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Abstract 

Lawvere's notion of completeness for quantale-enriched categories has been ex­

tended to the theory of lax algebras under the name of L-completeness. In this 

work we introduce the corresponding morphism concept and examine its proper­

ties. We explore some important relativized topological concepts like separation, 

density, compactness and compactification with respect to L-complete morphisms. 

We show that separated L-complete morphisms belong to a factorization system. 

Moreover, we investigate relativized topological concepts with respect to maps that 

preserve L-closure which is the natural symmetrized closure for lax algebras. We 

provide concrete characterizations of Zariski closure and Zariski compactness for 

approach spaces. 
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1 Introduction 
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The concepts of completeness, separation and injectivity has been introduced 

and studied in the context of ('Jr, V)-categories under the names L-completeness [15], 

L-separation and L-injectivity [36). In this work we introduce the morphism versions 

of these notions, the most important of which is L-completeness for morphisms. We 

investigate properties of L-complete morphisms and explore relativized topological 

concepts like compactness, compactification, separation and denseness with respect 

to this class. We show that L-complete and L-separated morphisms belong to a 

factorization system. We provide a concrete characterization of this factorization 

system in the categories of ordered sets, metric spaces and topological spaces. These 

results has been published by the author in [53). 

The other focus of our investigation is the symmetrized closure for ('Jr, V)­

categories called the L-closure [36]. We give a novel analysis of L-closure as a 

combination of the natural closure and the dual closure. We show that the topol­

ogy induced by the L-closure is the join of the topologies induced by these clo­

sure operators. We explore relativized topological concepts like compactness, sep­

aration,denseness, openness with respect to morphisms that preserve L-closure. 

Our investigations lead to concrete characterizations of the Zariski closure and the 

Zariski compactness for approach spaces [26]. 
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1.1 (1r, V)-categories 

(11', V)-categories arise from the marriage of two lines of research, one of which 

is enriched category theory (41]. A category X can be described in terms of its 

horn-sets. The specification of identity morphisms and the composition law are the 

mappings 

{*} ~ hom(x,x) & hom(x, y) x hom(y, z) ~ hom(x, z) 

subject to associativity and unity axioms. An enriched category generalizes this idea 

by replacing horn-sets with objects from a general monoidal category. An impor­

tant example comes from Lawvere's 1973 paper [42] where he describes (pre)metric 

spaces as enriched categories over the nonnegative extended real numbers P + = 

[O, oo ]. Lawvere interprets a metric d: Xx X ~ P + as a horn-functor where P + is 

a complete, symmetric, monoidal closed category with arrows given by 2, tensor 

given by +. So a P +-category is nothing but a pair (X, d) that satisfies 

0 2 d(x,x) & d(x, y) + d(y, z) 2 d(x, z). 

Replacing P + with 2 = {false r- true, A, true}, horn-objects simply affirm or deny a 

binary relation "$ " between elements of X which is subject to 

truer- x $ x & x $ y /\ y $ z f- x $ z. 
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These conditions express reflexivity and transitivity of the binary relation~- Hence 

a 2-category is a (pre)ordered set. In general one can consider V-categories where 

V = (V, ®, k) is a (commutative and unital) quantale. In other words, V is a 

complete lattice with an associative and commutative operation®: V x V ~ V and 

a unit element k where® preserves supremum. 

The other line of research that motivates the introduction of ('JI', V)-categories 

is the axiomatization of topological structures via convergence. The works of Haus­

dorff [28), Frechet [25), Moore and Smith [46), Cartan [7), [8] and Choquet [11] have 

been important milestones in this regard. Probably the most remarkable result 

is Manes' presentation of compact Hausdorff spaces as Eilenberg-Moore algebras 

of the ultrafilter monad 1U = ( U, e, m) [44]. Barr extended this result to topologi­

cal spaces by relaxing the conditions of the Eilenberg-Moore construction [4]. He 

showed that a topological space X can be completely characterized by an ultrafilter 

convergence relation " ~ " satisfying 

x~x & (t) 

for all x E U2X, ~ E UX, x Ex where;; is the principal ultrafilter on x and Lis the 

"Kowalsky diagonal operation". Using the ultrafilter monad 1U = (U, e, m) and the 

quantale 2, one can express this information more formally. Denote the ultrafilter 
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convergence relation by a: U Xx X---+ 2. Then (t) can be written as 

truer- a(ex(x),x) & Ua(X,!=) /\ a(!=,x) r- a(mx(X),x) 

where U represents Barr's extension of the ultrafilter functor U to the category of 

relations. 

Generalizing this idea, Clementino, Hofmann and Tholen introduced the notion 

of a ('Ir, V)-category [17], [16]. It is obtained by replacing the ultrafilter monad 

1U with an arbitrary Set-monad 'Ir and the quantale 2 with an arbitrary quantale 

V. In concrete terms, a ('Ir,V)-category is a pair (X,a) where a: TX-H- Xis a 

V-relation (given by a function a: TX x X---+ V) that satisfies 

k ~ a(ex(x),x) & Ta(X,~) ®a(~,x) ~ a(mx(X),x) 

for all X E T 2 X, != E TX and x E X. Here T represents a suitable extension of 

the Set-functor T to the category of V-relations. Using V-relational composition, 

these conditions are written as 

lx ~a.ex & a.Ta~ a.mx. 

Hence a ('Ir, V)-category (X, a) is a lax Eilenberg-Moore algebra in the category of 

sets and V-relations. 

Taking 'Ir as the identity monad, this framework captures ordered sets and metric 

spaces for V = 2 and V = P + respectively. When 'Ir is the ultrafilter monad, one 
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obtains topological spaces for V = 2. The question is what will be obtained if one 

replaces 2 with P +· The answer to this question was given by Clementina and 

Hofmann in their 2003 paper [14] where they gave a lax algebraic description of 

approach spaces [42] by using numerical convergence relations. 

1.2 Summary of the work 

Lawvere's 1973 paper [42] describes Cauchy completeness of metric spaces by ad­

joint (bi)modules. A corresponding concept for (11', V)-categories was introduced 

under the name of L-completeness in [15], which was followed by the development 

of the concepts of L-separation, L-density and L-closure [36]. In this context, to 

a large extent, L-completeness behaves similarly to compactness. To give a cou­

ple of examples, L-completeness is inherited by the L-closed subsets; secondly, for 

any subset of an L-separated (11', V)-category L-completeness implies L-closedness. 

In topology the morphism notion for compactness leads to proper maps. Inspired 

by the interplay between compactness and L-completeness at the level of objects, 

we introduce a morphism notion for L-completeness which will be the counterpart 

of proper maps in this context. To establish the analogy between compactness 

and L-completeness further and rather rigourously we choose to explore topological 

concepts for (11', V)-categories using this class of maps. 

Early instances of the development of topological concepts in a category ap-
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pear in [47],[45],[31]. More recently, as presented in [13], given a finitely complete 

category equipped with a proper factorization system, one can pursue topological 

notions in that category by using a distinguished class of "closed morphisms". In 

fact many of these notions can be expressed by using "proper maps" which are 

stably "closed" [37]. Having developed an analogue of proper maps in the context 

of completeness, we put L-complete morphisms to work in a topological framework. 

Our investigation reveals that the topological concepts, like separation and density 

can be recovered by L-complete maps, while compactness and compactification nat­

urally translate into L-completeness and L-completion. For example, it is known 

that any continuous map of topological spaces with compact domain and Haus­

dorff codomain is proper. For (1r, V)-categories any morphism with an L-complete 

domain and an L-separated codomain is L-complete. Likewise, the (Antiperfect, 

Perfect) factorization of continuous maps of Tychonoff spaces [30], [54], [12], [55] 

is obtained with the help of the left adjoint Stone-Cech compactification functor. 

Here "antiperfect maps" are the maps which are sent to isomorphisms by the com­

pactification functor. Replacing the notion of compactification by L-completion, 

we obtain a similar factorization system for (11', V)-categories, where perfect maps 

are replaced by L-complete and L-separated maps. Instead of the antiperfect maps 

we now have the morphisms which are sent to isomorphisms by the left adjoint 

L-completion functor. 
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Having L-closure at hand, we also develop topological concepts via the maps 

that preserve L-closure, which we call L-closed. To characterize these concepts 

concretely, we study L-closure in detail. Under reasonable assumptions L-closure 

satisfies the Kuratowski closure axioms and induces a topology on (11', V)-categories. 

Hence one obtains a functor L from the category of (11', V)-categories to the cat­

egory of topological spaces [36]. By breaking L-closure into two parts we obtain 

two closure operators called the natural closure and the dual closure. We find 

that the topology induced by L-closure is the join of the topologies induced by 

the natural closure and the dual closure in our main examples. In other words 

the functor L going to the category of topological spaces decomposes through the 

category of bitopological spaces. Furthermore, we explore the conditions under 

which the functor L preserves finite products. We then show that compactness of 

a (11', V)-category with respect to L-closed maps can be equivalently characterized 

by compactness of its image under the functor L. A comparable result also holds 

for openness. Separation and density with respect to L-closed maps turn out to be 

the original notions of L-separation and L-density respectively. 

Our work on L-closure and L-closed maps leads to two new results for approach 

spaces. In his 2006 paper [26] Giuli introduces a closure operator called Zariski 

closure. Furhermore, he studies compactness with respect to maps that preserve 

Zariski closure, called Zariski compactness. Concrete characterizations of these 
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notions for approach spaces have been open problems stated by Giuli. Our inves­

tigation reveals that L-closure coincides with Zariski closure for approach spaces. 

By our findings on L-closure and compactness with respect to L-closed maps we 

provide concrete characterizations of Zariski closure and Zariski compactness for 

approach spaces. 

1.3 Outline 

Now we briefly describe the contents of the following chapters: 

Chapter 2 

This chapter provides the basic notions and results concerning ('Jr, V)-categories 

which appeared originally in [14], [17], [16], [36], [33], [15). 

We start by reviewing ordered sets from a categorical perpective. We examine 

adjointness and completeness for ordered sets. We give the definition of a quantale 

and provide its main examples in our context. Other notions discussed for ordered 

sets are complete distributivity and its choice free version constructive complete 

distributivity. As ultrafilters play an important role in our examples, we give a 

brief summary of facts about filters and ultrafilters. 

We present V-relations. These are relations r : X ~ Y given by functions 

r : X x Y --+ V. Sets and V-relations (with V-relational composition) form the 

category V-Rel. We review some important notions like order and adjointness in 
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this category. 

A basic component of the theory of (11', V)-categories is the monad 1I' = (T, e, m ). 

We give the definition of a monad with its main examples in our context. We present 

the Beck-Chevalley condition which will be one of the assumptions of our setting. 

In particular we show that the ultrafilter monad satisfies this condition. 

In order to define a (1', V)-category, one has to extend the Set functor T to the 

category V-Rel. This is achieved through certain assumptions on the monad 1' and 

the quantale V. In this regard, we adopt the framework called "strict topological 

theory" introduced by Hofmann [33). We show that our main examples provide 

instances of strict topological theories. The extension T of T is defined following 

[33]. 

We present (1', V)-relations and their composition rule: Kleisli convolution. A 

(1', V)-relation r: X--+->- Y is a V-relation r: TX -H- Y. (1', V)-relations inherit the 

order on V-relations. 

We define (11', V)-categories and (11', V)-functors. The category they form is 

called (11', V)-Cat. When 1I' is the identity monad one simply calls the resulting 

category V-Cat. We provide the main examples of (11', V)-categories which are 

ordered sets, metric spaces, topological spaces, approach spaces. We present some 

important functors between (1', V)-Cat and V-Cat, namely the adjoint pair A 0 
-1 

A: (11', V)-Cat -+ V-Cat and M : (11', V)-Cat-+ V-Cat. Given a (1', V)-category 
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X, its free Eilenberg-Moore algebra IXI and its dual X0
P are defined according to 

[15]. We show that the quantale V itself is a (11', V)-category. Following [33], we 

review ®-exponentiability in (11', V)-Cat as well as some basic limits. 

(11', V)-modules (also known as bimodules, profunctors or distributors in liter­

ature) play an important role for developing the notions of separation and com­

pleteness. A (11', V)-module 'l/J : (X, a) ""' (Y, b) is a (11', V)-relation 'l/J : X -P- Y 

which is compatible with the structure maps of its domain and codomain. For 

each (11', V)-category (X, a), its structure map a : X -P- X is a (11', V)-module 

and serves as an identity morphism with respect to Kleisli convolution. (11', V)­

categories and (11', V)-modules (with Kleisli convolution) form the category (11', V)­

Mod. (11', V)-modules inherit the order on (11', V)-relations making (11', V)-Mod 

a 2-category. Hence one can consider adjointness for (11', V)-modules. We present 

the lower star functor (-)* : (11', V)-Cat ~ (11', V)-Mod and the upper star functor 

(-)* : (11', V)-Cat0
P ~ (11', V)-Mod. We examine the notions of full faithfulness, 

L-density and L-equivalence for (11', V)-functors. 

There is a close relationship between (11', V)-modules and (11', V)-functors. Fol­

lowing [15], we show that a (11', V)-relation 'l/J : X -P- Y is a (11', V)-module if and 

only if both 'l/J : IXI ® y ~ v and 'l/J : X0
P ® y ~ v are (11', V)-functors. As a 

result, given a (11', V)-category X = (X, a), the (11', V)-module a : X ""' X gives 

rise to the Yoneda (11', V)-functor y: X ~ v1x1. Here v1x1 is the (11', V)-category 
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whose elements are (11', V)-functors 'lf;: IXI--+ V. We provide the Yoneda lemma for 

(11', V)-categories in accordance with [15]. 

Chapter 3 

This chapter provides the notions of L-completeness [15], L-separation, L-injectivity 

and L-closure [36], as well as their interactions. The results presented on these no­

tions originally belong to [15] and [36]. In addition to this known material, we 

introduce two new closure operators on (11', V)-categories: the natural closure and 

the dual closure. We show that the Zariski closure for approach spaces coincides 

with L-closure and provide a concrete characterization for it. 

Lawvere describes Cauchy completeness for metric spaces categorically using 

adjoint modules [42]. Given a metric space (X, d), there is a bijective correspon­

dance between equivalence classes of Cauchy sequences in X and pairs of adjoint 

modules <p --1 'lf; between X and the singleton set. A Cauchy sequence (xn) con­

verges to a point x in X if and only if the corresponding pair of adjoint modules 

<p --1 'lf; is representable by x as <p = d(x, _) and 'lf; = d(_, x ). Hence a metric spaceX 

is Cauchy complete if and only if each pair of adjoint modules between X and 

the singleton set is representable. Lawvere's result motivates the introduction of 

completeness for (1', V)-categories under the name L-completeness where one now 

asks representability of adjoint (1', V)-modules. After defining L-completeness, we 

examine it in our main examples. 
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We present tight (11', V)-functors. These are (11', V)-functors 'lj;: IXI -+ V where 

'lj;: X 0
P -+ Vis a (11', V)-functor and as a (11', V)-module 'lj;: X ""' Eis a right adjoint. 

For any (11', V)-category X, one denotes the collection of tight (11', V)-functors by 

X and considers it as a subcategory of v1x1. 

We define L-injectivity for (11', V)-categories which is the generalization of the 

concept of an injective object in a category (or an injective module in algebra). 

In this context one replaces monomorphisms with L-equivalences and demands 

commutativity of diagrams only up to "equivalence". 

We define the natural closure, the dual closure and the L-closure. We consider 

these closures in our main examples. When the functor T preserves finite sums, 

i.e T(M l!.l N) =TM l!.l TN, and the unit element k is v-irreducible, i.e. ks u v w 

implies ks u or ks w, the L-closure defines a topology on (11', V)-categories. Hence 

L-closure induces a· functor L : (11', V)-Cat -+ Top. 

We discuss the connections between L-completeness, L-closure and L-separation. 

As indicated earlier, L-completeness behaves similarly to compactness in this con-

text: L-completeness is inherited by L-closed subsets and in an L-separated (11', V)-

category L-completeness implies L-closedness. Futhermore, one sees that L-completeness 

is equivalent to L-injectivity. We show that the full subcategory of L-complete 

and L-separated (11', V)-categories, (11', V)-Catcpl & sep, is a reflective subcategory 

-
of (11', V)-Cat where the reflection maps are the Yoneda functors y : X -+ X for 
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each (1I', V)-category X. 

Chapter 4 

In this chapter we introduce the morphism notions for L-completeness, L­

separation and L-injectivity. 

We define L-completeness for (1I', V)-functors. Considering the lower star func­

tor as (-)* : (1I', V)-Cat ~ (1I', V)-Modt, where (1I', V)-Modt is the subcategory of 

(1I', V)-Mod whose morphisms are the left adjoint (1I', V)-modules, we see that L­

complete morphisms are (-)*-quasi cartesian morphisms in the sense of fibrational 

category theory [27]. Equivalently, L-complete morphisms are (_)*-quasi cartesian 

morphisms with respect to (_)* : (1I', V)-Cat ~ (1I', V)-Modr where (1I', V)-Modr 

is the subcategory of (1I', V)-Mod whose morphisms are the right adjoint (1I', V)­

modules. 

We examine L-complete morphisms in our examples. We investigate their prop­

erties. To name a few, L-complete morphisms have cancellation properties with 

respect to monomorphism and L-equivalences, one can characterize them via the 

naturality squares induced by the Yoneda functors. Most importantly, L-complete 

morphisms are pullback stable. 

We define L-separation and L-injectivity for (1I', V)-functors. In the language 

of abstract homotopy theory L-injective morphisms turn out to be the ones which 

have the weak right lifting property with respect to L-equivalences. We show that 
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L-completeness and L-injectivity are equivalent notions at the level of morphisms 

as well. 

Chapter 5 

In this chapter we examine the functor L: (1I', V)-Cat ~Top induced by the L­

closure. Our findings support the results of Chapter 7 where we explore functional 

topology with respect to L-closed morphisms. 

Firstly, we consider preservation of finite products for L. Incompatibility of 

the product structures in (1I', V)-Cat and Top poses some technical difficulties 

in this context. To remedy these problems, we assume that the quantale V is 

constructively completely distributive and the functor A0 
: V-Cat ~ (1I', V)-Cat, 

presented in Chapter 2, preserves finite products. These assumptions hold in our 

main examples and imply that L preserves finite products in these cases. 

Secondly, we try to characterize the functor L for approach spaces. We examine 

the natural closure, the dual closure and the L-closure in our main examples. We 

find that the topology induced by the L-closure is the join of the topologies induced 

by the natural closure and the dual closure for approach spaces. Here the join of 

two topologies is the smallest topology that contains both topologies. Expressing 

this result in categorical terms, one can write L = J. B where the functor B takes an 

approach space to the bitopological space whose topologies are the ones induced 

by the natural closure and the dual closure and the functor J takes the join of two 
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topologies of a bitopological space. 

Chapter 6 

As presented in [13], one can develop topological notions in a category (which is 

finitely complete and comes with a proper factorization system) via a distinguished 

class F of morphisms of which one thinks as "closed". This chapter provides the 

basics of the framework of [13] and some of its important results. 

We review the notions of a proper factorization system and a subobject in a 

category. We give the axioms that the distinguished class F of morphisms has to 

satisfy. We present density, properness, compactness, separation, perfectness, com­

pactifications and openness with respect to the class F. To express the relativized 

nature of these notions we use Fas a prefix. 

Chapter 7 

In this chapter we explore topological notions in ('IT', V)-Cat with respect to 

L-closed morphisms. 

We define L-closed morphisms and examine its properties. The collection of 

L-closed morphisms is denoted by C. We define C-compactness and characterize it 

for ordered sets and metric spaces. To characterize C-compactness for topological 

spaces and approach spaces, we use the functor L induced by the L-closure. We 

show that a topological space or an approach space is C-compact if and only if its 
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image under Lis a compact topological space. For topological spaces C-compactness 

corresponds to b-compactness which is characterized by Salbany [51]. For approach 

spaces this notion coincides with Zariski compactness (26] which has not been char­

acterized in concrete terms yet. To do this, we take advantage of the factorization 

L = J.B given in Chapter 5. We formulate Zariski compactness of an approach 

space X equivalently as 2-compactness of the bitopological space X whose topolo­

gies are induced by its natural closure and its dual closure. We provide a concrete 

characterization for this notion. 

We examine C-separation and C-density. These concepts correspond to L­

separation and L-density respectively. We define C-openness. Given that the func­

tor L preserves finite products, we show that a (11', V)-functor is C-open if and only 

if its image under the functor Lis an open map. We also examine C-discrete objects 

and C-local homeomorphisms. 

Chapter 8 

In this chapter we explore topological notions in (11', V)-Cat with respect to 

L-complete morphisms. 

We start with a comparison between L-closed morphisms and L-complete mor­

phisms. By providing examples we show that these are essentially different classes 

of morphisms with the following exception: for a fully faithful (11', V)-functor L­

completeness is equivalent to L-closedness. 
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The collection of L-complete morphisms is denoted by £. We examine £-density 

and £-separation. These notions correspond to L-separation and L-density respec­

tively. £-compactness turns out to be L-completeness. This puts the initial analogy 

between compactness and L-completeness on a firm ground. By taking advan­

tage of the findings of Chapter 6 we obtain more results on L-completeness and 

L-separation. We define functorial £-compactification for ('Ir, V)-categories. An 

example of this concept is given by L-completion which corresponds to soberifica­

tion for topological spaces. As analogous to the (Antiperfect, Perfect) factorization 

system of continuous maps of Tychonoff spaces obtained via Stone-Cech compacti­

fication, we obtain the (£-antiperfect, £-perfect) factorization for ('Ir, V)-categories 

via L-completion. Here £-perfect morphisms are L-complete and L-separated mor­

phisms, £-antiperfect morphisms are the ones which are sent to isomorphisms by 

the L-completion functor. We find that £-antiperfect morphisms are precisely L­

equivalences. 
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2 Preliminaries 
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This chapter reviews basic mathematical concepts and provides the preliminaries 

for ('Jr, V)-categories which originally appearred in [14], [17], [16], [36), [33), [15]. 

An excellent source for more details is [50). 

2.1 Ordered sets 

In this section we review some basic notions and results about ordered sets. We 

recall the category of ordered sets and adjunctions in Subsection 2.1.1. Subsec­

tion 2.1.2 provides a categorical formulation of completeness of ordered sets as well 

as adjointness criteria for monotone maps. The theory of (11', V)-categories assumes 

the presence of a quantale V. We review the notion of a quantale and provide its 

main examples in our context in Subsection 2.1.3. The last two subsections are 

devoted to distributivity of complete lattices. Constructive complete distributivity, 

which is the choice free version of complete distributivity, is explored in Subsec­

tion 2.1.4. We recall complete distributivity in Subsection 2.1.5. 

2 .1.1 Basic notions 

A preordered set (X, ~) is a set X together with a reflexive and transitive relation 

~' i.e. 

x~x & (x~y, y~z => x~z) 
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for all x, y, z EX. We usually omit the prefix "pre" and call a preordered set (X, $) 

an ordered set (as in [57)). If x $ z and z $ x, we write x ~ z and say that x and z 

are equivalent. X is said to be separated (or antisymmetric) if equivalent elements 

are equal to each other, i.e. x ~ z implies x = z. 

Given an ordered set (X, $) one can consider its dual X 0
P = (X, ~). A map 

f: (X, $) --+ (Y, $) is called monotone if 

x$z ~ J(x)$f(z) 

for all x, z E X. Ordered sets and monotone maps form the category Ord. The 

horn-sets of Ord carry the pointwise order: given monotone maps f, f': X --+ Y, 

one has f $ f' if f(x) $ f'(x) for all x EX. 

Since Ord is an ordered category, one can consider adjunctions. A monotone 

map f: X--+ Y is called a left adjoint if there exists a monotone map g: Y--+ X 

such that 

lx $ g.f & f.g $ ly. 

In that case g is called a right adjoint and the ad junction is denoted by f -1 g. A 

map f: X--+ Y is a left adjoint if and only if there exists a map g: Y--+ X such 

that 

f (x) $ y <===> x $ g(y) (2.1.1) 

for all x E X, y E Y. The monotonicity of f and g follows from this condition. 
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2.1.2 Completeness 

Let (X, ~) be an ordered set and S £; X. The down-closure of Sis the set 

i S = { z I 3x E S : z ~ x}. 

S is said to be down-closed if i S = S. Down-closed sets of the form i x = { z I z ~ x} 

are called principal. One has the monotone map 

i: X--+ DnX 

where the lattice Dn X of down-closed sets ordered by inclusion. 

An ordered set X is called complete if i: X --+ Dn X has a left adjoint. Denote 

the left adjoint of i by V : Dn X --+ X. By (2.1.1), one has 

(2.1.2) 

for any down-closed set S £; X. Observe that x E X is an upper bound for S if and 

only if S £;ix. So (2.1.2) implies that 

• VS is an upper bound of S, 

• for any upper bound x of S, one has VS~ x. 

Hence VS is the supremum of S up to equivalence. Given any T ~ X, one puts 

VT==ViT, 
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since both T and i T have the same upper bounds. For any x, z E X, V { x, z} is 

simply denoted by xv z. 

As x complete if and only if X 0
P is complete, one has Vxop -I hop: Dn X 0

P --+ 

X 0 P. Dualizing this adjunction yields j-1 /\: x--+ UpX where j:= Oxop)0
P, 

/\ := (Vxop )0
P and Up X := (Dn X 0 P)

0
P. The dual notion of infimum is naturally 

describable by this adjunction. One denotes the infimum of any T ~ X by /\ T. 

For any x, z EX, /\ {x, z} is simply denoted by x /\ z. 

A monotone map f : X --+ Y is said to preserve supremum of S ~ X if 

J(V S) = V J(S) 

whenever VS exists. f is called a sup-map if it preserves all existing suprema in 

X. Dually, f is called an inf-map if it preserves all existing infima in X. 

Any left adjoint f : X --+ Y is a sup-map. In case X is complete, f is a left 

adjoint if and only if it is a sup-map. Its right adjoint g : Y --+ X is given by 

g(y) ~ V{x I J(x)::; y}. (2.1.3) 

Dually, given Y complete, a monotone map g: Y--+ Xis a right adjoint if and only 

if it is an inf-map. Its left adjoint f : X --+ Y is given by 

J(x) ~ f\{y Ix::; g(y)}. (2.1.4) 

A complete and seperated ordered set is called a complete lattice. We will denote 

the top and the bottom elements of a complete lattice by T and l respectively. 
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2.1.3 Quantales 

A commutative and unital quantale V = (V, ®, k) is a complete lattice with a com-

mutative and associative operation ® : V x V ~ V and a unit element k where 

tensoring preserves suprema in each variable, i.e. 

v ® <V Ui) = v ( v ® Ui). 
ie/ ie/ 

Throughout this work V will denote a commutative and unital quantale. We will 

drop the adjectives commutative and unital and simply call V a quantale. Further-

more, we assume that V is nontrivial, i.e. V t. { k} or, equivalently, k * 1. 

Since Vis complete and tensoring preserves suprema, for any u EV u ® (-) has 

a right adjoint u -<> (-). Following (2.1.3), one has 

u-<> v = V { w I u ® w $ v }. (2.1.5) 

Also 

U®W$V <==> W$U-<>V 

for any v, w EV by (2.1.1). Sometimes we also write v o- u instead of u-<> v. 

