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ABSTRACT 

Methane is a significant greenhouse gas with 25–32 times the global warming potential of carbon 

dioxide. Global sources and sinks of methane are understood to be 550 ± 60 Tg a-1. The possible 

causes of changing decadal trends in atmospheric methane concentrations since the 1990’s is not 

well understood, since this requires a precision in global emissions quantification better than 20 

Tg a-1. Atmospheric observations at the local, regional, or national scale can provide “top-down” 

constraints on emissions to verify “bottom-up” emissions that may not be well characterized. 

Cavity ring down spectroscopy (CRDS) instruments deliver highly precise in-situ measurements 

of methane, with 1 Hz precision better than 2 ppb. A comprehensive aircraft campaign in the 

Athabasca Oil Sands Region of Alberta (AOSR) in summer 2013, led by Environment and 

Climate Change Canada (ECCC), deployed a CRDS alongside a suite of instrumentation to 

measure atmospheric pollutants and meteorological parameters. These observations allowed for 

the comprehensive identification and quantification of methane emissions from unconventional 

oil extraction. Emissions estimates were 48% higher than those reported in the national 

greenhouse gas inventory. A series of lower cost follow up campaigns in 2014 and 2017 using a 

CRDS instrument mobilized with a vehicle allowed for cold season monitoring of emissions and 

select quantification where atmospheric parameters were favorable, showing continued 

discrepancies with inventory reporting. To estimate emissions across Canada at the national 

scale, methane measurements from ECCC long-term monitoring stations over 2010-2015 were 

utilized in conjunction with satellite remote sensing observations from the Greenhouse Gas 

Observing Satellite (GOSAT) operated by the Japanese Aerospace Agency (JAXA). These 

atmospheric observations were assimilated in the GEOS-Chem chemical transport model to 

constrain emissions using a Bayesian inverse modelling methodology. Results showed 42% 

higher emissions from anthropogenic sources and 21% lower emissions from natural sources, 

which are mostly wetlands, when compared to the prior estimate. Through the combinations of 

all studies presented herein, approximately 2–4 Tg a-1 of methane emissions in Canada were 

reallocated for the year of 2013, where 1–3 Tg a-1 was added to anthropogenic sources and 2–4 

Tg a-1 was deducted from natural sources, which is substantial relative to the anthropogenic 
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inventory in Canada which is 4–5 Tg a-1. This reallocation is 0.4–0.8% of the entire global 

budget of 550 Tg a-1, where only a ~3% change in the source-sink balance can cause the 

observed trends in atmospheric methane. These results show that atmospheric observations from 

surface, aircraft and satellites are critical for constraining the methane budget in Canada, and 

improvements are necessary to these types of atmospheric observations over the world to 

constrain the methane cycle within the precision needed to understand decadal trends. 
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Chapter 1 Introduction to atmospheric 

measurements of methane 

1.1 The Earth’s methane cycle 

Methane (CH4) is the simplest organic molecule in the universe. It originates through 

chemical processing of solar nebulae and is present on several planets and their moons in the 

solar system, including Mars, Jupiter, Saturn (especially on its moon Titan; Tobie et al., 2006), 

Uranus and Neptune. On Earth, methane is cycled through the atmosphere, primarily produced 

through biological activity, and removed through oxidation chemistry (Prather et al., 2012). For 

this reason, suspicious observations of methane cycles on Mars (Webster et al., 2018) have 

caused a stir of curiosity about extraplanetary life, although this could be due to an abiotic 

geological mechanism. While methane does not necessarily indicate the presence of biological 

life, on Earth it is certainly true that biological life necessitates the presence of methane. 

The history of methane on Earth can be investigated through laboratory measurements of 

trapped bubbles in ice core samples from Antarctica. Figure 1.1 shows an 800,000-year history 

of methane in the Earth’s atmosphere adapted from Etheridge et al. (1998) and Loulergue et al. 

(2008). In this method, trapped bubbles are samples of the historical atmosphere and the depth of 

the drilled ice is related to the age of the sample. The relationship between the depth of ice and 

the age is determined using snow accumulation and mechanical flow models or using other 

independent markers which include radionuclide measurements (Parrenin et al., 2007). The 

historical average mixing ratio from 800,000 BCE to 1800 CE is 520 ppb. From 1800 CE to 

2021 CE, the mixing ratio has abruptly increased to nearly 1900 ppb today, coinciding with the 

transition into the industrial age, the extensive use of fossil fuel combustion to power the modern 

world, and large-scale agricultural domestication. 
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Figure 1.1: 800,000-year history of methane in the Earth’s atmosphere. The blue line shows data 

from ice core samples taken at EPICA Dome C, Antarctica (Loulergue et al., 2008), the green 

line shows data from ice core samples taken at Law Dome, Antarctica (Etheridge et al., 1998), 

and the red line shows data from flask samples taken at Mauna Loa, Hawaii (Dlugokencky et al., 

1995). 

Anthropogenic activities continue to influence the change in atmospheric methane. Table 1.1 

shows the global methane budget adapted from Saunois et al. (2016). Global methane emissions 

are 540–568 Tg a-1 in the “top-down” column, which are emissions constrained by atmospheric 

measurements. Anthropogenic emissions are from fossil fuels (105 Tg a-1), biomass burning (34 

Tg a-1), and agriculture and waste (195 Tg a-1) which includes enteric fermentation and manure, 

rice cultivation, landfills and wastewater treatment, and other minor sources. Natural emissions 

are dominated by wetlands (167 Tg a-1), in addition to natural sources (64 Tg a-1) from 

geological seeps, freshwater lakes, termites, wildfires and other minor sources. The primary sink 

of methane is oxidation by the hydroxyl radical OH throughout the entire atmosphere (Jacob, 

1999) which results in a lifetime of 9.1 ± 0.9 years (Prather et al., 2012). The total chemical loss 

of methane (515 Tg a-1) includes a minor sink from oxidation by the chlorine radical Cl, which is 
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in addition to a terrestrial sink from soil absorption (33 Tg a-1). This results in a source-sink 

imbalance of +10 Tg a-1 and an atmospheric growth rate of 10.0 ppb a-1. From this summary we 

see that present-day anthropogenic activities are ~60% of the global methane budget, which 

explains the abrupt change shown in Figure 1.1 from the 800,000–year pattern. 
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Table 1.1: Global methane budget from 2003-2012 adapted from Saunois et al. (2016). 

Emissions are in Tg a-1, the mean value is reported with the range in square brackets. The top-

down column values are emissions that are constrained by atmospheric measurements, and the 

bottom-up column values are from process-based inventory estimates. 

 Top-down Bottom-up 

Natural sources 231 [194–296] 384 [257–524] 

Wetlands 167 [127–202] 185 [153–227] 

Other natural sources 64 [21–132] 199 [104–297] 

Fresh waters  122 [60–180] 

Geological seeps (onshore)  40 [30–56] 

Geological seeps (offshore)  12 [5–20] 

Wild animals  10 [5–15] 

Termites  9 [3–15] 

Wildfires  3 [1–5] 

Permafrost soils  1 [0–1] 

Other (incl. hydrates)  2 [0–5] 

Anthropogenic sources 328 [259–370] 352 [340–360] 

Agriculture and waste 195 [178–206] 188 [115–243] 

Enteric fermentation & manure  106 [97–111] 

Landfills & waste  59 [52–63] 

Rice cultivation  30 [24–36] 

Fossil fuels 105 [77–133] 121 [114–133] 

Coal mining  41 [26–50] 

Oil, gas & industry  79 [69–88] 

Biomass & biofuel burning 34 [15–53] 30 [27–35] 

Sinks   

Total chemical loss 515a  

Soil uptake 33 [28–38]  

Sum of sources 558 [540–568] 736 [596–884] 

Sum of sinks 548b  

Imbalance 10b  

Atmospheric growth rate 10.0 [9.4–10.6]  

a Defined as the different between the total sink and soil uptake. 
b Not directly computed; the total sink is inferred from global mass balance. 
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Methane is removed from the atmosphere according to a multistep chemical oxidation to 

produce carbon dioxide (CO2), with carbon monoxide (CO) and formaldehyde (HCHO) as 

important intermediates that have other climate and air quality consequences. The reaction with 

OH is initiated 

CH4 + OH → CH3 + H2O     {1.1} 

CH3 + O2 + M → CH3O2 + M    {1.2} 

where M is any molecule in the third body reaction, such as O2 or N2, that dissipates the energy 

released. The methylperoxy radical (CH3O2) reacts with peroxy radicals (HO2) to produce the 

methylhydroperoxide (CH3OOH) radical 

CH3O2 + HO2 → CH3OOH + O2    {1.3} 

CH3OOH is oxidized to produce HCHO 

CH3OOH + OH → HCHO + OH + H2O   {1.4} 

HCHO is an important air quality gas and can be an abundant source of free radicals. HCHO 

further photodissociates or is oxidized to produce carbon monoxide (CO) 

    HCHO + hv → CO + H2.     {1.5} 

CO is relevant for air quality as it is hazardous to human health, concentrations of CO have been 

steadily reduced through public policy interventions (Raub et al., 2000). CO is finally oxidized to 

produce CO2 

    CO + OH   
O2
→    CO2 + HO2.     {1.6} 

Alternatively, the minor methane sink with stratospheric Cl produces hydrochloric acid (HCl) 

    CH4 + Cl → CH3 + HCl     {1.7} 

In addition to the reactions above, CH4 is an important precursor of tropospheric ozone (O3), a 

hazardous air pollutant, in an environment rich in nitrogen oxides (NOx): 

    CH3O2 + NO → CH3O + NO2.    {1.8} 

NO2 is also produced with the reaction of NO and the peroxy radical HO2 
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    NO + HO2 → OH + NO2.     {1.9} 

NO2 is photolyzed to produce O3 

    NO2 + hv → NO + O3.     {1.10} 

The reactions above show that methane is important for both air quality and climate. Methane 

is a major sink of tropospheric OH and influences the oxidative capacity of the atmosphere. In 

addition, methane is a precursor for air pollutants such as CO, HCHO, and tropospheric O3 as 

well as a precursor for climate-forcing gases like CO2 and stratospheric H2O. 

Methane’s increasing mixing ratio in the atmosphere has consequences on the Earth’s climate. 

The majority of radiation from the Sun comes in the form of visible light (380 to 700 nm), which 

is partially reflected by clouds and other high albedo surfaces like snow, desert sand, and ice. 

The rest of incoming visible radiation is absorbed by the Earth’s surface which is re-emitted as 

blackbody radiation in the infrared spectrum. Greenhouse gases (GHGs) are molecules in the 

atmosphere that absorb infrared radiation and hence insulate the energy of the atmosphere by 

preventing the complete transmission of outgoing infrared radiation into space. The greenhouse 

effect on Earth is primarily due to water vapor (H2O), followed by carbon dioxide (CO2) and 

third methane. Radiative forcing is defined by the IPCC as the change in the energy budget of the 

Earth’s atmosphere due to anthropogenic and/or natural factors of climate change, which 

excludes the baseline effect from water vapor unless it is changed due to a secondary mechanism 

(Myhre et al., 2013). Hence, methane (0.61 W m-2) is the second most important GHG for 

radiative forcing next to carbon dioxide (1.82 W m-2). The lower lifetime of methane compared 

to carbon dioxide makes methane an attractive target for climate mitigation policy, since 

reductions (or increases) in methane emissions will provide more immediate climate impacts. If 

reductions in CO2 emissions occur too slowly to deter the more damaging impacts of climate 

change, near-term reductions in methane are an alternative to complex climate geoengineering 

strategies (Vaughan and Lenton, 2011). 

On the centennial-scale, methane has been unambiguously increasing since the pre-industrial 

era due to increasing anthropogenic emissions. However, the causality of recent decadal trends, 

which are sensitive to small changes in the global budget, are more uncertain. Figure 1.2 shows 
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measurements of background methane at Mauna Loa, Hawaii (19.536° N, 155.576° W) from 

1983 to 2020 adapted from NOAA (Dlugokencky et al., 1995). The growth rate of atmospheric 

methane levelled off from the 1990’s to early 2000’s. This hiatus continued until 2007 when 

methane concentrations began a renewed growth continuing to present time (Dlugokencky et al., 

2009). Differing hypotheses have attempted to constrain the possible causes of these decadal 

trends. Associated increases with ethane have attributed recent growth to oil and gas (Hausmann 

et al., 2016). An increasing trend of isotopically lighter methane has been associated with 

increasing biogenic emissions from wetlands and agriculture (Nisbet et al., 2016), however 

decreasing biomass burning emissions may be masking increasing oil and gas emissions in the 

global isotopic ratios (Worden et al., 2017). Observations of methyl chloroform (CH3CCl3) 

suggest decreasing OH may have resulted in the renewed growth (Rigby et al., 2017; Turner et 

al., 2017). Causal attribution of the methane growth rate has continued to be challenging partly 

because a 3% source-sink imbalance, or 15–20 Tg a-1, can result in the observed rate of increase. 

The present-day global methane emission of 560 ± 60 Tg a-1 is inferred by mass balance with 

the global sinks (Prather et al., 2012). This ~10% uncertainty range is reasonable as an initial 

input for earth-system modelling; however, it is insufficient for understanding the 3% source-

sink imbalance that characterizes the present-day methane growth rate (Turner et al., 2017). 

Furthermore, the contributions from different source sectors and countries or regions are also 

highly uncertain (Dlugokencky et al., 2011; Kirschke et al., 2013). 

Improving constraints on national methane emissions is a requirement of successful 

mitigation policy (Nisbet et al., 2020). In 2021 Canada renewed its commitment to substantial 

methane reductions through the Global Methane Pledge alongside the United States and the 

European Union. The pledge commits to reducing global methane emissions by 30% below 2020 

levels by 2030, which would successfully invert the methane growth rate if implemented. 

Canada is developing a plan to reduce oil and gas methane emissions by at least 75% below 2021 

levels by 2030, which is beyond a previous 2016 pledge to reduce oil and gas emissions by 40–

45% by 2025 from 2021 levels (Government of Canada, 2021). However, uncertainties regarding 

national methane emissions confound the ability to verify baseline emissions and monitor 

reductions. Numerous studies in Canada have shown divergence between emissions reported in 
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the inventory and emissions derived by atmospheric measurements, especially from oil and gas 

emissions in Western Canada (Atherton et al., 2017; Johnson et al., 2017; Maasakkers et al., 

2019; Chan et al., 2020), but may include waste emissions from urban cores such as the Greater 

Toronto Area (Ars et al., 2020). These uncertainties in anthropogenic sources are further 

complicated by much larger overlapping natural emissions from wetlands that are also highly 

uncertain (Miller et al., 2016). The following sections illustrate how atmospheric measurements 

and their applications in emissions rate retrieval methods address the need to better characterize 

methane emissions. 

 

 

Figure 1.2: Time series of flask methane measurements at Mauna Loa, Hawaii from 1983–2020 

(c/o Ed Dlugokencky, NOAA/GML (gml.noaa.gov/ccgg/trends_ch4/). The red line shows the 

monthly mean measurements from hourly flask samples, and the black line shows the de-

seasonalized annual mean. 
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1.2 Atmospheric measurements of methane 

1.2.1 Theoretical background of spectroscopy and methane 

Atmospheric measurements provide information on the distribution and change in 

concentrations of chemical species; this knowledge provides constraints on the processes 

responsible for the observed spatial and temporal patterns. Spectroscopy is the study of how 

molecules interact in specificity with wavelengths of light. Molecules absorb energy according to 

transitions in their translational, rotational, and vibrational motion or their electronic energy 

state. These molecular transitions produce spectral lines that can be the targets of instrument 

design. The difference in observed intensity at spectral lines after light has travelled through a 

path containing the substance is related to the concentration according to Beer-Lambert’s Law. 

The path travelled by light can be contained within an in-situ instrument that actively produces 

artificial light using a laser source, or the path can include the entire atmosphere with an 

instrument that passively collects solar backscatter radiation. In the case of instruments with 

large path lengths, interference due to Rayleigh scattering by air molecules and Mie scattering by 

aerosols affects the measured radiances, so retrieval algorithms are designed to account for these 

effects. 

Methane is a tetrahedral molecule of the form XY4 and is readily observed using a variety of 

techniques due to its absorption properties in the infrared spectral range. Its vibrational 

transitions are the most relevant for the infrared region and are always coupled with rotational 

transitions. GHGs tend to be polar molecules because the absorption and emission of an infrared 

photon corresponds to a transition in the energy state of the molecular dipole. While methane is a 

symmetric molecule and does not have a permanent dipole, vibrational transitions create changes 

in the dipole moments which give rise to vibration-rotational transitions. In addition to the 

fundamental vibrational bands, methane has several lower intensity overtone and combination 

bands which account for spectral peaks outside of the normal modes. 

Figure 1.3 shows the optical depth of CH4 in the 1500–2500 nm short wave infrared (SWIR) 

spectral region, and is compared to CO2, CO, H2O and N2O (adapted from Jacob et al., 2016). 

The line-by-line absorption spectra are from the High-resolution TRANsmission molecular 
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absorption (HITRAN 2016) database (Gordon et al., 2017), which is smoothed to a spectral 

resolution of 0.1 nm. Commercially available in-situ instruments that deploy telecom-industry 

lasers typically target the 1.65µm band for simultaneous CH4, CO2 and H2O measurement or the 

2.3µm band to include CO measurements, although other spectral regions are feasible. In the 

case of satellites, all solar backscatter instruments have exclusively operated in either the 1.65 

µm or 2.3 µm region. For space-based observations, while the 2.3 µm band is stronger and 

allows for simultaneous retrieval of CO, solar radiation is 3 times weaker at 2.3 µm than at 1.65 

µm, and the 1.65 µm band has the advantage of simultaneous CO2 retrieval which is used in 

proxy algorithms that use CO2 (Parket et al., 2011). Hence the strategy of the spectroscopic 

approach can be customized for the objectives of the observations and their viewing placement 

from Earth to space. 

 

 

Figure 1.3: Optical depths of CH4, CO2, H2O, N2O and CO in the 1500–2500 nm SWIR spectral 

region from Jacob et al. (2016). The calculations are based on the US Standard Atmosphere with 

surface concentrations of 399 ppm CO2, 1.9 ppm CH4, 330 ppb N2O, and 80 ppb CO. 
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1.2.2 In-situ measurements 

Historically, methane has been measured using flame-ionization gas chromatography 

(Dlugokencky et al., 1995). When automated with an in-situ sampling approach, this method 

produced quasi-continuous data at 60 samples per day. An alternative sampling strategy is 

discrete sampling of the atmosphere into pre-flushed flasks. This method requires a record of the 

time and location of the sample, such as the programmable flask sampling used by NOAA 

(Turnbull et al., 2012), which are later brought for laboratory analysis. While flask sampling is 

much lower frequency it has been useful for long term, weekly sampling of the atmosphere and 

for mobile measurements (such as by aircraft) where delicate instruments could not be readily 

mobilized. In Canada, both quasi-continuous and discrete methods have been used in long-term 

monitoring at a network of stations, such as the northernmost station, Alert, Nunavut (82.45°N, 

62.51°W). This site is managed by Environment and Climate Change Canada (ECCC) and has 

been collecting data from 1985 to present time as part of the global sampling network. 

In the last decade, in-situ measurements for methane have rapidly advanced due to 

improvements in the precision and mobility of commercially available spectroscopic 

instrumentation. The improvement of spectroscopic techniques, and in particular cavity ring-

down spectroscopy (CRDS), have allowed for high-frequency (0.5–1.0 Hz), high-precision (<5 

ppb) instrumentation to be deployed in field studies (Maithani and Pradhan, 2020). The use of 

CRDS instruments have expanded the spatial coverage that long-term monitoring stations have 

provided (Ishiziwa et al., 2019), and these measurements have allowed for the deployment of 

surface-vehicle, ship, or aircraft measurements in novel regional studies. Figure 1.4 shows the 

schematic for a typical CRDS instrument. A tunable telecom-industry laser in the SWIR is used 

and the beam is reflected against very high reflectivity (>99.99%) mirrors to create a large path 

length of several kilometers within the instrument before reaching a detector. The CRDS method 

experimentally measures the rate of decay of light in time which differs from traditional 

absorption spectroscopy that measures small changes in intensities due to the presence of a 

sample. The ‘ring-down’ time is the time it takes for the signal to drop with and without a 

sample, to calculate the concentration of methane in the cavity (Wheeler et al., 1998) 
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 𝐼(𝑡) = 𝐼0 exp {− 
𝑡

𝜏
−  𝛼𝑐𝑡} {1.11}  

where 𝐼(𝑡) is the time dependent 𝑡 decay of initial light intensity 𝐼0, and 𝑐 is the speed of light. 

The molecular absorption coefficient 𝛼 is in dimensions of length-1 such that 𝛼 = 𝜎𝐶, which is 

the product of the sample absorption cross-section 𝜎 and concentration C. The term −𝑡 𝜏⁄  

describes the decay of light due to cavity losses such as mirror transmission, and the term −𝛼𝑐𝑡 

is the added loss of light from the presence of a sample due to molecular absorption at a specific 

wavelength. Here, 𝜏 is the empty cavity ring-down time, which is the time for the intensity to 

decay to 1/e of its original value. The empty ring-down time is determined from the baseline 

level between aborption features where α = 0, and the sample decay rate can be determined by 

least-squares fitting of the decay of light intensity with time, giving concentration. This 

algorithm occurs in less than a second. Although the stability of the instrument is very sensitive 

to laser temperature, mirror alignment, and the cavity pressure and temperature conditions, 

CRDS instruments have been designed that are highly secure and specialized for aircraft or other 

turbulent measurement platforms (Karion et al., 2013; Peischl et al., 2013). Due to these high 

frequency and high precision measurements, CRDS instrumentation have established a standard 

for in-situ measurements in regional methane studies. 

 

Figure 1.4: Schematic of a typical CRDS instrument from Maithani and Pradhan (2020). A 

tunable diode laser transmits light into an optical cavity with high reflectivity mirrors such that a 

large kilometer-scale path length is created in the instrument. The intensity of the reflected light 

is measured using a detector and the resulting difference in the ring-down time depends on the 

concentration of gas in the sample. 
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1.2.3 Satellite observations 

The first satellite observations of methane from space were accomplished with the 

Interferometric Monitor for Greenhouse gases (IMG) thermal infrared instrument in 1996–1997 

(Clerbaux et al., 2003), and measurements of total methane columns by solar backscatter began 

with the Scanning Imaging Absorption Spectrometer for Atmospheric Cartography 

(SCIAMACHY) in 2003–2012 (Frankenberg et al., 2006), although SCIAMACHY began to 

degrade after 2005. Thermal infrared instruments operate in the 8µm spectral range and are more 

sensitive to the upper troposphere than the surface, this is less ideal for constraining terrestrial 

emissions. Solar backscatter instruments accomplish uniform column sensitivity because they 

operate in the 1.65 µm or 2.3 µm region, this is nearly transparent to the atmosphere unless 

clouds interfere in the retrieval. The Greenhouse Gas Observing Satellite (GOSAT) launched in 

2009 by the Japanese Aerospace Exploration Agency (JAXA) substantially improved on the 

precision of SCIAMACHY (from 1.5% to 0.6%) and has been highly valuable for constraining 

methane emissions (Parker et al., 2020). The TROPospheric MONitoring instrument 

(TROPOMI) launched in 2017 further improved upon GOSAT by shrinking the pixel size to 7 × 

7 km², providing full daily coverage, and matching the individual observation precision that 

made GOSAT useful (Hu et al., 2018). These rapid advancements in satellite instrumentation 

within the last two decades has inspired the phrase of a golden age for satellite observation of 

atmospheric gases. Figure 1.5 shows the spatial coverage of one year of SCIAMACHY, GOSAT 

and TROPOMI dry-air column averaged methane (XCH4) observations. SCIAMACHY provided 

global coverage every 6 days with a pixel size of 30 × 60 km2. GOSAT provides repeat coverage 

every 3 days at cross-track pixels about 260 km apart, with a pixel size of 10 × 10 km2. The latest 

generation instrument TROPOMI provides full daily global coverage with a pixel size of 7 × 7 

km2. 
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Figure 1.5: Comparison of one year of satellite retrievals of dry-air column averaged methane 

(XCH4) over the globe from three instruments in order of generation: SCIAMACHY, GOSAT, 

and TROPOMI. Note the color scales are shifted from 2003 to 2019 due to the change in the 

methane background. There are 2,127,713 observations of XCH4 in 2003 from SCIAMACHY, 

233,407 observations in 2013 from GOSAT, and 64,021,218 observations in 2019 from 

TROPOMI. SCIAMACHY data is shown averaged on a 0.5 × 0.5° grid for visibility, GOSAT 

data is left as circular pixels, and TROPOMI data is averaged on a 0.25 × 0.25° grid.  

1.3 Estimating emissions using atmospheric measurements 

1.3.1 Comparison of bottom-up and top-down methods 

Methane emissions that are used for climate policy normally rely on “bottom-up” emission 

inventories that depend on activity rates and emissions factors for individual source processes. 

For example, total emissions from enteric fermentation can be estimated by determining the 

emissions factor per unit of livestock. This can be scaled with activity factors by multiplying by 

the total number of livestock per farm for a facility total, and the number of farms in a region for 
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national reporting. Due to this process-based approach, bottom-up estimates that use advanced 

Tier 2/3 methods from the Intergovernmental Panel on Climate Change (IPCC, 2006) can 

provide detailed accounting for national inventories. “Top-down” methods use atmospheric 

observations to constrain emissions. These require an algorithm to attribute measured 

concentrations to emissions. Emissions can be determined based purely on the measurements 

themselves, which are referred to here as experimental methods, or can be determined based on a 

comparison to predicted concentrations from a prior model, referred to as modelling methods. 

Top-down emissions are often at odds with bottom-up estimates which has generated 

discussion on reconciliation pathways. Disagreement between top-down and bottom-up estimates 

can be reflective of a flaw in the reporting practices within inventories due to: (i) emissions that 

are missing, (ii) under (or over) accounted for, (iii) problematic super-emitters that are not 

accounted for by activity factors, or (iv) errors due to the limited temporal coverage of top-down 

field studies (Zavala-Araiza et al., 2015). Some emissions by their nature – such as wetlands – 

are extraordinarily variable even at the microtopographic scale, and the linear scaling of activity 

factors result in large order-of-magnitude errors in Canada (Bloom et al., 2017). While IPCC 

Tier 2/3 methods require detailed accounting of processes, these practices do not require 

inventories to be published on a spatially disaggregated grid, which are needed as emissions 

inputs for atmospheric models. Hence many top-down studies have had to rely on the Emissions 

Database for Global Atmospheric Research (EDGAR) inventory (European Commission, 2011), 

which provide emissions spatially attributed on a global grid but is based on cruder IPCC Tier 1 

methods. Studies that “remake” inventories using improved accounting are highly valuable as 

datasets for modelling studies (Maasakkers et al., 2016; Bloom et al., 2017; Sheng et al., 2017; 

Scarpelli et al., 2020). 

1.3.2 Experimental methods 

Experimentalist approaches to emissions rate estimations are broadly defined as those that do 

not rely on comparisons to atmospheric models. In these methods, measurements are used 

entirely on their own to derive emissions estimates. This can be accomplished based on the 



16 

 

 

design of field studies, the careful placement of measurements, and the application of retrieval 

algorithms. 

In general, experimentalist methods are based on mass balance formulations that solve the 

continuity equation (Jacob, 1999). Experimental methods can also include co-released tracer 

studies (McLaren et al., 1996) and controlled release experiments which derive general 

relationships between concentrations and emissions (Maazallahi et al. 2020) which are not 

discussed in detail here. For mass balance methods, measurements that are placed both upwind 

and downwind of a specific source, or a collection of sources, can infer the emissions based on 

the change in methane concentrations. Since plumes have dynamic transport which changes with 

meteorological conditions, measurements are mobilized to scan large upwind and downwind 

regions to optimally characterize the plume structure. Mass balance methods can be deployed for 

many types of measurements provided they successfully characterize plumes; these can include 

mobilized-surface measurements (Atherton et al., 2017; Ars et al., 2020), aircraft measurements 

(Karion et al., 2013; Peischl et al., 2013; Cambaliza et al., 2014; Gordon et al., 2015) and 

satellite observations (Nassar et al., 2017; Varon et al., 2020). In many cases, the methane 

measurements are best complemented with detailed meteorological measurements to characterize 

surface and elevated winds and boundary layer conditions. Methane measurements can also be 

complimented with measurements of other chemical species that can provide confirmation of 

plume source origins. When mobile methane measurements provide a downwind plume cross-

section, the relationship between emissions and methane measurements is described as 

 

  𝐸𝑎𝑑𝑣 = ∬ ([𝐶𝐻4] − [𝐶𝐻4]𝐵)  × 𝑈⊥ 𝑑𝑥 𝑑𝑧
𝑥𝑛,𝑧𝑏
𝑥𝑖,𝑧𝑠

    {1.12} 

 

where 𝐸𝑎𝑑𝑣 is the advective horizonal flux of methane emissions through the plane created by 

the measurements, [𝐶𝐻4] are the downwind methane measurements affected by the plume, 

subtracted by the upwind background measurements [𝐶𝐻4]𝐵, 𝑈⊥is the wind speed component 

through the plane, which is perpendicular to the direction of travel of the mobilized 

measurements. The flux (enhancement × perpendicular wind speed) is in units of mass per  area 
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per time, which is integrated over the entire horizontal distance xi to xn, from the surface zs up to 

the vertical boundary layer height zb, to retrieve emissions per unit time. 

The integral in equation {1.12} assumes that the methane measurements have vertical 

resolution in the atmosphere. This is accomplished by aircrafts that fly transects through plumes 

at multiple altitudes from a low height that can be safely flown above the surface to the top of the 

planetary boundary layer (PBL). In the example of a surface methane plume with measurements 

that are sufficiently downwind for full vertical mixing to take place, then equation {1.12} can be 

simplified by replacing the vertical integral with a multiplication by the boundary layer height 𝑧𝑏 

 

      𝐸𝐶𝐻 = ∫ ([𝐶𝐻4] − [𝐶𝐻4]𝐵) × 𝑈⏊ × 𝑧𝑏 𝑑𝑥
𝑥𝑛
𝑥𝑖

   {1.13} 

 

This simplification is applied to cases where vertically resolved measurements are not 

available. Some algorithms have used equation {1.13} despite having full vertically resolved 

measurements; the purpose being to test the assumption of a well-mixed boundary layer by 

estimating emissions at differing-altitude transects independently, and then using the variance in 

the emissions estimates to derive an uncertainty of the mass balance method, which was 30–50% 

(Cambaliza et al., 2014). To improve the uncertainties of aircraft mass balance, Gordon et al. 

(2015) derived a more sophisticated formulation of equation {1.12}, by adding estimates of 

vertical fluxes, turbulent fluxes, and a term for the change in mass due to meteorological factors. 

Equation {1.12} is sometimes referred to as a simple ‘box approach’ in the literature due to the 

estimation of input and output fluxes – regardless of the flight formation of the aircraft 

measurements. However, the full formulation of the box approach that uses aircraft 

measurements encircling a source follows Gordon et al. (2015) as 

 

𝐸𝐵𝑜𝑥 = 𝐸𝐶𝐻 + 𝐸𝐶𝐻𝑇 + 𝐸𝐶𝑉 + 𝐸𝐶𝑉𝑇 + 𝐸𝐶𝑀   {1.14} 
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where EBox is the net emission rate from the sources within the box, ECH is the horizontal 

advective flux shown in {1.12}, ECHT is the horizontal turbulent flux, ECV and ECVT are the 

vertical advective and turbulent fluxes respectively, and ECM is the change in CH4 mass within 

the box volume due to changes in pressure and temperature. Because the box includes screens 

that are downwind, upwind and lateral to sources, incoming (background) and outgoing 

(background + source) fluxes are determined as a part of the horizontal flux terms (ECH and 

ECHT). Vertical fluxes through the box top are estimated according to the conservation of air 

mass within the control volume and the mixing ratio at the top edge of the box. ECM is estimated 

according to the time derivative of the ideal gas law, based on measured changes in pressure and 

temperature over the flight time. 

 The application of mass-balance approaches is also useful for satellite observations, 

which can successfully characterize upwind and downwind methane concentrations from a swath 

of pixels overpassing in the same day. Since methane has a high background, the source 

emissions rates, the satellite instrument precision, and spatial coverage specifications must be 

high to achieve optimal signal-to-noise. Since the quality of satellite observations has been 

rapidly improving in the last decade, the applications of this method have also been increasing. 

There are various methods to derive emissions estimates from satellite observations that are 

generally related to mass balance, these include fitting pixel enhancements to a Gaussian plume 

(Nassar et al., 2017), relating the pixel enhancement itself to a source rate (Jacob et al., 2016), 

and integrating the mass enhancement at all the downwind pixels (Varon et al., 2018). Jacob et 

al. (2016) shows a simple source-pixel method can be used to relate the enhancement of a pixel 

of dimension W [m]containing a source to the source rate: 

 

𝑄 =
𝑈𝑊𝑝

𝑔Ω𝑎
ΔΩ     {1.15} 

 

where Q [kg s-1] is the emissions rate, U [m s-1] is the wind speed, p is the surface pressure, g is 

the acceleration of gravity, Ω𝑎[kg m-2] is the column of dry air and ΔΩ is the mean methane pixel 

enhancement [kg m-2]. Varon et al. (2018) shows that the source-pixel method neglects 
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information from pixels downwind of the source, and that an integrated mass enhancement 

(IME) method can better use downwind information from fine-scale (50 ×50 m2) satellite pixels. 

  

𝑄 =
1

𝜏
IME =  

𝑈𝑒𝑓𝑓

𝐿
IME =  

𝑈𝑒𝑓𝑓

𝐿
∑ ΔΩ𝑗𝐴𝑗
𝑁
𝑗=1    {1.16} 

 

Here the source rate Q is related to the IME and the residence time of methane in the pixel 𝜏, 

where 1/𝜏 is the effective wind speed Ueff divided by the plume size L. The IME is the sum of N 

downwind pixels of area Aj containing the enhancement ΔΩ𝑗. This approach was able to verify 

coal mine vents in the United States, Australia, and China ranging from 2000 to 6000 kg h-1 at a 

precision of 40–45% (Varon et al., 2020). 

1.3.3 Modelling methods 

Atmospheric modelling is a valuable tool used to make predictions on chemical distributions. 

Models are based on the state-of-the-science understanding of sources, sinks, chemistry, and 

transport. Measurements are a natural complement to models since simulated concentrations can 

be validated. The validation process can be used to revise simulation inputs and improve the 

predictability of the atmosphere. Models and observations are connected in this way and develop 

in tandem with technology over time. Observations improve with novel instrument design 

resulting in upgraded precision and spatial coverage. Models improve with the availability of 

advanced computational resources and with software engineering to better capitalize on higher 

processing and memory capacity. These improvements are mutually beneficial; as the quality of 

observations improve, the quality of models can improve with better constraints from 

observations, providing an improved understanding of processes and resulting in more accurate 

predictions of the atmosphere. 

The simulation of methane in the atmosphere is relatively linear due to its long lifetime and a 

lack of feedback mechanisms with OH, resulting in a direct relationship with emissions that can 
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be constrained with observations. This contrasts with more complicated modelling of very short-

lived chemical species with complex chemistry and sinks. The model can be summarized as 

 

F(x) = Kx + b     {1.17} 

 

where F(x) is the simulated concentration of methane based on the input distribution of 

emissions x. The Jacobian matrix K describes the linear, transport-based relationship between 

the sources and the observed concentrations, and the background b is the distribution of methane 

existing in the atmosphere from the initial conditions. F(x) is often referred to as the forward 

model. Forward models can be used in more qualitative studies with comparisons to observations 

that are used to diagnose biases in the model. 

 The differences between modelled and observed methane concentrations can be used to 

derive optimized emissions according to Bayesian inference. This procedure is referred to as 

inverse modelling. Bayes’ theorem gives 

 

𝑃(𝑥|𝑦) =  
𝑃(𝑥)𝑃(𝑦|𝑥)

𝑃(𝑦)
     {1.18} 

 

Where 𝑃(𝑥) and 𝑃(𝑦) are the probability density functions (PDFs) of the prior 𝑥 and the 

observations 𝑦, 𝑃(𝑦|𝑥) is the observation PDF of 𝑦 given the true value of 𝑥, and 𝑃(𝑥|𝑦) is the 

posterior PDF of 𝑥 given 𝑦. Assuming Gaussian PDFs, the optimal estimate of emissions is the 

maximum of 𝑃(𝑥|𝑦), which is obtained by solving ∇𝑥𝑃(𝑥|𝑦) = 0. . This optimization problem 

is solved by minimizing the Bayesian cost function J (x) (Rodgers, 2000): 

 

J (x) = ½ (x – xa)
TSa

-1(x – xa) + ½ (y – F(x))TSo
-1(y – F(x))  {1.19} 
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Where x (of size n) is the vector of emissions being optimized and xa is the vector of prior 

emissions, y (of size m) is the vector of observations that is compared to the simulated 

concentrations F(x). Sa is the prior error covariance matrix which is the uncertainty in the prior 

state of emissions, and So is the observational error covariance matrix which includes both 

instrument and model error. The inverse problem can be solved using different data assimilation 

techniques (Jacob et al., 2016). The analytical solution of the cost function dJ (x)/dx = 0 yields 

the optimal posterior solution x̂: 

 

x̂ = xa + SaKT (KSaKT + So)-1 (y – Kxa)   {1.20} 

 

The analytical solution provides closed-form error characterization, such that the posterior error 

covariance Ŝ of the posterior solution x̂ is given by: 

 

Ŝ = (KTSo
–1K + Sa

–1) –1    {1.21} 

 

The averaging kernel matrix A is used to evaluate the capability of the observations to constrain 

the emissions and is given by: 

 

      A = In – ŜSa
–1     {1.22} 

 

where In is the identity matrix of length n corresponding to the number of state vector elements. 

The averaging kernel matrix A describes the sensitivity of the posterior solution x̂ to the true 

state x (A = dx̂/dx). The trace of A provides the degrees of freedom for signal (DOFS), which is 

the number of pieces of information of the state vector that is gained from the inversion (DOFS ≤ 

n). The diagonal values of A provide information on which state vector elements can be 
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constrained by observations above the noise, and higher DOFS closer to n correspond to better 

constrained sources in total. 

Inverse modelling is a powerful approach to provide constraints on emissions at the local 

(McKain et al., 2015), regional (Wecht et al., 2014), continental (Turner et al., 2015), and global 

(Maasakkers et al., 2019) scales. A useful test of the posterior emissions from the inverse model 

is to leave some observations out of the vector y, which can be used as independent validation of 

the optimized results. For example, suborbital surface and aircraft observations can be used to 

verify the results of continental inversions using GOSAT satellite data and demonstrate 

improved agreement (Turner et al., 2015). The challenges inherent to inverse modelling are 

related to the traditional assumptions of Gaussian error distributions (Maasakkers et al., 2019), 

assumptions related to the state vector being optimized (Heald et al., 2004) which include how 

transport errors are treated (Stanevich et al., 2020) and whether some sources or the OH sink is 

held constant (Rigby et al., 2017; Turner et al., 2017), and assumptions related to the structure of 

errors and correlations within the assimilated observations (Connor et al., 2016). Studies that 

evaluate these technical issues with synthetic data and controlled experiments where the prior xa 

is intentionally biased from known ‘true’ emissions x̂ (such as pre-defining xa = 0.5x̂) are known 

as observing system simulation experiments (OSSE). OSSE’s can determine which assumptions 

are optimal for retrieving these ‘true’ emissions and are highly valuable to ascertain best 

practices and observing network capabilities. 
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1.4 Scientific objectives and structure of the dissertation 

The central question of this thesis is how atmospheric observations can better inform methane 

emissions in Canada. The chapters of this thesis employ surface, aircraft and spaceborne 

measurements that probe different regions of the atmosphere. These observations are used in 

experimental and modelling approaches to constrain emissions at the local, regional, and national 

scale which include urban, rural, and industrial environments as well as emissions from both 

anthropogenic and natural sources. 

The following are key research questions in the thesis chapters: 

Chapter 2: How can aircraft in-situ measurements from an extensive field-campaign 

inform methane emissions in the Athabasca Oil Sands Region (AOSR) of Alberta using 

an experimental approach? How can measurements from a library of chemical species 

support source-attribution of these methane emissions? 

Chapter 3: How can mobile-surface in-situ measurements complement the information 

provided by full aircraft studies in the AOSR using an experimental approach? How can 

these less resource-intensive measurements support the limitations of temporal coverage 

inherent to field studies? 

Chapter 4: How can long-term measurements from in-situ surface stations and satellites 

disentangle and quantify anthropogenic and natural sources in Canada using an inverse 

modelling approach? What are the limitations of the inverse modelling approach towards 

subnational-level source attribution in Canada, and how can these limitations be 

attributed to the observations or model? 

Chapter 5: How can in-situ surface-measurements in the Greater Toronto Area (GTA) 

inform methane emissions from natural gas infrastructure and mobile combustion in an 

urban environment? 

Thesis chapters have been published (Chapter 2), are in press (Chapter 3), or in the process 

of submission (Chapter 4) in the journal Atmospheric Chemistry and Physics with the following 

references: 



24 

 

 

 

Chapter 2: Quantification of methane sources in the Athabasca Oil Sands Region of 

Alberta by aircraft mass balance 

Baray, S., Darlington, A., Gordon, M., Hayden, K. L., Leithead, A., Li, S.-M., Liu, P. S. 

K., Mittermeier, R. L., Moussa, S. G., O'Brien, J., Staebler, R., Wolde, M., Worthy, D., 

and McLaren, R.: Quantification of methane sources in the Athabasca Oil Sands Region 

of Alberta by aircraft mass balance, Atmos. Chem. Phys., 18, 7361–7378, 

https://doi.org/10.5194/acp-18-7361-2018, 2018. 

 

Chapter 3: Cold-Season methane emissions estimated in the Athabasca Oil Sands 

Region of Alberta using mobile surface measurements 

Baray, S., Hayden, K. L., Sheppard, A., Davis, Z., Strawbridge, K., Staebler, R., 

McLaren, R.: Cold-Season methane emissions estimated in the Athabasca Oil Sands 

Region of Alberta using mobile surface measurements, in prep. 

