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Abstract

In this work, we derive expansion formulas up to arbitrary order in vibrational
coordinates for the tetrahedral and octahedral vibronic Hamiltonians that in-
volve A-type states and a-type vibrations. The root-branch approach and
modularized approach enable us to derive vibronic Hamiltonians including
up to two vibrational modes for 5 problems in T symmetry and 92 problems
in Td symmetry within one paper. These formulas can be easily adapted to
problems of Th, O, and Oh symmetries. Finishing this work, we have derived
general vibronic Hamiltonians for all unimodal and bimodal Jahn-Teller and
pseudo-Jahn-Teller problems of cubic group systems. These bimodal formu-
las can be extended to cover problems that involve more than two modes.
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1. Introduction

The Jahn-Teller (JT) effects exist in nonlinear systems with the principal
axis, proper or improper, greater than or equal to 3 fold: [1] the orbital degen-
eracy induced by the high symmetry reversely forces the system to abandon
its high symmetry. This is fundamentally because the orbital-degenerate
electronic states are coupled linearly (and possibly at higher orders) to non-
totally symmetric vibrations. Consequently, the high symmetry configura-
tion is not an extremum on adiabatic potential energy surfaces. [2, 3] Non-
totally symmetric vibrations can also couple a non-degenerate state to other
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states, leading to a similar energy lowering along the distortions. The relevant
effects are called pseudo-Jahn-Teller (pJT) effects. [4] The JT and pJT effects
have far-reaching consequences in chemical physics, especially in ultrafast
photoinduced processes in polyatomic systems. [5] They have been subjects
of a plethora of studies in the past 80 years. [6, 7, 8, 9, 10, 5, 11, 12, 13, 14]

Due to the strong coupling (namely, vibronic coupling) between the elec-
tronic and vibrational degrees of freedom in JT (and often pJT) systems, we
need to consider the two types of degrees of freedom on an equal footing,
i.e., the Born-Oppenheimer approximation [15] is inapplicable. In a vibronic
calculation, the molecular Hamiltonian operator is expanded in a subset of
strongly coupled electronic states and the vibrational modes that mediate
their couplings. The number of states included in the expansion is related to
the perturbational approximation of the problem in hand. For a degenerate
state, if only all its degenerate components are used to expand the Hamil-
tonian, it is the first order perturbation treatment of a JT problem. The
inclusion of additional states in the expansion, i.e., considering JT and pJT
couplings together, exceeds the first order treatment and results in higher ac-
curacy. For instance, the two specific A1g and A2g excited states were found
to substantially interact with the ground Eg state of the RhCl2−6 cluster in Oh

symmetry. These interactions modify the warping of the cluster’s adiabatic
potential energy surfaces derived from the Eg ⊗ eg coupling. [16] With this
understanding, the vibronic interaction is actually of (Eg + A1g + A2g) ⊗ eg
nature. For a nondegenerate state at its optimized structure, only when we
consider its interaction with higher-lying states along symmetry-adapted vi-
brational modes, i.e., through at least a second order perturbation treatment,
can we obtain a negative curvature of the nondegenerate state and explain
its pJT distortion. [13] The higher accuracy comes at the cost of extra com-
putational resources, as more states are involved in the underlying quantum
chemistry calculations.

(Quasi-)diabatic electronic states (diabats) are usually used in construct-
ing vibronic Hamiltonians, [17] so that the vibronic coupling matrix elements
are smooth functions of vibrational coordinates and can be expanded as Tay-
lor series. We would like to reiterate the importance of using an adequate
number of states in expanding the Hamiltonian. If not enough states are
included, the preparation of diabats from adiabatic states, which are the
outputs of regular quantum chemistry calculations, will fail. [18, 19, 20, 21]
Traditionally, the expansion of the matrix elements in vibrational coordinates
is truncated at the second order. [3] Second order expansions have captured
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the qualitative features and appropriate symmetry of vibronic interaction,
and are considered adequate for small amplitude distortions. However, as
the distortion amplitude increases, the importance of higher order expansions
surges. [22, 23, 24, 25, 26] For example, when JT/pJT-active bending modes
bring nuclei close to each other and lead to the so-called intramolecular colli-
sion, [27] higher order expansions are needed to describe the resultant anhar-
monic internuclear repulsion. When JT/pJT-active stretching modes lead to
bond dissociation, higher order terms are also needed to describe the anhar-
monicity in potential energy surfaces. [25] In addition to theoretical studies,
high-order expansions find their use in experiments. They are needed to give
satisfactory interpretation of complicated vibronic spectrum [28, 29, 30, 31]
and reliable empirical JT/pJT parameters, e.g., JT stabilization energy and
barrier for pseudo-rotation. [32]

Incommensurate with the importance of the high-order expansions is our
limited knowledge of the general expansion formulas up to arbitrary order.
Accurate numerical values for vibronic couplings can be obtained using state-
of-the-art quantum chemistry methods and the latest developed diabatization
schemes. [20, 33, 34, 35, 21, 36] However, if we can only fit the numerical
data using low-order functions, the accuracy is regrettably compromised.
Along with their importance is the difficulty to fit the high-order expan-
sions to obtain their coefficients. Some solutions of this problem are avail-
able, [37, 38, 24] including using Morse type vibrational coordinates to de-
scribe dissociative diabatic potentials. [25] Vibronic coupling can be viewed
as a perturbative interaction between electronic states and the interaction
is induced by vibrational motion. [11] Using the high-order expansions is
hence equivalent to include high-order perturbative terms in the interaction.
Please note the difference between high-order perturbation treatments and
high-order perturbative terms. The former are related to the number of elec-
tronic states in resolving the Hamiltonian, and how to implicitly include the
effects of the other states, given a perturbative operator. The latter are re-
lated to the accuracy of the perturbative operator. The two are different yet
connected: when the perturbative operator contains more terms, it couples
the electronic states in a more complicated manner. High-order expansions
of vibronic matrix elements give more accurate simulation results. However,
some neat interpretations of vibronic wave functions based on simple linear
coupling models, e.g., the vibronic angular momentum quantum number, are
no longer applicable. In short, the gain is of quantitative nature, at the cost
of losing a simple picture of vibronic motion.
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General high-order expansions for vibronic Hamiltonians were first de-
rived for textbook problems, e.g., the (E + A1) ⊗ e in C3v symmetry, the
T2 ⊗ t2, and the T2 ⊗ e problem in Td symmetry. [22, 37, 38] Inspired by
these pioneering works, we recently managed to derive general Hamiltonian
expansions for 153 (E + A)⊗ (e+ a) problems in trigonal symmetry, [39] all
5150 bimodal problems in tetragonal symmetry, [40] and 92 tetrahedral and
octahedral problems that involve E and T states and e and t vibrations. [41]
The ground of our derivations is the idea of “descent in symmetry”. [42] Two
generalizing methods enable us to handle such a large number of problems,
the root-branch approach and the modularized approach. In the root-branch
approach, we first derive root expansion formulas for the problem of the low-
est symmetry under discussion, e.g., the (E + A)⊗(e+ a) problem in C3 (the
lowest trigonal) symmetry. Branch formulas for the higher symmetry prob-
lems, e.g., the (E + A1)⊗(e+ a2) problem in C3v symmetry, are obtained by
imposing constraints on the root formulas. In the modularized approach, we
decompose a (Γ1 + Γ2)⊗ (γ1 + γ2 + · · · ) vibronic problem into the (Γ1 + Γ2)
electronic part and the (γ1 + γ2 + · · · ) vibrational part. The symmetry re-
quirements on matrix elements of a vibronic problem are solely determined by
the electronic part. [22, 23] Therefore, we first derive the symmetry require-
ments only considering the electronic part, and then construct expansions in
vibrational coordinates that meet the requirements. The symmetry-adapted
expansions are considered as modules. Deriving expansion formulas for a
(Γ1 + Γ2)⊗ (γ1 + γ2 + · · · ) problem is equivalent to seeking the appropriate
(γ1 + γ2 + · · · ) modules to meet the needs of (Γ1 + Γ2). Very importantly,
the modules can be reused or simply modified to meet needs of different
electronic parts; the modularized approach is highly efficient.

