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Abstract 
 

This research aims to develop a data-driven computationally-efficient strategy for 

automatic cross-patient seizure detection using spatio-temporal features learned from 

multichannel electroencephalogram (EEG) time-series data. In this approach, we utilize an 

algorithm that seeks to capture spectral, temporal, and spatial information in order to achieve 

high generalization. This algorithm's initial step is to convert EEG signals into a series of 

temporal and multi-spectral pictures. The produced images are then sent into a convolutional 

neural network (CNN) as inputs. Our convolutional neural network as a deep learning 

method learns a general spatially irreducible representation of a seizure to improves 

sensitivity, specificity, and accuracy results comparable to the state-of-the-art results. We 

overcome the lack of enough data, especially positive samples, created a process to deal with 

imbalanced datasets, and optimized the network's complexity. In this work, in order to avoid 

the inherent high computational cost of CNNs while benefiting from their superior 

classification performance, a neuromorphic computing strategy for seizure prediction called 

spiking CNN is developed from the traditional CNN method, which is motivated by the 

energy-efficient spiking neural networks (SNNs) of the human brain. On pre-recorded EEG 

data from 23 patients, the algorithm's performance is tested (969 hours and 173 seizures in 

total), which shows sensitivity and specificity of 95.04% and 99.42%, respectively, for 

patient-specific classification, and 83.02% and 86.31% for cross-patient classification. 

Results are compared with state-of-the-art, and future steps for hardware implementation 

and performance improvement are discussed. 
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 Chapter 1  

Introduction 

 

 

 

 

 

 

Epilepsy is a neurological disease that may manifest itself in the form of loss of 

consciousness, jerking of certain body parts, and, in extreme instances, continuous whole-

body convulsions. It is a disorder that affects individuals of all ages. It may have a 

significant effect on the patient's quality of life and may have further social and economic 

consequences; epilepsy may also end in premature death. Epileptic seizures affect about 70 

million individuals worldwide, according to multiple reports [1]. 

The electroencephalogram (EEG) is a fast and generally cheap method for 

analyzing and studying brain electrical activity. It is conducted by putting electrodes on the 
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surface of the scalp  (a.k.a., scalp EEG (sEEG) recording) or placing them inside the skull 

(a.k.a., intracranial EEG (iEEG) recording) [2]. Typically, several electrodes are used to 

record the scalp EEG in a non-invasive manner. This data collection is extensive and 

includes the synchronized activity of neurons in many regions of the human brain. 

Compared to other brain monitoring and imaging technologies such as magnetic resonance 

imaging (MRI) and Positron emission tomography (PET), scalp EEG offers a significantly 

better temporal resolution (i.e., the update rate). Additionally, compared to iEEG, sEEG 

has a lower spatial resolution but significantly higher spatial coverage. Therefore, for 

applications that require real-time (e.g., update rate ~a few milliseconds) monitoring of a 

large area (>1cm) of the brain with a reasonable resolution (>1mm), sEEG is optimal. 

  

Figure 1-1 A conventional scalp EEG setup [3] 

 

1.1 Seizure Detection 

Tools and methods that allow for continuous analysis and evaluation of the 

appropriate medication are required to manage long-lasting neurological illnesses. Existing 
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pharmaceutical therapies are unable to adequately treat about 30% of epilepsy patients [4]. 

This is somewhat due to the subjectivity of the information provided to the prescribing 

physician (e.g., focus, severity, seizure frequency, etc.) or reduction in the effect of the 

drugs on the patients. Hence, this has led to the growth of technologies that help physicians 

continuously monitor brain EEG signals and give them an objective assessment of the 

patients' status, their seizures' focus, and severity. These technologies are often used for 

presurgical monitoring, responsive neurostimulation, and emergency mental state 

evaluation. 

The scalp EEG is the most commonly utilized method for obtaining epileptic 

information in order to detect seizure episodes at their onset. These EEG recordings may 

contain characteristic patterns for seizures that can be detected by trained neurologists, but 

this task is tedious and expensive and can take several hours for a single patient [5]. Also, 

according to the news, in some regions of Canada, patients have to wait more than a year 

for an epilepsy test [6]. 

In order to improve the likelihood of capturing seizure events, many hours or even 

days of EEG recordings are needed, which should be analyzed manually by a trained 

technician. Around 75% of epilepsy patients in poor countries are unable to afford medical 

diagnosis or treatment [7]. Because of these limitations, there are many research efforts 

worldwide investigating the possibility of automating for seizure detection and/or 

prediction [8]–[11]. This includes groups who work on developing portable/wearable 

hardware for recording EEG signals with medical-grade quality, as well as those who work 
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on algorithms that utilize the recorded and digitized signals from several electrodes to 

detect an occurring or upcoming seizure.  

 

1.2 Why Machine Learning and Deep Learning 

Automated seizure detection methods make use of frequency and time-domain 

characteristics. However, some of the traditional methodologies have many drawbacks. 

Seizures pattern data from the EEG are extremely dynamic in nature. Their characteristics 

vary across individuals and also over time, even within the same patient. As a result, several 

automated methods are unable to cope with non-stationary EEG signals. Another 

significant drawback of some automated methods is that EEG data collection is subject to 

a variety of noise and artifacts, including muscle movements, eye blinks, and ambient 

noise. That is why nowadays, researchers prefer to use machine learning and deep learning 

methods, which have a great performance in seizure detection despite of the anomalies 

happening in the EEG datasets [12]. Figure 1-2 shows an example of a patient-to-patient 

variation of seizure patterns. Moreover, Figure 1-3 points out an example of a similarity 

between a seizure and an eye blinking in a patient. 
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Seizure

Seizure

A channel in 
Patient 1

A channel in 
Patient 2

 

Figure 1-2 An example of a  patient-to-patient variation of seizure patterns. 

 

Seizure Eye blinking

 

Figure 1-3 An example of the similarity between a seizure and an eye blinking in a patient 
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1.3 Monitoring vs. Treatment Devices 

The long-term need for monitoring and treatments has led to the development of 

lightweight wearable systems (some even commercialized) with an unnoticeable operation 

that allows patients to continue their daily routines [13]–[15]. These solutions often include 

signal processing modules that assist in reducing the amount of data, hence extending the 

device's battery life. Hardware-embedded signal processing not only improves energy 

efficiency (wireless communication of data is significantly more power-consuming than 

processing) but also reduces latency to a decision by bypassing the delays imposed by 

wireless communication of a large amount of data to a stationary computer and back. This 

is especially crucial if the decision is for a time-sensitive closed-loop function, such as 

responsive electrical stimulation after the detection of an epileptic seizure [16]–[20]. 

 

1.3.1 Treatment 

Patients with drug-resistant epilepsy who are either not surgical candidates or 

refractory to surgery constitute a large and difficult-to-treat group [21]. Additionally, 

individuals with drug-resistant epilepsy are at a higher risk of serious consequences 

associated with inadequate seizure control, such as serious injuries and SUDEP [22]. 

Improved seizure control is critical for drug-resistant individuals, yet improvements in 

pharmacological therapy have had little impact on seizure freedom rates during the last 
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four decades [23]. Thus, other ways of treatment are being investigated for individuals who 

are unable to benefit from reconstructive surgery.  

Deep brain stimulation (DBS) as a closed-loop neuro-modulation (feedback-

controlled)  method would be a surgical therapy option for those with epilepsy who are 

unable to control their seizures adequately with medication [24]. It entails implanting a 

pacemaker-like device and electrodes that deliver regular electrical pulses to particular 

regions of the brain to control epilepsy.  

Physicians use patient-specific seizure detection methods like machine learning 

classifications in the DBS devices to detect seizure onset accurately with low latency. In 

general, Patient-specific algorithms try to get trained with EEG data for a "specific" patient 

and then detect the seizure onset accurately and quickly. This accurate, timely detection 

will help the device with reducing the number of stimulations episodes and consequently 

the battery life.  

 

1.3.2 Monitoring 

Sometimes, there is insufficient time to train the seizure detection algorithm on a 

specific patient. For instance, a patient presents to a hospital's emergency department; in 

this case, the patient needs to be urgently monitored, and an expert physician must be 

notified if a seizure-like activity is detected. 
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It is evident that monitoring in this case must be a non-invasive procedure and a 

reasonable amount of delay (e.g., milliseconds, or even seconds) is not a problem, as is the 

issue with patient-specific treatments where a small delay is critical in the efficacy of the 

closed-loop responsive treatment. This kind of monitoring requires a cross-patient 

approach, which implies that the technique must include a generic seizure detection 

algorithm trained with many different patients' EEG signals that result in acceptable 

accuracy for a variety of patients.  

 

1.4 Implementation Challenges 

SVM algorithm, and conventional methods such as Random Forest, K-means, 

Fuzzy Clustering, Bayesian Net, and other linear and non-linear classifiers have been 

shown to yield solid accuracy in the patient-specific methods [8], [25]–[31]. However, 

since epileptic seizures express themselves differently in different individuals, these 

methods have not demonstrated an acceptable accuracy in the cross-patient seizure 

detection as a complex classification [32]. Thus, researchers move toward deep learning 

algorithms to deal with complex classifications [27].  