 

Chapter 4: Estimating 2010–2015 anthropogenic and natural methane emissions in 

Canada using ECCC surface and GOSAT satellite observations 

Baray, S., Jacob, D. J., Massakkers, J. D., Sheng, J.-X., Sulprizio, M. P., Jones, D. B. A., 

Bloom, A. A., and McLaren, R.: Estimating 2010–2015 Anthropogenic and Natural 

Methane Emissions in Canada using ECCC Surface and GOSAT Satellite Observations, 

Atmos. Chem. Phys. Discuss. [preprint], https://doi.org/10.5194/acp-2020-1195, in 

review, 2021. 

 

The measurements used in Chapter 2 are from the Joint Canada-Alberta Oil Sands (JOSM) 

Summer-Intensive 2013 aircraft campaign led by Environment and Climate Change Canada 

(ECCC) which are available in a public repository. The measurements in Chapter 3 are from 

follow-up Fall 2014 and Spring 2017 campaigns also led by York U and ECCC. The 
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measurements used in Chapter 4 are from publicly available datasets, these are: (1) the ECCC 

greenhouse gas monitoring program and (2) the GOSAT University of Leicester proxy XCO2 

retrievals. For these three chapters, the study design, analysis, and interpretation has been 

performed by the author for the purpose of this thesis. The studies were completed using 

observation datasets or modelling inputs constructed by other researchers; their contribution of 

data and/or scientific input is either credited by co-authorship or acknowledgements. The 

measurements and field-study design in Chapter 5 were performed by the author and Robert 

McLaren, as well as the analysis and interpretation of results. All chapters were written by the 

author with input from co-investigators.  
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Abstract 

Aircraft-based measurements of methane (CH4) and other air pollutants in the Athabasca Oil 

Sands Region (AOSR) were made during a summer intensive field campaign between August 13 

and September 7 2013, in support of the Joint Canada–Alberta Implementation Plan for Oil 

Sands Monitoring. Chemical signatures were used to identify CH4 sources from tailings ponds 

(BTEX VOC’s), open-pit surface mines (NOy and rBC) and elevated plumes from bitumen 

upgrading facilities (SO2 and NOy). Emission rates of CH4 were determined for the five primary 

surface mining facilities in the region using two mass balance methods. Emission rates from 

source categories within each facility were estimated when plumes from the sources were 

spatially separable. Tailings ponds accounted for 45% of total CH4 emissions measured from the 

major surface mining facilities in the region while emissions from operations in the open pit 

mines accounted for ~50%. The average open pit surface mining emission rates ranged from 1.2 

to 2.8 tonnes of CH4 hr-1 for different facilities in the AOSR. Amongst the 19 tailings ponds, 

Mildred Lake Settling Basin, the oldest pond in the region, was found to be responsible for the 

majority of tailings ponds emissions of CH4 (>70%). The sum of measured emission rates of 

CH4 from the five major facilities, 19.2 ± 1.1 tonnes CH4 hr-1, was similar to a single mass 

balance determination of CH4 from all major sources in the AOSR determined from a single 

flight downwind of the facilities, 23.7 ± 3.7 tonnes CH4 hr-1. The measured hourly CH4 emission 

rate from all facilities in the AOSR is 48 ± 8% higher than that extracted for 2013 from the 

Canadian Green House Gas Reporting Program, a legislated facility-reported Emissions 

Inventory, converted to hourly units. The measured emissions correspond to an emissions rate of 

0.17± 0.01 Tg CH4 yr-1, if the emissions are assumed temporally constant, an uncertain 

assumption. The emission rates reported here are relevant for the summer season. In future, 

effort should be devoted to measurements in different seasons to further our understanding of 

seasonal parameters impacting fugitive emissions of CH4 and to allow better estimates of annual 

emissions and year to year variability.  
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2.1 Introduction 

Methane (CH4) is a significant greenhouse gas (GHG), second in rank to carbon dioxide 

(CO2) in terms of its direct radiative forcing (Montzka et al., 2011;IPCC, 2013). Controlling 

emissions of CH4 is an attractive climate control strategy because of its shorter atmospheric 

lifetime ( ~ 9 years) and larger global warming potential (GWP) compared to CO2 (IPCC, 

2013). Emissions of CH4 include biogenic (animal husbandry, landfills, wetlands, agriculture), 

pyrogenic (biomass burning) and thermogenic sources (fossil fuel reservoirs). The most 

important  sink of CH4 is reaction with the hydroxyl radical (OH) in the troposphere (Vaghjiani 

and Ravishankara, 1991), which produces formaldehyde (HCHO) that is subsequently 

photolyzed or oxidized to yield CO and eventually CO2. In addition to climate implications, CH4 

also has air quality implications through its role in NOx catalysed ozone formation in the 

troposphere, especially in areas with large sources of CH4. Of recent interest are wintertime rapid 

ozone formation events (OFEs) seen in regions of intense oil and gas extraction (Pinto, 

2009;Schnell et al., 2009) that are associated with snow coverage (Edwards et al., 2013), shallow 

boundary layers (Schnell et al., 2016), high levels of ozone precursors and enhanced photolysis 

of HCHO and other carbonyls under radical limited conditions (Edwards et al., 2014).  

The growth of the atmospheric burden of CH4 increased in the post industrial revolution, 

slowed in the 1980’s and 90’s (Worthy et al., 2009), paused between 1990-2007 but has 

increased again starting in 2007, with an atmospheric growth rate of ~0.4% yr-1 from 2007-2014 

in the northern hemisphere (Hausmann et al., 2016).  Satellite observations have suggested a 

30% increase in CH4 emissions in the USA during 2002-2014 (Turner et al., 2016). The 2009-

2014 trend in CH4 mixing ratios and tropospheric columns of ethane was attributed to oil/gas 

production in the USA (Helmig et al., 2016) and recent increases in tropospheric columns of 

ethane and methane have suggested the global oil and gas sector to be partially responsible 

(Hausmann et al., 2016). Contrasting this, a recent study suggests that North American CH4 

emissions have been flat from 2000-2012 (Bruhwiler et al., 2017) and there is still ambiguity in 

the source versus sink role for the recent increase in atmospheric CH4 (Turner et al., 2017). The 

above uncertainties underline a need for better quantification of anthropogenic emissions of CH4 

to the atmosphere and motivate the current study. 
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Emission inventories can quantify the contributions of specific sources to the atmosphere. 

However, bottom-up inventories benefit from top-down measurements and validation (Fujita et 

al., 1992), due to the difficulty in identifying all possible points of emission and quantifying all 

emissions in a large complex source (e.g., a city or a facility). Top-down measurements of 

various types have long been used in the validation of emission inventories and emission models 

including comparison of surface based pollutant profiles and ratios (Fujita et al., 1992;Jiang et 

al., 1997;Fujita et al., 1995),  source-receptor methods (Scheff and Wadden, 1993;Fujita et al., 

1995;McLaren et al., 1996), aircraft based flux measurements (Mays et al., 2009), 

measurement/modelling hybrid methods (Allen et al., 2004;Shephard et al., 2015) and satellite 

measurements (McLinden et al., 2012;McLinden et al., 2014;Turner et al., 2016;Kort et al., 

2014;Jacob et al., 2016). Multiple studies have suggested underestimation of CH4 emissions 

from natural gas infrastructure (Brandt et al., 2014;Hendrick et al., 2016). Several recent aircraft 

studies using mass balance approaches have quantified CH4 emissions in oil and gas regions and 

compared these to inventory emission rates and/or leakage rates (Karion et al., 2013;Peischl et 

al., 2013;Karion et al., 2015;Peischl et al., 2015;Peischl et al., 2016;Lavoie et al., 2015). Other 

studies have used top-down satellite measurements to quantify emission of CH4 in oil and gas 

regions (Schneising et al., 2014;Kort et al., 2014). As such, top-down measurement of methane 

emissions and comparison with bottom-up inventories can make a significant contribution to our 

understanding of the sources of CH4. 

In this study we quantify total emission rates of CH4 from facilities in the Athabasca Oil 

Sands Region (AOSR) of Alberta in the summer of 2013. Alberta has large deposits of oil sands, 

an unconventional viscous mixture of bitumen, sand, silt, clay, water and trapped gases 

(Stringham, 2012). Canada has proven reserves of 1.69×1011 barrels of oil (2.7×1013 litres), third 

largest in the world, 97% of which are located in the oil sands [Orbach, 2012]. Approximately 

82% of the oil sands are located in the AOSR north of Fort McMurray with 20% located in near 

surface deposits (depth < 100m) that can be mined using open pit techniques and the remainder 

located in deeper deposits requiring underground in-situ extraction. In both cases the oil must be 

separated from sand requiring the use of hot water or steam froth treatment, and organic solvent 

diluents (naphtha or paraffin) are used to help separate water and solids and/or to decrease the 
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bitumen viscosity. For surface mining processes, once the bitumen is separated, process water 

containing unrecovered organic diluents is recycled but some is discharged in large tailings 

ponds open to the atmosphere for further remediation. Oil extraction in the AOSR is unique in 

that unlike other oil and gas regions, CH4 is not the primary economic commodity being 

extracted, but is an unintended by-product. In particular, a significant fraction of the CH4 is not 

associated with fossil fuel reserves, but is emitted from the tailings ponds (Small et al., 2015). 

The factors giving rise to the release of CH4 from these ponds are complex but include the 

organic and inorganic chemical composition of the ponds, the diversity and types of microbial 

communities, especially methanogens, as well as the age of the ponds. It is reported that it took 

20 years and 15 years for the largest ponds at Syncrude and Suncor respectively, to show 

evidence of methane bubbling from the surface (Small et al., 2015). Additional fugitive CH4 is 

associated with the gaseous component of the oil sand along with other gases (Strausz, 

2003;Johnson et al., 2016) that are released during overburden removal, open pit mining and/or 

subsequent processing. 

In the summer of 2013, an intensive ambient air measurement campaign took place in the 

AOSR with both ground and airborne components in support of the Joint Oil Sands Monitoring 

(JOSM) Plan (JOSM, 2012). The airborne measurements were conducted to address four 

objectives: i) to measure and quantify air emissions from the oil sands mining facilities, ii) to 

study the downwind physical and chemical transformation of pollutants emitted, iii) to provide 

spatio-temporal measurement of pollutants suitable for intercomparison with simultaneous 

satellite nadir overpasses in the region, and iv) to support air quality model prediction 

capabilities. In this paper, we report CH4 emissions from industrial facilities in the AOSR based 

on the airborne campaign. We applied the Top-down Emissions Rate Retrieval Algorithm 

(TERRA) mass-balance approach (Gordon et al., 2015) to determine total CH4 emissions rates 

from each of the major industrial facilities, as well as a second mass-balance approach using 

downwind flight tracks to spatially separate CH4 emissions from different sources in each 

facility. Emissions rates of CH4 are determined for the five major facilities in the region: 

Syncrude Mildred Lake (SML), Suncor Energy OSG (SUN), Canadian Natural Resources 

Limited Horizon (CNRL), Shell Albian Muskeg River and Jackpine (SAJ) and Syncrude Aurora 
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(SAU). These results are the first source-attributed emissions estimates for the facilities in the 

AOSR, obtained by identifying and characterizing plume origins according to signatures of 

chemical tracer species. 

2.2 Experimental 

2.2.1 Instrumentation 

An array of instruments for the measurement of trace gases, aerosols, meteorological and 

aircraft state parameters were installed aboard the National Research Council of Canada Convair 

580 research aircraft. Measurements of CH4, CO2, CO and H2O were made using a cavity ring-

down spectrometer (Picarro G2401-m) at an interpolated rate of approximately 0.5 Hz with a 

flow rate of ~435 sccm min-1. . The precision of the CH4 measurement was 2 ppb, and the 

uncertainty of the measurement at background (~ 1.9 ppm) was 3.3 ppb (@2 sec). The 

instrument was calibrated six times before, during and after the project using two standard 

reference gases traceable to NOAA GMD standards. . Methane mixing ratios are reported 

throughout as dry mole fractions in the paper. Necessary parameters for emissions estimation 

included Temperature (T), measured using Rosemount probe, Dewpoint temperature (Td), 

measured with an Edgetech hygrometer, and pressure (P), measured with a DigiQuartz sensor. 

The three-component wind speed (Ux, Uy, Uz) was derived from a Rosemount 858 probe, GPS 

and Honeywell HG1700 inertial measurement unit. The uncertainty of horizontal and vertical 

winds on the aircraft are 0.6 and 0.4 m/s respectively (Williams and Marcotte, 2000). Geospatial 

information (latitude, longitude, ellipsoid height altitude) was measured by GPS.  

Nitrogen oxides (NO, NO2 and NOy) were measured with a modified trace level 

chemiluminescent analyser (Thermo Scientific Model 42i-TL). A molybdenum converter (325 

°C) was used to convert NOy species to NO and an NO2 specific converter (Droplet 

Measurement Technologies) was used to convert NO2 to NO. Detection limits for NO, NO2, and 

NOy were determined to be 0.08 ppb (1 sec), 0.20 ppb (2 sec), 0.09 ppb (1 sec) respectively. 

Sulfur dioxide (SO2) was measured with a pulsed UV fluorescence analyser (Thermo Scientific: 

Model 43i-TLE) with a detection limit of 0.7 ppb (1 sec). Ambient air was drawn in through 

filtered 6.35 mm (1/4”) diameter PFA tubing taken from a rear-facing inlet located on the roof 
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toward the rear of the aircraft. Measurements of NO, NO2, NOy and SO2 were made downstream 

of a constant pressure inlet system maintained at 770 mmHg with a total flow rate of 5 Lpm. In-

flight zero and background determinations were made several times throughout each flight and 

the analysers were calibrated multiple times during the study against National Institute and 

Standards Technology (NIST) certified reference gases. 

Refractory black carbon mass (rBC), was measured with a Droplet Measurement 

Technologies (DMT) Single Particle Soot Photometer (SP2). Ambient air was subsampled from 

the main aerosol flow that was brought into the main cabin with a forward-facing shrouded 

diffuser isokinetic aerosol inlet (Cheng et al., 2017). Benzene, toluene, ethylbenzene and xylenes 

(BTEX) were measured by a Proton Transfer Reaction time-of-flight Mass Spectrometer 

(PTRMS) from the main gas inlet. Further technical details are provided elsewhere (Li et al., 

2017). The delay time of each instrument was determined experimentally and through 

calculations based on sample flow rates and inlet volumes. Total delays are contributed to by the 

response time of the instruments (1–3 sec) as well as the volume of sampling tubing. Data were 

adjusted to account for the total delay times of 2-6 sec to spatially and temporally synchronize 

the different measurements (Picarro delay time = 6 sec). The average speed of the aircraft was 90 

m s-1 during the research flights, thus providing a spatial resolution of 90-270 m based upon the 

internal response time of each measurement. 

2.2.2 Aircraft flights 

In total, there were 22 flights with 84 hours of measurements in the AOSR between August 13 

and September 7, 2013. The flights were designed for three purposes; measurement of pollutant 

emissions from facilities (Gordon et al., 2015;Li et al., 2017), measurement of pollutant 

transformation downwind of the AOSR (Liggio et al., 2016) and comparison with satellite 

overpasses (Shephard et al., 2015). Thirteen flights were dedicated to quantifying facility 

emissions with a minimum of two flights for each of the SML, SUN, CNRL, SAJ and SAU 

facilities. CH4 above background was not detected during the 2013 flights targeting the Imperial 

Kearl Lake (IKL) facility, which was not in full production mode at the time (but has since 

expanded significantly), nor from the Suncor Firebag in-situ operation. We did detect CH4 above 
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background suspected to originate from the Suncor MacKay River operation (west of SML). We 

were not able to quantify this source separately, however emissions from this source are included 

in one measurement of the total emissions from all mining facilities in the AOSR using a wide 

downwind screen (see section 2.3.4 and Fig. 2.7). Several other flights are not included in the 

analysis due to unfavourable meteorological conditions including wind shear problems or 

insufficient numbers of transects. In total, seven flights were found to be suitable for identifying 

and quantifying emissions of CH4 from the facilities. Figure 2.1 displays several of the flight 

tracks over and downwind of the target facilities north of the Fort McMurray airport. 

The flight patterns designed for the quantification of emissions rates were of two types: i) 

screen flights, wherein the aircraft flew transects perpendicular to the plume downwind of one or 

more facilities, and ii) box flights, wherein the aircraft flew transects at multiple heights around a 

single target facility in a box-type pattern (Gordon et al., 2015;Li et al., 2017). The transects 

were performed at heights from 150 to 1370 m above ground level (agl), complemented by 

vertical profiles designed to determine the height of the planetary boundary layer (PBL) and to 

compare with ground based measurements.  
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Figure 2.1: Flight tracks from flights capturing emissions from SML (Aug 14, Aug 16), SUN 

(Aug 16, Aug 29), CNRL (Aug 20, Sep 02), SAJ (Aug 21, Sep 06 not shown), and SAU (Aug 

29, Sep 06 not shown). SML and SAU are shown in blue, SUN in pink, CNRL in yellow and 

SAJ in dark orange. 

2.2.3 Mass balance approaches for determining CH4 emissions 

Following the TERRA methodology (Gordon et al., 2015), the time resolved measurements 

were interpolated using covariance kriging to produce a 40 m (horizontal, s) by 20 m (vertical, z) 

contiguous screen of CH4 mixing ratios. Within TERRA, the CH4 mixing ratios are extrapolated 

from the lowest transect (~150 m agl) to the surface using a constant, linear or half-gaussian 

extrapolation, depending on the type of source and the boundary layer conditions at the time. 
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Uncertainty estimates (see section A.1 in Supplemental) are included according to the various 

types of surface extrapolation applied. Interpolated matrices were constructed for measurements 

of air pressure (Pair) and temperature (Tair) in order to determine the air mass balance within the 

box and to convert mixing ratios to mass densities. Spatially equivalent interpolations of wind 

velocity perpendicular to aircraft motion (Uᚁ) were created from the vector components of wind 

speed and direction measurements.  

Emissions rates were determined according to the two different mass-balance approaches for 

screen and/or box flight patterns. Horizontal tracks at multiple altitudes flown perpendicular to 

the general wind direction produce a virtual screen downwind of the target that is intercepted by 

emission plumes from the facilities. Fluxes of CH4 moving through each 40 x 20 m pixel 

(corresponding to size s × z) can be determined from the interpolated matrices and integrated for 

a dimensional s by z target area according to Equation 2.1, 

 𝐸𝑆𝑐𝑟𝑒𝑒𝑛 = ∬ ([CH4] − [CH4]𝐵)  × 𝑈⊤ 𝑑𝑠 𝑑𝑧

𝑆𝑛,𝑧𝑡

𝑆1,𝑧𝑏

 {2.1} 

where ([CH4] – [CH4]B) is the enhanced mixing ratio of CH4 above background,  U⊤ is the 

horizontal wind velocity perpendicular to the screen (e.g. U×sin    = angle between wind 

vector and airplane vector), s1 and sn are the horizontal integration limits along the screen 

transect, zb and zt are the bottom and top vertical integration limits. Background mixing ratios 

of CH4 were determined from the outside edges of the screens away from plume sources. 

Because [CH4]B varies with height, a vertically variant background profile was subtracted from 

each vertical measurement column, an approach used in other mass balance determinations 

(Cambaliza et al., 2014;Karion et al., 2013). Example vertical profiles of [CH4]B (z) for each day 

are included in Figure A.1 (Supplemental Information). The simple mass balance approach 

represented by Eq.2.1 can be applied to individual downwind screens from other flight paths (i.e. 

box flights) to determine CH4 emissions from specific sources within a facility. 
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The second mass balance method used in this paper is to apply the full box-model TERRA 

algorithm (Gordon et al., 2015), to compute total emissions from all sources within a box, where 

the box is made up of multiple (4-6) screens forming a polygon encompassing a facility. This 

more rigorous mass balance approach used for calculating total emissions from a facility is 

represented by Equation 2.2 

 𝐸𝐵𝑜𝑥 = 𝐸𝐶𝐻 + 𝐸𝐶𝐻𝑇 + 𝐸𝐶𝑉 + 𝐸𝐶𝑉𝑇 + 𝐸𝐶𝑀 {2.2} 

where EBox, the total emissions rate from all sources within a box, is the sum of the horizontal 

advective and turbulent fluxes (ECH and ECHT), vertical advective and turbulent fluxes (ECV and 

ECVT), and the change in CH4 mass within the box volume (ECM). Because the box includes 

screens that are downwind, upwind and lateral to sources, incoming (background) and outgoing 

(background + source) fluxes are determined as a part of the horizontal flux terms (ECH and 

ECHT). Vertical fluxes through the box top, normally ignored in the conventional mass balance 

approaches (Eq. 2.1), are estimated according to the conservation of air mass within the box 

volume and the mixing ratio at the top edge of the box. ECM is estimated according to the time 

derivative of the ideal gas law, based on measured changes in pressure and temperature over the 

flight time (see Gordon et al., 2015 for a full discussion). 

The advantage of the box approach (Eq. 2.2) over the screen approach is a more precise 

estimate of total emissions by accounting for incoming and outgoing fluxes and meteorological 

effects within a volume. However, this flight pattern takes more time to completely surround a 

target facility. The advantage of the screen approach (Eq. 2.1) is the computation of CH4 fluxes 

per pixel, which can thus be used to spatially integrate individual emission plumes of arbitrary 

shapes when the sources can be spatially resolved. Studies applying aircraft mass-balance 

methods have used each of single-height transect (Karion et al., 2013;Peischl et al., 2016), single 

screens (Cambaliza et al., 2014;Walter et al., 2012), spiral (Wratt et al., 2001;Gatti et al., 2014), 

and full box flight paths (Gordon et al., 2015) for the purpose of determining emissions rates and 

characterizing meteorological conditions. The aircraft flights presented contained various 

segments of tracks that allowed applications of all the above methods. In this work we apply a 

systematic approach deriving information from each of these techniques for a comprehensive 
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top-down characterization of CH4 sources and emissions in the region. Single-height transects 

are used to determine source chemical signatures by identifying CH4 enhancements and their 

associations with other trace-gas species. Vertical profiles are used to determine the PBL height 

throughout flights. Single screens are used to determine CH4 emissions rates (Eq. 2.1) for 

facilities and their individual sources when plumes are spatially resolved. Box flights are used to 

determine total CH4 emissions from facilities at a lower uncertainty (Eq. 2.2) and source-specific 

emissions are determined where possible (Eq. 2.1).  

The summertime emission rates measured in this study are reported in units of metric tonnes 

CH4 per hour, an appropriate unit given the duration of the flights (i.e., a few hours). We do not 

attempt to derive annual emissions as the assumptions needed to do so are highly uncertain 

without measurements in other seasons for a volatile species such as CH4. However, we do make 

a first order comparison to emission inventories and other studies that report emissions on an 

annual basis by downscaling the annual emissions to hourly emission rates using an assumption 

of a constant temporal factor throughout the entire year. This is appropriate for emission 

inventories that are based upon measurement of emissions or emission factors in summer, that 

then upscale their emission rates of CH4 to annual emissions using a constant temporal factor 

assumption (e.g., GOA, 2014). However, the assumption of a constant temporal factor is far from 

being validated and further measurements in different months are needed to understand the 

potential for seasonal variability of fugitive emissions of CH4. 

Previous work shows the box approach has a demonstrated uncertainty of 25-27% for total 

emissions of CH4 from a facility in the AOSR (Gordon et al., 2015). Uncertainty due to 

extrapolation of CH4 mixing ratios from the lowest height measurements to the surface was 

estimated to be 15% and 26% in that study. In contrast, screen approaches used in other studies 

have estimated uncertainty in the range of 30-50% (Cambaliza et al., 2014) with the main 

sources of error attributed to the reliability of plume characterization and the stability of 

meteorological conditions. In this study, uncertainties in both the box and screen estimates are 

reduced through i) a high number of transects over a wide vertical range to accurately 

characterize vertical structure in the PBL, ii) reliable measurements of background CH4 (or 

incoming fluxes for boxes), iii) measurements of the PBL height to account for meteorological 
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variance, and iv) measurements within time periods of minimal PBL change. In addition, the 

enhancement of CH4 in the plumes downwind of the facilities and high precision of the Picarro 

instrument minimize uncertainties in plume characterization and background CH4. The overall 

uncertainty for computed CH4 emission rates for an individual determination was estimated to be 

less than 30% (see Supplemental for a complete evaluation and discussion of uncertainties). 

2.3 Results and discussion 

2.3.1 Identification of sources of CH4  

Two example flights from three different facilities (SML, SUN and CNRL) are presented to 

demonstrate CH4 emissions in the AOSR are mainly from three source types: open pit mining, 

tailings ponds, and facility activities. Emissions from the remaining two facilities (SAJ and 

SAU) were shown to be primarily open pit mining. Source categories were identified by 

measurements of CH4, NOy, BTEX, and rBC. Figure 2.2 shows measurements from one low-

level transect of a screen flight on Aug 16, 2013 (9 transects in total). This transect was flown at 

a height of approximately 150 m agl downwind of the SML and SUN facilities, showing clear 

separation of emission sources from the two facilities. Four distinct plumes are visible, labelled 

A-D, with linear air parcel back-trajectories indicated in red arrows. Back trajectories were 

determined using the wind speeds and wind directions measured on the aircraft at flight level 

from the positions of maximum CH4, back extrapolated as a general indicator of plume origin. 

This methodology creates a western bias in our plume origins. A more careful analysis of surface 

winds at several meteorological stations in the local vicinity at the time of the aircraft transect 

shows that surface wind directions were from ~ 140-180o (SE) compared to the flight level 

winds, ~220o (SW). The low level surface winds are likely channelled by the river valley, which 

runs in a SE to NW direction. Thus the trajectories of air masses originating at the surface and 

mixing upwards have a clockwise rotation, a very local effect, placing the actual plume sources 

further east than the linear tracks show in Figure 2.2. Plume A shows a maximum mixing ratio of 

2.68 ppm CH4, an enhancement of ~ 0.58 ppm above a background of ~2.1 ppm on this day in 

this region. This enhanced CH4 is associated with values of 2.3 g/m3 rBC and 47 ppb NOy. The 

simple linear wind back-trajectory places the origin of the air mass near the western edge of open 
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pit surface mining activity ~100-min earlier, although as mentioned the actual source is likely 

slightly east of that location due to the clockwise rotation of the plumes. The combination of rBC 

and NOy is indicative of exhaust of heavy hauler diesel trucks that operate in open pit mines. 

However, significant CH4 emissions are not expected from the truck exhaust, as emissions 

factors of CH4 from off-road gasoline and diesel combustion indicate that the CH4/CO2 emission 

ratio would be 1 to 2 orders of magnitude lower (Environment Canada, 2015) than the 

CH4/CO2 observed in this plume (0.58 ppm CH4 / 16.1 ppm CO2). Disturbance of the oil 

sands at the mine faces by the trucks is a well-known source of CH4 with minor emissions of 

CO2 and other VOC’s (Strausz, 2003) as well as intermediate volatility organic compounds 

(Tokarek, 2017). Thus, Plume A is interpreted to be a combination of heavy truck exhaust, 

indicated by the presence of rBC and NOy, that spatially overlaps with the mine face source of 

CH4. Plume D shows a similar chemical profile with a maximum CH4 of 2.40 ppm, ~ 0.30 ppm 

above background, associated with elevated levels of NOy (40ppb) and rBC (1.5 g/m3). The 

back-trajectory for Plume D is in agreement with an origin at one of two locations of open pit 

mining activity at SUN. The two plumes show a similar NOy/rBC ratio within the range of 

15-30 ppb per ug/m3. We consistently measure this profile of NOy and rBC enhancements from 

active mines across all five facilities. 
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Figure 2.2: Top: Aircraft measurements of CH4 (red), BTEX (blue) and rBC (black) from a 

single transect at 150 m agl downwind of SML and SUN on Aug 16. Four plumes are labelled A 

(SML Mine), B (SML Tailings), C (SUN Tailings), D (SUN Mine). Bottom: CH4 mixing ratios 

along the 150 m agl transect for the above time series. Each data point is color coded for CH4 

mixing ratio as well as instantaneous wind vector measured on the aircraft at that location. Red 

arrows indicate air parcel back-trajectories based on linear back extrapolation of the aircraft 

measured wind vectors at plume centres, with end points at 100 min (A), and 20 min (B-D). 
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Plume B (Fig. 2.2) shows the highest CH4 mixing ratio at 4.19 ppm, an enhancement of ~2.09 

ppm above background. The back-trajectory from the position of the maximum CH4 places the 

air mass over the western edge of Mildred Lake Settling Basin (MLSB) tailings pond ~ 20 

minutes earlier. The CH4 enhancement occurs simultaneously with a decrease in NOy and rBC 

and an enhancement of total BTEX from ~0 ppb to a maximum of 7.6 ppb. Tailings ponds are 

known to contain significant quantities of BTEX compounds due to waste streams of mature fine 

tailings containing naphtha diluent flowing into the pond (Small et al., 2015). This is similar to 

the chemical profile observed in Plume C, with a back-trajectory placing the air mass over one of 

several possible SUN facility tailings ponds shown in Figure 2.2 (Ponds 6, Pond 5 and Pond 2/3 

in figure Small et al, 2015). This indicates the presence of CH4 emissions from multiple tailings 

ponds. Anaerobic digestion of organic matter  in the tailings pond is the primary mechanism for 

the production of this biogenic CH4 (Siddique et al., 2012). For Plume C the measured mixing 

ratio enhancements are 0.25 ppm CH4 and 2.3 ppb of BTEX. The lower CH4 enhancement 

compared to Plume B suggests less CH4 is emitted from this pond, in agreement with Small et al 

(2015). The peak-to-peak CH4/BTEX ratios from Plume B and Plume C are ~300 ppb ppb-1, and 

~100 ppb ppb-1 respectively. The difference in measured inter-facility CH4/BTEX ratios could 

arise from a number of factors including different pond ages, history, depth, methanogenic 

behaviour, or use of different diluents in each facility. The in-plume correlations of CH4 with the 

associated tracers (NOy, rBC and BTEX) for each of the Plumes identified in Figure 2.2 are 

shown in Figure A.2 (Supplemental Information).  

Our observations are qualitatively consistent with pond-specific industry reported CH4 

emission factors, which present SML and SUN Ponds 2/3 (Small et al., 2015) as the highest CH4 

emitting tailings ponds in the region. We consistently measured relative enhancements from 

plumes downwind of SML and SUN according to the pattern of Plumes B and C in Figure 2.2, 

demonstrating the feasibility of using BTEX compounds as tracers for CH4 being emitted from 

tailings ponds. We expect that BTEX would be greatly reduced from the tailings ponds of those 

facilities using paraffinic froth treatment (e.g., SAJ) instead of naphtha. In such cases, light 

hydrocarbons could in principle be used as tracers for the tailings ponds emissions of CH4. 

However, we did not detect methane plumes above detection limit that were distinct from the 
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open pit mining plumes of CH4 associated with rBC and NOx for any facilities other than SML 

and SUN.  

Elevated plumes from facility stacks are the primary sources of SO2 in the AOSR due to the 

bitumen upgrading process. Hence, a significant enhancement of SO2 can be used as a tracer for 

plant or stack CH4 sources. However, this is not measured at the height shown in Figure 2.2, 

which shows a maximum SO2 of only 5 ppb for this transect between Plumes C and D at 150 m 

agl. For the same flight (Figure 2.2), maximum SO2 was 131 ppb for a transect ~350 m above 

ground, with an associated narrow peak of CH4 with maximum mixing ratio of 2.11 ppm. While 

higher-altitude SO2 plumes were frequently measured downwind of various facilities over the 

course of the aircraft campaign, in most cases no significant CH4 enhancements were observed in 

these plumes. A similar case is discussed in Section 2.3.2 where we show the full range of 

vertical measurements and a lack of enhanced CH4 in the SO2 plume. Ground-level CH4 from 

tailings ponds and open pit mine faces therefore dominate the CH4 emissions in the region, with 

minor contributions from industrial plants. 

We next compare the profiles from SML and SUN to a third facility, CNRL Horizon. Figure 

2.3 shows a similar transect at ~150 m agl from the Sep 02 flight in the vicinity of CNRL. The 

bottom panel of Figure 2.3 shows that there was considerable wind divergence at this time (see 

back trajectory arrows for A, B, C). This wind divergence was also present in the next pass of the 

aircraft on the south side of CNRL at a height of 300m (not shown). While this divergence aids 

in the visualization of source separation, they invoke uncertainty in the mass balance 

determinations. The emission rates on Sep 02 were determined using ten transects from a flight 

much earlier in time than that shown in Fig 2.3., when the winds were more consistent in 

direction (NNW). 

 



49 

 

 

 

Figure 2.3: Top: Aircraft measurements of CH4 (red), BTEX (blue) and rBC (black) from single 

transect ~150 m agl downwind of CNRL. Plume A (CNRL Tailings Pond), Plume B (CNRL 

Mine) Plume C CNRL Facility. Bottom: CH4 mixing ratios along 150 m agl transect for above 

time series. Each data point is color coded for CH4 mixing ratio as well as instantaneous wind 

vector measured on the aircraft at that location. Red arrows show back-trajectories based on 

linear extrapolation of measured wind speed and direction. 

 



50 

 

 

While Plume A shows a small enhancement of ~1 ppb BTEX downwind of the tailings pond, 

in contrast to SML and SUN no significant CH4 was associated with it. This is consistent with 

the pond-specific emission factors presented in Small et al. (2015) that do not list the CNRL 

tailings pond as a significant source of CH4. The primary Plume B included a CH4 mixing ratio 

up to 2.24 ppm (enhancement of ~0.34 ppm above background) associated with 12 ppb NOy and 

0.7 ug/m3 rBC downwind of the CNRL mine. Consistent with the previously described open pit 

profile and the back trajectory, we identify Plume B as an open pit mining source of CH4. A 

secondary Plume C was measured with maximum CH4 of 2.02 ppm (enhancement of ~0.12 ppm) 

east of the open pit mine. The lack of associated species does not relate the origin of Plume C to 

either a tailings pond nor an open pit mine source of CH4. The plume is downwind of the main 

CNRL plant and closer in horizontal proximity to SO2 plumes measured during higher altitude 

transects. This suggests a CH4 source near the main plant that could originate from venting or 

flaring activity, electricity cogeneration using natural gas or natural gas leakage. Thus the 

primary source of CH4 from the CNRL facility is open pit surface mining activity with a 

secondary undetermined source from the main plant.  

Source profiles of CH4 are further compared to measurements of ethane (C2H6). Source-

attribution studies for CH4 commonly use higher ethane-to-methane ratios (EMRs) as a signature 

for oil and gas emissions, on both a regional (Peischl et al., 2016) and global (Hausmann et al., 

2016) scale, while low EMR ratios can be indicative of microbial sources of methane that do not 

emit ethane (agriculture, landfills, wetlands, etc.) (Smith et al., 2015). C2H6, along with other 

VOC’s, was measured from 20-second grab samples collected in 3-L Summa canisters. The 

VOC’s were analysed offline using GC-MS and GC-FID methods described elsewhere [Li et al., 

2017]. Table 2.1 shows C2H6 measurements from three different flights (Aug 14, Aug 16 and 

Sep 02) when canister sampling overlapped with the plume descriptions listed previously. In all 

cases shown, enhancements of C2H6 above background (0.8 – 1.5ppb) were in the range of only 

1-2 ppb, normally the highest enhancements for each flight (within 1 ppb of 95th percentile). The 

small emissions rates of ethane (EMRs <1.4% ) across flights contrasts with the high EMRs (i.e. 

40-50%) seen for conventional oil and gas fields in other regions of North America (Peischl et 

al., 2016;Smith et al., 2015) and is lower than all the possible EMR source scenarios tested in 
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Hausmann et al. (2016). The problems associated with determining EMR ratios from a 

combination of continuous CH4 measurements and discrete canister sampling of ethane from 

aircraft have been highlighted recently, where it was shown that actual EMR ratios determined in 

this way can be off by up to a factor of two (Smith et al., 2015). Thus the limited EMR data 

shown in the Table 2.1 are not intended to be a comprehensive measure of EMR in the AOSR 

but simply to support the conclusion that the major sources of methane from the facilities in the 

AOSR are microbial in nature without a significant co-emission of ethane. The low EMRs are 

consistent with previous measurements in the region (Simpson et al., 2010) and are an indication 

of the unique character of unconventional bitumen sources. As such, global estimates of the 

relative contributions of oil and gas emissions to decadal increases in atmospheric CH4 that are 

based on C2H6 and CH4 measurements in the free troposphere (Hausmann et al., 2016) would not 

capture AOSR emissions due to the low C2H6 emissions in this region. 

 

Table 2.1: Enhancements of ∆C2H6 from canister measurements overlapping with CH4 plumes 

across three flights (Aug 14, Aug 16 and Sep 02). Mean enhanced ∆CH4 is shown over the 

course of ~20s canister sampling times with ethane-to-methane ratios (EMRs) computed. 

Scenario ∆C2H6 (ppb) ∆CH4 (ppb) EMR (%) 

SML Ponds (Aug 14) 3.2 814 0.40 

SML Mines (Aug 14) 2.6 365 0.72 

SUN Ponds (Aug 16) 1.2 215 0.56 

SUN Mines (Aug 16) 1.1 185 0.59 

CNRL (Sep 02) 1.9 137 1.39 

 

2.3.2 Quantification of CH4 emission rates from sources 

The source chemical profiles in section 2.3.1 can be used in combination with the screen 

mass-balance method (Eq. 2.1) to isolate and quantify categories of AOSR emissions. As an 

example, we show the Aug 14 flight surrounding the SML facility, which consisted of a box and 

screen path flown in rapid succession. Figure 2.4 shows an image of the interpolated aircraft 
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measurements from the box path creating a contiguous mesh superimposed on a map of the 

region. Winds were from the south at 186 ± 48 degrees over the course of the day. Three distinct 

ground-based plumes of CH4 are visible, a primary plume (Plume N) on the northern screen 

(~6500 m wide) exiting the box, a secondary plume (Plume NW) at the northwest corner (~7000 

m wide) exiting the box and a smaller plume (Plume E) on the eastern screen (~3000 m in width) 

entering the box from outside the SML facility boundary. The lowest aircraft transect was at a 

height of ~150 m agl, with maximum CH4 mixing ratios of 3.00 ppm, 2.60 ppm and 2.63 ppm 

respectively for the three plumes. Mixing ratios of CH4 below 150 m agl, are based on a linear 

extrapolation of interpolated pixels to the surface, corresponding to maximum surface mixing 

ratios of 3.48, 3.17 and 3.06 ppm for the primary (N), secondary (NW) and tertiary (E) plumes 

respectively. Extrapolation to the surface is the primary source of uncertainty for surface sources 

in this method, however the uncertainty can vary between flights depending on the 

meteorological conditions (Gordon et al., 2015). As a part of our uncertainty analysis in the 

Supplemental material, we have included an uncertainty associated with the differences in 

emission rates that arise from the use of linear, constant and half-Gaussian extrapolations in the 

calculations. 
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Figure 2.4: Interpolated CH4 mixing ratios for the Aug 14 box flight surrounding SML. 

 

Unwrapped curtain plots of CH4, BTEX, NOy, rBC and SO2 from the Aug 14 box flight (Fig 

2.4) are shown individually in Figure 2.5, projecting the 3-D virtual box onto a 2-D grid. The 

same three plumes from Fig 2.4 are highlighted by dotted boxes in red (N screen), yellow (NW 

corner), and black (E screen). The red and yellow boxes show sources originating from within 

the SML facility and the black boxes show a source originating outside of the SML boundaries 

and entering the box from the east. The largest SML CH4 plume is associated with > 10 ppb 

BTEX and the absence of rBC and SO2, with some NOy (~20 ppb). This is consistent with the 

chemical signature associated with tailings pond emissions discussed previously. The NW plume 

is associated with >60 ppb of NOy and up to 5 g/m3 of rBC, with minimal BTEX and SO2, 

consistent with the expected chemical signature from open pit surface mining. The smaller plume 

on the E screen is associated with elevated BTEX and CH4 and is likely a plume from one of the 

SUN tailings ponds as the winds indicate the plume is entering the box. The elevated plume in 

Fig 2.5 (orange circles) with ~100 ppb SO2 and ~30 ppb of NOy is traced to the SML upgrader 
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activities, but with no enhancement of CH4 above background on this day. A second NOy plume 

is visible at the north-eastern corner of the box, not associated with any of the identified CH4 

source types. This NOy plume likely originates from traffic on the main highway that passes 

between the SML and SUN facilities and/or trucks and other vehicles operating in and around 

the main SML facility. 

 

 

Figure 2.5: Curtain plots showing interpolated CH4, BTEX, NOy, rBC and SO2 mixing ratios for 

the Aug 14 box flight around SML. Red-dashed box indicates the primary plume on the North 

screen, yellow-dashed box indicates the secondary plume on the West screen, and black-dashed 

box indicates the tertiary incoming plume on the East screen. Orange dashed-circle shows the 

upgrader plume on the North screen. 

Boundaries of the plumes from separate sources are estimated using the tracer species listed in 

Fig. 2.5 by evaluating where the chemical signatures reached background levels. However, the 

SML tailings pond and open pit mine plumes were not completely resolved from one another, 

overlapping within a range of ~800 m. The uncertainties in the emission rates due to plume 

overlap were estimated by contracting and expanding the horizontal integration boundaries (s) by 

800 m on each side (a total of ±1600 m) as part of the sensitivity analysis. A vertically varying 
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background profile ([CH4]B(z)) is determined using data from the upwind southern screen, as 

mentioned previously. Using a spatially identical screen of perpendicular wind Uᚁ(z), the fluxes 

are determined through each pixel and the total source emission is calculated by integrating the 

pixels within the plume boundaries (Eq. 2.1). CH4 emission rates are computed to be 6.4 ± 1.2 

metric tonnes per hour (tonnes hr-1) for the SML main tailings pond and 2.7 ± 0.6 tonnes hr-1 for 

the SML open pit mine source. It is possible that the CH4 plume from the SML tailings pond 

includes CH4 emissions from the main SML plant facility (flaring, venting, natural gas leakage, 

etc.) that cannot be spatially separated from one another due to their proximity, however we 

anticipate the magnitude of these emissions are minor and captured within the error intervals 

listed. 

This screen-based mass-balance approach for determining specific source emission rates (Eq. 