In this work, we derive general expansion formulas for tetrahedral and oc-
tahedral vibronic problems that involve A-type states and a-type vibrations.
Non-degenerate A states are subject to pJT interaction. For instance, a t22
or t42 electronic configuration of a Td molecule gives a 3T1, a 1T2, a 1E, and a
1A1 state. If the splitting between the three singlet states is not substantial,
(1A1 +1 T2) and (1A1 +1 E) vibronic couplings will occur. A more specific
example is the (A1g + T1u)⊗ t1u coupling in Oh symmetry. This coupling is
essential to understand the phase transitions, ferroelectricity, and electric-
field-enhanced permittivity of BaTiO3. [43, 44, 45] Non-totally-symmetric au
vibrations in Th, a2 vibrations in Td and O, and a1u, a2u and a2g vibrations
in Oh symmetry may take part in any JT and pJT problems. The complete
formalism of tetrahedral and octahedral JT/pJT problems must include the
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consideration of A-type states and a-type vibrations. This requirement mo-
tivates us to carry out the present study. In the derivations below, we first
focus on tetrahedral problems, as their formulas can be easily transferred to
describe octahedral problems. Throughout this paper, when not specified,
symbols A, E, and T and their lower case analogues denote generic Mulliken
symbols with all possible subscripts. For instance, A covers A in T symmetry,
Ag and Au in Th symmetry, and A1 and A2 in Td symmetry.

With this paper and our previous work [41] (henceforth called Paper I),
we have derived expansion formulas for all bimodal vibronic problems of cu-
bic groups. We only consider problems with up to two modes because: (1)
it is usually adequate to consider two modes of different nature, e.g., one
stretching and one bending mode; (2) a (γ1 + γ2 + γ3) triple mode problem
(or even with more modes) can be approximated as a composite of double
mode problems: (γ1 + γ2), (γ1 + γ3), and (γ2 + γ3); (3) it is straightforward
to extend the double-mode formulas to give full n-tuple mode expansions
with n > 2. It is noteworthy that when only linear terms are included in
the (p)JT Hamiltonian expansions, one can linearly transform several cou-
pling modes of the same irreducible representation to one effective interaction
mode. [11, 46, 47, 48] This transformation substantially reduces the dimen-
sion of the potential energy surfaces of the states involved in a (p)JT prob-
lem and facilitates the understanding of the relevant structural distortion.
Our derived formulas apply to both molecules and local formations in solids.
Therefore, we use the more generic term “systems” in the title.

This paper is organized as follows. In Section 2 we introduce the notation
of the diabats and vibrational coordinates, and their transformations under
the tetrahedral symmetry operations. In Sections 3 and 4, we present the
derivations for the a- and A-related problems, respectively. Our formalism
is examined using a numerical example in Section 5. In Section 6, we discuss
the extension of the tetrahedral formulas to describe octahedral problems
and conclude the paper.

Before moving on to the derivation, we would like to point out the differ-
ence between static and dynamic (p)JT effects. [42] When the (p)JT interac-
tion leads to a significant energy lowering along the structural distortion, and
the different symmetry-related distorted structures are separated by insur-
mountable barriers, the system is trapped in one of the distorted structures.
This is the so-called static (p)JT effect, as it leads to a stationary structure
of lower symmetry. For the static distortions, the Born-Oppenheimer ap-
proximation regains its validity and it is natural to discuss the electronic and
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vibrational states based on the lowered symmetry. The (p)JT effect is dy-
namic when the vibronic interaction is not strong enough to trap the system
at one lower symmetry configuration. Under such circumstances, the high
symmetry conical intersection may still be reached by the nuclear vibration,
and the vibrational functions on different low symmetry minima overlap, re-
sulting in tunnelling. It is necessary to consider dynamic (p)JT problems
using the parental high symmetry, instead of the distorted lower symmetry,
since all the low symmetry configurations are sampled equally by the nu-
clear vibration. The formulas that we derive in this work are expanded at
the origin of high symmetry structure and are hence more relevant to dy-
namic (p)JT problems. However, they also cover static problems, which are
special cases when the formula’s expansion coefficients (i.e., (p)JT coupling
constants) assume large values.

2. Settings

The settings of states and modes have been detailed in Paper I. However,
a brief overview is necessary to make this work self-contained. The three
C2 axes of a tetrahedral system are called Cx

2 , Cy
2 , and Cz

2 . The three axes
set the molecular-fixed frame following the conventional right-hand rule (see
Figure 1 in Section 5). The axis that trisects the C2 axes is chosen to be a
representative C3 axis, called Cxyz

3 . An object that is symmetric with respect
to Ĉxyz

3 and any of Ĉx,y,z
2 is of T symmetry. The inversion center I raises the

object’s symmetry to Th. The symmetry plane σxd that contains the x-axis
and bisects the first and third quadrants of the y-z plane raises the symmetry
from T to Td. σ

y
d and σzd are similarly defined, bisecting the first quadrant of

the plane made by the two axes not shown in the superscript.
The three components of a T state or a t mode are invariant with respect

to the three Ĉ2 operations, respectively. The three T components are corre-
spondingly labeled as |X〉, |Y 〉, and |Z〉, and the t coordinates x, y, and z.
The two components of an E state or an e mode are set to transform as the
2x2 − y2 − z2 and

√
3 (y2 − z2) functions. The E components are labeled as

|Θ〉 and |Ξ〉, and the e coordinates qθ and qξ. It is related to the conventional
setting that the components transform as 2z2 − x2 − y2 and

√
3 (x2 − y2) by

a rotation. By the following transformations we utilize complex-valued E
states and polar e-coordinates due to their convenient employment in deriva-
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tion. (
|+〉
|−〉

)
=

1√
2

(
1 i
1 −i

)(
|Θ〉
|Ξ〉

)
; qθ = ρ cosφ, qξ = ρ sinφ. (1)

An A state is simply denoted as |A〉, and an a vibrational coordinate as w.
Greek subscripts “α”, “β”, etc. are used to differentiate states or modes with
the same Mulliken symbol. The Greek subscripts on states and coordinates
are independent, e.g., the same α of |Xα〉 and xα does not mean that the
state and the mode belong to the same Td or Th irreducible representation
(irrep).

With these settings, the A, E, and T diabats and a generic function of an
arbitrary number of sets of a, e, and t coordinates, f ({w} , {ρ, φ} , {x, y, z}),
transform under the symmetry operations as:

Ĉxyz
3 (|A〉 , |+〉 , |−〉 , |X〉 , |Y 〉 , |Z〉) =

(
|A〉 , e−i

2π
3 |+〉 , ei

2π
3 |−〉 , |Y 〉 , |Z〉 , |X〉

)
;

Ĉxyz
3 f ({w} , {ρ, φ} , {x, y, z}) = f

(
{w} ,

{
ρ, φ− 2π

3

}
, {y, z, x}

)
;

Ĉz
2 (|A〉 , |+〉 , |−〉 , |X〉 , |Y 〉 , |Z〉) = (|A〉 , |+〉 , |−〉 ,− |X〉 ,− |Y 〉 , |Z〉) ;

Ĉx
2 f ({w} , {ρ, φ} , {x, y, z}) = f ({w} , {ρ, φ} , {x,−y,−z}) ;

Ĉy
2f ({w} , {ρ, φ} , {x, y, z}) = f ({w} , {ρ, φ} , {−x, y,−z}) ;

Ĉz
2f ({w} , {ρ, φ} , {x, y, z}) = f ({w} , {ρ, φ} , {−x,−y, z}) , (2)

In Th symmetry,

Î (|A〉 , |+〉 , |−〉 , |X〉 , |Y 〉 , |Z〉) =
(
±A |A〉 ,±E |+〉 ,±E |−〉 ,±T |X〉 ,±T |Y 〉 ,±T |Z〉

)
;

Îf ({w} , {ρ, φ} , {x, y, z}) = f
(
{±aw} , {±eρ, φ} ,

{
±tx,±ty,±tz

})
. (3)

The “+” (“−”) of “±” applies to gerade (ungerade) states and modes. Su-
perscripts are added to “±”s to differentiate with which states/modes they
are associated. In Td symmetry,

σ̂xd (|A〉 , |+〉 , |−〉 , |X〉 , |Y 〉 , |Z〉) =
(
±A |A〉 , |−〉 , |+〉 ,±T |X〉 ,±T |Z〉 ,±T |Y 〉

)
;

σ̂xdf ({w} , {qθ, qξ} , {ρ, φ} , {x, y, z}) = f
(
{±aw} , {qθ,−qξ} , {ρ,−φ} ,

{
±tx,±tz,±ty

})
;

σ̂zdf ({w} , {qθ, qξ} , {ρ, φ} , {x, y, z}) =

f

(
{±aw} ,

{
−1

2
qθ +

√
3

2
qξ,

1

2
qξ +

√
3

2
qθ

}
,

{
ρ,−φ+

2π

3

}
,
{
±ty,±tx,±tz

})
. (4)
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The “+” and “−” of “±T/t” (“±A/a”) apply to T (A) states and t (a) modes
with the subscripts 2 and 1 (1 and 2) in their irrep symbols, respectively.
Please note that the same “±Γ/γ” symbols are used in Th and Td symmetries,
but with different meanings. Eqs. 2 to 4 give all transformations needed in
the following derivations. Throughout this paper, unless further specified,
symbols starting with I, J , K, L, M , N and their lower case analogues
stand for integers, except “i”, which itself represents the imaginary unit. In
order to use our formulas in actual vibronic simulations, one needs to orient
the components of the degenerate states and modes so that they transform
following Eqs. 2 to 4.