 

9 

 

 

Figure 1-4 Comparison of deep learning and conventional machine learning methods involved in epilepsy studies used 

by researchers in recent years [27] 

 

Deep learning techniques have been employed for EEG signal processing in the 

recent few years, with the convolutional neural network (CNN) being the most typical 

software method because of their attention to spatial features besides the conventional 

spectral and temporal features extracted from EEG signals, especially for the cross-patient 

seizure detection methods [12]. However, it is well known that CNNs are compute-

intensive, making them difficult to be implemented on wearable medical devices. Because 

of the fact that computing resources available on medical devices are highly limited, the 

reduced latency and energy efficiency of embedded processors lead to the loss of accuracy. 

As a result, only rudimentary algorithms can be implemented on these CPUs for the 

relatively large number of channels required in a comprehensive EEG system.  
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1.5 Proposed Design 

The human brain is capable of extraordinary perceptual actions while using very little 

energy. The goal of brain-inspired computing is to create systems that do the same 

functions as the human brain, which requires both high-precision algorithms and efficient 

hardware to execute them.  

Spiking Neural Network (SNN), as an increasingly popular neuromorphic 

computing method, is also inspired by the way information is communicated in biological 

neural networks in the central nervous system of humans, primates, and rodents. The 

neurons in the SNN do not propagate information at the end of each flow cycle (as in 

traditional multi-layer perceptron networks), but instead neuron fires only when a 

membrane potential reaches a certain value, known as the threshold, and sends a signal to 

neighboring neurons, which significantly change their potentials in response to the signal. 

It means the network can work asynchronously and is confirmed to be robust [29], [33], 

[34]. This results in the SNNs being highly energy-efficient and an optimal choice for 

performing hardware-embedded computations. [35]. It is expected to be the next generation 

of Artificial Neural networks [36]. SNNs always require sophisticated training approaches 

such as unsupervised spike-timing-dependent plasticity (STDP) [37], SpikeProp [38], and 

Tempotron [39]. In this work, to ensure that spatial features of the recorded multi-channel 

EEG are captured, we proposed to use a Spiking CNN (SCNN) [40]. In doing so, as 

described in Chapter 3, we first trained a regular CNN to perform seizure detection. This 
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was done twice for two different applications: patient-specific and cross-patient. While our 

main objective in this work was to develop a seizure classifier for cross-patient detection, 

the patient-specific model allowed us to compare our model with the myriad of patient-

specific classifiers reported in the literature. The cross-patient model's performance was 

also compared with state-of-the-art, which is a relatively new topic and quite limited in 

terms of the number of published papers, compared to the patient-specific field. Next, we 

transformed trained weights in both CNN models into the SNN topology as needed to 

predict seizures precisely and energy-efficiently.  

1.6 Thesis Organization 

Spectral energy and phase-locking value (PLV) are the features we extracted from 

raw EEG data to make the image-based representation of EEGs. Then we needed to train 

the CNN using these images and transform the trained CNN into spiking CNN. Some 

encoder functions were also responsible for converting the images to the sequence of spikes 

before feeding them to the new spiking CNN.  

In Chapter 2, we will introduce the EEG dataset used in this work and will discuss 

different time, frequency, and spatial features of the recorded EEG that we have extracted 

to be fed to the classifier. We will describe how the features are extracted, what parameters 

are optimized, and how the extracted features are converted into images that are later fed 

to an SCNN.  
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In Chapter 3, we have introduced the deep learning model that we have developed, 

how different parameters such as stride, padding, activation function, and pooling layers 

are set/devise, and how the neural network's architecture is designed. Next, the training and 

testing process were described, and different techniques used for resolving dataset-related 

issues are explained. This chapter also includes sections on how the developed CNN is 

converted into an SCNN. In the end, simulation results of both CNN and SCNN, each for 

the patient-specific and cross-patient problems, are presented for each patient in the dataset 

and compared to state-of-the-art. 

Chapter 4 concludes the thesis and discusses ideas for immediate next steps and 

long-term plans, and future directions of this project. Figure 1-5 shows a simplified flow 

diagram of the presented method.  

 

Feature 
Extraction

Image 
Creation

CNN 
Design

Training

Transform

Encoding
Spiking CNN

Design
Testing

Obtaining
Raw EEG

 

Figure 1-5 Flow diagram of the presented method 
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 Chapter 2 

Feature Extraction 

 

 

 

 

 

 To begin, we will discuss the database that will be used and the features that will 

be extracted from it. Following that, we explain the method of generating images from the 

features.  

2.1 Database 

Datasets are vital in the development of accurate and reliable biological classifiers. 

There are several EEG datasets that can be used to create automated epileptic seizure 

detection systems, such as Zenodo [41], Hauz Khas [42], Bern-Barcelona [43], Flint-Hills 

[42], Kaggle [44], Bonn [45],  Freiburg [46], and CHB-MIT [10]. These datasets' signals 
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are captured either intracranially (iEEG) of people and animals or from their scalp (sEEG). 

In Table 2-1, there is more information about each dataset.  

 

Table 2-1 Details of the popular seizure datasets.  

Dataset Number of Patients Number of 

Seizures 

Duration Sampling 

Frequency (HZ) 

Recording Type 

Zendo [41] 79 neonates 460 74 minutes/patient 256 sEEG 

Hauz Khas  [42] 10 NA NA 200 sEEG 

Bern-Barcelona  

[43] 

5 3750 83 hours 512 iEEG 

Flint-Hills [42] 10 59 1419 hours 249 iEEG 

Kaggle [44] 5 dogs and 2 patients 48 627 hours 400HZ and 5KHZ iEEG 

Bonn [45] 10 NA 39 minutes/patients 173.61 iEEG and sEEG 

Freiburg [46] 21 87 708 hours 256 iEEG 

CHB-MIT [10] 23 198 969 hours 256 sEEG 

 

 

2.1.1 Database Detail 

We used the Children's Hospital of Boston-Massachusetts Institute of Technology 

dataset for training and testing our method. This is the largest freely available dataset 

existing (CHB-MIT Scalp EEG Database [10], [47]).  This dataset was first collected to 

determine the need for surgery by analyzing seizures in patients.  
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It contains 969 hours of scalp EEG data from 23 individuals, including 18 females 

and 5 males, with 198 seizures in total. The EEG recordings are split into 24 sets (two sets 

of EEG recordings which are named CHB01 and CHB21, are for one patient whose second 

set is 1.5 years after the first one) which were recorded using a sampling rate of 256Hz and 

16-bit resolution. The patients’ ages range from 1.5 to 22.  

An epilepsy specialist has labeled the start and finish times of each seizure, which 

are utilized for training and testing of our developed algorithm. EEG electrode locations 

were recorded using the international 10-20 system (23 bipolar channels). 

In addition, sometimes during the recordings, the EEG recording devices, got 

disconnected form the patients’ scalp which make anomalies in the EEG signals of the 

dataset. Hence, we needed to remove those parts from the signals to avoid any 

misclassifications.  

 

2.1.2 Time Window Sizing and Labeling 

In general, the imbalanced number of instances in each class makes the 

classification tasks more complicated [48]. This issue also presents in seizure detection 

datasets. The CHB-MIT dataset consists of just 198 seizures, each lasting around one 

minute in 969 hours. Thus, it suffers from an extreme class imbalance, and few positive 

samples make the training uncertain; As a result, a data-driven classifier (e.g., an artificial 

neural network) might get overfit during training. 
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 In order to overcome the problem of the imbalanced dataset and improve the 

performance, we sliced the  EEG recordings into overlapping time windows with 50% 

overlap [49], as shown in Figure 2-1 with 30-second time windows for the cross-patient 

method. Also, in the patient-specific method, we used the same approach mentioned in 

Figure 2-1 with a 4-second window size instead of 30-second ones.  

We used this technique to increase the number of instances in the minority class 

(seizure class). It does, however, result in an increase in the majority class as well. Thus, 

we needed to use some other techniques besides the overlapping method to reduce the 

number of instances in the majority class. We explained them in detail in the next chapter 

to solve the problem of imbalance distribution in the training set.  

 

...

...

TimeTime-series EEG signal

30 sec

30 sec

30 sec

30 sec

30 sec
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Figure 2-1 30-second windows with 50% overlap for cross-patient method. 

 

 Our simulation results, confirmed by many reported in the literature such as 

Alkanhal et al. [50], have shown that using a longer window size (e.g., 30 seconds) will 

lead to higher detection accuracy, and this is mainly due to the vulnerability of shorter time 

windows to various forms of artifacts and noises. However, using a longer time window 

causes a proportionally longer detection latency. Therefore, for applications where latency 

is of importance (e.g., when a timely biofeedback must be sent back to the brain 

immediately after detection to stop a seizure), shorter windows are preferred. As a result, 

if the algorithm is designed for a responsive closed-loop implantable neuro-stimulator (i.e., 

a patient-specific algorithm), the window size should be set as a trade-off between delay 

and accuracy.   

Normally, because of the low delay needed in the patient-specific algorithms, 1-to-

2 seconds tie windows are preferred to constrain the latency. In this work, we chose to have 

a 4-second window with 50% overlap for the patient-specific algorithm to ensure a 

maximum 2-sec latency while minimizing the aforementioned negative implications of 

short windows.  