The unit element k is called v-irreducible if k $ u v v implies k $ u or k $ v. 

A frame is a complete lattice which satisifes the infinite distributive law: 

vA(Vui) = V(vAui)· 
ie/ ie/ 

So every frame is a quantale with ® = /\ and k = T. 
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The main examples of quantales in our context are given below. 

Examples 2.1.1. 1. Two element chain 2 = {false, true} = {O, l} where ® = /\ 

and k = 1. The binary operation -o is the counterpart of the "implication", 

i.e. 

u -o v = 0 <===> u = 1 and v = 0. 

2. Consider the extended nonnegative real numbers [O, oo] with its natural order. 

Reversing the order one has the complete lattice [O, oo ]°P where 0 = T and 

oo = L [O, oo ]
0

P becomes a quantale with k = 0 and ®=+where the addition 

is extended by x + oo = oo + x = oo for any x E [O, oo ]. We will denote this 

quantale by 

P + = ( [ 0, 00] op, +, 0). 

In this context the operation -o becomes truncated subtraction, i.e. 

v - u if v ~ u, 
v 0-- u = 

0 else. 

3. [O, oo ]
0

P is a frame, since it is a chain. So one can consider it as a quantale 

where the tensor is the binary operation meet. Since the order in [O, oo ]°P is 

the reversed natural order, one has ®=max and k = T = 0. We will denote 

this quantale by 

Pmax = ([O, oo ]
0
P, max, 0). 
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One has 

v if v > u, 
v 0- u = 

0 else. 

2.1.4 Constructive complete distributivity 

Let X be a complete lattice. Recall from section 2.1.2 that completeness of X 

entails the existence of a left adjoint V : Dn X ~ X to ! : X ~ Dn X. 

X is called constructively completely distributive (eccl) (23] if V: Dn X ~ X has 

itself a left adjoint ~ : X ~ Dn X. This means that for any down-closed set S ~ X 

and x EX, one has 

~ x ~ S <=> x ~ V S. (2.1.6) 

(2.1.4) implies 

~ x = n { s E Dn x I x ~ v S}. (2.1.7) 

An element u E X is called totally below x, written u « x, if u E ~ x. So (2.1.7) 

implies that 

u « x <=> VS E Dn X, x ~VS=> u ES. 

Letting S to be an ordinary subset of X, one obtains 

u « x <=> vs~ X, x ~vs=> u E ! S. (2.1.8) 
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Remark 2.1.2. The complete lattices 2 and [O, oo ]
0

P are both ccd. In 2 one has 

(u « x <===> x = 1), whereas in [O, oo ]
0

P one has (u « x <===> u > x). 

Lemma 2.1.3. Let X be a ccd lattice and u, v, x, z be arbitrary elements of X. 

The following assertions hold: 

1. u « x implies u:::; x. 

2. u « x :::; z implies u « z. 

3. u:::; v « x implies u « x. 

4. x = V { u I u « x }. 

5. If u « x, then there exists v such that u « v « x. 

Proof. (1) - (3) are trivial. For (4), V{u I u « x}:::; x follows from (1). Putting 

~ x in place of S in ( 2 .1. 6), one gets x :::; V ~ x = V { u I u « x}. For ( 5), let u « x. 

Consider 

s = { w I 3v : w « v « x} = LJ{ ~ v I v « x}. 

Observe that Sis down-closed. Using ( 4), one gets 

vs= V{V ~ v Iv« x} = V{v Iv« x} = x. 

Since u « x and x:::; VS, u ES. Hence there exists v « x such that u « v « x. D 
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Since DnX is complete, X is ccd if and only if V: DnX ~ X is an inf-map. 

This means that for any family X of subsets of X, one has 

V ( n t S) = /\ VS. (2.1.9) 
Sex Sex 

LetX*={T~LJXIVSEX, TnS=1=0}. As n tS=t /\ T, (2.l.9)implies 
Sex TeX* 

X is ccd <===> V /\ T = /\ VS. (2.1.10) 
TeX* Sex 

2.1.5 Complete distributivity 

A complete lattice X is said to be completely distributive ( cd) if for any family X 

of subsets of X 

V /\ f ( S) = /\ VS. (2.1.11) 
fenx Sex Sex 

Comparing the left-hand side of (2.1.9) and (2.1.11), one sees that if f E TIX then 

/\ J(S) E n t S. So 
Sex Sex 

V /\ J(S) ~ V ( n t S). 
fenx Sex Sex 

On the other hand, if x E n t s' then for each s E x there exists s E s such 
Sex 

that x $ s. Invoking the Axiom of Choice, one gets f E fl S where J(S) = s and 
Sex 

x ~ /\ f (S). Hence 
Sex 

V /\ f(S) 2 V ( n t S). 
fenx Sex Sex 

So complete distributivity and constructive complete distributivity are equiva-

lent notions in the presence of the Axiom of Choice. 
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2.2 Filters 

A proper filter ~ on a set X is a collection of subsets of X such that 

• X E ~ and 0 ~ ~-

• If A E ~and BE~' then An BE~-

• If A E ~ and A ~ B, then B E ~. 

Throughout this work we only deal with proper filters. So we drop the adjective 

proper and simply call them filters. 

Given a map f : X ~ Y and a filter != on X, the image filter f (~) on Y is the 

filter generated by the filter basis {l(A) I A E !=},i.e. 

l (~) = t u (A) 1 A E ~} = { B ~ Y 1 ri ( B) E ~}. (2.2.1) 

If t) is a filter on Y and l (X) n B t. 0 for all B E t), then one can define the 

inverse image filter l-1(tJ) on X. This is the filter generated by the filter basis 

{l-1(B) I BE tJ}: 

l-1(tJ) = t u-1(B) 1 BE tJ} ={A~ x I 3B Et)= l-1(B) ~A}. 

Supposing that the inverse image filter is definable, one has 

& (2.2.2) 
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Let J be a filter on X and A E J. The restriction of J to A, denoted by JIA, is 

the inverse image of J with respect to the embedding i : A <-+ X, i.e. 

If F- is a filter on A £ X, then one can obtain the image filter t F- := i(~) on X. In 

this case (2.2.2) becomes 

& 

Hence there is a one-to-one correspondence between the filters on A ~ X and the 

filters on X which contain A. Each collection is completely determined by the 

other. 

A filter F- is called an ultrafilter if for any filter J, F- £ J implies F- = J. Given a map 

f : X ~ Y and an ultrafilter F- on X, f (F-) is an ultrafilter on Y. If A E ~' then F-IA is 

an ultrafilter as well. There is a one-to-one correspondence between the ultrafilters 

on A£ X and the ultrafilters on X which contain A. 

The dual notion of a filter is an ideal. An ideal i on a set X is a nonempty 

collection of subsets of X such that 

• A, B e i implies A u B E i, 

• A £ B and B E i imply A E i. 
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Lemma 2.2.1. Let a be a filter basis and i be an ideal on X such that An I= 0 

for any A E a and I E i. Then there exists an ultrafilter ~ on X such that a ~ ~ and 

~ n i = 0. 

Proof. The assumption implies that An ( X 'I) * 0 for any A E a and I E i. Consider 

b = {A n ( X ' I) I A E a, I E i} which is a filter basis that contains a. Let ~ be an 

ultrafilter which contains b. Then a ~ ~ and ~ n i = 0 holds as X 'I E ~ for any 

IE i. D 

2.3 V-relations 

Classically a relation r from a set X to a set Y is a map r : Xx Y -+ 2. Given 

x EX, y E Y, xis said to be r-related toy, written xry, if r(x, y) = 1. It is desirable 

to generalize the definition of a relation by allowing it to assume a larger array of 

values, not just 0 and 1. This can be achieved by replacing 2 with an arbitrary 

quantale V. 

A V -relation r from a set X to a set Y, denoted by r : X -1-+ Y, is a map 

r : Xx Y -+ V. V-relations compose analogous to matrix multiplication. Given 

r: X -tt Y ands: Y -tt Z, the composite s.r: X -1-+ Z is defined by 

s.r(.x, z) = V r(x, y) ® s(y, z) 
yeY 

for x E X, z E Z. The composition is associative. For each set X one has the 
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V-relation lx: X ~ X where lx(x,w) equals kif x =wand l otherwise. lx 

serves as the identity V-relation with respect to the composition. Hence sets and 

V -relations from a category denoted by 

V-Rel. 

The horn-sets of V-Rel carry the pointwise order of V, i.e. for q, r: X ~ Y 

q5,r <===> q(x,y)5,r(x,y) VxEX,yEY. 

Given r: X ~ Y and si: Y ~ Z for i E J, one has 

(V si).r = V(si.r). 
ieJ ieJ 

Since (-).r is a sup-map, it has a right adjoint (-) - r defined by 

s.r 5, t <===> s 5, t - r 

for any s: Y ~ Zandt: X ~ Z. By (2.1.3), one gets 

t-r(y,z)=V{sls.r5,t}= /\ t(x,z)o-r(x,y). (2.3.1) 
xeX 

Similarly V-relational composition from the left has a right adjoint. 
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Given a V-relation r: X-++ Y, its opposite relation r 0
: Y-++ X is defined by 

r0 (y, x) = r(x, y). 

Trivially(_)°: V-Rel(X, Y)-+ V-Rel(Y, X) preserves order. Furthermore, one has 

lx 0 = lx and r00 = r. It is easy to see that (s.r)° = r 0 .s0
• 

There is a functor Set-+ V-Rel that takes a map f: X-+ Y to the V-relation 

fo : X-++ Y where 

k if f(x) = y, 
fo(x, y) = 

1 else. 

Since k * 1, this functor is faithful. So it is safe to write f instead of fo· V-

relational composition becomes easier when maps are involved. Fors: Y-++ Zand 

p : W-++ X one has 

s.f(x, z) = s(f(x), z) & f.p(w,y) = V p(w,x). 
xe/- 1 (y) 

Also f°.q(w,x) = q(w,f(x)) for any q: W-++ Y. 

Since V-Rel is an ordered category, one can consider adjunctions. Given V-

relations r: X-++ Y, s: Y-++ X, r is said to be a left adjoint to s, written r -1 s, 

if 

r.s::; ly & s.r ~ lx. 

In such a case s is said to be a right adjoint to r. 
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Lemma 2.3.1. Let r', r: X ~ Y, s', s: Y ~ X be V-relations such that r 1-- s, 

r' 1-- s'. If r $ r' and s ~ s', then r = r'. 

Proof. Suppose the assumptions hold. Then r' $ r'.s.r $ r'.s'.r $ r. Together with 

the hypothesis r $ r', one obtains r = r'. 

D 

For a map J : X ~ Y, J -1 f° always holds as 

f.J° $ ly & f°.f "?.lx. 

One has f.f° = ly when f is surjective and f°.f = lx when f is injective. 

Examples 2.3.2. 1. 2-Rel =Rel is the category of sets and relations. 

2. P +-Rel is the category of fuzzy relations. The degree of relatedness of two 

elements is given by a nonnegative real number rather than just 0 and 1. The 

smaller the number the more the elements are related to each other. 

2.4 Monads 

One of the main components of the theory of (11', V)-categories is the monad 11'. 

We review the notions of a monad and an Eilenberg-Moore algebra of a monad in 

Subsection 2.4.1. We provide examples of some Set-monads that will be relevant in 

our context. The Beck-Chevalley condition, which will be one of the assumptions 
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of our framework, is reviewed in Subsection 2.4.2. We recall what it means for 

a functor, a natural transformation and a monad to satisfy the Beck-Chevalley 

condition. Later we demonstrate that the ultrafilter monad satisfies this condition. 

2.4.1 Definitions and examples 

A monad 11' = (T, e, m) on a category 7/ consists of a functor T : 7/ ~ 7/ and natural 

transformations e: lcc ~ T (unit), m: T 2 ~ T (multiplication) such that 

m.mT=m.Tm & m.eT = lr = Te.m, 

i.e. the following diagrams commute for any object X in 7/. 

mrx erx Tex 
T 3X T 2X TX T 2X TX 

Tmx j l mx ~l~ 
T 2 X TX TX 

mx 

Now we list some Set-monads that will be relevant in our context. 

Examples 2.4.1. 1. The identity functor Id : Set ~ Set together with the iden-

tity natural transformation 1: Id~ Id form the identity monad :n.: (Id, 1, 1). 

2. The list monad 1L = (L, e, m). Here L: Set ~ Set sends a set X to the set 

LX of all finite lists formed by the elements of X. One has £0 = { ( ) } which 
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is the empty list. Given a map f: X--+ Y and (xi, x2, ... , Xn) E LX, 

For any set X, ex: X--+ LX sends x EX to the list (x). Given a finite list 

of finite lists on X, mx : L2 X --+ LX induces a finite list by removing the 

brakets in between, i.e. 

3. Consider the contravariant powerset functor 

P : Set --+ Set0
P 

which sends f: X--+ Y to Pf: PY--+ PX where Pf(N) = J- 1(N) for any 

N ~ Y. One has the double powerset monad 

p2 = (P2 = poP.P, e, m) 

where 

for any f : X --+ Y and ~ E P 2 X. The natural transformations e : lset --+ P 2 

and m : P 2. P 2 --+ P 2 are given by 

ex(x) = x ={A~ XI x EA} (2.4.1) 
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mx(X) ={A~ XI A# e X} (2.4.2) 

for any set X, Xe P 2 .P2X and x e X where A#={~ e P 2X I A e ~}. One can 

also write 

mx(X) = LJ n ~· 
AEX ~eA 

By restricting the double powerset functor and its monad structure, one ob-

tains some interesting submonads. 

• The filter monad 1F = ( F, e, m). F sends a set X to the set of all filters 

on X. For any map f: X ~ Y and any filter~ on X, 

Ff(~)= {N ~ y I 1-1(N) E ~} 

which is the image filter !(~) defined in (2.2.1). The natural transfor-

mations e : lset ~ F and m : F 2 ~ F are given by (2.4.1) and (2.4.2) 

where one replaces P 2 by F. 

• The ultrafilter monad lU = (U, e, m). U sends a set X to the set of all 

ultrafilters on X. All the definitions are the same as the filter monad 

except that one replaces "filter" by "ultrafilter". 

Given a monad 1r = (T, e, m) on a category CC, a 'Jr-algebra (or an Eilenberg-

Moore algebra of 11') is a pair (X, a: TX~ X) such that the following diagrams 
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commute. 

mx ex 
T 2 X TX x TX 

Tat t a ~ta 
TX x x 

a 

Given 11'-algebras (X,a) and (Y,,8), a morphism f: X ~Yin~ is called a 

11' -homomorphism if it makes the following diagram commute. 

Tf 
TX--~TY 

a l l fi 
X---Y 

f 

The category of 11'-algebras and 11'-algebra homomorphisms is denoted by ~11'. 

2.4.2 The Beck-Chevalley condition 

A commutative square 

f 

(2.4.3) 

W--~z 

k 
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in Set is said to satisfy the B eck-Chevalley condition (BC) if 

ho.k = J.go 

in 2-Rel. This means that 

lz(k(w),h(y))= V g(x,w)Af(x,y) 
xeX 

for all w E W and y E Y. Hence the square (2.4.3) satisfies (BC) if and only if for 

any w E Wand y E Y such that k(w) = h(y) there exists x EX with J(x) = y and 

g(x) = w. This is equivalent to saying that the induced morphism i: X ~ W xz Y 

going into the pullback of hand k is surjective. 

W----z 
k 

Hence the (BC) square (2.4.3) is also referred to as a weak pullback. 

A functor T: Set~ Set satisfies the Beck-Chevalley condition (BC) if T sends 

weak pullbacks to weak pullbacks. Assuming the axiom of choice, surjective maps 

are split epimorphisms in Set. Since functors preserve split epimorphisms, Set 

functors preserve surjections. So T satisfies (BC) if and only if it sends pullbacks 

to weak pullbacks. 
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If T belongs to a monad, then it preserves monomorphisms. The same is true if 

T satisfies (BC). To see this observe that a morphism m : X --+ Y is a monomorphism 

if 

Ix 
x x 

lx l Im (2.4.4) 

x y 
m 

is a pullback. If m is a monomorphism and T satisfies (BC), then the image of 

(2.4.4) is a weak pullback, hence a pullback as Tlx = lrx. So Tm is a monomor-

phism. 

If a functor T : Set --+ Set preserves monomorphisms, then M ~ X implies 

TM ~ TX in the sense that TM --+ TX is an isomorphism onto its image. 

A natural transformation a: F--+ G satisfies the Beck-Chevalley condition (BC) 

if every naturality square of a satisfies (BC). 

A monad 1r = (T, e, m) is said to satisfy the Beck-Chevalley condition (BC) if 

both T and m satisfy (BC). 

Except the double powerset monad, all the monads in Examples 2.4.l satisfy the 

Beck-Chevalley condition. We demonstrate it for the ultrafilter monad lU = ( U, e, m) 

below. 

Example 2.4.2. Firstly, we show that the ultrafilter functor U satisfies the Beck-
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Chevalley condition. Suppose that the commutative square (2.4.3) satisfies (BC). 

Consider its image under U. 

UI 
UX---UY 

Ug l l Uh 

uw---uz 
Uk 

Let Uk( to) = Uh(tJ) for any to E UW and t) E UY. We need to show that there 

exists an ultrafilter ~ on X with U g(t-) = to and U I (t-) = t). 

For any WE to and YE t), one has k(W) n h(Y) =I= 0, since Uk( to) = Uh(tJ). Then 

g-1(W) n 1-1(Y) =I= 0, as the square (2.4.3) satisfes (BC). So sets of the form 

g-1 (W) n 1-1 (Y) 

for W E to and Y E tJ constitute a filter basis. Consider an ultrafilter ~ which 

contains this filter base. One has A E Ug(~) if and only if g-1(A) E ~· So to~ Ug(~). 

Since to is an ultrafilter, U g(~) =to. Similarly Uf(~) = t). Therefore the ultrafilter 

functor U satisfies (BC). 

Now we show that m: U2 ~ U satisfies the Beck-Chevalley condition. Recall 

that mx(X) ={A~ XI A# EX} for any set X and XE U2X where A#={~ E UX I 
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A E 1=}. Given a map f : X ~ Y, one has the following naturality square. 

mx 
u2x----ux 

U
2 

f l l Uf 

U2Y---UY 
my 

Suppose that~ E U2Y and 1= Eu x with my(~)= u !(!=). Then E# E ~if and only 

if 1-1 ( B) E !=· Observe that if 

A# nu r 1(B) =A# n fa Eu x I f(J) EB}* 0 (2.4.5) 

for all A E !=, B E ~' then {A# n U J-1(8) I A E !=, BE ~} becomes a filter basis. 

For an ultrafilter x E U2 x containing this filter basis, one has U2 f (X) = ~ and 

mx(X) = 1=· So it is enough to show that (2.4.5) holds for all A E !=, BE~· 

Take any A E !=,BE~· Since A~ 1-1(f(A)) E ~' f(A)# E ~· Then B n f(A)#:;:. 0. 

Lett) E Bnf(A)#. For any BE t), one has Bnf(A) :f:. 0 which implies J-1(B)nA:;:. 0. 

Consider an ultrafilter J Eu x which contains the filter basis u-1 (B) n A I BE tJ}. 

Then A E J and f(J) = t). Hence J EA# n U J-1(8):;:. 0, (2.4.5) holds. 
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2.5 Topological theories 

Let 11' = (T, e, m) be a Set-monad and V be a quantale. An Eilenberg-Moore 

algebra (X, a) of 11' consists of a set X and a map a: TX~ X such that 

a.Ta= a.mx and lx =a.ex. (2.5.1) 

An interesting direction to take is to replace the Set-morphism a : TX ~ X with a 

V-relation a: TX-++ X and the composition in Set with the V-relational composi­

tion. But the term Ta in (2.5.1) does not make sense unless Tis defined on V-Rel. 

In order to obtain an extension of T to V-Rel, one has to make some investments 

in terms of the assumptions. Our choice will be to adopt the framework called 

"strict topological theory" introduced by Hofmann (33]. 

We give the definition of a topological theory in Subsection 2.5. l and a strict 

topological theory in Subsection 2.5.2. We provide examples and show that the 

ultrafilter monad belongs to a strict topological theory. The extension of T to 

V-Rel, as defined in [33], is given in Subsection 2.5.3. 

2.5.1 Definition and examples 

A topological theory [33] is a triple T = (11', V, 0 where 

• 11' = (T, e, m) is a Set-monad. 

• V is a quantale 
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• ~:TV~ Vis a map which is compatible with the monad 'Ir and the quantale 

V, which means: 

(Tl) lv s ~.ev, 

(T2) ~-T~ s ~.mv, 

(T3) k.! 1 s ~.Tk where 1 is the singleton set { *} and k : 1 ~ V is the map 

that sends * to k, 

Tk 
Tl TV 

!1 j l ~ 
1 v 

k 

(T4) ® .(~.Tn1, ~.Tn2) s ~.T( ® ), 

T(®) 
T(V x V) TV 

(~.T7fi, ~.T7r2) l ~ I ~ 
VxV v 

® 

(T5) ( ~x) x : Pv ~ Pv T is a natural transformation. 

In the last condition Pv : Set~ Ord is the V-powerset functor defined by Pv X = 

vx on objects. For f: X ~ Y, Pv f: vx ~VY is given by 

Pv f ( <p) ( y) = V <p ( x) 
xeJ- 1 (y) 
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for any r.p E vx. The map ~x: PvX-+ PvTX is defined by ~x(cp) =~.Tep. So one 

has the commutative square 

~x 
vrx 

l PvTf 

VTY 

fr 

for any f : X -+ Y in Set. 

Lemma 2.5.1 ([33]). Let T = (11', V, O be a topological theory. Then ~.T(--o) ~ --o 

T(--o) 
T(V x V) ----TV 

(i;.T?ri, i;.T7r2) l > l i; 
VxV-----~v 

--0 

Proof. Take any tJ E T(V x V). Let u = T(7r1, --o)(tJ). One has 

& 

for all u, v E V. Hence 

& 

~v : Pv V -+ Pv TV is order preserving, as it is a morphism in Ord. This implies 

& 
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Then 

Similarly 

& ~.T7r2 (u) = ~.T(-<> )(o ). (+) 

(T4) implies that 

By (t) and (t), one obtains 

Since tJ E T(V x V) is arbitrary, ~.T(-<>) ~-<> .(~.T7ri, ~.T7r2 ). 0 

Example 2.5.2. Consider the ultrafilter monad 1U = (U, e, m). Let V be a con-

structively completely distributive ( ccd) quantale and the map~ : UV -+ V be given 

by 

~(~) == V (\A= V{v EV It v q:}. (2.5.2) 
Ae~ 

Then U = (1U, V, 0 is a topological theory. The details follow. 

Firstly, we examine (2.5.2). Observe that 
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as /\ t v = v. Conversely, for any A E ~' let u = /\A. Then A~ t u and t u E ~-

Hence 

V /\A~V{veVltve~}. 
Ae~ 

So the equality given in (2.5.2) is justified. Since V is ccd, one can write 

f\VA=Vf\B 
Ae~ Be~* 

where r = {B ~ v I \IA E ~' B n A* 0} by (2.1.10). Observe that~=~*, as~ is an 

ultrafilter. Hence 

/\VA= v (\A. 
Ae~ Ae~ 

So e : UV ~ V is equivalently given by 

~ (~) = /\ v A = /\ { v E v Ii v E ~}. (2.5.3) 
Ae~ 

Following [33], we now show that conditions (Tl)- (T5) of Subsection 2.5.l are 

satisifed. One actually has equalities for (Tl) and (T2). 

(Tl) For any w EV, 

~-ev( w) = ~( ~) = V { v E V It v E w} = V { v EV Iv~ w} = w. 

(T2) Let x E U2V. By (2.5.2), one has 

~-U~(X) = V{v EV It v E U{(X)}, 
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e.mv(X) = v { v Ev It v E mv(X)}. 

Here mv(X) = {A ~ V I A# E X} where A# = {~ E UV I A E ~}. Let t v E 

mv(X). Then (t v)# Ex. Given any~ E (t v)#, one has e(~) ;?: v. Hence 

J E e-10 v), (iv)#~ ~-1 (t v). This implies that ~- 1 0 v) Ex and t v E U~(X). 

Therefore 

Similarly, using (2.5.3), one obtains 

. . 
(T3) Trivially k.! 1 = k. On the other hand, Ul = 1 and Uk(*)= k. Hence k::;; e(k). 

(T4) Let tu E U(V x V) such that U7r1(tu) = J and U7r2 (tu) = t). One needs to show 

V{wEVltwEU(®)(tu)} ;?: V{uEVltuEJ}®V{vEVltvElJ} 

v { u ® v Ev It u q:, t v E lJ}. 

Assume that tu E J and t v E l). Then t u x V E tu and Vx t v E tu, hence 

. t u x t v E tu. This implies that t ( u ® v) E U ( ®) (tu). 

(T5) Let f: X--+ Y, <.p: X--+ V be functions and lJ E UY. Then 

fr. Pv f ( <.p) ( lJ) e. U ( Pv f ( cp)) ( lJ) 

V { v E V It v E U ( Pv f ( <.p)) ( lJ)} 



where Yv == (Pvf(<p)r\t v) = {y E y Iv$ v <p(x)}. 
xef-1 (y) 

On the other hand, 

PvU f.~x( <p) (tJ) V ~.U<p(-s) 
~eUJ- 1 (1)) 

V V{v EV It v E U<p(-s)} 
~EU/- 1 (1)) 

V V { V E V I Xv E 'S} 
~eUJ- 1 (1)) 

where Xv:= <p-1 (t v) = {x EX Iv$ <p(x)}. 

Suppose there exists -s EU J-1 (tJ) such that Xv E -s. Since J (Xv)~ Yv, one gets 

Yv EU J(-s) = t). This shows PvU f.~x $ fr.Pv f. 

To obtain the reverse inequality, suppose that Yv E t). Let u « v. Then for 

any y E Yv there exists x E 1-1(y) such that u::; <p(x). Hence the restriction 

l-1 (Yv) n Xu --+ Yv of f is surjective. 

X-----Y 
f 

Consider tJiYv which is the restriction oft) to Yv. Since the ultrafilter functor 

preserves surjections, there exists an ultrafilter J on l-1 (Yv) n Xu such that 

U l (J) = tJiYv. Let 'Su be the image of J under the inclusion l-1(Yv) n Xu<-+ X. 

Then 'Su Eu x with x1L E 'Su and u f (F-u) = t). 
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So for any u « v there exists l=u EU J-1(tJ) such that Xu E l=u· Then 

v=Vu ~ V V{wEVIXwEl=u} 
1L«V foEUj-l(IJ) 

~ V V{wEVIXwq:}. 
r.eUJ- 1 (1J) 

This implies 

V {VE V I Yv E t)} ~ V V { V E V I Xv E 1=}. 
r.eUJ- 1 (1J) 

Therefore fr .Pv f ~ PvU f.~x. 

2.5.2 Strict topological theories 

Let T = (11', V, 0 be a topological theory. T is called strict if 

• 11' satisfies the Beck-Chevalley condition; 

• One has "=" instead of"~" in conditions (Tl) - (T4) of Subsection 2.5.1. 