2.1) is applied to flights with appropriate conditions for plume separation. Mean emissions rates 

of CH4 from specific sources within the facilities SML, SUN, CNRL, SAU and SAJ are shown 

in Figure 2.6. SML emissions rates are the average of three mass-balance flights over two days 

(two on Aug 14 and one on Aug 16). Two flights on separate days were used for each of the 

SUN (Aug 16 and Aug 29), SAJ (Aug 21 and Sep 06) and SAU (Aug 29, Sep 06) facilities. One 

CNRL flight (Sep 02) had northerly wind conditions showing separation of sources on a southern 

screen. No significant daily variability is observed as the emissions rates for the same source 

agree within error. Duplicate and triplicate estimates for the same source are combined using an 

error-weighted uncertainty (Supplemental). SML and SUN had significant open-pit mining 

emissions of CH4, 2.8 ± 0.4 tonnes hr-1 and 1.8 ± 0.2 tonnes hr-1 respectively, and were the only 

facilities with tailings ponds emissions above detection limit, 6.4 ± 0.8 tonnes hr-1 and 2.4 ± 0.3 

tonnes hr-1. CNRL had open-pit mining emissions (2.6 ± 0.7 t/hr) and significant emissions 

originating from the main plant facility (1.0 ± 0.3 t/hr). Plumes of CH4 from SAJ and SAU were 

only attributed to open-pit emissions, 1.2 ± 0.2 t/hr and 1.4 ± 0.2 t/hr respectively.  
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Figure 2.6: Source-apportioned emissions rates of CH4 determined by the screen mass-balance 

method (Eq. 2.1) for the SML, SUN, CNRL, SAJ and SAU facilities. Emissions rates are the 

average of three mass-balance flights for SML over two days, two flights each for SUN, SAJ and 

SAU on separate days, and one flight for CNRL. 

The plume-targeting screen mass balance method described here is unable to resolve 

emissions of CH4 from multiple sources not characterized by the chemical profiles described in 

Section 2.3.1 if they cannot also be spatially separated. Because spatial s and z constraints are 

manually chosen by plume boundaries from chemical profiles, minor emissions may contribute 

to overestimation of the emissions from an individual source when highly coincidental in space 

such that the sources are not separable. For example, the emissions from the main plant were 

identifiable in the case of CNRL due to the separation and orientation of the plant, the open pit 
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and the tailings ponds with respect to the winds. This was not the case for the other major 

facilities in the AOSR where many of the sources were highly coincident in space. It is possible, 

and even likely, that other major facilities in this study also have CH4 emissions from their main 

plants (venting, cogeneration, natural gas leakage, etc.) that are identified as tailings pond 

emissions or open pit emissions due to close proximity and our inability to deconvolute the 

sources spatially or chemically. However, we expect that the total emission rates of CH4 from 

each facility are still accurate.  

Emissions rates from each flight and individual sources (where possible) using the screen 

mass balance method are tabulated in the supplemental (Tables A.1-A.5). We did not measure a 

detectable tailings pond source of CH4 from CNRL, SAJ and SAU. Associated enhancements of 

rBC and NOy with CH4 suggest that the CH4 source from SAJ and SAU is also predominantly 

open pit mining. The results using the screen mass balance approach (Eq. 2.1) are further verified 

in Section 2.3.3 using emissions rates for each facility determined from the box approach (Eq. 

2.2).  

3.2.1 Comparison to Fugitive Emissions Literature 

Average open pit surface mining emissions from the five facilities are within a range of 1.2-

2.8 tonnes hr-1 (Fig 2.6 and Table A.1-A.5). This shows some consistency in the nature of CH4 

release from open pit mining activity in the region, with differences that may possibly be 

attributed to the size of the surface disturbance taking place and the intensity of the mining 

activity. Methane emissions from open pit mines were recently estimated using a bottom-up 

emissions factor approach by analysing the gaseous composition in the overburden and oil sand 

component of drill core samples (Johnson et al., 2016). Emissions factors of CH4 were then 

scaled up according to the total mass of material mined or the total bitumen produced. For 2013, 

Johnson et al. estimate total fugitive mining emissions in the region to be 21.4-46.0 ktonnes of 

CH4 using total mined material, and 33.1-85.0 ktonnes of CH4 using total mined bitumen. Our 

top-down approach estimates total fugitive emissions from open pit mining to be 9.7 ± 0.9 tonnes 

hr-1, corresponding to 84.9 ± 7.9 ktonnes yr-1 CH4 if constant temporal emissions are assumed. 

Agreement with the upper estimates in Johnson (2016), despite the uncertainty associated with 

extrapolation to annual emissions, suggests that their bottom-up emissions factors from gases in 
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core samples may reliably predict real-world emissions provided there is accurate 

characterization of CH4 in the core samples over the entire disturbed area. This is reasonable 

considering that it would be expected that degassing of an extremely volatile gas such as CH4 

from the oil sands material would be quantitative in a short period of time after the ore is 

exposed or crushed. 

From our 2013 measurements, only two facilities, SML and SUN, had significant emissions 

of CH4 from tailings ponds. Tailings ponds emissions accounted for ~70% and ~58% of total 

CH4 from SML and SUN respectively. This accounted for ~45% of total emissions in the AOSR. 

Recently, bottom-up area-weighted emissions factors of CH4 from 19 major tailings ponds in the 

AOSR were provided for the year 2012 (Small et al., 2015). The top three emitting ponds 

reported were ‘Mildred Lake Settling Basin’ (MLSB) and the ‘West In-Pit’ (WIP) pond within 

SML, and ‘Pond 2/3’ (P23) within SUN. These tailings ponds account for >96% of tailings 

ponds CH4 in the region according to that study. This is qualitatively consistent with our 

measurements of CH4 mainly from SML and SUN. Our method requires CH4 plumes to be 

clearly enhanced above background, so trace amounts of CH4 from ponds in the other three 

facilities were not detected. This could be related to differences in the chemical composition of 

the process streams being released into these ponds, or it could simply be due to these ponds 

being younger in age, with insufficient time for the anaerobic methanogenic communities to be 

established (Small et al., 2015). We are unable to differentiate emissions from ponds within the 

same facility due to overlapping chemical profiles from ponds within close proximity. However, 

using the ratios of relative pond emissions rates within the same facility presented in Small et al. 

(2015), (i.e. MLSB contributes 92% to SML emissions, Ponds 2/3 contribute 85% to SUN), we 

can infer individual pond emissions from our measurements assuming the relative contributions 

are accurate. The resulting emissions rates are 5.8 ± 0.8 tonnes hr-1 for MLSB and 2.0 ± 0.3 for 

Ponds 2/3. This ranks the MLSB tailings pond as the highest area source of CH4 in the AOSR, 

followed by the open-pit mines in SML and CNRL, and fourth Ponds 2/3 in SUN. Total CH4 

from tailings ponds in Small et al. (2015) are estimated to be 30.3 ktonnes of CH4 per year, with 

29.7 ktonnes of CH4 from the SML and SUN facilities (~98%). Our total CH4 emission rate 

determined for tailings ponds is 8.8 ± 0.9 tonnes hr1, which corresponds to 77.1 ± 7.9 ktonnes yr-
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1 if a constant temporal factor is assumed. This is 2.3-2.9 times larger than the emissions inferred 

from the data in Small et al (2015), despite the uncertainty of extrapolation to an annual 

emissions rate. Our measurements suggest more work is needed to reconcile top-down and 

bottom-up CH4 emissions.  

2.3.3 Emission rates of CH4 from AOSR facilities 

Total emissions rates of CH4 from each facility determined using the box mass balance 

method (TERRA) are tabulated in the supplemental (Tables A.1-A.5) along with the 

determinations using the screen approach. Where multiple screen estimates or multiple box 

estimates were available, uncertainty weighted (1/2) averages were determined for each method 

for each facility and are summarized in Table 2.2. While the box method is in some cases based 

on the same downwind measurements as the screen approach, the two methods have several key 

differences (described in 2.3) and are treated as independent estimates. In particular, the box 

method does not resolve specifically targeted, individual plumes and instead determines the net 

outgoing flux from the closed volume surrounding the facility. Thus, consistency between the 

two estimates is evidence that the primary sources of CH4 from facilities in the AOSR are 

tailings ponds, open pit mines and facility emissions captured by the source characterization in 

sections 2.3.1 and 2.3.2. In general, the total emissions from each facility using the screen and 

box methods are in agreement within uncertainty, which adds confidence to the measured 

emission rates reported here. In the final row of Table 2.2, we calculate a weighted average 

emission rate for each facility using all screen and box measurements. The CH4 emission rates 

from the facilities are 8.6 ± 0.9, 4.2 ± 0.4, 3.6 ± 0.5, 1.3 ± 0.2, and 1.5 ± 0.2 tonnes CH4 hr-1 from 

the SML, SUN, CNRL, SAJ and SAU facilities, respectively.  

3.4 Total emissions of CH4 from the AOSR 

The total CH4 emissions from the five mining facilities in the AOSR, obtained by summing 

the best estimates (i.e., uncertainty weighted average of multiple measurements, bottom row, 

Table 2.2) of the individual facility emission rates is given in the final row and column of Table 

2.2. The 5-facility total emission rate of CH4 is 19.2 ± 1.1 tonnes CH4 hr-1. A final independent 

estimate of total AOSR emissions was obtained from a flight on Aug 16, utilizing an independent 
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transect screen ~75 km wide (Aug 16 Screen B) downwind of all major mining facilities in the 

AOSR (excluding Imperial Kearl Lake and Suncor Firebag operations; but also inclusive of any 

emissions from Suncor MacKay River in-situ facility). The details of this flight are given in 

Supplemental Table A.6. The interpolated screen from the Aug 16 flight (Total OS) is shown in 

Figure 2.7. The screen was constructed from 10 aircraft horizontal transects from 250-900 m agl. 

Enhancements of CH4 were measured over a wide horizontal subrange of ~60 km of the entire 

~75 km screen. Winds were perpendicular to the plane from the southwest (225°), showing a 

large flux of CH4 through the screen from upwind sources. The highest measured mixing ratios 

of CH4 were 2.67 ppm at the ~250 m (agl) transect. Background CH4 in the region was ~2.00 

ppm taken as a vertical profile from the wings of the screen. Using the screen method (Eq. 2.1), 

the emissions rate was determined to be 23.0 ± 3.7 tonnes CH4 hr-1, which represents the 

emissions from all major facilities within the AOSR domain. This AOSR total is only slightly 

larger than the previous 5-facility total emission rate of 19.2 ± 1.1 tonnes hr-1, but not statistically 

so, demonstrating the reproducibility of our measured estimates. It is entirely possible that there 

are other minor sources of CH4 included in this larger number from smaller industrial operators 

in the region, trucks and vehicles on the main highway, and wetland emissions. In fact, the 

Canadian GHGRP inventory (see section 2.3.5) indicates that there is an additional 0.13 tonnes 

CH4 hr-1 emitted upwind and 0.17 tonnes CH4 hr-1 emitted downwind of the aircraft screen (Fig 

2.7) from minor industrial facilities within the AOSR (both numbers downscaled from the 

facility reported annual emissions). The amount of CH4 emitted from vehicles on the highway 

though is expected to be smaller. The fact that the two numbers are not statistically different 

supports the determination that the majority of the CH4 in the AOSR is emitted from the 5 major 

industrial facilities in the region. The two values are combined here using an error-weighted 

uncertainty resulting in a final AOSR facility emissions estimate of 19.6 ± 1.1 tonnes CH4 hr-1, 

measured during a summertime period. 
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Table 2.2: Comparison of emissions rates (in tonnes CH4 hr-1) determined from the screen 

approach (n estimates per facility), the box-approach (n estimates per facility), and the 

uncertainty weighted average for each method and facility. The 5-facility AOSR total is show in 

the final column and row. 

Method SML (n) SUN (n) CNRL (n) SAJ (n) SAU (n) Total 

AOSR 

Screen 9.1±0.9 (3) 4.2±0.4 (2) 3.6±0.8 (2) 1.2±0.2 (2) 1.4±0.2 (2)  

Box 7.7±1.5 (1) 3.9±0.9 (1) 3.6±0.6 (2) 1.4±0.2 (2) 1.7±0.3 (1)  

Average 8.6±0.9 (4) 4.2±0.4 (3) 3.6±0.5 (4) 1.3±0.2 (4) 1.5±0.2 (3) 19.2 ± 1.1 

 

 

Figure 2.7: Map image showing interpolated CH4 mixing ratios for the Aug 16 Total Oil Sands 

screen. 
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2.3.4 Comparison to emission inventories 

Emissions of anthropogenic greenhouse gases are estimated by ECCC in  Canada’s GHG 

Inventory, which forms the basis for Canada’s annual report to the United Nations Framework 

Convention on Climate Change , UNFCCC (ECCC, 2016). Currently, industrial facilities that 

emit more than 50 ktonnes CO2eq yr-1are required to report their emissions annually to ECCC 

using the Greenhouse Gas Reporting Program (GHGRP), which is Canada’s legislated, publicly 

accessible inventory of facility-reported greenhouse gas (GHG) data (ECCC, 2017b). Although 

the GHGRP inventory data is not necessarily used in Canada’s GHG Inventory, changes are 

being proposed to expand monitoring requirements in the GHGRP, including lowering the 

reporting threshold to 10 ktonnes CO2eq yr-1 in order to enable direct use of the reported data in 

Canada’s GHG Inventory (ECCC, 2017a). Emissions of CH4 from all five major oil sands 

facilities discussed in this paper are present in the GHGRP Emissions Inventory on an annual 

basis. The annual emission rates of CH4 extracted from the inventory were downscaled to hourly 

emissions rates for comparison with our measurements with an assumption of equal seasonal and 

diurnal profiles 365 days a year, 24 hours per day; for consistency with upscaling factors used to 

generate annual emissions (see Figure 2.8). While this may be questioned, it should be noted that 

fugitive emissions of CH4 from mine faces and tailings ponds in the inventories are estimated 

based upon emission factors measured at oil sands facilities during summer months (June- Sept), 

which are then up scaled from hourly emissions to annual emissions using the same assumption 

that we used to downscale (365 x24), as per recommendation by the Government of Alberta 

(GOA, 2014). Specifically it is noted from the GOA report that emissions of gaseous species 

such as CH4 (and CO2) are not temperature dependent (unlike VOC’s that have temperature 

dependent vapour pressures (Li et al., 2017)). The argument used to justify the use of a constant 

seasonal temporal factor in the GOA report is that temperatures at depth in a tailings pond are 

said to remain relatively constant throughout the year and thus, biogenic gas formation continues 

in the winter (GOA, 2014). For mine faces, the GHG component of the oil sand does not change 

with temperature and is likely released completely in a short period of time after being mined. 

Thus the government recommendation to oil sand facilities in preparing annual emission 

estimates of fugitive GHG’s is that reduction factors should not to be used in extrapolating 
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summertime emissions over the rest of the year (GOA, 2014). Figure 2.8 shows a comparison of 

the total measured emission rates of CH4 from the five industrial facilities (2013), the total 

measured CH4 emission rate in the AOSR from the single downwind screen on Aug 16, 2013 

and the sum of the facility emission rates from the Canadian GHGRP Emissions Inventory for 

2013, expressed in hourly units. The combined facility emissions rate of 19.6 ± 1.1 tonnes hr-1 is 

approximately 48 ± 8 % higher than the 5-facility total of 13.2 tonnes hr-1 extracted from the 

inventory for 2013. Facility-to-facility comparisons show higher measured than reported 

emission rates for three out of the four facilities (SML and SAU facilities are combined as one in 

the inventory). In contrast, for CNRL our measured emission rate is 1.2 tonnes hr-1 lower than 

the inventory. Since we have determined the composition of SML, SUN and SAJ emissions to be 

primarily from tailings ponds and open pit mining, there appears to be underestimation in the 

inventory of those particular area sources within these sites.  
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Figure 2.8:  Comparison of emissions rates determined for the five major facilities (SML, SAU, 

SUN, CNRL, SAJ) with the Total OS Screen Flight (see Fig. 2.7 for the flight track). Also shown 

is the CH4 emissions taken from the Canadian GHGRP Emissions Inventory for the year 2013, 

scaled down from annual to hourly emissions assuming constant temporal emissions. Note that in 

the inventory, SML and SAU emissions are reported as a single facility, while our estimates are 

derived separately. 

These discrepancies indicate a need for inventory reconciliation between the bottom up and 

top-down estimates. It has been shown possible to reconcile divergent bottom-up and top-down 

CH4 estimates for the Barnett Shale by using more comprehensive activity factors and better 

characterization of emissions from high emitter sites (Lyon et al., 2015)  and continuous 

monitoring to identify these super emitters (Zavala-Araiza et al., 2015). Currently, bottom-up 

estimates in the AOSR are accomplished by systematic surface flux chamber measurements of 

area sources (surface mines, tailings ponds) to derive area-based emissions factors (GOA, 2014). 

While surface flux chamber measurements (Klenbusch, 1986;Conen and Smith, 1998) are 
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estimated to be 50-124% of the true emissions rate for a homogenous source (Klenbusch, 1986), 

it is unclear how the uncertainty propagates when the emissions factors are scaled to the full 

surface area of the heterogeneous AOSR emissions sources. The official survey protocol for 

open pit sources attempts to minimize the possibility of underestimating emissions by explicitly 

requiring fugitive surveys to include sampling at a range of locations within the open pit mine, 

where safe to do so, including high priority zones (disturbed in the last week), normal priority 

zones (disturbed from 1 week to 6 months ago) and low priority zones (disturbed > 6 months 

ago) (GOA, 2014). However, it seems that the recent core sampling methodology outlined by 

Johnson et al. (2016) has great promise and reduced uncertainty for estimating fugitive emissions 

from open pit mining.  

2.4 Conclusions 

We present a detailed approach to identifying and quantifying CH4 emission sources from the 

surface mining facilities in the Athabasca Oil Sands Region of Alberta in the year 2013. 

Emissions of CH4 are attributed to three major fugitive source types: tailings ponds, open pit 

mining activity, and emissions from plant facilities. Our method demonstrates the use of 

BTEX/VOCs as tracers for tailings ponds CH4 plumes due to the use of diluent, and NOy/rBC as 

tracers for surface mining due to heavy hauler diesel trucks operating co-spatially at mine faces 

in the open pit mines. The combination of SO2/NOy is used as a tracer for stack facility plumes 

which are observed to contain minor but detectable quantities of CH4, although infrequently. We 

use the chemical signatures of sources and the screen mass-balance approach for 7 flights to 

determine total emissions rates of 8.8 ± 0.9 tonnes hr-1 from tailings ponds, 45% of total CH4 

emissions in AOSR, 9.8 ± 0.9 tonnes hr-1 from open pit surface mining (50%), and 1.0 ± 0.3 

tonnes hr-1 primary facility-associated and other sources (5%). Open pit mining emissions are 

measured from all five facilities in the range of 1.2-2.8 tonnes hr-1. In contrast amongst the 19 

tailings ponds in the region, CH4 emissions above determinable levels were only measured from 

two facilities, SML and SUN. These emissions are likely due to two tailings ponds, MLSB (5.8 ± 

0.8 tonnes hr-1) and Ponds 2/3 (2.0 ± 0.3), which are ranked amongst the highest area sources of 

CH4 in the region. These results demonstrate the large contributions (~45%) of a few tailings 
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ponds sources to total fugitive CH4 emissions in the AOSR and highlight opportunities for 

strategic GHG mitigation. Our individual-plume sum is consistent with estimates derived using 

the TERRA box approach to determine total emissions within facility boundaries. The agreement 

between these two methods demonstrates that the three source types listed are representative of 

the major emissions of CH4 in the AOSR. Further results from a ~75km flight screen that 

captured almost all AOSR emissions are able to reproduce total emissions derived from the sum 

of the five major facilities. Our final top-down estimate of the 2013 summertime emission rate in 

the region is 19.6 ± 1.1 tonnes CH4 hr-1 or 0.17 ± 0.1 Tg CH4 yr-1. We note that the annual 

emissions rate is only a first order approximation of what annual emissions might be if the 

temporal emissions are constant throughout the year; however, we consider this assumption to be 

highly uncertain as the seasonality of fugitive emissions rates of CH4 in the Athabaska Oil Sands 

region is still a major uncertainty. Further effort should be devoted to measurements of these 

emission rates in different seasons, and to understand if ambient temperature and ice coverage on 

tailings ponds are important parameters or not. Our limited measurements of ethane and methane 

downwind of the AOSR facilities suggest that the EMR’s are quite low, < 1.4%, likely because 

the fundamental source of the majority of the methane emissions are methanogenic, not 

thermogenic, in nature. Thus global estimates of the relative contributions of oil and gas 

emissions to increases in atmospheric CH4 based on EMR measurements in the free troposphere 

would not capture AOSR emissions due to the low C2H6 emissions in the region. 
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Abstract 

The Athabasca Oil Sands Region (AOSR) of Alberta, Canada is estimated to be responsible for 

∼10% of total methane (CH4) emissions in the province of Alberta and ∼4% nationally in 

Canada, with the majority of released CH4 in this region being due to fugitive emissions that are 

an unintended by-product of operations. Our previous analysis of an aircraft campaign led by 

Environment and Climate Change Canada (ECCC) in summer 2013 showed that fugitive 

emissions of 19.6 ± 1.1 tonnes CH4 hr-1 are from surface mining activities (50%), tailings ponds 

(45%), and other facility-controlled releases of natural gas (5%). However, it is uncertain how 

these emissions vary by season and on an inter-annual basis. In this work we deployed surface 

measurements using a cost-effective mobile platform to survey cold season methane emissions in 

the AOSR. We use data from two mobile surface campaigns (Fall/Winter 2014 and 

Winter/Spring 2017) to provide insights into the behaviour of emissions under snow-covered 

conditions. Maximum enhancements from fugitive plumes (>1 km wide) up to 3.7 ppm were 

observed in 2014 and 4.3 ppm in 2017. Such enhancements were downwind of active tailings 

ponds showing the release of fugitive methane in these two cold seasons despite snow covered 

surfaces. Occasional geographically narrow enhancements of >15 ppm were observed in 2014, 

and as high as 87 ppm in 2017, from possible methane leaks and venting activity, however, the 

infrequency of these high enhancements indicate that over these field studies, these emissions are 

not comparable in magnitude to tailings ponds and open-pit mining. Emissions are estimated for 

select plumes using a mobile-surface mass-balance approach (MSMB). MSMB is an analogous 

method to aircraft mass-balance that assumes measured plumes are sufficiently distant from the 

source to be well-mixed in the planetary boundary layer (PBL). We show four repeat transects on 

two different days of a single source from the 2017 campaign with optimal conditions such that 

the measurement transect is more than triple the downwind distance needed for a well-mixed 

plume. We identify the source of this plume as Suncor open-pit mining using HYSPLIT 

modelling and estimate the source emission to be 1.0 ± 0.4 t hr-1 with good reproducibility 

between the four transects. These observations show that significant fugitive emissions of 

methane from tailings ponds and surface mining persist in the cold season under snow-covered 
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conditions. We also show that there continues to be discrepancies between bottom-up and top-

down emissions estimates that would require an improved observation network to resolve. 

3.1 Introduction 

Methane (CH4) is a significant greenhouse gas with a global warming potential 28–34 times 

more than CO2 on a 100-year timescale and is second next to CO2 for direct radiative forcing 

(Myhre et al., 2013). Anthropogenic methane sources include oil and gas (extraction, 

transportation, combustion), in addition to agricultural activities (livestock, rice cultivation) and 

waste. Natural methane sources are primarily from wetlands but includes biomass burning and 

other minor sources such as seeps and termites (Saunois et al., 2016). The primary sink of 

atmospheric methane is oxidation by the hydroxyl radical (OH) resulting in a lifetime of 9.1 ± 

0.9 years (Prather et al., 2012). Aggressive CH4 emissions reductions are being pursued by 

parties signing the Paris Agreement. The comparatively short lifetime of CH4 (compared to CO2) 

is attractive for climate policy as effective emissions control brings near term benefits and 

anthropogenic emissions are often due to leaks or other preventable fugitive emissions. 

The Athabasca Oil Sands Region (AOSR) in northern Alberta, Canada is estimated to be 

responsible for ~10% of total CH4 emissions in the province of Alberta and ~4% nationally. 

While most of Alberta’s methane emissions are due to the production and processing of natural 

gas and not oil (Sheng et al., 2017), Alberta contains very large deposits of oil sands, an 

unconventional viscous mixture of bitumen, silt, clay, water and trapped gases (Stringham, 

2012), whose mining and upgrading produces emissions of methane as an unintended by-

product. Of Canada’s proven reserves of 1.69 × 1011 barrels of oil, 97% are in the oil sands, 82% 

of which are in the AOSR north of Fort McMurray. In the AOSR, 20% of these reserves are in 

the form of near-surface deposits within 100 m depth that are mined using the prevailing open pit 

mining technique, with the remainder located deeper underground requiring high energy in situ 

extraction (Simpson et al., 2010). For the surface mining method, heavy hauler trucks shovel oil 

sands from cleared mining areas which are transported to facilities where the bitumen is 

separated and upgraded. Extraction of the bitumen requires water, additives and naphtha or 

paraffin diluents. Process water containing organic diluents is recycled, but unrecovered diluent 
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is discharged in large tailings ponds, which are open to the atmosphere, along with additives and 

bitumen (Small et al., 2015). Surface mines release CH4 and CO2 because of thermogenic 

decomposition of the disturbed mined material and from leaking through fissures and the 

permeable surface. Tailings ponds release CH4, CO2, H2S and other VOCs by complex 

mechanisms involving microbial communities that decompose the available hydrocarbons (Small 

et al., 2015; Baray et al., 2018; Zhang et al., 2019; You et al., 2021). Tailings ponds have vastly 

differing chemical composition, microbial diversity and emissions depending on the tailings 

type, use of additives and age of the pond (Small et al., 2015). Out of 19 tailings ponds in the 

region, the most methanogenic pond is Mildred Lake Settling Basin (MLSB) in the Syncrude 

Mildred Lake (SML) facility; methane bubbles were first observed 21 years after the 

establishment of the pond in 1978 (Yeh et al., 2010). Similarly, the second most methanogenic 

Pond 2/3 (P23) in the Suncor (SUN) facility began emitting methane 15 years after establishment 

1968. The majority of the methane activity are from these two sites, MLSB and P23 are expected 

to be responsible for >90% of all tailings ponds methane emissions in the region (Small et al., 

2015). An aircraft campaign in the summer of 2013 showed surface mines and tailings ponds 

together account for >95% of methane emissions, which are fugitive unintended by-products of 

oil sands extraction and processing (Baray et al., 2018). Figure 3.1 shows the spatial distribution 

of the largest emissions sources in the AOSR, which identifies select tailings ponds that account 

for most pond methane emissions, and methane sources from active surface mines. 

There is a lack of measurements in the literature that demonstrate appropriate methods to 

estimate the seasonal pattern of fugitive emissions in the AOSR. Strausz (2003) showed that 

degassing of CH4 and CO2 from the mined oil sands is entropically and enthalpically favourable 

even at low temperatures with exposure to oxygen. Johnson et al. (2018) showed mining 

emissions can be predicted as a function of total mined material but was inconclusive towards 

determining if these emissions were the same emissions reported in the inventory or additional. 

For tailings ponds, ice and snow may cover most of their surfaces during the winter months and 

possibly trap emissions, however tailings outfalls at warmer discharge temperature can provide 

continuous disturbance, and an area of exposure to the atmosphere (Small et al., 2015). Five-

week summertime eddy covariance flux measurements found no diurnal or day-to-day variability 
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in emissions at the major methane source P23 (You et al., 2020). However, long-term flux 

measurements at reclamation pond Base Mine Lake (BML; directly south of MLSB in Figure 

3.1) found an order of magnitude differences in methane fluxes between multiple seasons and 

years (Clark et al., 2021). Although BML is a much smaller source of methane due to its water-

capped fluid fine tailings composition. An improved observation network of consistent warm and 

cold season measurements across the unique ponds and facilities are necessary to address these 

continued uncertainties. 

Aircraft campaigns provide comprehensive evaluation of emissions using a mass-balance 

approach, and a large array of simultaneous measurements inform the unique chemistry of the 

study area (Gordon et al., 2015; Li et al., 2017; Baray et al., 2018; Liggio et al., 2019). The 

limitation of aircraft campaigns is that they are resource-intensive and temporally limited to 

‘snapshot’ emissions profiles, which leave uncertainties regarding the extrapolation of emissions 

rates across seasons to compare to yearly inventory totals. Satellite measurements can provide 

consistent observations year-round but are limited at Canadian latitudes due to uncertainties in 

the retrievals (Baray et al., 2021). Surface measurements can provide continuous temporal 

information but requires a dense and well-situated observation network of multiple instruments 

to provide useful spatial characterization. Mobile surface measurements are a novel and useful 

way to contribute additional information to the observation network. In other studies, vehicle-

based measurements have been used to characterize industrial natural gas emissions in British 

Columbia (Atherton et al., 2017) and urban natural gas emissions in the Greater Toronto Area 

(Ars et al., 2020). The main limitation with mobile surface measurements is the lack of vertical 

information, which make the quantification of emissions by mass balance problematic. Some 

solutions to this problem take advantage of the linear relationship between emissions and 

measurements. These include using controlled release experiments or other known emissions 

scenarios to judge the linear relationship between methane ‘spikes’ and the required local 

emissions to produce the measurement levels (Maazallahi et al. 2020). Ars et al. 2020 combined 

mobile surface data with inverse modelling, which optimizes emissions by reducing the 

mismatch between predicted concentrations from a prior model and the measured concentrations. 

Mass-balance calculations using single-altitude data is common in the literature using aircraft 
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measurements (Cambaliza et al., 2014; Karion et al., 2015; Peischl et al., 2016) if it can be 

shown that measurements are sufficiently distant for plumes to be well-mixed in the PBL. Given 

the validity of this assumption and the availability of high-precision methane instruments, this 

approach can be readily applied to ground-level vehicle-based measurements. 

In this study, we address temporal observation gaps using a cost effective mobile vehicle to 

measure surface methane levels and survey AOSR fugitive sources in two cold season field 

campaigns (Fall 2014 and Spring 2017). We demonstrate a mass balance approach by which 

mobile surface measurements can be used to estimate emissions. Mass balance methods can be 

used to determine emissions in numerous studies using either satellite (Varon et al., 2019), 

aircraft (Karion et al., 2015) and other surface-based remote sensing measurements (Davis et al., 

2019). In the example of aircraft campaigns, measurements are conducted in either a downwind 

formation (line or screen) or in a box formation that surrounds a facility of interest (Baray et al., 

2018). The box approach requires complete calculations of incoming and outcoming fluxes and 

determines emissions rates according to the net outflow of methane (Gordon et al., 2015). The 

downwind line or screen approaches require manually monitoring the methane background 

through upwind or lateral background measurements (Cambaliza et al., 2014). We estimate 

emissions for select plumes using a mobile-surface mass-balance approach (MSMB). MSMB 

relies on measurements being sufficiently distant from the sources for plumes to be well-mixed 

in the planetary boundary layer (PBL). We validate this assumption by parameterizing the PBL 

mixing using the dense network of meteorological measurements in the AOSR, as well as 

through LIDAR backscatter retrievals of the PBL. We show repeated CH4 emissions estimates 

for the Suncor Mining facility (SUN) and demonstrate a discrepancy between top-down and 

bottom-up emissions estimates.  
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Figure 3.1: Map of facilities and methane emission sources in the AOSR. Facility boundaries 

and land disturbance shapefiles are from the Alberta Environment and Parks Oil Sands 

Information Portal (http://osip.alberta.ca/). Shaded boxes show the five main facilities: Open pit 

mining is shown with the orange line, the plant site locations are shown in pink, and tailings 

ponds are shown in white (minor) and teal (major). The two major ponds that account for >90% 

of methane emissions (Baray et al., 2018) are emphasized: Mildred Lake Settling Basin (MLSB) 

in Syncrude Mildred Lake and Pond 2/3 in Suncor. 

http://osip.alberta.ca/
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3.2 Data and methods 

3.2.1 Description of measurements 

Measurements of dry mol fractions of CH4, CO2, CO and H2O were made using a Picarro 

G2401-m cavity ring-down spectrometer (CRDS) (Picarro Inc.) at an interpolated rate of ~0.5Hz. 

The instrument was mounted inside a pickup truck, for both the Fall/Winter 2014 and the 

Winter/Spring 2017 study periods that was powered by auxiliary batteries. The inlet was a 

reverse-facing sample port with a 47 mm Teflon filter to remove particles that was regularly 

changed; a response time of 18 seconds was subtracted from the measurements due to the sample 

line length. The precision of the Picarro instrument is 2-3 ppb. The instrument was calibrated 

before and after the study periods using standard reference gases traceable to NOAA GMD 

standards. A GPS was used to measure position (latitude, longitude) and velocity (vehicle speed 

and course) at a rate of 1 Hz that was used to construct the map of CH4 measurements and 

calculate the horizontal width of plumes for emissions calculations. Figure 3.2 shows the driving 

routes for the 2014 and 2017 field studies, with maximum CH4 mixing ratios indicated on a 

colour scale. A large continuous observation network of chemical and meteorological tower 

measurements is operated by the Wood Buffalo Environmental Association (WBEA). A 

CLIMATRONIX instrument provided measurements of wind speed and direction which were 

and used to validate winds from the WBEA network during times when the vehicle was 

stationary. Moving CLIMATRONIX measurements were not used directly in the mass balance 

calculations due to uncertainties in the vehicular approach. The WBEA network which includes 

vertical profiles from tower measurements was used to calculate the mean regional wind speed, 

this is the average wind speed from the approximate source to the measurements during the 

transect of interest and includes an uncertainty analysis for the vertical profile of winds (See 

Supplement 1.1–1.3). A WindRASS instrument which measures the vertical profile of 

temperature, wind speed, wind direction up to 250 m above ground level is run by Environment 

and Climate Change Canada and is included in the mean regional wind analysis. Boundary layer 

heights were derived using backscatter data from a LIDAR stationed at Fort Mackay 

(Strawbridge, 2013). 
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Figure 3.2: Map of CH4 measurements from the Fall/Winter 2014 and Winter/Spring 2017 field 

studies. Gray lines show the facility boundaries corresponding to Figure 3.1. Data is averaged on 

a 0.005° × 0.005° grid; the colour scale shows the maximum CH4 mixing ratio at each grid cell. 

 

3.2.2 Mobile Surface Mass Balance Approach (MSMB) 

In this study we show a mobile-surface mass balance (MSMB) method to quantify CH4 

emissions. MSMB is similar in principle to the aircraft single transect method, whereby a single 

altitude of measurements can be used to estimate emissions. We use meteorological 

measurements from the regional WBEA network to validate the necessary atmospheric 

conditions for the mass balance method to be applicable. This method is valid if the 

measurements are sufficiently downwind of sources for the plume to be well mixed in the PBL, 

and the CH4 mixing ratios exhibit a constant vertical profile. Under these conditions, the 

emissions rate of methane can be estimated using the integrated flux through a plane, which is 
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the product of background-enhanced CH4 and the perpendicular wind speed over the entire 

plume width 

 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑅𝑎𝑡𝑒 = ∫ ([𝐶𝐻4] − [𝐶𝐻4]𝐵) × 𝑈⏊ × 𝑧𝑖 𝑑𝑠
𝑠𝑛

𝑠1

  {3.1} 

where [𝐶𝐻4] − [𝐶𝐻4]𝐵 is the background-enhanced CH4, 𝑈⏊ is the mean regional wind speed 

perpendicular to the measurement transect, and 𝑧𝑖 is the height of the PBL derived from the 

LIDAR measurements at Fort Mackay, integrated over the horizontal plume width. A response 

time of 18 ± 3 seconds was determined experimentally and subtracted from the data series to 

determine the vehicle position at the time of the measurements. The vehicle’s speed was 

relatively constant (±0.1–0.2 km/h) over the plume transects as measured by the GPS.  

The validity of assuming surface emissions of methane were well mixed in the PBL was 

tested by calculating the mean time for a tracer to mix to the top of the PBL from the surface,  

𝑡∗ (Stull, 1988). A surface plume is expected to be fully mixed within ~ 3𝑡∗ (Stull, 1988; Weil et 

al., 2004).  

 𝑡∗ =
𝑧𝑖
𝑤∗

 {3.2} 

Where  𝑧𝑖 is the PBL height and 𝑤∗ is the convective velocity scale. During the daytime, 𝑤∗ is 

an important factor controlling the diffusion in an unstable boundary layer. 

 𝑤∗ = (𝑔𝑄0𝑧𝑖/𝑇)
1/3 {3.3} 

 

Where g is the acceleration due to gravity, 𝑄0 is the surface heat flux, 𝑧𝑖 is the mixed layer 

height, T is temperature (Venkatram, 1978). The PBL height 𝑧𝑖 was estimated from the LIDAR 

measurements at AMS1. T was obtained from WBEA meteorological measurements at AMS1 

and verified by the vehicle CLIMATRONIX data. 𝑄0 was calculated using the approximation 

𝑄0 = 𝐴𝑆 (Briggs, 1982), where S is down-welling solar radiation and the constant A depends on 

ground cover, ranging from 0.55 for a dry surface to 0.25 for a crop canopy. Solar radiation S 

was obtained from the AMS1. The value of 3𝑡∗ was calculated conservatively assuming A= 0.25 
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since it produces the smallest value of the surface heat flux (Qo) and convective velocity, w* and 

hence the corresponding largest value of 3𝑡∗ (see Supplement Table B.1 for the data used). 

To evaluate the applicability of the 3𝑡∗ estimation, the Pasquil Gifford (PG) atmospheric 

stability class was determined for each plume transport time (U.S. EPA, 2000). The method uses 

the wind-speed at 10 m above the surface and the down-welling solar radiation, obtained from 

AMS1. We show in Section 3.3.1 how the data are filtered for conditions where the plume 

transport time is at least 30% higher than 3𝑡∗ under a PG class of C. 

Aircraft mass-balance studies using single transects to determine emissions in a similar 

manner to Eq. {3.1} use higher altitude measurements that are extrapolated upward to the top of 

the PBL and downward to the surface. Alternatively, aircraft studies using multiple transects 

create a continuous screen and substitute the 𝑧𝑖 term with an integral over the vertical dimension 

𝑑𝑧. These studies still rely on vertical extrapolation of measurements from the lowest aircraft 

transect to the ground which is usually ~150 m. The vertical profile of CH4 from the surface to 

the top of the PBL for surface sources has been discussed in multiple studies (Cambaliza et al., 

2014; Karion et al., 2015; Peischl et al., 2016) including in the AOSR area of interest (Baray et 

al. 2018) and has been shown to include scenarios where the profile is close to constant due to 

sufficient plume mixing. 

3.3 Results and discussion 

3.3.1 CH4 measurements downwind of tailings ponds during cold seasons 

Mobile measurements from the Fall 2014 and Spring 2017 field studies are used to survey the 

presence of tailings ponds methane emissions. While these measurements were conducted under 

snow-covered conditions, the tailings ponds may not entirely freeze in the cold-season due to 

sections with warmer tailings outfalls. To evaluate the presence of cold season CH4 emissions, 

measurements were conducted downwind of the two major ponds MLSB and P23. 

Figure 3.3 shows CH4 mixing ratios downwind of P23 from the Suncor facility for both the 

Fall/Winter 2014 and Winter/Spring 2017 measurement campaigns. The driving route was along 

the primary Highway 63 that passes through the centre of the AOSR. Wind directions were from 
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the northeast on Nov 21 2014 and from the northwest on Mar 30 2017. Tailings P23 is 

highlighted in teal similar to Figure 3.1. The measurements in Nov 21 2014 show a maximum 

methane mixing ratio of 3.039 ppm on Highway 63 nearest to the pond, and a repeat maximum 

methane mixing ratio of 2.270 ppm at Aostra Road ~7 km away from the source. The 

measurements on Mar 30 2017 show a maximum methane mixing ratio of 2.775 ppm on 

Highway 63 nearest to the pond. Although on this day, there appeared to be some interference 

due to significant venting activity, this is visible in the red plume northwards along Highway 63 

in Figure 3.3C and discussed in the Section 3.3.2. These results show P23 continues to release 

CH4 in the cold season even under snow covered conditions. 

Figure 3.4 shows measurements near MLSB from the Syncrude facility similar to Figure 3.3. 

The driving route is further north along Highway 63 than the P23 measurements with winds from 

the southwest on Nov 19 2014 and from the west on Mar 31 2017. Maximum methane mixing 

ratios are 2.994 ppm on Nov 19 2014 with a background of ~ 1.95 ppm and 2.738 ppm on Mar 

31 2017 with a background of ~1.99 ppm. In both cases, the plume shows a major and a minor 

peak, and the width of the major peak is much less than the length of the entire MLSB pond. 

This is more noticeable on Mar 31 2017, where the maximum enhancement appears directly 

from the centre of MLSB. In this example, the plume width is ~2 km while the north-south 

length of MLSB is ~5.0 km. This suggests that MLSB may not be a homogenous area source of 

methane and can have regions of the pond where methane emissions are concentrated. This top-

down result provides some guidance at constraining emissions using a high-resolution modelling 

approach (Nambiar et al. 2020) since it addresses whether tailings ponds should be modelled as 

uniform sources over the entire area (9.3 km² for MLSB) or as point sources for a specific region 

of the pond. This is a similar problem to modelling emissions from landfills and is better 

resolved with more detailed measurements of the source. 
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Figure 3.3: Mobile CH4 measurements from Nov 21 2014 (top panels A and B) and Mar 30 

2017 (bottom panels C and D) downwind of Suncor Pond 2/3 (teal highlight). Measurements 

were conducted along Highway 63. The right panels show the time series corresponding to the 

plumes nearest P23 where maximum mixing ratios of 3.039 ppm in 2014 and 2.775 ppm in 2017 

were observed.  
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Figure 3.4: Mobile CH4 measurements from Nov 19 2014 (top panels A and B) and Mar 31 

2017 (bottom panels C and D) downwind of Syncrude Mildred Lake Settling Basin (teal 

highlight). Measurements were conducted further north than Figure 3.3 along the same Highway 

63. The right panels show the time series corresponding to the plumes nearest MLSB where 

maximum mixing ratios of 2.994 ppm in 2014 and 2.738 ppm in 2017 were observed. 
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3.3.2 Measurements of transient CH4 leaks 

In the 2014 and 2017 studies we also make observations of transient, very high methane 

enhancements that are suggestive of methane leaks and in one case, visually confirmed venting 

activity without flaring. In the previous aircraft measurements from Baray et al. (2018), it was 

shown that emissions of methane from facility stacks were observed only from the CNRL facility 

in the northwest of the AOSR using sulphur dioxide (SO2) measurements as a tracer species for 

this source. Methane enhancements were not observed from the main stacks of Syncrude and 

Suncor. Hence, Baray et al. (2018) attributed only 5% of methane emissions to facility stack 

emissions, which was limited to CNRL. The mobile surface measurements here show evidence 

of transient emissions that are particularly challenging to capture by aircraft and other top-down 

measurements. 