3. a-involving but not A-involving problems

Following the root-branch approach, we first derive formulas for vibronic
problems in T symmetry. We separate the derivations for the inter-term
and intra-term problems: the former involve the coupling between states
of two term symbols and correspond to pJT interactions, while the latter
involve the coupling between states of one term symbol and correspond to
JT interactions. It is straightforward to obtain intra-term formulas from
inter-term formulas. The electronic parts of the problems considered in this
section have all been considered in Paper I.

3.1. (T + T ) and T problems involving a-type vibration

In Paper I, we have shown:

1. Due to its invariance with respect to Ĉxyz
3 , the (T + T ) inter-term vi-

bronic Hamiltonian reads

Ĥ = (|Xα〉 〈Xβ |+ |Xβ〉 〈Xα|)W + (|Yα〉 〈Yβ |+ |Yβ〉 〈Yα|) Ĉ3W + (|Zα〉 〈Zβ |+ |Zβ〉 〈Zα|) Ĉ2
3W

+ (|Xα〉 〈Yβ |+ |Yβ〉 〈Xα|)V + (|Yα〉 〈Zβ |+ |Zβ〉 〈Yα|) Ĉ3V + (|Zα〉 〈Xβ |+ |Xβ〉 〈Zα|) Ĉ2
3V

+ (|Xβ〉 〈Yα|+ |Yα〉 〈Xβ |)U + (|Yβ〉 〈Zα|+ |Zα〉 〈Yβ |) Ĉ3U + (|Zβ〉 〈Xα|+ |Xα〉 〈Zβ |) Ĉ2
3U.

(5)

Ĉxyz
3 is henceforth abbreviated as Ĉ3. Only three independent matrix

elements are needed. They are real because the diabats are real-valued.
This reduction of the number of independent matrix elements from 9 to
3 is a reflection of the Wigner-Eckart Theorem, which states that only
the reduced matrix elements are needed. [49, 50] However, W , V , and
U are not the actual reduced matrix elements because the vibrational
part of the problem has not been specified;
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2. The matrix elements have the following symmetry properties:

W = Ĉx
2W = Ĉy

2W = Ĉz
2W ;V = −Ĉx

2V = −Ĉy
2V = Ĉz

2V, (6)

and U shares the same Ĉ2-transformations with V . They are derived
from the invariance of Ĥ with respect to Ĉx

2 ;

3. It is straightforward to extend the vibronic formalism from the T to Th
symmetry (vide infra, the paragraph above Eq. 10) and it is unnecessary
to derive further symmetry constraints on the matrix elements;

4. For Td symmetry, we need

σ̂xdW = ±TTW ; σ̂zdV = ±TTU. (7)

They are derived from the invariance of Ĥ with respect to σ̂xd . The
sign selections in “±TT” depends on the pair of T states being coupled:
“+” applies if they are both T1 or T2 states; “−” for (T1 + T2).

In Paper I, we have also derived the expansion formulas for the (T + T )⊗t
problem in T symmetry:

W = aK2k1,2k2,2k3 (xyz)K x2k1y2k2z2k3 ;

V (U) =
[
bz2k1,2k2,2k3 (z) + bxy2k1,2k2,2k3

(xy)
]
x2k1y2k2z2k3 ,

K = 0, 1; k1,2,3 = 0, 1, 2, · · · (8)

Throughout this paper, Einstein’s convention of summing over duplicate in-
dices is followed. The ranges of the indices are maintained in the text below
unless further specified. V and U share the same expansion formula but
with different expansion coefficients. Since the a mode is totally symmetric
in T symmetry, we can simply multiply any w monomials onto the W and V
expansions above to obtain the expansion formulas for the (T + T )⊗ (a+ t)
problem in T symmetry:

W = aK2k1,2k2,2k3,k4 (xyz)
K
x2k1y2k2z2k3wk4 ;

V (U) =
[
bz2k1,2k2,2k3,k4 (z) + bxy2k1,2k2,2k3,k4 (xy)

]
x2k1y2k2z2k3wk4 , k4 = 0, 1, 2, · · · (9)

These two formulas are trivial. They simply demonstrate the well-known
fact that the expansion coefficients of the non-totally symmetric modes’ co-
ordinates are functions of totally symmetric modes’ coordinates. As a matter
of fact, only the non-totally symmetric au mode in Th symmetry and a2 mode
in Td symmetry are JT/pJT-active, and only those modes are considered in
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our derivations. Despite its apparent triviality, Eq. 9 gives the root formu-
las for the derivations for au- and a2-involving problems. Please note that
all monomials in Eq. 9 differ in power(s) of at least one coordinate and are
linearly independent. This expansion is thus free from redundancy, as are
all derived expansion formulas in this work. This point will not be repeated
unless the linear independency between terms in an expansion is not obvious.

For (T + T ) ⊗ (au + t) problems in Th symmetry, the parities of W , V ,
and U need to be consistent with the parity of the product of the two T
states, so that Ĥ has an even parity. This is the only rule to impose con-
straints on Eq. 9 to obtain expansion formulas for the Th problems. For
the (Tg + Tu) ⊗ (tu + au) problem, to have this consistency in odd par-
ity, only odd order terms are allowed in the W and V expansions; for
the (Tg,u + Tg,u) ⊗ (tu + au) problems, only the even order terms are al-
lowed. In this paper, the composite subscripts of Mulliken symbols match
in pair, e.g., (Tg,u + Tg,u) means (Tg + Tg) and (Tu + Tu). Similarly, for the
(Tg + Tu)⊗ (tg + au) problem, only the terms with odd k4 are allowed in the
W and V expansions, while for the (Tg,u + Tg,u) ⊗ (tg + au) problems, only
the even k4 terms are allowed. This procedure can be generalized to any
other au-involving problems in Th symmetry. With the known (Γ1 + Γ2)⊗ γ
formulas of T symmetry, we can freely multiply wk monomials to them to
obtain (Γ1 + Γ2) ⊗ (γ + a) formulas. Constraints on power indices are then
imposed based on the parity consideration to obtain (Γ1 + Γ2)⊗(γ + au) for-
mulas of Th symmetry. Keeping this simple procedure in mind, we will not
(and it is unnecessary to) derive any formulas for problems in Th symmetry
below.

We know from Paper I that for (T + T )⊗ t problems in Td symmetry:

W = aK2k1,2k2,2k3 (xyz)K x2k1
[
y2k2z2k3 ±TT

(
±t
)K

z2k2y2k3
]
, k3 ≤ k2.(10)

Combining this formula and the antisymmetric character of the a2 coordinate
with respect to σ̂xd , we have for (T + T )⊗ (a2 + t) problems in Td symmetry

W = aK2k1,2k2,2k3,k4 (xyz)K x2k1
[
y2k2z2k3 ±TT (−1)k4

(
±t
)K

z2k2y2k3
]
wk4 , k3 ≤ k2. (11)

Eq. 7 determines that V takes the same expansion as in Eq. 9 for the Td
problems, while U is connected to V and takes the following expansion,

U = ±TT
[
bz2k1,2k2,2k3,k4

(
±tz

)
+ bxy2k1,2k2,2k3,k4

(xy)
]
y2k1x2k2z2k3 (−w)k4 .(12)

The b coefficients are shared in the V and U expansions.