All in all, by using this overlapping approach, first, we increased the number of 

windows in order to have more samples from seizure class, and this step will be helpful for 

the other techniques that we used in the next chapter; second, we could reach half of the 
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delay in seizure detection while having the better performance of using longer time 

windows [51]. 

The start and end of each seizure are recorded in a separate text file for each patient 

in the CHB-MIT dataset, which were used to label the data. The reported timings have a 

precision equal to one second. Given that our time windows are longer than one second, it 

is likely that seizure activity only happens during a fraction of the window length. This 

fraction could be anywhere from 0% to 100%. Also, depending on whether the window 

falls in the beginning or the end of a seizure episode, we could have both seizure-then-

normal and normal-then-seizure situations. 

 A simple choice would be labeling a window as a "seizure" if the majority (i.e., > 

50%) of the window is seizure activity. However, after training our model with this and 

other choices, the optimal choice turned out to be labeling a window as a seizure, even if 

it contains one second of seizure activity, no matter it has a seizure-then-normal or normal-

then-seizure situation. Furthermore, by labeling in this manner, we will minimize seizure 

detection delays, which are critical in low-latency patient-specific detection.  

 Figure 2-2 represents an overview of the above-mentioned labeling method. 
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Seizure HappeningNormal Normal

Time-series EEG signal

...
Seizure

Partially-seizure

Seizure

Partially-seizure

Partially-seizure

Partially-seizure

Non-seizure

Non-seizure

Partially-seizure windows 
(normal-then-seizure situation)

Partially-seizure windows
(seizure-then-normal situation)

 

Figure 2-2 all of the partially-seizure windows are considered as seizure windows. 

 

2.1.3 Dataset Proportions 

For the patient-specific method, we split each patient's data into three subsets. 70% 

of the dataset is randomly picked for the train set, 15% of the dataset is randomly chosen 

for validation, and the remaining 15% is left for the test set, as shown in Figure 2-3.  

Test Set

Testing

Train Set Validation Set

70% 15% 15%

Training

 

Figure 2-3 Patient-specific dataset proportions 
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For the cross-patient method, we choose one subject as a test set and then train the 

model using the other 23 subjects. In addition, we randomly chose 15% of the training set 

as the validation set to use in our training. Figure 2-4 shows a summary of the proportions 

in the cross-patient method. 

Test Set

Testing  patient "i"

Train Set Validation Set

85% 15%

Training with all patients except patient "i" 

 

Figure 2-4 cross-patient dataset proportions 

 

We also made sure that for both cross-patient and patient-specific approaches, the 

subsets are stratified due to the imbalanced dataset we have. It means when we are 

randomly making our train set, validation set, and test set, the sampling ratio of the seizure 

class in every subset must be equal to the ratio of that subset to the overall dataset. When 

the test set accounts for 15% of the entire dataset, the number of seizures time windows 

(samples) in the test set also stands for 15% of the total number of seizures in the dataset.  
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2.2 Features 

In EEG signal processing and in special seizure detection methods, there are three 

types of inputs that we can feed to the classifier. Figure 2-5 represents the proportions of 

different types of inputs across all seizure detection studies. [12] 

 

Figure 2-5 The proportions of different types of inputs across all seizure detection studies 

 

Compared to cross-patient detection, developing an accurate classifier is generally 

a simpler task in most patient-specific studies. As a result, in many cases, reasonably 

successful classification is achieved by only using the raw recorded signals or simple signal 

features. From the hardware implementation perspective, this has the advantage of being 

efficient in terms of required computational resources. However, for the more challenging 

cross-patient detection, a more sophisticated feature extraction must be employed. The 
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input to the classifier should contain both temporal and spatial features of the recorded 

EEG signals to increase the chance of accurate detection. Recently, one of the more popular 

ways to achieve this is to feed images to the classifier. These could be actual snapshots of 

raw recorded data from all channels for a short (e.g., N=1-2 seconds) period of time that 

are fed to the classifier every N seconds. It could also be a picture generated from different 

features extracted from data that is fed to the classifier every N seconds. In this project, 

first, we extract some features from the raw signals, and then we create images from them 

to feed our network.  

Features represent a distinguishing characteristic or an operative component 

specified in a pattern section, as well as an identifiable measurement. One of the main 

objectives of feature extraction is to minimize the loss of important information associated 

with the signal. Furthermore, feature extraction reduces the resources needed to adequately 

characterize a large collection of data. When done correctly, feature extraction may 

decrease the cost of data processing, simplify data implementation, and lessen the need to 

compress data. [52]. 

To ensure that we have captured all relevant information required for an accurate 

seizure detection, we utilized spectral band energy (i.e., a frequency domain feature), 

phase-locking value (PLV) (i.e., a time-domain feature), and relative intensity of signal 

energy in different electrodes (i.e., a spatial feature). Each of these features has been proved 

to obtain high sensitivity (true positive rate) in seizure detection [8], [47], [53].  
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2.2.1 Spectral Energy 

To conduct effective seizure detection, it is essential to extract valuable statistical 

features from the EEG data. Because the EEG signal is complicated and non-linear in 

general, it is preferable to employ a non-linear model [54]. The fast Fourier transform 

(FFT) is used to extract the features of the EEG data in this research. As a result, we used 

the fast Fourier transform (FFT) technique to convert the time domain signals into 

frequency domain signals.  

Since the number of channels is different for different patients, in this algorithm, 

we only used the top 19 channels with larger seizure-to-normal average energy for patients 

(FP1-F7, F7-T7, T7-P7, P7-O1, FP1-F3, F3-C3, C3-P3, P3-O1, FZ-CZ, CZ-PZ, FP2-F4, 

F4-C4, C4-P4, P4-O2, FP2-F8, F8-T8, T8-P8, P8-O2, and FT9-FT10). Then, FFT is 

performed on the EEG signal of each channel to extract the signal energy for two bands of 

0-7Hz and 7-14Hz. Compared to higher frequencies, it has been shown in literature [11], 

[50] that the 0-49 Hz band is of the highest importance for seizure detection. We divided 

this band into three sub-bands of 0-7Hz, 7-14Hz, and 14-49Hz. Later, considering the 

energy efficiency of the model, our analysis showed no meaningful value for including the 

14-49Hz. Therefore, we only used the signal's spectral energy for 0-7Hz and 7-14Hz.  
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Following bandpass filtering of the raw recorded signals into two mentioned bands 

for each channel and slicing the signals into many time windows, we calculated the spectral 

energy of each time window using the following equation, 

𝐸 =∑ 𝑎𝑘
2𝑛

𝑘=0
     (Eq 2.1) 

Where '𝑎' is the signal magnitude of the kth sample. For example, the spectral energy 

of a 4-second time window is equal to the sum of squared values of all 4×256 samples 

existing in the time window.   

Brighter colors in the spectrogram of Figure 2-6 clearly show that two bandwidths 

chosen from 0 to 14Hz have more energy during the seizure activity and less noise during 

the normal activity compared to the higher bandwidths. This will make them our 

determinative frequency domains for the classification. 
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Figure 2-6 Spectrogram of energy for an EEG signal from a channel  
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2.2.2 Phase Locking Value (PLV) 

Phase-locking value (PLV) is the other feature that we used in this project, which 

unlike spectral band energy, is a bivariate feature (i.e., it uses raw recordings from two 

different channels, while a univariate feature such as spectral band power is extracted only 

from a single channel). PLV is a metric of the phase synchrony and correlation between 

two time-series data, and it ranges from 0 to 1. In order to calculate PLV, we need to find 

the phase difference (∆𝜙𝑖) of samples in two signals and feed it to the following equation 

[20], [53], [55], [56]. 

𝑃𝐿𝑉 =
1

𝑁
√(∑ sin⁡(∆𝜙𝑖

𝑁−1
𝑖=0 ))2 + (∑ cos⁡(∆𝜙𝑖

𝑁−1
𝑖=0 ))2    (Eq 2.2) 

A PLV equal to 1 means perfect synchrony, and equal to 0 means no synchrony at 

all. Figure 2-7 shows two examples of PLV calculated for two signals. 

A) PLV = 1 B) PLV = 0.2
 

Figure 2-7 Examples of PLV calculated for two set of signals.  

A) two signals with high synchrony B) two signals with low synchrony 
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During a seizure episode, different neural clusters across a large area of the brain 

start to exhibit synchronous behavior. Therefore, as shown in Figure 2-8, the measured 

phase synchrony, and consequently PLV, of two EEG signals recorded from a pair of 

electrodes will increase. This promises a useful feature for seizure detection, particularly 

in the presence of large artifacts that could easily change the spectral band power in each 

channel. Basically, since PLV is dependent on the signals' phase rather than their 

magnitude, it is more or less immune to signal magnitude changes due to interferences, 

artifacts, or noise.  

Channel 2
(T7-P7)

Channel 1
(F7-T7)

PLV

0.8

0

100 200 300 400
Time
(sec)

Seizure

 

Figure 2-8 Band Energy & PLV during a seizure 
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We picked the top 16 channels (FP1-F7, F7-T7, T7-P7, P7-O1, FP1-F3, F3-C3, C3-

P3, P3-O1, FZ-CZ, FP2-F4, F4-C4, C4-P4, FP2-F8, F8-T8, T8-P8, and FT9-FT10) with 

the most seizure-to-normal average PLV ratio in our PLV calculations. As a result, in every 

time window, we get 120 PLV values (i.e., 16C2), indicating the phase synchronization of 

channels one by one together. An example heatmap for correlations (PLVs) between 16 

channels is illustrated in Figure 2-9.  