Figure 3.5 shows measurements on Nov 21 2014 near the CNRL facility and Mar 30 2017 in 

the main Highway 63 between Syncrude and Suncor. A maximum enhancement of 23 ppm was 

measured in 2014 and 87 ppm was measured in 2017. The 2017 enhancement was associated 

with venting visually observed from a horizontal pipeline, with enough gas to produce a white 

plume. However, it is unclear as to the source of CH4 enhancements. While these measured 

enhancements are high, the emissions rate as a function of the measured methane mixing ratio 

depends on the plume width or distance from the source, which is very small in these two cases. 

There are substantial uncertainties in determining an emissions rate based on transient high 

concentrations. Weller et al. (2019) developed an open source algorithm for quantifying methane 

emissions rate from measured natural gas leaks based on mobile survey data, which was 

employed in the European cities in Maazallahi et al. (2020) and the Greater Toronto Area in Ars 

et al. (2020). The method uses a linear regression model that relates the methane emissions to the 

measured methane enhancement based on controlled release experiments and an average 

distance of 15.75 meters between the measurement and the leak. As shown in Maazallahi et al. 

(2020), a “medium” methane enhancement of 1.6–7.59 ppm at this spatial distance corresponds 

to an equivalent emissions rate of 0.3–1.7 kg hr-1. This method may not be appropriate for the 

measurements shown in the AOSR since the linear model was calibrated for an urban 
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environment, while the AOSR is a mixed environment with forested and cleared industrial areas. 

Tailings ponds and open pit mining emissions are on the order of 103 kg hr-1 (Baray et al., 2018), 

hence for methane leaks or venting to be comparable they would have to accumulate 

substantially, which we did not observe during these field studies. Our measurements show that 

these incidents can occur, however their frequency and magnitude is not well understood. The 

existence of these emissions is especially challenging for top-down measurements to address; 

infrequent incidents of venting or accidental leaks resulting in large methane emissions could be 

missed by temporal gaps in field studies. These sources of methane may be better identified in 

the future by frequent, regional leak surveys (i.e., using drones, vehicles, or otherwise) that can 

detect CH4 enhancements, or by next-generation satellite observations that can detect and 

quantify the emissions from space (Jacob et al., 2016). The current generation of global satellite 

observations is well-suited for capturing especially large incidents (Pandey et al., 2019), however 

the geographic position of the AOSR (57° N) poses an issue since satellite XCH4 retrievals are 

more uncertain at higher latitudes (Baray et al., 2021). Future specialized instruments that are 

designed for fine-scale precision may better address facility-level needs. 
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Figure 3.5: Mobile CH4 measurements from Nov 21 2014 (top panels A and B) and Mar 30 

2017 (bottom panels C and D). Mixing ratios scale with the height of the yellow bars to 

emphasize high measurements. Time series plots are shown in log scale with base 2. 

Measurements show CH4 enhancements up to 23 ppm in 2014 near CNRL and up to 87 ppm in 

2017 near SML and SUN. Note that the spikes in Panel D are due to repeat measurements of the 

same incident, which was observed between 13:10 MDT to 14:20 MDT as the vehicle circled the 

area. 
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3.3.3 Emissions estimates using MSMB 

3.3.3.1 Filtering transects for optimal atmospheric conditions 

Table 3.1 shows a list of transects that are used in mass balance emissions estimates and an 

analysis of the corresponding plume mixing conditions. These measurements are chosen for 

situations where the vehicle travelled in a path perpendicular to the downwind transport of CH4 

plumes from facilities. Transects that were immediately travelling in the opposite direction are 

indicated by the letters of the same number. For example, Figure 3.6 demonstrates the temporal 

evolution of the enhanced CH4 measured in a Gaussian-shaped plume during the west to east 

transect 5A (11:20-11:25 MDT) immediately followed by an east to west transect 5B (11:45-

11:50 MDT) just north of SUN on March 31, 2017. 

Table 3.2 shows the meteorological data that is used to calculate the stability class and plume 

mixing time t*. Figure 3.7 shows an example of the LIDAR data from AMS1 for Mar 31 2017 

transects 5A/B, where the pink line shows the best estimate of the PBL height. For transect 5B 

corresponding to Figure 3.6, the PBL height is 310±27 m a.g.l. and the estimated maximum time 

for a tracer to reach this height (1t*) is 5 minutes. Hence the conservative estimate of 3t* for 

complete mixing, from the larger of the estimates for the ground constant A, is 15 minutes. The 

plume travel time was estimated from the source distance and the boundary layer averaged wind-

speed for the stability class C plumes and from the 10 m wind-speed at AMS1 for the stability 

class D plumes. Table 3.1 shows that based on a wind speed of 2.6±0.3 m/s and a distance from 

the facility of 10–14 kilometres, the transport time from the source to the measurements is 57–

101 minutes. Hence at this distance the plume is expected to be well mixed, with at least more 

than 11t* which is the time it takes for a ground source to reach the top of the PBL where only 

3t* is required. Thus, the ground measurements under these conditions are expected to be 

representative of the entire PBL and eq. {3.1} to be applicable. Similarly, transects 5A, 2A and 

2B follow the same reasoning. These four transects (two repeat pairs) are treated as the most 

optimal conditions to derive CH4 emissions using the MSMB approach herein. 

While other transects show a transport time greater than 3t*, this parameterization is best 

suited for the March 28st (plumes 2A and 2B) and March 31st (plumes 5A, 5B) measurements 
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since the atmospheric conditions were slightly unstable (C) while the other days had neutral (D) 

conditions. For transects 1A/B, the low solar irradiance (Table 3.2) and high PBL heights 

resulted in insufficient time for full mixing to occur, and these transects are rejected for use in 

MSMB. For the other transects 3, and 4A/B, the maximum 3t* values are less than the minimum 

transport time, however the atmospheric conditions and neutral stability class were not optimal 

for a quantitative MSMB approach. Thus, in these cases, we cannot be confident that the transect 

is at a sufficient distance from the source to ensure methane is well mixed in the PBL. The 

MSMB analysis of the optimal transects is discussed in Section 3.3.3 and non-ideal transects in 

3.3.4. 
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Table 3.1 Estimated atmospheric conditions and transport time for plume transects. 

Transect 

Namea 
Date 

Timeb 

(Local) 

PG 

Stability 

Classc 

Source 

Distance 

(km) 

Max 3𝒕∗ 

(mins)d 

Transport 

Time 

(mins)e 

MSMB 

Status 

1A 
Nov 21 

2014 

15:36-

15:41 
D 6 - 8 60 45-111 Rejected 

1B 
Nov 21 

2014 

16:38-

16:42 
D 6 - 8 90 59-121 Rejected 

2A 
Mar 28 

2017 

13:18-

13:25 
C 10 - 14 32 56-97 Accepted 

2B 
Mar 28 

2017 

14:10-

14:20 
C 10 - 14 37 51-93 Accepted 

3 
Mar 30 

2017 

11:40-

11:49 
D 3 - 6 17 21-50 Uncertain 

4A 
Mar 30 

2017 

14:55-

15:40 
D 6 - 8 25 67-190 Uncertain 

4B 
Mar 30 

2017 

15:48-

16:55 
D 6 - 8 28 83-167 Uncertain 

5A 
Mar 31 

2017 

11:20-

11:26 
C 10 - 14 19 57-101 Accepted 

5B 
Mar 31 

2017 

11:45-

11:51 
C 10 - 14 15 57-101 Accepted 

a Letter naming of the same transect number identifies measurements that are immediate repeats of the 

same plume from the opposite direction. 

b Local time is MST and MDT in the 2014 and 2017 field studies, respectively. 

c Pasquil Gifford Stability class of C is slightly unstable, and D is neutral. 

d Corresponds to the maximum 3𝑡∗ parameterization from the lower estimate of w*, a conservative 

estimate. 

e Transport time to the nearest possible source in the measured facility and not necessarily the actual 

source; plume origins are modelled using HYSPLIT and discussed in Section 3.3.2. 
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Table 3.2 Meteorological data used for the calculation of 3t*and PG atmospheric stability class 

for each transect.  

Transect T (oC) 
Wind Speed 

(m/s) 

Solar Irradiance 

(W/m2) 

zPBL 

(m agl) 
w* (m/s)a t* (mins) 

1A 8.0 1.7±0.5 37±6 745±57 0.6-0.9 15.3-20.1 

1B 8.0 1.4±0.3 23±15 697±57 0.4-0.8 15.3-30.1 

2A 4.6 2.7±0.3 179±16 631±22 1.0-1.4 8.0-10.6 

2B 4.6 2.9±0.4 295±132 767±17 1.0-1.9 7.0-12.2 

3 3.0 2.2±0.2 160±9 252±14 0.7-1.0 4.6-5.8 

4A 4.0 1.1±0.4 121±12 356±13 0.7-1.0 6.2-8.3 

4B 4.0 1.0±0.2 102±13 381±15 0.7-1.0 6.9-9.2 

5A 3.5 2.6±0.3 380±162 369±33 0.9-1.6 4.1-6.5 

5B 3.5 2.6±0.3 462±128 310±27 0.9-1.6 3.6-5.0 

a Range is based on the uncertainty in zPBL and A=0.25-0.55 
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Figure 3.6: Mobile measurements from Mar 31 2017 showing the west-east transect 5A (Panel 

A) that identified a CH4 plume from the SUN facility downwind from open-pit mining. Panel B 

shows the corresponding time series of CH4 mixing ratios for the two repeat transects of the 

same plume; West-East (Transect 5A) and East-West (Transect 5B). 
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Figure 3.7: Mar 31 2017 LIDAR profile from AMS1. Aerosol backscatter is shown in the color 

bar on a relative scale. The pink line shows the best estimate for the PBL height. Transects 5A/B 

occurred between 11:00 to 12:00 MDT. 

 

3.3.3.2 HYSPLIT modelling of plume origins 

Plume origins are diagnosed for optimal transects 2A/B and 5A/B using the NOAA HYSPLIT 

back-trajectory and forward dispersion models (Stein et al., 2015). These four transects are 

repeat experiments on two separate days (March 28 and 31 2017) measuring a Gaussian CH4 

plume intersected north of the SUN facility under similar meteorological conditions with 

southerly winds. The web application of HYSPLIT (Rolph et al. 2017) is configured using two 

archived meteorological products for comparison: Global Data Assimilation (GDAS) at 0.5° 

resolution and North American Regional Reanalysis (NARR) at 32 km resolution. The back 

trajectories were run three times for each transect, using origins at the plume maxima and the 

east and west edges of the plume to produce a simple projection to known sources in the SUN 

facility (Baray et al. 2018), which were shown to release significant CH4 in the previous section. 
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Figure 3.8A shows an example of the back trajectories for Mar 31 2017. The total number of 

back trajectories are 12 (3 plume boundaries x 2 met products x 2 measurement times), however 

only 9 are shown because the GDAS 17:00 and 18:00 UTC back trajectories are overlapping (i.e. 

no model change to wind speeds over the measurement time). The back trajectories project over 

the northern SUN mine and do not overlap with Pond 2/3 or with the primary SUN facility where 

upgrading occurs. In addition, Pond 2/3 is on the other side of the Athabasca River which runs 

through the Suncor facility boundaries between the three Millennium (east), Steepbank (north) 

and Voyageur (west) sites at this location. The topography and southerly winds makes it unlikely 

that the measurements made at this location would show a super positioning of surface mining 

and tailings ponds or facility emissions. To further examine these interpretations, we ran the 

HYSPLIT model in its forward dispersion mode at the expected plume origin locations at major 

sources in SUN, including Pond 2/3, beginning 1 hour prior to the measurements, and from the 

open pit mine (Figure 3.8B). The forward dispersion shows that simulating a source at the centre 

of the North Steepbank open-pit mine can result in the maxima of the measured plume, and Pond 

2/3 is expected to be measured at the enhancements further west from the transect area. The 

forward dispersion results reproduce the measured enhancements and show the separation of 

sources for the transect used in mass balance calculations (SUN open pit mining) and the 

measurements further west (SUN ponds) which are not used. We note the forward dispersion 

analysis is not an independent validation of the back-trajectories, since the same model 

meteorology is used in both cases, however it provides more detail on the expected transport 

between known sources and the point of measurements. These modelling results show that it is 

unlikely that the tailings ponds emissions are overlapping with the main Gaussian plumes 

(Figure 3.6) and hence these plumes are attributed to emissions from the open pit mining. 

Increased confidence of plume origins would be through additional measurements of coincident 

species (tracers), such as VOCs for active tailings ponds and NOx and black carbon for open pit 

mines (Baray et al., 2018). 
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Figure 3.8: HYSPLIT backward trajectory modelling of plume origins for the Mar 31 2017 

transect 5A north of SUN. Panel A shows back trajectories modelled at three plume locations: 

west boundary (red), maximum (blue) and east boundary (green) using two different archived 

meteorology products (GDAS; left two lines and NARR; right line) at two different 

measurement times 17:00 and 18:00 UTC. GDAS shows a small difference in the wind speed at 

the two times (resulting in two lines), while NARR is the same. The bottom panel shows forward 

dispersion modelling using GDAS meteorology 1 hour prior with plume origins at (a) the North 

Steepbank Mine and (b) Pond 2/3. 
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3.3.3.3 Emissions estimates for Suncor open pit mining 

Figure 3.9 shows the emissions estimates for the SUN open-pit mining plume described in the 

previous section. In total there are four transects on two separate days (Mar 28 and 31 2017) with 

each day including repeat eastbound and westbound transects. Both days had similar wind speeds 

(3–4 m/s), southerly winds (180–200°) and low temperatures (3.5–4.6°C). However, the PBL 

height was higher on Mar 28 (663 ± 83 m agl) than on Mar 31 (366 ± 51 m agl). The higher 

boundary layer height required a longer time for plume mixing, 3𝑡∗ on Mar 28 (32–37 mins) 

compared to Mar 31 (15–19 mins). In both cases, the slowest calculated time for plume mixing 

remains shorter than the fasted calculated transport time from the nearest possible source in the 

facility to the measurements (Tables 3.1-3.2), which indicates sufficient mixing within the PBL 

for a constant vertical profile of the CH4 plume. The mean regional wind speed, which is the 

average within the PBL determined from the meteorological network of surface, tower, and 

windRASS measurements (Supplement Section A.1), was 3.4 ± 1.0 m/s for Mar 28 and 3.8 ± 0.8 

m/s for Mar 31. The calculated emissions rates for Mar 28 are 1.2 ± 0.4 t hr-1 and 1.4 ± 0.5 t hr-1 

and the emissions rates for Mar 31 are 0.9 ± 0.4 t hr-1 and 0.6 ± 0.3 t hr-1. The relative 

uncertainties in the individual measurements are 30–50%; this is from a sensitivity analysis that 

includes the sum in quadrature of the uncertainty in the background (18–34%), the uncertainty in 

the mean regional wind speed in the PBL (20–32%) and the PBL height retrieval over the 

measurement period (13–14%) for each transect. The uncertainty in the wind speed includes 

uncertainty in the wind direction (10–20%). The four experiments show good reproducibility 

within the uncertainties and are consistent with the expected methodology uncertainties of 30–

50% for mass balance methods (Cambaliza et al., 2014; Gordon et al., 2015). The mean 

emissions rate of these four experiments for the Suncor open pit mining is 1.0 ± 0.4 t hr-1 where 

the uncertainty interval is the 1σ spread in the 4 emission rates. 
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Figure 3.9: Emissions rates for the four repeat transects of Suncor open-pit mining emissions. 

Error bars are from the sensitivity analysis (Supplement B.1.4) which incorporates uncertainties 

in the CH4 measurements and background, the wind speed and direction, and the PBL height 

retrieval. 

3.3.3.4 Treatment of non-ideal transects 

Figure 3.10 shows the non-quantitative transect 3 downwind of the CNRL open-pit mining 

operations. The background was ~2.1 ppm and the maximum mixing ratio from a Gaussian-

shaped plume was 2.9 ppm. The enhancement at CNRL is much higher than the enhancement 

observed from SUN in Figure 3.6 due to the proximity to the source and the lower boundary 

layer. The nearest source, which is the Horizon open-pit mine, is approximately 3–6 km away 

from the measurements. The PBL height was low during this time at 252±14 m, with low solar 

irradiance at 160±9 W m-2 due to an overcast cloud layer, however the timing of the transect near 
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noon provided close to the maximum radiation for the day. Table 3.1 shows that the maximum 

time for complete plume mixing 3t* was 17 minutes, which is within the fastest possible 

transport time to the open-pit mine at 21 minutes. However, the close margin of these values and 

the neutral atmospheric conditions (class D) reduces confidence in the assumption of complete 

plume mixing. 
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Figure 3.10: Mobile measurements from Mar 30 2017 showing the west-east transect 3 that 

identified a CH4 plume from the CNRL facility downwind from open-pit mining. Panel B shows 

the corresponding time series of CH4 mixing ratios. 
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3.3.4 Comparison between top-down and bottom-up estimates 

An intensive top-down CH4 study using aircraft measurements was conducted in Summer 

2013 led by Environment and Climate Change Canada (Baray et al., 2018). In that study, CH4 

was tracked using chemical signatures for tailings ponds (VOCs) and open-pit mining (NOy + 

black carbon) and emissions were individually quantified per facility and per source. Aircraft 

mass balance of Suncor open-pit mining in Aug 2013 was 1.5 ± 0.4 t hr-1 on one day and 1.9 ± 

0.3 t hr-1 on another day. These emissions on average (1.7 ± 0.4) are 70% higher than the average 

2017 emissions in this study (1.0 ± 0.4 t hr-1). However, we are comparing to a limited number of 

days of observations (2 days each in 2013 and 2017) and the uncertainty intervals overlap. It is 

not clear how much of this difference is due to uncertainties in the method – which would be 

resolved with a larger number of samples – day-to-day variability in the meteorological 

conditions, a seasonal dependence on emissions, and/or a change in activity factors between 

2013 to 2017. For example, in this 2017 study, there is a 0.2 t hr-1 difference in repeat 

measurements for the same day on Mar 28 and a 0.3 t hr-1 difference on Mar 31, and the mean 

difference between the Mar 28 and Mar 31 average emissions rates is 0.55 t hr-1. The mean 

difference between Aug 2013 aircraft measurement days is 0.4 t hr-1 for this same source. These 

30-50% uncertainty intervals are typical for mass balance methods (Cambaliza et al., 2014). 

Hence a signal from a seasonal dependence on emissions, which likely exists, is beneath the 

noise of the limited samples of mass balance derived emissions. Reductions in the uncertainties, 

which can be most readily addressed with larger sample sizes, may better characterize finer-scale 

fluctuations in emissions. 

The complex nature of methane emissions in the AOSR have made reconciling divergent top-

down and bottom-up emissions estimates challenging. Several studies have taken place in the 

AOSR area to quantify methane emissions with both bottom-up and top-down approaches which 

have been compared to industry-reported estimates in the Greenhouse Gas Reporting Program 

(GHGRP). The GHGRP methane emissions for tailings ponds and open pit mines are derived 

from flux chamber measurements at the surface according to the protocols described by Alberta 

Environment and Parks (GOA, 2019). Johnson et al. (2016) showed a control-system approach 

whereby extracted core samples from undeveloped mine regions were shown to degas CH4 and 
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used those samples to develop emissions factors as a function of total mined material or bitumen 

content to provide an alternate emission estimate from the open pit mining sources. In that study 

emissions were lower than the GHGRP, however the authors noted that it was unclear whether 

their emissions factors represented the same emissions that are measured by flux chambers at the 

mine surface or should be considered as additional emissions. As they elaborated, anecdotal 

reports suggest that the CH4 from open-pit mining tends to originate from a small number of 

locations, with most flux chamber measurements showing near zero fluxes and other locations 

showing order of magnitude larger emissions. Hence the authors suggest it is more likely that 

decomposition of the mined material is a different mechanism of emissions from the open pit 

surface emissions measured at the permeable surface. The Alberta Energy Regulator addresses 

the heterogeneity of the surface fluxes by setting recommendations for how flux chamber 

measurements should sample tailings ponds and open pit mines, but studies continue to show 

discrepancies. 

For the summer 2013 aircraft study, the resulting emissions estimates were 48% higher than 

the GHGRP for the AOSR as a whole and 133% higher than the GHGRP for the Suncor facility. 

More recently You et al. (2021) used micrometeorological flux methods at SUN Pond 2/3 in 

summer 2017 and compared their emissions estimates from these tailing ponds to coincident flux 

chamber measurements. They showed the eddy covariance method emissions were 222% higher 

than the flux chamber method over the same period of measurements. Extrapolating 5-week 

2017 measurements to the entire year resulted in emissions of 6548 t CH4 yr-1. In this study, our 

mean estimate for March 2017 Suncor mining is 1.0 t CH4 hr-1, which corresponds to 8760 t CH4 

yr-1 when extrapolated for all of 2017, with an assumption of a constant temporal profile. 

Therefore, the sum of these two top-down studies in 2017 for the Suncor facility from: (1) open-

mining emissions that we determine using MSMB in this study and (2) tailings ponds emissions 

in You et al. (2021) using eddy covariance measurements corresponds to 15,338 t CH4 yr-1, or 

1.75 t hr-1. As shown in Figure 3.11, in the GHGRP, the total emissions from Suncor in 2017 

were reported to be 5977 kt (0.68 t hr-1); the sum of these two estimates is 157% higher than the 

GHGRP. Figure 3.11 also shows that in the GHGRP, emissions decreased from 2013 to 2017 by 

~63%. Similarly, the difference between top-down measurements in 2013 and 2017 correspond 
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to a decrease of ~42%. The results may suggest top-down and bottom-up measurements 

corroborate a similar downtrend in emissions but differ in each year due to some form of bias. 

Unfortunately, the GHGRP does not report error intervals, so we are unable to determine if these 

differences can be associated with measurement uncertainties which is highly likely to be an 

important consideration for the comparison. 

Future measurements should aim to reconcile divergent emissions, which can be 

accomplished by improving both top-down and bottom-up methods (Zavala-Araiza et al., 2015). 

The continued discrepancy may be due to a combination of factors from a) methodology and 

accounting of emissions in bottom-up estimates and b) temporal variability and gaps in top-down 

measurements. A low bias of 64% in the flux chamber method has been discussed in You et al. 

(2021) for a tailings pond using coincident measurements. If such a low bias demonstrated at one 

pond in that study is representative of the entire AOSR then it would largely explain the 

differences shown in Figure 3.11. However, it has been shown in Zhang et al. (2019) that 

individual flux chamber measurements can either be unrepresentatively high when emissions 

hotspots overwhelm the instrument or unrepresentatively low since most of the area sources are 

not uniformly emitting methane. Furthermore, Vaughn et al. (2018) showed that for natural gas 

production, temporal variability in measurement coverage largely explains the difference 

between top-down and bottom-up estimates. If tailings ponds and mining emissions are 

insensitive to environmental conditions, this may result in negligible differences in emissions 

diurnally and over a month (You et al., 2021). The seasonality of tailings ponds emissions can be 

further complicated by the unique character of each pond as process-active or reclamation sites 

(Clark et al., 2021). The fluxes produced by tailings ponds and open pit mines may vary with 

several environmental (temperature, wind-speed) and activity related factors (mining operations, 

degassing from fissures, diluent composition and outfalls into tailings ponds, ice melting, etc). 

Improving emissions estimates on both ends for bottom-up and top-down methods will likely 

converge upon a more reliable CH4 budget for the AOSR. Field studies that intercompare 

between measurement techniques will shed better light on discrepancies and the mechanisms of 

CH4 release that influence the pattern of emissions. Ideally, year-round high-density spatial and 
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temporal field measurements can better characterize these temporal gaps. The cost effective 

vehicle-based measurements shown in this study can be readily deployed to fit that purpose. 

 

 

Figure 3.11: Comparison of top-down emission rates (brown and blue bars) to GHGRP (green 

line and squares) for the Suncor facility. The 2013 tailings ponds and mining emissions rates are 

from the summer 2013 aircraft campaign (Baray et al., 2018). The 2017 tailings ponds emissions 

are from the summer 2017 TAPOS eddy covariance measurements (You et al., 2021), and the 

2017 open-pit mining emissions are from this study using measurements from March 2017, both 

upscaled for the year. 
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3.4 Conclusions  

We show mobile surface measurements of CH4 can be used to survey cold season methane 

emissions in the AOSR in two different field studies, Fall/Winter 2014 and Spring/Winter 2017 

under snow covered conditions. The measurements show that tailings ponds emissions continue 

to emit large CH4 plumes, both from Syncrude Mildred Lake Settling Basin (MLSB) and Suncor 

Pond 2/3 (P23) in both years. Based on previous measurements (Baray et al., 2018) consistent 

with bottom-up studies (Small et al., 2015), these two tailings ponds sources account for the 

overwhelming majority (>90%) of pond methane emissions in the AOSR, which this study 

shows is persistent in the cold season. We repeatedly measured maximum CH4 mixing ratios 

exceeding 3.0 ppm on the highways nearing MLSB and P23.  

Our measurements also show high CH4 mixing ratios of 23 ppm in 2014 and 87 ppm in 2017, 

which in 2017 was visually confirmed to be from venting activity. These localized events were 

not frequently observed over the two field studies, and we infer that they are not comparable in 

magnitude to open-pit mining and tailings ponds emissions. However, their existence poses 

uncertainties for top-down measurements since high emitting events could occur during temporal 

gaps between measurements. 

We used the novel approach of mobile-surface mass-balance (MSMB), which is similar to 

aircraft mass balance studies that determine emissions rates using single transects. The 

assumption of a well-mixed plume in the planetary boundary layer is justified here using 

extensive meteorological measurements in the region and LIDAR backscatter retrievals of the 

PBL height. We present four repeat transects with optimal conditions downwind of the Suncor 

open pit mining in 2017 on two different days, and show using HYSPLIT modelling that the 

plume can be modelled to the Steepbank mine, with unlikely interference from Suncor tailings 

ponds or upgrader facility emissions. Our estimate for Suncor open pit mining is 1.0 ± 0.4 t CH4 

hr-1 in 2017. When this emissions rate is combined with the Suncor tailings pond emissions rate 

from You et al. (2021), the resulting sum is a factor of 2.6 higher than the reported emissions in 

the bottom-up GHG inventory. These results show that there is consistent discrepancy between 

bottom-up and top-down emissions rates for the AOSR, and further measurements are needed to 
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produce the most robust budget and mechanistic understanding for these fugitive emissions. 

Mobile surface campaigns are a cost-effective solution to fill the spatial and temporal 

observation gaps, as aircraft campaigns are limited in time and surface stations are limited in 

space. Long-term monitoring of emissions trends provides key data to guide fugitive emissions 

mitigation policy. 
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Abstract 

Methane emissions in Canada have both anthropogenic and natural sources. Anthropogenic 

emissions are estimated to be 4.1 Tg a-1 from 2010–2015 in the National Inventory Report 

submitted to the United Nation’s Framework Convention on Climate Change (UNFCCC). 

Natural emissions, which are mostly due to Boreal wetlands, are the largest methane source in 

Canada and highly uncertain, on the order of ~20 Tg a-1 in biosphere process models. Aircraft 

studies over the last several years have provided ‘snapshot’ emissions that conflict with 

inventory estimates. Here we use surface data from the Environment and Climate Change 

Canada (ECCC) in situ network and space borne data from the Greenhouse Gases Observing 

Satellite (GOSAT) to determine 2010–2015 anthropogenic and natural methane emissions in 

Canada in a Bayesian inverse modelling framework. We use GEOS-Chem to simulate 

anthropogenic emissions comparable to the National Inventory and wetlands emissions using an 

ensemble of WetCHARTS v1.0 scenarios in addition to other minor natural sources. We conduct 

a comparative analysis of the monthly natural emissions and yearly anthropogenic emissions 

optimized by surface and satellite data independently. Mean 2010–2015 posterior emissions 

using ECCC surface data are 6.0 ± 0.4 Tg a-1 for total anthropogenic and 11.6 ± 1.2 Tg a-1 for 

total natural emissions. These results agree with our posterior using GOSAT data of 6.5 ± 0.7 Tg 

a-1 for total anthropogenic and 11.7 ± 1.2 Tg a-1 for total natural emissions. The seasonal pattern 

of posterior natural emissions using either dataset shows a slower to start emissions in the spring 

and a less intense peak in the summer compared to the mean of WetCHARTS scenarios. We 

combine ECCC and GOSAT data to characterize limitations towards sectoral and provincial 

level inversions. We estimate Energy + Agriculture emissions to be 5.1 ± 1.0 Tg a-1 which is 

59% higher than the National inventory. We attribute 39% higher anthropogenic emissions to 

Western Canada than the prior. Natural emissions are lower across Canada. Inversion results are 

verified against independent aircraft data and surface data which show better agreement with 

posterior emissions. This study shows a readjustment of the Canadian methane budget is 

necessary to better match atmospheric observations with lower natural emissions partially offset 

by higher anthropogenic emissions.  
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4.1 Introduction 

Methane is a significant anthropogenically-influenced greenhouse gas second to carbon 

dioxide in terms of its direct radiative forcing (Myhre et al., 2013). The mixing ratio of methane 

has increased from ~720 to ~1800 ppb since pre-industrial times (Hartmann et al., 2013). 

Present-day global methane emissions are well known to be 550 ± 60 Tg a-1 (Prather et al., 

2012). However recent trends in atmospheric methane since the 1990s are not well understood 

(Turner et al., 2019). Anthropogenic methane sources include oil and gas activities, livestock, 

rice cultivation, coal mines, landfills, and wastewater treatment. Natural methane emissions are 

dominated by wetlands, but also include seeps, termites and biomass burning (Kirschke et al., 

2013). The main sink of methane is oxidation by the hydroxyl radical (OH) resulting in a lifetime 

of 9.1 ± 0.9 years (Prather et al., 2012). Improving constraints on national methane emissions is a 

requirement of mitigation policy (Nisbet et al., 2020). Here we use atmospheric methane 

observations from the Environment and Climate Change Canada (ECCC) surface network and 

satellite observations from the Greenhouse Gas Observing Satellite (GOSAT) to estimate 

Canadian methane emissions and disaggregate anthropogenic and natural sources. 

In the Government of Canada’s submission to the United Nations Framework Convention on 

Climate Change (UNFCCC), hereafter referred to as the National Inventory, anthropogenic 

emissions are estimated to be 4.1 Tg a-1 in 2015, with 68% of emissions originating from the 

Western Canadian provinces of Alberta (42%), Saskatchewan (17%) and British Columbia (9%). 

Sectoral contributions over the entire country are from three categories: Energy (49%), 

Agriculture (29%) and Waste (22%) (Environment and Climate Change Canada, 2017). Natural 

emissions, which are mostly due to Boreal wetlands, are highly uncertain, on the order of ~10-30 

Tg a-1 from biosphere process modelling (Miller et al., 2014; Bloom et al., 2017). 

Atmospheric observations provide constraints on methane emissions. Studies constraining 

anthropogenic and/or natural methane emissions within Canada have included the use of surface 

in situ measurements (Miller et al., 2016; Atherton et al., 2017; Ishiziwa et al., 2019), aircraft 

campaigns (Johnson et al., 2017; Baray et al., 2018) and satellites (Wecht et al., 2014; Turner et 

al., 2015; Maasakkers et al., 2021). These observations can determine emissions through mass 
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balance methods or be used in conjunction with a chemical transport model (CTM). Bayesian 

inverse modelling constrains prior knowledge of emissions based on the mismatch between 

modelled and observed concentrations. This requires reliable mapping of “bottom-up” inventory 

emissions for the “top-down” observational constraints to be useful (Jacob et al., 2016). Inverse 

modelling has been more challenging for Canada than the United States due to a) the sparsity of 

surface stations and satellite data (Sheng et al., 2018a), b) a factor of ~10 lower anthropogenic 

emissions (Maasakkers et al., 2019), c) large spatially-overlapping emissions from Boreal 

wetlands that are highly uncertain (Miller et al., 2014), and d) model biases in the high-latitudes 

stratosphere (Patra et al., 2011), compromising the interpretation of observed methane columns. 

These observing system challenges have made Canadian methane emissions difficult to 

quantify. However, studies show a consistent story across different scales and measurement 

platforms. Miller et al. (2014, 2016) determined that the North American network can 

successfully constrain Canadian natural emissions and found Boreal wetlands to be lower in 

2008 when compared to prior fluxes in the WETCHIMP model. Aircraft campaigns over the 

Alberta oil and gas sector have found higher emissions than inventories in the Red Deer and 

Lloydminster regions (Johnson et al., 2017) and unconventional oil extraction in the Athabasca 

Oil Sands region (Baray et al., 2018). Atherton et al. (2017) conducted ground-based mobile 

measurements of gas production in British Columbia and determined higher emissions than 

reported, and Zavala-Araiza et al. (2018) conducted similar ground-based measurements in 

Alberta to show a profile of super-emitters dominating the fugitive methane profile similar to 

sites in the United States. Ishiziwa et al. (2019) constrained arctic wetland fluxes to be similar in 

magnitude to the mean of the WetCHARTS inventory but with better identified seasonal and 

interannual variability. Satellite inversions over North America using the GEOS-Chem CTM and 

data from SCIAMACHY (Wecht et al., 2014) or GOSAT (Turner et al., 2015; Maasakkers et al., 

2019) consistently require an increase in anthropogenic emissions in Western Canada and a 

decrease in natural emissions in Boreal Canada to match observations, even with the use of 

updated Canadian fluxes in Maasakkers et al. (2019) for anthropogenic (Sheng et al., 2017) and 

wetlands (Bloom et al., 2017) sources. Inverse modelling studies that use both in situ and 

satellite observations are valuable for intercomparison and for identifying the limits of spatial 
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and temporal discretization that are possible (Lu et al., 2021; Tunnicliffe et al., 2020). The 

Tropospheric Monitoring Instrument (TROPOMI) launched in 2017 with a data record beginning 

in 2018 and is expected to provide significant improvements in emissions monitoring through 

denser observational coverage at a similar precision to GOSAT (Hu et al., 2018). It is necessary 

to build a reliable historical record of Canadian methane emissions, as anthropogenic emissions 

are sensitive to changes in policy and economic activity (Rogelj et al., 2018) and natural 

emissions in Boreal Canada may be sensitive to climate change (Kirschke et al., 2013). 

In this study we use surface observations from the ECCC GHG monitoring network and 

satellite data from GOSAT to constrain anthropogenic and natural emissions in Canada. We use 

the GEOS-Chem CTM to simulate 2010–2015 methane concentrations. The model setup 

includes the use of an improved bottom-up inventory for Canadian oil and gas emissions (Sheng 

et al., 2017), the WetCHARTS extended ensemble for wetland emissions (Bloom et al., 2017) 

and EDGAR v4.3.2 for other anthropogenic sources. We perform an ensemble forward model 

analysis which compares six wetlands scenarios to the ECCC surface observation network to 

assess the influence of process model configurations on Canadian methane. A series of Bayesian 

inverse analyses are performed that use ECCC and GOSAT data independently and in a joint 

surface-satellite system. We constrain monthly natural emissions and yearly total anthropogenic 

emissions from 2010–2015 using ECCC and GOSAT data independently for comparison to 

produce aggregated-source emissions estimates. We test the limitations of the ECCC and 

GOSAT joint observation system towards constraining emissions by inventory sector and 

according to provincial boundaries. We demonstrate where the observation system succeeds in 

providing strong constraints on major emissions sources and quantify the information content of 

the system to understand the limitations for resolving all minor Canadian emissions. 

4.2 Data and methods 

We use the GEOS-Chem CTM v12-03 (http://acmg.seas.harvard.edu/geos/) to simulate 

methane fields from 2010–2015 on a 2° x 2.5° global grid and compare to surface observations 

from the ECCC in situ GHG monitoring network and satellite observations from GOSAT within 

the Canadian domain. We test for bias in the global model representation of background methane 

http://acmg.seas.harvard.edu/geos/
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using both surface and aircraft in situ data at Canada’s most westerly site, Estevan Point (ESP), 

using global GOSAT data, and using global NOAA/HIPPO data. The sensitivity of simulated 

methane in Canada to the use of different wetlands flux parametrization is evaluated by 

comparing an ensemble of WetCHARTS v1.0 configurations to ECCC surface observations. The 

WetCHARTS ensemble mean in addition to other GEOS-Chem prior emissions are used in the 

Bayesian inverse analysis which optimizes Canadian sources using ECCC surface data and 

GOSAT satellite data independently for comparative analysis. We show the limitations of the 

observing system towards subnational level discretization by combining ECCC and GOSAT data 

in a joint-inversion. Here we describe the observations, the model, and the inverse analysis in 

further detail. 

4.2.1 Observations 

4.2.1.1 In situ surface observations 

We use continuous measurements from eight sites in the ECCC greenhouse gas monitoring 

network from 2010–2015. Figure 4.1 shows a map of the sites and Table 4.1 provides a 

descriptive list. The eight sites are Estevan Point, British Columbia (ESP), Lac La Biche, Alberta 

(LLB), East Trout Lake, Saskatchewan (ETL), Churchill, Manitoba (CHC), Fraserdale, Ontario 

(FRA), Egbert, Ontario (EGB), Chibougamau, Quebec (CHM) and Sable Island, Nova Scotia 

(SBL). All sites use Picarro cavity ring-down spectrometers (G1301, G2301 or G2401) 

measuring dry-air mole fractions of methane with hourly-average precision better than 1 ppb. For 

model comparison the measurements are averaged over 4h from 12:00 to 16:00 local time, when 

the planetary boundary layer is well-mixed. The instruments are calibrated against World 

Meteorological Organization (WMO) certified standard gases. The westernmost site, ESP, 

measures methane continuously from a 40 m tower at a lighthouse station on the west coast of 

Vancouver Island. ESP is surrounded by forests to the north, east, and south and the Pacific 

Ocean to the west. ESP is used to evaluate boundary conditions and model bias in the methane 

background as it is the least sensitive to Canadian emissions due to prevailing westerly winds. 

Sites LLB and ETL are the most sensitive to anthropogenic emissions in Western Canada. LLB 

measures continuously from a 50 m tower located in a region of peatlands and forest ~200 km 
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NE of Edmonton and ~230 km S of Fort McMurray. ETL measures from a height of 105 m 

located ~150 km north of Prince Albert surrounded by Boreal forest. The sites in the Hudson 

Bay Lowlands (HBL) region, CHC and FRA, are the most sensitive to natural wetland emissions 

as this area produces some of the largest methane fluxes from wetlands in North America. CHC 

measures continuously from a 60 m tower in a small port town on the western edge of Hudson 

Bay surrounded by flat tundra. FRA measures from a 40 m tower and is located on the southern 

perimeter of James Bay surrounded by extensive wetlands coverage. The site CHM in Quebec is 

also sensitive to natural wetland emissions and is excluded in the inverse analysis to be used to 

verify the posterior results. CHM is substituted by Chapais, Quebec ~50 km away from 2011 

onwards. The remaining Central and Atlantic Canada sites EGB and SBL are sensitive to net 

outflow from Canadian sources, both natural and urban, and some emissions from the Eastern 

United States. EGB is in a small rural village ~80 km north of Toronto and measures from a 25 

m tower. SBL is on a remote uninhabited island 275 km ESE of Halifax, Nova Scotia and 

measures from a height of 25 m. 

 

Table 4.1: Descriptive list of ECCC in situ observation sites used in the analysis. 

Site Code Full Name, Province Latitude Longitude Elevation (asl) / 

Sampling Height 

(agl) (m) 

ESP Estevan Point, British 

Columbia 

49.4° N 126.5° W 7 / 40 

LLB Lac La Biche, Alberta 55.0° N 112.5° W 548 / 50 

ETL East Trout Lake, 

Saskatchewan 

54.4° N 105.0° W 500 / 105 

CHC Churchill, Manitoba 58.7° N 93.8° W 16 / 60 

FRA Fraserdale, Ontario 49.8° N 81.5° W 210 / 40 

EGB Egbert, Ontario 44.2° N 79.8° W 225 / 25 

SBL Sable Island, Nova Scotia 43.9° N 60.0° W 2 / 25 

CHM*† Chibougamau, Quebec 49.7° N 74.3° W 383 / 30 

CHA*† Chapais, Quebec 49.8° N 75.0° W 381 / 30 

* Chibougamau, Quebec is replaced by Chapais, Quebec ~50 km away from 2011 onwards, overlapping in Fig.4.1 
† Site is used to evaluate the posterior inversion results, and is not used in the inversion itself 
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4.2.1.2 GOSAT satellite observations 

The Greenhouse Gas Observing Satellite (GOSAT) was launched in January 2009 by the 

Japan Aerospace Exploration Agency (JAXA). GOSAT is in a low-Earth polar sun-synchronous 

orbit with an equator overpass around 13:00 local time. The TANSO-FTS instrument on-board 

GOSAT retrieves column-averaged dry air mol fractions of methane using short-wave infrared 

(SWIR) solar backscatter in the 1.65 µm absorption band (Butz et al., 2011). Observation pixels 

in the default mode are 10 km in diameter separated by 260 km along the orbit track with 

repeated observations every 3 days. Target mode observations provide denser spatial coverage 

over areas of interest. There has been no observed degradation of GOSAT data quality since the 

beginning of data collection (Kuze et al., 2016). Here we use version 7 of the University of 

Leicester proxy methane retrieval over land from January 2010 to December 2015 (Parker et al., 

2011, 2015; ESA CCI GHG project team, 2018). The single-observation precision of GOSAT 

XCH4 data is 13 ppb, and the relative bias is 2 ppb when validated against the Total Column 

Carbon Observing Network (TCCON; Buchwitz et al., 2015). Figure 4.1 shows the GOSAT 

observations over Canada used in our analysis within the domain of 45° N–60° N latitude and 

50° W–150° W longitude. The observations used have passed all quality assurance flags for a 

total of 45,936 observations from 2010–2015, or approximately ~7600 observations per year. 

