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ABSTRACT 

The elimination of nitrogenous waste products is a ubiquitous problem for animals. The 

anal papillae of Aedes aegypti larvae, are important sites of ammonia/ammonium excretion. They 

express three putative ammonia (NH3/NH4
+) transporters, Rhesus protein 50-1 and -2 (AeRh-1, -

2) and AeAmt. Here, we pharmacologically characterize ammonia transport mechanisms in the 

anal papillae of larval A. aegypti and investigate the regulation of putative ammonia transporters 

in response to high environmental ammonia (HEA) treatment. Ammonium concentration gradients 

were measured adjacent to the anal papillae using scanning ion-selective electrode technique 

(SIET) and used to calculate ammonia fluxes by the anal papillae. Results suggest that the 

ionomotive pumps V-type H+ ATPase (VA) and Na+/K+ ATPase (NKA) as well as cation / H+ 

exchanger, isoform 3 (NHE3) participate in ammonia excretion at the anal papillae.  VA is 

involved in ammonia trapping at the exterior unstirred layer of the anal papillae, while basal NKA 

and apical NHE3 facilitate the transport of NH4
+.  Quantitative RT-PCR analysis revealed lower 

abundance of AeRh-2 in the anal papillae relative to the expression of AeRh-1; however Amt 

expression was approximately 12 fold higher than AeRh-1 (Note*: expression refers to relative 

mRNA abundance). In addition, the expression of AeRh-1/2 were lower but Amt expression was 

significantly higher in the presence of HEA, compared to controls. It is probable that ammonia 

transport by the anal papillae of A. aegypti larvae is achieved by multiple mechanisms, involving 

the cooperative efforts of various facilitative and active transporters. In addition carbonic 

anhydrase participates in ammonia excretion, via its normal role in acid/base balance, by supplying 

protons to the VA, which can be pumped out and used in ammonia trapping.  
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1. INTRODUCTION 

1.1 Effects of Ammonia Toxicity 

Ammonia is a highly toxic end-product of amino acid and nucleic acid metabolism in 

animals. Deamination of purines and glutamate results in ammonia accumulation in the cytosol 

and mitochondria, respectively (Campbell 1991). The NH3 molecule is permeable across the 

mitochondrial membrane and as a result accumulation of ammonia may occur in the mitochondria. 

When NH3 reaches high concentrations in the mitochondria, it acts as an uncoupler, trapping 

protons and forming NH4
+. This ultimately results in diminished H+ gradient and diminished efflux 

across the membrane, inhibiting oxidative phosphorylation (Campbell 1991; Randall and Tsui 

2002). Both, NH3 and NH4
+ can impart toxic effects on cytosolic and organelle pH levels.  High 

ammonia salt concentrations lead to alkalinisation which impedes lysosomal protease activity and 

Golgi vesicle formation. High concentrations of NH4
+ may deplete intracellular K+ levels; this is 

because K+ pathways may be substituted by NH4
+ in Na+/K+/2Cl-  (NK2C) co-transporters (Wilkie 

2002), K+ channels (Choe et al 2000), Na+/K+ ATPases (NKAs; Skou 1960) or cation/H+ 

exchangers (NHEs; Randall et al 1999), including NHE3s (Pullikuth et al 2006). Depletion of 

intracellular K+ may lead to membrane depolarization, impaired fatty acid oxidation and 

stimulation of glycolysis by activation of phosphofructokinase. In general, ammonia toxicity is the 

result of a combination of effects and may vary in different tissues and species (Campbell 1991).  

 Recently, there has been much focus on the role that glutamine plays in ammonia toxicity 

of the mammalian brain. Patients with liver failure produce high levels of glutamine which, in the 

cytoplasm of astrocytes, serve as ammonia carriers as they are transported to the mitochondria 

(Albrecht and Norenberg 2006). In the mitochondria, glutamine is degraded into glutamate and 

ammonia, which triggers the production of reactive oxygen species and Ca2+-dependent 
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mitochondrial permeability transition, ultimately leading to the collapse of the inner mitochondrial 

membrane potential (Albrecht and Norenberg 2006). This collapse leads to mitochondrial 

dysfunction, production of more free radicals and diminished or arrested ATP production. The 

resultant diminished ATP concentration leads to failure of energy dependent volume regulatory 

processes and leads to swelling of the astrocytes and ultimately edema of the brain (Albrecht and 

Norenberg 2006). A rise in Ca2+ concentrations as a result of elevated ammonia level also occurs 

and may be linked to activation of the NMDA receptor (Schliess et al 2002). NMDA is a non-

selective cation transporter activated by glutamate. Depolarization of the astrocyte membrane by 

ammonia may remove Mg2+ blocking the NMDA receptor which would result in additional influx 

of Ca2+ through the channels. In a positive feedback loop fashion, the elevated Ca2+ concentration 

may be enough to release glutamate in the astrocytes which in turn further activates the NMDA 

receptors (Schliess et al 2002). Interestingly, insects seem to be much more ammonia tolerant 

compared to other animals (Borash et al 1998; Gordon and Bailey 1974; Marshall and Wood 1990). 

For example, termites can withstand as much as 600 times more gaseous ammonia concentrations 

than mammals (Slaytor and Chappell 1994). 

 While many heterotrophs acquire nitrogen from ingesting nucleotides and amino acids (e.g. 

from proteins), plants and bacteria can utilize inorganic nitrogenous products such as ammonium. 

Plants are able to absorb NH4
+, or less commonly, nitrate from the soil through the root hairs for 

incorporation into amino acids, nucleic acids or chlorophyll (Raven et al 2005). Many bacteria 

(chemosynthetic autotrophs) common in soils are able to convert NH3/NH4
+ into nitrites, through 

oxidization. This process yields energy release which is used by the bacteria (e.g. Nitrobacter and 

Nitrosomonas) in reducing carbon dioxide in a similar fashion to the utilization of sunlight energy 

for reduction of carbon dioxide in photosynthetic autotrophs (Prosser 1989). Bacteria are often 
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found in symbiosis with plants, and together play an important part in the nitrogen cycle and 

fixation (Raven et al 2005).  

1.2 Putative Ammonia Transporters 

 Many putative ammonia excretion mechanisms have been proposed but it is widely 

believed that ammonia regulation in most animals is achieved in part by transport proteins. For 

instance, Rhesus (Rh) family of glycoproteins are known to function as ammonia transporters and 

are present in invertebrates and vertebrates alike. Other facilitators of NH3/NH4
+ transport may 

include NKA, K+ channels, NHEs, V-type H+-ATPases and vesicular transport, and will be 

discussed in detail later (Table 1.1). 

Table 1.1 Putative ammonia transport facilitators, the mechanism involved and inhibitors.  

 

1.2.1 Methylammonium/ammonium permeases (MEPs) 

Methylammonium/ammonium permeases (MEPs) are generally associated with yeast. The 

mediation of methylammonium and ammonium uptake in Saccharomyces cerevisiae is undertaken 

by two transport systems that are functionally discrete. The encoding genes for the two systems 

are called MEP1 and MEP2, respectively. Unlinked genetic mutations in MEP1 and MEP2 can 
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lead to the separate loss of the two systems. The systems are composed of one that has high affinity 

and low capacity and one that has low affinity and high capacity. The former system is abolished 

by the MEP2 mutation, while the latter is diminished by the MEP1 mutation (Dubois and Grenson 

1979).  In the early 1990s it was discovered that MEPs, function as ammonium transporters in 

eukaryotic cells (Marini et al 1994). The cloned MEP1 gene expressed a predicted amino acid 

sequence which revealed a highly hydrophobic Mep1p protein of 54 kDa and 10-11 membrane-

spanning regions. Mep1p has high sequence similarity to several bacterial proteins of unknown 

function. Most notable is the expression product of the nrgA gene of Bacillus subtilis which is 

nitrogen regulated. In addition, Mep1p has high sequence similarity to CEunkn, the product of 

partial cDNA in Caenorhabditis elegans (Note*: expression refers to relative mRNA abundance, 

Marini et al 1994). The MEP1 gene was up regulated in cells held in low nitrogen-content medium 

and down regulated in cells held in high nitrogen-content medium. This implies that Mep1p 

functions as an ammonium transporter enabling cell growth facilitating the incorporation of 

ammonium under nitrogen-poor conditions (Marini et al 1994). It was further shown that there is 

a phylogenetic relationship between Rhesus-like proteins, MEPs and Amts (ammonia transporters 

associated with bacteria and plants), with ~14% similarity in amino acid sequences (Marini et al 

1997). It was later confirmed that indeed members of the Rh protein family were analogous to that 

of MEP and Amt proteins (Marini et al 2000). 

 The evolutionarily conserved relationship between Mep1p and the other proteins in 

bacteria, fungi and animals led to the suggestion that, based on MEP identification and 

characterization, a new family of transmembrane proteins could be classified. 
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1.2.2 Ammonium Transporters (Amts) 

 The first ammonium transporter isolated from an organism, excluding the Amt-related 

MEP1 from S. cerevisiae (Marini et al 1994), was the AMT1 from Arabidopsis (Ninnemann et al 

1994). The AMT1 cDNA contains a 501 amino acid reading frame which encodes a protein with 

high hydrophobicity and having 9-12 membrane-spanning regions (Figure 1.1). The structure of 

AMT1 shows that four highly conserved charged amino acids are present in the transmembrane 

helices. There is high energy cost involved in ‘entombing’ charged amino acid residues within the 

hydrophobic region of the membrane. This suggests that the AMT1 may have a functional role in 

the transport of ammonium (Howitt and Udvari 2000). One interesting peculiarity of this 

transporter is that both N-terminus and C-terminus are outward facing (Figure 1.1). Although this 

is an unusual topology for a secondary transporter which normally have their N- and C-terminus 

facing the cytoplasm, other secondary transporters have been shown to have an extracellular N- 

 

Figure 1.1 Predicted transmembrane topology of Arabidopsis thaliana AtAMT1;1. All charged 

amino acids predicted to fall within the membrane are indicated (adapted from Howitt and Udvardi 

2000 Biochim Biophys Acta 1462: 152-170). 
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terminus (Golby et al 1998; Haardt and Bremer 1996).  In mutant yeast cells expressing AMT1, 

direct uptake of [14C]-methylamine was shown and was effectively competed by NH4
+ but not K+ 

(Ninnemann et al 1994). The selectivity associated with the competed ions implicated that perhaps 

ammonium is not being transported, but instead is being dissociated into NH3 and H+ within the 

channel, thus precluding K+.  

Since the first discovery of an AMT, related proteins have been found in other plants such 

as rice (von Wiren et al 2000) and tomato (Lauter et al 1996), in several species of bacteria, such 

as Corynebacterium glutamicum (Siewe et al 1996), Azospirillum brasilense (van Dommelen et al 

1998), Azorhizobium caulinodans (Mandon et al 1998), Synechocystis sp. PCC 6803 (Montesinos 

et al 1998) and Escherichia coli (Soupene et al 1998), in animals (e.g. Caenorhabditis elegans), 

and in insects such as Manduca sexta (Weihrauch 2006).  A genome analysis further revealed that 

insect Amt transporters are grouped together with identified functional plant Amts (Thompson et 

al 1994). For example the Aedes aegypti Amt has a 28% and 22% amino acid sequence similarity 

to tomato Amt1 and E. coli AmtB, respectively (Weihrauch et al 2012).  

1.2.2.1 AmtB Structure of E. coli 

 Resolved to 1.35 Å, the AmtB from E. coli was the first ammonia channel structure from 

the Amt/MEP/Rh superfamily of proteins to be determined (Khademi et al 2004). The crystalline 

formation of AmtB shows it to be a threefold (along three axis) symmetrically trimeric structure, 

consistent with channel-containing proteins (Figure 1.2). The trimers extend ~65 Å along all three 

axes, while the entire protein has a diameter of 81 Å measured parallel to the plane of the plasma 

membrane. Each monomer consists of eleven α-helices (M1 – M11) crossing the membrane and 

forming right handed helices around the channel. Amino acid residues from M1 and M6-M9 of 

each monomer interacts with the amino acid residues from M1-M3 of neighbouring monomers. In 
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accordance with other transmembrane proteins, polar aromatic side chains of Tyr62, on the 

extracellular side, and Tyr180, Trp250 and Trp297 on the cytoplasmic side, lie within the interface of 

the membrane and aqueous phases. Further consistent with membrane proteins, AmtB has an outer 

surface net negative charge of -7.5 (+13.5 + (-21)) and an inner surface net positive charge of +9 

(+42 + (-33)). The M1 from each monomer bundle together closely around the opening on the 

extracellular side to close off passage. On the cytoplasmic side M1s steer away from the threefold 

axis to form a 10 Å open pocket along with M6s. The divergence from the three fold axis is caused 

by a 22o kink in the M1 helix, where it is held by Pro26, the only cys-proline in the AmtB protein; 

however this amino acid residue is not conserved in the Amt/MEP/Rh protein superfamily. Each 

of the M1 and M6 helices do not span the entire membrane bi-layer, implying that the most stable 

structure of the protein is its quaternary form; however, the hydrophobic interphases between 

subunits indicates that the monomers may be stable in the membrane for a short time after 

synthesis, until they are incorporated into the trimer (Khademi et al 2004).  

 Based on the crystal analysis of AmtB grown in the presence of ammonia (NH3 and NH4
+) 

or methylammonium, the protein consists of a vestibule that recruits NH4
+ and NH3, a binding site 

for ammonium or methylammonium and a highly hydrophobic channel (Figure 1.2). Using C-H 

as a hydrogen bond donor, the weak interaction allows NH3 to be incorporated into the channel. 

The reconstitution of AmtB into vesicles showed that this protein favorably transports NH3 

because addition of external ammonium salts resulted in corresponding internal pH elevation 

(Khademi et al 2004); the implication being that AmtB is able to transport dehydrogenated 

molecules, which in isolation would be in the gaseous phase. Critical amino acids H168 and H318 

in the pore of E. coli AmtB implicated in dehydrogenation of NH4
+, are conserved in insect Amts 

(Weihrauch et al 2012). 
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Figure 1.2 Stereo views of the periplasmic vestibule of NeRh50. A) Ribbon representation of the 

AmtB trimer viewed from the extracellular side. Pairs of quasi-twofold related helices are shown 

in the same clolour. The three blu and one orange spheres are potential ammonia molecules and 

an ammonium ion, respectively. B) A stereoview of the monomeric ammonia channel viewed 

down the quasi-twofold axis. In this figure the extracellular side is uppermost. The vertical bars 

represent the inferred position of the hydrophobic portion of the bilayer (35Å). Three NH3 

molecules seen only when crystallized in the presence of ammonium sulfates, are shown as blue 

spheres (adapted from Khademi et al 2004 Science 305: 1587-1594). 