With equality in place, (Tl) and (T2) imply that (V, 0 is a 11'-algebra. Likewise 

(T3) and (T4) imply that the maps k : 1 --+ V and (-) ® (-) : V x V --+ V are 

11'-algebra homomorphisms. 

Throughout this work we assume that Tis a strict topological theory. Further-

more, we assume that T sends the singleton set to the singleton set, i.e. Tl = 1. 

Examples 2.5.3. 1. Iv = (JI., V, 1 v) is a strict topological theory for any quan-

tale V. Here :n. stands for the identity monad. 
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2. U2 = (U, 2, 6) is a strict topological theory where '[] is the ultrafilter monad 

and 6: U2-+ 2 is induced by (2.5.2). 

Since 2 is ccd, U2 is a topological theory by Example 2.5.2. We have also 

seen that '[] satisfies the Beck-Chevalley condition in Example 2.4.2. The 

map 6 : U2 -+ 2 sends the principle ultrafilter ;; to x for any x E {O, l}. 

So 6 is basically the identity map. One trivially has equality in conditions 

(Tl) - (T4). 

3. Up+ = (U, P +, ePJ is a strict topological theory where eP+ : UP+ -+ P + is 

induced by (2.5.2), i.e. 

Since P + is ccd, Up+ is a topological theory by Example 2.5.2. Furthermore, 

(Tl) and (T2) hold with equality as shown in Example 2.5.2. So we only 

need to check (T3) and (T4). For (T3), one has 

eP+·Uk( *) = eP+ (k) = k, 

ask= T. For (T4), Example 2.5.2 implies 

since the order on P + is reversed. To obtain e.U( +) ~ +. (e.U7ri, e.U7r2 ), we 
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use the equivalent formulation (2.5.3) for ~P+: 

~P + (~) =sup{ v E V I [ v, oo] E ~}. 

For any to E U(V x V) with U7r1(to) =~and U7r2(to) = t), one needs to show 

SU p{ w I [ w' 00] E u ( +) (to)} ~ SU p{ u I [ u, 00] E ~} + SU p{ v I [ v' 00] E t)} 

sup{ u + v I [ u, oo] E ~' [ v, oo] E tJ} 

where the equality holds since " +" preserves suprema in P +· Assume that 

[ u, oo] E ~ and [ v, oo] Et). Then [ u, oo] x [ v, oo] Ero. This implies [ u + v, oo] E 

U( +)(to). 

4. (IL, V, 0 is a strict topological theory for any quantale V where 1L = ( L, e, m) 

is the list monad (see Examples 2.4.1) and~: LV ~Vis given by 

~() = k, 

1L satisfies the Beck-Chevalley condition. The conditions (Tl) and (T3) triv­

ially hold with equality. One has equality in (T2) and (T4) since "®" is as­

sociative and commutative respectively. For (T5), let f: X ~ Y and cp E vx. 
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One needs to show fr.Pv f(cp) = PvLf.f.x(cp). For any (Yi, Y2, ... , Yn) ELY, 

fr. Pv f ( cp) (Yi, Y2, . · . , Yn) = f. · L ( Pv f ( <p)) (Yi, Y2, · · · , Yn) 

= f.(Pv f ( <p )(Yi), Pv f ( <p )(Y2), ... , Pv f ( <p )(Yn)) 

V cp(xi) ® V cp(x2) ® · · · ® V cp(xn) 
x1eJ-1(yi) x2eJ-1(y2) . XnEf- 1(Yn) 

V cp(xi) ® cp(x2) ® ... ® cp(xn) 
(x1 ,X2 , ... ,Xn) 

eLr1(y1,Y2, .. .,yn) 

V (.£cp(xi, X2, ... , Xn) 
(x1,x2, ... ,xn) 

eLr1 (Yi.Y2, ... ,yn) 

= Pv Lf.(x( <p) (Yi, Y2, .. ·, Yn)· 

The assumption Tl= 1 implies the following result which will be helpful in the 

sequel. 

Lemma 2.5.4 ([36]). Let 1I' = (T, e, m) be a Set-monad where Tl= 1 and m satisfy 

(BC). Then m 0 .e = eT.e. 

Proof. Since 1I' is a monad, lrx = mx .erx. Composing both sides by mX: on the 

left, one gets mX: ~ erx which in turn implies mX:.ex ~ erx .ex. 

Now take any x EX and XE T 2X. One has mX:.ex(x,X)::; erx.ex(x,X) if 

mx(X) = ex(x) implies erx.ex(x) = X. So suppose that mx(X) = ex(x). Consider 

the following naturality squares of e and m where x: 1 ~Xis the map that picks 
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XEX. 

1 Tl===T21 

x l Tx l mx 1 T 2
x 

X --~TX ---- T2 X 

One has mx(X) = ex(x) = Tx(*). Since m satisfies (BC), T 2x(*) = X. But 

erx.ex(x) = T 2x( *),as the outer diagram commutes. Hence erx.ex(x) = X. 0 

One has eT.e = Te.e by the naturality of e. Hence the lemma implies m 0 .e = Te.e 

as well. 

2.5.3 Extension of T to V-Rel 

Given a topological theory T = (1r, V, 0, one can extend the Set functor T to V-

Rel as given in [33]. For any r : X -+-+ Y, ~ E TX and tJ E TY, the extension T of T 

is defined by 

Tr(~, tJ) = V{e.Tr(tu) I tu E T(X x Y): T7r1(tu) = ~' T7r2(tu) = tJ} (2.5.4) 

where n1 : X x Y --+ X and n2 : X x Y --+ Y are the projection maps. 
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So Tr is the smallest map q: TX x TY-+ V such that ~.Tr~ q.(~7fi, T7T2). 

(T7ri, T7T2) 
T(X x Y) ______ _....,...TX x TY 

~ ~/</ 
/ 

v 
The reader shall keep in mind that the extension of T to V -Rel is dependent 

on the choice of ~ although this is not reflected in the notation for the sake of 

simplicity. 

Remark 2.5.5. By Example 2.5.2 we know that U = (lU, V, O is a topological 

theory when Vis ccd and~: UV-+ Vis given by~(}:)= V{v EV It v E }:}. 

Now we formulate the extension of the ultrafilter functor U to V-Rel following 

(2.5.4). For r: X -H- Y, 

Ur(}:, tJ) = V{~.Ur(tu) I tu E U(X x Y): U7r1 (tu) = }:, U7T2(tu) = tJ} 

V{V{v EV It v E Ur(tu)} I tu E U(X x Y): U7T1(tu) = }:, U7T2(tu) = tJ} 

There exists tu E U(X x Y) such that r-1(t v) E tu, U7T1(tu) =}:and U7r2(tu) = t) if 

and only if r-1 ( t v) n 7T11 (A) n 7T21 
( B) * 0 for any A E }:, B E t). This is equivalent 

to saying that for any A E }:, BE t) there exists x EA, y EB such that v ~ r(x, y). 

Hence 

Ur(}:, tJ) = V{v EV I VA E }:, VB Et), 3x EA, 3y EB: v ~ r(x,y)}. 
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If v belongs to the set over which this supremum is formed, then v ~ f\ V r(x, y ), 
AE}'. XEA 
Be~ yeB 

which implies 

Ur(~, t)) ~ /\ V r(x, y). 
AE}'. xEA 
Be9 yeB 

On the other hand, let u « f\ V r(x, y). Then for any A E ~' BE t) there exists 
Ae}'. xeA 
Bet) yeB 

x EA, y EB such that u ~ r(x,y). Hence u ~Ur(~, tJ). Taking suprema over all 

u « /\ V r(x, y), one gets 
Ae}'. xeA 
Be~ yeB 

/\ V r(x, y) ~Ur(~, tJ). 
Ae}'. xEA 
Be~ yeB 

Therefore the extension of U to V -Rel is 

Ur(~, tJ) = /\ V r(x, y). 
Ae}'. xeA 
Be~ yeB 

(2.5.5) 

Examples 2.5.6. 1. Let r: X-++ Y be a 2-relation. In accordance with (2.5.5), 

the extension of U to 2-Rel is given by 

~ Ur t) <==> VA E ~' VB E t), 3x E A, 3y E B : x r y 

for any ~ E U X, t) E UY. 

Equivalently, 

<==> v BE t), r 0 (B) E ~ (2.5.6) 

where r(A) = {y E YI :Ix EA: xry} and r0 (B) = {x EX I :3y EB: xry}. 
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2. Let r : X -H- Y be a P +-relation. Following (2.5.5), the extension of U to 

P +-Rel is given by 

for any~ E UX, tJ E UY. 

Ur(~, tJ) =sup inf r(x, y) 
AE}: xeA 
Bel) yeB 

(2.5.7) 

3. For any quantale V, the list functor L is extended to V-Rel by (2.5.4) as 

follows: 

Then 

r(xi, Yi)® r(x2, Y2) ® ... ® r(xn, Yn) 
Lr(~, tJ) = 

1 

if n = m, 

else. 

If T = (11', V, ~) is a strict topological theory, then the extension T of T to V -Rel 

-2 - -
becomes a functor. m : T --+ T becomes a natural transformation and e : 1 V-ReI --+ T 

becomes an op-lax natural transformation. 

Proposition 2.5. 7 ([33]). Let T = (11', V, 0 be a strict topological theory. Suppose 

that the extension T of the functor T : Set --+ Set to V-Rel is defined as in 

(2.5.4). Then T: V-Rel--+ V-Rel becomes a functor. Furthermore, given any map 

f: X--+ Y and V-relations r, s: X -H- Y the following assertions hold: 

1. Tf =Tf. 
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2. (Tr)°= Tr 0
• 

3. r ~ s implies Tr~ Ts. 

4. ey.r ~Tr.ex. 

-2 -
5. my.Tr= Tr.mx. 

2.6 (1r, V)-relations 

A ('lr, V)-relation r from X to Y, denoted by r: X-+-'- Y, is a V-relation r: TX-++ 

Y. Composition of two (11', V)-relations r: X-+-'- Y and s: Y-+-"- Z is given by the 

Kleisli convolution, 

sor == s.Tr.mx. 

(1I', V)-relations inherit the order on V-relations. Kleisli convolution is an associa-

tive operation that respects the order on (1I', V)-relations. For any r: X-+-'- Y, one 

has r o ex = r and ey o r 2:: r. 

Like V-relational composition, Kleisli convolution from the right is a sup-map. 

Hence for r: X-+-'- Y, (-)or has a right adjoint (-) - r defined by 

sor~t ¢=>- s~t-r (2.6.1) 

for any s: Y-+-'- Z and t: X-+-'- Z. Similar to (2.3.1), one gets 

t - r (tJ, z) = V {s Is or~ t} = /\ ( t(}:, z) o- Tr.mx(2=, tJ) ). (2.6.2) 
~eTX 
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y 

1 '',, t~r 
r I ',,, 
X-~Z 

t 

(2.6.3) 

Kleisli convolution from the left does not have a right adjoint in general [35]. 

2.7 (1f, V)-categories 

The notion of a (11', V)-category is the main ingredient of the theory developed 

in the subsequent chapters. In Subsection 2.7.1 we provide the definition of a 

(11', V)-category and its main examples as given in [14], [17], [16]. Subsection 2.7.2 

is devoted to the basic facts about (11', V)-categories. Firstly, we consider some 

important functors between the category of (11', V)-categories and the category of 

V-categories. Following [15], we provide the definitions of a free Eilenberg-Moore 

algebra and a dual (11', V)-category and show that the quantale V itself can be 

considered as a (11', V)-category. Furthermore, we review ®-exponentiability [33) 

and some basic limits in the category of (11', V)-categories. 

2. 7.1 Definitions and examples 

From this point on we assume that T = (11', V, 0 is a strict topological theory where 

Tl= 1. 
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A ('Jr, V)-category (X, a) is a set X together with a ('Jr, V)-relation a: X -P- X 

which satisfies 

& a o a~ a. (2.7.1) 

Note that composing both sides of ex ~ a with a yields a ~ a o a. So one actually 

has a o a= a. Expressed elementwise, (2.7.1) means 

k ~ a(ex(x),x) & Ta(X,~) ® a(~,x) ~ a(mx(X),x) (2.7.2) 

for all X E T 2 X, ~ E TX and x E X. 

A ('Jr, V)-functor f: (X, a)--+ (Y, b) is a map from X to Y which satisfies 

f.a ~ b.Tf 

or, equivalently, 

a(~, x) ~ b(T !(~), f(x)) 

for all~ E TX,x EX. 

('Jr, V)-categories together with ('Jr, V)-functors form the category 

('Jr, V)-Cat. 

If 'Jr is the identity monad JI., one calls an (JI., V)-category simply a V-category. 

Similarly an (JI., V)-functor is called a V-functor. The category they form is called 

V-Cat. 
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Remark 2.7.1. Given a (11', V)-category (X, a), (2.7.1) can be equivalently written 

as 

lx ~a.ex & a.Ta~ a.mx. 

So (X, a) can be seen as a lax 'Ir-algebra (or a lax Eilenberg-Moore algebra) where 

the composition is replaced with the V-relational composition. In this respect a 

(11', V)-functor f: (X, a) ~ (Y, b) is a lax 11'-algebra homomorphism (see Subsec­

tion 2.4.1). 

Now we look at the main examples of ('Ir, V)-categories. 

Examples 2.7.2. 1. 2-Cat ~ Ord. 

Given a 2-category (X, a) and x, y, z EX one has 

l~a(x,x) & a(x, y) /\ a(y, z) ~ a(x, z). 

This means that a is a reflexive and transitive relation on X. Hence X is an 

ordered set. On the other hand, a 2-functor f: (X,a) ~ (Y,b) is a monotone 

map, as 

a(x, z) ~ b(f(x),f(z)) 

for all x, z EX. Therefore 2-Cat is isomorphic to Ord. 

2. IP +-Cat ~ Met. 
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Given a ?+-category (X,a) and x,y,z EX, 

O~a(x,x) & a(x, y) + a(y, z) ~ a(x, z). (2.7.3) 

One can consider the value a(x, y) as the distance from the point x to the point 

y. Then (2.7.3) implies that every point has zero distance to itself and the 

distance function satisfies the triangle inequality. So (X, a) is a (pre)metric 

space. Following the convention in category theory, we will simply call (X, a) 

a metric space. A ?+-functor f: (X,a)-+ (Y,b) satisfies 

a(x, z) ~ b(f (x ), f (z)) 

for all x, z E X. This means that f is a nonexpansive map. 

Therefore JP> +-Cat is isomorphic to Met which is the category of metric spaces 

and nonexpansive maps. 

A metric space (X, a) which satisfies a(x, y) = a(y, x) for all x, y EX is called 

a symmetric metric space. If a(x, y) = 0 implies x = y, then X is callled a 

separated metric space. 

3. (lU, 2)-Cat ~Top [4]. 

We will demonstrate the correspondance between (lU, 2)-Cat and Top fol­

lowing [56]. Let (X, T) be a topological space. Consider the ultrafilter con-
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vergence relation a : U X x X -+ 2 given by 

~ a x ¢:=::> V 0 £; X open ( x E 0 => 0 E ~). 

for}: EU X, x EX. Then (X, a) is a (1U, 2)-category as follows: 

The conditions in (2.7.2) translates to 

xax 

XUa~ & ~ax ===> mx(X)ax 

for all 'X_ E U2 X, }: E U X and X E X. 

(2. 7.4) 

(2.7.5) 

Trivially, the principle ultrafilter x converges to x for any x EX. To see that 

the second condition is satisfied, suppose that X U a }: and ~ a x. Let 0 be 

any open neighbourhood of x. Since~ converges to x, 0 E ~· As X Ua ~'this 

implies a0
( 0) = fa E u x I 3z E 0: J a z} Ex (see (2.5.6) ). Then 

a0 (0) £;fa Eu x I 0 q} = Q# Ex. 

Hence 0 E mx(X), mx(X) converges to x. So (X, a) is a (1U, 2)-category. 

Conversely, let (X, a) be a (1U, 2)-category. Then it satisfies (2.7.4) and 

(2.7.5). One can define open sets of X by 

0 a-open in X ¢:=::> a 0 (0) £; Q#. 
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Trivially, a0 (X) ~ X#. For any a-open Oi, 0 2 ~ X, 

Furthermore, 

a0 (LJOi) = LJa0 (0i) ~ LJOf ~ (LJOi)# 
ie/ ie/ ie/ ie/ 

for any collection { oi ~ x I oi a-open, i E I}. Therefore a-open sets form a 

topology on X. 

The correspondence between topological spaces and (lU, 2)-categories is bijec-

tive [4], [38]. 

A map f: (X, T)--+ (Y, T') is continuous if and only if for any~ EU X, x EX 

if ~ converges to x, then f (~) converges to f ( x). This precisely means that 

f : (X, a) --+ (Y, b) is a (lU, 2)-functor where T and T' correspond to a and b 

respectively. 

4. (lU, P +)-Cat~ App [14]. 

An approach space, introduced by Lowen [43], is a simultaneous generaliza-

tion of a topological space and a metric space. There are several equivalent 

characterizations of an approach space. We will mention the characterizations 

by "distances", "towers" and "regular function frames". 

An approach space (X, 8) consists of a set X and a distance function 8 : 

PX x X --+ [O, oo] which satisfies the following conditions: 
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• 8( {x},x) = 0, 

• 8(0,x)=oo, 

• 8 (A u B, x) = min { 8 (A, x), 8 ( B, x)}, 

• 8(A,x) $ 8(A(c:),x) +c where A(c:) = {z EX I 8(A,z) $ s}, 

for all x E X and A, B ~ X. Let ( X, 8) and (Y, 8') be approach spaces. A 

map f: X ~ Y is called a contraction if 

8(A, x) ~ 8'(f (A), f (x)) 

for all A~ X, x E X. Approach spaces and contractions form the category 

App. 

The bijective correspondence between approach spaces and (11.J, P +)-categories 

is established as follows [14]: 

Given an approach space (X, 8), one has the corresponding (11.J, P +)-category 

(X, a) where a: U Xx X ~ [O, oo] is defined by 

a(i:,x) = sup{8(A,x) I A E i:} (2.7.6) 

for}: EU X, x EX. Conversely, given a (11.J, P +)-category (X, a), the distance 

function 8: PX x X ~ [O, oo] of the corresponding approach space is given by 

8 (A, x) = inf {a (i:, x) I A E i:} 
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for A ~ X, x E X. Futhermore, f : ( X, 8) --+ (Y, 81
) is a contraction if and only 

if f: (X,a)--+ (Y,b) is a (1U,P+)-functor where a and b correspond to 8 and 

81 respectively via (2. 7.6) and (2. 7. 7). 

Proposition 2. 7.3 ([43]). Let (X, 8) be an approach space. For any x E X, 

A, B ~ X, the following assertions hold: 

1. x EA implies 8(A, x) = 0. 

2. A~ B implies 8(B,x) ~ 8(A,x). 

3. 8(A, x) ~ sup8(A, y) + 8(B, x). 
yeB 

An approach structure on a set X is equivalently given by a tower. A tower 

is a family of functions 

tc: : p x --+ p X, c E [O, 00] 

that satisfies the following conditions for all A, B ~ X and c, a E [O, oo]: 

C:<<7 
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Transition from a distance function 8 to a tower { tc I € E [ 0, oo J} is done by 

setting 

tc(A) = {x EX I 8(A,x) ~ c}. 

We will denote the set {x EX I 8(A,x) ~ c} by A(c)_ 

One can also put an approach structure on a set X by a regular function 

frame. A regular function frame is a collection n of functions from X to 

[O, oo] which satisfy 

• vs c;;. n, vs E n, 

• v µ, v E n, µ " v E n, 

• VµER, VnE[O,oo],µ+nER, 

• VµER, VnE [0,oo], max{µ-n,0} ER. 

Given an approach space (X, 8), its regular function frame n is the set of 

contractions from (X, 8) to (P +, 8') where 

8'(A, x) = max{x - sup A, O}. 

Remark 2. 7.4. Consider the following commutative diagram which will be useful 
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in the sequel. 

Ord Top 

[ (2.7.8) 

Met App 

The embedding 2 <-+ P + which takes 1 to oo and T to 0 induces the vertical em-

beddings which are both reflective and corefiective. An ordered set (X, ~) becomes 

a metric space (X, d) with the distance 

0 if y ~ x, 
d(y,x) = 

oo otherwise . 

Similarly any topological space (X, r) can be construed as an approach space (X, 8) 

where 

0 if x EA, 
8(A,x) = 

oo otherwise . 

The corefiection of an approach space (X, 8) in Top has the closure operator defined 

by 

A = { x E x I 8 (A, x) = 0}. 

The horizontal embeddings of the diagram are corefiective. The embedding 

Ord<-+ Top is the Alexandroff topology functor which takes (X, ~) to the topolog-

ical space whose open sets are the down-closed sets. The collection {ix Ix EX} of 
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principal down-closures form a basis for this topology. The embedding Met~ App 

takes a metric space (X, d) to the approach space (X, 8) where 

8 (A, x) = inf d ( y, x) 
ye A 

for A ~ X, x E X. 

2.7.2 Basic facts 

There are some important functors between ('JI', V)-Cat and V-Cat. One defines 

the functors M and A 0 as follows: 

M ('JI', V)-Cat ----+ V-Cat 

(X,a) ~ (TX,Ta.m°x) 

f ~ Tf 

A 0 V-Cat ----+ ('Jf, V)-Cat 

(X,b) ~ (X,e°x.Tb) 

f ~ f 

To see that Mis a functor, take a ('JI', V)-category (X, a). One has e°x ~a which 
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implies Te°x ~Ta. Then lrx = Te°x.m°x ~ Ta.m°x. Secondly, 

- -2 
= Ta.T a.mrx·rn°x 

- -2 
Ta.T a.Tm°x.m°x 

T(a.Ta.m°x ).m°x 

~ Ta.m°x 

Hence MX =(TX, Ta.m°x) is a V-category. Since Tis a functor, M(g.f) = Mg.Mf. 

Therefore M is a functor. 

To see that A0 is a functor, take a V-category (X,b). One has lx ~ b which 

implies lrx ~Tb. Then e°x ~ e°x.Tb. Secondly, 

Hence A0 X = (X, e°x.Tb) is a ('JI', V)-category and A0 is a functor. 

For each ('JI', V)-category (X, a), there are two important ('JI', V)-categories to 
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consider. These are the free Eilenberg-M oore algebra 

IXI = (TX,mx) 

and the dual ('Jf, V)-category 

Lemma 2.7.5. The functor A0 has a right adjoint defined by 

A : ('Jf, V)-Cat ~ V-Cat 

(X,a) ~ (X,a.ex) 

f ~ f 

Proof. Firstly, we show that A is a functor. Let (X, a) be a ('Jf, V)-category. Then 

ex s a implies lx s a.ex. On the other hand, 

a.ex.a.ex s a.Ta.erx.ex s a.Ta.mX-.ex s a.ex. 

Hence AX= (X, a.ex) is a V-category and A is a functor. 

Now we show that A0 
-1 A. Observe that 

for any V-category X = (X,b) as e is an op-lax natural transformation. This means 

lx: X ~ A(A0 (X)) is a V-functor. On the other hand, given any ('Jf, V)-category 
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(X,a), 

e'X.T(a.ex) = e'X.Ta.Tex ~ e'X.Ta.m'X $ a.Ta.m'X $a 

which implies that lx: A0 (A(X)) ~Xis a ('JI', V)-functor. Therefore A0
-; A where 

the unit and the counit of the adjunction are the identity natural transformations. 

D 

Remarks 2.7.6. 1. The embeddings Ord ~ Top and Met ~ A pp in diagram 

(2.7.8) are instances of the functor A0 

: V-Cat ~ ('JI', V)-Cat. The func­

tor A sends a topological space X to the ordered set (X, ~) with the dual 

specialization order, i.e. x $ y if and only if {y} ~ { x }. For an approach 

space X = (X,8), AX is the metric space (X,d) where d(x,y) = 8({x},y) for 

x,yeX. 

2. Consider the functor M. Let X = (X, a) be a topological space with the 

convergence relation a: U X-++ X and M(X) = (U X, $). As shown in [15], 

given ultrafilters ~, t) EU X, one has 

J $ t) <===> 3XeU2X: mx(X)=~ & X Uat) 

<===> 'v' A E J, BE t), 3tu E U A, y E B : tu a y 

<===> 'v' A E ~)BE t), AnB*0 

<===> 'v' A E J, A Et). 
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Let X = (X, a) be an approach space with the convergence P +-relation a : 

U X-++ X. Suppose that "a" corresponds to the approach distance 5 : PX x 

X ~ [O, oo ]. Then MX is the metric space (U X, d) where 

d(J,t)) =inf{vE [O,oo] I VAEJ, A(v) Et)} 

for all ultrafilters J, t) on X [15]. The details follow. 

One has MX = (UX,Ua.m°x) where 

Ua.m°x(~, tJ) = inf{Ua(X, tJ) Ix E U2X: mx(X) = J}. 

Furthermore, Ua(X, tJ) =sup inf a(J, y) by (2.5.7). 
Ae~ 3eA 
Bet) yeB 

Let 

and 

u = inf{sup inf a(J, y) Ix E U2 x: mx(X) = J} 
AEX 3eA 
Bet) yeB 

w = inf { v E [ 0, oo] I VA E J, A (v) E t)}. 

(2.7.9) 

We will show that u = w. For x E U2 x with mx(X) = J, A E J implies 

A# = {J E U X I A q} EX. Hence 

sup inf a(J, y) ~ u. 
Ae~ 3eA# 
BEi) yeB 

So for any€> 0, A E ~'BE t), there exists tu E A#,y EB such that a(tu,y) ~ 

u+€. Then 

5(A,y) =inf{a(J,y) IJ EA#} ~a(tu,y) ~u+€. 
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So y E A (u+c:) n B * 0. Since tJ is an ultrafilter, A (u+c:) E tJ. As this holds for all 

A E ~and c: > 0, one gets w ~ u. 

For the reverse inequality, observe that A (w+c:) n B * 0 for all A E ~' B E t) and 

c: > 0 by the definition of w. For any y E A(w+c:) n B, one has 

inf{a(J, y) I J EA#}= 8(A, y) ~ w + c:. 

Hence inf a(J, y) ~ w + c:. Since this holds for all A E ~and BE t), 
3EA# 
yEB 

sup inf a(J, y) ~ w + c:. 
AE~ 3EA# 
BEIJ yEB 

Let 2l = {A# ~ U X I A E ~} and 'J = {I ~ U X I sup inf a(J, y) > w + c:}. Then 
BEi) 3eI 

yEB 

2l is a filter basis and 'J is an ideal such that A# n'I = 0 for any A# E 2l, IE 'J. 

By Lemma 2.2.1, there exist XE U2 X with 2l ~ X and X n 'J = 0. This means 

that mx(X) =~and sup inf a(J, y) ~ w + c:. Hence u ~ w. 
AEX 3EA 
BEIJ yEB 

One can put a V-category structure on the quantale V. Consider the map 

-<> : V x V ~ V given in (2.1.5). Since k is the unit element with respect to ®, 

k ~ v-<> v for any v EV. One also has 

u®(u-<>v)®(v-<>w)~v®(v-<>w)~w 

which implies that 
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for any u, v, w E V. So 1 v ~ --<> and --<> • --<> ~ --<> • In other words ( V, --<>) is a 

V-category. 