Our analysis excludes glint data over oceans, and cloudy conditions are accounted for by the 

quality assurance flags. We avoid using data above 60° N latitude due to higher uncertainty in 

the satellite retrieval and the model comparison (Maasakkers et al., 2019; Turner et al., 2015). 
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Figure 4.1: ECCC surface (left) and GOSAT satellite (right) observations used in the inverse 

analysis. A descriptive list of the ECCC sites is shown in Table 4.1. GOSAT data shown is from 

a single year in 2013 and is filtered to the Canadian domain within 45°N–60°N latitude and 

50°W–150°W longitude. There are ~600 GOSAT observations per month in this domain with a 

minimum Nov–Jan (112–248) and maximum Jul–Sep (872–1098), individual months are shown 

in the Supplement (Fig. C.1). 

 

4.2.2 Forward Model 

We use the GEOS-Chem CTM v12-03 at 2° × 2.5° grid resolution driven by 2009–2015 

MERRA-2 meteorological fields from the NASA Global Modeling and Assimilation Office 

(GMAO). Initial conditions from January 2009 are from a previous GOSAT inversion by Turner 

et al. (2015) which was shown to be unbiased globally when compared to surface and aircraft 

data. Bottom-up anthropogenic emissions in GEOS-Chem are from the 2013 ICF Canadian oil 

and gas inventory (Sheng et al., 2017) and the 2012 EDGAR v4.3.2 global inventory for other 

Canadian and global sources, and the gridded US 2012 EPA Inventory for the United States 

(Maasakkers et al., 2016). For wetlands, six configurations from the 2010–2015 extended 

ensemble of WetCHARTS (Bloom et al., 2017) are used in the ensemble forward model analysis 

(Section 4.3.1) and the ensemble mean is used as the prior for the inverse analysis (Sections 
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4.3.2–4.3.4). Figure 4.2 shows the spatial distribution of the prior methane emissions in Canada 

from the major anthropogenic and natural sources. The two largest sources are from the ICF oil 

and gas inventory, (Sheng et al., 2017) and wetland emissions from the ensemble mean of the 

WetCHARTS inventory (Bloom et al., 2017), with significant emissions from livestock and 

waste emissions from EDGAR. Oil and gas are 54% of the anthropogenic total and wetlands are 

94% of the natural total. The prior emissions estimates in this simulation are summarized in 

Table 4.2, which organizes emissions by Canadian source categories and are compared to sector 

attribution in the National Inventory (Environment and Climate Change Canada, 2017). Our 

totals for Energy, Agriculture and Waste are 2.4, 1.0, and 0.9 Tg a-1 respectively compared to 

2.0, 1.2 and 0.9 Tg a-1 in the National Inventory. In the absence of a spatially disaggregated 

Canadian inventory for methane, we consider these prior estimates reasonably similar for the 

purpose of comparing our posterior emissions to the National Inventory, however we cannot 

compare the spatial pattern of emissions which will likely show more discrepancies. Natural 

emissions are divided into wetlands, which are 14.0 Tg a-1 in the ensemble mean, and other 

natural sources, which are 0.8 Tg a-1 from biomass burning, seeps, and termites. Each component 

of other natural emissions has a separate spatially disaggregated inventory as described in 

Maasakkers et al. (2019). Emissions from the United States and the rest of the world are included 

in the model but not optimized in the inversions. Loss of methane from oxidation due to OH is 

computed using archived 3-D monthly fields of OH from a previous GEOS-Chem full-chemistry 

simulation (Wecht et al., 2014).  
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Table 4.2: Mean 2010–2015 prior estimates of Canadian methane emissions used in GEOS-

Chem arranged according to categories in the National Inventory (Environment and Climate 

Change Canada, 2017). 

Category Source Typea 
Emissions 

(Tg a-1)a 

Total 

(Tg a-1)a 

Inventory 

(Tg a-1)b 

 

Energy 

Oil 0.52 

2.42 2.00 

Anthropogenic 

Gas 1.81 

Coal 0.09 

Agriculture Livestock 1.00 1.00 1.20 

Waste 

Landfills 0.66 

0.94 0.92 
Wastewater 0.19 

Other 

Anthropogenic 
0.09 

Natural 

Wetlands - 14.0 14.0 - 

Other 

Natural 

Biomass 

Burning 
0.28 

0.84 - 
Seeps 0.28 

Termites 0.28 

aEmissions inputs for GEOS-Chem. These are shown for the individual source types and summed over 

the categories Energy, Agriculture and Waste. In Canada, oil and gas are from Sheng et al. (2017), coal, 

livestock, landfills, wastewater and other anthropogenic are from EDGAR v4.3.2, wetlands are from 

Bloom et al. (2017). Biomass burning is from QFED (Darmenov and da Silva, 2013) and termite 

emissions are from Fung et al. (1991). Seeps and other global sources are described in Maasakkers et al. 

(2019). 

bEmissions from the National Inventory (Environment and Climate Change Canada, 2017) that 

correspond to the Energy, Agriculture and Waste categories. These are used in the discussion of results 

but are not included in the inverse model. 
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Figure 4.2: Prior estimates of anthropogenic and natural methane emissions. Colour bars are in 

log scale in units of kg CH4 km-2 a-1. Most anthropogenic emissions fall under the energy 

category (A) which are oil and gas in the ICF inventory (Sheng et al., 2017) plus minor 

emissions from coal in EDGAR 4.3.2. Livestock (B) and waste (C) are from EDGAR. Natural 

emissions are primarily wetlands from the WetCHARTS inventory (D; Bloom et al., 2017). 
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4.2.3 Inverse Model Methodology 

We optimize emissions in the inverse analysis by minimizing the Bayesian cost function J (x) 

(Rodgers, 2000). 

 

J (x) = ½ (x – xa)
TSa

-1(x – xa) + ½ (y – F(x))TSo
-1(y – F(x))  {4.1} 

 

Where x is the vector of emissions being optimized, xa is the vector of prior emissions (Table 

4.2), F(x) is the simulation of methane concentrations corresponding to the observation vector y 

of ECCC surface and/or GOSAT data. Sa is the prior error covariance matrix and So is the 

observational error covariance matrix. The observational error matrix includes both instrument 

and model transport error. The GEOS-Chem model relating methane concentrations to emissions 

F(x) is essentially linear and can be represented by the Jacobian matrix K such that F(x) = Kx + 

b, where b is the model background. The background includes initial conditions from Turner et 

al. (2015) and methane from global emissions that are held constant in the inversion. Possible 

bias in the background is evaluated in detail in the Supplement Section C.3 and shown to be 

minimal. The K matrix is of m by n size where n is the number of state vector elements being 

optimized and m is the number of ECCC surface and/or GOSAT observations being used. The K 

matrix is constructed using the forward mode of GEOS-Chem and the tagged tracer output for 

Canadian sources which describes the sensitivity of concentrations to emissions dy/dx in ppb Tg-

1.  

GEOS-Chem continuously simulates global emissions with a global source-sink imbalance of 

+13 Tg a-1 in the budget as described in Maasakkers et al. (2019). We show in Section C.3 of the 

Supplement that this configuration of the model reliably reproduces the global growth rate in 

atmospheric methane with adjustments only needed for 2014 and 2015 primarily due to 

differences in tropical wetland emissions (Maasakkers et al., 2019), with reduced transport errors 

at the 2° × 2.5° resolution (Stanevich et al., 2020). This gives a well-represented background for 

methane which is tested using global GOSAT and NOAA data, as well as in situ data at 

Canadian background sites. We improve the model representation of methane using bias 
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corrections which are discussed in Section C.3 of the Supplement, and we show the consistency 

of the inversion results without adjustments to the model. A high resolution inversion over North 

America over the 2010–2015 time-period using the same prior has shown adjustments to US 

emissions near the Canadian border are also relatively minimal, (Maasakkers et al., 2021), so we 

treat US emissions as constant. The assumption of constant US emissions is tested in Section 

C.3.2 of the Supplement by removing ECCC stations near the US border from the inversion, 

which show consistent results. Hence, we can attribute the model-observation mismatch (y – 

F(x)) using observations limited to Canada to Canadian emissions which are optimized in the 

inversion. In the main text we show three inversions with a different number of state vector 

elements: a) the monthly inversion (n = 78) optimizes monthly natural emissions in Canada and 

yearly anthropogenic emissions from 2010–2015, b) the sectoral inversion (n = 5) optimizes 

emissions according to the major inventory categories in Table 4.2 individually for each year, 

and c) the provincial inversion (n = 16) optimizes emissions according to subnational boundaries 

which is also repeated for each year. The monthly inversion provides higher temporal resolution 

relative to the other approaches in this study to constrain the seasonality of natural emissions, 

assuming the spatial distribution is correct. The sectoral inversion provides direct constraints on 

inventory categories, and the provincial inversion provides relatively higher spatial resolution for 

subnational attribution. Substituting F(x) = Kx in eq. 4.1 and subtracting the background b, the 

analytical solution of the cost function dJ(x)/dx = 0 yields the optimal posterior solution x̂ 

(Rodgers, 2000): 

 

x̂ = xa + SaKT (KSaKT + So)-1 (y – Kxa)   {4.2} 

 

The analytical solution provides closed-form error characterization, such that the posterior 

error covariance Ŝ of the posterior solution x̂ is given by: 

 

Ŝ = (KTSo
–1K + Sa

–1) –1    {4.3} 
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The averaging kernel matrix A is used to evaluate the surface and satellite observing systems 

and is given by: 

 

       A = In – ŜSa
–1     {4.4} 

 

where In is the identity matrix of length n corresponding to the number of state vector elements. 

The averaging kernel matrix A describes the sensitivity of the posterior solution x̂ to the true 

state x (A = dx̂/dx). The trace of A provides the degrees of freedom for signal (DOFS), which is 

the number of pieces of information of the state vector that is gained from the inversion (DOFS ≤ 

n). The diagonal values of A provide information on which Canadian state vector elements can 

be constrained by ECCC surface and GOSAT satellite observations above the noise, and higher 

DOFS closer to n correspond to better constrained sources in total. As a further diagnostic of the 

inversion we conduct a singular value decomposition of the prewhitened Jacobian Ǩ = So
-

1/2KSa
1/2 (Rodgers, 2000). The number of singular values greater than one is the effective rank of 

Ǩ, which shows the independence of the state vector elements and the number of pieces of 

information above the noise that are resolved in the inversion (Heald et al., 2004). The 

comparison between this eigenanalysis and the DOFS are discussed in the Supplement Section 

C.4 and is used to inform the limitations of the observation system. 

We construct the prior error covariance matrix Sa based on aggregated error estimates for 

source categories and regions. We use 50% error standard deviation for the aggregated 

anthropogenic emissions which includes the Sheng et al. (2017) oil and gas inventory and other 

EDGAR sources, 60% for wetland emissions from the Bloom et al. (2017) WetCHARTS 

inventory and 100% for non-wetlands natural sources. We assume no correlation between state 

vector elements so that Sa is diagonal. Anthropogenic emissions have been shown to be spatially 

uncorrelated (Maasakkers et al., 2016) however wetlands show spatial correlation (Bloom et al., 

2017). Here we optimize broadly aggregated categories, so our method assumes the spatial 

pattern of each state vector element is correct, however correlations between state vector 
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elements in the eigenanalysis are used to assess the limitations of source discretization in the 

observing systems. 

We construct the diagonal observation error matrix So which captures instrument and model 

error using the relative residual error method (Heald et al., 2004). In this approach the vector of 

observed-modelled differences ∆ = yGEOS-Chem – yobservations is calculated and the mean observed-

modelled difference ∆   = yGEOS-Chem – yobservations   is attributed to the emissions that will be 

optimized. Hence, the standard deviation in the residual error ∆’ = ∆ – ∆  represents the 

observational error and is used as the diagonal elements of So. For our Canadian inversion we 

find positive model-observation biases in the warmer months (April to September) and negative 

biases in the colder months (October to March). We calculate the relative residual error for 

growing and non-growing seasons separately, such that ∆’ is partitioned into ∆’g (April to 

September) and ∆’ng (October to March) which is then used to calculate the diagonal elements of 

So. For surface observations the mean observational error is 65 ppb. Since the instrument error is 

<1 ppb for afternoon mean methane measurements, the observational error is entirely attributed 

to transport and representation error of surface methane in the model grid pixels. For satellite 

observations the mean observational error is 16 ppb where the instrument error is 11 ppb, 

showing most of the observational error is from the instrument rather than the forward model 

representation of the total column. Column-averaged methane concentrations are less sensitive to 

surface emissions resulting in the lower model error (Lu et al., 2021). 

In summary, the inverse model is designed to suit the objectives of this study, which are to: 

(1) optimize anthropogenic and natural emissions in Canada at the national-scale and (2) 

compare the results of inversions using surface and satellite observations, and (3) characterize 

the limitations of the observing system towards subnational-scale emissions discretization. The 

spatial and temporal resolution of the inversion is limited by the precision of GOSAT data, the 

precision of the model representation of surface methane for ECCC data, and the sparse coverage 

of both systems relative to the smaller magnitude of Canadian emissions. This simplified 

approach, where Canadian emissions are optimized using only observations in Canada, may be 

sensitive to errors in the global model that are projected onto the Canadian domain. This is 
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minimized if errors in the regional representation of methane, which are corrected in the 

inversion, are much larger than errors in the background from the global model, or if the 

background methane is corrected using global observations outside of the Canadian domain. We 

show an analysis of the global model alongside sensitivity tests of the inversions in Section C.3 

of the Supplement which produce consistent results. Future studies may deploy a more 

sophisticated, high resolution inverse model that will match more sophisticated observations, 

which include an expanded ECCC surface network, as well as satellites with higher density 

(TROPOMI; Hu et al., 2018) or higher precision (GOSAT-2; Nakajima et al., 2017) observations 

outside of the years of this analysis. 

4.3 Results and discussion 

4.3.1 Evaluation of WetCHARTS extended ensemble for wetland emissions in Canada 

Wetlands are the largest methane source in Canada with uncertainties in the magnitude, 

seasonality, and spatial distribution of emissions. Our inverse analysis constrains the magnitude 

and seasonality of emissions with observations. Ideally, the prior emissions in the model should 

be the best possible representation of emissions to reduce error in the optimization problem 

(Jacob et al., 2016). Table 4.2 shows 2010–2015 mean wetland emissions in Canada to be 14.0 

Tg a-1 from the mean of the WetCHARTS v1.0 inventory (Bloom et al., 2017). These emissions 

are more than three times the total of anthropogenic emissions 4.4 Tg a-1. The much larger signal 

from wetland emissions poses a difficulty for constraining anthropogenic emissions (Miller et al., 

2014). In this section, we evaluate our use of the mean of the WetCHARTS v1.0 extended 

ensemble by running a series of forward model runs using alternate ensemble members in 

GEOS-Chem and comparing model output to ECCC in situ observations. 

The WetCHARTS extended ensemble for 2010–2015 contains an uncertainty dataset of 18 

possible global wetlands configurations as described in Bloom et al. (2017). These depend on 

three processing parameters which are: three CH4:C temperature-dependent respiration fractions, 

q10, corresponding to a 10°C change in surface skin temperature (q10 = 1, 2, or 3; where 1 is the 

highest temperature dependency), two inundation extent models (GLWD vs. GLOBCOVER; 

where GLWD corresponds to higher inundation in Canada) and three global scaling factors for 
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global emissions to amount to 124.5, 166 or 207.5 Tg CH4 yr-1 (3×2×3=18). We find using the 

scaling factors corresponding to 124.5 and 207.5 Tg CH4 yr-1 within GEOS-Chem results in an 

imbalance in the global budget beyond what is observed in our measurements and degrades the 

representation of background methane, so we limit the extended ensemble to six members which 

depend on three temperature parameterizations and two inundation scenarios (3×2=6). Figure 4.3 

shows the magnitude and spatial distribution of wetland emissions in the six scenarios. The total 

wetland emissions within Canada show nearly an order of magnitude difference between 

ensemble members from 3.9 Tg a-1 to 32.4 Tg a-1. Compared to the rest of North America, 

Boreal Canada shows the largest variability between ensemble members, with the Southeast 

United States as the second most uncertain (Sheng et al., 2018b).  

We use ECCC in situ observations to better constrain the range of wetlands methane 

emissions in the ensemble members. All six configurations are used in GEOS-Chem to produce a 

series of forward model runs for a subrange of years between 2013–2015. Figure 4.4 shows 

GEOS-Chem simulated methane concentrations using the six WetCHARTS configurations and 

compares them to four ECCC in situ measurement sites in Canada (LLB, ETL, FRA, EGB). This 

subset of available data is representative of sites sensitive to both anthropogenic and natural 

emissions. Most of Canadian anthropogenic emissions are from Western Canada (Fig. 4.2), 

which we use sites LLB and ETL to evaluate (Fig. 4.1), and a significant amount of Canadian 

natural emissions are from regions surrounding the Hudson’s Bay Lowlands, which we use sites 

FRA and EGB to evaluate. Methane concentrations from GEOS-Chem show large differences 

when compared to ECCC observations, ranging from +1050 to –150 ppb. The boundary-

condition site ESP (Fig. C.3) showed a mean bias of 5.3 ppb for all of 2010–2015. Since there is 

no similar mismatch in the global representation of methane, these biases up to 1050 ppb can 

therefore be attributed to misrepresented local Canadian emissions plus associated transport and 

representation error. Two types of biases with opposite signs appear from this comparison. The 

first type is a positive summertime bias where the modelled methane concentrations significantly 

exceed the observations; this bias is more pronounced in sites FRA (Fig. 4.4-C) and EGB (Fig. 

4.4-D), which are in Ontario and sensitive to the Hudson Bay Lowlands. The bias is also visible 

in the western sites LLB (Fig. 4.4-A) and ETL (Fig. 4.4-B) to a lesser extent. As we use a 
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smaller magnitude of wetlands methane emissions corresponding to the ensemble members in 

Figure 4.3 (from 32.4 Tg a-1 to 3.9 Tg a-1), this summertime bias decreases proportionately. 

Therefore, we can attribute these large positive summertime biases to growing season wetland 

emissions that are overestimated in the process model configurations. The second type of bias is 

a year-long negative bias that appears most in site LLB (Fig. 4.4-A) and is magnified with the 

use of lower-magnitude wetland emissions. This suggests the presence of year-round 

anthropogenic emissions in Western Canada that are underestimated in the prior, or that winter-

time wetland emissions could also be underestimated in WetCHARTS due to the lack of explicit 

soil water and temperature dependencies. The inverse modelling results in the next section 

attribute this bias to anthropogenic emissions. 

Miller et al. (2016) conducted a study constraining North American Boreal wetland emissions 

from the WETCHIMP inventory modelled in WRF-STILT by comparing to observations in 

2008. Their study included the use of three of the ECCC stations described here (CHM, FRA and 

ETL). The model comparison to observations in that study showed a similar pattern of modelled 

methane exceeding observations in the summer and a low bias at ETL. They suggested wetland 

emissions were overestimated in most model configurations and that the wetlands bias may be 

masking underestimated anthropogenic emissions. These conclusions are corroborated by the 

2013–2015 comparison shown here, we show high wetland emissions configurations in 

WetCHARTS produce a high bias that exceed measured summertime methane concentrations, 

and the use of lower wetlands configurations reveal a year-long low bias apparent in Western 

Canada. Our results suggest the combined use of higher inundation extent and lower temperature 

dependencies (GLWD and q10 = 3), or the use of lower inundation extent and higher temperature 

dependencies (GLOBCOVER and q10 = 1) best reproduce observations near the mean of the 

range of emissions, although the ensemble forward model analysis is unable to specify more 

detailed process model constraints. 

The forward model analysis in this section is a direct evaluation of wetlands configurations. 

This approach allows us manually tune wetlands scenarios and diagnose the sensitivity of the 

modelled-observed differences to the process modelling parameters. The inverse analysis shown 

subsequently is a statistical optimization that applies scaling factors to emissions based on the 
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same model-observation differences. The inverse analysis can be viewed analogously as an 

automatic approach. These results show the challenge with optimizing Canadian methane 

emissions when wetland emissions are largely uncertain. Our approach of optimizing 

anthropogenic and natural emissions simultaneously in an inversion is useful because attempting 

to constrain either emissions category, anthropogenic or natural, obfuscates the analysis on the 

other. We exploit the different pattern of anthropogenic and natural emissions in time and space 

(Fig. 4.4). Natural emissions peak in the summertime and are concentrated in Boreal Canada, 

while anthropogenic emissions are persistent year-round and are concentrated in Western Canada 

(Fig. 4.2). Hence when optimizing the model-observation mismatch in a Bayesian inverse 

framework, some elements of the observation vector will correspond to high biases from 

summertime observations in Boreal Canada and some elements will correspond to low biases in 

Western Canada. As the choice of prior for the inversion we use the mean of the WetCHARTS 

configurations (14.0 Tg a-1) which corresponds to the middle of the range shown shaded in red in 

Figure 4.4. The 60% range of uncertainty in the prior error covariance matrix Sa appropriately 

excludes the extreme scenarios in Fig. 4.3 and 4.4. 
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Figure 4.3: Ensemble members from the WetCHARTS v1.0 inventory (Bloom et al., 2017) with 

totals for wetland methane emissions within Canada for each configuration shown in Tg CH4 a
-1. 

Ensemble members vary according to the use of three CH4:C q10 temperature dependencies and 

two inundation extent scenarios (GLWD vs. GLOBCOVER) for 3×2=6 scenarios.  
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Figure 4.4: Time series of 2013–2015 modelled and observed methane concentrations. Monthly-

mean methane from ECCC in situ observations (black) are shown and compared to six GEOS-

Chem simulations differing in the use of WetCHARTS ensemble members for wetland 

emissions, with other emissions corresponding to Table 4.2. The six configurations are labelled 

GCXY where first digit (X=1,2,3) corresponds to the CH4:C q10 temperature dependency, which 

decreases the sensitivity of emissions to temperature with increasing value. The second digit 

(Y=3,4) corresponds to the model used for inundation extent (3 = GLWD, 4 = GLOBCOVER) 

where GLOBCOVER produces lower emissions in Canada. Emissions configurations are those 

shown in Fig. 4.3 in order of magnitude from red to purple lines, with the shaded red showing 

the range of concentrations. Sites are LLB, Alberta (A), ETL, Saskatchewan (B), FRA, Northern 

Ontario (C) and EGB, Southern Ontario (D).  
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4.3.2 Comparative Analysis of Inversions using ECCC in situ and GOSAT Satellite Data 

We optimize 2010–2015 emissions in Canada using an n = 78 state vector element inversion 

setup with GOSAT and ECCC data independently. Elements 1–72 of the inversion are monthly 

total natural emissions (wetlands + other natural) from 2010–2015 and elements 73–78 are 

yearly total anthropogenic emissions (energy + agriculture + waste) for the same years. These 

categories correspond to the emissions shown in Table 4.2. We do not optimize emissions 

according to clustered grid boxes like other satellite inversions using GEOS-Chem (Wecht et al., 

2014; Turner et al., 2015; Maasakkers et al., 2019) and instead scale the amplitudes of these two 

aggregated categories. This approach is a trade-off of time for space, due to the limitations of the 

observations, giving up finer spatial resolution for finer temporal resolution. This is useful for 

optimizing Canadian methane emissions since a) anthropogenic emissions are largely 

concentrated in Western Canada and require less spatial discretization over the entire country 

and b) natural emissions are the largest source and have an uncertain seasonality – as shown in 

the previous section – and require finer temporal discretization. The limitations of this method 

are that natural emissions are very unlikely to be spatially homogenous and vary due to 

hydrological differences even at the microtopographic level (Bubier et al., 1993). Perfectly 

resolving Canadian emissions sources in time and space is challenged by the sparsity and 

precision of the observing system and the model representation of the observations. We show the 

limitations of the combined ECCC and GOSAT observing system towards resolving subnational 

emissions in more detail in the subsequent section. 

Figure 4.5 (top) shows 2010-2015 posterior emissions using this 78 state vector approach with 

ECCC in situ data (blue) and GOSAT satellite data (green). Error bars are from the diagonal 

elements of the posterior error covariance matrix Ŝ. Posterior anthropogenic emissions averaged 

over the 6 year period are 6.0 ± 0.4 Tg a-1 (1σ year-to-year variability) using ECCC data and 6.5 

± 0.7 Tg a-1 using GOSAT data. Posterior estimates are 36% and 48% higher than the prior of 

4.4 Tg a-1 for ECCC and GOSAT results, respectively. There does not appear to be a significant 

year-to-year trend above the noise for the anthropogenic emissions optimized by either dataset. 

The posterior anthropogenic emissions using ECCC and GOSAT data show agreement with each 

other in each year but 2011, where the GOSAT derived emissions are statistically higher. The 
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error from the diagonal of the posterior error covariance matrix Ŝ may be overly optimistic, 

particularly for GOSAT data. This is due to the observational error covariance matrix So being 

treated as diagonal when realistically there are correlations between GOSAT observations that 

are difficult to quantify (Heald et al., 2004). Our results for anthropogenic emissions show 

agreement with top-down aircraft estimates of methane emissions in Alberta that are higher than 

bottom-up inventories (Johnson et al., 2017; Baray et al., 2018) and previous satellite inverse-

modelling studies over North America that upscale emissions in Western Canada (Turner et al., 

2015; Maasakkers et al., 2019; Maasakkers et al., 2021; Lu et al., 2021). We show source 

attribution through a sectoral and subnational scale analysis of anthropogenic emissions in the 

subsequent section. 

Inversion results for monthly natural emissions from 2010–2015 are also shown in Figure 4.5 

(bottom). The total of posterior natural emissions averaged over the 6-year period is 11.6 ± 1.2 

Tg a-1 using ECCC data and 11.7 ± 1.2 Tg a-1 using GOSAT data. The prior for natural emissions 

is 14.8 Tg a-1 from the mean of the WetCHARTS extended ensemble (14.0 Tg a-1) plus other 

natural (biomass burning + termites + seeps = 0.8 Tg a-1). There is some interannual variability 

in the prior due to higher emissions in 2010 and 2015. Posterior results averaged over the six 

years are 22% lower than the prior using ECCC data and 21% lower using GOSAT data, with 

both posterior results showing agreement with each other. These results are within the 

uncertainty range of the WetCHARTS extended ensemble, and we show the magnitude of 

emissions from the larger uncertainty dataset (3.9 to 32.4 Tg a-1) can be better constrained with 

both ECCC and GOSAT observations.  
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Figure 4.5: Comparative analysis of inversion results optimizing annual total Canadian 

anthropogenic emissions (top) and monthly total natural emissions (bottom) in an n = 78 state-

vector element setup. The posterior emissions determined using ECCC in situ (blue) and GOSAT 

satellite (green) data are compared to the prior (gray). Error bars are from the diagonal elements 

of the posterior error covariance matrix. 
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While our results show lower natural emissions in all years, a linear fit to the posterior annual 

emissions using ECCC data shows a trend of increasing natural emissions at a rate of ~0.56 Tg a-

1 per year from 2010–2015. The posterior with GOSAT data does not corroborate this result, the 

overall emissions trend using GOSAT data is not robust and shows a decreasing trend of ~0.2 Tg 

a-1 per year. The lack of corroboration of trends between ECCC and GOSAT data may be 

reflective of the lower overall sensitivity of total column methane to these surface fluxes (Sheng 

et al., 2017; Lu et al., 2021) or the inability of this inverse system to constrain trends sufficiently. 

The combined ECCC+GOSAT inversion using this setup is consistent with the results of the 

individual inversions, it is shown in the Supplement (Fig C.11) while the intercomparison is 

emphasized here, although we note the combined inversion also does not corroborate this trend. 

We evaluate the possible influence of errors in the global model on the projection of a trend onto 

the ECCC inversion in Section C.3.2 of the Supplement. While the mean natural emissions over 

2010–2015 show consistent results in the sensitivity tests, the limitations of the observation 

system, the inversion procedure and the timescale of the analysis limit the interpretation of 

trends. Poulter et al. (2017) estimated global wetland emissions using biogeochemical process 

models constrained by inundation and wetlands extent data. They estimated mean annual 

emissions over all of Boreal North America to be 25.1 ± 11.3 Tg a-1 in 2000–2006, 26.1 ± 11.8 

Tg a-1 in 2007–2012 and 27.1 ± 12.5 Tg a-1 which suggests a small increasing trend. 

Observational constraints over longer timescales are necessary to investigate the possibility of 

trends in Canadian natural methane emissions. Improvements to the observation network and a 

better understanding of climate sensitivity in WetCHARTS are necessary to understand how 

wetlands methane emissions will evolve in future climates. 

Figure 4.6 shows the 2010–2015 average seasonal pattern of natural emissions in the prior and 

posterior results. The seasonality of natural methane emissions in the prior shows a sharp peak in 

July with a narrow methanogenic growing season. The posterior with ECCC data shows a peak 

1-month later in August in most years instead of July, with lower than prior emissions in the 

spring months before the peak (March to May) and similar emissions to the prior in the autumn 

months after the peak (September to November). Posterior emissions with GOSAT show a peak 

in July and corroborates the pattern of slower-to-begin spring emissions and the lower intensity 
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summer peak seen from the ECCC inversion. The posterior results show the seasonality of 

emissions is not symmetrical around the temperature peak in July. August emissions are higher 

than June, September emissions are higher than May, and October emissions are higher than 

April. This pattern around July is present in the prior emissions from WetCHARTS, however the 

inversion results constrained by ECCC or GOSAT observations intensify the relative difference 

between emissions before and after July. Miller et al. (2016) found a similar seasonal pattern of 

emissions in the Hudson Bay Lowlands using an inverse model constrained by 2007–2008 in situ 

data. They found a less narrow and less intense peak of summertime emissions with higher 

autumn over spring emissions. Warwick et al. (2016) used a forward model and isotopic 

measurements of δ13C-CH4 and δD-CH4 from 2005–2009 to show northern wetland emissions 

should peak in August-September with a later spring kick-off and later autumn decline. This is 

further corroborated by Arctic methane measurements (Thonat et al., 2017) and high latitude 

eddy covariance measurements (Peltola et al., 2019; Treat et al., 2018; Zona et al., 2016) that 

show a larger contribution from the nongrowing season. Our inverse model results using ECCC 

and GOSAT data both show agreement with slower to start emissions in the spring and a less 

intense summertime peak for Canadian wetland emissions. 

Several mechanisms have been proposed to describe a larger relative contribution from cold 

season methane emissions. Pickett-Heaps et al. (2011) attributed a delayed spring onset in the 

HBL to the suppression of emissions by snow cover. The temperature dependency in 

WetCHARTS is based on surface skin temperature (Bloom et al., 2017), however subsurface soil 

temperatures may continue to sustain methane emissions while the surface is below freezing. 

When subsurface soil temperatures are near 0°C, this “zero curtain” period can further continue 

to release methane for an extended period (Zona et al., 2016). Subsurface soils may remain 

unfrozen at a depth of 40 cm even until December (Miller et al., 2016). Alternatively, field 

studies in the 1990’s suggested the seasonality of emissions may be more influenced by 

hydrology than temperature, with large differences between peatlands sites (Moore et al., 1994). 

The WetCHARTS extended ensemble inundation extent variable is constrained seasonally by 

precipitation. While this does not directly constrain water table depth and wetland extent it 

provides an aggregate constraint on hydrological variability (Bloom et al., 2017). We show the 
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mean seasonal pattern of both air temperature and precipitation from climatological 

measurements in subarctic Canada are similarly asymmetrical about the July peak (Fig. C.2 in 

the Supplement). August is warmer and wetter than June, September is warmer and wetter than 

May, and October is wetter and warmer than April – with wetness being more persistent into the 

autumn than air temperature. Our inversion results showing a delayed spring start in the seasonal 

pattern of natural methane emissions in Canada may suggest a lag in the response of methane 

emissions to temperature and precipitation. This may be due to lingering subsurface soil 

temperatures and/or more complex parametrization necessary for hydrology. 

The overall agreement between ECCC and GOSAT inversions shows robustness in the 

results. While the same model, prior emissions and inversion procedure are used for assimilating 

ECCC and GOSAT data, the two datasets are produced with very different measurement 

methodologies (in situ vs. remote sensing) and sample different parts of the atmosphere (surface 

concentrations or the total vertical column). The posterior error intervals shown from Ŝ reflect 

assumptions about the treatment of observations and may insufficiently account for correlations, 

however the comparative analysis provides a useful sensitivity test of the posterior emissions 

since the datasets reflect different treatment of these assumptions. 
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Figure 4.6: Mean 2010–2015 seasonal pattern of natural methane emissions in Tg month-1. The 

annual total emissions are 14.8 Tg a-1 (prior, gray), 11.6 ± 1.2 Tg a-1 (posterior ECCC, blue) and 

11.7 ± 1.2 Tg a-1 (posterior GOSAT, green). The posterior results are within the uncertainty 

range provided by the WetCHARTS extended ensemble (3.9–32.4 Tg a-1 for Canada). 

4.3.3 Joint inversions combining ECCC in situ and GOSAT satellite data 

We combine the ECCC and GOSAT datasets in two policy-themed inversions: (1) optimizing 

emissions according to the sectors in the national inventory (n = 5 state vector elements; 

corresponding to the categories in Table 4.2) and (2) optimizing emissions by provinces split into 

anthropogenic and natural totals (n = 16) and show the results in Figure 4.7. These inversions are 

under-determined and show the limitations of the ECCC+GOSAT observing system towards 

constraining emissions in Canada with very small magnitudes. We conduct the inversions for 

each year from 2010–2015 individually and present the average from these six samples. Since 

these two policy inversions use a low number of state vector elements, they are vulnerable to 

both aggregation error and overfitting of the well-constrained state vector elements and do not 

necessarily benefit from using a larger data vector from all six years. We discuss the diagnostics 

and information content for these inversions in detail in Section C.4 of the Supplement. The error 

bars are the 1σ standard deviation of the six yearly results and therefore represent both noise in 
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the inversion procedure and year-to-year differences in the state (emissions and/or transport). 

Here we do not apply a weighting factor to either dataset, the observations are treated 

equivalently for the cost function in eq. (4.1). While there are about 5 times more GOSAT 

observations than ECCC observations for use in the analysis and the in-situ observations have 

larger observational error in Sa (due to model error), the surface measurements are much more 

sensitive to surface fluxes, which offsets the weight of the larger amount of GOSAT data. As 

further diagnostics we show the inversions using GOSAT and ECCC individually (Table C.4 and 

C.5) which show general agreement between the datasets. We also use a singular value 

decomposition eigenanalysis (Heald et al., 2004) to evaluate the independence of the state vector 

elements and to demonstrate which sectoral categories and provinces can be reliably constrained 

above the noise in the system (Fig. C.9 and C.10 in the Supplement). 

Figure 4.7 (top) shows the sectoral inversion corresponding to categories in the National 

Inventory (Table 4.2). The prior emissions with 50% error estimates (60% for wetlands) are 2.4 

Tg a-1 (Energy), 1.0 Tg a-1 (Agriculture), 0.9 Tg a-1 (Waste), 14.0 Tg a-1 (Wetlands) and 0.8 Tg a-

1 (Other Natural). The posterior emissions are 3.6 ± 0.9 Tg a-1 (Energy), 1.5 ± 0.4 Tg a-1 

(Agriculture), 0.8 ± 0.2 Tg a-1 (Waste), 9.6 ± 1.1 Tg a-1 (Wetlands), and 1.7 ± 0.9 Tg a-1 (Other 

Natural). The degrees of freedom for signal and singular value decomposition (Fig. C.9) show 3–

4 independent pieces of information can be retrieved, which are differentiated in the figure by 

solid and hatched bars. The singular value decomposition shows strong source signals 

corresponding to wetlands and energy with signal-to-noise ratios of ~37 and ~5, respectively. 

These are the two largest emissions sources in Canada and show the inverse system can 

successfully disentangle the major anthropogenic and natural contributors. Emissions from waste 

have a signal-to-noise ratio of ~2 and can be constrained despite the low magnitude of emissions. 

This is likely due to waste emissions being more concentrated in Central Canada and away from 

the influence of large energy and agriculture emissions in Western Canada. Emissions from other 

natural sources are at the noise limit and show a moderate correlation with wetlands, which 

shows that these two sources are not completely independent. Agriculture emissions are below 

the noise in the system and highly correlated with energy emissions. This is likely due to the high 

spatial overlap of energy and agriculture emissions in Western Canada. As a result of these 
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limitations, we present the total of energy and agriculture as 5.1 ± 1.0 Tg a-1 and the total of 

wetlands and other natural as 11.3 ± 1.4 Tg a-1. Our results for total natural and total 

anthropogenic emissions are consistent with the results from the previous monthly inversion, 

with the added benefit of identifying which sectors are responsible for the higher anthropogenic 

emissions at the cost of lower temporal resolution. Waste emissions are 15% lower than the prior 

and 14% lower than the National Inventory. The total for energy and agriculture is 49% higher 

than the prior and 59% higher than the total in the inventory. These results show that energy 

and/or agriculture are the sectors that are responsible for the higher anthropogenic emissions. 

Figure 4.7 (bottom) shows the provincial inversion corresponding to the six largest emitting 

provinces (BC British Columbia, AB Alberta, SK, Saskatchewan, MB Manitoba, ON Ontario, 

QC Quebec) and two aggregated regions (ATL Atlantic Canada, NOR Northern Territories). 

These regions are further subdivided into total anthropogenic and total natural methane 

emissions, with below detection limit anthropogenic emissions from Atlantic Canada and 

Northern Territories. This inversion especially challenges the limitations of the ECCC+GOSAT 

observation system, as only about 8 of 16 independent pieces of information are retrieved. This 

means that half of the posterior provincial emissions are below the noise, and we are unable to 

constrain province-by-province emissions. The singular value decomposition identifies which 

regions are well constrained (Fig. C.10). For the anthropogenic emissions AB and ON are 

strongly constrained. For the natural emissions AB, ON, SK and MB are well constrained. BC 

shows correlation between its own anthropogenic and natural emissions and cannot be 

completely disaggregated. As a result, we group elements together in Western Canada (BC + AB 

+ SA + MB) and Central Canada (ON + QC) for interpretation. The total for Western Canada 

anthropogenic emissions is 4.7 ± 0.6 Tg a-1 which is 42% higher than the prior of 3.3 Tg a-1. The 

total for Central Canada is 0.8 ± 0.2 Tg a-1 which is 11% lower than the prior of 0.9 Tg a-1
. 

Each of our top-down inversion results show higher total anthropogenic emissions than 

bottom-up estimates. This is consistent regardless of the observation vector incorporating ECCC 

data, GOSAT data or ECCC+GOSAT data. The subnational scale emissions are limited in their 

ability to provide full characterization of minor emissions across Canada but can successfully 

constrain major emissions for source attribution. The sectoral inversion attributes higher 
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anthropogenic emissions to energy and/or agriculture and applies a small decrease to waste 

emissions. The provincial inversion attributes higher anthropogenic emissions to Western 

Canada and a small decrease to Central Canada. These results suggest that anthropogenic 

emissions in Canada are underestimated primarily because of higher emissions from Western 

Canada energy and/or agriculture. This interpretation is consistent with previous satellite inverse 

modelling studies over North America that apply positive scaling factors to grid box clusters in 

Western Canada to match observations (Maasakkers et al., 2019; Turner et al., 2015; Wecht et 

al., 2014). Aircraft studies in Alberta have also shown higher emissions from oil and gas in 

Alberta than bottom-up estimates (Baray et al., 2018; Johnson et al., 2017). Atherton et al. 

(2017) estimated higher emissions from natural gas in north-eastern British Columbia using 

mobile surface in situ measurements (Atherton et al., 2017). Zavala-Araiza et al. (2018) showed 

a significant amount of methane emissions in Alberta from equipment leaks and venting go 

unreported due to current reporting requirements and in some regions a small number of sites 

may be responsible for most methane emissions. Our inverse modelling results from 2010–2015 

suggest a consistent presence of under-reported or unreported emissions which require a policy 

adjustment to reporting practices. 
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Figure 4.7: Joint-inversions combining 2010–2015 ECCC in situ and GOSAT satellite data 

showing how the combined observing system remains limited towards resolving all Canadian 

sources. Inversions are done for each year and we present the six-year average with error bars 

showing the 1σ standard deviation of the yearly results. Hatched bars indicate sources that are 

not well-constrained, these are defined as state vector elements with averaging kernel 
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sensitivities less than 0.8 which are affected by aliasing with other sources (See Supplemental 

Fig. C.9 and C.10). The top panel shows the sectoral inversion according to the categories in the 

National Inventory (Energy, Agriculture, Waste) and two natural categories (Wetlands and Other 

Natural). As an example, the diagnostics in Figure C.9 shows Agriculture emissions are beneath 

the noise and cannot be distinguished from Energy. The bottom panel shows the subnational 

regional inversion according to provinces (BC British Columbia, AB Alberta, SK, 

Saskatchewan, MB Manitoba, ON Ontario, QC Quebec) and aggregated regions (ATL Atlantic 

Canada, NOR Northern Territories) further subdivided according to total anthropogenic and total 

natural emissions. The diagnostics in Fig. C.10 show more than half of the regions are at or 

below the noise. For anthropogenic emissions, the best constraints are on provinces AB and ON. 

For natural emissions, the best constraints are on AB, SK, MB and ON. 