 

 

There are countless similarities between plant, bacterial and animal Amts, which also align 

with MEPs and Rhs. The fact that human Rhesus family of proteins, erythroid (RhAG, RhD and 

RhCE) and non-erythroid (RhCG, RhBG and RhKG), have shared sequence conservancy with 

Amt/MEP family of proteins (Marini et al 1997), heightens the relevance of the findings by 

Khademi et al (2004).   

1.2.3 Mammalian Rhesus Proteins and Rhesus glycoproteins 

 Ammonia transporting Rh-50 (~ 50 kDa) group of proteins are glycosylated and include 

the human proteins RhAG, RhBG and RhCG (Benjelloun et al 2005; Braun et al 2009; Mak et al 

2006; Marini et al 2000; Westhoff 2002; Zidi-Yahiaoui et al 2005; Zidi-Yahiaoui et al 2009). In 

non-human species the conventional nomenclature is to use lower case letters (e.g. Rhag, Rhbg, 

etc.). Other members of the Rhesus family of proteins exist, for example Rh-30 (~ 30 kDa), which 

are not glycosylated.  To date, only glycosylated forms of Rh proteins have been shown to have 
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the capability to transport ammonia. Thus, Rh proteins which are associated with ammonia 

transport are more appropriately termed Rh glycoproteins (Weihrauch et al 2012). 

 The blood group of Rh proteins are well established for their importance in immunology 

and blood transfusions; however the mammalian Rh protein family has been expanded to include 

Rh-glycoproteins, such as RhAG found in erythrocytes as well as RhBG and RhCG expressed in 

other tissues. Interestingly, although RhAG is associated with erythrocytes it is not associated with 

blood group antigens but it does play a crucial role in targeting RhD and RhCE to the membrane. 

This was shown when a mutation in the RHAG gene resulted in total loss of Rh antigen expression 

 (Cherif-Zahar 1996; Huang 1997). Protein sequence similarities to mammalian Rhs were first 

shown in C. elegans; in turn the connection was made for sequence similarities between these 

homologues and the ammonia transporting MEPs in yeast and plant Amts (Marini et al 1997). 

Functional transport data and structural modelling have served to further substantiate the 

relationship of Rh-glycoproteins to the ammonia transporting MEP/Amt proteins (e.g. the 

superfamily of Amt/MEP/Rh ammonia transporters, Conroy et al 2004; Khademi et al 2004; 

Ripoche et al 2004; Westhoff et al 2002; Westhoff et al 2004; Zheng et al 2004).  

 The presence of RhBG and RhCG, the non-erythroid Rh-glycoproteins, have been found 

where ammonia production and elimination occurs, in the kidney, liver, brain and skin (Liu et al 

2000; Liu et al 2001). The collection segment and collection duct of the kidney are rich in RhBG 

and RhBC. More specifically they are found on the basolateral and apical sides, respectively, of 

the intercalated cells (Verlander et al 2003) where the movement of ammonia from the interstitium 

and the lumen occurs (Handlogten et al 2004; Handlogten et al 2005). In the basolateral membrane 

of the liver perivenous hepatocytes, RhBG appear to have a role in the uptake of ammonia. RhCG 



 

10 

 

is also found in the epithelia of the bile duct.  This is an ideal location for these proteins to 

contribute to ammonia secretion into the bile fluid (Weiner and Verlander 2003).   

 Although functional studies of erythrocyte and non-erythrocyte Rh homologues show 

advances in the unification of ammonia transport hypothesis in mammals, the debate continues 

whether Rh-glycoproteins function as NH3 transporters or NH4
+/H+ exchangers.  Even in the face 

of strong evidence from AmtB structural analysis and biochemical assays indicating that NH3 

transport likely occurs in these proteins (Khademi et al 2004; Khademi and Stroud 2006), there is 

evidence supporting both hypotheses for Rh-glycoproteins (Bakouh et al 2004; Benjelloun et al 

2005; Ludewig 2004; Mak et al 2006; Nakhoul et al 2005; Westhoff et al 2002; Zidi-Yahiaoui et 

al 2005). This may be partially due to the fact that fluxes of the gaseous form of ammonia cannot 

be directly measured. In a recent study, however, it was shown through x-ray crystallography that 

the human RhCG glycoprotein facilitates the transport of NH3. Although NH4
+ was not entirely 

ruled out, the predicted structure of the RhCG crystal reveals that NH4
+ would be excluded due to 

the channel’s hydrophobicity (Gruswitz et al 2010). One study proposed that non-erythroid Rhs 

could be linked with other membrane proteins to form a complex which transport CO2 (Li et al 

2007), while van Kim et al (2006) suggest that RhBG and RhCG may be part of a new class of 

transporters which are used as sensing receptors of NH4
+ mediating various cellular processes.  

1.2.3.1 Molecular Structure of Rh-glycoproteins 

 The proposed heterotetrameric structure of the human Rh erythrocyte complex composed 

of two RhAG polypeptides and two Rh30 polypeptides (Eyers et al 1994; Hartel-Schenk and Agre 

1992) has long been challenged by x-ray crystal structure evidence of E. coli AmtB and 

Archaeoglocus fulgidus Amt-1 which show these proteins to be homotrimers (Andrade et al 2005; 

Khademi et al 2004; Zheng et al 2004); however, sequence alignment suggests that human Rh 
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proteins consist of 12 transmembrane helices, one more than that of Amt, with the extra helix being 

at the N-terminus (Avent et al 1996; Eyers et al 1994). Studies have also predicted that the trimeric 

structure of Rh proteins do not have the high-affinity sites for ammonium, as seen on the 

extracellular side of Amt proteins (Callebaut et al 2006; Conroy et al 2005). A recent study showed, 

that in a rare bacteria, the homologue of the human Rh50 proteins has been solved to a resolution 

of 1.3Å (Lupo et al 2007). The protein from the Nitrosomonas europaea bacterium is a trimer and 

analysis of its subunit interface suggests that all Rh proteins are likely to be homotrimers (Figure 

1.3). A comparison of the NeRh50 to that of EcAmtB proteins, shows that NeRh50 has distinctive 

features within its conductive pathway which lowers its affinity to ammonium compared to Amts 

(Figure 1.4; Conroy et al 2005; Khademi et al 2004; Winkler 2006) and possibly has bi-directional 

function (Lupo et al 2007). The monomer structures of NeRh50, are very similar to the 

homologous Amt structures, only having major differences in the loops and C-terminus following  

          

Figure 1.3 The NeRh50 trimer structure. The trimer is surface representation as viewed form the 

periplasmic face (left), with the extracellular pore entry marked by a yellow circle in one monomer. 

The ribbon representation (right) shows a side view with the approximate bilayer boundaries 

indicated. The C-terminal segments showing only backbone density are shown as orange Cα traces 

(adapted from Lupo et al 2007 PNAS 104: 19303-19308). 
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M11. An alignment of transmembrane helices of human Rh to that of EcAmtB by hydrophobic 

cluster analysis (Callebaut et al 2006) was revealed, by structure-based alignment, to be correct 

(Figure 1.5; Lupo et al 2007).  Differences were only found in M2 and M4 where the alignment 

was out by one and four residues, respectively (Lupo et al 2007). NeRh50 has a sequence identity 

of 21.9% and similarity of 58.24% to EcAmtB and 36.3% and 64.9% to human RhAG. A lot of 

the structural differences between NeRh50 and EcAmtB are family specific, which is evident in 

the transport pathway primarily formed by M1, M3, M5 and M6, M8, M10, respectively (Figure 

1.5; Lupo et al 2007). As expected there is no ammonium binding site in the Rh protein as there is 

in the Amt and there is no expectation of any substitution for a binding site. A potential for 

structural changes, may lie with the Phe gate region which is much more constricted than in the 

Amt; however, both phenylalanines are conserved in Amt and Rh50. The Phe gate, marked by the 

first Phe, separates the extracellular vestibule from the central pore lumen, which is marked by the 

first His. Different side chain conformations as observed in the first Phe are not alone responsible  
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Figure 1.4 Stereo views of the periplasmic vestibule of NeRh50. NeRh50 (magenta) was 

superposed to EcAmtB (gray), using the Cα positions of the structurally equivalent residues. Water 

molecules (labeled O1, O2, etc.) are shown as red spheres, and the postulated ammonium/ammonia 

sites of EcAmtB (Am1 and Am2) are indicated with blue spheres. A) View illustrating the absence 

of an ammonium ion binding site in the NeRh50 periplasmic vestibule. B) View illustrating the 

significant opening in NeRh50 at the inner conserved phenylalanine (NeRh50-Phe-194). The 

hydrogen bonding interactions of O2 and O3 are depicted as dashed black lines (adapted from 

Lupo et al 2007 PNAS 104: 19303-19308). 

 

for the differences in constriction. Instead, it is a culmination of the family-characteristic 

Amt/Rh50 side chain substitutions, more specifically Gly251 for Thr251 of NeRh50, and larger 

separation between transmembrane helices M6 and M8 in this region (Lupo et al 2007).  The 

vestibular openings at both ends of NeRh50 are more similar, in shape and accessibility to water 

and NH3/NH4
+, than those found in the Amt structure. A well-defined path exists for the passage 

of substrate through the Phe gate and is likely to be similar to Amt. As suggested for Amtb (Zheng 

et al 2004; Nygaard et al 2006) the carbonyl group of Ala140 in NeRh50 or Ala162 in EcAmtB, plays 
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an integral role in the hydrogen bond acceptor capacity for translocation of molecules in an 

otherwise hydrophobic region. Because ammonia and water are somewhat similar molecules,  

                           

Figure 1.5 Comparison of the monomer structure of EcAmtB and NeRh50. Superposition of the 

transmembrane helices (numbered in white) of NeRh50 (yellow) with those of AmtB (gray) yields 

a root mean square displacement of 1.4 Å for 268 Cα atoms (adapted from Lupo et al 2007 PNAS 

104: 19303-19308). 

 

ammonia channels must be selective for ammonia and exclude water in order to be effective. In 

Amt proteins ammonium binding sites have an affinity in the mircromolar range, which is highly 

selective against water, but have low maximal conductance (Javelle et al 2005; Winkler 2006).  On 

the other hand Rh proteins have an affinity for NH4
+ in the millimolar range and may reflect a 

weaker capacity to sequester ammonium in the vestibule. It is assumed that there is a 1000-fold 

increase in NH3 preference in Rh proteins because discrimination appears to be made easier 

between NH4
+ and water at this level (Lupo et al 2007). 
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1.3 Formation of Ammonia in Insects 

Ammonia formation in insects can take various pathways. In general the pathway for 

formation of ammonia in most organisms is through amino acid deamination, an oxidative process 

(Campbell 1991). Prior to formation of ammonia, an intermediate step may occur in which  

                                    

Figure 1.6. Proline oxidation pathway in rectum of locust. MDH, malate dehydrogenase; ME, 

malic enzyme; oaa, oxaloacetate; α-kg, α-ketoglutarate; GDH, glutamate dehydrogenase; GPT, 

glutamate-pyruvate transaminase (adapted from Chamberlin and Phillips 1983 J Comp Physiol B 

151: 191-198). 

 

aminotransferases (transaminases) catalyze the transfer of an amino group (transamination) to a 

ketoacid (e.g. α-ketoglutarate). The most common of the ketoacids, α-ketoglutarate, is converted 

by amination to L-glutamate and then converted back into α-ketoglutarate and ammonia by 

glutamate dehydrogenase (GDH; Regnault 1987). Mitochondrial respiration studies in Anopheles 

stephensi cultured cells provides evidence of an alternate pathway for amino acid catabolism, 
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where α-ketoglutarate is transaminated to glutamate by aspartate transaminase (Giulivi et al 2008). 

In addition, oxaloacetate produced by this process can be recycled into the Kreb’s cycle to form 

α-ketoglutarate, which can further fuel ammonia formation.   

As a substrate for oxidative metabolism, proline plays a very important role in ammonia 

formation of many insects. In a study on locust rectum, utilizing proline as substrate and inhibitors 

(Chamberlin and Phillips 1983), elevated activity levels were present of glutamate-pyruvate 

transaminase, glutamate-oxaloacetate transaminase and glutamate dehydrogenase. The activity of 

these enzymes at the rectum, implies amino acid metabolism and ammonia production at this site. 

Proline acts as a substrate for metabolic energy production and NH4
+ is released into the rectal 

lumen as a by-product for excretion (Chamberlin and Phillips 1983). In this case proline is the 

provider of carbon for acetyl-CoA in the Kreb’s cycle instead of pyruvate (Figure 1.6). As a result 

of proline catabolism in flight muscles, alanine is released into the hemolymph and is transported 

to the fat body where it is resynthesized to proline (Bursell 1981); therefore, proline may act as a 

supplier of energy as well as transporter for disposal of ammonia via the fat body.  

As a consequence of taking a blood meal, mosquitoes produce copious amounts of 

ammonia during digestion. To offset the production of ammonia, it is incorporated into glutamine 

and proline. Following this process the excretion of various nitrogenous waste products occurs, 

including ammonia, uric acid, urea, amino acids, hematin and small amounts of allantoin and 

allantoic acid (Scaraffia et al 2005). Furthermore, blood fed mosquitoes show differences in the 

expression of various enzymes involved in ammonia metabolism (Scaraffia et al 2005). In the 

midgut glutamine synthase replaces proline synthase (Scaraffia et al 2010).The transcription of the 

glutamine synthase gene has been found to be elevated post blood feeding, consistent with 

ammonia fixation and assimilation by glutamine/glutamate synthases in the fat body (Scaraffia et 
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al 2010). During ammonia metabolism the fat body is also the hub of activity for other enzymes 

related to proline synthase, GDH and glutamate-pyruvate transaminase (Scaraffia et al 2010).  

Additional ammonia releasing pathways in insects involve the process of adenylate 

deamination during the purine nucleotide cycle (Waarde 1988) and symbiotic microorganisms 

which may release other nitrogenous waste products in addition to ammonia. Symbionts play an 

important role in ammonia release and fixation in many insects and as such this topic requires 

some further exploration. 

1.4 Nitrogenous Waste Processing Symbiosis in Insects 

Insects have basic nutritional needs that are quite conserved amongst species (Dadd 1985). 