10



It is straightforward to obtain the expansion formulas for intra-term
T ⊗ (a2 + t) problems from the corresponding inter-term (T + T )⊗ (a2 + t)
formulas. The intra-term Hamiltonian involves only two independent matrix
elements:

Ĥ = |X〉 〈X|W + |Y 〉 〈Y | Ĉ3W + |Z〉 〈Z| Ĉ2
3W + (|X〉 〈Y |+ |Y 〉 〈X|)V

+ (|Y 〉 〈Z|+ |Z〉 〈Y |) Ĉ3V + (|Z〉 〈X|+ |X〉 〈Z|) Ĉ2
3V, (13)

and

σ̂xdW = W ; σ̂zdV = V. (14)

Obviously, for the intra-term problem the “±TT” in Eq. 7 only takes “+”,
and the role of U has been replaced by V . Given these considerations, W
takes Eq. 11 with ±TT = +. Derived in Paper I, the V expansion for T ⊗ t
problems in Td symmetry reads

V = bz2k1,2k2,2k3
[
x2k1y2k2 +

(
±t
)
y2k1x2k2

]
z2k3+1

+bxy2k1,2k2,2k3

[
x2k1y2k2 + y2k1x2k2

]
xyz2k3 , k2 ≤ k1. (15)

Combining this formula and the antisymmetric character of w with respect
to σ̂zd, we immediately obtain the V expansion for T ⊗ (a2 + t) problems in
Td symmetry:

V = bz2k1,2k2,2k3,k4

[
x2k1y2k2 + (−1)k4

(
±t
)
y2k1x2k2

]
z2k3+1wk4

+bxy2k1,2k2,2k3,k4

[
x2k1y2k2 + (−1)k4 y2k1x2k2

]
xyz2k3wk4 , k2 ≤ k1.(16)

Setting the t coordinates in the expansion formulas above to zero brings
about the formulas for (T + T )⊗ a2 and T ⊗ a2 problems in Td symmetry:

W = ak4w
2k4 (17)

for the (T1,2 + T1,2)⊗ a2 and T1,2 ⊗ a2 problems (±TT = +), and

W = ak4w
2k4+1 (18)

for the (T1 + T2)⊗a2 problem (±TT = −). When substituting x = y = z = 0
in the V and U formulas in Eqs. 9, 12, 15, and 16, it is obvious that both V
and U are zero for all the (T + T )⊗a2 and T ⊗a2 problems. This arises from
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the incompatibility between the Ĉx
2 -invariance of any wk4 monomials and the

Ĉx
2V = −V requirement (and similarly for U) in Eq. 6. Following the same

rationale, all V and U must be zero for the (T + T ) and T problems with
any vibrational part that contains only a and e vibrations (e coordinates are
also Ĉ2-invariant, see Eq. 2). This reflects the beauty of the modularized
approach. When the different vibrational modules share the same symmetry
properties, e.g., the Ĉx

2 -invariance here, we immediately know that they all do
not contribute to matrix elements that are incompatible with these symmetry
properties. In the following, we only need to derive W expansions for the
leftover a2-involving (T + T ) and T problems.

Evidently, W expansions of all (T + T )⊗ (γ + a2) and T ⊗ (γ + a2) prob-
lems can be easily obtained by: first, multiplying W formulas of the cor-
responding (T + T ) ⊗ γ and T ⊗ γ problems with wk monomials; second,
introducing a (−1)k factor (like in Eq. 16) or selecting the appropriate odd
or even k values (like in Eq. 19 below) to let the new formulas satisfy Eqs. 7
and 14. The reason behind this procedure is that all the W elements and
the wk monomials are symmetric or antisymmetric with respect to σ̂xd .

Such simple rules can certainly be applied to derive expansion formulas
for (T + T )⊗(e+ a2) problems in Td symmetry. As mentioned above, only W
can be nonzero for those problems. We have shown in Paper I that (T + T )⊗e
problems in Td symmetry take W = ak1,2k2q

k1
θ q

2k2
ξ and W = ak1,2k2+1q

k1
θ q

2k2+1
ξ

for ±TT = + and − in Eq. 7, respectively. This is related to the fact that qξ
is antisymmetric with respect to σ̂xd , while qθ is symmetric. W formulas of
(T + T )⊗ (e+ a2) problems in Td symmetry are then readily obtained:

W = ak1,2k2,2k4q
k1
θ q

2k2
ξ w2k4 + ak1,2k2+1,2k4+1q

k1
θ q

2k2+1
ξ w2k4+1 (19)

for ±TT = + and

W = ak1,2k2,2k4+1q
k1
θ q

2k2
ξ w2k4+1 + ak1,2k2+1,2k4q

k1
θ q

2k2+1
ξ w2k4 (20)

for ±TT = −. W of T ⊗ (e+ a2) intra-term problems takes Eq. 19.
For Td (T + T )⊗ (a2 + a2) problems in Td symmetry (again, V = U = 0),

W = ak1,2kw
k1
α w

2k−k1
β , 2k ≥ k1 (21)

for ±TT = + and

W = ak1,2k+1w
k1
α w

2k+1−k1
β , 2k + 1 ≥ k1 (22)

12



for ±TT = − in Eq. 7. For the T ⊗ (a2 + a2) intra-term problems, W takes
the expansion formulas in Eq. 21. Derivations for all (T + T ) and T a-
involving problems have been completed. In total, the derived formulas cover
15 (T + T ) and 8 T problems in Td symmetry.

3.2. (E + E), E, and (E + T ) problems involving a-type vibration

In the complex representation of the E states, the (E + E) inter-term
Hamiltonian reads

Ĥ = (|+α〉 〈+β|+ |−β〉 〈−α|)W + (|+α〉 〈−β|+ |+β〉 〈−α|)V + c.c.(23)

“c.c.” means taking the complex conjugate of the matrix elements and swap-
ping the bra and ket of each dyad in the explicitly given part of the operator.
The time-reversal symmetry has been employed to reduce the number of
independent matrix elements to 2 (see Eqs 6 and 7 in Ref. 39 and the rele-
vant discussion there). Since complex-valued diabats are used, W and V are
complex. In Td symmetry, W and V need to satisfy (see Paper I)

σ̂xdW = W ∗; σ̂xdV = V ∗. (24)

We have shown in Paper I that (E + E)⊗ t problems in Td symmetry take

W = am,2k1,2k2F
0
m,2k1,2k2,y

+
(
±t
)m

am,2k1,2k2
∗F 0

m,2k1,2k2,z
;

V = bm,2k1,2k2F
−
m,2k1,2k2,y

+
(
±t
)m

bm,2k1,2k2
∗F−m,2k1,2k2,z, (25)

with

F 0
m,2k1,2k2,y

= (xyz)m
(
x2k1y2k2 + y2k1z2k2 + z2k1x2k2

)
;

F 0
m,2k1,2k2,z

= (xyz)m
(
x2k1z2k2 + y2k1x2k2 + z2k1y2k2

)
;

F±m,2k1,2k2,y = (xyz)m
(
x2k1y2k2 + e∓

i2π
3 y2k1z2k2 + e±

i2π
3 z2k1x2k2

)
;

F±m,2k1,2k2,z = (xyz)m
(
x2k1z2k2 + e∓

i2π
3 y2k1x2k2 + e±

i2π
3 z2k1y2k2

)
;

k2 ≤ k1, (26)

and complex a and b coefficients. The “+” before (±t)m in Eq. 25 is intro-
duced to let W and V satisfy Eq. 24. Conversely, “−” gives

σ̂xdW = −W ∗; σ̂xdV = −V ∗. (27)

13



The antisymmetric character of w with respect to σ̂xd indicates that we shall
multiply w2k to the “+” combinations, and w2k+1 to the “−” combinations
to obtain the expansion formulas for (E + E)⊗ (t+ a2) problems in Td sym-
metry:

W =
(
am,2k1,2k2,2k3F

0
m,2k1,2k2,y

+
(
±t
)m

am,2k1,2k2,2k3
∗F 0
m,2k1,2k2,z

)
w2k3

+
(
am,2k1,2k2,2k3F

0
m,2k1,2k2,y

−
(
±t
)m

am,2k1,2k2,2k3
∗F 0
m,2k1,2k2,z

)
w2k3+1;

V =
(
bm,2k1,2k2,2k3F

−
m,2k1,2k2,y

+
(
±t
)m

bm,2k1,2k2,2k3
∗F−
m,2k1,2k2,z

)
w2k3

+
(
bm,2k1,2k2,2k3+1F

−
m,2k1,2k2,y

−
(
±t
)m

bm,2k1,2k2,2k3+1
∗F−
m,2k1,2k2,z

)
w2k3+1. (28)

The E intra-term Hamiltonian reads

Ĥ = (|+〉 〈+|+ |−〉 〈−|)W + |+〉 〈−|V + |−〉 〈+|V ∗. (29)

The diagonal element W is real and its symmetry requirement is more strin-
gent than in Eq. 24: σ̂xdW = W , while the symmetry requirement on V is
unchanged. Therefore, E⊗(t+ a2) problems take the same W and V formu-
las as in Eq. 28 but with the a coefficients being real. The (E + E)⊗ (t+ a2)
and E⊗ (t+ a2) problems are the only a-involving (E + E) and E problems
considered in this work. This is because any (E + E) and E problems not
involving a t mode can be viewed as trigonal problems, instead of tetrahedral
problems.