One can also put a (1r, V)-category structure on the quantale V. 

Proposition 2. 7. 7 ((15], (33]). (V, home,) is a (11', V)-category with ham~ =TV i 
-0 

V --tt V. 

Proof. Firstly, Iv~--<> and lv = ~.ev imply lv ~--<> .~.ev. Hence 

ev ~--<> ·~. 

Recall from Lemma 2.5. l that 

Then T(-o) ~--<> .(~ x 0 by the definition of the extension of T to V-Rel (2.5.4). 

Using V-relational composition, one can write it as T(-o) ~ ~0 .--<> .~. Hence 

Also --<> • --<> ~ -o, since Vis a V-category. ~.T~ ~ ~.mv holds, as Tis a topological 

theory. Then 

So (-o .O.T(-o .O.mv ~ (-o .o which means that 

(-o .o 0 (-o .o ~ (-o .o. 
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Hence (V, hom{) is a (11', V)-category. D 

Examples 2. 7.8. The (1U, 2)-category 2 is the Sierpinski space with {O} open. The 

(1U, P +)-category P + is the approach space (P +, 8) where 

8(A, x) = max{x - sup A, O} 

Given (11', V)-categories (X,a) and (Y,b), one can form their tensor product 

(X,a) ® (Y,b) =(Xx Y,a ® b) 

where 

a® b(tu, (x, y)) = a(T7r1 (tu), x) ® b(T7r2 (tu ), y) 

for tu E T(X x Y), (x, y) E Xx Y. The singleton set together with the constant 

relation k, denoted by (E, k ), is the ®-neutral object. 

In general (11', V)-Cat is not a closed category. But one has the following result. 

Proposition 2. 7.9 ([33]). Let X = (X, a) be a (11', V)-category. X ®(-)has a right 

adjoint (-V if a.Ta= a.mx 

A (11', V)-category (X, a) which satisfies the conditon of Prop. 2.7.9 is called 

®-exponentiable. Given another (11', V)-category (Y, b ), the underlying set of the 

tensor exponential object (Yx, [a,b]) is the set of all (11', V)-functors from X to Y. 
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The structure [a, b] is defined by 

[a,b](p,h) = V {v EV I Vx E X,q ET7r21 (p); a(T7r1(q),x) ®v;::; b(Tev(q),h(x))} 

(2.7.10) 

where p E T(Y x), h E Y x, ev: Y xx X ~ Y is the evaluation map, w1 : Xx YIXI ~ X 

and 7r2 : Xx y1x1 ~ y1x1 are the projection maps. 

Lemma 2.7.10 ([36]). Let X = (X,a) and Y = (Y,b) be ('Il',V)-categories where 

X is ®-exponentiable and f, g E ylXI. Then 

[a,b](eyx(f),g) = /\ b(ey(f(x)),g(x)) 
xeX 

Given a (11', V)-category X = (X, a) and i : M ~ X, M is subcategory of X 

with the structure i0 .a.Ti. Since T: Set~ Set preserves monomorphisms, one has 

Ti : TM ~TX. So we will simply denote this subcategory by ( M, a). 

Since the forgetful functor from (11', V)-Cat to Set is topological, the limits in 

(11', V)-Cat are formed in Set with the initial structure on them. In particular we 

will denote the cartesian product of ( X, a) and (Y, b) by 

(XxY,axb) 

ax b(tu, (x,y)) = a(Tw1 (tu),x) Ab(T7r2(tu),y) 

for all tu E T(X x Y), (x, y) EX x Y. The terminal object is the singleton set with 

the constant relation T, which will be denoted by 1 = (1, T). 
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2.8 {1r, V)-modules 

('Ir, V)-modules play an important role in developing the notions of separation and 

completeness for ('Ir, V)-categories. Firstly, we define ('Ir, V)-modules and review 

the notions of full faithfulness, L-density and L-equivalence for ('Ir, V)-functors as 

given in [36]. Secondly, we explore the relationship between ('Ir, V)-functors and 

('Ir, V)-modules following [15]. We provide the Yoneda functor and the Yoneda 

lemma for ('Ir, V)-categories [15]. 

Let (X,a), (Y,b) be (11', V)-categories and cp: X--P- Y be a (11', V)-relation. cp 

is called a (11', V)-module if 

cp o a~ cp & b o cp ~ cp. 

In such a case we write cp: X ""r Y. (11', V)-categories and (11', V)-modules with the 

Kleisli convolution form the category 

(11', V)-Mod. 

Since a~ ex and the Kleisli convolution preserves order, cpoa ~ cpoex = cp. Similarly 

bocp ~ cp. So one actually has cpoa = cp and bocp = cp. As a result a: X ""r X functions 

as the identity morphism of (X, a) in ('Ir, V)-Mod. ('Ir, V)-Mod is a 2-category, as 

('Ir, V)-modules inherit the order on (11', V)-relations. This allows one to consider 

adjunctions in ('Ir, V)-Mod. 
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A ('Jr, V)-functor J : (X, a) --+ (Y, b) induces two important ('Jr, V)-modules: 

f*: (X,a) ""(Y,b) and f*: (Y,b)"" (X,a) given by 

& f* = f°.b. 

For ('Jr, V)-modules <p: (Y,b)"" (Z,c) and 'l/;: (Z,c)"" (Y,b), one has 

<po J* = r.p.Tf & J* o'lj; = J°.'lj;. 

These identities follow from 

<po J* = r.p.Tb.T2 f.m°x = <p.Tb.m}r.Tf = r.p.Tf, 

f* o 'lf; = f°.b.T'lf;.m°z = f°.'l/J. 

Given ('Jr, V)-functors f: (X,a)-+ (Y,b), g: (Y,b)-+ (Z,c) one has 

& (g.J)* = f* 0 g*. 

Observe that for any ('Jr, V)-category (X, a), a = (lx )* = (lx L· So one has the 

lower star functor and the upper star functor 

(-L: ('Jr, V)-Cat--+ ('Jr, V)-Mod & (_)* : (('Jr, V)-Cat )0
P --+ ('Jr, V)-Mod 

which are identical on objects and which take a ('Jr, V)-functor f to f * and f* 

respectively. 

One sees that f* --1 f* as 

f* of*= f°.b.Tf ~a= (lx)*, 
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Let f, g: (X, a) ~ (Y, b) be (11', V)-functors. By taking advantage of the adjunctions 

! * >_ g* f < <===> * - g* 

One defines f ~ g if f* ~ g* or, equivalently, f* ~ g*. f and g are called equivalent, 

written f ~ g, if f ~ g and f ~ g. 

Lemma 2.8.1 ([36]). Let f,g: (X,a) ~ (Y,b) be (11', V)-functors. Then f ~ g if 

and only if k ~ b(ey(f(x)),g(x)) for all x EX. 

Proof. Suppose that f ~ g. Then g* ~ f*. For all x EX, one has 

k ~ a(ex(x),x) ~ g* o g*(ex(x),x) ~ g* o f*(ex(x),x) = b(Tf.ex(x),g(x)) 

= b( ey(f (x) ), g(x) ). 

Conversely, suppose that k ~ b(ey(f(x)),g(x)) for all x EX. Since e: T ~Id is 

an op-lax natural transformation and (Y, b) is a (11', V)-category, one gets 

f*(tJ, x) = b(t), f (x)) ~Tb( ery(tJ), ey(f (x))) ® b( ey(f (x )), g(x)) 

~ b(my.ery(tJ),g(x)) 

= b(t),g(x)) 

= g*(t), x). 
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for all x EX, t) E TY. Hence f* ~ g*, f ~ g. 

D 

One calls a (11', V)-functor f: (X, a)--+ (Y, b) fully faithful if 

or, equivalently, 

b(T f (~),f (x)) =a(~, x) (2.8.1) 

for all x E X, ~ E TX. Since f* o f * ~ ( lx )* always holds, f is fully faithful if and 

only if f* of* ~ (lx )*. A fully faithful ('Ir, V)-functor that is also injective is called 

a full emdedding. f is called L-dense if 

J*of*=(ly)*. 

Since f* of* ~ (ly )* always holds, f is L-dense if and only if f* of* ~ (ly )*. 

Composition of fully faithful (L-dense) ('Ir, V)-functors are fully faithful (L-dense). 

A ('Ir, V)-functor which is both fully faithful and L-dense is called an L-equivalence. 

L-equivalences are isomorphisms in ('Ir, V)-Mod. 

The following proposition will be useful in the sequel. 

Proposition 2.8.2 ([36]). Let f : (X, a) --+ (Y, b), g : (Y, b) --+ (Z, c) be ('Ir, V)-

functors. 

1. If g.f is fully faithful, then f is fully faithful. 
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2. If g.f is L-dense, then g is L-dense. 

3. If g. f is fully faithful and f is L-dense, then g is fully faithful. 

4. If g.f is L-dense and g is fully faithful, then f is L-dense. 

5. If f is surjective, then it is L-dense. 

Proof. We only show 1,3 and 5. Proofs of 2 and 4 are similar. 

1. Suppose that g.f is fully faithful. Then 

(lx )* = (g.f)* o (g.f)* = f* o g* o g* of*~ f* of*. 

3. Suppose that g. f is fully faithful and f is L-dense. Then 

5. Suppose that f is surjective. Then f.f° = ly. Hence 

f* of*= b.Tf.T(f0 .b).m), = b.T(f.f°).Tb.m), = b.Tb.m), = b = (ly )*. 

0 

Proposition 2.8.3. Fully faithful (11', V)-functors are pullback stable. 

82 



Proof. Let g: (Y, b) ~ (Z, c) be a fully faithful ('Ir, V)-functor. Consider its pullback 

along a ('Ir, V)-functor f: (X, a)~ (Z, c). 

(XxzY,axb) 
_J 

~1 l 
(X,a) 

(Y,b) 

(Z,c) 

f 

Take any tu E T(X xz Y) and (x, y) E T(X xz Y). Then 

a(T7r1(ro),x) ~ c(Tf.T7r1(ro), f(x)) = c(Tg.T1r2(ro),g(y)) = b(T7r2(ro),y). 

This means that a(T7r1(ro ), x) = a(T7r1(ro ), x) A b(T7r2(ro ), y). So 

Hence 7f1 is fully faithful. D 

Examples 2.8.4. 1. In Met, a nonexpansive map f : (X, d) ~ (Y, d') is fully 

faithful if and only if d(x, z) = d'(f(x), f(z)) for all x, z EX. So fully faithful 

maps are precisely isometries. 

2. Given a continuous map f: X ~Yin Top, let ri: OY ~OX denote the 

corresponding frame homomorphism between the lattice of open sets of Y 

and the lattice of open sets of X. 
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Claim: f: X ~ Y is fully faithful if and only if 1-1 : OY ~OX is surjective. 

To see this, let f be fully faithful and U £ X be an open set. Take any point 

x EU. The collection§= {V £XI 30 £ Y open: /(x) E O,J-1(0) £ V} is 

a filter on X. Let~ be any ultrafilter that contains§. Then l(r.) converges 

to f(x), since for any open neighbourhood 0 of f(x), 1-1(0) E § £ ~· As I 

is fully faithful, ~ converges to x (see (2.8.1)). Given that~ is arbitrary, any 

ultrafilter refining § converges to x. This implies that § converges to x. 

Hence U E §. Then there exists an open set Ox£ Y such that x E 1-1(0x) £ 

U. Repeating this for each x E U, one gets U = LJ 1-1(0x) = 1-1
( LJ Ox). 

xeU xeU 

Hence 1-1 is surjective. 

Conversely, assume that 1-1 is surjective. Let ~ be any ultrafilter on X such 

that/(~) converges to f(x). Take any open neighbourhood U £ X of x. Since 

1-1 is surjective, there exists an open neighbourhood 0 £ Y of I (x) such that 

1-1(0) = U. As I(~) converges to /(x), 0 E l(F-). Then 1-1(0) = U E ~and~ 

converges to x. Therefore f is fully faithful. 

In light of this characterization, f is fully faithful if and only if ax= u-1(0) I 

0 open in Y}. If f is also injective, i.e. a full embedding, then X is homeo-

morphic with f (X). Hence f is a subspace embedding. On the other hand, 

every subspace embedding is a full emdedding. So full embeddings in Top 
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are precisely subspace embeddings. 

There is a close relationship between ('Ir, V)-modules and ('Ir, V)-functors. 

Proposition 2.8.5 ([15]). Let (X, a), (Y, b) be ('Ir, V)-categories and 'ljJ: (X, a)--P­

(Y, b) be a ('Ir, V)-relation. The following are equivalent: 

1. 'ljJ: (X, a)~ (Y, b) is a ('Ir, V)-module. 

2. Both 'ljJ : IXI ® y -+ v and 'ljJ: X0
P ® y-+ v are ('Ir, V)-functors. 

Proof. Suppose that 'ljJ: (X,a) ~ (Y,b) is a ('Ir, V)-module. 'ljJ: IXI ® Y-+ Vis a 

('Ir, V)-functor if and only if 

for any 2lJ E T(T X x Y) and (~, y) E TX x Y. This inequality holds trivially if 

mx .T7r1 (m:J) =I=~· So assume mx .T7r1 (m:J) = ~· In that case one needs to show 

~.T'ljJ(W) ® b(T7r2(2!1), y) ~ 'l/J(~, y). 

0 bserve that 

by the definition of the extension of T to V-Rel (2.5.4). As 'ljJ is a T-module, one 
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has b.T'l/J.m°x::;; 'l/; or, equivalently, b.T'l/;::;; 'lj;.mx. Then 

'l/;(~, y) 

Hence 'l/;: IXI ® Y--+ V is a (11", V)-functor. 

-2 
Now we look at 'l/;: X 0 P®Y--+ V where X 0 P = A0 (M(X)0 P) =(TX, erx·Tmx.T a0

). 

'l/;: X 0 P ® Y--+ V is a (11", V)-functor if and only if 

or, equivalently, 

for any 2U E T(T Xx Y) and (1'., y) ET Xx Y. This inequality is obtained as follows: 
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- -2 
~ b.T1f;.T a.Tm°x.erx(i:, y) 

- -2 
~ b.T1f;.T a.Tm°x.m'X(i:, y) 

- -2 
= b.T1f;.T a.mrx·m'X(i=, y) 

= b.T1f;.m'X.Ta.m'X(i:, y) 

~ 't/;.Ta.m'X(i:, y) 

The steps depend on the inequality ( t), the facts that ( T, e, m) is a monad which 

satisfies (BC) and 1f; is a ('Ir, V)-module. 

Conversely, suppose that both 1f;: IXI ® y-+ v and 'l/;: X0
P ® y-+ v are ('Ir, V)-

functors. One needs to show b.T1/J.mx ~ 'l/; and 1/J.Ta.mx ~ 1/J. Pick any i: ET X and 

y E Y. Then 

b.T1/J.m°x(i:, y) V T1f;(x, tJ) ® b(tJ, y) 
XeT2 X 

mx(X)=,: 
l)ETY 

V V ~.T1f;(filJ)®b(tJ,y). 
XeT2 X WeT(TXxY) 

mx (X)=,: T7r1 (2IJ)=X 
l)ETY T7r2 (2IJ)=IJ 

Since T satisfies (BC), for any t) E TY and x E T 2 X with mx(X) = 1= there exists 
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2!1 E T(T X x Y) such that T7r1 (2!1) = X and T7r2 (2!1) = lJ. So 

b.T'tf;.m°x(F-, y) = V ~.T'lj;(2!1) ® b(T7r2(2!1), y). 
2UeT(TXxY) 
mx .T1T1 (2!1)=~ 

As 'If;: IXI ® Y--+ V is a (11', V)-functor, 

for any 2!1 E T(T X x Y) with mx .T7r1 (2!1) = '(.. Hence 

V (T'lf;(W) ® b(T7r2(2!1), y)::; ¢(F-, y). 
2UeT(TXxY) 
mx .T1T1 (2!1)=1= 

Therefore b.T'tf;.m°x::; 'If;. 

For the second inequality, observe that 

- - - - - -2 
'lj;.Ta.m°x::; b.ey.('lj;.Ta.m°x)::; b.T('lf;.Ta.m°x ).erx = b.T'lj;.T a.Tm°x.erx, 

as (Y, b) is a (11', V)-category and e is an op-lax natural transformation. Hence 

- - -2 
'lj;.Ta.m°x(t-, y) ::; b.T'lj;.T a.Tm°x.erx(F-, y) 

- -2 
= V T'lj;(X,lJ)®b(tJ,y)®T a.Tm°x.erx(t-,X) 

XeT2 X 
IJETY 

-2 
= V V ~.T'lj;(2!1) ® b(lJ, y) ® T a.Tm°x.erx(t-, X) 

XeT2 X 2UeT(T Xx Y) 
IJETY T7r1 (2U)=X 

T7r2(2U)=IJ 
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where the last equality follows as T satisfies (BC). 

Since 'lj;: X 0 P ® Y-+ Vis a ('II', V)-functor, one has 

for any WE T(T Xx Y). Hence 

Therefore 'lj;.Ta.m°x ~ 'lj;. 0 

In particular for any ('II', V)-category ( X, a), a : X "" X can be seen as a ('II', V)-

functor a: IXI ® X-+ V . Since IXI is ®-exponentiable, one consider its mate 

y = r a, : x -+ v1x1 

called the Yoneda functor of X. It is given by y(x) =a(_, x ). The following result 

corresponds to the Yoneda lemma for ('II', V)-categories. 

Proposition 2.8.6 ([15]). Let (X, a) be a ('II', V)-category and 'lj;: IXI -+ V be a 

('II', V)-functor. Then 

1. [mx,homd(Ty(~),'l/;) ~ 'l/;(~) for all~ E TX, 

2. [mx,homd(Ty(~),'l/;) 2:: 'l/;(~) for all~ E TX if and only if 'lj;: X 0
P-+ vis a 

('II', V)-functor. 
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Proof. 1. One has the following commutative diagrams where the square on the 

left is a pullback. 

lrx x y 
TXxX TXx v1x1 

n2 l ~ l n2 

x v1x1 TX x X --- TX x v1x1 
y lrx x y 

Let 1/J E v1x1 and~ E TX. By (2.7.10), 

[mx,homd(Ty(~),1/;) = V{v EV I 'v'lJ E TX,3 E T7r2- 1 (Ty(~)); 

= V{v Ev I 'v'lJ E TX,~ E mj(lJ),3 E T(TX x v1x1): 

T7r1(3) = ~' T7r2(3) =Ty(~); v ~ e.Tev(3) ~ 1/;(lJ)}. 

Observe the following commutative diagram. The square below is a weak 

pullback as T satisfies (BC). 
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TV 

1 Tev 

T(TX x X) ---~ T(TX x v1x1) 

T1r2 j T(lrx x y) l T1r2 

TX-----~ Tv1x1 
Ty 

So one has 

[mx, homd(Ty(i:), ?/J) = V { v EV I Vt) ET X, ~ E mX-1(tJ), 211 E T(T Xx X): 

= V{v EV I Vt) E TX,~ E mX-1(tJ); v ~ /\ (~.Ta(W) _, ?/J(tJ))} 
WeT(TXxX) 

T7r1(W)=!D 
T7r2(W)=~ 

= V{v EV I Vt) E TX,~ E mx1(tJ); v ~ ( V ~.Ta(W)) _, ?/J(tJ)} 
WeT(TXxX) 

Tn1 (W)=!i) 
Trr2(W)=~ 

= V{v Ev I VtJ E TX; Ta.mx(tJ,i:) ® v ~ ?/J(tJ)}. (2.8.2) 

Suppose that v E V belongs to the set over which the supremum in (2.8.2) is 

taken. Then for t) = i:, one gets 

v = k ® v ~ Ta.m'X(~, ~) ® v ~ ?/J(1=)· 
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Hence [mx, homd(Ty(i:), ,,P) ~ ,,P(i:). 

2. Let ,,µ E v1x1. As X 0 P = A0 (M(X) 0 P), ,,µ: X 0 P ~ v is a (11', V)-functor if and 

only if 'ljJ: MX ~ V is a V-functor. The latter means 

for any i:,t) E TX. That is equivalent to [mx,homd(Ty(i:),,,P) ~ ,,P(i:) for all 

1= ET x by (2.8.2). 

0 

One defines the (11', V)-category X = ( X, a-) by 

x = {'l/J E v1x1 I 'l/J: X 0 P ~vis a (11', V)-functor}. 

Xis considered as a subcategory of v1x1 and a is the restriction of [mx, homd to 

X. The following is an important property of the Yoneda functor y: x ~ v1x1. 

Corollary 2.8.7 ([15]). The Yoneda functor y: (X,a) ~ (X,a) is fully faithful. 

Proof. By Prop. 2.8.5, a: X 0
P ® X ~Vis a (11', V)-functor. Then y(x) = a(_,x): 

X 0
P ~vis a (11', V)-functor and y(x) Ex for all x EX. So one has y: (X, a) ~ 

(X,a). 

Letting 'ljJ = y(x) in Prop. 2.8.6, one gets 

[mx,homd(Ty(i:),y(x)) = y(x)(i:) = a(i:,x) 

for all 1= E TX, x E X. Hence the Yoneda functor is functor is fully faithful. 0 
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3 L-completeness, L-separation, L-closure 
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This chapter reviews some important notions for ('IL, V)-categories like 

L-completeness [15], L-separation, L-closure and L-injectivity [36], as well their in­

teractions. In addition to these known concepts, we introduce two new closure 

operators in ('Ir, V)-Cat, namely the natural closure and the dual closure, in Sec­

tion 3.4. By investigating L-closure in detail, we show that L-closure for approach 

spaces is equal to its Zariski closure [26]. Furthermore, we provide a concrete char­

acterization of this closure for approach spaces. 

3.1 L-separation 

Let X = (X, a) be a ('IL, V)-category. Recall that two ('IL, V)-functors f, g: Z ~ X 

are called equivalent, written f ~ g, if f* = g* or, equivalently, f* = g*. X is called 

L-separated if given any ('IL, V)-functors f,g: Z ~ X, f ~ g implies f = g. 

In this context it is enough to consider the ®-neutral object E in the place of 

Z as the next proposition shows. 

Proposition 3.1.1 ([36]). Let X = (X, a) be a ('IL, V)-category. Then the following 

are equivalent: 

1. X is L-separated. 

2. For any x,y EX, x ~ y implies x = y. 

3. For any x,y EX, k ~ a(ex(x),y) and k ~ a(ex(y),x) implies x = y. 
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4. The Yoneda functor y: X ~Xis injective. 

Proof. (1 <=> 2) Suppose that X is L-separated. One can consider an element x EX 

as a map x: E ~ X. Then (2) means, given any x, y: E ~ X, x ~ y implies x = y. 

Letting Z = E, one gets the result. 

For the reverse implication suppose that x ~ y implies x = y for all x, y EX. Let 

f ~ g. One has 

i.e. f (z) ~ g(z) for all z E Z. By the hypothesis, f (z) = g(z) for all z E Z. Hence 

f = g, X is L-separated. 

(2 <=> 3 <=> 4) One has 

y(x)=y(y) ¢=> x*=y* 

¢=> x~y 

¢=> x~y & y~x 

¢=> k ~ a(ex(x), y) & k ~ a(ex(x), y) 

where the last equivalence is due to Lemma 2.8.1. D 

Corollary 3.1.2. 1. The (1L, V)-category V = (V, home) is L-separated. 

2. Let X = (X, a), Y = (Y, b) be (1L, V)-categories where X is ©-exponentiable 

95 



and Y is L-separated. Then Y x is L-separated. In particular v1x1 is L­

separated. 

3. Any subcategory of an L-separated (11', V)-category is L-separated. In partic­

ular X is L-separated for any (11', V)-category X. 

Proof. 1. Let u,w EV such that k ~ ~(ev(u)) -ow and k ~ ~(ev(w)) -o u. Since 

~-ev = lv, one has k ~ u -ow and k ~ w -o u. This implies 'U ~wand w ~ 'U. 

Hence u = w. 

2. Let f,g E YIXI such that k ~ [a,b](eyx(f),g) and k ~ [a,b](eyx(g),f). By 

Lemma 2.7.10, one gets k ~ b(ey(f(x)),g(x)) and k ~ b(ey(g(x)), f(x)) for 

all x EX. Since Y is L-separated, f(x) = g(x) for all x EX by Prop. 3.1.2. 

Hence f = g, yx is L-separated. 

Since V is L-separated and IXI is ®-exponentiable, v1x1 is L-separated. 

3. Trivial. 

0 

Examples 3.1.3. 1. An ordered set (X, ~) is L-separated if and only if the 

order~ is antisymmetric. Hence an L-separated ordered set is precisely what 

is usually called a partially ordered set. 

2. A metric space (X, d) is L-separated if and only if for any x, y EX, d(x, y) = 
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d(y, x) = 0 implies x = y. 

3. A topological space (X, r) is L-separated if and only if for any x, z EX, x--+ z 

and ; --+ x implies x = z or, equivalently, z E { x} and x E { z} implies x = z. So 

for any two distinct points x, z E X there exists an open set which contains 

one but not the other. This means that Xis T0 . 

4. An approach space (X, 8) is L-separated if and only if for any x, z E X, 

8( {x }, z) = 8( {z }, x) = 0 implies that x = z. The coreflection of (X, 8) in Top 

has the closure operator defined by A= {x EX I 8(A,x) = O}. So (X,8) is 

L-separated if and only if z E { x} and x E { z} implies x = z. This means that 

the coreflection of (X, 8) is T0 . 

3.2 L-completeness 

Let X = (X, a) be a ('JI', V)-category. Xis called L-complete [15) if for any adjunc­

tion <.p -1 'I/; with <.p: Z ~ X, 'I/;: X ~ Z there exists a ('JI', V)-functor f: Z--+ X such 

that <.p = f * or, equivalently, 'l/J = f*. 

Assuming the axiom of choice, Z can be replaced by the ®-neutral object E. 

Proposition 3.2.1 ([15)). For a ('JI', V)-category X = (X, a) the following are 

equivalent: 

1. X is L-complete. 
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2. For any left adjoint ('II', V)-module cp: E ~ X, there exists x EX such that 

3. For any right adjoint ('II', V)-module 'l/;: X ~ E, there exists x EX such that 

'l/; = x*. 

Proof. One has (2 <=> 3) by uniqueness of adjoints. (1 => 3) is trivial. We show 

(3 => 1). 

Let cp -1 'l/;: (X, a)~ (Z, c). Given z E Z, one has cp oz* -1 z* o 'l/;. By hypothesis, 

there exists x EX such that z* o 'l/J = x*. Repeating this for all z E Z, one obtains a 

function f: Z ~ X where f(z) = x. 

Then 

'l/;(~, z) = z* o 'l/;(~, *) = x*(~, *) = (f(z))*(~, *) = z* of*(~,*)= f*(~, z) 

for any z E Z, ~ E UZ. Hence 'l/; = f* = f°.a. 

To see that f is a ('II', V)-functor, one needs to show f.c ~ a.T for, equivalently, 

c.T f° ~ f° .a. This holds, as 

c.Tf° ~ c.Tf°.Ta.Tex ~ c.Tf°.Ta.m°x = c.T'l/;.m°x ~ 'l/; = f°.a. 