This fact is made more significant, considering the wide variation in insects’ diets (Slansky and 

Rodrigues 1987). Insects may be predators, herbivores and scavengers. In addition numerous 

insects specialize in using food sources such as pollen, nectar, plant sap, fungi, feathers, fur, skin 

and blood. The adaptability of certain insects to nutritional lifestyles cannot simply be attributed 

to the insects’ traits alone, but also to the contribution of various symbiotic microorganisms with 

the capability to degrade or synthesize biologically relevant molecules. Among many other 

processes, microorganisms are utilized for their ability to convert the insects’ nitrogenous waste 

products into valuable nitrogenous compounds such as essential amino acids, and nitrogen fixation 

(Hongo and Ishikawa 1997; Mullins and Cochran 1975a, b; Potrikus and Bresnak 1981). It is 

important to note that various nitrogenous waste products do not have nutritional equivalency for 

the insect. This is demonstrated by the inability of some insects to synthesize nine of the essential 

amino acids necessary for protein building, a particular difficulty in plant sap feeders. In most 

vegetation, both xylum and phloem sap is particularly poor in essential amino acid content, 

providing only about 20% of the total. Thus, specific nitrogenous wastes (e.g. uric acid) are 
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preferential for symbiotic microorganism-aided conversion into essential amino acids (Douglas 

2006). 

Insects which feed solely on plant sap throughout their life span are of the order Hemiptera 

and all species bear symbiotic microorganisms. In most species, these microorganism are found in 

special cells called mycetocytes which are located in the hemocoel, gut caeca epithelium and fat  

 

Table 1.2 Examples of mycetocyte symbiosis in insects (adapted from Douglas 2009, Funct Ecol 

23: 38-47) 

Feeder Type Insect Microorganism 

General Feeders Blattidae (cockroaches) Blattabacterium (flavobacteria) 

 Mallophaga (biting lice) Not known 

 Psocoptera (book lice) Rickettsia sp. (α-proteobacteria) 

 Coleoptera* (e.g. 

Weevils) 

Various γ-proteobacteria 

 Anobiid beetles Symbiotaphrina (fungi) 

 Hymenoptera  

 Camponoti (carpenter 

Ants) 

Blochmannia (γ-proteobacteria) 

Plant Sap Feeders Hemiptera  

 Auchenorrhyncha (e.g. 

leafhoppers, plant-

hoppers) 

Baumannia cicadellinicola (γ-

proteobacteria) and Sulcia 

muelleri 

(Bacteroidetes); Clavicipitacean 

fungi in some plant-hoppers 

 Aphids Buchnera aphidicola (γ-

proteobacteria) or clavicipitacean 

fungi 

 Whitefly Portiera aleyrodidarum (γ-

proteobacteria) 

 Psyllids Carsonella ruddii (γ-

proteobacteria) 

 Scale insects Tremblaya principes (β-

proteobacteria) 

Vertebrate Blood Feeders Heteroptera  

 Cimicids Not known 

 Triatomine bugs Not known 

 Anoplura (sucking lice) Riesia pediculicola (γ-

proteobacteria) in human lice 

 Diptera Pupiparia Wigglesworthia spp. (γ-

proteobacteria) in tsetse flies 
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body of the insect. The symbionts are transmitted from mother, vertically, to the offspring by 

insertion into the developing eggs in the ovary (Buchner 1965). Mycetocytes do not only exist in 

Hemipterans but have evolved several times and may contain bacterial or fungal symbionts (Note: 

some authors refer to cells containing microbial but not fungal symbionts as bacteriocytes) (Table 

1.1; Douglas 2009).  

It has been suggested that insects with low nitrogen diets can utilize atmospheric nitrogen 

fixing bacterial symbionts in order to gain access to atmospheric nitrogen (Nardi et al 2002). 

Nitrogen fixing by bacteria has been previously suggested by studies on certain termite species 

(Benemann 1973, Potrikus and Breznak 1977; Ohkuma et al 1999), the stag beetle Dorcus rectus 

larva (Kuranouchi et al 2006) and in fruitflies, particularly the medfly Ceratitis capitata (Behar et 

al 2005).  Ammonia, the product of nitrogen fixation, is toxic and may be converted into a very 

limited number of nitrogenous compounds which can be metabolized by insects. In insects in 

which nitrogen fixation is important, it is likely that nitrogen fixing bacteria primarily convert 

ammonia into nitrogenous products such as essential amino acids prior to being made available for 

other uses (Douglas 2009).  

1.5 Ammonia Excretion in Insects 

The eliminations of nitrogenous waste can be achieved in Aedes aegypti larvae by excretion 

of ammonia (Donini and O’Donnell 2005), which exists in equilibrium between ionic (NH4
+) form 

and gaseous (NH3) form and is pH-dependant. The pH-dependence comes from the necessity to 

have sufficient concentrations of protons available for the process of ammonia trapping in order 

to drive the partial pressure gradient of NH3 (ΔPNH3). Having pK values of 9.2-9.8, ammonia is 

excreted primarily as NH4
+ but some NH3 is always present. Gaseous ammonia may diffuse across 

plasma membranes along a partial pressure gradient which is pre-existing or generated (Weihrauch 
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et al 2012). In Insects, as in many animals, ammonia is toxic (see section 1.1: Effects of Ammonia 

Toxicity); however, ammonia also plays a role in pH balance by incorporation or release of H+ by 

NH3. In addition, ammonia is an important source of nitrogen. For these reasons, it is believed that 

in animal systems most of the ammonia is regulated by sustaining the different forms at very 

specific levels, thus limiting accumulation. The mechanisms of ammonia regulation is achieved in 

part by the actions of various transport proteins (see following sections), in addition to those 

belonging to the Amt/MEP/Rh superfamily (Shinbo et al 1997; Weihrauch 2006).  

From the early 1900s to the 1960s, numerous studies focused on the excretion of 

nitrogenous waste in insects. These works have been comprehensively reviewed in the latter part 

of the century (Cochran and Mullins 1982; Pant 1988). Despite the fact that for the greater part of 

the 20th century, studies of nitrogenous waste excretion in insects regarded them as being uricotelic 

(Cochran and Mullins 1982; Pant 1988), other forms of nitrogenous waste have been shown (Table 

1.2), such as uric acid (Nation and Patton 1961), urea (Berridge 1965), allantoic acid and allantoin 

(Gaines et al 2004). One strategy for dealing with this waste suggests that the fat body (primary 

organ implicated in uric acid production, storage and release) in cockroaches (Cochran 1973; 

Mullins and Cochran 1975a, b), release nitrogen into the hemolymph at times of protein 

deprivation. Storage of uric acid in the fat body allows excess ions in the hemolymph to be quickly 

sequestered in the form of potassium and sodium urate salts, diminishing water requirements and 

the necessity for immediate excretion (Mullins and Cochran 1976). Arginase and XDH activity 

studies on larval A. aegypti mosquitoes, have supported this concept (von Dungern and Briegel 

2001). In addition, the various strategies were found to be influenced by, and adapted to, the 

insects’ habitat, feeding pattern and the presence/absence of nitrogenous-product-processing 

symbiotic micro-organisms, as described above.  
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Table 1.3 Nitrogenous waste examples in insects (adapted from Weihrauch et al 2012, J Insect 

Physiol 58: 473-487) 

Nitrogenous 

Waste 

Order Species Reference 

Allantoic Acid Siphonaptera Ctenocephalides felis Gaines et al (2004) 

Allantoin Siphonaptera Ctenocephalides felis Gaines et al (2004) 

Diptera Aldrichina graham Wandano and Miura (1976) 

Diptera Drosophila melanogaster 

(adult) 

Wallrath et al (1990) 

Ammonia Diptera Aedes aegypti (larva) Donini and O’Donnell (2005) 

Diptera Aedes aegypti (adult) Scaraffia et al (2005) 

Diptera Sarcophaga bullata (larva) Prusch (1971) 

Collembola Folsomia candida (and 4 

others) 

Sjursen and Holmstrup (2004) 

Dictyoptera Periplaneta americana Mullins and Cochran (1972) 

Neuroptera Sialis lutaria Staddon (1955) 

Odonata Aeshna cyanea Staddon (1959) 

Orthoptera Schistocerca gregaria Thomson et al (1988) 

Hypoxanthine Diptera Melophagus ovinus Nelson (1958) 

Urea Hemiptera Dysdercus fasciatus signoret Berridge (1965) 

Uric Acid Most Orders - Nation and Patton (1961) 

Xanthine Diptera Melophagus ovinus Nelson (1958) 

 

 

1.5.1 Nitrogenous Waste Excretion Strategies and Putative Ammonia Transporters in Insects 

Animals have evolved various strategies and coping mechanisms to deal with the problem 

of nitrogenous waste excretion. In addition to the superfamily of Amt/MEP/Rh ammonia transport 

proteins having  highly conserved characteristics across plants, fungi, bacteria and animals, several 

structural properties, such as Na+/K+ ATPases (NKAs), V – Type H+ ATPases (VAs), cation / H+ 

exchangers (NHEs) and K+ channels, and excretory properties are also conserved between 

vertebrates and invertebrates (Benos 1982; Choe et al 2000; Hunter and Kirschner 1986; Lucu 

1989; Orlowski and Grinstein 2004; Patrick et al 2006; Shih et al 2008; Weihrauch et al 1998, 

1999, 2002, 2009; Zachos et al 2005). These transporters have similarly, been associated with 

ammonia transport in various animal phyla (Lucu 1989; Weihrauch et al 1998). 
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1.5.1.1 K+ Channels 

 Overall, potassium channels are good putative ammonia transporter candidates due to the 

fact that NH4
+ and K+ ions have similar ionic radii and identical hydrodynamic radii (Mudry et al 

2006). This means that K+ can be potentially substituted by NH4
+ at the channel’s K+ binding site.  

NH4
+ transport has been shown for various K+ channel families including Ca2+-activated, weak, 

strong and delayed rectifiers, voltage-gated and transient type L K+ channels, with a relative 

conductance of NH4
+ being 10-20% that of K+ conductance (Choe et al 2000). Type L K+ channels 

most closely resemble the delayed rectifiers in frogs (Dubois 1981; Plant 1986; Jonas et al 1989) 

and rat (Roper and Schwarz 1989). Type L K+ channels were first described and detected in large 

number in T-lymphocyte subset cells from mutant MRL-lpr/lpr mice (Chandy et al 1986; 

DeCoursey et al 1987a). This single gene locus mutation strongly resembles one that results in the 

human disease lupus erythematosus and proliferates abnormal T-cell production (Altman et al 

1981; Murphy 1981; Wofsy et al 1981). Type L K+ channels are also present in normal mouse T- 

lymphocytes, rat type II alveolar epithelial cells, normal murine thymocytes and in human Louckes 

lymphoma cells (DeCoursey et al 1987b; Decoursey et al 1988; Lewis and Cahalan 1988; Shapiro 

and DeCoursey 1989).   

There is limited information about K+ channel mediated ammonia transport in insects. One 

study reported that blocking K+ channels with Ba2+ on the apical side of M. sexta midgut had no 

significant effect on ammonia uptake; however, parallel experiments using short circuit current, 

dependant on potassium, showed ~40% inhibition in the presence of Ba2+, demonstrating that Ba2+-

sensitive K+ channels are present (Weihrauch 2006).  
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1.5.1.2 Na+/K+-ATPase 

Na+/K+-ATPase is present in vertebrates and invertebrates, and in epithelial cells this 

enzyme is usually localized to the basal membrane. As shown by Skou (1960) on the leg nerve of 

Carcinus maenas, this protein plays a major role in ammonia transport whereby NH4
+ ions replace 

or compete for passage with K+ ions. Furthermore, isolated branchial epithelium Na+/K+-ATPase 

of Callinectes danae showed synergistic activation by NH4
+ and K+, leading to as much as 90% 

increase in activity, and the conclusion that the two ions activate two different binding sites (Masui 

et al 2002). As seen in the shrimp Macobrachium olfersii, in the presence of high NH4
+ 

concentrations, a new binding site for NH4
+ is revealed. After binding NH4

+ the pump may enable 

NH4
+ transport independently of K+ (Furriel et al 2004).  

The NKA has been associated with ammonia transport in various animal species. Ouabain, 

a specific blocker of NKA (Skou 1965), was shown to partially inhibit both gradient-driven and 

active excretion of ammonia at the branchial epithelia of the shore crab C. maenas (Lucu 1989, 

Weihrauch et al 1998). Full cessation of active ammonia transport in the branchial tissue of the 

edible crab Cancer pagurus was observed when NKA was blocked with ouabain (Weihrauch et al 

1999). Inhibition of ammonia transport by ouabain has also been documented for the mollusc, 

Rangia cuneata and the annelids, Nereis succinea and Nereis virens (Mangum et al 1978).  

Fish and mammalian tissues have also been the target of experiments demonstrating the 

involvement of NKAs in ammonia transport. The activity of NKA was found to be similar for K+ 

and NH4
+ in the seawater teleost, Opsasus beta (Mallery 1983) and inhibition by ouabain, of 

ammonia excretion, occurred in the mudskipper, Periophthalmodon schlosseri (Randall et al 

1999). In mammals, the direct participation of NKA in ammonia transport was reported in the 
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collecting duct of the inner medulla of the kidney (Wall and Koger 1994), proximal tubules (Garvin 

et al 1985; Kurtz and Balaban 1986) and in the human colonic cell line, T84 (Worrell et al 2008).  

Direct involvement of NKA in ammonia transport has not been shown in insects; however, 

convincing evidence exists, indicating that NKAs play an important role in ammonia excretion 

(Chintapalli et al 2007; Dow 1992; O’Donnell 1997; Onken et al 2004; Patrick et al 2006; Peacock 

1977; Tolman and Steele 1976; Weihrauch 2006). Patrick et al (2006) demonstrated through NKA 

immunolocalization and mRNA expression experiments in the adult A. aegypti mosquito, that this 

enzyme is expressed in putative ammonia transporting tissues such as the stomach, midgut, 

anterior hindgut, rectum and Malpighian tubules. The Malpighian tubules of the adult mosquito 

shows differentiation of NKA mRNA expression, wherein only the stellate cells show expression 

in the distal tubule but in the proximal tubule expression is present in the principle cells as well 

(Patrick et al 2006). In larval A. aegypti, expression of NKA was shown in the midgut, rectum, 

gastric caeca, Malpighian tubules and anal papillae (Patrick et al 2006), the latter of which had 

been previously shown to be active ammonia excreting organs (Donini and O’Donnell 2005). 