In the complex representation of the E state and the real representation
of the T state, the (E + T ) inter-term Hamiltonian reads (see Eq. 89 in Paper
I)

Ĥ = (|+〉 〈X|+ |X〉 〈−|)V + (|+〉 〈Y |+ |Y 〉 〈−|) e−i
2π
3 Ĉ3V

+ (|+〉 〈Z|+ |Z〉 〈−|) ei
2π
3 Ĉ2

3V + c.c. (30)

The only independent matrix element V needs to satisfy σ̂xdV = ±TV ∗ in Td
symmetry.

In Paper I, we have derived for (E + T )⊗ t problems in Td symmetry,

V =
(
bx2k1,2k2,2k3x+ byz2k1,2k2,2k3

yz
)
x2k1y2k2z2k3

±T
((
±t
)
bx2k1,2k2,2k3

∗x+ byz2k1,2k2,2k3

∗yz
)
x2k1z2k2y2k3 , k3 ≤ k2. (31)

Again, considering the odd σ̂xd -transformation of w, this V formula is easily
adapted for (E + T )⊗ (t+ a2) problems in Td symmetry:

V =
[(
bx2k1,2k2,2k3,k4x+ byz2k1,2k2,2k3,k4

yz
)
x2k1y2k2z2k3

±T (−1)k4
((
±t
)
bx2k1,2k2,2k3,k4

∗x+ byz2k1,2k2,2k3,k4
∗
yz
)
x2k1z2k2y2k3

]
wk4 , k3 ≤ k2. (32)
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The (E + T )⊗ (t+ a2) problems are the only a-involving (E + T ) problems
in Td symmetry. Any other (a2 + γ) vibrational parts involve powers and
products of a2 and e coordinates, which give irreps of types A and E. These
irreps are not contained in E ⊗ T1,2 = T1 + T2. In total, we have derived
expansion formulas for 2 (E + E), 2 E, and 4 (E + T ) problems that involve
a2 vibrations in Td symmetry. We have finished deriving expansion formulas
for all a2-involving but not A-involving problems in Td symmetry.

4. A-involving problems

We now move on to derive expansion formulas for the (A+ Γ)⊗ (γ1 + γ2)
type inter-term problems. Unlike the problems in the previous section, the
electronic parts of these problems were not considered in Paper I. We hence
need to derive the generic forms of the vibronic Hamiltonians and the sym-
metry requirements on their matrix elements. Again, we only focus on the
problems with at least one of Γ, γ1, and γ2 being a T irrep. All the other
problems shall be categorized as trigonal problems. We also skip the deriva-
tions for the Th problems. As mentioned above, their formulas can be readily
obtained from those of T symmetry by imposing constraints based on the par-
ity consideration. As shown below, all formulas for the A-involving problems
are obtained by adopting/adapting the formulas obtained in Paper I. This
section showcases the robustness of the modularized approach.

4.1. (A+ T ) problems

The generic (A+ T ) inter-term Hamiltonian in T symmetry reads

Ĥ = (|A〉 〈X|+ |X〉 〈A|)HAX + (|A〉 〈Y |+ |Y 〉 〈A|)HAY + (|A〉 〈Z|+ |Z〉 〈A|)HAZ .

(33)

The diabats are real-valued, and so are the matrix elements. According to
the Ĉ3-transformations in Eq. 2,

Ĉ3ĤĈ
−1
3 = (|A〉 〈Y |+ |Y 〉 〈A|) Ĉ3HAX + (|A〉 〈Z|+ |Z〉 〈A|) Ĉ3HAY

+ (|A〉 〈X|+ |X〉 〈A|) Ĉ3HAZ . (34)

Ĉ3ĤĈ
−1
3 = Ĥ requires

HAZ = Ĉ3HAY = Ĉ2
3HAX . (35)
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Therefore, there is only one independent matrix element. Setting HAX = V ,
Ĥ is rewritten as

Ĥ = (|A〉 〈X|+ |X〉 〈A|)V + (|A〉 〈Y |+ |Y 〉 〈A|) Ĉ3V

+ (|A〉 〈Z|+ |Z〉 〈A|) Ĉ2
3V. (36)

Under the action of Ĉz
2 , the Hamiltonian becomes

Ĉz
2Ĥ
(
Ĉz

2

)−1

= − (|A〉 〈X|+ |X〉 〈A|) Ĉz
2V − (|A〉 〈Y |+ |Y 〉 〈A|) Ĉz

2 Ĉ3V

+ (|A〉 〈Z|+ |Z〉 〈A|) Ĉz
2 Ĉ

2
3V. (37)

Ĉz
2Ĥ
(
Ĉz

2

)−1

= Ĥ requires

V = Ĉx
2V = −Ĉy

2V = −Ĉz
2V. (38)

In deriving these requirements, the multiplication relations of the Ĉ2 and Ĉ3

operations have been used. For instance, to have equal matrix elements of
the (|A〉 〈Z|+ |Z〉 〈A|) dyads in Eqs. 36 and 37, we need Ĉz

2 Ĉ
2
3V = Ĉ2

3V , i.e.,
Ĉ3Ĉ

z
2 Ĉ

2
3V = V . Since Ĉ3Ĉ

z
2 Ĉ

2
3 = Ĉx

2 , we need Ĉx
2V = V .

As the symmetry is increased to Td, we need

Ĥ = σ̂xdĤ (σ̂xd)−1 =
(
±A±T

) [
(|A〉 〈X|+ |X〉 〈A|) σ̂xdV + (|A〉 〈Z|+ |Z〉 〈A|) σ̂xd Ĉ3V

+ (|A〉 〈Y |+ |Z〉 〈Y |) σ̂xd Ĉ2
3V
]
, (39)

which requires

σ̂xdV = ±A ±T V. (40)

The symmetry requirements on V in Eq. 38 are identical to those for the
(E + T ) problems (derived in Section 3.4 in Paper I). Therefore, the (A+ T )
and (E + T ) problems in T symmetry share the same V expansion formulas,
although their Hamiltonian forms are different. We can hence immediately
write down the following expansion formulas:

1. For the (A+ T )⊗ (t+ t) problem in T symmetry,

V =
(
b
xα/β
l,2k1,m,2k2,n,2k3

xα/β + b
yα/βzα/β
l,2k1,m,2k2,n,2k3

yα/βzα/β
)

xlαx
2k1−l
β ymα y

2k2−m
β znαz

2k3−n
β . (41)

“α/β” means that α or β can be selected;
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2. For the (A+ T )⊗ t problem in T symmetry,

V =
(
bx2k1,2k2,2k3x+ byz2k1,2k2,2k3

yz
)
x2k1y2k2z2k3 ; (42)

3. For the (A+ T )⊗ (t+ e) problem in T symmetry,

V =
(
bx2k1,2k2,2k3,k4,k5x+ byz2k1,2k2,2k3,k4,k5

yz
)
x2k1y2k2z2k3qk4θ q

k5
ξ ;(43)

4. For the (A+ T ) ⊗ e, (A+ T ) ⊗ (e+ e), (A+ T ) ⊗ a, and (A+ T ) ⊗
(a+ e) problems in T symmetry, V = 0. a and/or e modes cannot
mediate pJT interaction between an A and a T state because A⊗T = T
does not contain e, a, and any irreps arising from their products and
powers.