0 

Let X = (X, a), Y = (Y, b) be a ('II', V)-categories. Recall from Prop. 2.8.5 

that a ('II', V)-relation cp : (X, a) -P- (Y, b) is a ('lf, V)-module if and only if both 

98 



<p : IXI ® y ~ v and <p : X0
P ® y ~ v are (11', V)-functors. A (11', V)-functor 

'I/; : IXI ~ V is called tight [36] if 'I/; : X0
P ~ V is a (11', V)-functor and as a (11', V)-

module 'I/;: X ~Eis a right adjoint. We will denote the collection of tight (11', V)-

functors by X and consider it as a subcategory of X. Observe that the codomain 

-
of the Yoneda functor y can be taken as (X,a) since x* --t x* for all x EX. 

Corollary 3.2.2. Let X = (X, a) be a (11', V)-category. X is L-complete if and 

-
only if the Yoneda functor y : X ~ X is surjective. 

Now we investigate the conditions under which a (11', V)-module 'l/; : (X, a) ~ 

(E, k) is a right adjoint. Suppose that 'l/; has a left adjoint cp : (E, k) ~ (X, a). 

Then cp o 'l/; ~ (Ix)* implies cp ~ (Ix)* - 'I/; (see (2.6.I)). On the other hand, one 

has ((Ix)* - 'I/;) o 'I/; ~ (Ix)* and (IE)* ~ 'I/; o cp which implies (lx )* - 'I/; ~ cp. 

Hence if 'I/; is a right adjoint, then its left adjoint is necessarily (Ix)* - 'I/;. Since 

( ( lx) * - 'I/;) o 'I/; ~ ( lx) * always holds, 'I/; is a right adjoint if and only if 

(IE)* ~'l/;o((Ix)*-1/;). 

Given that 'I/;: (X,a) ~ (E,k) is a (11', V)-module, one has 

'l/; = k o 'I/;= k.T'l/;.m°x = T'l/;.m°x. (3.2.1) 

Also 'l/J : 1x1 ~ V, 'I/; : X 0 P ~ v are (11', V)-functors by Prop. 2.8.5, hence 'I/; E x. 
Using (2.6.2), (3.2.1) and Lemma 2.7.10, one finds 
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((lx)* -'l/J)(*,X) /\ (lx)*(~,x)<>-T'l/J.mx(~,*) 
~eTX 

/\ a(~, x) <>-'if;(~) 
~eTX 

/\ (ev('l/J(~)) -o a(~,x) 
~eTX 

/\ ~.ev('l/J(!=)) -o y(x)(~) 
~eTX 

[mx, home](ex('l/J), y(x)) 

a(ex('!/J ), y(x) ). (3.2.2) 

Lemma 3.2.3 ([36]). Let 'lj;: (X, a)""" (E, k) be a (':Ir, V)-module and <p = (lx )* -

'lj;. Then 

for all~ E TX. 

Proof. Consider 'lj; EX as a map 'lj;: 1--+ X. One has 

ip(*,x) =a(ex('l/J),y(x)) = y0 .a.ex.'l/J( *,x) 

for all x EX. So <p = y0 .a.ex.'l/J· This implies Tip= T(y 0 .a.ex.'l/J) = Ty 0 .1a.Tex.T'l/J. 
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Since Tl = 1 and e : Id --+ T is a natural transformation, one gets 

= Tii(Tex.T'l/J( * ), Ty('f)) 

Tii(Tex.e:x( 'l/J ), Ty('f)) 

Ta( erx·ex( 'l/J ), Ty('f)) 

D 

Proposition 3.2.4 ([36]). Let X = (X, a) be a (11', V)-category. A (11', V)-module 

'l/J : X -vr E is a right adjoint if and only if 

k 5: V 'l/J('f) ® Tii(erx·ex('l/J), Ty('f)) 
~eTX 

In such a case 'l/J has a left adjoint cp: E -vr X where cp(x) =a(ex('l/J),y(x)). 

Proof. Following the discussion above, 'l/J : (X, a) -vr (E, k) is a right adjoint if 

and only if its left adjoint is cp = {lx )* - 'l/J. This is equivalent to the condition 

(IE)* 5: 'l/J o cp, i.e. (IE)* 5: 'l/J.Tcp.m'E. One obtains the desired inequality by 

Lemma 3.2.3. Also cp(x) = ((lx )* - 'l/J )(x) = a(ex( 'l/J ), y(x)) as given in (3.2.2). D 

In particular a V-module 'l/J: (X,a) -vr (E,k) is a right adjoint if and only if 

k 5: V 't/;(z) ® { /\ 'l/J(x) --o a(x,z) ). 
zeX xeX 

(3.2.3) 
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Examples 3.2.5. 1. Every ordered set (X, ~) is L-complete as follows: 

A 2-module 'ljJ : X ~ E corresponds to the monotone map 'ljJ : X 0 P ~ 2 

which is the characteristic function of a set A ~ X. If x ~ z and z E A, 

then 1 = 'l/J(z) ~ 'l/J(x) which means that x E A. Hence 'ljJ corresponds to a 

down-closed set A ~ X. 

By (3.2.3), 'ljJ is a right adjoint if and only if there exists z EA such that for 

all x EA, x ~ z. This means A = i z or, equivalently, 'ljJ = z*. So every right 

adjoint 2-module 'l/J: X ~Eis representable. Therefore Xis L-complete. 

2. A metric space X = (X, d) is L-complete if and only if Xis Cauchy complete 

[42). Here a sequence (xn) converges to a point x E X if lim ( d(xn, x) + 
n-+oo 

d(x, Xn)) = 0. 

Firstly, we show that adjoint P +-modules <.p -1 'ljJ : X ~ E correspond to 

equivalence classes of Cauchy sequences in X and vice versa. 

Given <.p -1 'lj;: X ~ E, one has 

'lf;(x) + r.p(z) ~ d(x, z) & inf { <.p ( x) + 'ljJ ( x)} = 0 
xeX 

(3.2.4) 

for x, z EX. For any n EN, pick Xn EX such that r.p(xn) + 'lf;(xn) ~ ~· Then 

for n, m EN. So (xn) is a Cauchy sequence. If one obtains another Cauchy 
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sequence (Yn) during this process, then 

Hence (xn) and (Yn) are equivalent. So the adjunction <p --1 'ljJ : X -vr E 

corresponds to an equivalence class of Cauchy sequences in X. 

Conversely, let { (xn)} be an equivalence class Cauchy sequences in X. Define 

<p : x ~ p + and 'ljJ : X 0 P ~ p + by 

<p(x) = lim d(xn, x) 
n_,.oo 

& 'ljJ(x) = lim d(x, Xn) 
n_,.oo 

for all x EX. For any n EN, x, z EX, one has d(x, z) $; d(x, Xn) + d(xn, z). 

Then 

d(x,z) 

$; lim d( x, Xn) + lim d( Xn, z) 
n-oo n_,.oo 

$; 'l/J(x)+<p(z). 

Furthermore, inf { lim ( d(xn, x) + d(x, Xn))} = 0, since (xn) is Cauchy. Hence 
xeX n_,.oo 

inf { <p(x) + 'ljJ(x)} = inf { lim d(xn, x) + lim d(x, Xn)} = 0 
xeX xeX n-oo n_,.oo 

So <p --1 'ljJ : X -vr E. Therefore there is a one-to-one correspondence between 

adjoint P +-modules <p --1 'ljJ : X -vr E and equivalence classes of Cauchy se-

quences in X. 
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Suppose that cp -; 'I/; : X ~ E corresponds to the equivalence class { (xn)} of 

Cauchy sequences. Now we show that 

cp = x* <==> lim Xn = x. 
n-+oo 

If cp = x* for some x EX, then cp(z) = d(x, z) and 'l/;(z) = d(z, x) for all z EX. 

(3.2.4) implies 

Letting n-+ oo, one gets lim Xn = x. Conversely, if (.-rn) converges to x EX, 
n-+oo 

then lim d(xn, x) = 0 and lim d(x, Xn) = 0. Take any z E X. d(xn, z) ~ 
n-+oo n-+oo 

d(xn, x) + d(x, z) implies 

cp(z) ::; 0 + d(x, z). 

Similarly d(x, z) ::; d(x, Xn) + d(xn, z) implies d(x, z) ::; cp(z). Hence cp(z) = 

d(x, z) for all z EX. This means cp = x*. 

So a left adjoint cp: E ~ X is representable by a point x EX precisely when 

the corresponding Cauchy sequence converges to x. Therefore a metric space 

is L-complete if and only if it is Cauchy complete. 

3. As shown in [15], a topological space is L-complete if and only if it is quasi 

sober, i.e. every irreducible closed set can be written as the closure of a 
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point. Here an irreducible closed set is a closed set which cannot be written 

as a union of two proper closed subsets. 

To see this assume that <p-i 'l/;: (X,a) ~ (E,k) is a pair of adjoint (1IJ,2)­

modules. The (1U, 2)-module c.p corresponds to the continuous map c.p : X ~ 

2 where 2 is the Sierpinski space. So <p can be identified with the closed 

subset A== c.p-1 ( {l}) of X. Similarly 'l/; corresponds to the continuous maps 

'l/; : IXI ~ 2 and 'ljJ : X0
P ~ 2. So it can be identified with A ~ u x where 

A== 'l/;-1 ( {l} ). A is closed both in IXI and X 0
P. The topology on IXI is given 

by the Zariski closure where for an ultrafilter J, J EA if and only if J ~ U A. 

X 0 P = A0 (M(X) 0 P) has the Alexandroff topology of the dual order on MX. 

The order on MX is given by 

tJ ::; J <===> v A E t), A E J . 

for ultrafilters tJ,J (see Remarks 2.7.6). The closed subsets of X 0
P are precisely 

the down-closed subsets of MX. 

As a result of the adjunction inequalities, one finds that c.p -i 'l/; if and only 

if there exists a closed set A ~ X, a down-closed and Zariski closed A ~ U X 

such that 

3~ E u x : A E ~' ~ E A & VJ E A, x E A, J ~ x. (3.2.5) 
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This implies that A is the down-closure of~ in MX, 

Having an ultrafilter ~ which contains the closed set A and which converges 

to every point of A is equivalent to saying that A is an irreducible closed set. 

So cp ~ 1/; corresponds to the irreducible closed set A. There exists x EX such 

that cp = x* if and only if cp(z) = x*(z) = a(x, z) for all z EX. One obtains 

zEA <===> cp(z)=l <===> x--+z <===> zE{x}. 

So X is L-complete if and only if for any irreducible closed set A~ X there 

exists x EX such that A= { x }, i.e. X is quasi sober. 

Now we provide an alternative perspective on L-completeness in Top which 

will be useful in the sequel. For a filter J on X, let conv J := { x E X I J --+ x}. J 

is called irreducible [32) if conv J E J· Given an irreducible filter J, conv J is an 

irreducible closed set. With this terminology a topological space X is quasi 

sober if and only if for any irreducible ultrafilter J E U X there exists x E X 

such that conv J = conv x [32). 

We establish a bijective correspondence between irreducible ultrafilters on X 

and pairs of adjoint (lU, 2)-modules between X and E as follows: 

Given any cp ~ 1/;: X""' E, consider the corresponding ultrafilter ~ mentioned 

in (3.2.5). Firstly, ~ converges to all the points of A. Secondly, A E ~- So 
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if ~ converges to a point x E X, then x E A = A. Hence conv ~ = A, ~ 

is an irreducible ultrafilter. We also know that A =~ ~- Conversely, given 

any irreducible ultrafilter ~ on X, let A := conv ~- Then A is a closed set 

such that A E ~ and ~ converges to every point in A. This implies that 

~~=fa E UX I Vx EA, J ~ x}. Setting A==~~' A becomes a down-closed and 

Zariski closed subset of U X that satisfies (3.2.5). This implies the existence 

of an ad junction <.p -1 'ljJ : X ""' E. Hence there is a bijective correspondence 

between the adjoint pairs c.p -1 'ljJ : X ""' E and irreducible ultrafilters ~ E U X 

with conv ~=A and~!== A. 

Suppose that <.p -1 'ljJ: X ""'E corresponds to an irreducible ultrafilter !=· Then 

the left adjoint c.p is representable by x E X if and only if A = { x} = conv x or, 

equivalently, conv ~ = conv x. Therefore a topological space X is L-complete 

if and only if for any irreducible ultrafilter ~ E U X, there exists x E X such 

that conv != = conv x. This exactly means that X is quasi sober (32). 

4. An approach space is L-complete if and only if every irreducible variable closed 

set is representable by a point (15). The details follow. 

There is a bijective correspondence between contractions p : X ~ P + and 

families (Av)veP+ of subsets Av~ X satisfying 

Av= n Au, (3.2.6) 
U>V 
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(3.2.7) 

where A(v) = {x E X I 8(A,x) ~ v} and c>(A,x) = inf{a(i;,x) I A E i.:} for 

v E P +, A~ X. Given p: X--+ P +, one defines Av:= p-1([0, v]) for all v E P +· 

Conversely, having a family (Av )veP +, one gets the contraction p by defining 

p(x) := inf{ v E P + I x E Av}· A family A = (Av)veP+ of subsets Av ~ X 

satisfying (3.2.6) is called a variable set. If A satisfies (3.2.7), then it is called 

closed. 

Assume that <p -t 'if; : (X, a) "" (E, k) is a pair of adjoint (lU, P +)-modules. 

The {lU, P +)-module <p is essentially a contraction from X to P +· Hence it 

corresponds to a closed variable set A = (Av )veP +. Similarly, the right adjoint 

'ljJ: X ""E determines a variable set A= (Av)veP+ of subsets Av~ U X where 

The adjunction condition (lx )* 2:: <po 'ljJ translates to a~ rp.U'l/J.m°x = rp.'ljJ. So 

a(i;,x) ~ 'lf;(i.:) + rp(x) 

for all x E X, ~ E U X. On the other hand, ( lE )* ~ 'ljJ o <p translates to 

0 = inf {'t/;(~) +~.cp(~)} = inf {7/J(~) +inf{v EV I [O,v] E Ucp(~)}} 
"F-EUX "F-EUX 

inf { 'ljJ (~) + inf { v E V I Av E ~}}. 
"F-EUX 

Upon further examination, one finds that 

Av= {i.: EU XI 't/u E P +, 't/x E Au, a(~, x) ~ u + v} 
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for all v E P +. Furthermore, cp -1 'lj; if and only if 

Tl v E p + ( v > 0 => u Av n Av * 0) (3.2.8) 

A variable set A is called irreducible if it satisfies (3.2.8). 

If cp = x* for some x EX, then cp = a(x, _). Hence 

cp( z) = a( x, z) = inf {a(}:, z) I { x} E }: } = 8 ( { x}, z) 
~eUX 

for all z EX. This means that 

Av = { Z E X I 8 ( { X}, Z) ~ V} = { X} ( v) (3.2.9) 

for all v E P +· So X is L-complete if and only if every irreducible variable 

closed set A= (Av)veP+ is representable by a point x EX as in (3.2.9). 

L-completeness turns out to be sobriety for approach spaces [2), [15]. An 

approach space is called sober [2] if it is a fixed point of the dual adjunction 

between App and the category AFrm of approach frames and homomor-

phisms. 

3.3 L-injectivity 

A ('Jf, V)-category X is called L-injective if given any ('Jf, V)-functor h : Y ~ X 

and any L-equivalence f: Y ~ Z, there exists a ('Jf, V)-functor g: Z ~ X such that 
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g.f ~ h. 

f y z 

:g 
: 
't' 
x 

The (11', V)-category V is L-injective. To see this, let h : Y --+ V be a (11', V)-

functor and f: Y--+ Z be an L-equivalence. Since IEI = E 0
P = E, one can consider h 

as a (11', V)-module h: E"" Y by Prop. 2.8.5. Then the (11', V)-module f*oh: E"" Z 

corresponds to a (11', V)-functor g : Z --+ V. One has 

g.f(y) = g(f(y)) = !* 0 h( *, f(y)) = f* 0 !* 0 h( *, y) = h(y) 

for all y E Y. Hence g.f = h, V is L-injective. 

Proposition 3.3.1 ([36)). Let X, Y be a (11', V)-categories where Xis ®-exponentiable 

and Y is L-injective. Then yx is L-injective. 

Proof. Let h : A --+ Y x be a (11', V)-functor and f : A --+ B be an L-equivalence. 

Consider the mate L h .J : A ® X --+ Y of h. Since f is an L-equivalence, so is 

f ® lx : A® X --+ B ® X. Then there exists a (11', V)-functor Lg.J : B ® X --+ Y 

with LgAf ® lx) ~ Lh.J, as Y is L-injective. The corresponding (11', V)-functor 

g: B--+ yx satisfies g.f ~ h. D 

Corollary 3.3.2. v1x1 is L-injective for any (11', V)-category X. 
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3.4 Closure operators in (1f, V)-Cat 

3.4.1 Natural closure and dual closure 

Definition 3.4.1. Let X = (X, a) be a ('JI', V)-category, M ~ X and x EX. We say 

---+-
that x is in the natural closure of M, denoted by x E M, if 

k ~ V a(~,x). 
'{.ETM 

---+-
Mis called n-closed if M = M. 

In the definition above one actually has a( Ti(~), x) where i : M ~ X is the 

inclusion map. We omit this style of writing for the sake of simplicity. 

Proposition 3.4.2. Let f: (X, a)~ (Y, b) be a ('JI', V)-functor, M, N ~ X, 0 ~ Y 

and x E X. Then one has: 

-----+- --+- ---+-
1. M ~ M; N~ M implies N ~ M. 

--+-
2. If T0 = 0, then 0 = 0. 

-----+-
-----+- ---+-

3. M=M. 

-----+- --+ --+-

4. J(M) ~ J(M) and r 1
( 0) 2 r 1(0). 

-.+-M -.+-X 
5. If N ~ M, then N = N n M. 

-----+- --+-
6. If k is v-irreducible and T preserves finite sums, then Mu N = Mu N. 
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Proof. 
~ ~ 

1. Let x EM. Ask~ a(ex(x),x) ~ V a(t,x), x EM. Hence M ~ M. 
r.eTM 

N ~ M implies TN ~ TM since T : Set ~ Set preserves monomorphisms. 

Then 

k ~ V a(t, x) ;:; V a(~, x). 
'[.ETN '[.ETM 

-+- ~ 

So N~ M. 

2. Since T0 = 0, k ~ V a(t, x) = 1. Hence 0 = 0. 
'[.E0 

~ 
~ ~ ~ 

3. M ~ M follows from (1). Observe that M is precisely the set which makes 

the following diagram lax commutative. 

~ 

Applying the functor T to this diagram, one finds that TM is precisely the 

~ f ~Tao I ~ 
set such that (TM~ 1;:; TM~ T 2M ~ 1). So for any lJ E TM, one has 

~ ~ - ~ ~ ~ 

k;:; V Ta(X, tJ). To show M ~ M, let x EM. 
xeT2 M 
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Then 

k $ V a(tJ,x) 
IJeTM 

$ V( v Ta(X, tJ)) ® a(tJ, x) 
IJETM XeT2M 

$ V( v Ta(X, tJ) ® a(tJ, x)) 
IJETM XeT2M 

$ v a(mx(X),x) 
XeT2M 

V a(~, x). 
F-ETM 

---+ 
---+ ---+ ---+ 

HencexEM,M~M. 

---+ 
4. Let y EI (M). Then there exists x EM such that k $ V a(~, x) and I (x) = y. 

F-ETM 

One has 

k$ Va(~,x)$ V b(Tl(~),l(x))5, V b(tJ,y). 
F-ETM F-ETM l)ET(f(M)) 

----+ ---+ ----+ ~ 

Hence y E l(M), l(M) ~ l(M). Letting M = 1-1(0) gives r 1(0) ~ 1-1(0). 

5. Let N ! M ~ X with i.i' = j: N ~ X. To distinguish between the natural 

~x ~M 

closure of N in X and in M, we will write N and N respectively. 
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Then 

-+X 
xEN nM ~ k~Va(Tj(~),x) 

~eTN 

~ k ~ V a(Ti.Ti'(~), i(x)) 
~eTN 

~ k ~ V i0 .a.Ti(Ti'(~),x) 
~eTN 

-.+M 
~ XEN. 

6. Suppose that k is v-irreducible and T preserves finite sums. Recall from 

Subsection 2.1.3 that k is v-irreducible if k ~ 'U v v implies k ~ u or k ~ v. One 

-+ -+ -+ -+ 
has M u N 2 M u N by monotonicity of the natural closure. M u N ~ M u N 

follows, as 

k ~ V a(~, x) = V a(~, x) = ( V a(~, x)) v ( V a(~, x) ). 
~eT(MuN) ~eTMuTN ~eTM ~eTN 

D 

Corollary 3.4.3. If k is v-irreducible and T preserves finite sums, then the natural 

closure induces a functor N : (11', V)-Cat 4' Top. 

-+ 
Examples 3.4.4. 1. For an ordered set (X, ~), x EM if and only if there exists 

y EM such that y ~ x. 

-+ 
2. For a metric space (X,d), x EM if and only if inf d(y,x) = 0. 

yeM 

-+ 
3. For a topological space (X, r), x EM if and only if there exists an ultrafilter 

~on M that converges to x. This is equivalent to saying that Mn 0 t- 0 for 
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any open neighbourhood 0 of x. Hence the natural closure of X is equal to 

the closure induced by T. 

~ 

4. For an approach space (X, c5), x EM if and only if 

c5(M,x) = inf{a(~,x) IM E~} = 0. 

So M = M(o)_ 

Given (11', V)-category X = (X,a), consider A0 (A(X) 0 P) = (X, (Ta.Tex.ex)
0

) 

(see Section 2. 7.2). We will define the dual closure of X as the natural closure of 

Definition 3.4.5. Let X = (X, a) be a (11', V)-category, M ~ X and x EX. We say 

~ 

that x is in the dual closure of M, denoted by x E M, if 

k ~ V Ta(Tex.ex(x),~). 
"lETM 

~ 

M is called d-closed if M = M. 

Proposition 3.4.6. Let f: (X, a)~ (Y, b) be a (11', V)-functor, M, N ~ X, 0 ~ Y 

and x E X. Then one has: 

~ +-- ~ 

1. M ~ M; N~ M implies N ~ M. 

+-
2. If T0 = 0, then 0 = 0. 

~ 
~ ~ 

3. M=M. 
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~ +--- +---
4. J(M) ~ f(M) and r 1

( 0) ~ r 1(0). 

+..-M +..-X 
5. If N ~ M, then N = N n M. 

~ +---
6. If k is v-irreducible and T preserves finite sums, then Mu N =Mu N. 

Proof. Follows from Prop. 3.4.2 and the fact that the dual closure of X = (X, a) is 

the natural closure of A0 (A(X)0 P). D 

Corollary 3.4.7. If k is v-irreducible and T preserves finite sums, then the dual 

closure induces a functor D : (1', V)-Cat ~ Top. 

Examples 3.4.8. 1. When 1' is the identity monad, (X, (Ta.Tex.ex ) 0
) = (X, a0

). 

~ 

So for an ordered set (X, ~), x EM if and only if there exists y EM such that 

x ~ y. 

~ 

2. For a metric space (X,d), x EM if and only if inf d(x,y) = 0. 
yeM 

3. Let (X, r) be a topological space which corresponds to the (1U, 2)-category 

(X,a). One has mx.ex = Uex.ex by Prop. 2.5.4. So Ua(Uex.ex(x),~) = 

Ua.mx(ex(x),~). Recall from Remarks 2.7.6 that Ua.mx is the structure on 

MX = (UX, ~)where 

(3.4.l) 

~ 

So x E M if and only if there exists an ultrafilter ~ on M such that ex ( x) ~ ~· 

By (3.4.1), this means that for any set N containing x, N E ~· That is 
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equivalent to saying that { x} E ~- Therefore 

4. Let (X, 8) be an approach space which corresponds to the (1U, P +)-category 

(X, a). As above one has Ua(Uex.ex(x),~) = Ua.mx(ex(.1:),~) where Ua.mx 

is the structure of the metric space MX = (U X, d). By Remarks 2.7.6, 

d ( ~, lJ) = inf { c E [ 0, oo J I \I A E ~, A< t:) E lJ} . 

+-
Then x E M if and only if 

Hence 

0 = inf Ua.(U ex.ex(x), ~) 
~eUM 

= inf Ua.mx(ex(x),~) 
~eUM 

= inf inf { c E [ 0, oo] I \I A E ~, A< E:) E ~} 
~eUM 

= inf inf { c E [ 0, oo J I { x} ( E:) E ~} 
~eUM 

= inf inf { c E [ 0' 00] I { x} ( E:) n M E ~} 
~eUX 

=inf { c E [O, 00] I 3~ E u x : { x} {t:) n M E ~} 
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3.4.2 L-closure 

L-closure [36) is a hybrid of the natural closure and the dual closure. 

Let X = (X, a) be a (11', V)-category, M ~ X and x EX. One says that x is in 

+-+ 
the L-closure of M, denoted by x EM, if 

k:::; V a(~, x) ® Ta(Tex.ex(x), ~). 
~eTM 

+-+ 
M is called L-closed if M = M. 

Remark 3.4.9. Given a (11', V)-category (X, a), one has the (11', V)-category X ® 

A0 (A(X) 0 P) =(Xx X,a ®(Ta.Tex.ex)°). Consider X as a subcategory of X ® 

A0 (A(X)0 P) via the map bx : X <--+Xx X. Then the structure asym on X is given 

by 

asym(~,x) = 8°.a®(Ta.Tex.ex) 0

.T8(~,x) 

= a(~,x)®Ta.Tex.ex(x,~) 

for any x E X, ~ E TX. 

Define the functor 

S: (11', V)-Cat ~ (11', V)-Cat 

which is identical on morphisms and sends a (11', V)-category (X, a) to (X, asym). 
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The functoriality of S follows from the commutative diagram below. 

f ®f g®g 
x ® A0 (A(X)0 P) y ® A0 (A(Y)0 p) z ® A0 (A(Z)0 P) 

Ox J J Oy J Oz 

x y z 
f g 

Given a ('II', V)-category X = (X, a), we call SX the symmetrization of X. So 

L-closure of X is the natural closure of its symmetrization. 

Proposition 3.4.10 ([36]). Let (X, a) be a ('II', V)-category, M ~ X and x E X. 

Suppose that i: M ~Xis the inclusion map. Then the following are equivalent: 

~ 

1. x EM. 

2. k~i*oi*(ex(x),x). 

5. x* : E ,..,, X factors through i* : M ,..,, X by a morphism rp : E ,..,, M in 

('II', V)-Mod. 

6. For all ('II', V)-functors g, h: X ~ Y with g.i = h.i, one has g(x) '.'.::: h(x). 

7. For all ('II', V)-functors g, h: X ~ V with g.i = h.i, one has g(x) = h(x). 
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Proof (I <=> 2 <=> 3) 0 bserve that 

k'5, V a(~,x)®Ta(Tex.ex(x),~) (t) 
~eTM 

is equivalent to k '5, (a.Ti).(Ti 0 .Ta.Tex.ex(x, x)). By Lemma 2.5.4, mX-.ex 

Tex .ex. Hence 

k '5, (a.Ti).(Ti 0 .Ta.m°x.ex)(x,x) 

(a.Ti).T( i 0 .a).mx.( ex(x ), x) 

i* oi*(ex(x),x) 

So (t) is equivalent to k '5, i* o i*(ex(x), x) and (IE)*~ x* o i* o i* ox*. 