Although Patrick et al (2006) localized NKA to the apical membrane of the anterior midgut, in the 

posterior midgut it was found to be localized to the basal membrane (Onken et al 2004). Thus, the 

anterior portion of the midgut would promote active uptake of ammonia from the alkaline lumen 

into the cytoplasm (Dow 1992), similar to M. sexta midgut, which does not express NKAs, and 

likely takes up ammonia to satisfy a need for nitrogenous compounds during growth (Weihrauch 

2006). The localization reversal of NKA in the posterior midgut of the mosquito may indicate 

excretion or restriction of ammonia uptake as seen in the same region of the M. sexta (Weihrauch 

2006). Moderate to high expression and/or activity levels of NKA in the midgut, hindgut and 

rectum, has been found in all insects studied to date, including the fruitfly D. melanogaster, the 
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larval mosquito A. aegypti, the larval M. sexta, the locust S. gregaria and, the cockroaches 

Blaberus craniifer and Periplaneta americana (Chintapalli et al 2007; Patrick et al 2006; Peacock 

1977; Tolman and Steele 1976; Weihrauch 2006). These insects are all known or believed to 

excrete some amounts of ammonia through the gut (O’Donnell 1997). 

1.5.1.3 V-type H+-ATPase (VA) 

 Overall, the VA plays a central role in the transport mechanisms of ammonia. While the 

membrane diffusion and Rh transport of NH3 depends entirely on partial pressure differences 

(ΔPNH3), the gradient is often driven directly by VA. The VA decreases pH on one side of the 

membrane, where the protons and NH3 combine to form NH4
+, thus, decreasing regional NH3 

concentrations and increasing transmembrane ΔPNH3 (ammonia trapping). Various researchers 

have investigated and documented the crucial role of VAs in transepithelial ammonia transport in 

fish gills (Braun et al 2009; Shih et al 2008; Weihrauch et al 2009; Wilson et al 1994; Wright and 

Wood 2009).  

 It has been shown that VA is involved in ammonia transport across branchial epithelia of 

the crustacean C. maenas. Transmembrane NH4
+ transport was reduced by 66% at these sites after 

the application of bafilomycin, a known VA inhibitor (Weihrauch et al 2002). In insects, VAs are 

also expressed in many tissues, in particular transporting epithelia. It was shown in M. sexta 

midgut, hindgut and Malpighian tubules that VAs are highly expressed while in the trachea, 

ganglia and fat body mRNA expression was lower (Blaesse et al 2010). Active ammonia uptake 

at the midgut of M. sexta was shown to be significantly reduced in the presence of bafilomycin, 

implying VA involvement in this process (Weihrauch 2006). In the columnar cells of M. sexta, 

which transport ammonia, VAs are localized to intracellular vesicles, which may suggest that 

ammonia transport in these cells is mediated by vesicular transport (Klein 1992; Weihrauch 2006). 
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There is also high expression of VA in all iono-/osmo-regulatory tissues of A. aegypti, with the 

exception of the rectum and stellate cells of the distal Malpighian tubules. More importantly, VAs 

are expressed in the apical membrane of larval A. aegypti anal papillae (Patrick et al 2006), in 

agreement with efflux detection of NH4
+ and H+ in the external boundary layer (Donini and 

O’Donnell 2005). Additionally, robust VA activity was detected in the gut and Malpighian tubules 

of the midge fly larva, Chironomus riparius (Jonusaite et al 2011).  

1.5.1.4 Cation/H+ Exchanger (NHE) 

 The NHEs belong to the solute carrier family 9 (SLC9) and are secondary active mode 

transporters, energized either by the NKA or H+ gradient. They are integrated membrane proteins 

with the capacity to exchange one monovalent cation (predominantly Na+, K+ and at slower rates 

Li+ and NH4
+) for H+ (Orlowski and Grinstein 2004; Zachos et al 2005). Based on the inhibitory 

effect of amiloride (Benos 1982), it has been suggested that NHE plays a direct or indirect role in 

ammonia transport in aquatic crustaceans (Hunter and Kirchener 1986; Lucu et al 1989; Weihrauch 

et al 1998, 1999). Amiloride is a non-specific Na+ channel blocker, but in high doses, NHE can be 

blocked too (Benos 1982). As previously shown in aquatic animals, it is likely that NHEs act 

indirectly on ammonia transport by lowering pH in the apical boundary layer and leading to 

ammonia trapping (Weihrauch et al 2009; Wood and Nawata 2011; Wright and Wood 2009).  

In insects, there have been three isoforms of NHEs (NHE3, NHE7/9 and NHE 8) identified. 

These transporters contain an amiloride binding pocket having the motif F1 – F2 – X3 – X4 – X5 – 

L6 - P7 – P8 – I9. The amino acid residues are well conserved amongst all NHEs (Counillon et al 

1993, 1997). The NHE3 leucine residue in position X3 has been substituted for a phenylalanine in 

A. aegypti, rendering the transporter insensitive to amiloride or any derivatives (Pullikuth et al 

2006). In A. aegypti, NHE3 is highly expressed in the basal membranes of Malpighian tubules, 
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midgut and gastric caecae, where they may play a role in ion and fluid transport (Pullikuth et al 

2006). In the larval A. aegypti anal papillae, expression of NHE3 has been shown (Hina Akter, 

York University, Personal communication) and has been localized to the apical membrane 

(Marjorie Patrick, San Diego University, Personal communication). NHEs are also implicated in 

fluid secretion of Malpighian tubules (Dow et al 1994; Giannakou and Dow 2001; Piermarini et al 

2009) and alkalinisation in the midgut of lepidopterans (Lepier et al 1994; Wieczorek et al 1991). 

1.5.1.5 Rh-glycoproteins and Ammonia Excretion in Insects 

Rh proteins have been identified in insects such as M. sexta, D. melanogaster and two 

species of Aedes mosquitoes (Chintapalli et al 2007; Wiehrauch 2006; Wu et al 2010b). It was 

shown that modest expression of an Rh-like protein mRNA was present in the midgut, trachea and 

fat body of M. sexta, while high abundance was found in the hindgut, ganglia and Malpighian 

tubules (Weihrauch 2006). High levels of mRNA expression have also been shown in the brain 

and ganglia of D. melanogaster (Chintapalli et al 2007). The present study has identified the 

mRNA expression of Rh50-1 and Rh50-2 proteins in anterior midgut, posterior midgut, hindgut, 

Malpighian tubules and anal papillae of Aedes aegypti larval mosquitoes, in moderate to high 

abundances. High levels of mRNA expression of a third Rh protein (AalRh50) was reported in the 

head, thorax and Malpighian tubules of Aedes albopictus mosquitos (Wu et al 2010b).   

Which form of ammonia, NH3 or NH4
+, is transported by Rh-proteins in insects has not 

been fully resolved, but implications of additional functions are also being proposed. As shown in 

the mammalian kidney using knockout mutants of Rhcg (Biver et al 2008), Rh proteins in insects 

may be involved in the important process of acid/base homeostasis and neural ammonia 

detoxification (Wiehrauch 2006; Chintapalli et al 2007). It is not yet clear if ammonia transport is 

promoted by Rh proteins in insects; however, through alignment of functional Rh protein 
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sequences from mammals and fish, it was shown that, specifically ammonia conducting residues 

are conserved in all insect Rh-glycoproteins (Zidi-Yahiaoui et al 2009). It is therefore likely that 

insect Rh-glycoproteins are functional in the process of ammonia transport. The fact that mRNA 

expression analysis of AalRh50 showed up-regulation of this protein in midgut and Malpighian 

tubules 3h and 6h post blood feeding in female A. albopictus (Wu et al 2010b), supports the 

assumption that Rh-proteins in insects may be utilized in elimination of excess ammonia. 

In M. sexta, the uptake of ammonia is necessitated by the immense growth rate of the 

larvae. Much of this ammonia is converted into usable nitrogenous products, such as amino acids. 

Based on gut lumen concentrations, it has been determined that ammonia levels in the hindgut of 

the M. sexta (Weihrauch 2006) is comparable to that found in the human colon (MacFarlane et al 

1986), implying that the Tobacco hornworm is probably ammoniotelic. The mRNA expression of 

two Rh-like proteins have been shown in M. sexta with a 40% amino acid identity to human RhAG, 

RhBG and RhCG. The Rh-like proteins contain conserved amino acids in the external, inner 

vestibules and pore entrance which are involved in NH4
+ recruitment and binding and NH3 

transport, respectively (Khademi et al 2004; Khademi and Stroud 2006). Based on mRNA 

expression analysis of the RhMS (one of the Rh-like proteins from M. sexta), it is probable that 

this transporter is involved in ammonia secretion at the Malpighian tubules and ammonia 

conservation at the hindgut (Weihrauch 2006). Uptake of ammonia may be driven in the midgut 

by high K+ gradients directed by the columnar/goblet cells into the lumen. The increased K+ 

concentration drives uptake of NH4
+ at the apical membrane in exchange for H+, possibly mediated 

by NHE7/9 and NH3 uptake by Rhs. Within the cell, NH3, present as a result of direct transport by 

Rhs and dissociation of NH4
+ into NH3 and H+, diffuses into vesicles driven by high intra-vesicular 

H+ concentrations, created by VAs. Ammonia trapping occurs within vesicles, as seen in crab 
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(Weirauch et al 2004), and NH4
+ is transported to the basal membrane for exocytosis (Weihrauch 

2006). Significant ammonia secretion has also been shown in the rectum of the locust S. gregaria 

(Thomson et al 1988). Ammonia secretion appears to be Na+ dependent and amiloride-sensitive; 

however, ammonia transport is not effected by transmembrane pH gradient changes, thus 

indicating that NH4
+ transport occurs rather than NH3 diffusion. 

In larval mosquitoes, activity levels of XDH, an enzyme primarily involved in uric acid 

synthesis (Scaraffia et al 2005), were detected up to 200 times higher than arginase, an enzyme 

responsible for production of urea through arginine hydrolysis. Arginase activity was detected to 

be up to 100 times higher than that of blood fed female mosquitoes which are primarily 

ammoniotelic and uricotelic. The high levels of arginase and HDX activity implies that larvae are 

primarily ureotelic and uricotelic (von Dungern and Briegel 2001). During larval development, 

lipids are synthesized at exponentially higher rates, which indicates that nitrogenous wastes are 

excreted in the form of urea (Timmermann and Briegel 1999; von Dungern and Briegel 2001). In 

addition, using scanning ion-selective microelectrode technique (SIET), fairly high effluxes of 

ammonia (NH4
+) and H+ were recorded at the anal papillae of the larval Aedes aegypti mosquito 

(Donini and O’Donnell 2005). This implies that a substantial amount of nitrogenous waste in the 

form of ammonia, partly formed from amino acid deamination, can be eliminated directly into the 

environment by the anal papillae. It has been shown that V-ATPase (VA) is involved in driving 

ammonia excretion at the gills of crustaceans and fish (Weihrauch et al 2009; Wright and Wood 

2009) while in fish skin of larval zebra fish it has been shown that VAs drive ammonia excretion 

through ammonia trapping (Shih et al 2008). VA in the anal papillae of A. aegypti has been 

localized to the apical membrane (Patrick et al 2006). Taking this evidence together, the 

implication is that excretion of ammonia may be achieved at the anal papillae by ammonia trapping 
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driven by the acidification of the boundary layer by VAs, which in turn would increase the NH3 

gradient.  Sodium uptake has also been linked to ammonia excretion in crustaceans and fishes 

(Lucu et al 1989; Pressley et al 1981; Wu et al 2010a) which may be facilitated by Na+/H+ 

exchangers (NHEs). The release of H+ by NHEs in exchange for uptake of Na+ serves the same 

function as VAs in ammonia trapping. The presence of NHE7/9 and NHE3 in the anal papillae of 

A. aegypti has been shown by mRNA expression (Weihrauch et al 2012) and Hina Akhter (York 

University, Personal communication), respectively, and NHE3 has been localized to the apical 

membrane (Marjorie Patrick, University of San Diego, personal communication). Ammonia 

dependent Na+ uptake has been shown in the anal papillae of larval A. aegypti (Donini and 

O’Donnel 2005; also see Weirauch et al 2012), suggesting, in conjunction with the above evidence, 

that Na+ uptake may be linked to ammonia excretion.  

1.6 Rh-glycoproteins and Ammonia Excretion in Aquatic Animals 

  The study of ammonia excretion at the gills of fish has been the subject of research for over 

80 years; however, evidence for the first ammonia transporting Rh protein in an aquatic animal 

was presented by Weihrauch et al (2004) and genomic data-mining further supported the work 

(Huang and Peng 2005).  It was shown that Rhesus-like protein (RhCM) from the shore crab 

Carcinus maenas gills are homologous to mammalian Rh glycoproteins such as RhKG 

(nowidentified as RhCG) from the kidney. A comparison of secondary structure of RhCM 

concluded that 10 out of 12 predicted transmembrane domains are in identical sites of the sequence 

to human RhCG (Figure 1.7; Weihrauch et al 2004). It was further speculated that RhCM is not 

localized to apical membranes of the branchial system. Here, the presence of the RhCM 

transporter, would be disadvantageous to the animal because at high environmental concentrations, 

ammonia would begin to influx.  
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The highly specific NH3 transport by RhCG expressed in Xenopus oocytes (Bakouh et al 

2004) and secondarily driven by ammonia trapping (Eladari et al 2002), implies that RhCG 

preferentially stimulates passage of  NH3. For the RhCM of the C. maenas, a similar mechanism 

would be plausible, but the protein would be co-localized with V-type H+-ATPase in membranes 

of cytoplasmic vesicles, which in turn would be targeted to plasma membranes for exocytosis 

(Weihrauch et al 2004). Ammonia trapping occurs when NH3 diffuses into the vesicle and H+, 

transported in by VA, combine to produce NH4
+.  

 

 

Figure 1.7 Localization of the 12 predicted transmembrane domains of putative Carcinus maenas 

(RhCM) and human RhCK (also called PDRC2) ammonia transporter. Asterisk indicates identical 

sites of transmembrane domains in RhCM and human ammonia transporter RhKG (adapted from 

Weihrauch et al 2004 J Exp Biol 207: 4491-4504). 
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Exhaustive work with various fishes, such as killifish (Kryptolebias marmoratus; Hung et 

al 2007), puffer fish (Takifugu rubripes; Nakada et al 2007; Nawata et al 2010a) and rainbow trout 

(Oncorhynchus mykiss; Nawata et al 2007, 2010b), have shown the persistent presence of Rh 

proteins in the role of ammonia transporting proteins. Generally, in ammoniotelic teleosts (bony 

fish), branchial excretion of ammonia is facilitated by Rh-glycoproteins which are up-regulated by 

cortisol (Tsui et al 2009). 