 

Figure 2-9 Heatmap of the PLV values between 16 channels. 

 



 

28 

 

2.2.3 PLV Optimization 

Due to instantaneous phase changes in an EEG signal, the PLV value fluctuates 

significantly over time, particularly during the seizure state, which could easily lead to 

misclassification, as shown in Figure 2-10. To prevent this, using a windowed averaging 

filter, we smoothed the PLV values of time windows before creating an image of them and 

feeding them to the classifier.  
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Figure 2-10 PLV Smoothing using moving average filter [8] 

 

2.2.4 Features Correlations  

As discussed, the main advantage of using different types of features is to minimize 

the false positive (i.e., detecting a normal EEG activity as a seizure) rate. While Figure 2-8 

showed the advantage of using PLV over the spectral band power in accurate seizure 
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detection, Figure 2-11 shows how PLV values remain high even after the seizure episode 

is over, which necessitates the use of other features to maintain a low false-positive rate.  
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Figure 2-11 A heatmap of PLV shows wrongly high PLV despite the ending of the seizure 

 

Figure 2-12 is the joint distribution plot of PLV and spectral energy. There is no 

clear correlation evident in this plot, as indicated.  
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Figure 2-12 Correlation of PLV and spectral energy in patient "23" 

 

Because the two features are proportional to the signal's phase and magnitude, 

which are by nature orthogonal to each other, we believe that their combination will be 

significantly more immune to misclassification due to various types of noise and 

interference.  
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2.3 Image Creation 

Following extraction, the features must be fed to the classifier. While spectral band 

power carries frequency-domain information and PLV carries the time/phase-domain 

information of the recorded signal, respectively, the spatial information about the relative 

location of adjacent electrodes is not embedded in either of these features. Therefore, it is 

critical to ensure that the spatial information is communicated to the classifier in parallel 

with the features. This was done in this work by creating an image that mimics the location 

map of the recording electrodes, in which features extracted from each electrode's signals 

are overlaid on its location in the picture. Such spatial information also allows for seizure 

focus localization, if needed. 

 

2.3.1 Normalization of Data 

Signal normalization is an important part of patient-independent algorithms that 

analyze physiological signals and detect characteristics and prominent points 

automatically. Using the scalp electroencephalogram (sEEG) as an example, the absolute 

value of the EEG signal varies significantly [57]: with different persons, with age,  between 

different subject states such as sleep or wakefulness, between various areas of the head, 

and during epileptic seizures. Furthermore, absolute EEG readings may fluctuate over time 



 

32 

 

owing to variations in brain electrical activity as well as the quality of the electrode 

connected to the scalp.  

Automated analysis methods such as seizure detections must use normalized or 

relative amplitude values to compensate for these variations. The raw data is adjusted by a 

measure of the average background in order to apply a fixed threshold during signal 

classification. Of course, there are a variety of approaches that may be used to achieve the 

required normalization.  

We utilized the zero-mean unit-variance normalization technique to normalize the 

spectral data in this project. Regarding this algorithm, considering the standard deviation 

formula in Eq 2.3, we need to replace variables 𝑥𝑖 by 𝑥′𝑖 =
𝑥𝑖−𝜇

𝜎
. As a result, the mean (𝜇) 

of variables gets equal to 0 and the variance (𝜎2) of them gets equal to 1.  

σ = √∑ (𝑥𝑖−μ)
2𝑁

𝑖=1

𝑁−1
    (Eq 2.3) 

 

2.3.2 Image Representation of Energies 

The worldwide 10-20 system, which is an internationally accepted technique for 

defining and applying the position of the scalp electrode and underlying region of the 

cerebral cortex, is often used to collect EEG data. Furthermore, The "10" and "20" in the 

worldwide 10-20 system indicates that the actual distance between neighboring electrodes 

is 10% or 20% of the entire front-back or left-right distance of the skull [58].  
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The initial stage is to project the 10-20 system electrodes' 3D coordinates into a 2D 

surface using polar projection and obtaining the 2D coordinates of the electrodes. [59]. 

 

 

Figure 2-13 2D top-view electrode locations 

 

The spectral energy of all channels for two bands for each time window, each band, 

we created an image with 16 x 16 pixels and mapped the locations of these electrodes on 

it. Next, we set the value of the pixel positioned at the center of two electrodes with the 

value of spectral energy of bipolar channel named with those two electrodes. For example, 

for the C3-P3 bipolar channel, we found the middle point of C3 and P3 and set its pixel 
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value with the spectral energy of this bipolar channel. Because there are 19 bipolar 

channels, the described scheme should result in 19 non-zero pixels located at the middle of 

their corresponding pair of electrodes.  

However, we know that the EEG activity is not really zero for all the other pixels. 

Therefore, to make the image a better representative of reality and to minimize the number 

of pixels with a 0 value, we applied a Gaussian filter on the image, where the peak happens 

at the mentioned mid-point between two electrodes and tapers off with a Gaussian behavior 

as we get away from the peak in all directions.  

Finally, for every time window, we created two images, representing a spectral 

band of 0-7 Hz and 7-14 Hz, respectively, as shown in Figure 2-16. 

B) A) 
 

Figure 2-14 Two spectral images for a time window 

A) Spectral image of first bandwidth (0-7Hz)    B) Spectral image of Second bandwidth (7-14Hz) 
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2.3.3 Image Representation of PLV 

Similar to the spectral energy, the extracted PLV values for all channel pairs should 

be represented using an image to be fed to the classifier in parallel with the spectral images. 

Using the 120 phase-locking values obtained in the feature extraction section, we created 

a 16×16 image in which each pixel is responsible for the PLV of two indexed channels. 

For better magnitude resolution, we scaled the PLV values for each pixel from the 0-to-1 

range to 0-to-255.  

 

         Figure 2-15 An image-based representation of PLV of 16 channels  for a time window 

 

2.3.4 Concatenation and Saving 

Each time window will include two spectral energy images and one PLV image. 

We concatenated the three images to a wide one that included all three images. To prevent 
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any loss of accuracy due to an unwanted mixture of extracted features, we ensured that the 

three images are spaced enough (i.e., a sufficient number of columns with 0 values between 

them), as seen in Figure 2-16.  

 

Seizure 

Normal  

 

Figure 2-16 two examples of 2D wide image-based representation of EEG using spectral energies and PLV.  

The size of the images is 16×80. 
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 Chapter 3 

Classification 

 

 

 

 

 

3.1 Convolutional Neural Networks 

Convolutional Neural Networks (CNN) are used in a variety of applications. It is 

arguably the most commonly used deep learning architecture used for seizure detection 

algorithms [12].  

CNN is aimed to learn spatial hierarchies of features automatically and 

efficaciously using various building blocks divided into two parts: a feature extraction 

component and a classification component [60], [61]. The convolutional layers and pooling 

layers serve in the feature extraction component. They extract features from the input 
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images using a combination of linear and non-linear procedures. Fed by these features, the 

fully connected layers serve as the classifier, calculating the probability of input images 

belonging to different classes (e.g., seizure and non-seizure) [61].  

During training and testing of deep learning CNN models, each input image is 

passed through a series of convolutional layers, pooling layers, and fully connected layers 

(FC) to classify an image with probabilistic values between 1 and 0. We utilized it to deal 

with image representations of spectral, temporal, and spatial information in this project.  

 

3.1.1 Convolutional Layers 

A CNN model's primary powerhouse is its convolutional layers. It's not simple to 

identify important features automatically given just an image and a label. By stacking on 

top of one other, the convolutional layers learn such complicated features.  

Convolution is a mathematical procedure for combining two sets of data. In our 

instance, a convolution filter (kernel) is used to apply convolution to the input data, 

resulting in a feature map. It is accomplished by sliding the filter over the input. We conduct 

element-wise matrix multiplication and then aggregate the results for each place. Finally, 

the aggregated number is included in the feature map as an output of each layer. The 

technique is repeated, using several kernels to create some feature maps that represent 

distinct features of the inputs; different kernels can thus be thought of as different feature 

extractors.  
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Researchers typically use 1×1, 3×3, 5×5, or 7×7 filters, depending on the 

application. Usually, using a larger filter size make the model more complex and therefore 

increases the accuracy of the classifier. However, it will increase the computations. 

Furthermore, 1×1 filter is removed from the list of ideal filter sizes for our application since 

the features retrieved would be local, with no information from adjacent pixels. Finally, 

considering the trade-off between accuracy and complexity, we used 3×3 filters in our 

project. This filter size leads to less computation which is an important goal of this project. 

Also, we would have a shorter training time considering our large dataset in cross-patient 

training [62], [63].  

Figure 3-1 shows an example of convolution of an input image with one of the 

simple 3×3 kernels available in Pytorch library, which is called edge kernel with a matrix 

of (𝑘 = ⁡ [
1 0 1
0 −3 0
1 0 1

]). 
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A)

B)

 

Figure 3-1 A) An example of an input image B) Convolution of the input image with an edge kernel. 