4.3.4 Comparison to independent aircraft and in situ data 

We test the robustness of the optimized emissions from each of the three inversions shown 

(monthly natural, sectoral, and provincial) by comparing to independent measurements not used 

in the inversions. Prior and posterior simulated methane concentrations are compared to 

measurements from NOAA ESRL aircraft profiles at East Trout Lake, Saskatchewan (Mund et 

al., 2017) and ECCC surface measurements in sites Chapais and Chibougamau in Quebec, 

Canada. The surface data was averaged to daily afternoon means (12:00 to 16:00 local time) in 

the same manner as the surface measurements used in the inversion. Aircraft data from the 

NOAA ESRL profiles coincide spatially with the surface measurements at ETL through a joint 

analysis program with Environment and Climate Change Canada and have occurred on a regular 

basis approximately once a month from 2005 until present time. Aircraft measurements reach 

~7000 m above the surface with samples at multiple altitudes accomplished using a 

programmable multi-flask system that is further discussed in Mund et al. (2017), however we 

limit the comparison to the lowest 1 km above ground since higher altitude measurements are 

mostly background. The aircraft data is not averaged however the flights occur around the same 

time in the early afternoon. 
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Figure 4.8 shows the comparison using reduced-major axis (RMA) regressions with the 

coefficient of determination (R2), the slope, and the mean-bias shown as metrics to evaluate the 

agreement. Surface data in CHA, Quebec shows better posterior agreement with observations 

according to all metrics for each of the three inversions. The R2 of the prior is 0.36 and improves 

to a range of 0.44–0.49 for the posterior results, the slope is 1.17 in the prior and improves to a 

range of 0.92–1.12 and the mean bias (model – observations) is +16.4 ppb in the prior and 

improves to +13.2 and +5.6 ppb. Since this site in Quebec is particularly sensitive to the Hudson 

Bay Lowlands, the agreement in all metrics suggests our posterior emissions can better represent 

wetland emissions in this region. This includes the reduced peak seasonality of natural emissions 

in the monthly inversion, the reduction of wetland emissions in the sectoral inversion and the 

reduction of natural emissions primarily in Central Canada in the provincial inversion. Aircraft 

data in Saskatchewan shows improvement in the R2 and mean bias metrics but slightly degrades 

the slope in one case. The R2 of the prior is 0.14 and improves to a range of 0.20–0.30, the mean 

bias of the prior is +6.8 ppb and improves to +1.2 and +3.1 ppb. The slope of the prior is 1.15 

which slightly degrades to 0.83 in the monthly inversion and improves to a range of 0.88–0.93 in 

the provincial and sectoral inversions. The high resolution aircraft measurements are more 

susceptible to representation error at this 2°x2.5° grid resolution. Furthermore, the time-series 

comparison to surface data at East Trout Lake (Fig. 4.4) shows overall lower sensitivity to 

summertime wetland emissions than Fraserdale and Egbert, and lower sensitivity to 

anthropogenic emissions from Alberta than Lac La Biche. Hence the modelled methane 

concentrations at the aircraft measurement points are adjusted less by the change in posterior 

emissions. However, improvement in the R2 and mean bias metrics show there is still a better 

representation of the variance in the data which suggests the posterior emissions reduce bias due 

to peak emission episodes. 
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Figure 4.8: Evaluation of inversion results with reduced-major axis (RMA) regressions using 

independent data. The top four panels show the comparison to ECCC surface observations at 

Chapais and Chibougamau in Quebec, Canada and the bottom four panels show the comparison 

to NOAA aircraft profiles at East Trout Lake, Saskatchewan. The agreement of observations 
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with prior simulated methane concentrations (blue) are compared to posterior concentrations 

using optimized emissions from the monthly inversion (green), the sectoral inversion (magenta), 

and the provincial inversion (orange). The coefficient of determination (R2), slope and mean bias 

are shown as metrics of agreement.  

4.4 Conclusions  

We conduct a Bayesian inverse analysis to optimize anthropogenic and natural methane 

emissions in Canada using 2010–2015 ECCC in situ and GOSAT satellite observations in 

GEOS-Chem. Methane concentrations are simulated on a 2°x2.5° grid using recently updated 

prior emissions inventories for energy and wetland emissions in Canada. Modelled background 

conditions for the Canadian domain are shown to be unbiased in the comparison to surface in situ 

data at the western most site in Canada, Estevan point, with agreement within 6 ppb. A forward 

model analysis shows much larger biases between –100 ppb and +1050 ppb at surface sites 

throughout Canada demonstrating the presence of misrepresented local emissions. We show 

large positive biases (overestimation of emissions) in the summertime are observed at sites 

sensitive to wetland emissions, these biases are reduced by using lower magnitude wetland 

emissions scenarios with lower CH4:C temperature sensitivities or lower inundation extent. We 

also show the opposite case of negative biases (underestimation of emissions) observed year-

round at sites in Western Canada. The forward model analysis is consistent with the results of the 

inverse analysis that reduce emissions from natural sources and increase emissions from 

anthropogenic sources to minimize the mismatch between modelled and observed methane. 

We show three approaches for using ECCC and GOSAT data towards inverse modelling of 

Canadian methane emissions. These approaches differ according to the temporal and spatial 

resolution of the solution. We show: (1) a relatively higher time-resolution inversion that solves 

for natural emissions each month from 2010–2015 and anthropogenic emissions as yearly totals, 

(2) a sectoral inversion that solves for emissions according to categories in the National 

Inventory, (3) a provincial inversion that solves for total anthropogenic and natural emissions at 

the subnational level. The monthly inversion provides information on the seasonality of natural 

emissions (which are ~95% wetlands) but does not provide more depth into anthropogenic 
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emissions beyond yearly scaling. The sectoral inversion provides more information on the 

categories of anthropogenic emissions that are misrepresented in the prior but without spatial 

detail. The provincial inversion provides the highest level of spatial discretization but is largely 

underdetermined due to the limitations of the observing system towards characterizing very low 

magnitude emissions from smaller contributing provinces. 

Inversion results (1) show mean 2010–2015 posterior emissions for total anthropogenic 

sources in Canada are 6.0 ± 0.4 Tg a-1 using ECCC data and 6.5 ± 0.7 Tg a-1 using GOSAT data. 

Annual mean natural emissions are 11.6 ± 1.2 Tg a-1 using ECCC data and 11.7 ± 1.2 Tg a-1 

using GOSAT data. Both inverse modelling estimates are higher than the prior for anthropogenic 

emissions 4.4 Tg a-1 and lower than the prior for natural emissions 14.8 Tg a-1. Inversion results 

using both datasets show a change in the seasonal profile of natural methane emissions where 

emissions are slower to begin in the spring and show a less intense peak in the summer. The 

agreement between two datasets assembled with different measurement methodologies that 

sample different parts of the atmosphere is a robust result that lends weight to our conclusions. 

Our results corroborate recent studies showing a less-intense and less-narrow summertime peak 

in North American Boreal wetland emissions with a higher relative contribution from the cold 

season (Miller et al., 2016; Zona et al., 2016; Warwick et al., 2016; Thonat et al., 2017; Treat et 

al., 2018; Peltola et al., 2019). These top-down studies using atmospheric observations show 

biosphere process models can better account for a more complex response to peak surface soil 

temperatures. 

We also conduct combined ECCC+GOSAT inversions that aim to resolve finer resolution 

emissions corresponding to (2) the sectors of the National Inventory and corresponding to (3) 

provincial boundaries. These policy-themed inversions challenge the capabilities of the 

ECCC+GOSAT observation system and show the system is not capable of resolving many minor 

emissions in Canada. The degrees of freedom for signal for these inversions are 3–4 out of 5 

state vector elements for the sectoral inversion and 8 out of 16 for the provincial inversion. The 

limitation of this inverse approach towards constraining sectoral or regional scale emissions in 

Canada is due to the low magnitude of these emissions, their overlapping nature in concentrated 

regions, and the sparsity of data available to distinguish them apart. Grouping correlated sectors 



150 

 

 

together, we determine 5.1 ± 1.0 Tg a-1 for energy and agriculture which is 59% higher than the 

inventory, 0.8 ± 0.2 Tg a-1 for waste which is 14% lower than the inventory. For provincial 

emissions, we show Western Canada is 4.7 ± 0.6 Tg a-1 which is 42% higher than the prior and 

Central Canada is 0.8 ± 0.2 which is 11% lower. Both regions show lower natural emissions. 

These results show that the higher anthropogenic emissions in the posterior results can be 

attributed to energy and/or agriculture primarily in Western Canada where most of Canadian 

anthropogenic emissions are concentrated. Our results are consistent with other top-down studies 

that show higher than reported anthropogenic emissions in Western Canada (Wecht et al., 2014; 

Turner et al., 2015; Atherton et al., 2017; Johnson et al., 2017; Baray et al., 2018; Maasakkers et 

al., 2019). This may be due to oil and gas emissions that are under-reported or unreported due to 

current reporting requirements (Zavala-Araiza et al., 2018). These top-down studies show a need 

for policy readjustment in reporting practices for Canadian anthropogenic methane emissions. 

This study shows the value of using complementary surface and satellite datasets in an inverse 

analysis. We emphasize the value of comparative analysis using the datasets independently 

versus as joint inversions, as minor emissions are too low in magnitude for the observational 

precision to distinguish finer scale discretization above the noise. The comparative analysis has 

the added benefit of evaluating the datasets against each other and the assumptions that are 

specific to using either surface or satellite data. The capabilities for combining and 

intercomparing datasets is expected to improve, with the successful launch of Copernicus 

Sentinel-5p satellite (TROPOMI) in 2017 and continued expansions on in situ observation 

networks. The ability for next generation observations to constrain subnational level emissions in 

Canada will depend on instrument and model precision, as well as the emissions magnitudes and 

spatiotemporal overlap of the targets. These technical capabilities should be weighed alongside 

policy needs for improved methane monitoring. 
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Abstract 

Reducing methane emissions from urban areas is a key part of the international strategy for 

mitigating greenhouse gas emissions, with major world cities posting ambitious reduction plans. 

The City of Toronto has a target to reduce 65% of methane emissions by 2030 from a baseline of 

1990. Monitoring the efficacy of urban methane mitigation over policy-relevant timescales is 

challenging to constrain with atmospheric observations due to the precision requirements 

necessary to observe changes in low emissions magnitudes. Uncertainties on the order of 50% 

for mass balance methods and inverse modelling are unable to adequately monitor finer temporal 

and spatial scale variability and require substantial improvements to observation networks. In 

this study we show cost-effective surveys can be conducted using a Picarro cavity ring-down 

spectrometer in a moving vehicle to screen the Greater Toronto Area for on-road combustion 

emissions, natural gas leaks, and to identify major emitters for mitigation targets. We conducted 

stationary surveys in October 2014 at key highway locations to evaluate mobile combustion 

sources and verify inventory emissions factors for on-road vehicles. A single-day survey was 

conducted in May of 2017 to evaluate city infrastructure for natural gas leaks. Results from the 

~90 km driving survey show minimal emissions from natural gas leaks in both suburban (York 

Region) and urban (downtown Toronto) areas when compared to similar studies in Boston and 

Washington DC. We identify a single super-emitter at the edge of the downtown core likely from 

wastewater. Our results show natural gas infrastructure can be successfully monitored with this 

method and large individual sources can be identified which are an attractive target for 

mitigation policy.  
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5.1 Introduction 

Methane (CH4) is a significant greenhouse gas next to CO2 for direct radiative forcing, but 

with a global warming potential 28–32 times more than CO2 over a 100 year timescale and 84–

90 times more over a 20 year timescale (Myhre et al., 2013). Anthropogenic methane sources 

include oil and gas activities (extraction, processing, transport, and combustion), livestock, rice 

cultivation, coal mines, landfills, and wastewater treatment. Natural methane emissions are 

primarily from wetlands, but also include seeps, termites and biomass burning (Kirschke et al., 

2013). Atmospheric methane has a lifetime of 9.1 ± 0.9 years with the major sink being 

oxidation by the hydroxyl radical (Prather et al., 2012). Significant reductions in anthropogenic 

methane emissions are a major goal for countries signing the Paris Agreement in 2015, which 

would result in short-term benefits due to the relatively shorter lifetime of methane compared to 

CO2. 

In Canada, the national inventory reports total anthropogenic methane emissions to be 4.1 Tg 

year-1 from the years 2010–2015, of which 2.00 Tg year-1 is from the energy sector, 1.2 Tg year-1 

is from the agriculture sector, and 0.92 Tg year-1 is from waste (Environment and Climate 

Change Canada, 2017). A recent top-down inverse modelling study constraining Canadian 

emissions using ECCC surface and GOSAT satellite observations reported 2010–2015 

anthropogenic emissions to be 6.0–6.5 Tg a-1, with most of the difference attributed to the energy 

and/or agricultural sector in Western Canada (Baray et al., 2021). Numerous other studies have 

shown higher methane emissions from Western Canadian oil and gas sources, constrained using 

observations from aircraft (Baray et al., 2018; Johnson et al., 2017), surface (Baray et al., 2021b; 

Chan et al., 2020; Atherton et al., 2018) and satellite (Lu et al., 2020; Maasakkers et al., 2020; 

Turner et al., 2015). Conversely, Baray et al. (2021) showed that emissions in Ontario, where the 

sources are primarily from urban waste, may be lower than the inventory, with denser urban 

observations necessary to validate this result. 

Urban centres account for 37–49% of global greenhouse gas emissions (Seto et al., 2014). 

Fugitive methane emissions from natural gas distribution pipelines and residential use are a 

major source of methane in urban areas, especially where the infrastructure is older. Studies have 
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demonstrated the presence of fugitive methane emissions in Boston (McKain et al., 2015), 

Washington DC (Jackson et al., 2014), Indianapolis (von Fischer et al., 2017), Los Angeles 

(Wunch et al., 2016), Toronto (Ars et al., 2020) and other cities (Plant et al., 2019). In this study, 

mobile vehicle measurements were deployed to measure different urban methane sources in the 

Greater Toronto Area (GTA). We use a Picarro cavity ring-down spectrometer to measure CH4, 

CO2, CO and H2O and survey on-road combustion sources from stationary positions in October 

2014, which are used to calculate fuel-based emissions factors and compare to the database in the 

National Inventory (Table 5.1). We deploy mobile measurements to survey natural gas 

infrastructure in May 2017 and map the geospatial distribution of methane concentrations and 

compare our results for Toronto to similar studies across North American cities. 

 

Table 5.1: Fuel-based emissions factors for mobile combustion sources in Canada (Environment 

and Climate Change Canada, 2017) 

Vehicle Class and Year Emissions Factor 

(Gasoline) g CH4 L-1 fuel 

Emissions Factor 

(Diesel) g CH4 L-1 fuel 

Light Duty Vehicles   

2004-2012 0.14 0.051 

1994-2003 0.23 0.051 

Light Duty Trucks   

2004-2012 0.14 0.068 

1994-2003 0.24 0.068 

Heavy Duty Trucks   

2004-2012 0.068 0.11 

1994-2003 0.29 0.14 

Motorcycles   

1996-Present 0.77 - 

1960-1995 2.3 - 

Off Road 2.7 0.15 
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5.2 Data and Methods 

5.2.1 Description of Measurements 

Measurements of CH4, CO2, CO and H2O were made using a Picarro G2401-m cavity ring-

down spectrometer (CRDS) at an interpolated rate of ~0.5Hz. The instrument was securely 

mounted inside of a civilian van and operated using two different power sources in the two 

mentioned field studies: a) in the 2014 study a gas generator for stationary measurements on-

road that was placed ~10 metres downwind of the Picarro position, and b) in the 2017 study 

using auxiliary batteries (Goal Zero Yeti + marine battery) for mobile measurements with a 

capacity of ~6 hours. The inlet was a reverse facing sample port with a 47 mm teflon filter that 

was regularly changed. The precision of the instrument is 2–3 ppb and the instrument was 

calibrated using standard reference gases. A GPS was used to measure position (latitude, 

longitude) at a rate of 1 Hz that was used to construct the map of CH4 measurements. 

For the 2014 field study, Table 5.1 lists the locations of stationary on-road measurements. For 

the 2017 study the full spatial map of mobile measurements is shown in the later section. In 

2014, the measurement locations were chosen such that the forecasted wind direction would 

project the highway emissions towards the site. Measurements were mostly focused on the 

Highway 401 east-west artery highway, which had a total of 17 lanes of east-west and west-east 

traffic and a vehicle count of approximately ~400 per minute. The secondary location was 

Highway 400 which is a north-south artery highway with 8 lanes of traffic. For a measure of 

slowly moving or idling vehicle conditions, the parking garage at York University was selected. 

For measurements of public transportation diesel vehicles, the bus loop at York University was 

selected which contains a relatively dense number (~10) of transit vehicles idling and 

exchanging commuters. These sites allowed for the determination of emissions factors from (a) a 

typical fleet of highway vehicles, (b) individual public transportation diesel vehicles, and (c) 

individual gasoline vehicles. 

For the 2017 single day study, mobile measurements were used to survey the natural gas 

infrastructure across York Region (suburban) and the Toronto core (urban) roads. Approximately 

6 hours of measurements were taken and ~90 km of road was driven, which included multiple 
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passes through the downtown core at major east-west roads, as well as a special survey of a super 

emitter at the junction of Highway DVP and Lakeshore Road near a wastewater facility on Lake 

Ontario. 

 

Table 5.2: List of on-road measurement locations for the October 2014 field study 

Day Lat, Lon (º) Location Description Target Vehicles 

Oct 16 43.726, –79.466 Hwy 401 near Allen Road, 

South Side 

Sample of Hwy Fleet 

(Gasoline and Diesel) 

Oct 21 43.726, –79.466 Hwy 401 near Allen Road, 

South Side 

Sample of Hwy Fleet 

(Gasoline and Diesel) 

Oct 22 43.726, –79.466 Hwy 401 near Allen Road, 

South Side 

Sample of Hwy Fleet 

(Gasoline and Diesel) 

Oct 23 43.780, –79.537 Hwy 400 near Hwy 7, between 

traffic 

Sample of Hwy Fleet 

(Gasoline and Diesel) 

Oct 24 43.726, –79.466 Hwy 401 near Allen Road, 

South Side 

Sample of Hwy Fleet 

(Gasoline and Diesel) 

Oct 27 43.771, –79.338 Hwy 404 and Hwy 401, 

Northeast corner 

Sample of Hwy Fleet 

(Gasoline and Diesel) 

Oct 28 43.774, –79.501 York University Public Transit 

Bus Loop 

Public Transit Vehicles 

(Diesel) 

Oct 29 43.773, –79.507 York University Parking 

Garages 

Personal Commuter 

Vehicles (Gasoline) 
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5.2.2 Determination of Vehicle Emissions Factors 

Fuel-based emissions factors were calculated using atmospheric measurements of CH4, CO2 

and CO according to equation {5.1} 

 𝐸𝐹 = 𝑊𝑐 ∙  
𝑀𝐶𝐻4
𝑀𝐶

 ∙  (
|𝐶𝐻4|

|𝐶𝑂2| + |𝐶𝑂|
) {5.1} 

Where EF is the fuel-based emissions factor (in kg of CH4 / kg of fuel), Wc is the weight 

content of carbon (estimated at 0.87 kg of carbon per kg of fuel) and MCH4/MC are the relative 

molecular weights of methane and carbon. This calculation assumes that >99% of the carbon 

content in the fuel is converted into CO2 and CO (Singer and Harley, 1996). By using the 

background-elevated concentrations of CH4/(CO2 + CO) enhanced by the highway fleet vehicle 

emissions, an average emissions factor could be calculated. Additionally, emissions factors for 

individual tailpipe emissions could be calculated from separate experiments. While the highway 

locations were heavily populated sites, highly-correlated spikes of CO2, CO and CH4 could be 

treated as individual vehicle emissions to build a database of measured emissions factors. To 

differentiate between background levels and emissions from the target vehicles, the derivatives 

∆CH4/∆CO2 and ∆CO/∆CO2 from a linear regression of CH4 vs CO2 and CO vs CO2 

measurements could be attained to determine background-enhanced concentrations and 

emissions factors. 

5.3 Results and Discussion 

5.3.1 Measurements of On-Road Vehicle Methane 

Figure 5.1 shows three example time series highway measurements from the study in 2014 on 

Oct 21, Oct 23 and Oct 29. Two features of the time-series were observed at each of the study 

locations. These features were 1) a high variability in CO2 around a median value and 2) usually 

correlated, intermittent spikes of CH4 and CO. For example, in Figure 5.1A, the median value of 

CO2 was ~470 ppm. The 1σ variance of CO2 in this timeseries was ± 25 ppm. Since the 

instrument detection limit is <0.2 ppm for 0.5 Hz measurements of CO2, this variance is due to 
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real atmospheric conditions and not to instrument noise. The variance in CO2 is attributed to the 

very large volume of vehicles consistently emitting CO2 while causing physical turbulence in the 

air. The intermittent spikes in CO and CH4 are attributed to occasional vehicles measured with 

either poor emissions controls or possibly unique combustion mechanics (such as natural gas 

combustion in the case of spikes of CH4 in the absence of CO). These spikes sometimes showed 

a correlation between CO and CH4 but not in every case. For example in Figure 5.1A, just before 

5:00 pm the largest spike in CO was observed up to 11 ppm which was correlated with the 

largest spike in CH4 up to 2.02 ppm. Immediately after, another enhancement of CH4 was 

observed up to 1.96 ppm that did not show the same high correlation with CO. These 

observations of CO, CO2 and CH4 show that the majority of highway vehicles in typical 

conditions are low emitters of CO and CH4 with some exceptions. A rough estimate of the 

vehicle count showed ~400 per minute which is ~48,000 over the two-hour time series. Over this 

same time, there are approximately ~20 spikes of CH4. Hence, our results show that about 1 in 

2400 vehicles are unusual emitters of CH4 or CO. Figure 5.1B shows an alternate highway 

location in between northbound and southbound lanes with higher traffic congestion. On this day 

less variance in CO2 is observed due to the congested flow of vehicles, however intermittent 

spikes in CO and CH4 continued to be observed. Figure 5.1C shows an indoor parking garage 

location at York University. This location had the lowest volume of traffic, as shown by the 

lowest variance in CO2, while maintaining the pattern of periodic CO and CH4 spikes. At 9:15, a 

vehicle that initiated a cold start idled near the inlet which caused the highest CO and CH4 

enhancements on this day. 
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Figure 5.1: Time series plots of CH4 (red), CO2 (green) and CO (blue) measurements from three 

locations in the 2014 study: Highway 401/Allen road on Oct 21 (panel A), Highway 400/7 on 

Oct 23 (panel B), and the YorkU commuter parking garage on Oct 29 (panel C). 
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The ratio of CH4 to CO2 enhancements can be used to calculate an emissions factor for this 

typical highway fleet of vehicles. Figure 5.2 shows a correlation plot of CH4 vs. CO2 with a 

linear regression for the time series shown in Figure 5.1A. The slope of the linear regression 

corresponds to the ratio of ∆CH4/∆CO2, which is (7.80 ± 0.4) × 10-5. Using eq. {5.1} and 

simplifying |CO2| + |CO| ≈ |CO2|, this corresponds to an emissions factor of 0.063 ± 0.003 g CH4 

per L of fuel. This result is 48% lower than the 0.12 ± 0.03 g CH4 L
-1 fuel emissions factor 

recommended by model predictions from Nam et al. (2004). Our results are also 55% lower than 

the emissions factor for personal vehicles in the National Inventory, which is 0.14 g CH4 L
-1 fuel 

(Environment and Climate Change Canada, 2014). A possible explanation for these lower values 

can be due to the presence of diesel trucks on residential highways. Diesel trucks consume 

significantly more fuel than the average passenger vehicle and have emissions factors as low as 

0.068 g CH4 / L. Furthermore, the inventory emissions factors are based on vehicle models 

manufactured up until 2012, and do not include newer model vehicles with more efficient 

emissions control technology. One final reason for the potential discrepancy is that EF’s are 

typically measured with vehicles on dynamometers which includes a variety of conditions, 

including a “cold” start (during which emissions are higher, as shown in Figure 5.1C), whereas 

the driving conditions observed on the highway during these measurements was steady speed 

with vehicles that were obviously “warm”. 
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Figure 5.2: Correlation plot of CH4 vs CO2 for Oct 21 2014 measurements shown in Figure 5.1A 

Figure 5.3 shows an example of tailpipe emissions from a cold start vehicle. This vehicle-

initiated operation with an exhaust plume going into the inlet allows for a cold start emissions 

factor to be calculated. The cold start conditions produced large measurements of CO, up to 23 

ppm, CH4, up to 2.25 ppm, and CO2 up to 630 ppm. The emissions factor was calculated at 0.85 

g CH4 L
-1 fuel, which is a factor of 13.5 times higher than the previously measured highway fleet 

average, and a factor of 6.1 times higher than the emissions factor for gasoline combustion in the 

National Inventory. This result suggests that inefficient vehicle combustion can vary 

significantly more in methane emissions than the average of a typical vehicle, which is consistent 

with the periodic spikes that were observed in the highway time series. Table 5.3 shows results 

from experiments where different types of individual vehicle tailpipe emissions were sampled. 

The emissions factors for gasoline vehicles vary from 0.22 – 0.94 g CH4 L
-1 fuel, with cold start 

vehicles generally producing the highest methane emissions factors. The lowest emissions factor 

of 0.057 g CH4 L
-1 was measured from an idling tow truck, which was powered by diesel fuel 

combustion resulting in a lower emissions factor. These results show that on-road vehicle 

emissions factors are highly variable between different types of fuel combustion and operation 
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conditions. This poses a challenge for bottom-up engineering budgets to produce typical 

emissions factors, which can be constrained with atmospheric measurements. In general, these 

real-world emissions factors confirm that CH4 emissions from mobile combustion are low, and 

possibly lower than published bottom-up dynamometer tests. This shows that on-road 

transportation is a very minor source of CH4 in Canada, accounting for less than 1% of the 

national budget. 

 

 

Figure 5.3: Tailpipe emissions from a cold start vehicle observed on Oct 27. Time series of CO, 

CO2 and CH4 for the small 1-minute period of enhancement (right). Correlation plots of CH4 vs. 

CO2 (top left) and CO vs. CO2 (bottom left). 
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Table 5.3: Tailpipe emissions factors from individual vehicle experiments 

Measured Vehicle Emissions Factor 

(g CH4 / L of fuel) 

National Inventory 

Reporta 

(g CH4 / L of fuel) 

 

Cold Start: Light-Duty Gasoline Vehicle 0.85 0.14 

Cold Start: Light-Duty Gasoline Truck 0.83 0.14 

Idling: Diesel Tow Truck 0.057 0.068 – 0.11 

Driving: Light-Duty Gasoline Truck 0.34 0.14 

Idling: 2004 Impala (LDGV) 0.33 0.14 

Idling: 2014 Caravan (LDGT) 0.038 <0.14 

Driving: Light-Duty Gasoline Vehicle 0.22 0.14 

Driving: Light-Duty Gasoline Truck 0.94 0.14 

Operating: Gasoline Generator 1.72 2.7 

a Environment and Climate Change Canada National Inventory Report (2014) 

 

5.3.2 Mobile Survey of GTA Methane 

Methane was measured using a mobile vehicle setup in May of 2017 to survey the Greater 

Toronto Area for methane leaks, normally caused by ageing natural gas infrastructure. Figure 5.4 

shows the Google Earth map of measurements with methane concentrations shown in color, and 

Figure 5.5 shows the time series for the same measurements. The vehicle route began in York 

Region (suburban north GTA) around Yonge Street and Major Mackenzie, with measurements 

continuing down Yonge Street to Lake Ontario (downtown urban Toronto). This was followed 

by six east–west and west–east cross-transects at the major downtown Toronto roads, where 

infrastructure was expected to be the oldest. The driving route was completed by driving 

northbound and returning to the York University campus (northwest GTA). The results show that 

a much lower number of methane leaks are observable in Toronto when compared to similar 

studies in other cities in the United States. Table 5.4 summarizes the comparison of methane 

leaks from this study to other studies led by the Environmental Defense Fund (von Fischer et al., 

2017). We defined a leak consistent with the EDF methodology as >10% of the background, 

where the background is defined as a 2-minute moving average of the measurements. On this 
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day, the background average was 1.96 ± 0.01 ppm with a small decrease over the course of the 

day, hence an increase in methane up to 2.156 ppm (+196 ppb) qualifies as a methane leak 

according to this definition. In this one day of measurements, we observed this threshold four 

times over the entire study, therefore we measured approximately 1 leak per 23 kilometers of 

road driven, or 4–5 leaks when normalized to 100 km of road driven. Ars et al. (2021) reported a 

leak rate of 4–22 leaks per 100 km of road driven in the GTA using 77 mobile surveys from May 

2018 to August 2019, which is consistent with our single survey. This leak rate in the GTA is at 

the lower end of the range of leaks observed in other cities, compared to 1 leak per 0.4 km in 

Washington, DC (Jackson et al., 2014), and 1 leak per 320 km in Indianapolis, IN 

(Environmental Defense Fund, 2015). Additionally, our measurements show a “hotspot” at the 

intersection of the DVP and Lake Shore (southeast of the map, on Lake Ontario), which is a 

hotspot also confirmed by Ars et al. (2020), where measurements as high as 6 ppm of CH4 were 

observed. This data was not included in the leak calculation as it was a significant methane 

source that was clearly distinct. This hotspot was also observed in the GTA-wide study by Ars et 

a. (2020) which they attributed to a wastewater facility. 
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Figure 5.4: Mobile survey of GTA methane leaks conducted on May 18 2017. Approximately 

90 kilometers of road was driven between 10:30 am to 4:30 pm local time (EDT) 
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Figure 5.5: Timeseries of methane measurements May 18 2017 from 10:30 am to 4:30 pm local 

time (EDT) corresponding to Figure 5.4. The EDF leak threshold (blue line) is defined as 10% 

higher than the background, and the black circles show the four measured leaks above this 

requirement. Measurements of the wastewater facility are highlighted in purple and not included 

in the leak calculations. 
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Table 5.4: Comparison of natural gas leaks as a function of road driven in different North 

American urban centers 

City Leaks per Kilometer Reference (Months of Measurements) 

Boston, MA 1 per 1.6 km EDF, 2013 (Mar–Jun) 

Boston, MA 1 per 0.37 km Philips et al. 2013 (Aug–Oct 2011) 

Burlington, VT 1 per 16 km EDF, 2014 (Oct) 

Chicago, IL 1 per 4.8 km EDF, 2014 (Sep–Dec) 

Dallas, TX 1 per 3.2 km EDF, 2015 (Jan–Feb) 

Indianapolis, IN 1 per 320 km EDF, 2013 (Jun) 

Jacksonville, FL 1 per 15 km EDF, 2015 (Feb–Jun) 

Los Angeles, CA 1 per 6–10 km EDF, 2015 (Aug–May) 

Mesa, AZ 1 per 97 km EDF, 2016 (Mar–Apr) 

Pitssburgh, PA 1 per 3.2 km EDF, 2015 (Jun–Nov) 

Staten Island, NY 1 per 1.6 km EDF, 2014 (Jan–Apr) 

Syracuse NY 1 per 3.2 km EDF, 2014 (Apr–Aug) 

Washington, DC 1 per 0.4 km Jackson et al., 2014 (Jan–Feb 2013) 

Toronto, ON 1 per 23 km This Study (May 2017) 

 

5.4 Conclusions  

This study demonstrates a methodology to study methane in an urban setting using vehicle-

based cavity-ring down spectroscopy measurements. In October of 2014 stationary vehicle 

measurements were used at highway roads to determine fuel-based emissions factors for 

combustion sources. The results showed that most vehicles are average emitters of CH4 and CO, 

with the average fleet emissions factor determined to be 0.063 ± 0.003 g CH4 per L of fuel. This 

value is 55% lower than the emissions factor for personal vehicles in the National Inventory, 

which we attribute as likely being due to two factors: the presence of diesel vehicles on the 

highway that combust fuel at a higher temperature and pressure, resulting in more efficient 

conversion to CO2, and with lower CH4 emissions, and due to the warm steady driving 

conditions of gasoline vehicles on the highway that do not have a cold start component to their 

emissions. Separately in cases where individual vehicles could be isolated in a garage, in a bus 

loop or roadside, we show examples of individual vehicles with emissions factors much higher 



174 

 

 

than the highway average, up to 0.94 g CH4 per L of fuel, often due to inefficient cold start 

conditions. These results show that some transportation vehicles are still unusually large 

emitters, which is expected to be reduced with time due to improved emissions controls for 

newer model vehicles. 

In May of 2017, mobile vehicle measurements were used across major roads in the GTA to 

quantify the presence of methane leaks from natural gas. Measurements were taken in both 

suburban (York Region) and downtown (Toronto core) locations, with the average of the 1–day 

study showing 1 leak per 23 km of road driven. When compared to other studies in North 

America using the same metric, Toronto is on the lower range of methane leaks, which we 

attribute to the newer and better maintained infrastructure in the city. We also show 

measurements of a high methane emitting wastewater facility on Lake Ontario, where we 

measured methane up to 6 ppm. Our results from a single survey of leaks in 2017 for the GTA is 

consistent with the range reported by Ars et al. (2020) for 77 surveys conducted between 2018 to 

2019 in the same city. These results show that while some cities may have better infrastructure 

overall with less natural gas pipeline leakage, the presence of super-emitters from landfills or 

waste facilities may account for a significant fraction of the city’s methane budget. As shown in 

other studies, these super-emitters can be measured using surface, aircraft and satellite 

observations, and the mobile vehicle measurements we show can be the most cost-effective 

method for an initial survey. 

  



175 

 

 

References 

Ars, S., Vogel, F., Arrowsmith, C., Heerah, S., Knuckey, E., Lavoie, J., Lee, C., Pak, N. M., Phillips, J. 

L., and Wunch, D.: Investigation of the Spatial Distribution of Methane Sources in the Greater Toronto 

Area Using Mobile Gas Monitoring Systems, Environ. Sci. Technol., acs.est.0c05386, 

https://doi.org/10.1021/acs.est.0c05386, 2020. 

Atherton, E., Risk, D., Fougère, C., Lavoie, M., Marshall, A., Werring, J., Williams, J. P., and Minions, 

C.: Mobile measurement of methane emissions from natural gas developments in northeastern British 

Columbia, Canada, Atmos. Chem. Phys., 17, 12405–12420, https://doi.org/10.5194/acp-17-12405-2017, 

2017. 

Baray, S., Darlington, A., Gordon, M., Hayden, K. L., Leithead, A., Li, S.-M., Liu, P. S. K., Mittermeier, 

R. L., Moussa, S. G., O&amp;apos;Brien, J., Staebler, R., Wolde, M., Worthy, D., and McLaren, R.: 

Quantification of methane sources in the Athabasca Oil Sands Region of Alberta by aircraft mass balance, 

Atmos. Chem. Phys., 18, 7361–7378, https://doi.org/10.5194/acp-18-7361-2018, 2018. 

Baray, S., Jacob, D. J., Massakkers, J. D., Sheng, J.-X., Sulprizio, M. P., Jones, D. B. A., Bloom, A. A., 

and McLaren, R.: Estimating 2010–2015 Anthropogenic and Natural Methane Emissions in Canada using 

ECCC Surface and GOSAT Satellite Observations, Gases/Atmospheric Modelling/Troposphere/Physics 

(physical properties and processes), https://doi.org/10.5194/acp-2020-1195, 2021. 

Cambaliza, M. O. L., Shepson, P. B., Bogner, J., Caulton, D. R., Stirm, B., Sweeney, C., Montzka, S. A., 

Gurney, K. R., Spokas, K., Salmon, O. E., Lavoie, T. N., Hendricks, A., Mays, K., Turnbull, J., Miller, B. 

R., Lauvaux, T., Davis, K., Karion, A., Moser, B., Miller, C., Obermeyer, C., Whetstone, J., Prasad, K., 

Miles, N., and Richardson, S.: Quantification and source apportionment of the methane emission flux 

from the city of Indianapolis, Elem. Sci. Anth., 3, 000037, 

https://doi.org/10.12952/journal.elementa.000037, 2015. 

Chan, E., Worthy, D. E. J., Chan, D., Ishizawa, M., Moran, M. D., Delcloo, A., and Vogel, F.: Eight-Year 

Estimates of Methane Emissions from Oil and Gas Operations in Western Canada Are Nearly Twice 

Those Reported in Inventories, Environ. Sci. Technol., 54, 14899–14909, 

https://doi.org/10.1021/acs.est.0c04117, 2020. 

von Fischer, J. C., Cooley, D., Chamberlain, S., Gaylord, A., Griebenow, C. J., Hamburg, S. P., Salo, J., 

Schumacher, R., Theobald, D., and Ham, J.: Rapid, Vehicle-Based Identification of Location and 

Magnitude of Urban Natural Gas Pipeline Leaks, Environ. Sci. Technol., 51, 4091–4099, 

https://doi.org/10.1021/acs.est.6b06095, 2017. 

Jackson, R. B., Down, A., Phillips, N. G., Ackley, R. C., Cook, C. W., Plata, D. L., and Zhao, K.: Natural 

Gas Pipeline Leaks Across Washington, DC, Environ. Sci. Technol., 48, 2051–2058, 

https://doi.org/10.1021/es404474x, 2014. 

Johnson, M. R., Tyner, D. R., Conley, S., Schwietzke, S., and Zavala-Araiza, D.: Comparisons of 

Airborne Measurements and Inventory Estimates of Methane Emissions in the Alberta Upstream Oil and 

Gas Sector, Environ. Sci. Technol., 51, 13008–13017, https://doi.org/10.1021/acs.est.7b03525, 2017. 

Kirschke, S., Bousquet, P., Ciais, P., Saunois, M., Canadell, J. G., Dlugokencky, E. J., Bergamaschi, P., 

Bergmann, D., Blake, D. R., Bruhwiler, L., Cameron-Smith, P., Castaldi, S., Chevallier, F., Feng, L., 

Fraser, A., Heimann, M., Hodson, E. L., Houweling, S., Josse, B., Fraser, P. J., Krummel, P. B., 

Lamarque, J.-F., Langenfelds, R. L., Le Quéré, C., Naik, V., O’Doherty, S., Palmer, P. I., Pison, I., 

Plummer, D., Poulter, B., Prinn, R. G., Rigby, M., Ringeval, B., Santini, M., Schmidt, M., Shindell, D. T., 

https://doi.org/10.1021/acs.est.0c05386
https://doi.org/10.5194/acp-17-12405-2017
https://doi.org/10.5194/acp-18-7361-2018
https://doi.org/10.5194/acp-2020-1195
https://doi.org/10.12952/journal.elementa.000037
https://doi.org/10.1021/acs.est.0c04117
https://doi.org/10.1021/acs.est.6b06095
https://doi.org/10.1021/es404474x
https://doi.org/10.1021/acs.est.7b03525


176 

 

 

Simpson, I. J., Spahni, R., Steele, L. P., Strode, S. A., Sudo, K., Szopa, S., van der Werf, G. R., 

Voulgarakis, A., van Weele, M., Weiss, R. F., Williams, J. E., and Zeng, G.: Three decades of global 

methane sources and sinks, Nature Geosci, 6, 813–823, https://doi.org/10.1038/ngeo1955, 2013. 

Lu, X., Jacob, D. J., Zhang, Y., Maasakkers, J. D., Sulprizio, M. P., Shen, L., Qu, Z., Scarpelli, T. R., 

Nesser, H., Yantosca, R. M., Sheng, J., Andrews, A., Parker, R. J., Boech, H., Bloom, A. A., and Ma, S.: 

Global methane budget and trend, 2010–2017: complementarity of inverse analyses using in situ 

(GLOBALVIEWplus CH&lt;sub&gt;4&lt;/sub&gt; ObsPack) and satellite (GOSAT) observations, 

Gases/Atmospheric Modelling/Troposphere/Physics (physical properties and processes), 

https://doi.org/10.5194/acp-2020-775, 2020. 

Maasakkers, J. D., Jacob, D. J., Sulprizio, M. P., Scarpelli, T. R., Nesser, H., Sheng, J., Zhang, Y., Lu, X., 

Bloom, A. A., Bowman, K. W., Worden, J. R., and Parker, R. J.: 2010–2015 North American methane 

emissions, sectoral contributions, and trends: a high-resolution inversion of GOSAT satellite observations 

of atmospheric methane, Gases/Remote Sensing/Troposphere/Chemistry (chemical composition and 

reactions), https://doi.org/10.5194/acp-2020-915, 2020. 

Maazallahi, H., Fernandez, J. M., Menoud, M., Zavala-Araiza, D., Weller, Z. D., Schwietzke, S., von 

Fischer, J. C., Denier van der Gon, H., and Röckmann, T.: Methane mapping, emission quantification, 

and attribution in two European cities: Utrecht (NL) and Hamburg (DE), Atmos. Chem. Phys., 20, 

14717–14740, https://doi.org/10.5194/acp-20-14717-2020, 2020. 

McKain, K., Down, A., Raciti, S. M., Budney, J., Hutyra, L. R., Floerchinger, C., Herndon, S. C., 

Nehrkorn, T., Zahniser, M. S., Jackson, R. B., Phillips, N., and Wofsy, S. C.: Methane emissions from 

natural gas infrastructure and use in the urban region of Boston, Massachusetts, Proc Natl Acad Sci USA, 

112, 1941–1946, https://doi.org/10.1073/pnas.1416261112, 2015. 

Pandey, S., Gautam, R., Houweling, S., van der Gon, H. D., Sadavarte, P., Borsdorff, T., Hasekamp, O., 

Landgraf, J., Tol, P., van Kempen, T., Hoogeveen, R., van Hees, R., Hamburg, S. P., Maasakkers, J. D., 

and Aben, I.: Satellite observations reveal extreme methane leakage from a natural gas well blowout, Proc 

Natl Acad Sci USA, 116, 26376–26381, https://doi.org/10.1073/pnas.1908712116, 2019. 

Peischl, J., Ryerson, T. B., Brioude, J., Aikin, K. C., Andrews, A. E., Atlas, E., Blake, D., Daube, B. C., 

de Gouw, J. A., Dlugokencky, E., Frost, G. J., Gentner, D. R., Gilman, J. B., Goldstein, A. H., Harley, R. 

A., Holloway, J. S., Kofler, J., Kuster, W. C., Lang, P. M., Novelli, P. C., Santoni, G. W., Trainer, M., 

Wofsy, S. C., and Parrish, D. D.: Quantifying sources of methane using light alkanes in the Los Angeles 

basin, California: SOURCES OF METHANE IN L.A., J. Geophys. Res. Atmos., 118, 4974–4990, 

https://doi.org/10.1002/jgrd.50413, 2013. 

Plant, G., Kort, E. A., Floerchinger, C., Gvakharia, A., Vimont, I., and Sweeney, C.: Large Fugitive 

Methane Emissions From Urban Centers Along the U.S. East Coast, Geophys. Res. Lett., 46, 8500–8507, 

https://doi.org/10.1029/2019GL082635, 2019. 

Prather, M. J., Holmes, C. D., and Hsu, J.: Reactive greenhouse gas scenarios: Systematic exploration of 

uncertainties and the role of atmospheric chemistry: ATMOSPHERIC CHEMISTRY AND 

GREENHOUSE GASES, Geophys. Res. Lett., 39, n/a-n/a, https://doi.org/10.1029/2012GL051440, 2012. 