Various research groups have cloned these glycoproteins (Hung et al 2007; Nakada et al 

2007; Nawata et al 2007). Furthermore, Rh-glycoproteins have been shown by in vitro expression 

analysis to potentiate HN4
+ binding, yet facilitate the movement of NH3 (Nawata et al 2010a). 

Movement of H+ across the epithelium, likely by H+-ATPase, plays a role in driving the NH3 

gradient through ammonia trapping at the outer boundary layer of the gills (Figure 1.8; Weihrauch 

et al 2009; Wright and Wood 2009). This system has the capacity to actively expel ammonia 

against a gradient. Rises in external or internal ammonia levels, activates mRNA expression up-

regulation of Rh and other cohort transporter proteins such as Na+/K+-ATPase (Nawata et al 2007; 

Nawata et al 2010b; Nawata and Wood 2009). Interestingly, recent research on Magadi tilapia 

(Alcolapia graham) showed that, even in this 100% ureotelic teleost fish, Rh proteins are expressed 

along with NH4
+-activated Na+/K+ ATPases (Wood et al 2013). 
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A      B 

        

Figure 1.8. Established model of ammonia transport in fish gills compared to a working model in 

anal papillae of Aedes aegypti, utilizing known transporters as putative ammonia facilitators. A) 

Erythrocyte Rhag transports NH3 to the plasma where it is picked up and transported by gill 

epithelial basolateral Rhbg into the cell. Apical Rhcg then transports NH3 to the environment 

where it undergoes ammonia trapping in the boundary layer. The NH3 gradient is driven by H+-

ATPase. Additional transporters (NHE2/3) may also contribute to the H+ concentration in the 

boundary layer further driving the NH3 gradient (adapted from Wright and Wood 2009 J Exp Biol 

212: 2303-2312). B) K+ channels and NKA on the basal membrane potentially facilitating transport 

of NH4
+ into the syncytium of the anal papillae. Excretion of NH4

+ to the exterior is potentially 

facilitated by NHE in exchange for H+. *Note: Rh –glycoproteins and/or Amts have been omitted 

from panel B because they have not yet been localized to a specific membrane but they are 

hypothesized to be involved in ammonia trapping, as described for fish gills in panel A.  
 

1.7 The Model Organism: Aedes aegypti 

In tropical and sub-tropical parts of the world the mosquito Aedes (Stegonyia) aegypti 

(Linneaus) (Diptera: Culicidae) is the prevailing *vector for such viruses as yellow fever, dengue 

fever and Chikungunya. Patients with these infections may be completely void of symptoms. In 

other cases patients may present with fever, respiratory illness (distress), arthritis, hepatitis, 

encephalitis, hemorrhagic syndrome and shock, which ultimately may lead to death (Hollidge et 

al 2010; Schmaljohn and McClain 1996). During a single gonotrophic cycle the female mosquito 

requires several blood meals which she may acquire from multiple hosts, thus inadvertently 

spreading viruses from animal to human or human to human. Preferentially near human habitats, 

the female then deposits her eggs on the surface of stagnant bodies of freshwater or temporary 
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pools, where hatched larvae proceed through four stages of instar development, pupate and finally 

emerge as adults (Jansen and Beebe 2010).  There is lack of an effective vaccine against Dengue 

and Chikungunya fever which potentially puts billions of people at risk worldwide (Metz et al 

2011). Although there is a licensed live-attenuated vaccine against yellow fever, this does not deter 

the nearly 200,000 annual cases reported across Africa and parts of South America (Tomori 2004). 

The absence or unsatisfactory progress in development of vaccines, lack of funding for adequate 

mosquito control and the fact that A. aegypti mosquitoes are developing insecticide resistance 

(Ahmad et al 2007; Dusfour et al 2011; Fonseca-Gonzalez et al 2011), makes it apparent that the 

biological study of this disease vector is an important undertaking.  

The relative ease with which A. aegypti can be reared in a laboratory and its short life cycle 

(~3 weeks), makes the mosquito a great model for research. Once the eggs have completed 

embryonic development, they can withstand months of desiccation, making them ideal for long 

time storage and shipment amongst research facilities (Clements 1992). The genome sequencing 

of A. aegypti, Anopheles gambiae and Culex quinquefasciatus has provided a powerful tool for 

comparative functional gene analysis (Chen et al 2008; Holt et al 2002; Nene et al 2007) and 

availability of abundant scientific publications in various disciplines of biological study, enables 

seamless research on morphology, physiology, genetics, vector competence and evolution of 

Aedes aegypti (Clemons et al 2010).  

1.8 Aedes aegypti Larvae 

Despite the negative connotations associated with the presence of mosquitoes, the larvae 

carry some ecological importance: they feed on detritus and serve as a food source for other 

animals. Larvae are aquatic organisms that live in habitats of fluctuating salinity and 

ammonia/ammonium levels which may result from environmental (e.g. rainfall / evaporation) or 



 

35 

 

anthropogenic (e.g. road salt / irrigation / industrial waste) factors (Blasius and Merritt 2002; 

Correll 1998; Godwin et al 2003; Howard and Maier 2007; Phillips et al 2002; Sanzo and Hecnar 

2006; Williams et al 1999). The functions of osmo- and iono-regulatory organs (e.g. mid-gut, 

hindgut, Malpighian tubules and anal papillae) permit larval mosquitoes to regulate ion and water 

levels in body fluids in the face of various environmental challenges (Bradley 1987).  The anal 

papillae of fresh water (FW) larval mosquitoes such as Aedes aegypti, not only play a major role 

in uptake of Na+, K+ and Cl- but are also sites of H+ and ammonia excretion (Donini and O’Donnell 

2005). In fact, when challenged with high environmental ammonia (HEA), NH4
+ and H+ effluxes 

at the anal papillae significantly increased compared to controls (Donini and O’Donnell 2005).  

Extending into the external medium, the four anal papillae of A. aegypti larval mosquitoes 

surround the anus and have a bulbous structure. The anal papillae consist of a single layer of 

syncytial epithelium, externally protected by a cuticle (Edwards and Harrison 1983; Wigglesworth 

1983). Both apical and basal plasma membranes of the syncytial epithelium, possess extensive 

folds that are associated with mitochondria, a feature of epithelial tissues involved in ion and water 

transport (Edwards and Harrison, 1983). The lumen is continuous with the hemolymph but is 

separated from the hemocoel by a muscular ring at the base of the anal papillae (Edwards and 

Harrison 1983; Wigglesworth 1983). The rectum and anal papillae have marked similarities, being 

derived from a shared origin. Embryologically, the anal papillae are the product of everted hind 

gut tissues (Edwards and Harrison 1983). The gastrointestinal system, anterior midgut (AMG), 

posterior midgut (PMG), hindgut (HG) and Malpighian tubules (MTs), also cooperatively 

participate in ion and water movement (Clark et al., 1999; Clark et al., 2005).  The gut, with the 

aid of the anus may also be utilized in ammonia excretion (von Dungern and Briegel, 2001). As 
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such the anal papillae may be considered an extension of the gastrointestinal system and may 

utilize various ammonia transport mechanism. 

1.9 Objectives 

Since the discovery of the first ammonia transport proteins, Rhesus-glycoproteins, 

members of the Amt / MEP / Rh family, have been the focus of countless studies and the centre of 

much controversy regarding their mode of action (See Weihrauch et al 2012 for review); however, 

in mosquitoes, little is known about Rhesus-like proteins, Amts and in general, ammonia transport 

mechanisms.  

The objectives of this study are to determine the relative transcript abundance of ammonia 

transporters (Rh50-1/-2 and Amt) in anal papillae of mosquito larvae; assess the effects of high 

environmental ammonia (HEA) exposure on the relative transcript abundance of ammonia 

transporters in anal papillae of mosquito larvae; and characterize the mechanisms of ammonia 

excretion by the anal papillae with the aid of pharmacological agents. We hypothesize that 

ammonia excretion is accomplished at the anal papillae by various transporters, employing a 

concert of mechanism. Our studies may provide new insight into many physiological processes in 

A. aegypti mosquitoes, possibly laying the groundwork for future targets of ecologically sound 

vector control. 
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2. MATERIALS AND METHODS 

2.1 Insects 

Eggs (~200-250) of A. aegypti (Liverpool) mosquitoes acquired from a colony maintained 

at the Department of Biology at York University were hatched in 2 L of distilled water and reared 

at room temperature on a 12h:12h light:dark cycle. Larvae were fed daily 5 mL of 1:1 liver powder 

and yeast solution. Rearing water was refreshed every other day. Fourth instar larvae (10-12) were 

used 24h post feeding for all pharmacological studies. For molecular experiments the larvae were 

reared as above and fasted for 72h prior to use. For high environmental ammonia experiments, 

larvae were reared in 1 mM NH4Cl (1 mM NaCl for controls) with all other treatments being equal.  

2.2 RNA Extraction and cDNA Synthesis 

Seven biological samples, each consisting of a pool of 50 larvae for anterior mid-gut, 

posterior mid-gut, hindgut, Malpighian tubules and anal papillae were isolated in cold A. aegypti 

physiological saline (Clark and Bradley, 1996) prepared in diethylpyrocarbonate (DEPC; Sigma-

Aldrich, Oakville, ON, Canada) water, containing in mmol l-1: 5 L-proline, 9.1 L-glutamine, 8.7 L-

histidine, 14.4 L-leucine, 3.3 L-arginine-HCl, 10 glucose, 5 succinic acid, 5 malic acid, 10 citric 

acid (tri-sodium salt), 30 NaCl, 3 KCl, 5 NaHCO3, 0.6 MgSO4, 5 CaCl2, 25 HEPES. The saline 

was titrated to a final pH of 7.2. The calculated osmolality was previously verified to be 220 

mosmol l-1 (Ionescu and Donini 2012). Harvested tissues were immediately transferred to 1.5 mL 

centrifuge tubes containing 200 µL TRIzol® RNA isolation reagent (Invitrogen, Burlington, 

Ontario, Canada) and stored at -80oC for later use. When all the tissues were collected, the samples 

were thawed out, topped up with TRIzol® to 500 µL and sonicated for 5 s at 50 Hz using an XL 

2000 Ultrasonic Processor (Qsonica, LL, CT, USA). Tissues were extracted according to TRIzol® 

specifications and treated with the TURBO DNA-freeTM Kit (Applied Biosystems, Streetsville, 
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Ontario, Canada) to remove genomic DNA. Qualitative and quantitative aspects of the RNA 

samples were measured using a Multiskan Spectrum sprectrophotometer (Fisher Scientific, 

Nepean, Ontario, Canada). Integrity of the RNA was verified by electrophoresis using an ethidium-

bromide-stained, 1.5% agarose gel. Samples with an optical density (OD) absorption ratio (OD 

260 nm/OD 280 nm) > 1.8 were selected and normalized to contain 1µg of RNA. Selected RNA 

samples were used to synthesize cDNA using iScriptTM cDNA Synthesis Kit (Bio-Rad, 

Mississauga, Ontario, Canada), according to the manufacturer’s instructions. The cDNA was 

stored at -20oC for subsequent use.  

2.2.1 PCR Primer Design 

Genes encoding for putative A. aegypti Rhesus ammonia transporters (Rh50-1 and Rh50-

2) were found in the A. aegypti genome in the National Center for Biotechnology Information 

(NCBI) database (http://www.ncbi.nlm.nih.gov). Primers were designed using Primer3 

(http://bioinfo.ut.ee/primer3-0.4.0/).  Primers’ quality were assessed using OligoAnalyzer 3.1 

(http://www.idtdna.com/analyzer/applications/oligoanalyzer/) to reduce possibilities of secondary 

structures and dimers. Primer sequences, amplicon size and related accession numbers are listed 

in Table 2.1.  

Table 2.1 Primer sequences and accession numbers of A. aegypti Rh50-1 (AeRh1), Rh50-2 

(AeRh2), Amt (AeAmt) and 18S reference gene 
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Reverse transcription polymerase chain reaction (RT-PCR) was used to check expression 

of putative ammonia transporters in Aedes tissues. RT-PCR amplification of Rh50-1, Rh50-2 and 

Amt genes as well as 18S internal control was performed under the following reaction conditions: 

1 cycle of denaturation (95ºC, 4 min), 40 cycles of denaturation (95ºC, 30 sec), annealing (60ºC, 

30 sec) and extension (72ºC, 30 sec) respectively, final single extension cycle (72ºC, 5 min) (0.2 

mM dNTP, 0.2 M forward and reverse primers, 1x Taq DNA polymerase buffer, 1.5 mM MgCl2 

and 1 M Taq DNA polymerase)(Invitrogen Canada Inc.). Amplicons were resolved by gel 

electrophoresis and images were captured using a Gel Doc™ EZ Imager (Bio-Rad, Mississauga, 

Ontario, Canada). PCR product was sequenced at York University sequencing facility (York 

University Core Molecular Facility, Toronto, Ontario, Canada), and its sequence identity was 

confirmed by a BLAST search (NCBI database (http://www.ncbi.nlm.nih.gov)). 

2.2.2 Quantitative Real-time PCR Analysis 

 To determine the relative mRNA abundance of Rh50-1, Rh50-2 and Amt in larval A. 

aegypti anal papillae, quantitative real-time PCR (qRT-PCR) was performed using the primers 

listed in table 2.1 and SsoFastTM Evagreen® Supermix (Bio-Rad Laboratories (Canada) Ltd. 

Mississauga, Ontario, Canada), according to the manufacturer’s protocol. Reactions were carried 

out using the CFX96TM real time PCR detection system (Bio-Rad) with the following cycling 

conditions: 2min enzyme activation at 95oC, followed by 39 cycles of 5s denaturation at 95oC and 

5s annealing/extension at 60oC. To confirm the presence of a single product, after each reaction, a 

melting curve analysis was performed under the following conditions: 65oC – 95oC with 0.5oC 

increments held for 5s each.  For each gene of interest, a standard curve was generated to optimize 

reaction efficiency. Quantification of transcript was determined according to the Pfaffl method 
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(Pfaffl 2004). Samples were run in duplicate and 18S was used as an internal control. A no-

template negative control was used. 