Please note that all b coefficients in the V expansions above are real. Here,
the salient feature of the modularized approach is exhibited. The vibrational
monomials like xx2k1y2k2z2k3 and yzx2k1y2k2z2k3 are symmetry-adapted mod-
ules. They contribute to any expansion formulas that are subjected to the
requirements in Eq. 38, regardless of whether the underlying electronic part
is (A+ T ) or (E + T ).

The symmetry requirement in Eq. 40 is similar to that for (E + T ) prob-
lems in Td symmetry:

σ̂xdV = ±TV ∗. (44)

Therefore, the expansion formulas for the (E + T ) problems can be slightly
modified to give those for (A+ T ) problems in Td symmetry. In Paper I, the
following functions:

F
xα/β ,l,m,n

2k1,2k2,2k3,y
=

(
xα/β

)
xlαx

2k1−l
β ymα y

2k2−m
β znαz

2k3−n
β ;

F
xα/β ,l,m,n

2k1,2k2,2k3,z
=

(
xα/β

)
xlαx

2k1−l
β zmα z

2k2−m
β ynαy

2k3−n
β ;

F
yα/βzα/β ,l,m,n

2k1,2k2,2k3,y
=

(
yα/βzα/β

)
xlαx

2k1−l
β ymα y

2k2−m
β znαz

2k3−n
β ;

F
zα/βyα/β ,l,m,n

2k1,2k2,2k3,z
=

(
yα/βzα/β

)
xlαx

2k1−l
β zmα z

2k2−m
β ynαy

2k3−n
β ,

k3 ≤ k2, (45)

have been used to concisely expand (E + T ) Hamiltonians in Td symmetry.

Please note that the
(
yα/βzα/β

)
and

(
zα/βyα/β

)
factors in F

yα/βzα/β ,l,m,n

2k1,2k2,2k3,y
and

F
yα/βzα/β ,l,m,n

2k1,2k2,2k3,z
are related by the y ↔ z swapping while maintaining the α/β
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selection. These functions are used here to expand (A+ T ) Hamiltonians.
We simply need to replace “±T” and complex expansion coefficients in the
(E + T ) formulas by “±A±T” and real coefficients, consistent with Eq. 44
vs. Eq. 40. The resultant formulas are:

1. For (A+ T )⊗ (t+ t) problems in Td symmetry,

V = b
xα/β ,l,m,n

2k1,2k2,2k3

(
F
xα/β ,l,m,n

2k1,2k2,2k3,y
+
(
±A±T

) (
±t

x
α/β

) (
±tα±tβ

)l+m+n
F
xα/β ,l,m,n

2k1,2k2,2k3,z

)
+b

yα/βzα/β ,l,m,n

2k1,2k2,2k3

(
F
yα/βzα/β ,l,m,n

2k1,2k2,2k3,y
+
(
±A±T

) (
±t

y
α/β±t

z
α/β

) (
±tα±tβ

)l+m+n
F
yα/βzα/β ,l,m,n

2k1,2k2,2k3,z

)
.

(46)

The sign of “±t
x
α/β” is determined by whether the xα/β coordinate is

a t1 or t2 coordinate. The sign selection of ±t
y,z
α/β is determined by

whether the yα/β and zα/β coordinates, before the y ↔ z swapping, are
t1 or t2 coordinates;

2. For (A+ T )⊗ t problems in Td symmetry,

V = bx2k1,2k2,2k3x
2k1+1

(
y2k2z2k3 +

(
±A±T

) (
±t
)
z2k2y2k3

)
+byz2k1,2k2,2k3

x2k1yz
(
y2k2z2k3 +

(
±A±T

)
z2k2y2k3

)
, k3 ≤ k2; (47)

3. For (A+ T )⊗ (t+ e) problems in Td symmetry,

V = bx2k1,2k2,2k3,k4,k5x
2k1+1qk4θ q

k5
ξ

(
y2k2z2k3 +

(
±A±T

) (
±t
)

(−1)k5 z2k2y2k3
)

+byz2k1,2k2,2k3,k4,k5
x2k1yzqk4θ q

k5
ξ

(
y2k2z2k3 +

(
±A±T

)
(−1)k5 z2k2y2k3

)
, k3 ≤ k2;

(48)

4. Removing qθ in Eq. 48 and replacing qξ by w, we immediately obtain
the V expansion for (A+ T )⊗ (a2 + t) problems in Td symmetry:

V = bx2k1,2k2,2k3,k4x
2k1+1wk4

(
y2k2z2k3 +

(
±A±T

) (
±t
)

(−1)k4 z2k2y2k3
)

+byz2k1,2k2,2k3,k4
x2k1yzwk4

(
y2k2z2k3 +

(
±A±T

)
(−1)k4 z2k2y2k3

)
, k3 ≤ k2;

(49)

The underlying reason for this adaptation is that both the eξ and a2

modes are σ̂xd -odd, while the eθ mode is σ̂xd -even;
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5. V = 0 for (A+ T )⊗ e, (A+ T )⊗ (e+ e), (A+ T )⊗ a, and (A+ T )⊗
(a+ e) problems in Td symmetry. This is for the same reason as for
the analogous problems in T symmetry.

The derivations for all (A+ T ) expansion formulas have been finished. In
total, 2 problems in T symmetry and 34 problems in Td symmetry are covered,
not including those that have null vibronic coupling.

4.2. (A+ E) problems

The generic (A+ E) inter-term Hamiltonian in T symmetry has the form

Ĥ = (|+〉 〈A|+ |A〉 〈−|)V + c.c. (50)

and V is complex. The Ĉ3- and Ĉ2-transformations in Eq. 2 determine that

Ĉ3ĤĈ
−1
3 = e−i

2π
3 (|+〉 〈A|+ |A〉 〈−|) Ĉ3V + c.c.;

Ĉx,y,z
2 Ĥ

(
Ĉx,y,z

2

)−1

= (|+〉 〈A|+ |A〉 〈−|) Ĉx,y,z
2 V + c.c. (51)

Therefore, V needs to satisfy

Ĉ3V = ei
2π
3 V ; Ĉx,y,z

2 V = V, (52)

in order to have Ĉ3ĤĈ
−1
3 = Ĥ and Ĉx,y,z

2 Ĥ
(
Ĉx,y,z

2

)−1

= Ĥ. Please note

that it is necessary to consider only one of the Ĉ2 operations in deriving the
expansion formulas. However, for (A+ E) problems, considering all three Ĉ2

operations simplifies the derivations, just like for (E + E) problems in Paper
I. In Td symmetry, the σ̂xd -transformations in Eq. 4 determine that

σ̂xdĤ (σ̂xd)−1 = ±A (|−〉 〈A|+ |A〉 〈+|) σ̂xdV + c.c. (53)

In order to have σ̂xdĤ (σ̂xd)−1 = Ĥ, we need

σ̂xdV = ±AV ∗. (54)

For comparison, the corresponding symmetry requirements on the V (i.e.,
H+α−β) of the (E + E) problems are

Ĉ3V = e−i
2π
3 V ; Ĉx,y,z

2 V = V ; σ̂xdV = V ∗. (55)
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Obviously, the V expansion formula of the (A+ E) problem in T symmetry
is just the complex conjugate of the corresponding (E + E) formula, and
for the problems in Td symmetry, an additional sign factor “±A” is needed.
The modularized approach can again be employed to transplant expansion
formulas from (E + E) problems to (A+ E) problems.

The following functions were used to express the expansion formulas of
(E + E) problems in Paper I. They are used here to express (A+ E) expan-
sions. The functions are reintroduced to make this paper self-contained.

F 0
m,2k1,2k2

= (xyz)m
(
x2k1y2k2 + y2k1z2k2 + z2k1x2k2

)
;

F±m,2k1,2k2 = (xyz)m
(
x2k1y2k2 + e∓

i2π
3 y2k1z2k2 + e±

i2π
3 z2k1x2k2

)
,

m, k1, k2 = 0, 1, 2, · · · ; if k1 = 0, k2 = 0. (56)

These functions are separated into two groups labeled by the subscripts y
and z, which have been introduced in Eq. 26.