(3 <=> 4) One always has 

since i : M ~ X is fully faithful. Therefore (IE)* ~ x* o i* o i* ox* if and only if 

(3 => 5) (IE)* '5, x* o i* o i* ox* implies 

Hence x* = i* o i* ox* where i* ox*: E ~ M. 
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(5 => 6) Let x* = i* o cp for rp: E ~ M. If g.i = h.i, then 

(6 => 7) Follows as V is L-separated. 

(7 => 3) Consider x* : E ~ X and i* o i* ox* : E ~ X. By Prop. 2.8.5, 

these (11', V)-modules correspond to (11', V)-functors g : X ~ V and h : X ~ V 

respectively. For z E M, one has 

g.i(z) = g(i(z)) = x*( *, i(z)) = i* ox*(*, z) 

h(i(z)) 

= h.i(z). 

By hypothesis, g(x) = h(x). This means that x*(*,X) = i* oi* ox*(*,X). Then 

0 

Let 'l/J: (X, a)~ (X, a) be a (11', V)-module. Observe that a= (lx )* ~ 'l/J implies 

ex ~a~ 'l/J. Conversely, if ex~ 'l/J, then a= a o ex ~a o 'l/J = 'l/J. Hence (Ix)* ~ 'l/J if 

and only if ex~ 'l/J. 

Proposition 3.4.11 ([36]). Let X = (X, a) be a (11', V)-category and i: M ~ X 

+-+ 
be the inclusion map. Then i is L-dense if and only if x EM for all x EX. 
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Proof. i is L-dense if and only if (lx )* ~ i* o i* which is equivalent to ex ~ i* o i*. 

That is equivalent to k ~ i* oi*(ex(x),x) for all x EX. Hence i is L-dense if and 

+-+ 
only if x E M for all x E X by Prop. 3.4.10. D 

+-+ +-+ 
Prop. 3.4.10 implies that M ~ M. So Mis the largest subset D of X such that 

M ~Dis L-dense by Prop. 3.4.11. 

Remark 3.4.12. Let f : X ~ Y be a (1r, V)-functor. Similar to the proof of 

Prop. 3.4.11, one gets 

f is L-dense <===> Vy E Y, k ~ f* o f*(ey(y),y). 

Consider the canonical factorization X ! f(X) ~ Y of f. Since surjective 

(1r, V)-functors are L-dense, f is L-dense if and only if i is L-dense by Prop. 2.8.2. 

Then Prop. 3.4.11 gives 

~ 

f is L-dense <===> Vy E Y, y E f (X). 

Surjectivity of f' implies that g.f = h.f if and only if g.i = h.i for all (1r, V)-

functors g, h : Y ~ Z. Since f being L-dense is equivalent to i being L-dense, 

f is L-dense <===> Vg, h: Y ~ Z, (g.f = h.f => g ~ h) 

by Prop. 3.4.10 and Prop. 3.4.11. So L-dense (1r, V)-functors are "epimorphisms 

up to ~" in (1r, V)-Cat. Similarly, one gets 

f is L-dense <===> Vg, h: Y ~ V, (g.f = h.f => g = h). 
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Proposition 3.4.13 ((36]). Let f: (X, a)~ (Y, b) be a (11', V)-functor, M, N ~ X, 

0 ~ Y and x EX. Then one has: 

+-+ +-+ +-+ 
1. M ~ M; N ~ M implies N ~ M. 

+-+ 
2. If T0 = 0, then 0 = 0. 

+-+ 
+-+ +-+ 

3. M=M. 

+-+M +-+X 
5. If N ~ M, then N = N n M. 

~ +-+ 

6. If k is v-irreducible and T preserves finite sums, then Mu N = Mu N. 

Proof. We only show idempotency of the L-closure. The other assertions hold by 

Prop. 3.4.2 and the fact that L-closure of X = ( X, a) is the natural closure of its 

symmetrization SX. 
+-+ 

+-+ +-+ +-+ 
By Prop. 3.4.11, both M ~ M and M ~ M are L-dense. Then the composite 

+--+ 
+-+ +-+ 

M ~ M is L-dense. Since M is the largest subset of X that contains M as an 
+-+ 
+-+ +-+ 

L-dense subset, one has M ~ M. D 

Corollary 3.4.14 ([36]). If k is v-irreducible and T preserves finite sums, then the 

L-closure induces a functor L : (11', V)-Cat ~ Top. 

Corollary 3.4.15. Let N ~ M ~ X. Then N is L-closed in M if and only if there 

exists an L-closed set A ~ X such that N = A n M. 
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~M ~x 

Proof. Assume that N is L-closed in M. Then by Prop. 3.4.13, N = N = N n M 

~x 

where N is L-closed in X. Conversely, assume that there exists an L-closed set 

A~ X such that N =An M. Then 

~M M ~M +-4M ~x 
N =(AnM) ~A nM =(A nM)nM=AnM=N. 

Hence N is L-closed in M. 0 

+-4 
Examples 3.4.16. 1. For an ordered set (X, ~), x EM if and only if there exists 

y E M such that x ~ y and y ~ x. 

+-+ 
2. For a metric space (X,d), x EM if and only if inf{d(x,y) +d(y,x)} = 0. 

yeM 

+-+ 
3. For a topological space (X, T), x EM if and only if there exists an ultrafilter 

~ which converges to x and contains both { x} and M. This implies 

+-+ 
xEM ~ VOopennbhdofx, Mn{x}n0-:F0. 

Hence L-closure of X is equal to its b-closure or Skula closure [3], [52]. 

4. Let (X, 8) be an approach space which corresponds to the (1U, P +)-category 
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~ 

(X, a). Then x EM if and only if 

0 = inf {a (;r, x) + U a. ( U ex.ex ( x), ;r)} 
~eUM 

= inf {a (;r, x) + U a. m x (ex ( x), ;r)} 
~eUM 

= inf {a ( 1=, x) + inf { c E P + I { x} ( c:) E ;r} } 
~eUM 

= inf { c + inf a ( ;r, x)} 
c:EP+ ~eUM 

{x }(e)E~ 

= inf { c + inf a(;r, x)} 
c:EP+ ~eUX 

Mn{x}(e)E~ 

= inf { c + o ( M n { x} < c: >, x)} 
c:EP+ 

Hence 

x EM <==> Ve> 0, 8(M n {x}Cc:>,x) = 0. (3.4.2) 

Remark 3.4.17. Let X = (X, 8) be an approach space. The Zariski closure of 

M ~ X [26), [19] is given by 

-z 
M == {x Ex I Vg, h En, (91M = h1M =? g(x) = h(x)}. 

Here n is the regular function frame of (X, 6) which is actually the set of con-

tractions from X to P +. The concrete characterization of Zariski closure for ap-

proach spaces has not been known for some time. However, by taking advantage of 

Prop. 3.4.10, one can write L-closure of M ~ X as 

~ 

M = {x EX I Vg,h: X ~ P+, (9jM = h1M =? g(x) = h(x)}. 
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So Zariski closure of an approach space is equal to its L-closure. The concrete 

characterization of the ZarisKi closure is given by (3.4.2). 

3.5 Connections between L-separation, L-completeness and 

L-closure 

One can formulate L-separatedness via L-closure. 

Proposition 3.5.1 ((36)). Let X = (X, a) be a ('Ir, V)-category and~~ Xx X be 

~ 

the diagonal. Then ~ = { ( x, y) E X x X I x ~ y}. 

+-+ 
Proof. Assume that (x, y) E ~. Let 7ri, 7r2 : Xx X ~ X be the projection maps 

and i: ~~Xx X be the inclusion map. Since 7r1 .i = 7r2.i, one gets x = 7r1(x,y) ~ 

7r2 (x, y) = y by Prop. 3.4.10. 

Conversely assume that x ~ y. For ( z, w) E X x X, one has 

(x, y)*(z, w) = ax a(exxx(x, y), (z, w)) 

a(ex(x), z) A a(ex(y), w) 

= a(ex(x), z) A a(ex(x), w) 

(x,xL(z,w). 
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So (x, y) ~ (x, x). Let g, h: Xx X-+ Y be (11', V)-functors such that g.i = h.i. Then 

~ 

g(x, y) ~ g(x, x) = h(x, x) ~ h(x, y). Hence (x, y) E ~ by Prop. 3.4.10. 

0 

Corollary 3.5.2 ([36)). A ('Ir, V)-category X = (X, a) is L-separated if and only if 

the diagonal ~ is L-closed in X x X. 

Exploring the relationship between L-closure and L-completeness leads to inter-

esting results. 

Proposition 3.5.3 ([36]). Let X = (X, a) be a (11', V)-category and M ~ X. 

1. If Xis L-complete and Mis L-closed then Mis L-complete. 

2. If Xis L-separated and Mis L-complete then Mis L-closed. 

Proof. 1. Let <p -i 'If; : M ""' E and i : M ~ X be the inclusion map. Then 

i* o <p -i 'If; o i* : X ""' E. Since X is L-complete, there exists x E X such that 

~ 

i* o <p = x*. This means x E M = M, as M is L-closed. i* o <p = x* implies 

<p = i* ox*. Hence 

for y EM. Since x EM, <p = x* and Mis L-complete. 

~ 

2. Let x E M. Then i* ox* -l x* o i* : M ""' E by Prop. 3.4.10. Since M is 

complete, there exists y E M such that y* = x* o i*. Then i(y) * = x*, as i 
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is fully faithful. Since X is L-separated, one gets i(y) = x. So x E M, M is 

L-closed. 

D 

Proposition 3.5.4 ([36)). Let X = (X, a) be a (1r, V)-category. The Yoneda 

-
functor y : X ~ X is L-dense. 

-
Proof. Take any 'If; EX. Then 

k 5: V a(Ty(t-), 'If;)® Ta(erx·ex('l/J), Ty(t-)) 
'[.ETX 

by Prop. 3.2.4 and Prop. 2.8.6. As erx·ex =mg.ex, that is equivalent to 

-
Then y: X ~ X is L-dense by Remark 3.4.12. D 

- +-----+-
Coro 11 a r y 3.5.5. Let X = (X, a) be a (1r, V)-category. Then X = y(X) where 

-
y : X ~ X is the Yoneda functor. 

- +-----+- -
Proof. X = y(X) if and only if y: X ~ X is L-dense by Remark 3.4.12. D 

Theorem 3.5.6 ([36)). Let X = (X, a) be a (1r, V)-category. X is L-complete if 

and only if X is L-injective. 

Proof. Suppose that X is L-complete. Let f : Y ~ Z be an L-equivalence and 

h: Y ~ X be a ('Ir, V)-functor. Since f is an L-equivalence, one hash* of* _, f* oh*. 
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As X is L-complete, there exists a ('JI', V)-functor g: Z ~ X such that g* = h* of*. 

This implies g* of* = h*, g.f ~ h, i.e. g.f ~ h. Hence X is L-injective. 

-
Conversely, suppose that X is L-injective. X is L-complete if y : X ~ X is 

surjective by Cor. 3.2.2. So it is enough to show that y is a retraction. One has 

-
lx: X ~ X and y: X ~ X which is an L-equivalence by Cor. 2.8.7 and Prop. 3.5.4. 

Since X is L-injective, there exists m : X ~ X such that m.y ~ lx. This implies 

y.m.y ~ y.lx = 1 _x·Y· Then y.m.y = 1 _x·Y, as X is L-separated by Cor. 3.1.2. Since 

-
y is L-dense, one gets y.m ~ 1- by Remark 3.4.12. Using again the fact that Xis x 

L-separated, y.m = l_x. D 

Corollary 3.5. 7. v1x1 is L-complete for any ('JI': V)-category X. 

Proof. v1x1 is L-injective by Cor. 3.3.2. D 

-
Corollary 3.5.8. Xis L-complete for any ('JI', V)-category X. 

-
Proof. By Cor. 3.5.5 and Cor. 3.5. 7, X is an L-closed subset of v1x1 which is L-

-
complete. Then X is L-complete by Prop. 3.5.3. D 

We will denote the full subcategory of L-complete and L-separated ('JI', V)-

categories by ('JI', V)-Catcpl & sep· 

Theorem 3.5.9 ((36)). ('JI', V)-Catcpl & sep is a reflective subcategory of ('JI', V)-Cat 

-
with reflection maps y: X ~ X for each ('JI', V)-category X. 
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- ----.; 

Proof. Let X be a ('IT', V)-category and f : X ~ Y be a ('IT', V)-functor where Y is 

-
L-complete and L-separated. As y: X ~ X is an L-equivalence and Y is L-injective, 

-
there exists a ('IT', V)-functor g: X ~ Y such that g.y ~ f. This implies g.y = f, since 

-
Y is L-separated. If there exists another ('IT', V)-functor h : X ~ Y with h.y ~ f, 

then h.y ~ g.y. As Y is L-separated and y is L-dense, one gets h = g. 

D 
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4 L-completeness, L-separation, L-injectivity for 

morphisms 
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The previous chapters summarized the framework for (1I', V)-categories as pre-

sented in [36], [33] and [15]. The parts that should be highlighted include the 

concepts of L-completeness, L-separation and L-injectivity as well as the results 

showing their interactions. In this section we introduce morphism counterparts of 

these notions [53]. For our purposes L-complete morphisms will be the most im-

portant among the others. Later in Chapter 8 we will develop a topological theory 

based on L-complete morphisms in the style of [13]. 

4.1 L-complete morphisms 

Definition 4.1.1. Let f: X ~ Y be a (1r, V)-functor. We say that f is L-complete 

if for any left adjoint (1I', V)-module <.p : Z "" X and any (1I', V)-functor h: Z ~ Y 

such that f* o cp = h*, there exists a (1I', V)-functor g : Z ~ X with cp = g* and 

f.g = h. 

3g 

z - - - - - - - - - - ,,.... 

~ / 
y 

x 
<.p 

z~x 

y 

Recall the lower star functor of Section 2.8. Since f * -1 f* for any (1I', V)-functor 

f, one has(-)* : (1I', V)-Cat ~ (1I', V)-Modl where (1I', V)-Modl is the subcategory 
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of (1r, V)-Mod whose morphisms are the left adjoint (1r, V)-modules. Taking the 

functor (-)* into account, we see that a (1r, V)-functor is L-complete if and only 

if it is a (-)*-quasi cartesian morphism in the sense of fibrational category theory 

(27]. Here quasi refers to that fact the morphism g in the definition is only unique 

up to~. 

The above definition can be equivalently expressed with the upper star notation, 

i.e. f is L-complete if given any right adjoint (1r, V)-module 'lj; : X '""" Z and any 

(1r, V)-functor h : Z ~ Y such that 'lj; o f* = h*, there exists a (1r, V)-functor 

g : Z ~ X with 'lj; = g* and f.g = h. 

3g 'lj; 

z ----------~ x z ~ x 

~ ~ 
(_)* 

~ /. 
y y 

Now considering (-)* : (1r, V)-Cat ~ (1r, V)-Modr where (1r, V)-Modr is the 

subcategory of (1r, V)-Mod whose morphisms are the right adjoint (1r, V)-modules, 

we conclude that a (1r, V)-functor is L-complete if and only if it is a (-)*-quasi 

cocartesian morphism. 

Similar to the case of L-complete objects, one can replace the (1r, V)-category 

Z by the ®-neutral object E assuming that the axiom of choice holds. 
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Proposition 4.1.2. For a (11', V)-functor f: X ~ Y, the following are equivalent: 

1. f: X ~ Y is L-complete. 

2. For any left adjoint (11', V)-module <.p: E "* X and y E Y such that f* o <p = y*, 

there exists x EX with <.p = x* and f(x) = y. 

3. For any right adjoint (11', V)-module 1/;: X "* E and y E Y such that 'lj;o f* = y*, 

there exists x EX with 1/; = x* and f(x) = y. 

Examples 4.1.3. l. In Ord, every ordered set X is L-complete as shown in 

Examples 3.2.5. So there is a one-to-one correspondence between the left 

adjoint 2-modules <.p: E "* X and the elements of X. Hence a monotone map 

f: (X, ~) ~ (Y, ~)is L-complete if and only if given any x EX with f(x) ~ y 

for some y E Y, there exists w E 1-1( {y}) such that x ~ w. 

x------w 

'f 
f(x)---y 

2. In Met, there is a one-to-one correspondence between the adjoint P +-modules 

<.p -1 'lj;: X ~ E and the equivalence classes of Cauchy sequences in X as shown 

in Examples 3.2.5. The left adjoint <.p : E "* X is representable by a point 
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x E X precisely when the elements of the equivalence class of Cauchy sequences 

corresponding to <p -; 'l/; converges to x. 

Let f : (X, d) ~ (Y, d') be a nonexpansive map and <p -; 'l/; : X "" E be a 

pair of adjoint P +-modules. Suppose that the pair <p-; 'l/; corresponds to the 

equivalence class of Cauchy sequences { ( Xn)} in X. 

Claim: The pair f * o <p -; 'l/; of* corresponds to the equivalence class of Cauchy 

sequences { (f (xn))} in Y. 

Since (xn) is Cauchy and f is nonexpansive, (f(xn)) is Cauchy. Its equiv-

alence class corresponds to the left adjoint P +-module lim d'(f (xn), _ ). So 
n-.oo 

showing f* o <p = lim d'(f(xn), _)will suffice. Pick any y E Y, then 
n-.oo 

f * o <p ( y) = inf { <p ( x) + f * ( x, y)} 
xeX 

inf { <p ( x) + d' ( f ( x) , y)} . 
xeX 

Since <p -; 'l/; corresponds to the equivalence class of Cauchy sequences { ( Xn)}, 