 

3.1.2 Stride 

The stride defines by how many pixels the filter window or pooling window is 

moved at each step. Large strides result in a smaller overlap between the receptive fields. 

Hence a smaller feature map will be generated. This comes at the cost of skipping over 

potentially important spatial features and missing them. Due to the relatively small size of 

the input images used in this work, going with small strides is still computationally feasible 

and has the advantage of not missing any important spatial features [64]. As such, we chose 

minimum stride (i.e., 1) for the convolutional layers and a fairly small stride (i.e., 2) for the 

pooling layers. 
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3.1.3 Padding 

As described before, a kernel starts at one side of the image and then stepped across 

the image one stride at a time until reaching the other side. Since the kernel size is larger 

than 1x1, this means that the pixels at the edge of the input image never get the opportunity 

to be exposed to the center of the filter. As a result, features located closer to the edges of 

the input image have a smaller chance of being detected. Padding allows for extending the 

input image by a few more pixels so that the kernel (filter) starts outside the main input 

image frame. This will also result in the output image having the same dimensions as the 

input.  

We used padding equal to one pixel for each convolution operation, which is a 

procedure of symmetrically adding one line of zeros to the border of inputs of 

convolutional layers. Figure 3-2 shows an example of convolution of one 3×3 kernel and 

an image with padding.  
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Figure 3-2 An example of a 3×3 kernel applied to an image with padding equal to 1.  

 

3.1.4 Activation Function 

A neural network's activation function is a function that is added to different layers 

to map nodes' inputs to their corresponding outputs, which help the network learn complex 

patterns from the input. It is biologically inspired by the activity in our brains, where 

different inputs cause neurons to fire (or be activated).  

In this project, a rectified linear unit (ReLU) activation function follows each 

convolutional layer of the network. ReLU function is a simple piecewise linear function 

that returns zero if it gets any negative input and returns the value back if it gets any positive 

value. 
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Figure 3-3 ReLU Activation Function 

 

3.1.5 Pooling Layer 

Pooling is typically done after one or multiple convolutional layers. The feature 

map, which is the output of each layer with three dimensions of depth, height, and width, 

is fed into its following pooling layer as an input, and then they get down-sampled 

independently by the pooling process, which means a reduction in the width and height of 

the feature map while maintaining its depth.  

There are different kinds of pooling methods in deep learning. We cannot claim 

that one pooling technique is superior to another in general. The pooling method is usually 

chosen depending on the data available. Max pooling simply takes the pooling window's 

maximum value during the slide of the window over the image. Hence, it is helpful when 

the image's background is dark, and we are just interested in the image's lighter pixels. 
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While min pooling is exactly the opposite of max-pooling and it takes the minimum value 

from the set of pixels in the window, and it is usually used when the background is bright 

and we are interested in the darker pixels. The average pooling technique, on the other 

hand, calculates the average of pixels in the pooling window. When this pooling technique 

is employed, it smooths out the picture, so the sharp features may not be seen after that.  

Figure 3-4 illustrates different pooling methods applied on images with dark and 

bright backgrounds. 

 

A)

B)

 

Figure 3-4 two sets of different pooling techniques applied on images with bright background (A) and dark background 

(B). [65] 

 

Regarding the above-mentioned processes, the pooling layer has three important 

aspects. It allows us to decrease the number of parameters by reducing the dimension of 



 

45 

 

their inputs, which also reduces computation complexity and training time. It prevents the 

overfitting of our model to the training set. Also, it helps in extracting suitable features 

from the images regarding their input images’ content.  

Based on the above explanation and our simulation results, we defined the pooling 

structure for the CNN shown in Figure 3-6. The proposed CNN has a max-pooling layer 

after the first convolutional layer, and then it has three average pooling layers, one for every 

two remaining convolutional layers. The max-pooling layer gets the useful brighter pixels 

from the dark background of the first feature map, and the average pooling layers we 

smooth the pattern in order not to make the model too much biased to the specific sharp 

bright pixels and instead keep the general pattern.  

 

3.1.6 Fully Connected Layer 

As described previously, to correctly classify the pictures, a fully connected layer 

learns and utilizes the features generated by the preceding layers.  

The fully connected layer takes a 1D vector as its input. Therefore, we convert the 

last pooling layer's output to a 1D vector through a process called flattening. Flattening 

converts the 3D output of the last pooling layer to a 1D vector. Figure 3-5 illustrates an 

overview of the flattening procedure.  

Based on empirical results, we chose 1024 neurons for the fully connected layers, 

because a small number of neurons leads to lower accuracy,  and on the other hand, a very 
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large number of neurons needs more training with more inputs to reach an acceptable 

accuracy. 

Figure 3-5 shows the procedure of flattening a 3D array into a 1D array. 

 

Figure 3-5 Converting 3D input array to a 1D array row using the flattening method. [66] 

 

3.1.7 Proposed Architecture  

The proposed architecture of our model is shown in Figure 3-6. The described 

model is designed similar to the well-known AlexNet, which is employed in large-scale 

classifications with a large number of inputs in training and with minor differences such as 

using average pooling and half the number of kernels [67]. It consists of eight convolutional 

layers, one max-pooling layer, three average pooling layers, and a fully connected layer, 

plus the input and output layers.  
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Figure 3-6 The architecture of the proposed CNN model 

 

 

3.2 Training  

As discussed in Chapter 1, motivated by the computational complexity advantage of 

the spiking architectures, the ultimate goal of this work is to develop a spiking CNN 

(SCNN). Although there are some methods for training the SCNN directly [34], because 

of the long training time needed in the direct training approach, we decided to train the 

conventional CNN and then transform it to SCNN. In this regard, we trained our CNN with 

the input images. Furthermore, different aspects of training are described in-depth in the 

following sections.  
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3.2.1 Imbalanced Dataset 

Imbalanced classification is an issue in classifications in which the distribution of 

instances across classes in the training dataset is not equal. When an imbalanced dataset is 

used to train a model, the majority class is prioritized throughout the learning process. This 

implies that the model performs better on the majority class when there are more examples 

to learn from, but fails to learn critical factors that might aid it in learning minority class 

due to the insufficient samples.  

There are several different methods reported in the literature for learning from 

imbalanced training datasets, such as data-level methods and algorithm-level methods [68]. 

The focus of data-level techniques is on balancing distributions in the training set so that it 

may be used with a standard learning algorithm. Algorithm-level approaches adjust current 

learning algorithms directly to reduce bias towards the majority class and tune the 

algorithm to skewed distributions in the training set.  

As discussed in section 2.1.2, in this work, we have used overlapping windows 

during the feature extraction stage, which can be considered as a data-level technique for 

overcoming the imbalance distribution in the training set. We could increase the number 

of instances in the minority class using this method. It does, however, lead to a rise in the 

majority class as well. To address this problem, we use a hybrid sampling technique, which 

is another data-level technique, and it is detailed in the next subsection.  
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3.2.1.1 Hybrid Sampling  

Random over-sampling simply duplicates instances in the minority class of the 

training dataset, which is beneficial for balancing the dataset, however, it may lead to 

overfitting in certain models. On the other hand, random under-sampling removes instances 

from the majority class to balance the dataset, but it may lead to the loss of crucial 

information for a model. We developed a hybrid sampling approach in this study, which 

combines both random over-sampling and random under-sampling [69]. Therefore, by 

moderate use of each, we can balance the distribution and approximately avoid their 

negative consequences. 

Figure 3-7 illustrates an overview of the hybrid sampling method mentioned above.  

Random Under-sampling

Original Dataset

Random Over-sampling

Original Dataset

Removing some 
samples from 
majority class

Generating similar 
samples for the 
minority class

Original Dataset

Hybrid sampling

 

Figure 3-7 An illustration of over-sampling, under-sampling, and hybrid sampling  
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In the under-sampling part of the hybrid approach, we need to remove some of the 

non-seizure samples. We could then reduce the seizure to non-seizure samples ratio from 

about 1/300 to 1/31. However, we made an exception in the under-sampling method to 

avoid removing the ten samples before the start and after the end of each seizure. Although 

these are non-seizure samples, our simulation results, as well as the results published in the 

literature, suggest that they are more important than the other non-seizure samples, and 

removing them can have a negative effect on the training [50]. For the over-sampling part 

of the hybrid approach, we generated new seizure samples by duplicating the available 

seizure samples, which resulted in the ratio changing from 1/31 to 1/7. This means that the 

dataset was transformed in a way that in every eight samples, we have on average seven 

non-seizure samples and one seizure sample.  

 

3.2.1.2 Weighted Loss Function 

The loss function in deep learning is the distance between the ground truth and the 

model's estimated output. The learning algorithm's objective is to reduce the error 

generated during training by the loss function. Since our classification is binary and there 

are only two classes, a binary cross-entropy loss function is utilized to determine the 

distance between an estimated output value and its true value [70].  
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Weighted loss functions are supposed to improve the learning process by 

supplementing the loss function with a weight array corresponding to coefficients of the 

learning errors for different classes in the dataset. The goal is to push deep learning models 

into focusing on situations in which they make greater learning errors, such as 

misclassification of minority classes [71]. Hence, in this research, we provide a weight 

array to the loss function, and it will multiply the errors of minority class with a ratio of 

the number of instances in the non-seizure class to the number of instances in the seizures 

class, which is equal to 7 after the hybrid sampling.  

