to the eclipsed 

configuration. But it requires a significant radial relocation of Na atoms in the surrounding 6-

membered Na rings (Figure S4 and the relevant discussion in the SI). This kinetically hinders the 

formation of the staggered tetrahedra configuration, once the eclipsed configuration is formed, 

and the other way around. 

The synthesis of Na8Ge26 was carried out at a pressure of 4 GPa, as a result of which the c×2 

calculated lattice parameters are reduced to 14.74 and 7.90 Å for (a, b) and c. The tip-to-base Ge-

Ge distance in the tetrahedron and the one between the two trigonal base Ge atoms are 2.64 and 

2.59 Å, respectively, only 0.02 and 0.01 Å shorter than in the 1 atm calculation. This is 
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reasonable as there is a significant amount of empty space between the tetrahedron and its 

neighboring entities; the high pressure acts directly on the bulk Ge cage, not the chains of 

tetrahedra. The Ge–Ge distances in the bulk cage are more affected by the pressure. For example, 

the calculated Ge–Ge distances in the 6-membered rings along the c-axis are reduced from 2.59 

Å and 2.56 Å to 2.52 Å and 2.49 Å.  

At 4 GPa, the formation enthalpy for the c×2 structure for the following reaction: 

16BCC-Na + 52d-Ge = Na16Ge52  

is -0.57 eV / Na atom, almost twice more exothermic than at 1 atm (-0.31 eV / Na). The higher 

pressure favors the more compact c×2 structure as some Na atoms have been doped in the larger 

Ge-channels. The c×4 calculation under 4 GPa shows that it takes similar enthalpy (0.055 vs 

0.061 / unit cell) to flip the tetrahedron to have “><” chain. The pressure does not make a 

difference. The DOS and band structure of the c×2 structure at 4 GPa are shown in Figure S5 in 

the SI. There is no significant difference from the 1 atm counterparts (Figure S5). The band gap 

is 0.18 eV, similar to the 0.16 eV at 1 atm. Overall, the pressure does not modify the electronic 

structure considerably. The projected DOS are similar to those shown in Figure 5.  

Transport properties 

The HPHT synthesis methodology described in this paper allowed for the availability of fully-

dense, homogenous Na4Ge13 in the form of agglomerations of single crystals. The transport 

properties of Na4Ge13 were measured directly on these crystals, employing a previously 

described methodology [59-61]. Specimens from three separate synthesis runs were 

independently measured, producing transport properties that are in agreement with each other. As 

a result of the complex hexagonal structure of this compound, the transport properties are likely 

anisotropic and therefore the data obtained from the polycrystalline specimens should be 

interpreted as an average measure of the transport in the different crystallographic directions. 

Figure 8 shows S and κ as a function of temperature for Na4Ge13. 
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Figure 8. The Seebeck coefficient, S, (black triangles) and thermal conductivity, κ, (red circles) 

as functions of temperature for Na4Ge13 

The absolute value of S increases with temperature, as expected for heavily doped 

semiconductors with negligible phonon drag. The temperature dependence and magnitude of S is 

similar to that of partially-filled, semiconducting NaxSi136 (x = 2.9) clathrates [62]. The 

temperature dependence of κ is also shown in Figure 8. The higher κ values, as compared to 

those of the polycrystalline specimen [7], is a result of the crystallinity of the Na4Ge13 measured 

here. The magnitude of κ for Na4Ge13 is significantly lower than that of single-crystal Ge [63], 

but significantly higher than more closely related clathrates [64]. The observed thermal 

conductivity is approximately four-times higher than that of Ba8Ge43�3 [65] and one order of 

magnitude higher than that of Ba6Ge24, phases which have Ge vacancies in addition to the 

disorder associated with “rattling” Ba ions [66]. Like S, the magnitude of the thermal 

conductivity of Na4Ge13 is readily comparable to that of partially-filled NaxSi136 clathrates [62]. 

The main contribution to the total thermal conductivity for Na4Ge13 is that of the crystal lattice 

(Figure S6 in the SI), with a negligible electronic thermal conductivity, consistent with the 
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semiconducting behavior. Yet, the thermal conductivity seems surprisingly high compared with 

related systems. Na and Ge within the larger channels of the crystal structure have the largest 

atomic displacement parameters (Table 2) as compared to all other atomic constituents and 

therefore should act as effective phonon scattering centers. However, the reduced number of 

atoms in the unit cell and the presence of light Na guest atoms (compared with other Ge-based 

clathrate phases) will have an overall tendency to increase thermal conductivity. The underlying 

microscopic mechanism for the seemingly large thermal conductivity is not completely 

understood and is of potential interest for future investigations.  

Figure 9 shows the temperature dependence of resistivity, ρ, for Na4Ge13. It decreases with 

increasing temperature, a confirmation of the semiconductor behavior. A fit of Ln (ρ) versus 1/T 

in the highest-temperature region measured (280-300 K) gives a band gap value of ~0.1 eV, 

lower than that of elemental Ge. This agrees with the DFT calculations of 0.16 eV, but should be 

viewed as a lower limit due to the limited temperature range. The same calculation on elemental 

Ge results in gap closure (see SI).  

!  

Figure 9. Electrical resistivity, ρ, for two independent samples of Na4Ge13.  

4. Conclusion 
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Single-crystalline Na4Ge13 was synthesized for the first time by employing a high-pressure/high-

temperature approach. This complex Zintl compound has a hexagonal crystal structure 

comprised of a three-dimensional sp3 Ge framework forming small and large channels along the 

crystallographic c-axis. The most conspicuous aspect of its intriguing crystal structure is the 

presence of disordered [Ge4]4- Zintl ions surrounded by six-fold Na rings within the larger 

channels, which was missing from the original Na1-xGe3+z model. This material constitutes the 

first example of an intermetallic system in which an exclusively Ge framework crystallizes in a 

channel configuration and Zintl ions are confined within these channels. The availability of 

specimens in the form of agglomerations of single crystals allowed for measurement of the 

intrinsic low-temperature transport properties of this material for the first time. Seebeck 

coefficient measurements indicated that Na4Ge13 exhibits semiconductor behavior, and this was 

corroborated by DFT calculations. Furthermore, it exhibits thermal conductivity that is lower 

than that of single-crystal Ge, but larger than related clathrate materials. The Na4Ge13 

composition is an example of a system with a favorable combination of electronic and thermal 

properties, which is a necessary condition for an effective thermal-to-electrical energy 

conversion, according to the phonon-glass electron-crystal concept [5, 63]. The structure-

property characteristics of this composition suggest that additional investigation of Zintl phases 

is warranted in order to explore their potential for efficient thermoelectric conversion 

applications [67].    
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Synopsis: 
Na4Ge13 is a framework structure with small and large channels that hold Na and is the first 
known example of a guest-host structure where discrete (Ge4)4- Zintl polyanions are confined 
inside the channels of a three-dimensional covalent framework. These features give rise to 
temperature-dependent disorder, as confirmed by first principles calculations and physical 
properties measurements.  
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