G0
3N,2M = ρ3N+2Mei3Nφ;G±3N,2M = ρ|3N∓1|+2Mei(3N∓1)φ,

N = · · · ,−1, 0, 1, · · · ;M = 0, 1, 2, · · · . (57)

f e,l,m,nk1,k2,k3
= xlαx

2k1−l
β ymα y

2k2−m
β znαz

2k3−n
β ; f o,l,m,nk1,k2,k3

= xlαx
2k1−l+1
β ymα y

2k2−m+1
β znαz

2k3−n+1
β ,

l,m, n, k1, k2, k3 = 0, 1, 2, · · · ; l ≤ 2k1 (+1) ;m ≤ 2k2 (+1) ;n ≤ 2k3 (+1) for f e (f o) .(58)

The “e” and ”o” superscripts indicate the even or odd total power of the func-
tions. The f e,l,m,nk1,k2,k3

functions are further separated into two groups labeled
by the subscripts y and z:

f e,l,m,nk1,k2,k3,y
= xlαx

2k1−l
β ymα y

2k2−m
β znαz

2k3−n
β ; f e,l,m,nk1,k2,k3,z

= xlαx
2k1−l
β zmα z

2k2−m
β ynαy

2k3−n
β , k3 ≤ k2,

(59)

and similarly for f o,l,m,nk1,k2,k3,y
and f o,l,m,nk1,k2,k3,z

.

F
e/o,0,l,m,n
k1,k2,k3

= f
e/o,l,m,n
k1,k2,k3

+ Ĉ3f
e/o,l,m,n
k1,k2,k3

+ Ĉ2
3f

e/o,l,m,n
k1,k2,k3

= f
e/o,l,m,n
k1,k2,k3

+ f
e/o,n,l,m
k3,k1,k2

+ f
e/o,m,n,l
k2,k3,k1

;

F
e/o,±,l,m,n
k1,k2,k3

= f
e/o,l,m,n
k1,k2,k3

+ e∓i
2π
3 Ĉ3f

e/o,l,m,n
k1,k2,k3

+ e±i
2π
3 Ĉ2

3f
e/o,l,m,n
k1,k2,k3

= f
e/o,l,m,n
k1,k2,k3

+ e∓i
2π
3 f

e/o,n,l,m
k3,k1,k2

+ e±i
2π
3 f

e/o,m,n,l
k2,k3,k1

,

k3 ≤ k1, k2; if k1 = 0, k2 = 0; when k1 = k2 = k3, n ≤ l,m and if l = 0, m = 0.

(60)
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The F
e/o,0/±,l,m,n
k1,k2,k3

functions are also separated into two groups labeled by the
subscripts y and z:

F
e/o,0,l,m,n
k1,k2,k3,y/z

= f
e/o,l,m,n
k1,k2,k3,y/z

+ Ĉ3f
e/o,l,m,n
k1,k2,k3,y/z

+ Ĉ2
3f

e/o,l,m,n
k1,k2,k3,y/z

= f
e/o,l,m,n
k1,k2,k3,y/z

+ f
e/o,n,l,m
k3,k1,k2,y/z

+ f
e/o,m,n,l
k2,k3,k1,y/z

;

F
e/o,±,l,m,n
k1,k2,k3,y/z

= f
e/o,l,m,n
k1,k2,k3,y/z

+ e∓i
2π
3 Ĉ3f

e/o,l,m,n
k1,k2,k3,y/z

+ e±i
2π
3 Ĉ2

3f
e/o,l,m,n
k1,k2,k3,y/z

= f
e/o,l,m,n
k1,k2,k3,y/z

+ e∓i
2π
3 f

e/o,n,l,m
k3,k1,k2,y/z

+ e±i
2π
3 f

e/o,m,n,l
k2,k3,k1,y/z

,

k2 ≤ k1. (61)

These F and G functions are eigenfunctions of Ĉ3, with the superscripts 0
and ± indicating their eigenvalues 1 and e±i

2π
3 . They are needed to expand

V as an eigenfunction of Ĉ3 in Eq. 52. The powers of the x, y, and z
coordinates in these functions guarantee that they are invariant with respect
to Ĉx,y,z

2 , another requirement in Eq. 52. With the separations of the F and
f functions into the y and z groups, the action of σ̂xd is to swap the two
groups with possible sign flippings; the two groups of functions are needed
in the V expansions for problems in Td symmetry.

With all these functions and the (E + E) formulas expanded in them (see
Section 3.3 in Paper I), we immediately obtain:

1. For the (A+ E)⊗ (e+ t) problem in T symmetry,

V = b+0,3N,2M
m,2k1,2k2

G+
3N,2MF

0
m,2k1,2k2

+ b0+,3N,2M
m,2k1,2k2

G0
3N,2MF

+
m,2k1,2k2

+b−−,3N,2Mm,2k1,2k2
G−3N,2MF

−
m,2k1,2k2

; (62)

2. For (A+ E)⊗ (e+ t) problems in Td symmetry,

V = G+
3N,2M

(
b+0,3N,2M
m,2k1,2k2

F 0
m,2k1,2k2,y

+
(
±A
) (
±t
)m

b+0,3N,2M
m,2k1,2k2

∗
F 0
m,2k1,2k2,z

)
+G0

3N,2M

(
b0+,3N,2M
m,2k1,2k2

F+
m,2k1,2k2,y

+
(
±A
) (
±t
)m

b0+,3N,2M
m,2k1,2k2

∗
F+
m,2k1,2k2,z

)
+G−3N,2M

(
b−−,3N,2Mm,2k1,2k2

F−m,2k1,2k2,y +
(
±A
) (
±t
)m

b−−,3N,2Mm,2k1,2k2

∗
F−m,2k1,2k2,z

)
;

(63)

3. For the (A+ E)⊗ t problem in T symmetry,

V = bm,2k1,2k2F
+
m,2k1,2k2

; (64)
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4. For (A+ E)⊗ t problems in Td symmetry,

V = bm,2k1,2k2F
+
m,2k1,2k2,y

+
(
±A
) (
±t
)m

bm,2k1,2k2
∗F+

m,2k1,2k2,z
;(65)

5. For the (A+ E)⊗ (t+ t) problem in T symmetry,

V = b
e/o,l,m,n
k1,k2,k3

F
e/o,+,l,m,n
k1,k2,k3

; (66)

6. For (A+ E)⊗ (t+ t) problems in Td symmetry,

V = b
e/o,l,m,n
k1,k2,k3

F
e/o,+,l,m,n
k1,k2,k3,y

+
(
±A
) (
±tα±tβ

) (
±tβ
)Ieo

b
e/o,l,m,n
k1,k2,k3

∗
F
e/o,+,l,m,n
k1,k2,k3,z

.

(67)

Ieo = 0 for the F e functions and 1 for the F o functions.

Eq. 65 can be adapted to give

V =
[
bm,2k1,2k2,k3F

+
m,2k1,2k2,y

+ (−1)k3
(
±A
) (
±t
)m

bm,2k1,2k2,k3
∗F+

m,2k1,2k2,z

]
wk3

(68)

for (A+ E)⊗ (a2 + t) problems in Td symmetry. All the b coefficients above
are complex. The V expansion formulas for all the (A+ E) problems that
involve at least one t mode have been derived. In total, 3 problems in T
symmetry and 18 problems in Td symmetry are covered. The other (A+ E)
problems shall be considered in the context of trigonal symmetry.

4.3. (A+ A) problems

This class of problems are less interesting because two A terms are usu-
ally widely separated in energy, implying weak pJT coupling. We here only
consider the (A1 + A2) problems in Td symmetry involving at least one t
mode. The other (A1 + A2) problems are essentially trigonal problems. The
(A+ A) problem in T symmetry, (A1,2 + A1,2) problems in Td symmetry, as
well as the A-type intra-term problems are trivial as they only take totally
symmetric real expansions. Such expansion formulas are identical to the W
(H++) expansions of the E intra-term problems in T and Td symmetries (see
Section 3.3 in Paper I). The (A1 + A2) Hamiltonian in Td symmetry reads

Ĥ = (|A1〉 〈A2|+ |A2〉 〈A1|)V (69)
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with V being real. It is easy to see that V needs to satisfy

Ĉ3V = V ; Ĉx,y,z
2 V = V ; σ̂xdV = −V. (70)

These requirements are similar to those of the W (H++) in the E intra-term
problems except that σ̂xdW = W is needed for the E problems. With a simple
sign flipping in the W expansion formulas of the E problems, which change
them from being σ̂xd -even to -odd, we have:

1. For (A1 + A2)⊗ (t+ t) problems,

V = b
e/o,l,m,n
k1,k2,k3

(
F
e/o,0,l,m,n
k1,k2,k3,y

−
(
±tα±tβ

)l+m+n (±tβ)Ieo F e/o,0,l,m,n
k1,k2,k3,z

)
;

(71)

2. For (A1 + A2)⊗ t problems,

V = bm,2k1,2k2
(
F 0
m,2k1,2k2,y

−
(
±t
)m

F 0
m,2k1,2k2,z

)
; (72)

3. For (A1 + A2)⊗ (e+ t) problems,

V = Re
[
G+

3N,2M

(
b+−,3N,2M
m,2k1,2k2,y

F−m,2k1,2k2,y −
(
±t
)m

b+−,3N,2M
m,2k1,2k2,y

∗
F−m,2k1,2k2,z

)
+G0

3N,2M

(
b00,3N,2M
m,2k1,2k2,y

F 0
m,2k1,2k2,y

−
(
±t
)m

b00,3N,2M
m,2k1,2k2,y

∗
F 0
m,2k1,2k2,z

)]
.