2.3 Construction of Ion-selective Microelectrodes 

The protocol for construction of ion-selective microelectrodes (ISMEs) was adapted from 

Smith et al. (1999). Borosilicate glass capillary tubes (TW 150-4, World Precision Instruments, 

Sarasota, Florida, USA) were pulled on a Sutter P-97 Flaming-Brown pipette puller (Sutter 

Instruments, Novato, California, USA) into micropipettes with a tip diameter of ~5µm. The 

micropipettes were baked at 350oC for 15 minutes then silanized with N, N-

dimethyltrimethylsilylamine (Fluka, Bachs, Switzerland) vapour for one hour and allowed to cool 

before use. Micropipettes were backfilled with various electrolyte solutions and frontloaded with 

appropriate ionophore cocktails to a column length of ~200-250 µm. To reduce and/or prevent 

leakage of ionophore from the microelectrodes during use, the tips were coated in a polyvinyl 

chloride (Fluka, Bachs, Switzerland) in tetrahydrofuran (Fluka, Bachs, Switzerland) solution 

(Rheault and O’Donnell 2004). In preparation of the various ISMEs, the following ionphores and 

corresponding backfills (in parentheses) were used (Fluka, Bachs, Switzerland): NH4
+ Ionophore 

I Cocktail A, (100 mmol l-1 NH4Cl); K+ Ionophore I Cocktail B, (100 mmol l-1 KCl); Na+ Ionophore 

II Cocktail A, (100 mmol l-1 NaCl); H+ Ionophore I Cocktail B (100 mmol l-1 NaCl / 100 mmol l-

1 sodium citrate, pH 6.0). The ISMEs were calibrated in standard solutions consisting of (mmol l-

1) for each ionophore (in parentheses): 0.1 and 1 NH4Cl, (NH4
+); 1 and 10 KCl (K+); 1 and10 NaCl 

with 1 mmol l-1 HEPES, pH 7.0 (H+); 1 and 10 NaCl, (Na+).  Calibrations of all ISMEs produced 

similar Nernst slopes within their group of ionophores and all groups were within acceptable range, 

between 50 and 62 mV. Calibrations of NH4
+ ISMEs produced similar Nernst slopes for each set 

of experiments and corresponding controls (mean ±SEM, N): bafilomycin, 54.84 ±0.7766, 14; 
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ouabain, 54.04 ±0.806, 10; HMA, 53.08 ±0.586, 16; S3226, 55.42, ±0.876, 14; colchicine, 55.21 

±0.627, 20; BaCl2, 55.93 ±0.772, 14. Calibrations of potassium ISMEs produced mean Nernst 

slopes of 56.50, ± 0.461, N = 34. For sodium and proton ISME calibrations, Nernst slopes were 

56.94, ± 0.7183, 18 and 56.07, ± 0.7061, 12, respectively. 

2.3.1 Scanning Ion-selective Electrode Technique (SIET)  

The SIET system used in this study has been described previously (Del Duca et al 2011; 

Donini and O’Donnell 2005; Nguyen and Donini 2010; Rheault and O’Donnell 2001, 2004). 

Briefly, the NH4
+, K+, H+ or Na+ microelectrodes were fit onto an Ag/AgCl wire holder and 

attached to a headstage with a 10X gain. The headstage was connected to an IPA-2 

Ion/Polarographic amplifier (Applicable Electronics, Forestdale, Massachusetts, USA) with a set 

gain of 100X. A reference electrode, made by filling a capillary tube with 3 mol l-1 KCl in 3% 

agar, was mounted to the headstage with an electrode holder containing a silver pellet and filled 

with 3 mol l-1 KCl. The reference electrode was placed in the bath containing the larval A. aegypti 

preparation to complete the circuit. 

2.3.2 Measurements of Voltage Gradients 

 Some transport inhibitors interfere with the normal activity of ISMEs, affecting their 

accuracy (see Del Duca et al 2011); therefore, prior to experimental design, the effects of all the 

inhibitors on the ISMEs function were tested. Colchicine, HMA, S3226 and Barium were found 

to cause alteration of voltages of the ISMEs by as much as 20 mV and calibrations of ISMEs in 

the presence of these inhibitors resulted in sub-optimal Nernst slopes. Although not all the 

inhibitors affected ISMEs, a uniform protocol for assessing effects of transport inhibitors on ion 

fluxes at the anal papillae was utilized as follows. Larvae were pre-incubated for 30 minutes under 

control or experimental conditions. The larvae were removed from solution and blotted dry on a 
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piece of filter paper. The larvae were then placed in a petri dish where they were immobilized 

using beeswax, such that, one side of the anal papillae was exposed for measurements. Voltage 

readings adjacent to the anal papillae were conducted under 4 mL of 0.5 mmol l-1 NH4Cl for NH4
+, 

5 mmol l-1 KCl for K+, 5 mmol l-1 NaCl for Na+ and 5 mmol l-1 NaCl with 1 mmol l-1 HEPES (pH 

7.0) for H+. For pH-dependent K+ flux measurements, the larvae were bathed in 5 mmol l-1 KCl 

(pH 11.0, 10 mmol l-1 BES; pH 7.0, 10 mmol l-1 HEPES; pH 4.0, 10 mmol l-1 MES, Sigma Aldrich 

Canada) solution. After each measurement series, the bathing solution was removed and replaced 

immediately with the next solution, alternating the order for each trial. For pH-dependent NH4
+ 

flux measurements, the larvae were bathed in 5 mmol NH4Cl (pH 7.0, 10 mmol l-1 HEPES; pH 5.0 

and pH 5.0 with 5 mmol l-1 KCl, 10 mmol l-1 MES). After each measurement series, the bathing 

solution was removed and replaced immediately with the next solution, alternating the order for 

each trial. The ISME was then moved to a target site ~ 5 µm away from the surface of the anal 

papillae and a voltage was recorded. A second voltage recording was then obtained at ~105 µm 

away from the surface of the anal papillae. The protocol was repeated four times at each target site 

and consisted of 4 seconds conditioning time and 1 second sampling time. Readings were taken at 

the middle one third portion of the anal papillae at 6 target sites separated by 25-30 µm.  To obtain 

reliable voltage readings, it was important to ensure that movement of the anal papillae was 

minimal; therefore, the preparation was constantly monitored during readings via live video feed. 

Any readings acquired while the preparation was moving were discarded. A voltage gradient was 

calculated by Automated Scanning Electrode Technique software (ASET; Science Wares, East 

Falmouth, Massachusetts, USA), using the differences between voltage readings at the two points 

of each site and reported as the average of the four readings at each site. Background voltage 

readings were taken by moving the microelectrodes ~2500 µm away from the preparation and 
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employing the same sampling protocols. Background voltage gradients (noise) were then 

subtracted from the gradients reported at each target site.  

2.3.3 Calculation of Ion Fluxes 

The voltage gradients obtained from the ASET software program were converted into 

concentration gradients using the equation, 

∆C = CB X 10(∆V/S) – CB, (1) 

where, ∆C is the concentration gradient (µmol l-1 cm-3) between the two points measured at the 

anal papillae, CB is the background concentration (µmol l-1) for the ion of interest, ∆V is the voltage 

gradient (µV) obtained from the ASET software and S is the Nernst slope of the electrode.  The 

concentration gradient was then converted into ion flux using Fick’s law of diffusion, 

J = D(∆C)/∆X, (2) 

Where, J is the net flux of the ion (pmol cm-2 sec-1), D is the diffusion coefficient (cm2 s-1), ∆C is 

the concentration gradient (pmol cm-3) and ∆X is the distance between the two points measured 

(cm).  Diffusion coefficients were as follows (cm2 s-1): NH4
+, 2.09 x 10-5; K+, 1.92 x 10-5; Na+, 

1.55 x 10-5; H+, 9.4 x 10-5; HEPES, 6.2 x 10-6. Because H+ gradients were measured in solution 

buffered by HEPES, the flux values were corrected to reflect the buffering capacity of the solution 

(see Donini and O’Donnell, 2005; Smith and Trimarchi, 2001; Somieski and Nagel, 2001) using 

the following equation: 

JI = [(DH+DI)BH] (∆C/∆x), (3) 

where, DH is the diffusion coefficient of HEPES and BH is the buffering capacity of HEPES, 

which is calculated from the following equation: 

BH = (CH/CB) [F/(1+F)2], (4) 
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where, CH is the concentration of HEPES (mol l-1) used and F, which is calculated using the 

following equation: 

F = log10(pKaH) / CB, (5) 

where, log10 pKaH is the dissociation constant of HEPES (pKaH=7.55). 

2.4 Characterization of Ammonium Transport Mechanisms across Anal Papillae Epithelium 

 

 Various pharmacological inhibitors in conjunction with SIET were used to assess the 

involvement of putative pathways in trans-cellular transport of NH4
+ in the anal papillae. Pre-

incubated experimental larvae were exposed to the following concentration of inhibitor, 

transporter/mechanism (in parentheses): 100 µmol l-1 bafilomycin (VA); 100 µmol l-1 ouabain 

(NKA); 100 µmol l-1 HMA (NHE); 100 µmol l-1 colchicine (microtubules); 5 mmol l-1 BaCl2 (K
+ 

channels); 5 mmol l-1 S3226 (NHE3); 100 µmol l-1 methazolamide (CA). All the inhibitors 

contained 0.1% DMSO, except for BaCl2, and were diluted in 0.5 mmol l-1 NH4Cl; therefore 

control larvae were pre-incubated in 0.5 mmol l-1 NH4Cl containing 0.1% DMSO. Experiments 

involving BaCl2 and their corresponding controls did not require the use of DMSO since BaCl2 

freely dissolves in water. Other incubation solutions included 5 mmol l-1 BaCl2 in 5 mmol l-1 NaCl 

and 10 µmol l-1 S3226 in 5 mmol l-1 KCl, with control incubation solutions containing no 

inhibitors. Larval incubations were staggered by 15 minutes, alternating between control and 

experimental conditions, with SIET readings commencing immediately after. Data was calculated 

as described above and plotted as mean ion flux (pmol cm-2 s-1).  

2.5 Statistical Analysis  

Data were analyzed using Prism® 5.03 (GraphPad Software Inc., La Jolla, California, 

USA) and expressed as mean ± standard error of mean (SEM). Two-tailed t-tests were used to 
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determine significance between control and experimental groups. Control groups as well as 

calibration data were compared using one-way ANOVA to determine statistical similarity.   

3. RESULTS 

3.1 Expression of Rh-glycoproteins and Amt in gastrointestinal system of A. aegypti larvae 

 

RT-PCR products of distilled water-reared larvae were visualized by gel electrophoresis. 

Results indicated the expression of Rh50-1, Rh50-2 and Amt mRNA in all of the gastrointestinal 

tissues tested (Note*: expression refers to relative mRNA abundance, Figure 3.1A). qRT-PCR 

analysis showed that expression of Rh50-2 mRNA was significantly less than that of Rh50-1 

mRNA in AP; however, Amt was expressed significantly higher than Rh50-1 (Figure 3.1B). 

Relative to corresponding controls, expression of Rh50-1 and Rh50-2 in anal papillae of larvae 

acclimated to HEA was significantly less (Figure 3.1C, D).  Conversely, Amt expression was 

significantly higher in anal papillae of HEA acclimated animals, than that of controls (Figure 

3.1E).  

3.2 Effect of Pharmacological Inhibitors on NH4
+ flux Adjacent the Anal Papillae 

Ion fluxes were measured adjacent the anal papillae in the presence of various 

pharmacological inhibitors and in conjunction with SIET (Figure 3.2A). The effects of varying 

inhibitors on NH4
+ flux at the anal papillae compared to controls are summarized in Figure 3.2B. 

The average  NH4
+ flux of all the controls combined was -49.77 ± 1.61 pmol cm-2 s-1, N = 50. 

Individual control groups were statistically similar (One-way ANOVA, Tukey post-test P = 0.18). 

 Bafilomycin (VA), ouabain (NKA) and BaCl2 (K
+ channels) inhibited NH4

+ excretion by 

the anal papillae (Figure 3.2 B).  Bafilomycin significantly reduced NH4
+ flux by 72% relative to 

the corresponding control, from -47.63 ±5.32 pmol cm-2 s-1 to -13.26 ±5.32 pmol cm-2 s-1. BaCl2 
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reduced NH4
+ flux by 64% relative to controls from -56.62 ±3.28 pmol cm-2 s-1 to -20.90 ±3.24 

pmol cm-2 s-1, and ouabain reduced NH4
+ flux from -46.27 ±5.54 pmol cm-2 s-1 to -18.94 ±4.28, 

relative to control, a 61% reduction. There was no effect of HMA (NHEs) and colchicine 

(microtubules) on NH4
+ flux at the anal papillae (Figure 3.2 B). 

3.2.1 Effect of BaCl2 on Anal Papillae Ion Transport 

Due to the potential membrane depolarization that can occur from buildup of K+ as a result 

of BaCl2 blocked K+ channels, it was necessary to determine if the presence of BaCl2 leads to 

altered membrane potential of the anal papillae epithelium.  This was accomplished by measuring 

Na+ flux adjacent the anal papillae in the presence of BaCl2 because Na+ influx across the apical 

membrane is thought to be mostly dependent on electrochemical gradient (Del Duca et al 2011). 

In the presence of BaCl2, Na+ influx at the anal papillae was significantly reduced by 36%, from 

226.8 ±24.67 pmol cm-2 s-1 to 144.4 ±15.17 pmol cm-2 s-1 (Figure 3.3A) indicating a depolarization 

event. To check if the membrane depolarization caused by inhibited K+ channels affected the 

activity of the VA, we recorded H+ fluxes adjacent the anal papillae in the presence of BaCl2. The 

H+ fluxes were not affected by BaCl2 treatment (Figure 3.3B), therefore, the observed effects of 

BaCl2 on NH4
+ efflux and Na+ influx are not attributable to altered VA activity.   

3.2.1.1 Effects of S3226 on NH4
+ and K+ transport  

Due to the insensitivity of NHE3s to amiloride in A. aegypti, a non-amiloride substance, 

S3226, was used to block this antiporter. S3226 is a specific inhibitor of NHE3 (Schwark et al 

1998) and application to the anal papillae decreased NH4
+ flux from -48.59 ±5.63 pmol cm-2 s-1 to 

–29.21 ±6.42 pmol cm-2 s-1 (Figure 3.4A). Furthermore S3226 reduced the K+ influx from 169.6 

±36.67 pmol cm-2 s-1 to 59.92 ±15.46 pmol cm-2 s-1 (Figure 3.4B). Thus, compared to their 

respective controls, S3226 inhibited NH4
+ efflux by ~63% and inhibited K+ influx by ~65%. 
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3.2.2 Effects of pH-dependence on K+ and NH4
+ Fluxes 

 The effects of pH was tested on K+ influxes (Figure 3.5A) and NH4
+ effluxes (Figure 3.5B). 