we have cp(x) = lim d(xn,x). So 
n-+oo 

f* ocp(y) = inf{lim d(xn,x) +d'(f(x),y)}. 
xeX n-+oo 

135 



Now, 

lim d(xn, x) + d'(f (x), y) ~ lim d'(f (xn), f(x)) + d'(f(x), y) n-oo n-oo 

~~~ ( d'(f(xn), f(x)) + d'(f(x), y)) 

~ lim d'(f (xn), y). n-oo 

This holds for all x E X. So 

inf { lim d(xn, x) + d'(f (x ), y)} ~ lim d'(f (xn), y ). 
xeX n-oo n-oo 

Hence, f* o <p ~ lim d'(f(xn), _). n-oo 

To obtain the reverse inequality, observe that we have 

inf{lim d(xk,x) +d'(f(x),y)}:::; lim d(xk,Xn) +d'(f(xn),y) 
xeX k-oo k-+oo 

for any n E N. Taking the limit of both sides, 

£~! {l~~ d(xk, x) + d'(f(x), y)} :::; ~~~ ( l~~ d(xki Xn) + d'(f(xn), y)) 

0 + lim d'(f(xn), y). n-+oo 

Hence f* o <p:::; lim d'(f (.rr;n), _ ). Therefore our claim is justified. n-+oo 

So a nonexpansive map f : X ~ Y is L-complete if and only if given any 

Cauchy sequence (xn) in X with lim f(xn) = y, there exists x E J-1 ( {y}) n-oo 
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such that lim Xn = x 
n~oo 

( Xn) - - - - - ,,._ X 

f l i f 
'f 

f (xn) Y 

3. Now we characterize L-complete morphisms in Top. Let f : X ~ Y be a 

continuous map and <p ., 'l/; : X "-'r E be a pair of adjoint (lU, 2)-modules. In 

Example 3.2.5 we have seen that <.p ., 'l/; : X "-'r E corresponds bijectively to a 

closed set A ~ X and a down-closed and Zariski closed A ~ U X such that 

3~ E U X: A E ~' ~EA and VJ EA, x EA, J ~ x. (4.1.1) 

Here A== 1.p-1 ( {l}) and A== 'lj;-1 ( {l} ). Upon further examination, one finds 

that 

A =~ ~ = {J E u x I v x E A, J ~ x} 

and A is an irreducible closed set. The left adjoint <.p is representable by a 

point x EX if and only if A= {x }. 

The first step towards the characterization of L-complete morphisms in Top 

is finding the counterparts of the adjoint pair f* o <.p ., 'l/J of*. Suppose that 

f* o <.p., 'l/; of* corresponds to an irreducible closed set B ~ Y and a Zariski 

closed and down-closed set B ~ UY. 

Claim: B = J(A). 
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One has 

J*ocp(y)=J*.Ucp(y)= V Ucp(J)®b(Uf(J),y) 
JEUX 

for ally E Y. Since B = (!* o cp)-1( {1} ), we get 

B = { y E y I 3 J E u x : A EJ & f (J) ~ y}. 

Let y E J(A) where y = f(x) for some x EA. Then there is~ E UX, given 

in (4.1.1), with~~ x and A E ~- This implies that J(~) ~ y. Hence y EB, 

J(A) ~ B. Since B is closed, we get f (A) ~ B. Conversely, let y E B. 

Then there exists J E U X such that A E J and f (J) ~ y. This implies that 

J(A) E f(J). As J (J) ~ y, J(A) n 0 =f:. 0 for any open neighbourhood 0 of y. 

Hence y E J(A), B ~ J(A). 

So if cp -; 'If; : X ~ E corresponds to an irreducible closed set A ~ X, then 

f* o cp-; 'If; of* : Y ~ E corresponds to the irreducible closed set f (A) ~ Y. 

Hence a continuous map f : X ~ Y is L-complete if and only if for any 

-- --
irreducible closed set A~ X with J(A) = {y} for some y E Y, there exists 

x E 1-1( {y}) such that A= { x }. We call such maps quasi fibrewise sober. In 

case the point x is unique, f is called fibrewise sober [48]. 

Now we identify L-complete maps from an alternative perspective. Recall that 

Example 3.2.5 also provides a bijective correspondence between the adjoint 

pairs cp -; 'If; : X ~ E and irreducible ultrafilters ~ E U X with conv ~ = A 
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and ~ != = A. The left adjoint r.p is representable by x E X if and only if 

conv != = conv x. 

Consider the adjoint pair f.,. o r.p -1 1f; o f* : Y "" E. It corresponds to an 

irreducible ultrafilter tu E UY such that 

conv tu= B & ~tu= B. (4.1.2) 

Claim: f(!=) satisfies the conditions in (4.1.2). 

We know that conv !==A. Hence f (A) ~ conv f (!=), as f is continuous. On 

the other hand, f (A) E f (!=) implies conv !(!=) ~ f(A). Since the limit points 

of a filter is a closed set, conv f (!=) = f (A). f (!=) is irreducible, as f (A) E f (!=). 

This also shows that conv f (!=) = B. 

Secondly, ~ f(J) =Bas follows: We have B = {tJ E UY I Vy E f(A), t) ~ y}, 

since B = f (A). Take any t) EB. For B £ ~ f(J), one needs to show t) ~ f (~) 

in MY. Let C E t). Since t) converges to all points of f (A), f (A) £ C. 

Then we have C E f (J), as A E !=· So t) ~ !(!=). Conversely, f (!=) E B, as 

f(A) = conv f(!=). Since Bis down-closed, ~ !(!=) ~ B. 

So if r.p -1 1f; : X "" E corresponds to an irreducible ultrafilter != E U X, then 

f.,. o r.p -11/J o f* : Y "" E corresponds to the irreducible ultrafilter f (!=) E UY. 

Hence a continuous map f : X ~ Y is L-complete if and only if for any irre­

ducible ultrafilter != E U X with conv f (r.) = conv y, there exists x E 1-1 ( {y}) 

139 



such that conv ~ = conv i. 

~------x 

f l l f 
J(~)---y 

Now we investigate properties of L-complete (11', V)-functors. 

Proposition 4.1.4. 1. Fully faithful and surjective (11', V)-functors are L-complete. 

In particular isomorphisms in (11', V)-Cat are L-complete. 

2. L-complete (11', V)-functors are closed under composition. 

3. If g.f is L-complete and g is monic then f is L-complete. 

4. If g.f is L-complete and f is an L-equivalence then g is L-complete. 

Proof. 1. Let f : X ~ Y be a fully faithful and surjective (11', V)-functor. Sup-

pose that <.p: E"" X is a left adjoint (11', V)-module such that J* o <.p = y* for 

some y E Y. Since f is fully faithful, one gets <.p = f* o y*. As f is surjective, 

there exists x E X such that f ( x) = y. Then 

Hence f is L-complete. Isomorphisms in (11', V)-Cat are fully faithful bijective 

(11', V)-functors. So isomorphisms are L-complete. 
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2. Let f : X ~ Y, g : Y ~ Z be L-complete ('JI', V)-functors. Assume that 

<p: E ~ X is a left adjoint ('11', V)-module such that (g.f)* o <p = z* for some 

z E Z. Then g* o (!* o <p) = z*. Since f* o <p: E ~ Y is a left adjoint ('JI', V)­

module and g is L-complete, there exists y E Y such that f* o <p = y* and 

g(y) = z. Using the fact that f is L-complete, there exists x E X such that 

<p = x* and f(x) = y. So <p = x* and g.f(x) = z. Hence g.f is L-complete. 

3. Let f: X ~ Y, g: Y ~ Z be ('JI', V)-functors where g.f is L-complete and g 

is monic. Assume that <p : E ~ X is a left adjoint ('JI', V)-module such that 

f* o rp = y* for some y E Y. Then 

Since g.f is L-complete, there exists x EX such that <p = x* and g.f(x) = g(y). 

Then f(x) = y, as g is monic. Hence f is L-complete. 

4. Let f: X ~ Y, g: Y ~ Z be ('Jr, V)-functors where g.f is L-complete and f 

is an L-equivalence. Assume that <.p : E ~ Y is a left adjoint ('JI', V)-module 

such that g* ot.p = z* for some z E Z. Since f is an L-equivalence, f* of* o<.p = <.p 
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and f* o r.p is left adjoint ('Ir, V)-module. 

E~Y 

z~ /,, 
z 

As g.f is L-complete, there exists x EX such that f* o r.p = x* and g.f(x) = z. 

Then 

Hence g is L-complete. 

D 

Theorem 4.1.5. L-complete ('Ir, V)-functors are stable under pullback. 

Proof. Let g: (Y, b) ~ (Z, c) be an L-complete ('Ir, V)-functor. Consider its pullback 

along a ('Ir, V)-functor f: (X, a)~ (Z, c). 

7f2 
(X xz Y,a x b)----(Y,b) 

nil ~ lg 
(X, a) (Z, c) 

f 
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We need to show that 7f1 is L-complete. So assume (7r1)* o cp = (x0 )* for some 

x0 E X and cp ~ 'l/; : (Xx z Y, ax b) """ ( E, k). Then we have the following commutative 

diagram in (1r, V)-Mod. 

cp (7r2)* 
(E,k)~(XxzY,axb)~(Y,b) 

l <~i). lg, 
(X,a)~(Z,c) 

f * 

is L-complete, there exists y0 E Y such that (7r2)* o cp = (y0 )* and g(y0 ) = f(x0 ). 

Hence (x0 , y0 ) EX xz Y. 

It suffices to show that cp::::; (x0 , y0 )* and 'l/;::::; (x0 , y0 )* by Lemma 2.3.1. 

Since cp is a (1r, V)-module, one has cp =(ax b) o cp =(ax b).Tcp.m£. So for any 

(x,y)EXxzY, 

cp(x,y) V Tcp(tu)®(axb)(tu,(x,y)) 
roeT(XxzY) 

= V Tcp(tu) ® (a(T7r1(tu),x) /\ b(T7r2(tu),y)) 
roeT(Xxz Y) 

::::; V Tcp(tu)®a(T7r1(tu),x) 
roeT(XxzY) 
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Similarly 1.p(x, y) ~ b(ey(y0 ), y). Hence 

Now we show 'lf; $ (x0 ,y0 )*. By hypothesis, (xo)* = 'lf;o(7r1)*. So for any F- E TX, 

a(F-,xo) = V Ta(mx(F-),T7r1(tu)) ®'l/;(tu). 
IUET(Xxz Y) 

Considering F- = T7r1 (tu), we get 

As Tis order preserving, lrx = TeX-.mx $ Ta.m°x. This means that 

Hence'lf;(tu) $ a(T7r1(tu),x0 ). Similarly, (Yo)*= 'lf;o(7r2)* implies'lf;(tu) $ b(T7r2(tu),yo). 

Then 

for all tu E T(X xz Y). Hence 'lf; $ (xo, Yo)*. 

D 

A pair(!, S) consisting of a morphism f: A~ Band a source S = { 7ri: A~ Ai} 1 , 

is called a multiple pullback of a sink {Ji : Ai ~ B} 1 provided that 
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• f=k7fiforallie/, 

• For each pair(!', S') where f': A'--+ Bis a morphism and S' = { 7f;: A'--+ Ai} 
1 

is a source such that f' = k 1f; for all i E I, there exists a unique morphism 

g: A'--+ A with f' = f.g and 1fi = 1fi.g for all i E /. 

Proposition 4.1.6. L-complete (11', V)-functors are stable under multiple pullback. 

Proof. Consider a sink {Ii: (Xi, ai)--+ (Z, c)} 1 of L-complete ('Ir, V)-functors. Tak-

ing the limit of the diagram, one gets 

where (P, fl ai) is the fibred product of (Xi, ai)'s over Zand 7r/s are the projection 

maps. To prove the claim, one needs to show that f is L-complete. So it is enough 

to show that there exists j EI for which 1fj is L-complete. This is done similarly to 

the proof of Theorem 4.1.5. D 

Remark 4.1.7. In Section 3.5, we have seen that every ('Ir, V)-category (X, a) 

-
has the L-completion (X,a) consisting of tight ('Ir, V)-functors. Let Y denote the 

L-completion functor. 

Y : ('Ir, V)-Cat --+ ('Ir, V)-Catcpl & sep 
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-x x 

y y 

To see the action of Yon morphisms, recall that X can also be seen as the collection 

of right adjoint ('TI', V)-modules from X to E. For a ('TI', V)-functor f: X ~ Y, one 

-
has Y(J) = f where 

-
/(¢) = 1f; 0 f* 

-
for 1f; E X. The family of the Yoneda functors yx : X ~ X form a natural transfor-

mation 

Y: l('JI',V)-Cat ~ Y. 

This gives us another way to characterize L-complete morphisms. 

Proposition 4.1.8. Let f: X ~ Y be a ('TI', V)-functor. Then f is L-complete if 

and only if the naturality square 

yx 

y __ __,,...y 

is a weak pullback. 
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-
Proof. The naturality square is a weak pullback if and only if for any 'ljJ E X and 

-
y E Y such that f('lj;) = yv(y), there exists x EX satisfying 'ljJ = yx(x) and f(x) = y. 

This is equivalent to saying that for any right adjoint (11', V)-module 'ljJ : X "" E 

and y E Y such that 'ljJ o f* = y* there exists x E X satisfying 'ljJ = x* and f ( x) = y. 

That is equivalent to f being L-complete. D 

Corollary 4.1.9. A (11', V)-category X is L-complete if and only if !x : X --+ 1 is 

L-complete. 

Proof. By Prop. 4.1.8, !x : X --+ 1 is L-complete if and only if 

YX 
x x 

-
1 1 

-
is a weak pullback. Since 1 = 1, this is equivalent to saying that yx is surjective. 

yx is surjective if and only if X is L-complete by Cor. 3.2.2. D 

This result is another confirmation that the morphism notion of L-completeness 

is the natural extension of the corresponding object notion. 
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4.2 L-separated morphisms 

Let Y be a (11', V)-category. Consider the comma category (11', V)-Cat/Y whose 

objects are the (11', V)-functors with the codomain Y. A morphism from k: Z-+- Y 

to f : X -+- Y in this category is a (11', V)-functor g : Z -+- X such that f.g = k. 

Definition 4.2.1. We call a (11', V)-functor f : X -+- Y L-separated if it is an L­

separated object in the ordered category (11', V)-Cat/Y. This means, given any 

morphisms g, h : k -+- f such that g ~ h, one has g = h. 

So a (11', V)-functor f : X -+- Y is L-separated if and only if given any (11', V)­

functors g, h : Z -+- X such that g ~ h and f.g = f.h, one has f = g. This means 

that f L-separated if and only if it is jointly monic with the lower star (upper star) 

operation. 

As in the case of L-separated objects, it is sufficient to consider the ®-neutral 

object E instead of Z. Hence f : X -+- Y is L-separated if and only if x ~ w and 

f(x) = f(w) implies x = w for all x,w EX. 

Examples 4.2.2. 1. In Ord, a monotone map f : X -+- Y is L-separated if and 

only if its fibres are partially ordered sets. 

2. In Met, a nonexpansive map f : ( X, d) -+- (Y, d') is L-separated if and only if 

for all x, w EX in the same fibre off, d(x, w) = d(w, x) = 0 implies x = w. 
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3. In Top, a continous map f: X--+ Y is L-separated if and only if its fibres are 

To. 

4. In App, a contraction f : X --+ Y is L-separated if and only if its coreflection 

in Top has T0 fibres. 

Proposition 4.2.3. 1. If X is L-separated then any (11', V)-functor f : X --+ Y 

is L-separated. 

2. L-separated (11', V)-functors are stable under pullback. 

Proof (1) is trivial. For (2), consider the following pullback diagram where g : 

Y --+ Z is L-separated. 

7r2 

XxzY y 

~1 I ~ j g 

x z 
f 

Let (x,y), (x',y') EX xz Y such that (x,y)* = (x',y')* and 7r1(x,y) = 7r1(x',y'). 

Then x = x' and we have g(y) = f(x) = f(x') = g(y'). On the other hand, (x, y)* = 

( x', y') * implies that y* = y~. Since g is L-separated, one gets y = y'. Hence 

(x,y) = (x',y'), 7r1 is L-separated. D 

Proposition 4.2.4. Let f : X --+ Y be (11', V)-functor such that X is L-complete 

and Y is L-separated. Then f is L-complete. 

149 



Proof. Suppose the assumptions hold. Let cp : E ~ X be a left adjoint ('Ir, V)-

module such that f* o cp = y* for some y E Y. Since X is L-complete, there exists 

x EX such that cp = x*. Then f* ox*= (f(x))* = y*. As Y is L-separated, f(x) = y. 

Hence f is L-complete. D 

4.3 L-injective morphisms 

Definition 4.3.1. We call a ('Ir, V)-functor f : X ~ Y L-injective if it is an L-

injective object in ('JI', V)-Cat/Y. This means, given any morphism j: k ~ f and 

any L-equivalence i : k ~ h, there exists a morphism g : h ~ f such that g. i ~ j. 

Observe that f : X ~ Y is L-injective if and only if given any solid arrow 

commutative square 

(4.3.1) 

B----Y 
h 

in ('Ir, V)-Cat where i is an L-equivalence, there exists g : B ~ X such that f.g = h 

and g.i ~ j. Indeed, having j: k ~fin ('JI', V)-Cat/Y means that k = f.j. So the 

commutative square ( 4.3.1) corresponds to the morphisms j : k ~ f and i : k ~ h. 

In ('Ir, V)-Cat/Y there exists g : B ~ X with the desired properties if and only if 

there exists g: h ~ f such that g.i ~ j. 
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So, in the language of general homotopy theory, L-injective ('JI', V)-functors are 

the morphisms in ('JI', V)-Cat which have weak right lifting property with respect 

to L-equivalences. 

In Section 3.5 we have seen that L-completeness ~nd L-injectivity are equivalent 

notions at the level of objects. These notions are also equivalent at the level of 

morphisms as the next theorem shows. 

Theorem 4.3.2. Let f : X -+ Y be a ('JI', V)-functor. f is L-complete if and only 

if f is L-injective. 

Proof. Let f be L-complete. Suppose that we have the commutative square (4.3.1) 

where i is an L-equivalence. Then f * o j* = h* o i*. As i is an L-equivalence, we get 

f * o j* o i* = h* and j* o i* --. i* o j*. Since f is L-complete, there exists g : B -+ X 

such that j* o i* = g* and f.g = h. Then j '.::! g.i and f is L-injective. 

Conversely, let f be L-injective. By Prop. 4.1.8, f is L-complete if the following 

diagram is a weak pullback or, equivalently, the induced map i is surjective. So it 
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is enough to show that i is a retraction. 

Firstly, f is L-complete and L-separated by Prop. 4.2.3 and 4.2.4. So 7r1 is L-

complete and L-separated as a pullback off. On the other hand, 7f2 is fully faithful 

-
as a pullback of yY which is fully faithful. Since yx : X --+ X is an L-equivalence 

and 7r2 is fully faithful, i is an L-equivalence by Prop. 2.8.2. We have the following 

commutative square: 

lx 
X-----X 

i j ////., j 7f1.i=f 
// m 

/ -
Yx-X---Y 

y 

Since f is L-injective, there exists m: Y x.y X--+ X such that m.i ~ lx and 7r1.i.m = 

7r1. Then we have 7r1.i.m.i = 7f1.i with i.m.i ~ i. As 7f1 is L-separated, i.m.i = i. 

That implies i.m ~ 1 - , as i is L-dense. Now we have 7f1.i.m = 7f1.l - with 
Yx-X Yx-X 

y y 
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i.m ~ 1 - . Using again the fact that 7r1 is L-separated, we obtain i.m = 1 - . 
Yx-X Yx-X 

y y 

Hence i is a retraction. 

D 

Since L-injectivity and L-completeness are equivalent notions, L-complete mophisms 

have the weak right lifting property with respect to L-equivalences. This fact be-

comes very helpful for showing that L-complete and L-separated morphisms belong 

to a factorization system. We will consider this factorizations system in detail in 

Chapter 8. 
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5 The functor L 
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In this chapter we investigate the functor L: ('lf, V)-Cat ~Top that is induced 

by the L-closure (see Subsection 3.4.2). Our results complement Chapter 7 where 

we explore the functional topology on ('lf, V)-Cat with respect to "L-closed maps". 

A theme that we will frequently encounter in Chapter 7 is the preservation of 

finite products by the functor L. We investigate the necessary conditions for L to 

have this property in Section 5.1. In Section 5.2, we examine the functor L(IU,P+) : 

App~ Top which will be important in studying compactness with respect to "L-

closed maps" for approach spaces. This concept is known as Zariski compactness 

[26] and has not been characterized yet. We will provide such a characterization in 

Section 7.2. 

5.1 Preservation of finite products 

Suppose that the quantale Vis constructively completely distributive (ccd). In this 

setting the L-closure can be equivalently formulized as follows. 

Proposition 5.1.1. Let V be a ccd quantale, (X, a) be a (11', V)-category, M ~ X 

and x E X. Then the following assertions are equivalent: 

+-+ 
1. x EM. 

2. For all c « k there exists~ E TM such that c:::;; a(~,x) ® Ta(Tex.ex(x),~). 

3. For all c « k there exists ~ET M such that c « a(~, x) ® Ta(Tex .ex ( x), ~). 
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~ 

Proof. (1~2)LetxEM. Thenk~ V a(J,x)®Ta(Tex.ex(x),J). Ifc:«k,then 
°f.ETM 

there exists~ E TM such that c: ~ a(~,x) ®Ta(Tex.ex(x),~) by (2.1.8). 

(2 ~ 3) Let £ « k. By Lemma 2.1.3, there exists £1 E V such that £ « £1 « k. 

For £1 « k, there exists J ET M with 

by hypothesis. Since c: « ci, we get 

£ « a(J, x) ® Ta(Tex.ex(x),J). 

( 3 ~ 1) Suppose that for all £ « k there exists ~c E TM such that 

Since Vis ccd, k = V £by Lemma 2.1.3. Then 
c«k 

k = V £ ~ V a(~i;:,x) ®Ta(Tex.ex(x),Ji;:) ~ V a(J,x) ®Ta(Tex.ex(x),J). 
c«k ~e eT M °f.ET M 

~ 

Hence x EM. D 

Recall from Prop. 3.4.13 that the L-closure is additive when T preserves finite 

sums and k is v-irreducible. Assuming that Vis ccd, we replace v-irreducibility by 

the con di ti on ( 5 .1.1) below. 

Proposition 5.1.2. Suppose that T preserves finite sums, V is ccd and satisfies 

the following condition: 

u « k & w « k ==> u v w « k. (5.1.1) 
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Then the L-closure is additive. 

Proof. Let (X, a) be a ('TI', V)-category and M, N ~ X. Since L-closure is monotone, 

~ ~ ~ ~ 

it is enough to show M u N ~ M u N. Suppose that x i M u N. Then there exists 

c-1 « k such that for all~ ET M, 

c1 <t:. a(~,x) ®Ta(Tex.ex(x),~) 

and there exists c-2 « k such that for all~ ET N, 

c2 <t:. a(~,x) ®Ta(Tex.ex(x),~). 

By (5.1.1), one has c-1 vc-2 « k. Since T preserves finite sums, for all~ E TMuTN = 

T(MuN), 

This exactly means that xi Mu N. D 

So the L-closure induces the functor L : ('TI', V)-Cat -+ Top given that the 

conditions of Prop. 5.1.2 are satisfied. 

Remark 5.1.3. Condition (5.1.1) implies v-irreducibility of k as shown in [34]. 

To see this, let k s u v v, A = { x E V I x « k}, Au = { x E A I x s u} and 

Av = { x E A I x s v}. For any x « k, one has x s u or x s v. Hence A ~ Au u Av. 

Trivially A 2 Au U Av. So A= Au U Av. 
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Furthermore, k = VA = V { x E A I x ~ y} for any y E A as follows. Given any 

x EA, one has xvy EA by condition (5.1.1) where xvy ~ y and xvy ~ x. So VA~ 

V{x EA Ix~ y}. On the other hand, one trivially has VA~ V{x EA Ix~ y}. 

Consider the following cases. If k = V Au, then k ~ u. If k * V Au, then there 

exists y EA such that y ~Au. Take any x EA with x ~ y. Then x E Au or x E Av. 

One gets x E Av, as x E Au will imply y E Au which is a contradiction. So { x EA I 

x ~ y} ~Av. Taking supremum of both sides, k = V{x EA Ix~ y} ~ V Av~ v. 

Hence k ~ u or k ~ v which means that k is v-irreducible. 

Lemma 5.1.4 ([24]). Suppose that V is a ccd quantale and (5.1.1) holds. Then 

for every w « k there exists u « k such that w « u ® u. 

Proof For any ui, u2 « k, u 1 v u2 « k by (5.1.1). Then 

and 

v U1 ® U2 ~ v U ® U. 
u1 ,u2«k u«k 

One gets 

k = k ® k = v U1 ® v U2 = v U1 ® U2 ~ v U ® U. 
u1 «k u2«k u1,u2«k u«k 

Then for any w « k there exists u « k such that w « u ® u. D 

Remark 5.1.5. Let X = (X, a), Y = (Y, b) be ('Ir, V)-categories. Consider the 

(11', V)-category A0 (A(X) 0 P) whose structure is (Ta.Tex .ex) 
0 

(see Subsection 2.7.2). 
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The functor A preserves products, since A° ~A. Furthermore, the operation (_)0
P 

is compatible with products. If A0 preserves finite products, then 

That means 

(T(a x b).Texxy.exxY )
0 

=(Ta.Tex.ex )
0 

x (Tb.Tey.ey )
0

• 

Proposition 5.1.6. Assume that T and V satisfies the conditions of Prop. 5.1.2, 

k = T and A 0
: V-Cat ~('JI', V)-Cat preserves finite products. Then L: ('JI', V)-Cat ~ 

Top preserves finite products. 

Proof. Let X = (X,a), Y = (Y,b) be ('JI', V)-categories. We need to show that 

+-+ - -
L(X x Y) ~ LX x LY, i.e. M = M for all M ~Xx Y where Mis the closure of M 

in LX x LY. 

Take any M ~ Xx Y. Since L is a functor, id : L( Xx Y) ~ LX x LY is continuous. 

+-+- -~ -
Hence M ~ M. To show that M ~ M, let (x, y) E M and fix co « k. Let 71"1 , w2 

be the projection maps. Then (x, y) EM implies x E w1(M) ~ 7r1(M), since 71"1 is 

~ 

continuous. Similarly, one has y E 7r2(M). There exists c « k such that co ~ c ® c 

by Lemma 5.1.4. As x E 7r1(M), there exists~ E T(w1(M)) such that 

c « a(~,x) ®Ta(Tex.ex(x),~). 

Similarly, there exists t) E T(7r2(M)) such that 

c « b(tJ, y) ® Tb(Tey .ey(y ), tJ), 
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as y E 7r2(M). Since k = T, we have 

c « a(~,x) & c « Ta(Tex.ex(x),~), 

c « b(tJ, y) & c « Tb(Tey.ey(y), tJ). 

Then c = c /\ c ~a(~, x) /\b( t), y ). Similarly c ~ Ta(Tex .ex(x ), ~) /\ Tb(Tey .ey(y ), tJ). 

Hence 

co« c ® c ~ (a(~, x) /\ b(tJ, y)) ® (Ta(Tex .ex(x), ~) /\ Tb(Tey.ey(y ), tJ) ). 

Since T satisfies the Beck-Chevalley property, the map (T7r1 , T7r2): TM-+ T(7r1(M))x 

T(7r2 (M)) is surjective. So there exists tu E TM such that T7r1(tu) = ~ and 

T7r2(tu) = t). Hence 

=(ax b)(tu, (x, y)) ®((Ta.Tex.ex)° x (Tb.Tey.ey )
0

)(tu, (x, y)). 

Since A0 preserves finite products, Remark 5.1.5 implies 

co « (ax b)(tu, (x,y)) ® (T(a x b).Texxy.exxY)
0

(tu, (x,y)) 

= (ax b )(tu, (x, y)) ® T(a x b )(TexxY·eXxY(x, y ), tu). 

+-+ - +-+ 
Hence (x, y) EM. Therefore M ~ M. D 

Now we look at the implications of this result for our main examples. 
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Corollary 5.1.7. L2 : Ord--+ Top and Lp+: Met--+ Top preserve finite products. 

Proof. In these cases T and A 0 are identity functors. The quantales 2 and P + are 

ccd where k = T and (5.1.1) holds. Hence Prop. 5.1.6 applies. 0 

Proposition 5.1.8. Let V be a completely distributive (cd) quantale. Then A0 
: 

V-Cat--+ (llJ, V)-Cat preserves finite products. 

Proof. Let X = (X,a), Y = (Y,b) be V-categories. One has A0 (X) = (X,eX..Ua), 

then 

Since 7r~.ex.Ua.U7r1 A 7r2.ey..Ub.U7r2 is the structure on A0 (X) x A0 (Y), the result 

follows. In the remaining part of the proof we will show that ( t) holds. 

To show the reverse inequality, recall from (2.5.5) that for r : X -tt Y in V-Rel, 

Ur(~, tJ) = /\ V r(x, y) 
AeF xeA 
Bet) yeB 
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for all~ E UX, lJ E UY. 

Let tu, J be two ultrafilters on Xx Y, then 

= { /\ V a(x,z)) /\ { /\ V b(y,w)) 
AeU71"1 (ro) xeA BeU11"2 (ro) yeB 
CeU11"1 (3) zeC DeU11"2 (3) weD 

= /\ V /\ V { a(x, z) /\ b(y, w)) 
AeU11"1 (ro) xeA BeU11"2 (ro) yeB 
CeU7!"1 (3) zeC DeU11"2 (3) weD 

~ /\ /\ V V {a(x,z) /\ b(y,w)) (CD) 
AeU11"1 (ro) BeU7!"2 (ro) xeA yeB 
CeU7l"1 (3) DeU11"2 (3) zeC weD 

= /\ V {a(x,z) /\ b(y,w)) 
AxBero (x,y)eAxB 
CxDe3 (z,w)eCxD 

~ /\ V {a(x,z) /\ b(y,w)) 
Fero (x,y)eF 
Ge3 (z,w)eG 

= /\ V 7f~.a.7r1 /\ 1f~.b.n2((x,y),(z,w)) 
Fero (x,y)eF 
Ge3 (z,w)eG 

D 

Corollary 5.1.9. Lcu,2) : Top -+ Top and Lcu,P+) : App -+ Top preserve finite 

products. 

Proof. The ultrafilter functor U and the quantales 2 and P + satisfy the conditions 

of Prop. 5.1.2. Furthermore, 2 and P + are completely distributive quantales where 
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k = T. Hence Prop. 5.1.8 and Prop. 5.1.6 applies. 0 

5.2 L(u,P +) from a bitopological viewpoint 

In this section we investigate the functor L(lU,P+) : App -+ Top via the framework 

of bitopological spaces. 

A bi topological space ( X, T, a) is a set X equipped with two topologies T, a. Let 

(Y, T', a') be another bitopological space. A map f: X -+ Y is called bicontinuous 

if it is continuous with respect to both topologies, i.e. both f : (X, T) -+ (Y, T') 

and f : (X, a) -+ (Y, a') are continuous maps in Top. Bitopological spaces and 

bicontinuous maps form the category BiTop. 

Recall the natural closure, the dual closure and the L-closure as defined in 

Section 3.4. If k is v-irreducible and T preserves finite sums, then these clo­

sures induce the functors N : (11', V)-Cat -+ Top, D : (11', V)-Cat -+ Top and 

L: (11', V)-Cat-+ Top. Given a (11', V)-category X = (X, a), let 

NX = (X, 7), DX= (X, T), LX = (X, 7). 

Then (X, a) naturally corresponds to the bitopological space (X, 7, T). Let 

B : (11', V)-Cat -+ Bi Top 

be the functor which sends (X, a) to (X, 7, T). Also consider the functor 

J : BiTop -+ Top 
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which joins the topologies of a bitopological space, i.e. J(X, T, a")= (X, rva) where 

T v a is the coarsest topology which contains both T and a. At each point x E X, 

T v a has the local basis { 0 n U I x e 0 e T, x E U E a}. The final aim of this section is 

to show that for an approach space, the topology induced by its L-closure is the join 

of the topologies induced by its natural closure and dual closure, i.e. T = 7 v 7 

or, L(1U,IP+) = J.B(u,IP+)· 

We start by examining the topologies induced by the natural closure and the 

dual closure in our examples. 

Let X = (X, a) be a ('JI', V)-category, M ~ X and x e X. Recall from Subsec-

-+ 
tion 3.4.1 that x is in the natural closure of M, denoted by x e M, if 

k::; V a(~,x). 
~eTM 

Examples 5.2.1. For an object X = (X, a) in Ord, Met, Top or App, we have 

NX = (X, 7). 

-+ 
1. For an ordered set (X, ::;), x e M if and only if there exists ye M such that 

y::; x. So M is closed in NX if it is up-closed and open if it is down-closed. 

The collection n x I x E X} of principal down-closures forms a basis for T. 

So N2 : Ord ~ Top is the Alexandroff topology functor. 

-+ 
2. For a metric space (X,d), x EM if and only if inf d(y,x) = 0. Therefore 

yeM 

NIP+ : Met ~ Top is the usual forgetful functor. The collection { B; ( x) I x E 
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X,c > O} forms a basis for 7 where B;(x) == {y EX I d(y,x) < c}. We call 

B;(x) the right open ball of radius cat x. 

3. The natural closure of a topological space (X, T) is the closure induced by T. 

So T = 7, N (IU,2) : Top ~ Top is the identity functor. 

~ 

4. For an approach space (X, 8), x E M if and only if b"(M, x) = 0. So M is 

closed in NX if M<0> =Mand open if 8(X 'M,x) > 0 for all x EM. The 

functor N(IU,IP'+) : App~ Top is the coreflector. 