 

3.2.2 Optimizer and Batch Size 

One of the main objectives throughout the training phase is to determine the optimal 

weight values that will result in the least amount of loss. Optimization algorithms are in 

charge of minimizing losses and delivering the most feasible precise results. We used the 

Adam optimizer, which includes an adaptive learning rate and is optimized for deep neural 

network training. it has been proved to have a high rate of convergence when it is used to 

train neural networks with a learning factor of 0.001 [72].  

It is commonly known that smaller batch sizes result in quicker training dynamics 

compared to larger batch sizes. However, this statement has limitations, a batch size equal 

to 1 often performs very badly due to overfitting, and It is widely accepted that the optimal 

batch size is a trade-off between 1 and the full training dataset to have a faster convergence 
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besides avoiding the overfitting. Also, the batch size is often dependent on the 

characteristics of the dataset and the model [73]. In this project, based on empirical results, 

we chose a batch size equal to 128 to have a reliable performance in training.  

 

3.2.3 Early Stopping  

A common challenge in the training of neural networks is determining how long 

the model should be trained. Insufficient training will result in the model underfitting for 

the train and test sets. Excessive training, on the other hand, results in the model being 

overfitted to the train set and performing poorly on the test set [74].  

An effective solution to this is called early stopping, which simply is to train on the 

training dataset but to stop training when performance on the validation set begins to 

deteriorate. [74].  

As discussed in section 2.1.3, the validation set is a portion of the dataset (e.g., 

15%) that is kept aside for monitoring the model's performance throughout training. This 

validation set is not utilized in the model's training, and it is just for monitoring the 

accuracy. Additionally, for this purpose, it is typical to monitor the loss on a validation 

dataset. As part of the training process, the model's loss on the train set will be monitored 

as well.  

Epoch is one complete pass through the train set during the training. In CNN 

methods, it is required to train the model multiple epochs to reach the optimal weights in 
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the model. At the end of each epoch, the model's performance on the train set is assessed 

against the validation set, which results in an extra computational cost during training. This 

may be mitigated by assessing the model less often, for example, every 2, 5, or 10 training 

epochs in studies that need a high number of epochs. In this project, for both cross-patient 

and patient-specific training, the number of epochs is equal to 9 on average; thus, checking 

the validation loss in every epoch would not have a huge computational cost. 

We monitored the validation loss and training loss at the conclusion of each epoch 

and then compared them to their values from the previous epoch. Following that, if the 

validation loss increases while the training loss decreases, we ceased training; otherwise, 

we saved the model and continued training as long as it was beneficial to the model 's 

accuracy. 

 

3.3 Transforming to SCNN and Encoding 

As discussed in Chapter 1, neuromorphic computing models inspired by biology are 

being studied in an attempt to replicate the computational efficiency and innate potential 

for event-based asynchronous processing of the human brain while conducting 

classification. In this section, the transformation of CNN to SCNN, encoding, and testing 

are discussed in detail.  
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3.3.1 Transforming to SCNN 

A neuron is the elementary block of the nervous system in the human brain. 

Neurons transmit some signals like an electrical impulse known as an action potential 

(spike) through the nerves. Neuronal dynamics can be thought of as a combination of an 

integrating process and a mechanism that activates action potentials above a certain 

threshold voltage. Indeed, firing events are generally described in experiments when the 

membrane potential of a neuron exceeds a certain threshold value. A formal threshold 

voltage (Vth) is defined as a minimum voltage for spike initiation. Also, there is reset 

voltage which represents the voltage of neurons after each spike firing. In short, we say a 

neuron fires a spike when the voltage Vt (which contains the cumulative voltage of all 

inputs) exceeds Vth from below. Integrate-and-fire models is a neuron model in which 

action potentials are described as events [34], [75].  

Figure 3-8 illustrates an overview of the different processes happening in the 

Integrate-and-fire neurons.  
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Figure 3-8 an overview of integrating, fire and reset in the Integrate-and-fire neurons 

 

Furthermore, Figure 3-9 shows a model of the integrate-and-fire neuron in a spiking 

convolutional neural network. 

  Vth

Vreset. .
 .

W1

W2

Wj

Integrate Fire

Dentrites

Axon
Synapses

Dentrites

 

Figure 3-9 Model of an integrate-and-fire neuron used in convolutional layers and fully connected layers of SINABS 

library. 
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We converted the CNN and its weights into an SCNN using the SINABS library, 

which is a publicly available library for this purpose in the Pytorch framework [68]. Both 

SCNN and CNN networks have the same structure; Therefore, the trained CNN weights 

(32-bit floating-point numbers) of each layer can be mapped directly on SCNN. We didn’t 

utilize any activation function at the last output layer. This is mainly because, after the 

conversion of CNN to SCNN, we only have a series of binary values representing the actual 

spikes in the neural network of a human's brain. Furthermore, the activation function of the 

integrate-and-fire neurons employed in the spiking model works similarly to ReLU. Hence, 

there is no need for ReLU as well.  

The resting potential of all neurons in all layers is reset to zero to make the model 

hardware-friendly. The data communicated across the network has a single bit magnitude 

(i.e., 0 or 1) and asynchronous timing (i.e., the bit-stream density is not consistent). Using 

the single-bit data flowing through the network allows for replacing the energy-consuming 

floating-point multiplications with energy-efficient adding operations in all layers. This 

results in the SCNN requiring far less computational resources than CNN, making it more 

hardware-friendly.  
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3.3.2 Encoding 

The encoder converts the 2D input images made of floating-point values into 3D 

time-dependent arrays of binary values. Given a 2D input image with size of [Height, 

Width], the output would have to be [Time Step, Height, Width] consisting of 0 or 1. 

According to the SINABS library [76], there is a one-millisecond time distance between 

each 2D array with the size of [Height, Width] during the process of feeding the inputs to 

SCNN.  

In order to create a sequence of spikes in the time domain with a one-millisecond 

time distance between them, first, the pixel magnitude of images were scaled to the 0-to-1 

range, and then the encoder function generates a random matrix of the same width and 

height as the input images using uniform random values at each time step. The produced 

random numbers, which are between 0 and 1, get compared to every value of the pixels in 

the original input images. The associated spike value will be set to 1 if the random number 

is less than the corresponding value in the original image; else, the spike value will be set 

to 0. The encoder reduces the size of processed values in the images from 32-bit floating 

points to a series of 1-bit numbers (spike train) while maintaining the primary 

characteristics of inputs, which allow us to achieve our energy-efficiency goal [77], [78].  

Figure 3-10 represents the overall structure of the proposed SCNN. 
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Figure 3-10 The overall structure of SCNN 

 

In conclusion, we used the training set and validation set to train the normal CNN, 

and then the trained weights in the layers of the model got mapped on a corresponding 

SCNN with the same architecture. To evaluate the performance of the SCNN, we need to 

calculate the accuracy of the test set. In the testing stage, the input data is first transformed 

into spike sequences using a spike encoder. Then, the spike sequences are fed to the SCNN.  

 

3.4 Results 

In this section, our project benchmarks are compared with the benchmarks of the 

other research in both patient-specific and cross-patient aspects. A noteworthy point to 

mention is that in this research, not only do we focus on the classification accuracy, but 

also, we had to consider the energy efficiency of the model.  



 

59 

 

 

3.4.1 Classification Metrics 

A confusion matrix summarizes the classification problem's predicted outputs. It 

informs us not only about the errors which the classifier makes but also about the types of 

errors that are made. Figure 3-11 demonstrates an overview of a confusion matrix with a 

visual summary of true positive, true negative, false negative, and false negative. 

1

1
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0 : Non-seizure
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False
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True
Positive
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Negative

 

Figure 3-11 Confusion Matrix 

 

The most commonly used quantitative metrics used for evaluating the performance 

of a seizure classifier are sensitivity and specificity. Sensitivity, also known as recall or 

true positive rate (TPR), is a measure that reflects the proportion of seizure instances 

(positives) that the model properly classifies as seizures. The sensitivity equation is as 

follows: 
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𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦⁡ = ⁡
𝑇𝑟𝑢𝑒⁡𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒⁡𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒⁡+⁡𝐹𝑎𝑙𝑠𝑒⁡𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
   (Eq 3.1) 

 

Specificity, also known as true negative rate (TNR), is the ratio of non-seizure 

instances properly identified as non-seizure by the model. Its equation is as follows: 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦⁡ = ⁡
𝑇𝑟𝑢𝑒⁡𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒⁡𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒+⁡𝐹𝑎𝑙𝑠𝑒⁡𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
   (Eq 3.2) 

 False alarm per hour is another metric used in the evaluation of cross-patient seizure 

detection models. It has been defined differently in various kinds of literature. In the state-

of-the-art cross-patient seizure detection papers,  it is considered as the average number of 

false positives per hour. Also, as an exception, the successive false positives in the seizure 

detection method are considered as only one false positive [11], [50], [79].  

Latency is another metric that is important for closed-loop systems where the 

detection results are used for generating bio-feedback stimulations to the brain. Therefore, 

it is an important metric for implantable patient-specific applications. However, latency 

depends on the computational resources used in the seizure detector system, and therefore, 

the latency of an algorithm has a device-to-device variation. 