Results from larvae incubated at pH 4.0, pH 7.0 and pH 11.0, indicate that K+ influx is significantly 

reduced in alkaline conditions compared to acidic conditions with a mean difference of -158.4 

pmol cm-2 S-1 between pH 4.0 and pH 11.0 (Figure 3.5A). There was no significant difference in 

K+ influx between pH 4.0 and pH 7.0 or pH 7.0 and pH 11.0. With regard to NH4
+, the direction 

of the flux was reversed from efflux at pH 7.0 to influx at pH 5.0 with a mean difference of -71.24 

pmol cm-2 S-1 (Figure 3.5B). When challenged with 0.5 mmol KCl at pH 5.0, the results were 

similar, having a mean difference of -64.33 pmol cm-2 S-1 compared to pH 7.0. There was no 

difference observed between pH 5.0 and pH 5.0 with KCl (Figure 3.5B). 

3.2.3 Effects of Methazolamide and K+ Load on NH4
+ Excretion 

Methazolamide (MTZ) is a CA inhibitor. The effect of MTZ was tested on NH4
+ effluxes 

in the anal papillae to determine if CA plays an indirect role in ammonia excretion via intracellular 

mediation of acid/base regulation and ultimately ammonia trapping. The results showed that in the 

presence of MTZ there was a significant decrease in NH4
+ excretion from -57.21 ± 5.910 to -11.50 

± 2.937 pmol cm-2 S-1 (Figure 3.6A). In addition, NH4
+ efflux was also significantly reduced from 

-56.46 ± 6.459 to -7.043 ± 1.473 when challenged with 0.5 mmol l-1 KCl (Figure 3.6B). 
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Figure 3.1 Expression of ammonia transporter genes Rh50-1 (Rh1), Rh50-2 (Rh2), Amt and 18S 

in larval Aedes aegypti mosquito. A) Relative expression of ammonia transporter genes Rh1, Rh2 

and Amt as well as reference gene 18S in gastrointestinal tissues of larval Aedes aegypti: anterior 

mid-gut, AMG; posterior mid-gut, PMG; hindgut, HG; Malpighian tubule, MT; anal papilla, AP; 

negative control, (-), by RT-PCR.  Bands correspond to expected amplicon sizes for each gene 

(bp): Rh50-1, 110; Rh50-2, 176, Amt, 180; 18S, 194. Negative controls were prepared devoid of 

cDNA template. B) Relative mRNA abundance of Rh50–1 (Rh1), Rh50–2 (Rh2) and Amt in anal 

papillae of larval A. aegypti reared in distilled water.  Expression was quantified by qRT-PCR and 

mRNA abundance of Rh50–2 and Amt were expressed relative to that of Rh50–1 and normalized 

to 18S. C) Relative mRNA abundance of Rh50-1 in anal papillae of larvae reared under control 

and high environmental ammonia (HEA) conditions. Expression of mRNA for HEA is relative to 

that of control and normalized to 18S. D) Relative mRNA abundance of Rh50-2 in anal papillae 

of larvae reared under control and HEA conditions. Expression of mRNA for HEA is relative to 

that of control and normalized to 18S. E) Relative mRNA abundance of Amt in anal papillae of 

larvae reared under control and HEA conditions. Expression of mRNA for HEA is relative to that 

of control and normalized to 18S. Bars represent the mean relative expression ±SEM of 3-6 

preparations (*P < 0.05, two-tailed Student’s t-test). 
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Figure 3.2 Effects of pharmacological studies on the anal papillae of Aedes aegypti larvae using 

SIET (Scanning Ion-selective Electrode Technique). A) In vivo preparation of larval A. aegypti 

anal papilla for SIET measurements. Inverted microscope image (10 X magnification) showing 

the NH4
+ ion-selective microelectrode (ISME) positioned ~ 100 µm away from the anal papilla 

(immobilized in bee’s wax). B) Effects of pharmacological inhibitors on NH4
+ flux at the anal 

papillae of larval A. aegypti mosquito. Negative flux values indicate an efflux of ions out of the 

anal papillae and into the bathing solution. Experimental larvae (black bars)  and corresponding 

control larvae (white bars) were incubated for 30 minutes in 0.5 mmol l-1 NH4Cl containing 0.1% 

DMSO with and without inhibitor, respectively. BaCl2 treatments and controls did not contain 

DMSO.  Bars represent mean NH4
+ fluxes ±SEM of 5-10 preparations (*P < 0.05, **P < 0.005, 

***P < 0.0001; two-tailed Student’s t-test). 
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Figure 3.3 Effects of BaCl2 on Na+ and H+ fluxes at the anal papillae of Aedes aegypti larvae. A) 

Effect of BaCl2 on sodium flux at the anal papillae of larval A. aegypti mosquito. Bars represent 

mean Na+ flux ±SEM, N = 6 (*P < 0.05, two-tailed Student’s t-test). B) Effect of BaCl2 on proton 

flux at the anal papillae of larval A. aegypti mosquito. Bars represent mean H+ flux ±SEM, N = 6 

(*P < 0.05, two-tailed Student’s t-test). Control larvae (white bars) were incubated for 30 minutes 

in NH4Cl (0.5 mmol l-1), while experimental larvae (black bars) were incubated for 30 minutes in 

NH4Cl (0.5 mmol l-1) and BaCl2 (5 mmol l-1). 
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Figure 3.2 Effects of S3226 on NH4

+ and K+ fluxes at the anal papillae of Aedes aegypti larvae. 

A) Effect of S3226 on NH4
+ flux at the anal papillae of larval A. aegypti mosquito. Control larvae 

(white bars) were incubated for 30 minutes in 0.5 mmol l-1 NH4Cl containing 0.1% DMSO while 

corresponding experimental larvae (black bars) were incubated for 30 minutes in 0.5 mmol l-1 

NH4Cl containing 0.1% DMSO and 5 mmol l-1
 S3226. Bars represent mean NH4

+ flux, ±SEM, N 

= 7 (*P < 0.05, two-tailed Student’s t-test). B) Effect of S3226 on K+ flux at the anal papillae of 

larval A. aegypti mosquito. Control larvae (white bars) were incubated for 30 minutes in 0.5 mmol 

l-1 KCl containing 0.1% DMSO while corresponding experimental larvae (black bars) were 

incubated for 30 minutes in 0.5 mmol l-1 KCl containing 0.1% DMSO and 5 mmol l-1
 S3226. Bars 

represent mean K+ flux, ±SEM, N = 8 (*P < 0.05, two-tailed Student’s t-test). 
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Figure 3.3 Effects of pH on K+ and NH4

+ flux at the anal papillae of Aedes aegypti larvae. A) 

Effect of pH on K+ flux at the anal papillae of larval A. aegypti mosquito. Bars represent mean K+ 

flux, ±SEM, N = 8 (P < 0.0046, ANOVA, Tukey Multiple Comparison Test, different letter 

indicate significance). B) Effects of pH and pH + K+ on NH4
+ flux at the anal papillae of larval A. 

aegypti mosquito. Control larvae (white bar) were measured in 0.5 mmol l-1 NH4Cl at pH 7.0. 

Experimental larvae were measured in 0.5 mmol l-1 NH4Cl, pH 5.0 (grey bar) and 0.5 mmol l-1 

NH4Cl, pH 5.0 + 0.5 mmol–l KCl (black bar), with measurements taken at the same corresponding 

locations. Bars represent mean NH4
+ flux ±SEM, N = 7 - 15 (P < 0.0001, ANOVA, Tukey Multiple 

Comparison Test, different letter indicate significance). 
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Figure 3.4 Effects of MTZ and KCl on NH4

+ flux at the anal papillae of Aedes aegypti larvae. A) 

Effect of methazolamide (MTZ) on NH4
+ flux at the anal papillae of larval A. aegypti mosquito. 

Control larvae (white bars) were incubated for 30 minutes in 0.5 mmol l-1 NH4Cl containing 0.1% 

DMSO, while corresponding experimental larvae (black bars) were incubated for 30 minutes in 

0.5 mmol l-1 NH4Cl containing 1% DMSO and 100 µmol l-1
 MTZ. Bars represent mean NH4

+ flux 

±SEM, N = 8 (***P < 0.0001, two-tailed Student’s t-test). B) Effect of KCl on NH4
+ flux at the 

anal papillae of larval A. aegypti mosquito. Control larvae (white bars) were incubated for 30 

minutes in 0.5 mmol l-1 NH4Cl while corresponding experimental larvae (black bars) were 

incubated for 30 minutes in 0.5 mmol l-1 NH4Cl containing 0.5 mmol l-1
 KCl. Bars represent mean 

NH4
+flux, ±SEM, N = 8 (***P < 0.0001, two-tailed Student’s t-test). 
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4. DISCUSSION 

This is the first study to characterize ammonia transport mechanisms in anal papillae and 

identify expression of Rh proteins and Amts in larval Aedes aegypti osmo-/iono-regulatory tissues 

(Note*: expression refers to relative mRNA abundance). The larvae have four anal papillae, which 

are continuous with the hemocoel and therefore contain hemolymph. The apical and basal plasma 

membranes of the cells have a lot of infolding associated with mitochondria, which is a feature of 

epithelial cells involved in ion and water transport (Edwards and Harrison 1983). Because the anal 

papillae extend into the external environment, they are able to facilitate osmo-/iono-regulation, 

directly between the hemolymph and the water.  

V-type H+-ATPases excrete H+ ions which can be used in ammonia trapping with NH3 

being supplied via Rh proteins and/or Amts (Braun et al 2009; Shih et al 2008; Weihrauch et al 

2009; Wilson et al 1994; Wright and Wood 2009). When we blocked VA activity with 

bafilomycin, it resulted in reduction of NH4
+ excretion in the anal papillae. This strongly suggests 

that ammonia trapping is a major contributor of ammonia excretion at this site, in larval A. aegypti, 

especially given the fact that Rh and Amt gene expression was present in all osmo-/iono-regulatory 

tissues tested. Ammonia trapping has been demonstrated as a mechanism of ammonia excretion in 

osmoregulatory and respiratory tissues of various aquatic animals, including crab and fish (Shih et 

al 2008; Weihrauch et al 2009; Wright and Wood 2009).  

Blocking NKAs with a high dose of ouabain leads to diminished activity of this enzyme, 

which may impede Na+, K+ and NH4
+ transport. The importance of NKA in ammonia transport 

has been shown in various animal phyla (Chew et al 2014; Garvin et al 1985; Hung et al 2008; 
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Kurtz and Balaban 1986; Lucu 1989; Mallery 1983; Mangum et al 1978; Patrick et al 2006; 

Randall et al 1999; Tsui et al 2008; Wall and Koger 1994; Weihrauch 2006; Weihrauch et al 1998, 

1999; Worrell et al 2008). Our ouabain-blocked NKA experiments in A. aegypti larvae revealed a 

significant decrease in NH4
+ excretion at the anal papillae, in accordance with several studies 

which demonstrated similar results in osmo-/iono-regulatory tissues of a number of animals (Lucu 

1989; Mangum et al 1978; Weihrauch et al 1998; Weihrauch et al 1999). These results, in 

conjunction with the localization of NKA to the basal membrane of the A. aegypti anal papilla 

(Patrick et al 2006), lends great support for the involvement of this anti-porter in ammonia 

transport.  

It has been proposed that NH4
+ may indeed be able to ‘highjack’ various types of K+ 

transporters, by replacing or competing with K+ ions (Choe et al 2000). Our experiments blocking 

K+ channels with BaCl2, has resulted in diminished NH4
+ effluxes at the anal papilla, implying that 

the K+ channel is a part of ammonia transport mechanisms; however, care must be taken to ensure 

that the reduction in NH4
+ fluxes measured by SIET are truly those resulting from blockage of the 

passage of NH4
+ ions through K+ channels and not artifact signals produced by membrane 

depolarization due to a buildup of intracellular K+ concentration. This may then affect the activity 

of the VA on the apical membrane, therefore, indirectly affecting ammonia trapping. To check if 

membrane depolarization occurred while K+ channels were blocked, SIET readings of Na+ fluxes 

were performed in the presence of BaCl2. Because K+ channels are blocked, K+ ions brought into 

the cell by NKA cannot be cycled back into the hemolymph. The increasing K+ concentration 

levels eventually lead to membrane depolarization as internal and external membrane charges 

approach equivalence. With lowered membrane potential, the electrical gradient would be curbed 

and Na+ influx, by diffusion via probable apical Na+ channels (Del Duca et al 2011), would slow 



 

56 

 

down or cease. Our results showed that blocking K+ channels decreased Na+ uptake at the anal 

papillae and therefore, the conclusion must be drawn that depolarization of the membrane 

occurred. This does not necessarily mean that NH4
+ readings were affected by the membrane 

depolarization. Since ammonia trapping is primarily driven by VA (Braun et al 2009; Shih et al 

2008; Weihrauch et al 2009; Wilson et al 1994; Wright and Wood 2009), if the activity of this 

enzyme was not affected, then it is safe to assume that our readings in the presence of BaCl2 were 

truly ammonium effluxes and not an artifact of membrane depolarization. SIET readings of H+ 

effluxes served as an assessment of the activity of VA in the presence of BaCl2, and results showed 

no differences compared to controls.   

In our experiments, the presence of HMA, an amiloride based inhibitor of NHEs (Benos 

1982), did not significantly effect NH4
+ transport, suggesting that amiloride-sensitive NHEs do not 

play a major role in excretion of ammonia at the anal papillae. Due to a leucine amino acid residue 

substitution in the NHE3 of A. aegypti, it has been rendered amiloride-insensitive (Pullikuth et al 

2006), therefore we used an amiloride free blocker (S3226) to test for possible involvement of 

NHE3 in ammonia transport. In the presence of S3226, NH4
+ efflux was significantly decreased at 

the anal papillae, compared to controls. In adult A. aegypti, NHE3s have been characterized and 

localized to the basal membranes of all osmo-/ion-regulatory tissues (Pullikuth et al 2006). Our 

laboratory has further shown that the NHE3 is also present in the anal papillae (Hina Akhter, 

Personal communication). In addition, Marjorie Patrick at University of San Diego has localized 

NHE3 to the apical membrane of the A. aegypti anal papillae (Personal communication). Although 

amiloride-sensitive NHEs do not seem to function as ammonia transporters in anal papillae of A. 

aegypti larvae, our results suggest that the amiloride-insensitive NHE3 is involved; S3226 

decreased NH4
+ excretion as well as inhibited K+ uptake at the anal papillae. This data also lends 
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proof to the reversibility of NHE3 at this site, supported by the fact that K+ is preferentially 

transported over Na+ by this exchanger (Pullikuth et al 2006).  