(73)

A more explicit form of Eq. 73 is given in Eq. S.1 in Supplementary
Information.

Note that the b coefficients in Eqs. 71 and 72 are real, and those in Eq. 73
are complex. Eq. 72 can be slightly modified to give

V = bm,2k1,2k2,k3

(
F 0
m,2k1,2k2,y

− (−1)k3
(
±t
)m

F 0
m,2k1,2k2,z

)
wk3 (74)

for (A1 + A2) ⊗ (a2 + t) problems in Td symmetry, with the b coefficients
being real. In total, the derived expansion formulas in this subsection cover
9 (A1 + A2) problems.
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5. Numerical tests

It is unfeasible to examine all derived formulas by running numerical
calculations within this work. Here, we examine two representative problems
that involve both an A-type state and an a-type mode, the (A1 + T1,2) ⊗
(a2 + t1) problems. Neopentane is chosen to be the model system in Td
symmetry. The t2 HOMO set of neopentane is chosen to be the 1-electron T2

state, the t1 HOMO−1 set is chosen to be the T1 state, and the 2a1 orbital
in the valence shell is chosen to be the A1 state. The only a2 mode arises
from the methyl torsions. Correspondingly, the t1 combination of the methyl
torsions is chosen to be the t1 mode. The relevant orbitals and modes are
shown in Figure 1. They are obtained from B3LYP density functional theory
calculation using the GAMESS-US program package [51, 52] and the cc-
pVDZ basis set. [53] The orbitals are frozen when the neopentane is distorted
along the a2 and t1 modes; they are strict 1-electron diabatic states and no
diabatization is needed. The 1-electron Hamiltonian includes the kinetic and
the nuclei-electron attraction operators. The Hamiltonian matrix elements
(in eV) of the orbitals are calculated in a 4-D grid with 114 points of the
a2 and t1 mass-weighted normal mode coordinates. Each coordinate ranges
from −1 to 1

√
uÅ, with a 0.2

√
uÅ step-size.

Fitting a free expansion with all 69 xlymznwk monomials up to 4th order
against the calculated matrix elements, we obtain:

V = 0.768108x + 0.012291x3 + 0.000162xy2 + 0.000174xz2 − 0.008155xw2 − 0.124492xwy2

+0.124564xwz2 − 0.026700yzw − 0.027095y3z + 0.027028z3y (75)

for the (A1 + T1)⊗ (a2 + t1) problem;

V = 1.698547xw + 0.005093xy2 − 0.005085xz2 − 0.144967x3w − 0.126793xw3 − 0.385849xwy2

−0.385784xwz2 + 1.510515yz − 0.099228zy3 − 0.099206yz3 − 0.396795x2yz − 0.329322yzw2

(76)

for the (A1 + T2) ⊗ (a2 + t1) problem. The other terms have too small
coefficients to be considered. Except for minute numerical differences, V in
Eq. 75 has a form

V = bx0,0,0,0x+ bx2,0,0,0x
3 + bx0,2,0,0x

(
y2 + z2

)
+ bx0,0,0,2xw

2 + bx0,2,0,1xw
(
y2 − z2

)
+byz0,0,0,1yzw + byz0,2,0,0yz(y2 − z2), (77)
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Figure 1: Orbitals and modes used in the two numerical tests. For the t1,2 orbitals and
the t1 mode, only the x components are plotted. The molecular-fixed frame is shown to
clarify the x-direction along which the x components are aligned.

which is consistent with Eq. 49 with ±A = +, ±T = −, and ±t = −. V in
Eq. 76 has a form

V = bx0,0,0,1xw + bx0,2,0,0x
(
y2 − z2

)
+ bx2,0,0,1x

3w + bx0,0,0,3xw
3 + bx0,2,0,1xw

(
y2 + z2

)
+byz0,0,0,0yz + byz0,2,0,0yz

(
y2 + z2

)
+ byz2,0,0,0yzx

2 + byz0,0,0,2yzw
2, (78)

which is consistent with Eq. 49 with ±A = +, ±T = +, and ±t = −.
We also compare a fitted V function of the (A1 + T1) ⊗ (a2 + t1) problem
against numerical values in Figure S.1. The fitted function is expanded in
the 118 symmetry-adapted terms generated from Eq. 49 up to 10th order.
The agreement between the numerical and the fitted results is excellent.
All these agreements demonstrate the correctness of Eq. 49 and raise our
confidence regarding the other formulas derived in a similar manner.

6. Conclusion

We have derived general expansion formulas for all interesting tetrahe-
dral JT/pJT Hamiltonians that involve A-type states and a-type vibrations.
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In total, explicit formulas of 5 problems in T symmetry and 92 problems in
Td symmetry are given, not including the problems that have null vibronic
coupling. The derived formulas can be readily adapted to the problems in Th
symmetry. They can also be generalized to include more vibrational modes.
Since the Td and O point groups are isomorphic, the formulas for the Td
problems are also applicable for the corresponding O problems. This trans-
ferability of formalism relies critically on the consistency in settings: while
the x-, y-, and z-axes coincide with the C2 axes in Td symmetry, they need to
coincide with the C4 axes in O symmetry. The expansion formulas for the O
problems can be easily adapted to describe vibronic problems in Oh symme-
try, following the same parity consideration as the T -to-Th adaptations. In
summary, the formulas derived in this work are also applicable for octahedral
JT/pJT problems that involve A-type state and a-type vibration.

The modularized approach is the key to deriving expansion formulas for
such a large number of problems. Symmetry-adapted monomials or elemen-
tary functions of vibrational coordinates are taken as modules. The same set
of modules are used to expand vibronic matrix elements that need to satisfy
the same symmetry requirements. When the symmetry requirements slightly
change, e.g., by a sign flipping, the expansion formulas can be easily modified
to adjust to the change. In this work, the power of the modularized approach
is fully demonstrated, as many of the vibrational modules derived in Paper I
can be adopted/adapted to expand the vibronic problems in the A-involving
problems. This approach has converted the onerous derivations to a matching
game. In addition to facilitating the derivations, the modularized approach
also reveals the connections between different vibronic problems. Knowing
the connections, we can adopt/adapt a simulation program designed for one
problem to solve another problem. More benefits of using the modularized
approach will be uncovered in future studies.

Combining this work and Paper I, we have derived expansion formulas
for all unimodal and bimodal tetrahedral and octahedral vibronic Hamilto-
nians. They are valuable for future vibronic studies of cubic group systems.
Unlike in the Supplementary Information of Paper I, we do not provide ex-
plicit term-by-term expansions of full vibronic matrices for the discussed
problems, a laborious task that can be performed more readily by computer.
We are currently developing a program that converts all general formulas of
independent matrix elements derived in the two works to the term-by-term
expansions. It will be a highly useful tool in relevant JT/pJT studies.

26



7. Acknowledgements

We thank Carleton University for the start-up grant (186853) and the
Natural Sciences and Engineering Research Council (NSERC) of Canada for
funding (RGPIN-2016-06276). We thank Mike Schmidt (Iowa State Uni-
versity) and Mark Gordon (Iowa State University) for their support of the
GAMESS-US program package.

[1] H. A. Jahn, E. Teller, Stability of polyatomic molecules in degenerate
electronic states, Proc. Roy. Soc. A 161 (1937) 220–235.

[2] R. Englman, Jahn-Teller Effect in Molecules and Crystals, John Wiley
and Sons, Ltd., London, 1972.

[3] I. B. Bersuker, V. Z. Polinger, Vibronic Interactions in Molecules and
Crystals, Springer-Verlag, 1989.
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