The computational cost of each classification is one of the important hardware-

related metrics that must be considered when trying to maximize sensitivity and specificity. 

In this research, we tried to compare the computation cost of one classification of a time 

window in our model with state-of-the-art cross-patient classifiers.  
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In the SCNN method, one of the main parameters affecting the accuracy, latency, 

and computational cost is the time step. Technically, using a greater time step in the 

encoding function leads to a higher accuracy; however, it linearly increases the latency and 

the energy consumption of the classifier. In this project, we chose a time step equal to 10 

in the encoder function as a trade-off between the above-mentioned metrics. Figure 3-12 

shows the effect of using different time steps on the accuracy of the classifier. 

 

 

Figure 3-12 A comparison of cross-patient model’s accuracy using different time steps in the encoder for patient “2” 

 

3.4.2 Results and Comparison  

The main focus of this work was the cross-patient SCNN method, and almost all 

the optimizations have been done in this regard. However, in this subsection, the results of 
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different methods developed in this work are represented. We implemented two different 

neural network models, a conventional CNN and an SCNN. Each of these is trained and 

tested for patient-specific and cross-patient detection. Also, the proportion of test set, train 

set, and validation sets are explained in detail in 2.1.3. 

3.4.2.1 Patient-specific CNN 

The patient-specific CNN algorithm was evaluated using a test set proportion of 

each patient of the pre-recorded EEG from the CHB-MIT database.  Our results show that 

it had an average detection sensitivity of 96.2% and a specificity of 99.51%, respectively. 

Figure 3-13 and Table 3-1 show the sensitivity and specificity of the proposed patient-

specific CNN. 

 

Figure 3-13 Sensitivity and specificity of the patient-specific CNN 
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Table 3-1 Sensitivity and specificity of the patient-specific CNN 

 
Sensitivity % Specificity % 

CHB 01 99.87 99.76 

CHB 02 99.42 99.52 

CHB 03 99.8 99.83 

CHB 04 99.11 99.84 

CHB 05 98.07 99.52 

CHB 06 97.23 99.43 

CHB 07 98.97 98.85 

CHB 08 98.86 98.74 

CHB 09 97.02 99.25 

CHB 10 99.4 99.67 

CHB 11 97.22 99.82 

CHB 12 84.34 99.01 

CHB 13 79.64 99.6 

CHB 14 97.71 98.92 

CHB 15 84.47 99.7 

CHB 16 93.35 98.88 

CHB 17 93.89 99.65 

CHB 18 98.96 99.68 

CHB 19 99.32 99.86 

CHB 20 98.68 99.81 

CHB 21 98.71 99.73 

CHB 22 99.19 99.69 

CHB 23 98.94 99.7 

CHB 24 96.61 99.81 

Average 96.20 99.51 

 

3.4.2.2 Cross-patient CNN 

We evaluated the performance of the cross-patient CNN algorithm using the CHB-

MIT database. As it was explained in section 2.1.3, in order to test each patient in the cross-

patient method, we train the model using the other 22 patients (one patient had two sets, 

and the second set was recorded a long time after the first set). Our results show that it had 
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an average detection sensitivity of 85.88% and a specificity of 86.87%, respectively. Figure 

3-14 and Table 3-2 show the sensitivity and specificity of the proposed cross-patient CNN. 

  

Figure 3-14  Sensitivity and specificity of the cross-patient CNN 

 

In both patient-specific and cross-patient methods, There are some patients (e.g., 

patients 12, 13, 15) that our model could not have a good detection accuracy in their dataset. 

The state-of-the-art works also have reported these anomalies for these patients [11], [50]. 

This may be because of the noises and variations in EEG monitoring devices’ 

characteristics, or maybe the insufficient number of seizures in the CHB-MIT dataset, 

which brings about inefficient training.   
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Table 3-2 Sensitivity and specificity of the cross-patient CNN 

 
Sensitivity Specificity 

CHB 01 98.14 97.31 

CHB 02 94.08 96.19 

CHB 03 97.36 93.63 

CHB 04 92.33 96.56 

CHB 05 89.62 90.24 

CHB 06 56.6 69.5 

CHB 07 86.11 91.82 

CHB 08 89.68 83.36 

CHB 09 86.87 87.83 

CHB 10 96.93 96.71 

CHB 11 93.11 93.22 

CHB 12 68.41 75.36 

CHB 13 78.31 80.55 

CHB 14 59.6 68.42 

CHB 15 76.58 74.54 

CHB 16 55.62 69.07 

CHB 17 91.45 92.41 

CHB 18 94.82 91.45 

CHB 19 95.89 94.02 

CHB 20 93.46 90.62 

CHB 21 90.6 88.54 

CHB 22 91.44 84 

CHB 23 94.67 92.23 

CHB 24 89.61 87.34 

Average 85.88 86.87 

 

3.4.2.3 Patient-specific SCNN 

After transforming CNN to SCNN, the patient-specific SCNN method was 

evaluated using a test set of each patient’s EEG data from the CHB-MIT database. Our 

results show that it had an average detection sensitivity of 95.04% and a specificity of 

99.42%, respectively.  
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Figure 3-15 and Table 3-3 show the sensitivity and specificity of the proposed 

patient-specific SCNN. 

 

 

Figure 3-15 Sensitivity and specificity of the patient-specific SCNN 
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Table 3-3 Sensitivity and specificity of the patient-specific SCNN   

 
Sensitivity Specificity 

CHB 01 99.82 99.71 

CHB 02 99.37 99.38 

CHB 03 99.81 99.72 

CHB 04 98.51 99.8 

CHB 05 96.78 99.21 

CHB 06 96.56 99.35 

CHB 07 98.12 98.93 

CHB 08 98.22 98.86 

CHB 09 96.86 99.1 

CHB 10 98.35 99.52 

CHB 11 96.97 99.82 

CHB 12 79.73 98.75 

CHB 13 73.74 99.51 

CHB 14 97.27 98.84 

CHB 15 82.94 99.64 

CHB 16 91.37 98.82 

CHB 17 92.84 99.33 

CHB 18 97.16 99.12 

CHB 19 98.85 99.81 

CHB 20 97.59 99.79 

CHB 21 97.66 99.65 

CHB 22 99.1 99.69 

CHB 23 98.14 99.93 

CHB 24 95.15 99.89 

Average 95.04 99.42 
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Table 2-1 compares the result of our patient-specific CNN and SCNN with state-of-the-

art. 

 

Table 3-4 Comparison with the state-of-the-art algorithms for patient-specific seizure detection 

Authors Year Classifier Dataset Sensitivity% Specificity% 

Karimi et al. [8] 2020 SVM CHB-MIT 96.87 99.95 

Thara et al.[80] 2019 DNN CHB-MIT 98.17 94.93 

Rahib et al. [81] 2020 CNN CHB-MIT 96.67 98.33 

Gao et al. [82] 2020 CNN CHB-MIT 92.6 97.1 

Tian et al.  [83] 2021 S-CNN CHB-MIT 

(Patients 1,5,6,8,10,14,22) 

95.1 99.2 

This Work 2021 S-CNN CHB-MIT 

(Patients 1,5,6,8,10,14,22) 

98.01 99.31 

This Work 2021 CNN CHB-MIT 96.2 99.51 

This Work 2021 S-CNN CHB-MIT 95.04 99.42 

 

As it is shown in Table 3-4, while the model was not optimized for a patient-specific 

application, its performance is competitive to state-of-the-art. However, as evident from 

the table, such a performance has been achieved using data-driven conventional machine 

learning methods such as support vector machines (SVMs) which have a significantly 

lower computational cost (e.g., [8]).  
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3.4.2.4 Cross-patient SCNN 

Because of the patient-to-patient variations of seizures happening in different 

people's EEG, there are only a few deep learning research that could lead to acceptable 

results for the cross-patient seizure detection. However, deep learning algorithms are 

extremely power-consuming because of the large number of multiplication existing in their 

algorithm [84].  

The cross-patient SCNN algorithm was evaluated on test sets made from the pre-

recorded EEG from the CHB-MIT database. It was determined that the detection had an 

average sensitivity of 83.02% and a specificity of 86.31%, respectively. Figure 3-14 and 

Table 3-2 show the sensitivity and specificity of the proposed cross-patient SCNN. 