Since NHE3 preferentially transports K+ over Na+ (Pullikuth et al 2006) and its direction 

of transport is pH dependent, we tested K+ fluxes at the anal papillae in acidic, pH-neutral and 

alkaline conditions.  In pH-neutral conditions, K+ influxes of ~100 pmol cm-2 S-1 were recorded, 

similar to those reported by Donini and O’Donnell (2005). In acidic conditions K+ influx was 

increased significantly over alkaline condition, but not over pH neutral conditions. Although there 

was no statistical significance between alkaline and neutral or neutral and acidic conditions, there 

appears to be a clear pH-dependent trend. This test, on its own, did not clearly demonstrate the 

reversibility of the NHE3 since K+ fluxes were not reversed, but the influx decrease in alkaline 

conditions and increase in acidic conditions, implies that pH effects the function of the protein. It 

is possible that when the papilla was exposed to the alkaline bathing solution, the syncytium 

cytoplasm became highly alkaline. Even in the face of very low environmental proton 

concentrations, the NHE3 would be able to recruit these ions from the VA, as it pumps them out 

near the surface of the papillae. Therefore, NHE3 would begin to correct intracellular pH by 

pumping in as many H+ ions as possible in exchange for K+. The impending K+ efflux by NHE3 

would result in a net decrease in K+ influx. In acidic conditions, the opposite effect would occur. 

The syncytium would become acidic and NHE3 would begin to pump H+ out of the cell in 

exchange for K+. Interestingly, when testing NH4
+ transport in pH-neutral and acidic conditions 

the fluxes were reversed. In pH 5.0 conditions, NH4
+ began to influx, a significant change from 

the observed efflux under pH-neutral conditions. The ammonium reversal maybe due to a similar 

process. In this case, due to the high abundance of H+ ions in the external acidic conditions, 

available NH3 is quickly converted into NH4
+; however the syncytium also becomes acidic and 
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NHE3 begins to transport NH4
+ inward, in an attempt to reduce intracellular H+ concentrations. 

The overall effect would be a net influx of NH4
+. Because of the resultant NH4

+ influxes and 

increased K+ influxes in low pH, we tested if these two ions acted synergistically or additively 

under acidic conditions.  There was no observed effect on NH4
+ fluxes in the presence of K+ in 

acidic conditions compared to acidic conditions alone. Although these experiments revealed 

surprising results, it is highly probable that the effects seen were due to high vulnerability of the 

anal papilla syncytium to pH changes of the external media. In support of this it was previously 

demonstrated that the AP are highly permeable to pH equivalents (Clark et al 2007).  

Carbonic anhydrase has been long known to play a role in the mediation of intracellular 

acid/base balance, as shown in the aquatic crab species Callinectes sapidus (Henry and Cameron 

1982). To observe effects of CA mediated pH balance on the transport of NH4
+ we blocked CA 

with MTZ. In the presence of 100 µmol l-1 MTZ the resultant NH4
+ efflux was significantly 

reduced compared to controls. As shown in rainbow trout, Oncorhynchus mykiss, it is very likely 

that a substantial amount of H+ necessary for ammonia trapping in the external boundary layer of 

the gill, is supplied to VA and/or NHE, by intracellular CO2 hydration reaction catalyzed by 

cytoplasmic CA (Georgalis et al 2006). When CA is inhibited by MTZ the catalyzed H+ production 

slows down or stops and ultimately leads to a reduction in NH4
+ efflux; however, it is not clear to 

what degree catalyzed CO2 hydration reaction contributes to ammonia trapping. The remaining 

NH4
+ effluxes observed in this experiment could be a result of incomplete inhibition of CA, 

ammonia trapping driven by a residual supply of un-catalyzed cytoplasmic H+, or simply from 

direct transport of NH4
+.   

The suggestion may be made, taking all into consideration, that movement of NH4
+ in the 

anal papillae is not only dependent upon various intra-/extra-cellular conditions such as pH and 
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specific ion concentrations, but also on a combination of different transporters and the dynamic 

nature of electrochemical gradients. We propose that ammonia excretion by the anal papillae is 

achieved by a culmination of various dynamic, cooperative and superimposed mechanisms, as 

described in the following sections and depicted in our working model (Figure 4.1). 

4.1 Working Model of Ammonia Transport Mechanisms in Larval A. aegypti Papillae 

One of the most unrelenting issues surrounding Rh-glycoprotein research is the identity of 

the molecule(s) they transport: NH3, NH4
+ and/or even CO2 (Wright and Wood 2009). The latter 

option was not pursued in the realm of this study. Shown by evidence from mammalian Rh gene 

expression and functional protein studies, there are three suggested ammonia transport 

mechanisms: electroneutral NH4
+/H+ exchange, electrogenic NH4

+ transport and facilitated NH3 

diffusion (see Weiner and Hamm 2007 for review).  In experiments using human RhBG expressed 

in Xenopus oocytes, evidence lent support for the electroneutral process (Ludewig 2004), while 

Nakhoul et al (2005) showed that mouse Rhbg mediates electrogenic transport of NH4
+. In 

recombinant kidney cells, it was suggested that RhBG is a bidirectional channel which facilitates 

rapid transport of NH3 (Zidi-Yahiaoui et al 2005). As our results indicate, expression of Rh50-1/2 

was significantly less in HEA compared to 1 mmol l-1 NaCl controls. If Rh-glycoproteins are 

bidirectional channels in Aedes anal papillae, it is possible that the observed down regulation of 

Rh50-1/2 was manifested in response to HEA, in order for the animal to protect itself from 

impending ammonia influx. Our results of NH4
+ efflux inhibition in the presence of MTZ (CA) 

and bafilomycin (VA), indicate that the concentration of H+, at least partially, drives ammonia 

trapping, thus, creating an outward partial pressure gradient for NH3. Keeping all this in mind, it 

can be argued that facilitated NH3 transport is the likely method by which A. aegypti Rh-

glycoproteins work in the anal papillae. In this case ammonia (NH3) is transported into the cell 
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from the hemolymph by basal membrane Rh channels and is transported out of the cell unaltered 

by similar apical channels. One interpretation to consider is that each of the Rh-glycoproteins 

homologues expressed in the anal papillae could be differentially localized to the apical and basal 

membranes, such as Rhbg and Rhcg are expressed in basal and apical membranes of fish, 

respectively. This is not likely the case because a BLAST of Aedes aegypti Rh50-1 and Rh50-2 

(data not shown) revealed that each of the mosquito Rh-glycoproteins have a sequence similarity 

of 22-35% to both Rhbg and Rhcg of various fish. It is more likely that the presence of the two 

Rh-glycoproteins is merely a product of redundancy.  

As our results indicated, expression of Amt was significantly higher in HEA compared to 

controls, a trend reversal compared to Rhs. In fact, basal expression of Amt was much higher than 

that of both Rhs. This is not an uncommon phenomenon. In many cases, such as seen in D. 

melanogaster (Chintapalli et al 2007) and M. sexta (Weihrauch 2006), the proportion of Rh-

glycoproteins are complimentary to that of Amts in the same tissues, and vice versa. Why then, 

are Amts up regulated and Rhs down regulated under the same conditions? Ammonia transporters 

(Amts) are integral proteins present in all kingdoms of life, including the archaea Archaeglobus 

fulgidus and the bacterium E. coli (Andrade et al 2005). These proteins are believed to act in a 

different manner than Rh-glycoproteins, in that they have specific binding sites for NH3/NH4
+. 

From the E. coli AmtB structure analysis (Khademi et al 2004), there is convincing evidence that 

the Amt protein recruits NH4
+ to binding sites in the vestibular entrance, deprotonates the molecule 

and favourably transports NH3. The NH3 molecule is re-protonated at the exit vestibule by H+ 

transported across the membrane separately. Alternatively, Amts may transport NH4
+ unaltered. If 

A. aegypti Amts are involved in electrogenic transport, it may explain the residual NH4
+ effluxes 

seen in the presence of some transport mechanism blockers. There is evidence from plant Amts, 
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suggesting that NH4
+ transport is regulated by cross talk between the Amt monomers and their 

cytosolic carboxyl tails (Neuhauser et al 2007). Further evidence of NH4
+ regulation by Amts, 

comes from Archaeoglobus fulgidus, in which the PII protein GInB-1 tightly binds to the 

cytoplasmic opening of the transporter, blocking passage through the individual substrate channels 

of the three monomers (Andrade et al 2005). If the A. aegypti Amt had the ability to regulate NH4
+ 

transport, it would explain why Amt is up-regulated and Rhs are down-regulated in HEA; it would 

allow the animal to continue excreting ammonia against the gradient in the presence of HEA, while 

protecting itself from excess NH4
+ influx from the environment. Amts’ presence in primitive life 

forms, homologous function and relatively high sequence conservancy amongst the kingdoms, 

along with their high basal abundance within A. aegypti anal papillae, implies a hierarchical 

importance of Amt within these tissues. It is understood that transcript levels don’t always reflect 

protein abundance; however, in the absence of suitable antisera for Rhs or Amts, in this case, we 

make the assumption that they do. We suggest that Amts and Rhs, cooperatively transport 

ammonia across the anal papillae epithelium in its ionic and gaseous forms, respectively. Although 

it is not possible to confirm localization of the proteins to either membrane without further study, 

it can be speculated that Amts may only be expressed on the apical side, where they can be of most 

help in eliminating unwanted ammonia from the cell and perhaps regulating the process.   

In the absence of, or in conjunction with basal Amts, transport of NH4
+ from the 

hemolymph into the syncytium of the anal papillae can be achieved via basal K+ channels and/or 

NKAs. As demonstrated by our S3226 blocked NHE3 experiments the unaltered ammonium ion 

may then be excreted to the environment via this exchanger; however, in an intracellular pH-

dependent fashion, partially regulated by CA, there would be varying rates of conversion between 

the ionic and gaseous forms of ammonia.  Any excess NH3 and H+ would be transported out of the 
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cell into the environment via Rh/Amts and VAs, respectively. On the exterior, through the 

mechanism of ammonia trapping, NH3 and H+ are rejoined to form NH4
+.  Intracellular 

acidification may drive VA to increase activity and thus ammonia trapping may increase. In 

addition because pH balance is partly mediated by CA, the conversion of carbon dioxide to 

bicarbonate and protons, and vice versa, if CA was not available, the pH balance would be 

unregulated for the most part, resulting in other mechanisms having to work harder.  

  Additional postulations have proposed that ammonia might be sequestered in vacuoles in 

the form of NH4
+ by ammonia trapping and eliminated via exocytosis, guided by cytoplasmic 

microtubules (Weihrauch 2006). Our results show that blocking microtubule formation with 

colchicine, which would impede vesicle transport to the target membrane for exocytosis, did not 

significantly reduce NH4
+ excretion, suggesting that this is not a major ammonia transport 

mechanism in A. aegypti anal papillae. 
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Figure 4.1 Working model of putative trans-cellular NH3 / NH4
+ transport mechanisms in the anal 

papillae of the larval A. aegypti mosquito. 1) NH4
+ is transported into the cell via basal membrane 

potassium channels (K+) and delivered to the external environment by apical membrane 

cation/proton exchanger subtype 3 (NHE3), partially driven by the H+ gradient. 2) NH4
+ is 

transported into the cell via basal membrane sodium/potassium ATPase (NKA), partially driven 

by the Na+ gradient, and delivered to the external environment by NHE3. 3) NH3 could enter the 

syncytium through basal membrane Rhesus glycoproteins (Rh) and/or ammonia transporters 

(Amt) or could occur by the dissociation of intracellular NH4
+ into NH3 and H+. NH3 and H+ are 

transported out of the cell by apical membrane Rh/Amt and V-type ATPase (VA), respectively, 

producing ammonia trapping (association of NH3 and H+ into NH4
+) in the boundary layer (grey 

field) adjacent to the apical surface of anal papillae. Red block-arrow indicates the reversible 

conversion of carbon dioxide and water into bicarbonate and protons, aided by carbonic anhydrase 

(CA), which plays a role in the acid/base balance of the syncytium. 
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4.2 Final Remarks and Future Direction 

In this study we have provided a series of arguments for various putative ammonia 

transport mechanisms in the anal papillae of A. aegypti. We have shown strong evidence for 

ammonia trapping and facilitated NH3 diffusion, as well as suggesting the possibility of 

electrogenic NH4
+ transport via Amts. We have also provided evidence in support of electroneutral 

NH4
+/H+ exchange, not in the context of Rh-glycoproteins, but as seen in the action of NHE3s. At 

this stage of the investigation, the most comprehensive conclusion must be made, that there is not 

one specific mechanism at work, but the actions of various complimentary mechanisms that are 

regulating ammonia excretion at the anal papillae of larval A. aegypti.  

Research on mammalian aquaporins (AQPs), primarily functional in transepithelial 

transport of water molecules, has shown that AQP3, AQP7, AQP8 and AQP9 also mediate 

transport of ammonia (Litman et al 2009). These AQPs, when expressed in Xenopus oocytes, 

mediated increased membrane NH3 and methylammonia permeability (Holm et al 2005; Saparov 

et al 2007).  In A. aegypti, six putative AQPs have been identified, with five of them having high 

similarity to the classical water transporting mammalian AQPs (Drake et al 2010). While AQP1, 

AQP4 and AQP5 have been confirmed water molecule transporting proteins, the function of the 

remainder AQPs in insects is unknown. Some indication that AQPs may play a role in ammonia 

transport in insects came from phylogenetic analysis (Weihrauch et al 2012) which grouped an 

AQP  from the louse Pediculus humanus with human ammonia transporting AQP3 AQP7 and 

AQP9 (Drake et al 2010). Data to confirm the role (if any)  of AQPs in ammonia transport by 

Aedes aegypti mosquitoes is not yet available, therefore, future studies of this aspect will serve 

well to progress our knowledge of the mechanisms involved.   
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Real time ammonium excretion at the anal papillae has been shown (Donini and O’Donnell 

2005) and this study has provided pharmacological and molecular evidence of various putative 

mechanism. Although our results provide some compelling arguments for cooperative, redundant 

and independent ammonia transport mechanisms in larval A. aegypti anal papillae, more work 

must be done, in particular, to localize Rh-glycoproteins and Amts and functionally confirm their 

role as ammonia transporters in all osmo-/ion-regulatory tissues. To this end, in conjunction with 

SIET recordings of NH4
+ fluxes, our laboratory is currently involved in knocking down Amt and 

NHE3 in Aedes aegypti, using siRNAs (Helen Chasiotis, Personal communication). Additional 

future studies will include immunohistochemistry techniques to localize these proteins.  
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