Turner, A. J., Jacob, D. J., Wecht, K. J., Maasakkers, J. D., Lundgren, E., Andrews, A. E., Biraud, S. C., 

Boesch, H., Bowman, K. W., Deutscher, N. M., Dubey, M. K., Griffith, D. W. T., Hase, F., Kuze, A., 

Notholt, J., Ohyama, H., Parker, R., Payne, V. H., Sussmann, R., Sweeney, C., Velazco, V. A., Warneke, 

T., Wennberg, P. O., and Wunch, D.: Estimating global and North American methane emissions with 

high spatial resolution using GOSAT satellite data, Atmos. Chem. Phys., 15, 7049–7069, 

https://doi.org/10.5194/acp-15-7049-2015, 2015. 

https://doi.org/10.1038/ngeo1955
https://doi.org/10.5194/acp-2020-775
https://doi.org/10.5194/acp-2020-915
https://doi.org/10.5194/acp-20-14717-2020
https://doi.org/10.1073/pnas.1416261112
https://doi.org/10.1073/pnas.1908712116
https://doi.org/10.1002/jgrd.50413
https://doi.org/10.1029/2019GL082635
https://doi.org/10.1029/2012GL051440
https://doi.org/10.5194/acp-15-7049-2015


177 

 

 

Vaughn, T. L., Bell, C. S., Pickering, C. K., Schwietzke, S., Heath, G. A., Pétron, G., Zimmerle, D. J., 

Schnell, R. C., and Nummedal, D.: Temporal variability largely explains top-down/bottom-up difference 

in methane emission estimates from a natural gas production region, Proc Natl Acad Sci USA, 115, 

11712–11717, https://doi.org/10.1073/pnas.1805687115, 2018. 

Weller, Z. D., Yang, D. K., and von Fischer, J. C.: An open source algorithm to detect natural gas leaks 

from mobile methane survey data, PLoS ONE, 14, e0212287, 

https://doi.org/10.1371/journal.pone.0212287, 2019. 

Wunch, D., Toon, G. C., Hedelius, J. K., Vizenor, N., Roehl, C. M., Saad, K. M., Blavier, J.-F. L., Blake, 

D. R., and Wennberg, P. O.: Quantifying the loss of processed natural gas within California’s South Coast 

Air Basin using long-term measurements of ethane and methane, Atmos. Chem. Phys., 16, 14091–14105, 

https://doi.org/10.5194/acp-16-14091-2016, 2016.  

https://doi.org/10.1073/pnas.1805687115
https://doi.org/10.1371/journal.pone.0212287
https://doi.org/10.5194/acp-16-14091-2016


178 

 

 

Chapter 6 Conclusions 

The research objective of this dissertation was to use atmospheric measurements to better 

understand CH4 emissions in Canada. The studies shown include the use of surface, aircraft and 

satellite observations in combination with a variety of experimental and modelling techniques. 

The results provide key insights into the magnitudes and patterns of anthropogenic and natural 

CH4 sources in Canada. In addition, the studies evaluate the limitations of the various approaches 

and measurement platforms and provide guidance on future improvements. 

Aircraft measurements in the AOSR during an intensive campaign in the summer of 2013 

showed that the major sources of CH4 in the region were fugitive in nature, due to tailings ponds 

and open-pit mining, with some emissions from facility plant sites. It was demonstrated that an 

array of instrumentation simultaneously measuring many chemical species could be used to trace 

the sources of CH4 plumes to one of the three major categories. For tailings ponds, concurrent 

BTEX plumes were reliable indicators for emissions from MLSB and Pond 2/3. NOy and rBC 

were used to identify CH4 plumes from open pit mining due to the concentrated presence of 

heavy hauler diesel trucks. SO2 and NOy plumes at higher altitudes were used to track facility 

plumes from upgrader stacks, which were shown to contain high methane from the CNRL 

facility. These chemical fingerprints were combined with a screen-based mass balance approach 

to quantify horizontal advective fluxes from CH4 plumes. The results of 7 aircraft flights 

determined total emissions rates of 8.8 ± 0.9 t hr-1 from tailings ponds (45% of the AOSR total), 

9.8 ± 0.9 t hr-1 from open pit mining (50%), and 1.0 ± 0.3 t hr-1 from facility plant sites (5%). 

These results were consistent with the results from a box-based mass balance approach, which 

was a more exhaustive quantification of horizontal and vertical fluxes within the flight path 

surrounding a facility. In total, the AOSR emissions from aircraft mass balance was determined 

to be 19.6 ± 1.1 t CH4 hr-1 or 0.17 ± 0.1 Tg CH4 yr-1 when scaled up assuming seasonally 

constant emissions. These results are 48% higher than the GHGRP, which shows a discrepancy 

between bottom-up inventories and top-down emissions. 

Cold-season CH4 measurements using surface in-situ measurements in a mobile vehicle were 

deployed in the Fall/Winter of 2014 and the Winter/Spring of 2017 to address the limited 
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temporal coverage of aircraft measurements and provide insight into the seasonal behavior of 

fugitive emissions. Aircraft campaigns are highly resource intensive field studies, and simpler-

to-deploy vehicle measurements provided additional sampling of seasonal variation. The 

measurements showed consistently high CH4 plumes in both 2014 and 2017 from tailings ponds 

MLSB and Pond 2/3 exceeding 3 ppm. Similarly, CH4 plumes downwind of open-pit mining 

were observed in both 2014 and 2017 between 2–3 ppm. Occasional, geographically narrow CH4 

measurements of 23 ppm in 2014 and 87 ppm in 2017 showed the presence of leaking or venting 

activity that was not previously captured by aircraft measurements. Due to the infrequency of 

these high CH4 measurements, it was inferred for the 2014 and 2017 dataset that they were not 

comparable in magnitude to tailings pond and open-pit mining emissions. However, the 

confirmed existence of high leaking or venting events poses a challenge for top-down 

measurements since super-emitter events could be missed by the temporal gap in field studies. 

Transects downwind of sources perpendicular to plume transport direction were conducted for 

mass-balance quantification, and these transects were filtered for optimal conditions such that 

surface measurements were sufficiently representative of the PBL. This MSMB approach was 

able to quantify SUN open-pit mining emissions to be 1.0 ± 0.4 t hr-1, which shows an overlap 

with the uncertainty intervals with aircraft mass-balance quantification of the same source in the 

summer of 2013. These results suggest that tailings ponds and open pit mining emissions persist 

in the cold season; any seasonal dependence on emissions magnitudes, which is likely to exist, is 

within the uncertainties of mass balance methods. Constraining these fugitive emissions sources 

with higher precision using similar mass balance methods requires larger sample sizes for the 

reduction of uncertainties. 

Anthropogenic and natural CH4 emissions at the national scale across Canada were estimated 

for 2010–2015 using a surface in-situ network from ECCC and satellite observations from 

GOSAT in a Bayesian inverse modelling approach. The forward model GEOS-Chem was 

equipped with state-of-the-science emissions inventories for the oil and gas sector in Western 

Canada and for an ensemble of wetlands emissions scenarios and process-models from the 

WetCHARTS inventory. The mean 2010–2015 emissions for anthropogenic and natural 

emissions in the prior was 4.4 Tg a-1 and 14.8 Tg a-1, respectively. An ensemble forward model 
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analysis was conducted which included 6 key WetCHARTS scenarios. The comparison to in-situ 

observations showed large positive biases in the summer (+1050 ppb), indicating an 

overestimation of emissions, at in-situ stations sensitive to Boreal Canada wetlands emissions, 

and year-round negative biases (–100 ppb), indicating an underestimation of emissions, at in-situ 

stations in sensitive to energy and agriculture emissions in Western Canada. Three inversions 

were performed, which defined different state vectors of emissions to be optimized: (1) an 

inversion which optimized monthly natural emissions and anthropogenic emissions on a yearly 

basis, (2) an inversion which optimized emissions according to sectoral categories in the 

National Inventory, and (3) an inversion which optimized anthropogenic and natural emissions 

on the provincial scale. The three inversion results were consistent in showing higher 

anthropogenic emissions and lower natural emissions in the posterior and were consistent when 

optimizing emissions separately with in-situ and satellite data. From the monthly inversion, mean 

2010–2015 posterior emissions using ECCC surface data are 6.0 ± 0.4 Tg a-1 for total 

anthropogenic and 11.6 ± 1.2 Tg a-1 for total natural emissions, in agreement with the posterior 

using GOSAT data of 6.5 ± 0.7 Tg a-1 for total anthropogenic and 11.7 ± 1.2 Tg a-1 for total 

natural emissions. The seasonal pattern of natural emissions in the posterior showed slower-to-

begin emissions in the spring and a less intense peak for summertime emissions, which indicate 

temperature and inundation dependencies that need to be better understood in process models. 

Emissions from the Energy + Agriculture sector in the posterior were 5.1 ± 1.0 Tg a-1, which is 

59% higher than the National Inventory. From the provincial inversion, 39% higher 

anthropogenic emissions were attributed to Western Canada than the prior. The results from this 

study show a readjustment of the Canadian CH4 budget is necessary to better match atmospheric 

observations with lower natural emissions partially offset by higher anthropogenic emissions. 

Additionally, the results from the sectoral and provincial inversions show that the ECCC + 

GOSAT combined observing system is inadequate for completely constraining subnational scale 

emissions, as finer scale emissions from most provinces could not be resolved above the noise in 

the system. Improvements to the observing system using an expanded in-situ network and next-

generation satellites, such as TROPOMI and GOSAT-2, may better address these limitations in 

the years following this analysis. 
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A cost-effective urban field study completed in 2014 and 2017 using CRDS observations in a 

mobile vehicle was able to survey CH4 emissions from mobile combustion sources and from 

natural gas infrastructure in the Greater Toronto Area. On-road emissions factors for vehicles 

were verified to be low contributors to the urban CH4 budget, however numerous super-emitting 

vehicles were observed that emitted high CH4 and CO. These high CH4 + CO measurements 

indicated the presence of poorly maintained vehicles with aging equipment resulting in 

incomplete combustion of fuel into CO2 or failing catalytic converters and emissions controls. 

The average fleet emissions factor was determined to be 0.063 ± 0.003 g CH4 per L of fuel, 

which is 55% lower than the emissions factor for personal vehicles in the National Inventory. 

However this is perhaps not surprising as the emissions were measured from vehicles on 

highways during steady state driving conditions without starts and stops. In the 2017 field study, 

~90 km of road was driven to survey the presence of leaking natural gas infrastructure. The 

average of the 1-day study showed 1 leak per 23 km of road driven, which is low when 

compared to other studies in North America. The 2017 study also showed the presence of a high 

emitting urban wastewater facility on Lake Ontario, with maximum CH4 in the plume observed 

to be 6 ppm. The results from the urban studies show that cities with better maintained 

infrastructure can reduce CH4 emissions from natural gas leakage, however super-emitters from 

landfills or waste facilities may account for a substantial fraction of the city CH4 budget, which 

can be better characterized with observations. 

The studies presented in this dissertation show the value of atmospheric observations towards 

improving characterization of CH4 emissions in Canada. Aircraft observations provide dense 

local coverage, and when combined with measurements of tracer species, emissions can be 

determined at the facility and sub-facility source level. The primary limitation of aircraft studies 

is temporal coverage, since they provide ‘snapshot’ emissions in time which may change over 

seasons and years. A solution to this limitation is the use of comparable mobile surface 

measurements, which are less resource intensive. These surface measurements, when combined 

with a network of meteorological measurements and plume modelling, can also determine 

emissions at the sub-facility source level using a mass-balance approach. However, the limitation 

of this approach is the dependence on the assumption of a well-mixed plume in the PBL, which 



182 

 

 

excludes many observations from the analysis. Satellite observations have improved 

substantially in the last decade, with increasing observation coverage and precision. When 

combined with a global chemical transport model such as GEOS-Chem, emissions can be 

determined on the national and subnational scale in an inverse analysis, successfully 

disentangling anthropogenic and natural sources. Satellite inverse modelling in Canada is 

generally limited by errors in the retrieval and model transport biases in the high latitude domain 

which compromise interpretation of the XCH4 column. In addition, background-enhanced signal 

from surface emissions in the column-average observed from space is weaker than signal that 

could be measured by local in-situ observations; hence detectable emissions are limited by 

source magnitudes relative to instrument precision, which are not a major consideration for 

CRDS instruments. However, the daily, global coverage of satellite observations is 

extraordinarily valuable to address the temporal and spatial gaps in field studies, and these 

capabilities are rapidly improving. For example, the TROPOMI instrument launched in 2017 

provided ~64 million XCH4 observations in 2019, this is factor of 274x higher than the ~0.23 

million XCH4 observations provided by GOSAT in 2013. 

The scientific community will continue to accomplish improvements to atmospheric 

observations and these measurements will continue to be used to better constrain emissions at the 

sub-facility to global scale. In the near future, it is easily foreseeable that this will reduce 

uncertainties in the Earth’s CH4 cycle, resulting in more precise source-attribution of the global 

growth rate and decadal trends in atmospheric CH4. Optimistically, this knowledge will be used 

by policymakers to competently target CH4 reductions, resulting in a trend of decreasing 

atmospheric CH4 before the half century and reducing its impact on radiative forcing. How this 

knowledge will be used towards climate policy is outside of the jurisdiction of science, although 

scientists outside of their jurisdiction may yet have much to contribute on this subject.   
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Appendices 

Appendix A: Supplement to Quantification of methane sources in the Athabasca Oil Sands 

Region of Alberta by aircraft mass balance 

A.1 Assessment of Uncertainties 

Tables A.1-6 show the results of the sensitivity analysis to estimate contributions to total 

uncertainty. Parameters contributing to uncertainties depend on the mass balance method used 

and the screen-based (Eq. 2.1) or the box-approach (Eq. 2.2). Minor uncertainties that contribute 

to both methods are errors in the CH4 mixing ratio measurement and wind measurements. CH4 

measurement errors from the instrument are <1%. Measurements of trace species from other 

instruments were used qualitatively to deduce plume origins, thus they do not contribute to total 

uncertainties. In a previous study, a Monte Carlo simulation was used to demonstrate the wind 

measurements contribute <1% to the change in uncertainties (Gordon et al., 2016). A significant 

source of uncertainty for both mass balance methods is the extrapolation of CH4 mixing ratios to 

the surface for ground-level plumes. Surface extrapolation uncertainties are highly variable with 

flight, consistent with the literature. Cambaliza et al. (2014) found surface extrapolation 

uncertainties to be 4, 9 and 16% for three different mass balance flights downwind of 

Indianapolis to determine CH4 fluxes, and Gordon et al., 2016 found this to be 15% and 26% for 

two Oil Sands flights for the CNRL facility. The uncertainty depends on the range of surface 

mixing ratios resulting from fitting varying extrapolation methods. We derive a range of possible 

emissions rates by comparing results from constant, linear and half-Gaussian extrapolations to 

the surface. CH4 measurements at Fort McKay are used as constraints on surface mixing ratios 

when flight paths are directly overhead (Aug 16 Flight 4A, SML and SUN). Half-guassian 

extrapolations are used where fits are above constraints (r2>0.40). Future studies can further 

minimize these uncertainties with simultaneous ground-level mixing ratio measurements. 
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Additional uncertainties specific to the box-approach (Eq. 2.2) are assessed according to the 

methodology described in Gordon et al., 2016. Contributing factors are: (1) the uncertainty in the 

box-top height (affecting the ECH and ECV terms), estimated by reducing the box height by 100 

m, (2) changes in air mass density within the volume of the box (affecting ECM), estimated using 

the minimum and maximum of pressure and temperature ratios derived from surrounding 

meteorological stations, (3) inclusion of the estimated vertical turbulence term (ECVT), and (4) 

uncertainty in the mean CH4 mixing ratio at the box-top (affecting ECV) determined from the 

95% confidence interval (2σ/√n) of interpolated measurements. These terms are recalculated 

according to the range of possible input parameters in order to derive resulting uncertainties in 

the emissions rates. Screen-approach specific uncertainties (Eq. 2.1) are mostly due to the 

variability in the background mixing ratio [CH4]B, determined using the outer edges of the screen 

away from plume sources (screen flights) and upwind measurements (box flights). For each 

flight measurements from multiple background regions (>1km) occurring closely in time are 

used as possible inputs, which are identified clearly due to the high CH4 mixing ratios observed 

from plumes. Other sources of uncertainty are the vertical extent of the screen (upper bound, z) 

and the horizontal boundaries (s1-s2) of individually characterized plumes. These plume 

boundaries are expanded and contracted to derive a range of possible integrals. 

Uncertainties for each mass balance flight are added in quadrature to derive a range of 

possible emissions rates. Estimates for the same source category within a facility, as well as total 

estimates for the same facility, are treated as independent estimates and combined using an error-

weighted mean (1/σ2). 

A.2 Meteorological Conditions 

Tables A.1-6 (bottom) present various flight details and meteorology. Flights used are those 

with a high number of aircraft transects (≥6) that show full characterization of plume vertical 

extent. Boundary layer heights are determined using visual inspection of dew point temperature 

alongside LIDAR backscatter reports from ground-site AMS13 during flight times. Ground 

temperature and wind direction measurements are based on ground-site data at AMS13 over the 

course of the day. Wind speeds shown are from interpolated screens ± 1σ. 
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Table A.1-6: Top: Sensitivity analysis displaying uncertainty contributions shown in percent 

change from the best-estimate emissions rate, added in quadrature for totals. Uncertainties in 

individual plumes are noted with superscripts for tailings ponds (t), mines (m) and facility/other 

(f). Screen estimates using an overlapping subset of downwind measurements from a box flight 

of the same day are shown with an asterisk (*). Middle: List of emissions rates for source 

categories and facility totals in tonnes CH4 per hour (tonnes hr-1). Bottom: Various aircraft flight 

details and meteorological parameters. 
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Table A.1: Syncrude Mildred Lake (SML) 

  Aug 14 

Box 

Aug 14 

Screen A* 

Aug 14 

Screen B 

Aug 16 

Screen A 

 Measurement Error (%) 1 1 1 1 

Wind Error (%) 1 1 1 1 

Surface Extrapolation (%) 4 11 3 28 

Box 

Box-top Height (%) 15    

Density Change (%) 11    

Vertical Turbulence (%) 2    

Box-Top Mixing Ratio (%) 4    

Screen 

Background Mixing Ratio (%)  13 19 8 

Screen-Top Height (%)  6 6 1 

Plume Separation (%)  6t, 11m 5t, 12m 5t, 8m 

 Total Uncertainty Facility (%) 20 19 21 30 

Total Uncertainty Plumes (%)  20t, 22m 21t, 24m 30t, 31m 

 Emissions Rate Ponds (tonnes hr-1)  6.38 ± 1.23 5.83 ± 1.22 8.63 ± 2.59 

 Emissions Rate Mines (tonnes hr-1)  2.71 ± 0.60 2.67 ± 0.64 3.07 ± 0.95 

 Emissions Rate Facility/Other (tonnes hr-1)     

 Emissions Rate Total (tonnes hr-1) 7.68 ± 1.54 9.10 ± 1.73 8.50 ± 1.79 11.82 ± 3.55 

 Aircraft Transect Count 6 6 8 9 

 Boundary Layer Height (m agl) 360-400 360-400 400-600 350-400 

 Temperature (°C) 20.8 ± 6.0 20.8 ± 6.0 20.8 ± 6.0 19.5 ± 3.8 

 Wind Speed (m/s) 3.1 ± 2.5 3.1 ± 2.5 5.1 ± 1.6 2.8 ± 0.8 

 Daily Mean Wind Direction (°) 220 ± 37 220 ± 37 220 ± 37 225 ± 57 
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Table A.2: Suncor Energy OSG (SUN) 

  Aug 16 Screen A Aug 29 Box Aug 29 Screen* 

 Measurement Error (%) 1 1 1 

Wind Error (%) 1 1 1 

Surface Extrapolation (%) 4 14 4 

Box 

Box-top Height (%)  1  

Density Change (%)  17  

Vertical Turbulence (%)  2  

Box-Top Mixing Ratio (%)  5  

Screen 

Background Mixing Ratio (%) 23  2 

Screen-Top Height (%) 1  9 

Plume Separation (%) 12t, 1m  9t, 9m 

 Total Uncertainty Facility (%) 24 23 11 

Total Uncertainty Plumes (%) 27t, 24m  14t, 14m 

 Emissions Rate Ponds (tonnes hr-1) 3.16 ± 0.85  2.30 ± 0.32 

 Emissions Rate Mines (tonnes hr-1) 1.53 ± 0.37  1.88 ± 0.26 

 Emissions Rate Facility/Other (tonnes hr-1)    

 Emissions Rate Total (tonnes hr-1) 4.69 ± 1.13 3.96 ± 0.91 4.18 ± 0.42 

 Aircraft Transect Count 9 7 7 

 Boundary Layer Height (m agl) 350-400 400-500 400-500 

 Temperature (°C) 19.5 ± 3.8 15.2 ± 2.4 15.2 ± 2.4 

 Wind Speed (m/s) 2.8 ± 0.8 1.8 ± 1.3 1.8 ± 1.3 

 Daily Mean Wind Direction (°) 225 ± 57 26 ± 40 26 ± 40 
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Table A.3: Canadian National Resources Limited Horizon (CNRL) 

  

Aug 20 Box 

Aug 20 

Screen* Sep 02 Box 

Sep 02 

Screen* 

 Measurement Error (%) 1 1 1 1 

Wind Error (%) 1 1 1 1 

Surface Extrapolation (%) 22 26 12 11 

Box 

Box-top Height (%) 1  18   

Density Change (%) 5  6   

Vertical Turbulence (%) 2  7   

Box-Top Mixing Ratio (%) 3  8   

Screen 

Background Mixing Ratio (%)   16   25 

Screen-Top Height (%)   5  2 

Plume Separation (%)    6m, 12f 

 Total Uncertainty Facility (%) 23 31 25 28 

Total Uncertainty Plumes (%)    29m, 30f 

 Emissions Rate Ponds (tonnes hr-1)     

 Emissions Rate Mines (tonnes hr-1)    2.56 ± 0.74 

 Emissions Rate Facility/Other (tonnes hr-1)    0.98 ± 0.29 

 Emissions Rate Total (tonnes hr-1) 3.65 ± 0.84 3.67 ± 1.14 3.53 ± 0.88 3.54 ± 1.00 

 Aircraft Transect Count 12 12 10 10 

 Boundary Layer Height (m agl) 700-900 700-900 600-1000 600-1000 

 Temperature (°C) 16.3 ± 4.3 16.3 ± 4.3 12.7 ± 5.1 12.7 ± 5.1 

 Wind Speed (m/s) 2.4 ± 1.9 2.4 ± 1.9 5.9 ± 2.8 5.9 ± 2.8 

 Daily Mean Wind Direction (°) 262 ± 35 262 ± 35 338 ± 59 338 ± 59 
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Table A.4: Shell Albian and Jackpine (SAJ) 

  

Aug 21 Box 

Aug 21 

Screen* Sep 06 Box 

Sep 06 

Screen* 

 Measurement Error (%) 1 1 1 1 

Wind Error (%) 1 1 1 1 

Surface Extrapolation (%) 5 7 12 7 

Box 

Box-top Height (%) 8  5   

Density Change (%) 10  16   

Vertical Turbulence (%) 5  2   

Box-Top Mixing Ratio (%) 9  7   

Screen 

Background Mixing Ratio (%)   27   17 

Screen-Top Height (%)  10  5 

Plume Separation (%)         

 Total Uncertainty Facility (%) 18 30 22 20 

Total Uncertainty Plumes (%)     

 Emissions Rate Ponds (tonnes hr-1)     

 Emissions Rate Mines (tonnes hr-1)  1.44 ± 0.43  1.18 ± 0.24 

 Emissions Rate Facility/Other 

(tonnes hr-1) 

    

 Emissions Rate Total (tonnes hr-1) 1.60 ± 0.29 1.44 ± 0.43 1.25 ± 0.28 1.18 ± 0.24 

 Aircraft Transect Count 10 10 10 10 

 Boundary Layer Height (m agl) 1200-1500 1200-1500 900-1200 900-1200 

 Temperature (°C) 16.5 ± 3.6 16.5 ± 3.6 14.8 ± 6.2 14.8 ± 6.2 

 Wind Speed (m/s) 1.3 ± 0.8 1.3 ± 0.8 4.3 ± 0.9 4.3 ± 0.9 

 Daily Mean Wind Direction (°) 258 ± 50 258 ± 50 7 ± 50 7 ± 50 
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Table A.5: Syncrude Aurora (SAU) 

  Aug 29 Box Aug 29 Screen* Sep 06 Screen* 

 Measurement Error (%) 1 1 1 

Wind Error (%) 1 1 1 

Surface Extrapolation (%) 10 14 6 

Box 

Box-top Height (%) 4    

Density Change (%) 9    

Vertical Turbulence (%) 2    

Box-Top Mixing Ratio (%) 3    

Screen 

Background Mixing Ratio (%)   11 13 

Screen-Top Height (%)  4 13 

Plume Separation (%)       

 Total Uncertainty Facility (%) 15 19 20 

Total Uncertainty Plumes (%)       

 Emissions Rate Ponds (tonnes hr-1)    

 Emissions Rate Mines (tonnes hr-1)  1.29 ± 0.25 1.56 ± 0.31 

 Emissions Rate Facility/Other (tonnes hr-1)    

 Emissions Rate Total (tonnes hr-1) 1.70 ± 0.26 1.29 ± 0.25 1.56 ± 0.31 

 Aircraft Transect Count 3 3 10 

 Boundary Layer Height (m agl) 400-500 400-500 900-1200 

 Temperature (°C) 15.2 ± 2.4 15.2 ± 2.4 14.8 ± 6.2 

 Wind Speed (m/s) 2.3 ± 0.7 2.3 ± 0.7 4.3 ± 0.9 

 Daily Mean Wind Direction (°) 26 ± 40 26 ± 40 7 ± 50 
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Table A.6: Total Oil Sands Screen 

  Aug 16 Screen B 

 Measurement Error (%) 1 

Wind Error (%) 1 

Surface Extrapolation (%) 3 

Box 

Box-top Height (%)  

Density Change (%)  

Vertical Turbulence (%)  

Box-Top Mixing Ratio (%)  

Screen 

Background Mixing Ratio (%) 14 

Screen-Top Height (%) 5 

Plume Separation (%)   

 Total Uncertainty Facility (%) 16 

Total Uncertainty Plumes (%)   

 Emissions Rate Ponds (tonnes hr-1)  

 Emissions Rate Mines (tonnes hr-1)  

 Emissions Rate Facility/Other (tonnes hr-1)  

 Emissions Rate Total (tonnes hr-1) 23.6± 3.8 

 Aircraft Transect Count 10 

 Boundary Layer Height (m agl) 400-450 

 Temperature (°C) 19.5 ± 3.8 

 Wind Speed (m/s) 2.8 ± 1.0 

 Daily Mean Wind Direction (°) 225 ± 57 
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Figure A.1: Background profiles, [CH4]B(z), were selected from regions of the interpolated 

screens away from plume sources, corresponding to 2-20km spatial lengths depending on the 

flight paths. Error bars are the 1σ variability within the 2-20km spatial regions of background air. 

Background CH4 for the vertical regions 150-200m above ground to the surface are estimated 

based on extrapolations (constant or linear) from the lowest transects to the surface and included 

in the uncertainty analysis. The lowest 5 aircraft transects usually converged to a constant value 

(Box 3,5,6,7,9 left to right) or showed a small linear enhancement (Box 2,4,8) which provided 

best fits to the surface. 
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Figure A.2: Correlation Plots for Plumes A-D corresponding to Figure 2.2 (SML Mine, SML 

Tailings Pond, SUN Tailings Pond, SUN Mine). CH4 is well correlated with tracer species NOy, 

BC and BTEX for the various sources. Linear coefficients of determination (r2) are in the range 

of 0.44-0.83. The lowest r2 values are from the CH4 vs BTEX plot for Plume C and the CH4 vs 

NOy and CH4 vs BC plots for Plume D. These two sources correspond to lower emissions and 

mixing ratios of both CH4 and the 5 associated species. In the context of our results, this analysis 

confirms the correlation of CH4 with various species as shown in Figure 2.2 which are used to 

spatially define plume boundaries. 
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Figure A.3: Time series plots of methane (red line) and discrete canisters samples analyzed for 

ethane (blue lines) corresponding to the same plumes used in Table 2.1 for the ethane/methane 

ratio calculations. These are a small subset of the canisters that were sampled over the aircraft 

campaign. These example plumes attempt to isolate known sources from the three facilities and 

support the conclusion that there were not any significant sources of ethane in the AOSR, in 

agreement with Simpson et al., 2010.  
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Appendix B: Supplement to Cold season methane emissions estimated in the Athabasca Oil 

Sands Region of Alberta using mobile surface measurements 

B.1 Analysis of winds 

B.1.1 Description of meteorological measurements 

Meteorological measurements at selected WBEA and ECCC monitoring stations (Table B.1, 

Figure B.1) were combined to determine a regionally representative vertical profile (Figures B.2-

3). Measurements of horizontal and vertical winds were available at multiple heights above 

altitude, including up to 310m from the windRASS at AMS1 and 2000m from the SODAR at 

AMS17. Wind measurements along the vehicle transects during stationary periods were available 

from the anemometer mounted on the vehicle, which were used to independently verify WBEA 

wind speeds. 

To calculate the average wind vector within the PBL (Tables B.2-3) for the March 28th and 

31st plumes, the wind data from the measurement stations, excluding AMS17 SODAR, were 

vector averaged over the estimated transport time period for each plume. The AMS17 

measurements were excluded because the wind-speeds were significantly higher at this location 

compared to the other stations (Figures B.2-3), likely due to the location of AMS17’s SODAR at 

a relatively higher elevation (Table B.1). Hence, this data is not considered representative of the 

plume transport behaviour. 

Figures B.2-3 show average vertical profiles of wind-speed and wind-direction determined by 

vector averaging wind measurements at the same altitudes above sea level (a.s.l.) in 10 m altitude 

bins rather than altitude above local surface level. In the figures the profiles are shown relative to 

the altitudes at the location of the peak CH4 (344 m for March 28th and 355 m for March 31st). 

This method was based on the greater strength of correlation between wind data from AMS1 and 

AMS5 stations for the same altitudes a.s.l. compared to the same altitudes above local surface 

level for March 2017 (Tables B.4-5). For the wind-speed correlations, the slopes of the linear 

regression were close to 1.0 using comparable altitudes a.s.l. versus 1.4-2.0 for altitudes above 

local surface (Table B.2). These results suggest that the wind streamlines likely become flatter at 

altitudes sufficiently above the surface (e.g., >40 m) but follow the ground close to the surface. 
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Note that in the Athabasca Oil Sands Region, complex wind flow is possible due to the presence 

of the Athabasca River valley (Gordon et al., 2018). A time-series comparison of wind-speeds 

and wind-directions at comparable altitudes a.s.l. during the estimated time of transport for the 

March 28th and 31st plumes are shown in Figures B.4-7. The wind-speeds and wind-directions 

were relatively constant and consistent between the different locations for the March 28th and 

31st estimated time of the plumes’ transport (Table 3.1). 

Note that while the windRASS can measure up to ~550 m above local surface level, the data 

retrievals become noisy for speeds >5 m/s such that many datapoints are missing >310 m for the 

study days. Therefore, only WindRass data 40-310 m above the local surface were used in the 

calculations. The vertical profile of wind speed >310 m was extrapolated for each transect by 

fitting a power-law function to the average vertical profile (Fig. B.2-3), see section B.1.3 in the 

supplement for more details on modelling wind profiles using a power-law function. The errors 

of the power law equations were estimated using the RMSE of the modelled values (Table B.2). 

The average wind-speed used in the emission calculation (Eq 4.1) for the March 28th and 31st 

plumes was determined by vertically averaging the combined averaged measured and power-law 

extrapolated profiles within the PBL height. The average wind-directions in the PBL were 

determined by vertically averaging the vertical profile of averaged measurements between 0 and 

310 m (Table B.3). The profiles were not extrapolated above 310 m because wind-direction 

appeared relatively constant with altitude above the near-surface for all transects (Figures B.2-3).  
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Table B.1: Locations, elevation, and altitudes of measurements of the wind measurement 

stations from WBEA. *NA = instrument type is not known. 

Meteorological 

Measurement 

Station 

Altitude 

Above 

Sea Level 

(m) 

Latitude (o), 

Longitude (o) 

Altitudes of 

Measurement 

above Local 

Surface (m) 

Instrument 

Time 

Resolution 

(mins.) 

AMS5 

(Mannix) 
332 56.968, –111.482 20, 45, 75, 90 

Ultrasonic 

Anemometer 
5 

AMS3 (Lower 

Camp Met 

Tower) 

238 57.032, –111.506 20, 45, 100, 167 NA 5 

AMS1 (Bertha 

Ganter) 
267 57.189, –111.641 

40, …, 310 [10 

m intervals] 
WindRass 15 

AMS17 

(Wapasu) 
490 57.259, –111.039 

100, …, 2000 

[100 m 

intervals] 

SODAR 60 

JP104 335 57.119, –111.425 2, 16, 21, 29 NA 60 
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Figure B.1: Locations of meteorological measurement instruments and example of transect 1 

from March 31st.  
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Figure B.2: Vertical profiles of wind-speed (top) and wind-direction (bottom) for the transects 

on March 28th.  
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Figure B.3: Vertical profiles of wind-speed (top) and -direction (bottom) for transects on March 

31st.  
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Table B.2 Transect average of wind-speed within the PBL for Mar 28 and Mar 31 2017 plumes. 

Instrumental uncertainty is the manufacturer reported uncertainty of the WindRass instrument 

(Table B.1). Interpolation uncertainty is the root-mean square error of the power-law fit to the 

vertical profile of wind-speed from 0–310 m (Fig. B.5). 

Transect 

Average 

Wind-Speed 

(m/s) 

Standard 

Deviation 

(m/s) 

Instrumental 

Uncertainty (m/s) 

Interpolation 

Uncertainty 

(m/s) 

Total 

Uncertainty 

(m/s) 

2A 4.2 0.4 0.5 0.3 0.7 

2B 3.4 0.2 0.5 0.2 0.6 

5A 3.6 0.3 0.5 0.16 0.6 

5B 3.6 0.4 0.5 0.26 0.7 

 

Table B.3 Transect average of wind-direction from measurements 0–310 m above surface level 

for Mar 28 and Mar 31 2017 plumes. Instrumental uncertainty is the manufacturer reported 

uncertainty of the WindRass instrument (Table B.1).  

Transect 

Average Wind-

Direction 

(Degrees) 

Standard 

Deviation 

(Degrees) 

Instrumental 

Uncertainty (Degrees) 

Total 

Uncertainty 

(Degrees) 

2A 179 6 2 6 

2B 176 6 2 6 

5A 200 10.9 1.5 11.0 

5B 201 14.5 1.5 14.6 
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B.1.2 Comparison of vertical profiles of wind data using absolute or relative altitudes 

This section shows an analysis of wind data from different meteorological stations comparing 

the consistency of observations when using absolute altitude above sea level and relative altitude 

above the surface. There is a considerable effect of topography on meteorology in the region, as 

Table B.1 shows the altitudes above sea level between different stations ranges from 238 m 

(AMS3) to 490 m (AMS17). The differences in wind speeds are most apparent when comparing 

to AMS17 SODAR (Figure B.2-3), which is higher than the other stations due to the highest 

elevation. For example, Table B.4 shows linear regression statistics in the comparison between 

AMS5 and the WindRass at AMS1. The R2 and slope both improve when using absolute altitude 

above sea level for the vertical grid of measurements as opposed to comparing the measurements 

according to their relative height above the ground. The results from this section show that a grid 

of absolute altitudes above sea level improve comparisons between stations. Figures B.4-7 show 

this result visually for the transect days showing the consistency of measurements at different 

relative heights above the ground, but similar absolute altitudes above sea level. 

 

Table B.4 Linear Regression Statistics for correlation between Mannix and WindRass wind-

speeds at comparable altitudes above the local surface and above sea-level for March 2017. Note 

that N=2800, the 5-minute Mannix data was vector averaged into the 15-minute time intervals of 

the WindRass data, the Mannix data was the y-data and that the y-intercept was set to zero. 

 
Same Altitude Above Local 

Surface 

Same Absolute Altitude Above Sea 

Level 

Mannix 

Altitude 
WindRass Altitude R2 Slope WindRass Altitude R2 Slope 

20 NA NA NA 90 0.43 0.91 

45 40 -0.10 2.2 110 0.50 1.1 

75 70 0.48 1.4 140 0.52 1.0 

90 90 0.48 1.4 160 0.48 1.1 
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Table B.5 Circular regression statistics for correlation between Mannix and WindRass Wind-

Directions at comparable altitudes above the local surface and above sea-level for March 2017. 

Note that N=2800, the 5-minute Mannix data was vector averaged into the 15-minute time 

intervals of the WindRass data, and the Mannix data was the y-data. The statistics were 

calculated using the Circular Statistics Toolbox in MATLAB (Berens, 2009). 

 
Same Relative Altitude Above Local 

Surface 

Same Absolute Altitude Above Sea 

Level 

Mannix 

Altitude  

WindRass 

Altitude  
R2 p-value 

WindRass 

Altitude  
R2 p-value 

20 NA NA NA 90 0.56 0.0 

45 40 0.43 0 110 0.65 0.0 

75 70 0.50 0 140 0.71 0.0 

90 90 0.55 0 160 0.71 0.0 
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Figure B.4: Comparison of March 28th wind-speeds from different measurement locations. The 

altitudes in the plot legends for each location refer to altitude above surface level at the 

measurement location.  
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Figure B.5: Comparison of March 28th wind-directions from different measurement locations. 

The altitudes in the plot legends for each location refer to altitude above surface level at the 

measurement location.  
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Figure B.6: Comparison of March 31st wind-speeds from different measurement locations. The 

altitudes in the plot legends for each location refer to altitude above surface level at the 

measurement location.  
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Figure B.7: Comparison of March 31st wind-directions from different measurement locations. 

The altitudes in the plot legends for each location refer to altitude above surface level at the 

measurement location.  
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B.1.3 The power-law model of vertical profiles of wind speed 

The power-law (P-L) function can be used to model vertical profiles of wind-speed with 

height z, UPL(z) (Kikumoto et al., 2017) 

𝑼𝑷𝑳(𝒛) = 𝑼𝒏 (
𝒛

𝒛𝒏
)
𝒑

 
{B.1} 

UPL(z) depends on the reference height (zn), the wind-speed at height zn (Un), and the power-

law index (p). The terrain roughness and atmospheric stability determines the value of p (Table 

B.4) (Kikumoto et al., 2017). In this study, Un is the average of the wind speeds measured closest 

to 10 m above surface level and p=0.10 based on rural terrain and a slightly unstable atmosphere.  

 

Table B.6 Power-Law Exponents (PLI) for Urban and Rural Wind Profiles (EPA, 2000) 

Stability Class Definition Urban PLI Rural PLI 

A Very Unstable 0.15 0.07 

B Unstable 0.15 0.07 

C Slightly Unstable 0.2 0.10 

D Neutral 0.25 0.15 

E Slightly Stable 0.3 0.35 

F Stable 0.3 0.55 

 

Note that the P-L model of wind-speeds is not necessarily applicable to all atmospheric 

conditions since it was originally designed for neutral atmospheric stability and high wind-

speeds  (see Kikumoto et al. (2017) for more details). The conditions were slightly unstable for 

the plume transport period (Table 3.1) and the average wind-speed profiles were generally well 

fit by a power-law function (Figures B.2-3). The vertical profile of wind-speed predicted using 

the PLI in Table B.4 and the average 10 m wind-speed is shown in orange in Figure B.8. This 

modelled profile is consistent with the fitted profile and lends confidence to the use of the power-

law function to extrapolate the wind-speed profiles above 310 m since the zPBL were ~400 and 

600 m for March 31st and 28th, respectively (Table 3.1).  
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Figure B.8: Power law fits of average vertical profiles of wind-speed from 0-310 m above local 

surface level and predicted profiles using the 10 m wind-speed and the PLI for rural conditions 

and slightly unstable conditions in Table B.4 for March 28th (top) and March 31st (bottom).  
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B.2 Sensitivity analysis of mass balance emissions rate calculations 

The sensitivity analysis with respect to key parameters in the mass balance eq. 4.1 is shown in 

Table B.5. The total uncertainty for the method is within 30–50%, and depends on uncertainties 

in the CH4 background, the mean regional wind speed and the PBL height. Measurement 

uncertainty for the Picarro instrument is less than 1%. 

 

Table B.7 Sensitivity analysis for the four experimental transects on Mar 28 2017 and Mar 31 

2017 

 Mar 27 T2A 

W to E 

Mar 27 T2B 

E to W 

Mar 31 T5A 

W to E 

Mar 31 5B 

E to W 

Methane Measurement (%) <1 <1 <1 <1 

Methane Background (%) 18 29 30 34 

Mean Regional Wind Speeda 

(%) 

20 21 22 32 

PBL Height (%) 13 13 14 14 

Total Uncertainty (%) 30 37 39 48 

Total Uncertainty (tonnes hr-1) 0.35 0.52 0.35 0.28 

Emissions Rate (tonnes hr-1) 1.2 ± 0.4 1.4 ± 0.5 0.9 ± 0.4 0.6 ± 0.3 

a Includes uncertainty in the wind direction 
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Appendix C: Supplement to Estimating 2010-2015 anthropogenic and natural methane 

emissions in Canada using ECCC surface and GOSAT satellite observations 

C.1 Monthly GOSAT Data in the Canadian Domain 

Figure C.1 shows the GOSAT data available per month using 2013 as an example year, this 

corresponds to the data coverage shown in Fig. 4.1 of the main text but highlights the variability 

in satellite observational coverage over a single year. GOSAT data shown passes all quality 

assurance flags and includes our domain filter to land data that is within 50°W to 150°W 

longitude and 45°N to 60°N latitude. The minimum in December observations (n=112) and 

neighbouring months is due to less solar radiation in the winter resulting in less retrievals. Fewer 

observations cause the inversion to favour the prior state of emissions. There are less methane 

emissions from Canadian wetlands in the coldest months of the winter, and the comparison 

between the prior, the posterior using GOSAT data, and the posterior using ECCC data shows 

very small differences in emissions estimates for these coldest months. 
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Figure C.1: GOSAT observations per month in the year 2013 corresponding to Fig. 4.1 in the 

main text (n=7656 observations for the entire year). Observations are filtered to land data that is 

within 50°W to 150° W longitude and 45°N to 60° N latitude. 

C.2 Sensitivity of Seasonal Emissions to Climatological Data 

We select four climatological stations shown in Table C.1 to sample temperature and 

precipitation data from 2010–2015 in the four provinces where wetland emissions are 

concentrated (Alberta, Saskatchewan, Manitoba, and Ontario). These stations are not exhaustive 

and are chosen for their proximity to the stations shown in Table C.1. Station measurements are 

quality-controlled from the National Climate Data Archive from Environment and Climate 

Change Canada (Hutchinson et al., 2009). 
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Table C.1 Climatological sites used for air temperature and total precipitation measurements for 

the seasonality comparison. 