 

Figure 3-16 Sensitivity and specificity of the cross-patient SCNN 
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Table 3-5 Sensitivity and specificity of the cross-patient SCNN 

 
Sensitivity Specificity 

CHB 01 98.03 97.24 

CHB 02 93.4 95.68 

CHB 03 95.22 93.65 

CHB 04 88.43 96.42 

CHB 05 84.65 90.03 

CHB 06 48.63 69.19 

CHB 07 84.82 91.71 

CHB 08 86.73 82.53 

CHB 09 83.2 87.13 

CHB 10 95.38 96.2 

CHB 11 93.11 92.81 

CHB 12 62.93 71.2 

CHB 13 73.28 78.74 

CHB 14 54.56 66.98 

CHB 15 71.33 74.54 

CHB 16 51.11 68.97 

CHB 17 90.33 91.56 

CHB 18 93.6 91.24 

CHB 19 95.2 93.82 

CHB 20 91.87 90.32 

CHB 21 87.92 87.5 

CHB 22 89.92 83.44 

CHB 23 92.54 91.83 

CHB 24 86.2 88.73 

Average 83.02 86.31 

 

Furthermore, Table 3-6 compares the cross-patient results of this work with state-

of-the-art. Additionally, although the number of multiplications and additions was not 

reported in their studies, we measured them in order to compare the energy consumption 

of our results to theirs.  
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Table 3-6 Comparison with the state-of-the-art algorithms for EEG-based cross-patient seizure detection 

Authors Year Classifier Dataset Sensitivity 

% 

Specificity 

% 

False 

Alarm 

(/hour) 

Number 

of ADD 

Number 

of MUL 

Least 

Latency 

Energy 

Consumption 

In 45nm tech 

Thodorof 

et al. [11] 

2016 CNN 

+ RNN 

CHB-

MIT 

85.16 83.21 0.8 13.7 M 6.9 M 30s 37.86 μj 

Alkanhal 

et al. [50] 

2018 CNN CHB-

MIT 

87.95 86.5 0.75 20.4 M 10.3 M 30s 56.47 uj 

This 

Work 

2021 CNN CHB-

MIT 

85.88 86.87 0.75 34.1 M 17.2 M 15s 94 uj 

This 

work 

2021 SCNN CHB-

MIT 

83.02 86.31 0.77 341 M 0 15s 10.2 μj 

 

Using a library in python called torch stat, we calculated the number of additions 

through our model for each classification which was 34.1M. Thus, since the time step in 

our project is equal to 10, we needed to multiply the number of additions by the time step 

value (10) to obtain the total number of additions in one image classification. Furthermore, 

in order to compare the energy efficiency of our work with others, First, we estimated the 

number of multiplications and additions in one classification of each model in Table 3-6 

using the torch stat library. Then using the estimated energy cost of multiplications and 

additions for integer and floating-point numbers in 0.9 volts and 45nm technology 

proposed by Horowitz [35], we calculated the approximate energy consumption of those 

models.  
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The energy consumption of conventional CNN in our work is high. Because, unlike 

the other CNN methods, we were unable to use some of the regularization techniques such 

as the dropout layer responsible for randomly setting layers’ input to zero and batch-

normalization technique for normalization of the layers' inputs, which both are supposed 

to improve performance and avoid overfitting in CNN. Therefore, we had to increase the 

number of pooling layers and convolutional layers to compensate for this issue. This 

problem is because of the neuromorphic nature of the model inspired by biology and the 

binary values of data representing spike trains flowing in the SCNN. With this in mind, 

comparing the proposed SCNN with the other CNNs, it has been confirmed that while the 

sensitivity and specificity might have been degraded when we migrated from CNN to 

SCNN, the computational cost is improved significantly. 

Figure 3-17 shows a comparison of the energy cost per classification between our 

work and the state-of-the-art, which represents at least a 75% reduction in energy cost 

compared to the other works. 

 

Figure 3-17 Comparison of energy cost per classification between our work and the state-of-the-art 
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 Chapter 4 

Conclusions and Future Works 

 

 

 

 

4.1 Conclusion 

We presented the design, development, and characterization of energy-efficient 

spiking neural network for seizure detection. The developed SCNN learns temporal, 

spatial, and spectral features from multi-channel EEG signals, and is tolerant to both the 

variations between seizures and among different patients, as well as the noise inherent in 

EEG data. Having the image data from spectral energy and phase-locking value features 

made us able to use CNN to do the classification, as opposed to standard EEG analysis 

techniques that ignore some spatial information. An additional benefit of leveraging spatial 
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information of recorded EEG data is that it enables seizure localization, which is 

particularly beneficial for pre-surgical monitoring applications.  

The suggested architecture's performance demonstrated that utilizing a multi-

second time window may be used instead of a recurrent neural network, thus reducing the 

overall design complexity. Additionally, we addressed the issue of imbalanced datasets by 

selecting the proper methods such as overlapping windows, hybrid sampling, and weighted 

loss function. However, the variance of the predicted distribution continued to be high. 

Indeed, by training on a small portion of the non-seizure class and testing on a much larger 

collection of non-seizure samples, minor parameter changes may have a substantial effect 

on the accuracy.   

Automation of this procedure may benefit patients with epilepsy in terms of 

diagnosis, monitoring, and therapy planning. The method may be especially advantageous 

in underdeveloped countries where access to neurology is limited.  

While cross-patient studies had positive outcomes, the sensitivity for some patients 

was poor. Their seizure pattern was most likely different from what was provided in the 

training set, emphasizing the need for more data as a training set. This is a challenge 

underlying the development of deep learning methods with limited datasets.  

In the spiking CNN, the spike encoder converts retrieved images to spike trains 

which can be evaluated in SCNN. To maintain high accuracy while minimizing computing 

resource consumption in training, we first built and trained the CNN and then mapped 
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obtained optimized weights to Spiking CNN. As demonstrated by the results, the proposed 

approach not only achieves high sensitivity but also manages to reduce computation 

complexity by at least 73% compared to the state-of-the-art.  

Table 2-1 shows a summary of the average sensitivity and specificity in all proposed 

models.  

Table 4-1 A summary of the average sensitivity and specificity in all proposed models 

 Average 

Sensitivity 

Average 

Specificity 

 

CNN 

Patient-specific 96.2 99.51 

Cross-patient 85.88 86.87 

 

SCNN 

Patient-specific 95.04 99.42 

Cross-patient 83.02 86.31 

 

4.2 Future Works 

Currently, the barriers preventing researchers from progressing in seizure detection 

systems, especially the cross-patient models, are as follows:  

First, many clinical datasets include only selected segments of EEG data, which 

itself is incompatible with real-world applications that require detection from real-time 

EEG signals, and clinical datasets are typically not publicly available.  
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Second, although the quantity of datasets in this area is vast, they cannot be 

effectively merged owing to differences in frequency sampling or other characteristics of 

EEG devices, resulting in a limited amount of total useable data for training a model.  

Finally, deep learning models need enormous computing resources, which are not 

widely accessible. The researchers must work in this direction in order to interfere with 

epileptic seizures using energy-efficient technology, thus assisting patients at any time and 

in any location.  

From the algorithmic perspective, deep learning has made significant progress toward 

human-level accuracy performance on a variety of recognition tasks [85]. On the hardware 

side, combining neuromorphic and traditional methods offers the potential of a new 

generation of embedded, real-time systems, but first needs resolving fundamental structural 

and operational gaps between the spiking algorithms and contemporary hardware designs. 

Neuromorphic computing systems learn and infer in real-time at low power levels. They 

need computational units that are logically similar to the brain's neurons. Each neuron in 

the SNN has the ability to fire independently, and when it does, it transmits pulsed signals 

to other neurons in the network, which directly affect their electrical states [86].  

Despite decades of study, relatively few published papers have shown that today's 

neuromorphic devices can do quantitative computations. Now, this is beginning to change 

with the introduction of Intel's Loihi neuromorphic processor, which is intended to handle 

a wide variety of spiking neural networks at a size, speed, and set of features comparable 
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to those of state-of-the-art conventional computing architectures [87]. This kind of 

processors not only can be used for biomedical purposes like seizure detection, But also 

can be employed for any other kind of machine learning and artificial intelligence methods.  

 

Figure 4-1 (a) Pohoiki Springs large-scale arrangement with about 768 Loihi chips. (b) Kapoho Bay USB system with 

two Loihi chips, event-based camera interfaces, and sensors. (c) Nahuku board interfaced with the Intel Arria 10 

FPGA with 32-chip expansion. [87] 

 

4.2.1 Future of This Project 

One of the main constraints in the training of the cross-patient algorithm is the 

insufficient number of seizures in the CHB-MIT dataset which led to relatively lower 

accuracy compared to the patient-specific methods. Thus, it would be a good idea to use 

other available datasets such as the Freiburg dataset, which has the same 256Hz sampling 

rate [46], to extend our training dataset for the cross-patient method. However, we must 

normalize the values of both datasets together to reach a better performance. Lastly, We 

can use different approaches to direct future development on this project.  

First, we can implement the S-CNN model on an FPGA using the Caffe library in 

Python [88]. This framework can convert the model to a Verilog-based model compatible 
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with FPGAs. FPGAs are especially helpful for developing application-specific integrated 

circuits (ASICs) with minimum hardware usage. However, they operate in the digital 

domain and are just a simulation of spiking networks, not a true neuromorphic processor 

like Loihi. Moreover, we can integrate our product with analog electronic circuits on the 

same chip to be able to conduct both EEG processing and recording together and 

eventually, leading to in-vivo testing of the prototype on humans. 

Second, using frameworks such as Caffe2 or TensorflowLite, the deep learning 

trained models can be used on the android and ios smartphones for inference [89]. Then it 

will be possible for us to do the classifications based on the input EEG data receiving from 

an energy-efficient Bluetooth connection with the EEG recording device. 

Third, we can use cloud-based deep learning inference using cloud platforms such 

as Amazon AWS or NVIDIA's inference [90]. Again, we can conduct this approach using 

a smartphone to collect real-time raw EEG data with a Bluetooth connection from a 

recording device. Then send it to the cloud platform for feature extraction and 

classification, and finally receive the resulting predicted label as an inference from the 

server. Moreover, an alarm can be set for patient, patient’s family, and a doctor. 
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