Site Name, Province Latitude Longitude 

Lac La Biche Climate, Alberta 54.8° N 112.0° W 

La Ronge, Saskatchewan 55.1° N 105.3° W 

Churchill Climate, Manitoba 58.7° N 94.1° W 

Moosonee, Ontario 51.3° N 80.6° W 

 

Figure C.2 shows the mean 2010–2015 seasonal pattern of natural methane emissions 

constrained by ECCC and GOSAT data corresponding to Fig. 4.6 in the main text. These 

emissions are compared to monthly mean air temperature and precipitation averaged over the 

four climatological stations in Table C.1. We consider air temperature a reasonable proxy for the 

surface skin temperature that is used in WetCHARTS. Surface skin temperature is itself a proxy 

for soil temperatures deeper beneath the surface where methane is produced (Miller et al., 2016). 

Hence both metrics may be lagging indicators for the peak of methane emissions. Both air 

temperature and precipitation show peaks in July which correspond well with the maxima of 

methane emissions in the prior from WetCHARTS. Methane emissions in the prior begin to 

accelerate from March to April, however for both months air temperature is below freezing. It is 

not likely that soil temperatures and subsurface soil temperatures would be above freezing in 

these months. Air temperature crosses from below 0° to above freezing one month later from 

April to May, which corresponds to where the posterior ECCC and GOSAT emissions begin to 

accelerate. Total precipitation shows the highest acceleration one month later from May to June. 

As the peak in July is passed, late-summer and autumn air temperatures are higher than the 

months opposite of the peak (August is warmer than June, September is warmer than May, 

October is warmer than April). This pattern is corroborated by the precipitation measurements. 

Air temperatures go below freezing from October to November. As shown by Zona et al. (2016), 

“zero-curtain” emissions may continue even when the soil is at freezing temperatures. This 

mechanism may be more likely to occur in the months after the peak if subsurface soils are 

slower to thaw in the spring and slower to freeze in the autumn. These simple climatological 

measurements and the described mechanisms suggested in other studies corroborate our posterior 
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results of lower spring methane emissions and lower peak methane emissions in the summer. 

Our results suggest process models may benefit from better parameterization of possible lagging 

effects from air temperature and precipitation for Boreal Canada methane emissions. 

 

 

Figure C.2: Mean seasonal pattern of 2010-2015 methane emissions from the prior (gray), 

posterior constrained with ECCC data (blue), posterior constrained with GOSAT data (green). 

This is compared to the seasonal pattern of monthly mean air temperature (orange, right axis) 

and precipitation (pink, left axis) from station measurements listed in Table C.1. Both air 

temperature and precipitation show an asymmetry about the July peak, with higher temperature 

and precipitation in the fall months than the spring.  

 

C.3 Evaluation of bias in the global model 

In this section we test the GEOS-Chem representation of background methane for both 

surface ECCC data and column GOSAT data using global and/or boundary condition 

observations. We show the model representation of methane can be improved using surface and 
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column bias corrections which are presented as the base case in the main text. We test the 

sensitivity of the posterior emissions to the use of these bias corrections and show the inversions 

produce consistent results. 

C.3.1 Evaluation of the ECCC surface data background and bias corrections   

The left panel of Figure C.3 shows the comparison of monthly mean GEOS-Chem surface 

methane concentrations and methane measured at the ECCC station ESP from 2009 to 2015. 

ESP is located at the west coast of Vancouver Island (Fig. 4.1); this site is used as an evaluation 

of background methane and tests the bias in the global model as it is the least sensitive to 

Canadian emissions due to westerly prevailing winds. The model reliably reproduces surface 

observations at this station and the growth rate in background methane due to the source-sink 

imbalance of +13 Tg a-1 in the model global budget (Maasakkers et al., 2019) with a small mean 

model-observation bias of +5.3 ppb. The right panel of Figure C.3 shows the comparison of 

modelled methane to NOAA aircraft profiles at the same site. Aircraft profiles occur 

approximately once a month continuously over the study period. The data is not averaged here 

and is directly compared to GEOS-Chem simulated grid boxes at the pressure level of the 

measurement. The reduced mean axis (RMA) regression shows a slope of 0.86 and a coefficient 

of regression r2 = 0.67 which shows a reasonable model representation of the measurements. 

These statistics are consistent with previous inversions using GEOS-Chem that showed relatively 

unbiased conditions against NOAA surface stations globally (Turner et al., 2015; Maasakkers et 

al., 2019). A high resolution inversion over North America over the same 2010–2015 time-

period using the same prior have shown adjustments to US emissions near the Canadian border 

are relatively minimal (Maasakkers et al., 2021), so we treat US emissions as constant in the 

inversion. The acceptable reproducibility of background methane at this site allows us to 

attribute much larger differences observed at other sites, up to a maximum of ~1000 ppb in the 

summer (Figure 4.4), to Canadian emissions which are optimized using Canadian observations 

while holding other global emissions constant. 

 

 



217 

 

 

 

Figure C.3: Time-series comparison (left) from 2009–2015 of surface GEOS-Chem simulated 

methane (red) and measured in situ methane (black) at site ESP off the west coast of British 

Columbia. Comparison to NOAA aircraft profiles (right) from 2009–2015 at the same site using 

a reduced major axis (RMA) regression along with the 1:1 line (black). 

While the mean model bias of +5.3 ppb in Figure C.3 shows a net over-estimation in the 

model, the later years 2014 and 2015 show a model underestimation primarily due to 

underestimated tropical emissions (Maasakkers et al., 2019). This positive-to-negative difference 

in the model background can project errors onto the trend of ECCC-constrained emissions. This 

is addressed by removing the annual-mean background bias at the Canadian boundary conditions 

from the observation vector. We use the westmost boundary condition site ESP and a second 

northernmost background site at Alert, Nunavut (ALT) to diagnose errors in the methane 

background and show the annual mean model-observation differences in Table C.2. The average 

of these two sites is used to adjust the model for the base-case ECCC inversion in the main text. 

In Section C.3.2 of the Supplement, we test the sensitivity of the posterior emissions to the use of 

these various background corrections and show consistent results, with the background-adjusted 

inversion showing slightly more agreement with the GOSAT inversion. 
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Table C.2 Mean annual model-measurement differences at background sites ESP and ALT. 

 Mean Model–Measurement Difference (ppb) 

Year ESPa ALTb Averagec 

2010 +5.0 +8.8 +6.9 

2011 +5.8 +8.5 +7.2 

2012 +3.6 +5.9 +4.8 

2013 +2.6 +10.5 +6.6 

2014 +2.1 +11.3 +6.7 

2015 –6.9 –4.7 –5.8 

aSite ESP is located at 49.38°N, 126.54°W, and is the westernmost boundary condition for Canada. 

bSite ALT is located at 82.45°N, 62.51°W, and is the northernmost boundary condition for Canada. 

cThe average is used in the base-case ECCC inversions shown in the main text. The three alternatives: 

adjustments using ESP, ALT and no background adjustments are shown as sensitivity tests in the 

Supplement. 

 

C.3.2 Sensitivity tests of ECCC-constrained emissions 

Figure C.4 shows the sensitivity tests comparing the ECCC inversions with an unadjusted 

model to the two background-adjusted ECCC inversions using either the mean yearly bias from 

ESP or ALT. The three inversions are consistent with each other within their error intervals, but 

the adjusted ECCC inversions show improved agreement with the GOSAT results. For 

anthropogenic sources, the mean yearly emissions are 6.0 ± 0.4 Tg a-1 in the unadjusted ECCC 

inversion, 6.1 ± 0.4 Tg a-1 with the ESP-adjusted ECCC inversion, and 6.0 ± 0.4 Tg a-1 with the 

ALT-adjusted inversion. For natural sources, the mean yearly emissions are 10.5 ± 1.9 Tg a-1 in 

the unadjusted ECCC inversion, 12.0 ± 1.4 Tg a-1 in the ESP-adjusted ECCC inversion, and 11.0 

± 1.2 Tg a-1 in the ALT-adjusted ECCC inversion. The background-adjusted inversions show 

higher natural emissions in the years 2010–2014 compared to the unadjusted case, and lower 

natural emissions in 2015 due to the negative background bias that is removed. The background-

adjusted inversions show better agreement with the GOSAT mean yearly natural emissions of 

11.7 ± 1.2 Tg a-1. In addition, the trend in natural emissions over this time period is reduced by 

40-45% from 1.0 Tg a-1 in the unadjusted inversion to 0.55–0.60 Tg a-1 in the adjusted 

inversions. These results show that the background error does not largely affect the average 

2010–2015 results regarding the overall increase in anthropogenic emissions and decrease in 
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natural emissions. Correcting for the model background minimizes the projection of under-

estimated tropical emissions onto the Canadian fluxes in the later years, which improves the 

consistency with the GOSAT inversion and significantly reduces the presence of a large trend 

that was not corroborated by GOSAT. 

 

 

Figure C.4: Sensitivity analysis of inversion results depending on the use of model background 

correction for surface pixels. Referred to as the monthly inversion, this approach optimizes 

annual total Canadian anthropogenic emissions (top) and monthly total natural emissions 
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(bottom) in an n = 78 state-vector element setup. The prior emissions (gray) are compared to the 

posterior results using GOSAT (green), and the posterior using ECCC data with an unadjusted 

background (blue), ECCC data using a background adjusted according to the yearly difference at 

ESP (teal) and ALT (purple) from Table C.2. 

To address the possibility of US emissions influencing the posterior results near the Canadian 

border, we show a sensitivity test where the two stations most influenced by cross-border 

transport, Egbert (EGB) and Sable Island (SBL) are removed from the ECCC inversion. Figure 

C.5 shows posterior-ECCC emissions where EGB and SBL (at latitudes of 44.2°N and 43.9°N, 

respectively) are removed (note in this case, the background is left un-adjusted to avoid overlap 

in the issues). The mean of anthropogenic emissions in the inversion without these stations is 6.4 

± 0.6 Tg a-1, and the mean of natural emissions is 10.9 ± 1.5 Tg a-1. These results are similar to 

the posterior from the unadjusted ECCC inversion (6.0 ± 0.4 Tg a-1
 anthropogenic, 10.5 ± 1.9 Tg 

a-1 natural) and the GOSAT inversion (6.5 ± 0.7 Tg a-1
 anthropogenic, 11.7 ± 1.2 Tg a-1 natural). 

This sensitivity test shows that the US signal does not substantially affect the results from the 

optimization of large biases observed by Canadian observations due to Canadian emissions. 
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Figure C.5: Sensitivity analysis of inversion results depending on the inclusion of sites EGB and 

SBL which are sensitive to cross-border transport from the United States. Similar to Fig. C.4, the 

monthly inversion optimizes annual total Canadian anthropogenic emissions (top) and monthly 

total natural emissions (bottom) in an n = 78 state-vector element setup. The prior emissions 

(gray) are compared to the posterior results using GOSAT (green), and the posterior using ECCC 

data including all sites (blue) and ECCC data excluding EGB and SBL (yellow). 
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C.3.3 Evaluation of Global GOSAT Data and Bias Corrections 

The GEOS-Chem simulation of column averaged methane shows three global biases 

previously discussed in the literature: (1) a latitude-dependent bias, (2) a seasonal bias and (3) a 

background change for 2014 and 2015 due to differences in the global source-sink imbalance in 

these two years (Turner et al., 2015; Saad et al., 2018; Maasakkers et al., 2019; Stanevich et al., 

2020). We apply these corrections to the simulated column of methane on a global basis to 

produce an unbiased background for our target Canadian domain (45° N to 60°N, 50° W to 150° 

W). The latitude-dependent bias (1) is likely due to excessive polar stratospheric transport 

(Stanevich et al., 2020). We correct for this bias by fitting the model-GOSAT difference for 

global 2° × 2.5° grid cells according to a second-order polynomial as shown in Figure C.6: 

 

     ξ = (2.2θ2 – 34θ) × 10–3 – 2.7    {C.1} 

 

where ξ is the resulting bias correction in ppb and θ is latitude in degrees. The correction in 

this work for the latitude bins of our target domain (45° N to 60° N) is between 0.3 to 2.9 ppb. 

This correction is lower than what has been shown previously (Turner et al., 2015; Maasakkers 

et al., 2019) and we attribute this improvement to our use of a 2°x2.5° gridded simulation instead 

of a 4°x4.5° as recommended by Stanevich et al. (2020) to reduce transport errors. A seasonally 

oscillating bias (2) remains after this correction. The seasonal bias has an amplitude of ±4 ppb 

with repeating maxima in June and minima in December. It is not clear whether this seasonal 

bias is due to emissions and/or transport errors. In our base case we remove the seasonal bias on 

a monthly basis following Maasakkers et al. (2019) and show a sensitivity test without the 

correction for our inversion of monthly natural emissions in Canada (Supplement C.3.4). 

Inversion results using GOSAT data with and without bias corrections in the model simulation of 

total column methane do not show major differences (Fig. C.7). These scenarios all show 

agreement with the posterior emissions adjustments determined using unadjusted ECCC in situ 

data – which is a useful benchmark since modelled methane at the surface is not subject to any 

bias corrections. The background change (3) that appears in the simulated methane column from 



223 

 

 

2014 onwards is corrected for in Maasakkers et al. (2019) by optimizing emissions, emissions 

trends and trends in OH using a global inversion. In that work correction factors do not appear 

over Canada and the United States that would significantly influence the global change in 

atmospheric methane, and the main adjustment in 2014 and 2015 were to tropical wetland 

emissions and OH. Here we treat this as a background change and apply a uniform correction to 

the simulated column since emissions outside of Canada and changes in OH are treated as fixed 

in our Canada-focused inversion. The background change (3) is 5 ppb in 2014 and 10 ppb in 

2015. The right panel of Figure C.6 shows the latitude dependent bias correction and the left 

panel shows the resulting global time-series of GEOS-Chem total column methane from 2010–

2015 after corrections are applied. The global GEOS-Chem – GOSAT differences in the methane 

column can be limited globally to within 10 ppb without including the seasonal bias correction, 

and within 5 ppb with its inclusion. This shows a steady background in methane for the entire 

time period from 2010–2015 so global emissions do not affect the optimization of Canadian 

emissions. While biases within 10 ppb have been treated as acceptable for methane inversions 

(Buchwitz et al., 2015), we evaluate our GOSAT inversion results against inversions with 

independent ECCC in situ measurements that do not require any bias corrections in the model to 

produce more robust emissions estimates. 
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Figure C.6: Time series (left) from 2010–2015 of the difference between GEOS-Chem 

simulated total column methane and GOSAT observations after applying bias corrections, 

showing a consistent global background for methane. Data used in the inversion for Canada is 

from 45° N to 60° N (purple line) and shows acceptable differences within 5 ppb over the entire 

global latitude band. To produce the left figure, the latitude-dependent bias (right) is shown with 

the polynomial correction that is applied (gray dash) that is within a magnitude of 0.3 to 2.9 ppb 

for the same latitude. 

 

C.3.4 Sensitivity tests of GOSAT-constrained emissions  

We test the sensitivity of the posterior GOSAT-constrained methane emissions in our analysis 

to the use of latitude-dependent and seasonal bias corrections in the GEOS-Chem simulated total 

column of methane. The latitude-dependent bias correction has a magnitude less than 3.5 ppb for 

our domain of interest (45 to 60°N). On a global basis the seasonal bias correction has an 

amplitude of ±4 ppb with a maximum in June and a minimum in December. Figure C.7 shows 

the sensitivity of posterior monthly emissions to these bias corrections using 2013 as an example. 

We show four versions of the posterior methane emissions using GOSAT data: GOSAT11 

(green) is the base case which applies the latitude-dependent bias correction and the seasonal 

bias correction, GOSAT10 (purple) applies the latitude-dependent bias correction and does not 

apply the seasonal correction, GOSAT01 (orange) does not apply the latitude-dependent bias 
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correction and applies the seasonal correction, and GOSAT00 (light blue) uses neither bias 

correction. The range of emissions from all four examples is 9.7 – 10.7 Tg a-1, which are all 

consistent with the unadjusted ECCC emissions of 10.0 Tg a-1 and lower than the prior emissions 

of 14.3 Tg a-1. Not applying the latitude-dependent bias correction results in a decrease in the 

resulting emissions and maintains the same seasonal pattern. Not applying the seasonal bias 

correction results in a change in the temporal distribution of emissions that better matches the 

August peak in the posterior with ECCC data. Emissions are lower than the base case in the 

spring and higher than the base case in autumn. This change enhances the autumn-shift in 

emissions that has been described in Section 4.3.2 of the main text. While this may be more 

consistent with our interpretations, it is not clear whether the difference is due to emissions or 

transport biases. Stanevich et al. (2020) showed that the latitude dependent bias is most likely 

due to excessive polar stratospheric transport at high latitudes. If the seasonal bias is indeed due 

to mischaracterized natural emissions, it is not clear why the bias would be equally large in 

December (–4 ppb) as June (+4 ppb) on a global basis. The magnitude of natural emissions in 

December is much lower than June and emissions mischaracterization would not itself produce 

an equally large bias as the largely overestimated summertime emissions. Our analysis with 

ECCC data shows most of the adjustments to wetlands are in the peak of summer with some 

extension into the autumn. These results show that the bias corrections produce minor 

differences in the magnitude and seasonal pattern of emissions. 
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Figure C.7: Sensitivity of 2013 posterior GOSAT constrained methane emissions to bias 

corrections used in the GEOS-Chem simulated total column of methane. For comparison, the 

prior in 2013 (gray) and the posterior in 2013 constrained by ECCC data (unadjusted, blue) are 

shown. The digits in the GOSAT label represent the binary use of bias corrections (1 = applied, 0 

= not applied). The first digit corresponds to the use of the latitude bias correction, the second 

digit corresponds to the use of the monthly bias correction, hence GOSAT11 is the base case that 

applies both bias corrections and GOSAT00 is the case with no bias corrections applied. 

 

C.3.5 Evaluation of the prior and posterior fluxes using global observations outside of the 

Canadian domain 

The inverse model design in this study uses a simplified approach, where Canadian emissions 

are optimized using only observations in Canada. The results from this approach may be 

sensitive to errors in the global model projected onto the Canadian domain if errors in the global 

model are sufficiently large relative to the local biases in Canada (Figure 4.4 in the main text) 

and the observational error used in the inversion procedure (16 ppb for GOSAT, 65 ppb for 

ECCC). Figure C.8 shows an independent evaluation of the prior global model and the posterior 

in this study to 2010–2015 background observations from the NOAA cooperative flask sampling 

network (https://gml.noaa.gov/ccgg/flask.html) outside of the Canadian domain. We use a simple 
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version of the posterior where Canadian anthropogenic emissions are scaled up by 37% to 6.0 Tg 

a-1 and natural emissions are scaled down by 24% to 11.2 Tg a-1. This captures the central results 

of the monthly, sectoral, and provincial inversions in the main text and avoids a large number of 

model comparisons. The analysis shows that the prior model reasonably reproduces the methane 

background, and the posterior from adjusted Canadian emissions does not degrade this result. In 

the reduced-major axis regression, the prior r2 coefficients are in the range of 0.77–0.92 and the 

prior slopes are in the range of 0.94–0.97 across the three surface, ship, and aircraft datasets. In 

the posterior, the r2 is in the range of 0.76–0.91 and the slope is in the range of 0.93–0.96. The 

posterior reflects a decrease of 2.0 Tg a-1 in the global budget due to a net decrease in Canadian 

emissions, which is shown in the improvements to the mean bias comparisons. This decrease in 

emissions slightly improves the global model agreement with independent data in the years 

2010–2013 (since the model overestimates emissions) and slightly degrades the agreement in 

2014–2015 (since the model underestimates tropical emissions), which is understandable 

considering only Canadian emissions are adjusted and the global model is not optimized. A net 

decrease in Canadian emissions is consistent with previous global inversion studies using GEOS-

Chem (Turner et al., 2015; Maasakkers et al., 2019). The results from the Canada-focused 

inversion with subnational details in this study show that the net-decrease in Canadian natural 

emissions masks an increase in anthropogenic emissions in Western Canada which should be 

considered in global inverse studies. 
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Figure C.8: Model comparison to independent NOAA observations globally from 2010–2015. 

The top panel shows data used in the global model comparison. Red diamonds indicate NOAA 

surface flasks, purple circles indicate NOAA ship data, and blue lines indicate HIPPO III, IV and 

V aircraft data. Comparison of the prior and posterior emissions in GEOS-Chem is shown using 

a reduced-major axis regression against NOAA Surface flasks (bottom-left), HIPPO III, IV and 

V aircraft data (bottom-middle), and NOAA Ship data (bottom-right). 
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C.4 Diagnostics of Sectoral and Provincial Inversions 

In this analysis we first evaluate the correlations and/or independence of the state vector 

elements from the posterior error covariance matrix Ŝ as follows (Heald et al., 2004): 

 

𝑟𝑖𝑗 =
ŝ𝑖𝑗

√ŝ𝑖𝑖 √ŝ𝑗𝑗
     {C.2} 

 

The error-normalized posterior correlation matrix r provides information on the independence 

of the state vector elements. This is corroborated by the averaging kernel matrix A which shows 

which state vector elements contain independent pieces of information, with the trace of A 

providing the total degrees of freedom for signal for the inversion. To further evaluate the signal-

to-noise ratio of the observation-constrained state vector elements and their independence from 

each other we use an eigenanalysis. The Jacobian matrix K is normalized about the observational 

and prior error covariance matrices as follows (Rodgers, 2000): 

 

Ǩ = So
–1/2KSa

1/2    {C.3} 

 

The singular value decomposition of Ǩ gives its rank which is the number of singular values 

greater than one. The singular values also correspond to the signal-to-noise ratio of state vector 

elements and hence quantify the strength of the observational constraints on individual emissions 

categories. 

Figure C.9 shows this series of diagnostics for the sectoral (5 state vector element) inversion 

and Figure C.10 shows the same analysis for the provincial (16 state vector element) inversion. 

Figure C.9 (top left) shows the error-normalized correlation matrix for the sectoral inversion. 

The most important result is that the primary source of natural emissions, wetlands, is not 

correlated with the primary source of anthropogenic emissions, energy. Within the anthropogenic 

category however, we see that energy is strongly correlated with agriculture, showing that these 
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two elements cannot be distinguished by the observation system. For natural emissions, other 

natural sources are weakly correlated with wetlands and are not completely independent. 

Emissions from waste are shown to be slightly more independent and can be distinguished from 

the other sources. The averaging kernel matrix corroborates this result, and shows the three 

independent pieces of information are energy, wetlands and waste, with partial information 

content from other natural sources and a lack of information on agriculture. The singular values 

show strong constraints on wetlands with a signal-to-noise ratio of 37.3, and strong constraints 

on energy with a signal-to-noise ratio of 5.2. Waste sources are 2.2, other natural are 1.2 and 

agriculture is below the noise at 0.4. These diagnostics demonstrate that a joint ECCC in situ and 

GOSAT satellite inversion system can successfully provide constraints on and distinguish the 

three major categories of methane emissions in Canada: wetlands, energy and waste. Emissions 

from agricutlure cannot be distinghised in this system and should be aggregated with energy, this 

is likely because of the strong spatial overlap between these emissions in Western Canada and 

the lower signal from lower magnitude agriculture emissions. Emissions from other natural 

sources (biomass burning, seeps, and termites) also are at the noise and should be aggregated 

with wetlands. This is because minor natural sources are much lower in magnitude (0.8 Tg a-1 

out of 14.8 Tg a-1) and also show spatial overlap with wetlands. 

Figure C.10 shows the diagnostics on the provincial (16 state vector element) inversion. This 

choice of state vector elements challenges the observing system and results in a largely 

underdetermined solution. These diagnostics allow us to identify where the limitations of the 

ECCC + GOSAT observing system are. The posterior error correlation matrix r shows the 

provincial emissions are somewhat correlated a) between anthropogenic/natural emissions of the 

same province and b) with neighboring provinces in the same category of emissions. For 

example, AB anthropogenic emissions show a small inverse correlation with AB natural 

emissions. AB anthropogenic emissions also show a small correlation with the anthropogenic 

emissions of nearby provinces BC and SK. For the natural emissions, natural emissions within a 

province in most cases extend correlations into the provinces to the east and west. These 

correlations are not as large as the case of Energy and Agriculture emissions in Fig. C.9, and 

show a more moderate influence of nearby provinces on the optimized emissions. The primary 
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limitation of the provincial inversion is the inability to distinguish provinces with a very small 

magnitude of emissions. This is shown in the averaging kernel matrix, which has a degrees of 

freedom for signal of 7.9 out of 16 elements. The 6 regions that are best constrained are AB 

anthropogenic, ON anthropogenic, AB natural, SK natural, MB natural, and ON natural, with 

partial constraints on BC anthropogenic, SK anthropogenic, QC anthropogenic, BC natural, QC 

natural and NOR natural. The singular vectors corroborate this result and show that there are 8 

regions that are above the noise and 8 that are at or below the noise. The best constraints on 

anthropogenic emissions are in Alberta, with a signal to noise ratio as good as 15.1 (solid blue 

line), followed by Ontario (2.5-2.8). 

These diagnostics show that the ECCC+GOSAT observing system for Canada is limited in its 

ability to characterize agricultural emissions, and somewhat limited in its ability to characterize 

non-wetlands natural emissions. Hence we present Energy+Agriculture and Wetlands+Other 

Natural together for our conclusions. More precise and more dense measurements at a finer scale 

would better disaggregate these sources, although the use of the precise in situ data is primarly 

limited by the model error (Section 4.2.3 of the main text). In the provincial inversion, the 

observing system provides good constraints on anthropogenic emissions from AB and ON and is 

capable of distinguishing these emissions from natural sources in the same province. However, 

anthropogenic sources from other provinces with much lower emissions cannot be distinguished. 

Natural emissions can be characterized from the provinces that are most responsible for wetland 

emissions (AB, SK, MB, ON), however the observing system struggles in Atlantic and Northern 

Canada where the surface and satellite observations we use are limited. The emissions 

adjustments to state vector elements beneath the noise are due to aliasing with other sources and 

compensation effects due to interprovincial transport. We limit our conclusions to simple 

interpretations, we use the limited provincial inversion for spatial attribution to show higher 

posterior anthropogenic emissions are primarily from the total in Western Canada 

(BC+AB+SK+MB), and not emissions in Central Canada (ON+QC). 
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Figure C.9: Diagnostics of the sectoral inversion used to evaluate the independence and 

information content of the 5 state vector elements. The error-normalized posterior correlation 

matrix (top left) shows the correlations between elements. The averaging kernel matrix (top 

right) shows where the independent pieces of information are (DOFS = 3.3). The singular vector 

decomposition of the pre-whitened jacobian (bottom) quantifies the signal-to-noise ratio of the 

significant elements – these are the singular values listed above one (4 in total). The singular 

vector below noise (agriculture) is shown as a dashed line. 
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Figure C.10: Similar to Fig. C.9 for the 16 state vector provincial inversion. The DOFS from the 

averaging kernel matrix are 7.9, which are consistent with the number of singular values greater 

than unity in the pre-whitened jacobian matrix (8 in total). In the bottom panel, the singular 

vectors below the noise (corresponding to singular values less than one) are shown as light-

dashed lines, these show which emissions are not constrained by observations. 
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A possible solution to improving the resolution of the solution is to combine all six years of 

data to constrain finer scale emissions for the sectoral and provincial inversions. In the presented 

approach inversions were completed on a yearly basis for six years to produce an average result 

for 2010–2015. We used the year to year variance as a representation of noise in the system and 

real yearly variability in the state (due to emissions and/or transport). In principle using more 

years of data provides a better signal to noise ratio. However, due to the way our state vector 

elements are defined in the sectoral and provincial inversions, the inverse approach is sensitive to 

aggregation error and overfitting the fewer number of well-defined state vector elements. 

Overfitting can be diagnosed using the reduced chi-squared metric: 

 

𝜒𝜈
2 =

𝜒2

𝑣
≅ 

∑
(𝑦−𝐾𝑥)2

𝑆𝑜

𝑚
    {C.4} 

 

Where 𝜒𝜈
2 is the chi-square per degree of freedom ν. Here, the χ2 is equal to the ratio of the 

square of the innovation, SO is the diagonal element of the observational error covariance matrix 

corresponding to the same observation, m is the number of rows of the observation vector and n 

is the number of state vector elements. A value of 𝜒𝜈
2 less than one indicates overfitting. We 

calculate a value of 0.65 for the total vector containing ECCC and GOSAT data which shows 

evidence of overfitting. Hence using a larger amount of data for the same number of state vector 

elements would exasperate the issue. 

We further test the improvement from combining 6 years of data against independent 

measurements. To evaluate the differences between using a repeated 1-year approach and a 6-

year approach we use independent observations from NOAA ETL aircraft measurements and 

ECCC CHA in situ surface measurements. Table C.3 lists the metrics of agreement that were in 

Figure 4.8 and compares them to the results using all 6 years of data simultaneously, using 

inversions with no model background corrections for the ECCC observation vector. For the 

sectoral inversion, using 6 years of data provides a small improvement in the slope (0.96 vs. 

0.91), no improvement in the R2 (0.20) and degrades the mean bias (+4.3 ppb vs. +0.4 ppb) when 
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comparing to NOAA ETL. Similarly with ECCC CHA data, using 6 years of data for the sectoral 

inversion provides an improvement in the slope (1.01 vs. 0.98), a slightly worse R2 (0.43 vs. 

0.44) and largely degrades the mean bias comparison (+10.6 ppb vs. +5.9 ppb). For the 

provincial inversion evaluation at NOAA ETL, using 6 years of data slightly degrades the slope 

(0.83 vs. 0.86), gives an improvement in the R2 (0.27 vs. 0.22), and degrades the mean bias (+3.2 

ppb vs. +0.5 ppb). The same comparison at ECCC CHA degrades agreement in the slope (0.87 

vs. 0.91), improves the R2 (0.51 vs. 0.47), and improves the mean bias (+4.1 ppb vs. +4.9 ppb). 

These results show that using 6 years of data for the subnational inversions does not improve 

agreement against independent data and in many cases degrades the mean bias. The inversion 

converges on a solution within our defined prior error matrix SO with only one year of data. 

These tests show that using one year of data at a time and calculating the average and variance of 

the repeated results is reasonable considering the limits of the observation system towards 

resolve low magnitude emissions. 
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Table C.3 Sensitivity test against independent observations 

  NOAA Aircraft Observations 

ETL 

ECCC Surface Observations 

CHA 

  Slope R2 Mean Bias 

(ppb) 

Slope R2 Mean Bias 

(ppb) 

 Prior 1.15 0.14 +6.8 1.17 0.36 +16.4 

Sectoral 

Posterior 

(1 yr) 

0.91 0.20 +0.4 0.98 0.44 +5.9 

Posterior 

(6 yr) 

0.96 0.20 +4.3 1.01 0.43 +10.6 

Provincial 

Posterior 

(1 yr) 

0.86 0.22 +0.5 0.91 0.47 +4.9 

Posterior 

(6 yr) 

0.83 0.27 +3.2 0.87 0.51 +4.1 

 

We show a comparison of emissions estimates and methods to derive errors for the sectoral 

inversion in Table C.4 and for the provincial inversion in Table C.5. The tables compare two 

error estimates to three sensitivity tests. They show the error estimates from the diagonal 

elements of the posterior error covariance matrix Ŝ and compares to the 1σ variance in the 

repeated yearly inversions. In both the sectoral and the provincial inversions, the error estimates 

from the diagonal elements of Ŝ often show a more optimistic estimate of the uncertainties. This 

is likely due to spatial and temporal correlations in the daily-mean ECCC in situ observations 

and correlations in the GOSAT data that are difficult to quantify in the absence of a full OSSE 

study. We compare the 1σ variance from repeated yearly inversions from 2010–2015 to the 

relative change in posterior emissions from using only ECCC data, only GOSAT data, and using 

6 years of ECCC+GOSAT data simultaneously. The 1σ yearly variance captures these 

differences except for state vector elements that were shown to be below the noise and highly 

correlated with other emissions in Figure C.9 and C.10. The lack of improvement against the 

comparison to independent data in Table C.3 suggests that this may be suggestive of overfitting. 

We consider the agreement between the independent use of ECCC and GOSAT data to be a 

reliable sensitivity test to check the robustness of our results.   
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Table C.4 Sensitivity analysis of the Sectoral (5 state vector) inversion. The error estimates from 

the posterior error covariance matrix are compared to the yearly variance and the change in 

emissions using alternative observation vectors. 

 Prior 

(Tg a-1) 

Posterior 

(Tg a-1) 

Posterior 

Ŝ 

Relative 

Error 

(%) 

1σ 

Yearly 

Variance 

Relative 

Error 

(%) 

ECCC-

only (% 

change) 

GOS-

only 

(% 

change) 

6-year 

(% 

change) 

Energy 2.4 3.6 ±11 ±25 +9 –6 –24 

Agriculture 1.0 1.5 ±28 ±25 –1 –19 +64 

Waste 0.9 0.8 ±25 ±25 –8 +50 –29 

Wetlands 14.0 9.6 ±4 ±11 +3 +3 +2 

Other 

Natural 

0.8 1.7 ±20 ±55 –31 –9 +69 
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Table C.5 Sensitivity analysis of the Provincial (16 state vector) inversion. As per S4 error 

estimates from the posterior error covariance matrix are compared to the yearly variance and the 

change in emissions using alternative observation vectors. 

 Prior 

(Tg a-1) 

Posterior 

(Tg a-1) 

Posterior 

Ŝ Relative 

Error (%) 

1σ Yearly 

Variance 

Relative 

Error (%) 

ECCC-

only (% 

change) 

GOS-

only (% 

change) 

6-year 

(% change) 

BCA 0.5 0.8 ±24 ±41 –20 –11 +115 

ABA 2.3 3.3 ±5 ±16 –6 +2 –2 

SKA 0.3 0.3 ±44 ±37 +18 –1 +6 

MBA 0.2 0.2 ±50 ±25 +2 +6 +22 

ONA 0.5 0.5 ±17 ±14 –4 +11 +2 

QCA 0.4 0.3 ±51 ±40 –4 +19 +14 

ATLA 0.0 0.0 ±51 ±4 +1 +3 –8 

NORA 0.0 0.0 ±50 ±1 0 0 +1 

BCN 0.4 0.6 ±32 ±50 +2 +5 –76 

ABN 2.4 1.9 ±14 ±34 +67 –29 –25 

SKN 1.6 0.7 ±28 ±37 +7 –7 –4 

MBN 1.5 1.4 ±22 ±32 +27 –6 –11 

ONN 3.5 1.0 ±32 ±37 +12 –3 –13 

QCN 1.6 1.2 ±40 ±41 +9 34 –51 

ATLN 0.7 0.8 ±39 ±26 –29 +21 +48 

NORN 0.7 1.9 ±15 ±35 –41 –2 +72 

C.5 Combined ECCC+GOSAT Monthly Inversion 

Figure C.11 shows the monthly inversion comparing the results from the ECCC-only 

inversion, the GOSAT-only inversion and the combined ECCC+GOSAT inversion. The mean 

2010–2015 anthropogenic emissions in the combined inversion is 6.0 ± 0.4 Tg a-1. The mean 

2010–2015 total natural emissions in the combined inversion is 12.0 ± 0.9 Tg a-1. The combined 

inversion agrees with the ECCC and GOSAT results and appears to follow the seasonality of 

natural emissions in the GOSAT-only inversion more closely. Combining the two datasets does 

not appear to improve the results of the individual inversions, hence the intercomparison between 

the ECCC-only and GOSAT-only inversions adds more value as a consistency test of the 

posterior results.
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Figure C.11: Sensitivity analysis of the results from the monthly inversion including a 

comparison to the combined ECCC+GOSAT inversion. Following Fig. 4.4 in the main text, the 

monthly inversion optimizes annual total Canadian anthropogenic emissions (top) and monthly 

total natural emissions (bottom) in an n = 78 state-vector element setup. The prior emissions 

(gray) are compared to the posterior results using GOSAT (green), and the posterior combining 

both ECCC and GOSAT data (purple). 



240 

 

 

Supplement References 

Buchwitz, M., Reuter, M., Schneising, O., Boesch, H., Guerlet, S., Dils, B., Aben, I., Armante, R., 

Bergamaschi, P., Blumenstock, T., Bovensmann, H., Brunner, D., Buchmann, B., Burrows, J. P., Butz, 

A., Chédin, A., Chevallier, F., Crevoisier, C. D., Deutscher, N. M., Frankenberg, C., Hase, F., Hasekamp, 

O. P., Heymann, J., Kaminski, T., Laeng, A., Lichtenberg, G., De Mazière, M., Noël, S., Notholt, J., 

Orphal, J., Popp, C., Parker, R., Scholze, M., Sussmann, R., Stiller, G. P., Warneke, T., Zehner, C., Bril, 

A., Crisp, D., Griffith, D. W. T., Kuze, A., O’Dell, C., Oshchepkov, S., Sherlock, V., Suto, H., Wennberg, 

P., Wunch, D., Yokota, T. and Yoshida, Y.: The Greenhouse Gas Climate Change Initiative (GHG-CCI): 

Comparison and quality assessment of near-surface-sensitive satellite-derived CO2 and CH4 global data 

sets, Remote Sensing of Environment, 162, 344–362, doi:10.1016/j.rse.2013.04.024, 2015. 

Heald, C. L., Jacob, D. J., Jones, D. B. A., Palmer, P. I., Logan, J. A., Streets, D. G., Sachse, G. W., Gille, 

J. C., Hoffman, R. N. and Nehrkorn, T.: Comparative inverse analysis of satellite (MOPITT) and aircraft 

(TRACE-P) observations to estimate Asian sources of carbon monoxide: COMPARATIVE INVERSE 

ANALYSIS, J. Geophys. Res., 109(D23), doi:10.1029/2004JD005185, 2004. 

Hutchinson, M. F., McKenney, D. W., Lawrence, K., Pedlar, J. H., Hopkinson, R. F., Milewska, E. and 

Papadopol, P.: Development and Testing of Canada-Wide Interpolated Spatial Models of Daily 

Minimum–Maximum Temperature and Precipitation for 1961–2003, Journal of Applied Meteorology and 

Climatology, 48(4), 725–741, doi:10.1175/2008JAMC1979.1, 2009. 

Maasakkers, J. D., Jacob, D. J., Sulprizio, M. P., Scarpelli, T. R., Nesser, H., Sheng, J.-X., Zhang, Y., 

Hersher, M., Bloom, A. A., Bowman, K. W., Worden, J. R., Janssens-Maenhout, G. and Parker, R. J.: 

Global distribution of methane emissions, emission trends, and OH concentrations and trends inferred 

from an inversion of GOSAT satellite data for 2010–2015, Atmos. Chem. Phys., 19(11), 7859–7881, 

doi:10.5194/acp-19-7859-2019, 2019. 

Maasakkers, J. D., Jacob, D. J., Sulprizio, M. P., Scarpelli, T. R., Nesser, H., Sheng, J., Zhang, Y., Lu, X., 

Bloom, A. A., Bowman, K. W., Worden, J. R., and Parker, R. J.: 2010–2015 North American methane 

emissions, sectoral contributions, and trends: a high-resolution inversion of GOSAT observations of 

atmospheric methane, Atmos. Chem. Phys., 21, 4339–4356, https://doi.org/10.5194/acp-21-4339-2021, 

2021. 

Miller, S. M., Commane, R., Melton, J. R., Andrews, A. E., Benmergui, J., Dlugokencky, E. J., Janssens-

Maenhout, G., Michalak, A. M., Sweeney, C. and Worthy, D. E. J.: Evaluation of wetland methane 

emissions across North America using atmospheric data and inverse modeling, Biogeosciences, 13(4), 

1329–1339, doi:10.5194/bg-13-1329-2016, 2016. 

Saad, K. M., Wunch, D., Deutscher, N. M., Griffith, D. W. T., Hase, F., De Mazière, M., Notholt, J., 

Pollard, D. F., Roehl, C. M., Schneider, M., Sussmann, R., Warneke, T., and Wennberg, P. O.: Seasonal 

variability of stratospheric methane: implications for constraining tropospheric methane budgets using 

total column observations, Atmos. Chem. Phys., 16, 14003–14024, https://doi.org/10.5194/acp-16-14003-

2016, 2016. 

Stanevich, I., Jones, D. B. A., Strong, K., Parker, R. J., Boesch, H., Wunch, D., Notholt, J., Petri, C., 

Warneke, T., Sussmann, R., Schneider, M., Hase, F., Kivi, R., Deutscher, N. M., Velazco, V. A., Walker, 

K. A., and Deng, F.: Characterizing model errors in chemical transport modeling of methane: impact of 

model resolution in versions v9-02 of GEOS-Chem and v35j of its adjoint model, Geosci. Model Dev., 

13, 3839–3862, https://doi.org/10.5194/gmd-13-3839-2020, 2020. 



241 

 

 

Turner, A. J., Jacob, D. J., Wecht, K. J., Maasakkers, J. D., Lundgren, E., Andrews, A. E., Biraud, S. C., 

Boesch, H., Bowman, K. W., Deutscher, N. M., Dubey, M. K., Griffith, D. W. T., Hase, F., Kuze, A., 

Notholt, J., Ohyama, H., Parker, R., Payne, V. H., Sussmann, R., Sweeney, C., Velazco, V. A., Warneke, 

T., Wennberg, P. O. and Wunch, D.: Estimating global and North American methane emissions with high 

spatial resolution using GOSAT satellite data, Atmos. Chem. Phys., 15(12), 7049–7069, doi:10.5194/acp-

15-7049-2015, 2015. 

Zona, D., Gioli, B., Commane, R., Lindaas, J., Wofsy, S. C., Miller, C. E., Dinardo, S. J., Dengel, S., 

Sweeney, C., Karion, A., Chang, R. Y.-W., Henderson, J. M., Murphy, P. C., Goodrich, J. P., Moreaux, 

V., Liljedahl, A., Watts, J. D., Kimball, J. S., Lipson, D. A. and Oechel, W. C.: Cold season emissions 

dominate the Arctic tundra methane budget, Proc Natl Acad Sci USA, 113(1), 40–45, 

doi:10.1073/pnas.1516017113, 2016. 