By taking the functor N into consideration, we can augment diagram (2.7.8) 

and obtain the following commutative diagram. 

Ord Top 

~~ 
Top (5.2.1) 

y ~+) 
Met App 

Let X = (X, a) be a (11', V)-category, M ~ X and x EX. Recall from Subsec-

+-
ti on 3.4.l that x is in the dual closure of M, denoted by x EM, if 

k ~ V Ta(Tex.ex(x),~). 
~eTM 
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The dual closure of X is the natural closure of A0 (A(X)0 P). This implies that 

D = N. A0 (A(_)0 P). 

Examples 5.2.2. For an object X = (X, a) in Ord, Met, Top or App, we have 

DX= (X, r). 

~ 

1. For an ordered set (X, ~), x E M if and only if there exists y E M such that 

x ~ y. So M ~ X is closed in DX if it is down-closed and open if it is up-

closed. The collection { t x Ix EX} of the principal up-closures forms a basis 

for 7. 

~ 

2. For a metric space (X, d), x EM if and only if inf d(x, y) = 0. The collection 
yeM 

{B!(x) Ix E X,c > O} forms a basis for 7 where B!(x) := {y EX I d(x,y) < c}. 

We call B!(x) the left open ball of radius cat x. 

~ 

3. Let ( X, T) be a topological space. Recall from Examples 3.4.8 that x E M if 

and only if {x}nM * 0. 

Let 0 ~ X. Then 

0 E 7 <==> X ' 0 closed in DX 

<==> VxeX({x}n(X-....O)t.0 => xeX-....0) 

-<====> VxEO, {x}~O. 
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Furthermore, { x} E 7, since for any y E { x}, {y} ~ { x}. So the collection of 

point closures { { x} I x E X} forms a basis for 7. 

+--
4. Let ( X, <5) be an approach space. Recall from Examples 3.4.8 that x E M if 

and only if {x }(f:) n M * 0 for all c > 0. Let 0 ~ X. Then 

0 E 7 <==> X ' 0 closed in DX 

<==> (X '0) ~ X '0 

<==> VxeO, :Ls>O: {x}(e)~O. 

As in the case of topological spaces, one may try to show that the collection 

{ { x} (f:) I x E X, c > O} is a basis for 7. Unfortunately that does not hold. 

But we can reach a comparable result by a slight modification. 

The dual closure can be equivalently characterized by 

+-
x EM <==> 11/c > 0, {x}((f:)) nM * 0 

where {x}((f:)) := {z EX I 8({x},z) < c}. Observe that if x EM, then 

0 * {x}<f;l2>nM ~ {x}((c:))nM for any c > 0. Conversely, {x}((c:))nM * 0 

trivially implies { x} (c:) n M * 0. 

So 

Oe7 <==> VxeO, 3c>0: {x}((e))~O. (5.2.2) 
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Lemma 5.2.3. The collection B = { { x} ((c:)) I x EX, c > O} is a basis for 7. 

Proof. Clearly any element of 7 can be written as a union of the elements of 

B by (5.2.2). So it is enough to show that every element of Bis in 7. 

Take any {x}((c:)) EB and z E {x}((c:)). Let 5({x},z) = £ 1 . Pick c2 such that 

0 < c2 < c - c1. Then by Prop. 2.7.3, 

6° ( { X}, y) ::;; SU p 6° ( { X}, W) + 6° ( { Z}, y) = 6° ( { X}, Z) + 6° ( { Z}, y) < E 1 + c 2 < c 
we{z} 

Therefore for arbitrary z E { x} ((c:)), there exists c2 > 0 such that { z} ((c:2
)) ~ 

{x}((c:)). So {x}((c:)) E 7. D 

The composite A0 (A(_)0 P) commutes with the embeddings of diagram (2.7.8). 

Having diagram (5.2.1) and the fact that D = N. A0 (A(_)0 P), we obtain the following 

commutative diagram. 

Ord Top 

~ 07 
Top (5.2.3) 

y ~+) 
Met App 
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The commutative diagrams (5.2.1) and (5.2.3) induce the following commutative 

diagram for the functor B: (11', V)-Cat --+ BiTop. 

Ord Top 

Bi Top (5.2.4) 

y ~) 
Met App 

Now we examine the topologies induced by the L-closure in our examples. 

Let X = (X, a) be a (11', V)-category, M £ X and x EX. Recall from Subsec-

+-+ 
tion 3.4.2 that x is in the L-closure of M, denoted by x EM, if 

k~ V a(~,x)®Ta(Tex.ex(x),~). 
~eTM 

The L-closure of X is the natural closure of its symmetrization SX. This implies 

that L = N.S. We denote LX by (X, 7). 

+-+ 
Examples 5.2.4. 1. For an ordered set (X, ~), x EM if and only if there exists 

y E M such that x ~ y, i.e. x ~ y and y ~ x. Let x denote equivalence class 

of x with respect to ~. M is closed in LX if and only if x £ M for all x E M. 

Observe that this also the characterization of M being open in LX. The 

collection { x I x E X} forms a basis for 7. 
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+-+ 
2. For a metric space (X, d), x EM if and only if inf { d(x, y) + d(y, x)} = 0. The 

yeM 

collection {B;(x) Ix E X,c > O} forms a basis for V where B;(x) := {y EX I 

d(y, x) + d(x, y) < c}. We call B;(x) the symmetrized open ball of radius c at 

x. 

3. Let (X, r) be a topological space. Recall from Examples 3.4.16 that the L-

+-+ -
closure of X is equal to its b-closure, i.e. x E M if and only if Mn { x} n 0 * 0 

for any open neighbourhood 0 of x. Lcu,2) : Top -+ Top is the b-topology 

functor. 

+-+ 
4. Let (X, 8) be an approach space. Recall from Examples 3.4.16 that x EM if 

and only if 8(M n {x}(c:),x) = 0 for all c > 0. 

Let 0 ~ X. Then 

0 E V <==> X ' 0 closed in LX 

<==> Vx E 0, :le> 0: 8(x, (X '0) n{x}(c:)) > o. 

Similar to dual closure, { x} (c:) can be equivalently replaced by { x} ((c:)) in the 

formulation of the L-closure, i.e. 

xEM ~ Vc>O, 8(Mn{x}((c:)),x) =0. 
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The symmetrization functor S commutes with the embeddings of diagram (2.7.8). 

Having diagram (5.2.1) and the fact that L = N.S, we obtain the following commu-

tative diagram. 

Ord 

Top (5.2.5) 

y ~+) 
Met App 
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Proposition 5.2.5. Lcu,IP'+) = J.B(lU,IP'+)· 

Proof. Let X = (X, 8) be an approach space. J.B(lU,IP'+)(X) is the topological space 

(X,-; v T") with the local basis Bx= {{x}((c:)) n 0 I c > 0, 0 E-;: x E O} for 

each x E X by Lemma 5.2.3. Let M S X. The closure operator associated with 

J.B(lU,IP'+)(X) is given by 

x EM <===> v( {x}((c:)) n 0) E Bx, Mn {x}((c:)) n 0 =I= 0. 

On the other hand, the topology 7 on Lcu,IP'+)X is induced by the L-closure. 

One has 

+-+ 
xEM <===> 'v'c>0,8(Mn{x}((c:)),x)=O 

<===> 'v'c > 0, x EM n {x}((c:)). 

Since the natural closure for approach spaces is idempotent, x EM n { x }((c:)) if 

and only if Mn {x}((c:)) n 0 * 0 for any 0 E-; that contains x. Hence 

<===> v( {x}((c:)) no) E Bx, Mn {x}((c)) n 0 * 0. 

- +-+ 
So M = M. Therefore Lcu,IP+)X = J.B(lU,IP'+)(X). D 

Remark 5.2.6. Observe that commutativity of the diagrams (5.2.4) and (5.2.5) 

makes the factorization L = J.B also work for Ord, Met and Top. So for any object 

X . h . h ~ --+ +-m t ese categories, one as T = T v T . 
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In Ord, this means that 7 has the local basis t x n t x for each x Ex which is 

exactly the set x. In Met, one sees that the topology induced by the symmetrized 

open balls is the same as the topology induced by the left open balls and the right 

open balls. In Top, this implies that 0 n { x} where 0 is an open neighbourhood 

of x is a local basis of the b-topology for x E X . 
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6 Functional topology 
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Given a finitely complete category CC equipped with a proper factorization sys­

tem, one can pursue topological notions by using a distinguished class F of "closed 

morphisms" [13). This chapter will provide the basics of the framework of [13) 

together with some of its results. We will use this setting to develop topological 

notions in ('Ir, V)-Cat in the following chapters. It is important to emphasize that 

the results in this chapter originally appeared in [13) unless stated otherwise. 

6 .1 The setting 

6.1.1 Factorization system 

A factorization system for a category CC consists of two classes of morphisms £ and 

M such that 

(FSl) £and M contain all isomorphisms and are closed under composition. 

(FS2) For every morphism Jin CC there exists e E £and m EM such that f = m.e. 

(FS3) £ is orthogonal to M, i.e. given any commutative square 

u x y .., 
/ 

/ 
/ 

e / m / 
/ f / 

/ 
/ 

z w 
v 
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with e E E and m E M, there exists a unique morphism f that makes the 

whole diagram commutative. 

( E, M) is called a proper factorization system if every morphism in £ is an 

epimorphism and every morphism in M is a monomorphism. 

Proposition 6.1.1. Let (E,M) be a proper factorization system. Then, 

1. £ nM = Iso 

2. g.f EM imples f EM. 

3. g.f E £ imples g E £. 

4. M is stable under pullback. 

6.1.2 Subobjects 

Let X be an object in CC. Morphisms in M with codomain X are called subobjects 

of X. There is a preorder "~"on the subobjects of X defined by i ~ j if there exists 

a morphism k such that i = j.k. Having ~' one defines the equivalence relation ~ as 

i ~ j if and only if i ~ j and j ~ i. In a concrete category, equivalence classes of the 

subobjects of X are in one-to-one correspondence with the subsets of X. 

Given a morphism f : X --+ Y in CC and a subobject i : M --+ X of X, the image 

of i under f, denoted by f[i], is given by the (£, M) factorization of f.i as shown 
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in the following diagram: 

f' 
M f[M] 

i l l J[ i] 

x y 
f 

For a subobject j: N ~ Y of Y, the preimage of j under f, denoted by 1-1[j], 

is the pullback of j along f. 

f" 
r 1(N] N 

1-l(j] l 
_J 

1 j 
x y 

f 

A pullback of f along a morphism in M is a called a restriction of f. 

6.1.3 Closed maps 

A topology is characterized by its open sets or, equivalently its closed sets. In the 

category theoretical setting of [13], one uses a collection F of morphisms which 

are thought of as being "closed". The collection F has to satisfy the following 

conditions: 
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(Cl) Fis closed under composition and it contains all isomorphisms. 

(C2) F n M is stable under pullback. 

(C3) F has the right cancellation property with respect to £, i.e. if g.f E F and 

f E E, then g E F. 

A morphism in F is called an F-closed map. F n M constitute the collection of 

F-closed subobjects. 

Example 6.1.2. Consider Top with the proper factorization system(£, M) where 

£ is the collection of surjective continuous maps and M is the collection of subspace 

embeddings. The collection F = {closed maps} satisfies (Cl) - (C3). Another 

possible candidate for F is the collection of open continuous maps. 

From now on we assume that ~is a finitely complete category with a proper 

factorization system (£, M) and a collection F of morphisms satisfying (Cl)-(C3). 

Remark 6.1.3. Let~ /Y denote the comma category of objects (A, s) over Y where 

s: A--+ Y is a morphism in~- A morphism f: (A, s) ~ (B, t) of ~/Y is just a mor­

phism f : A --+ B of~ for which t.f = s. Let Uy : ~ /Y ~ ~ be the forgetful functor 

that sends f: (A,s) ~ (B,t) to f: A~ B. Then (Ey,My) = (U.y1(E),Uy1(M)) 

becomes a proper factorization system for ~/Y with Fy = U.y1(F) satisfying (Cl)­

(C3). We will drop the subscript Y when there is no danger of confusion. 
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6.2 Dense maps 

A morphism f: X ~ Y is called F-dense ifin any factorization f = i.g, if i E FnM, 

then i is an isomorphism. 

Proposition 6.2.1. 1. If f E £, then f is F-dense. 

2. Any F-dense F-closed subobject is an isomorphism. 

Proof 1. Let f E £. Then in any factorization f = i.g, i E £ by Prop. 6.1.1. As 

i E M, i is an isomorphism. 

2. Let f be an F-dense F-closed subobject. Consider an (£, M) factorization 

f = i.g for f. Since f E F and g E £, i E F by condition (C3). As f is F-dense 

and i is an F-closed subobject, i becomes an isomorphism. On the other 

hand, g EM, since f EM. So g E £ n M and it is an isomorphism as well. 

This implies that f is an isomorphism. 

D 

6.3 Compactness 

6.3.1 Proper maps 

Morphisms which are stably F-closed deserve special attention. A morphism f is 

called F-proper if every pullback of f is in F. The class of F-proper maps will be 
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denoted by F*. The following characterization of F-proper maps will useful in the 

sequel. 

Proposition 6.3.1. A map f : X --+ Y is F-proper if and only if every restriction 

off x lz : X x Z--+ Y x Z is F-closed for any object Z. 

Proof. Let f be F-proper and Z be an object in ~. Since f x lz is a pullback 

of f, any restriction f' of f x lz is a pullback of f as well. Hence f' is F-closed. 

Conversely, suppose that every restriction off x lz is F-closed for any object Z. 

Consider the pullback off along a morphism g: B--+ Y. 

g' 
A x 

f' r l f 

B y 
g 

This diagram can be extended as follows: 

(g'' f ') 7r1 

A XxB x 

f j 

.J 

f' f x ls 

B YxB y 

(g, ls) 7r1 
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Since the outer square and the right-hand side square are pullbacks, the left-hand 

side square is a pullback. One has (g, ls} EM, since 7r2.(g, ls}= ls EM. So f' is 

a restriction off x ls and by hypothesis it is F-closed. 

D 

If Fis stable under restrictions, then Prop. 6.3.1 can be simplified further. 

Corollary 6.3.2. Suppose that F stable under restrictions. Then f is F-proper if 

and only if f x lz : X x Z --+ Y x Z is F-closed for any object Z. 

F* is closed under composition and it is the largest pullback stable subclass 

of F. As a consequence, one has F n M ~ F*. F-proper maps have some nice 

cancellation properties. 

Proposition 6.3.3. 1. If g.f E F* and g is a monomorphism, then f E F*. 

2. If g.f E F* and f E £*,where£* denotes the morphisms that are stably in£, 

then g E F* 

Proof. 1. Let f: X--+ Y, g: Y--+ Z. Assume that g.f E F* and g is monomor-

phism. Take the pullback of f along an arbitrary morphism m : B --+ Y. 

Since g is monic, the right-hand side square of the diagram below is a pull-
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back. Then lB.s = s E Fas a pullback of g.f E F*. Hence f E F*. 

s lB 
A B B 

x y z 
f g 

2. This statement follows from the composablity of adjacent pullback diagrams 

and condition (C3). 

D 

6.3.2 Compact objects 

A topological space Xis compact if and only if the unique map to the singleton set 

is proper. Taking this fact as a reference, an object X in 1f? is called F-compact if 

and only if !x: X ~ 1 is F-proper where 1 is the terminal object of <t?. 

The Kuratowski-Mrowka theorem states that a topological space Xis compact 

if and only if the projection map n2 : X x Y ~ Y is closed for any topological 

space Y. One can easily prove the Kuratowski-Mrowka theorem in our categorical 

setting. 

Proposition 6.3.4. The following are equivalent: 

1. X is F-compact. 
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2. For any object Y, the projection map 7f2 : X x Y -+ Y is F-closed. 

3. For any object Y, the projection map 7f2 : Xx Y-+ Y is F-proper. 

4. For any F-compact object Y, X x Y is F-compact. 

Proof. (l <=> 2), (1 <=> 3) Pullbacks of !x: X-+ 1 are precisely the projection maps 

7f2 : X x Y -+ Y for Y in CC. 

( 3 => 4) ( X x Y -+ 1) = ( X x Y -+ Y -+ 1). ( 4 => 1) Take Y = 1. 0 

F-compactness is carried backward by F-proper maps and forward by maps 

that are stably in £. 

Proposition 6.3.5. 1. If f: X-+ Y is F-proper with Y F-compact, then Xis 

F-compact. 

2. If f : X -+ Y is in £* with X F-compact, then Y is F-compact. 

f 
Proof. (1) (X-+ 1) = (X-+ Y-+ 1). (2) Follows from Prop. 6.3.3. 0 

A morphism f : X -+ Y is F-proper if and only f if it is an F-compact object 

in the comma category CC /Y. This follows from the fact that the unique map 

!1 : (X, !) -+ (Y, ly) going to the terminal object is f itself. 
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6.4 Separation 

6.4.1 Separated morphisms, separated objects 

A morphism f : X --+ Y is called :F-separated if the induced morphism 8 l = ( lx, lx) : 

X --+ X xy X is F-proper. 

' ' ' ' ' " XxyX x (6.4.1) 

r ]1 
x y 

f 

Since 81 EM, f is F-separated if and only if 81 is F-closed. 

Proposition 6.4.1. 1. F-separated maps are closed under composition and 

contain all monomorphisms. 

2. F-separated maps are stable under pullback. 

3. If g.f is F-separated, then f is F-separated. 

4. If g.f is F-separated and f E £ n :F*, then g is F-separated. 

Proof. See [13]. D 
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Like F-compactness, one calls a ('Ir, V)-category X F-separated (or F-Hausdorff) 

if and only if !x: X--+ 1 is F-separated. This means that 8x = (lx, lx): X--+ XxX 

is F-proper. Since 8x EM this is equivalent to 6x being F-closed. 

Example 6.4.2. Consider Top with F = {closed maps}. A continuous map f is 

F-separated if and only if two distinct points in the same fibre off is separated by 

disjoint open sets. A topological space Xis F-separated if and only if it is Hausdorff. 

In the case of F = {open maps}, F-separation coincide with local injectivity for 

maps and discreteness for objects. 

Proposition 6.4.3. The following are equivalent: 

1. X is F-separated. 

2. Any morphism f : X --+ Y is F-separated. 

3. There exists an F-separated morphism f: X--+ Y with Y F-separated. 

4. For any Y, the projection X x Y --+ Y is F-separated. 

5. For any F-separated Y, X x Y is F-separated. 

6. For any f : X --+ Y such that f E £ n F*, Y is F-separated. 

7. In any equalizer diagram 

s 
A B x 
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s is F-proper. 

f Proof. (1) => (2) (X--+ 1) = (X--+ Y--+ 1), apply Prop. 6.4.1. 

(2) => (3) Take Y = 1. (3) => (1) By Prop. 6.4.1. 

(1) <=> ( 4) <=> (5) Similar to Prop. 6.3.4. 

(1) => (6) By (X--+ 1) = (X .!+ Y--+ 1) and Prop. 6.4.1. (6) => (1) Take f = lx. 

(1) <=> (7) The pullbacks of 8x are exactly such equalizers s. D 

Corollary 6.4.4. The full subcategory of F-compact objects and the full subcat-

egory of F-separated objects is closed under finite limits in CC. 

Proof. The full subcategory of F-compact objects is closed under finite limits by 

Prop. 6.3.4, Prop. 6.4.3-(7) and Prop. 6.3.5. The full subcategory of F-separated ob-

jects is closed under finite limits by Prop. 6.4.3-(3),(5) and the fact that monomor-

phisms are F-separated. D 

Observing diagram ( 6.4. l), it is easy to see as 81 = ( lx, lx) : X --+ X xy X is the 

morphism 8(XJ) = (lx, lx): (X, !) --+ (X, !) x (X, !) in CC/Y. Hence a morphism 

f: X --+ Y in CC is F-separated if and only if (X, !) is an F-separated object in the 

comma category CC /Y. 
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6.4.2 Relationship between compactness and separation 

In Top, a continuous map between a compact domain and a Hausdorff codomain 

is proper. In our categorical framework one has the following result. 

Proposition 6.4.5. Any morphism f : X ~ Y with X F-compact and Y F­

separated is F-proper. 

Proof. Let f: X ~ Y be a morphism where Xis F-compact and Y is F-separated. 

f can be written as 7r2.(lx, !). Since (lx, !) is a pullback of Oy and Y is F­

separated, ( lx, !) is F-proper. On the other hand 7r2 is F-proper as it is a pullback 

of !x: X ~ 1 and X is F-compact. Hence f = 7r2.(lx, !) is F-proper. D 

Corollary 6.4.6. Let Y be an F-compact and F-separated object. Then a mor­

phism f : X ~ Y is F-proper if and only if X is F-compact. 

Proof. Follows by Prop. 6.4.5 and Prop. 6.3.5. D 

Corollary 6.4. 7. If g.f is F-proper and g is F-separated then f is F-proper. 

Proof. Let f: X ~ Y and g: Y ~ Z. Consider the comma category ~/Z. One has 

f : g.f ~ g where g.f is an F-compact object and g is an F-separated object in 

~/Z. By Prop. 6.4.5, f is an F-proper map in ~/Zand hence in~- D 

An F-proper morphism cannot be extended along an F-dense subobject with 

an F-separated codomain. 
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Corollary 6.4.8. Let f: X ~ Y be an F-proper morphism. In any factorization 

f = ( X .! Z ~ Y) where g is an F-dense subobject and Z is F-separated, g is an 

isomorphism. 

Proof. Since Z is F-separated, h is F-separated. Then g is F-proper by Cor. 6.4. 7. 

So g is an F-dense F-closed subobject, which is indeed an isomorphism by Prop. 6.2.1. 

D 

6.5 Perfect maps 

A morphism f is called F-perfect if it is both F-proper and F-separated. So an 

F-perfect morphism f : X ~ Y is an F-compact Hausdorff object in Cef' /Y. 

Proposition 6.5.1. 1. F-perfect morphisms are closed under composition and 

stable under pullback. 

2. If g.f is F-perfect and g is F-separated then f is F-perfect. 

3. If g.f is F-perfect, f is F-perfect and stably in£, then g is F-perfect. 

Proof. Follows from Prop. 6.3.3, Prop. 6.4.l and Cor. 6.4.7. D 

Example 6.5.2. Consider Top with F = {open maps}. In this case, F-perfect 

maps correspond precisely to open and locally injective maps. These maps are 

local homeomorphisms in Top. 
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6.6 Compactifications 

An F-compactification of an object Xis an F-dense embedding i: X ~ K where 

K is F-compact and F-separated. An object X is called F-Tychonoff if X admits 

an F-compactification. Let F-Tych denote the full subcategory of F-Tychonoff ob­

jects and F-CompHaus denote the full subcategory of F-compact and F-separated 

objects. Consider a functor /3 : F-Tych ~ F-CompHaus which comes with a natural 

transformation {/3x : X ~ /3X}. One calls /3 a functorial F-compactification if each 

/3 x is an F-dense embedding. (By abuse of notation the functor and the natural 

transformation will be denoted by the same letter). 

Example 6.6.1. The main example of an F-compactification is the Stone-Cech 

compactification in Top with F = closed maps. 

By considering F-compactifications in the comma category, one can also develop 

an F-compactification of morphisms. Let f : X ~ Y. Consider the following 
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diagram: 

----~f3X 

l Pf 

(6.6.1) 

Y---~f3Y 
{3y 

/31 is an F-compactification off as follows. Firstly, µI EM since it is a pullback 

of {3y EM. One has {31 EM as /3x EM. Then f3x = µ1./31 where f3x is F-dense 

and µl, /31 EM. This implies that /31 is F-dense, assuming that morphisms in M 

are F-initial (a morphism g: Y ~ Z is called F-initial if any F-closed subobject of 

Y is a pullback of an F-closed subobject of Z along g). On the other hand, ""l is 

F-perfect as a pullback of /3 f. Hence we have an F-dense embedding /31 : f ~ ""I 

in the comma category CC /Y where ""I is F-compact and F-separated. So one can 

think /3 f : f ~ ""I as an F-compactification of f in CC /Y. 

The following proposition provides a characterization of F-perfect morphisms. 

The analogous result in Top with respect to the Stone-Cech compactification be-

longs to Isbell and Henriksen (29]. It states that {31 sends f3X 'X into f3Y 'Y 

which is equivalent to saying that the naturality square (6.6.2) is a pullback. 

Proposition 6.6.2. Suppose that /3 is a functorial F-compactification and mor-
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phisms in Mare F-initial. For a morphism f: X ~ Y, the following are equivalent: 

1. f is F-perfect. 

2. f cannot be extended along an F-dense subobject with an F-separated codomain. 

3. The naturality diagram below is a pullback. 

f3x 

(6.6.2) 

Y----f3Y 
{3y 

Proof. (l ~ 2) By Cor. 6.4.8. 

(2 ~ 3) Under the assumptions the morphism f31 in diagram (6.6.1) is an F-

dense subobject, hence an isomorphism. This means that the naturality square is 

a pullback. 

(3 ~ 1) f is F-perfect, since it is a pullback of f3 f which is F-perfect. D 

If F-Comp Haus is reflective in F-Tych with the reflection morphisms f3x : X ~ 

{3X, then f3 is a functorial compactification. Furthermore, the reflexivity induces 

(F-antiperfect, F-perfect) factorization system on F-Tych where a morphism is 

called F-antiperfect if its image under f3 is an isomorphism. Given a morphism 

f: X ~ Y, one has the factorization f = KJ.f3J as given in diagram (6.6.1) where 
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"'f is an F-perfect morphism and {31 is an F-antiperfect morphism. Let P:;: and 

A:;: denote the collection of F-perfect morphisms and F-antiperfect morphisms in 

F-Tych respectively. 

Proposition 6.6.3. Suppose that F-Comp Haus is reflective in F-Tych and mor­

phisms in M are F-initial. Then (A:;:, P:;:) is a (generally non-proper) factorization 

system for F-Tych. 

Proof. See [13]. 0 

6.7 Open maps 

Now we consider another important topological concept, openness for morphisms. 

A continuous open map I: X ~ Y in Top reflects dense subsets in the sense that 

given a dense subset M ~ Y, 1-1 ( M) is dense in X. Secondly, in Top open maps 

are stable under pullback. With the help of these observations one can define open 

morphisms in our category theoretical setting. 

A morphism I : X ~ Y in CC is said to reflect F -density if for any F-dense 

subobject m of Y, 1-1[m] is an F-dense subobject of X. One calls IF-open if it 

stably reflects F-density, i.e. every pullback of I reflects F-density. The collection 

F-open morphisms is denoted by F+. 

Proposition 6. 7 .1. 1. F+ is closed under composition and contains isomor-
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phisms. 

2. ;:+ is stable under pullback. 

3. If g.f E ;:+ and g is monic then f E ;:+. 

4. If g.f E ;:+ and f E £* then g E ;:+. 

Proof. (1) and (2) are trivial. (3) can be proven similar to Prop. 6.3.3. To show 

( 4), let g.f E ;:+ and f E £*. A pullback of g.f will be g'.f' where g' is a pullback 

of g and f' E £ is a pullback off. So it is enough to show that g reflects F-density 

whenever g.f does and f E £*. Let m be an F-dense subobject of the codomain 

of g. Since f E £, one has g-1[m] = f[J- 1[g-1[m]]] = J[(g.J)- 1 [m]]. (g.J)-1[m] is 

F-dense, as g.f reflects F-density. Then f[(g.f)- 1 [m]] is F-dense, since f E £. D 

As a consequence, ;:+ satisfies the conditions (Cl) - ( C3) and induces a topo­

logical structure on 71 in case£ is stable under pullback. 

A topological space is discrete if and only if 8 x : X ~ X x X is an open map. 

A continuous map is a local homeomorphism if and only if it is open and locally 

injective. Taking these as a reference, one calls an object X in 71 F-discrete if X 

is ;:+-separated. A morphism f : X ~ Y is called an F -local homeomorphism if f 

is ;:+-perfect, i.e. both f and 8 f are F-open. 
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7 Functional topology with respect to L-closed 

morphisms 
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In this chapter we develop topological notions for ('IT', V)-categories using the 

categorical framework outlined in Chapter 6. Our main parameter F will be the 

collection of "L-closed" ('IT', V)-functors. 

7.1 Factorization system, L-closed morphisms 

Let 

£ = { surjective ('IT', V)-functors} & M = {full embeddings}. 

Then (£, M) is a proper factorization system, as (1r, V)-Cat is topological over 

Set. This will be the default factorization system we will consider for ('IT', V)-Cat. 

Definition 7.1.1. Let f: X--+ Y be a ('IT', V)-functor. We say that f is L-closed if 

+-+ +-------+ 
it preserves L-closure, i.e. f(M) = f(M) for all M ~ X. 

+-+ +-------+ 
For a ('IT', V)-functor f: X--+ Y, one has /(M) ~ f(M) by Prop. 3.4.13. So 

+-------+ +-+ 
f is L-closed ~ J(M) ~ f(M) VM ~ X. 

+-+X ~M 
In particular, an embedding i : M ~ X is L-closed if and only if N ~ N for all 

N ~ M. Since L-closure is hereditary, 

i: M ~Xis L-closed ~ Mis an L-closed subset of X. 

One can equivalently define an L-closed (1r, V)-functor as a morphism which 

preserves L-closed subobjects. We will denote the collection of L-closed ('IT', V)-

functors by C. 
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Proposition 7.1.2. C satisfies conditions (Cl) - (C3) of Subsection 6.1.3. 

Proof. (Cl) L-closed maps are trivially closed under composition. Let I: X ~ Y 

be an isomorphism in (11', V)-Cat with the inverse g: Y ~ X. By Prop. 3.4.13, 

for all M ~ X. So I is L-closed. 

(C2) Consider the following pullback square where N ~ Y is an L-closed embed-

ding. 

r 1 (N) N 

r r 
x y 

I 

~ 

Since N ~ Y is L-closed, N is L-closed, i.e. N = N. By Prop. 3.4.13, we have 

This means that 1-1(N) an is L-closed subset of X. Hence 1-1(N) ~ X is 

L-closed. 

(C3) Let I : X ~ Y , g : Y ~ Z be (11', V)-functors such that g.f is L-closed and 

I E £. Take any N ~ Y. Since I is surjective, there exists M ~ X such that 
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J(M) = N. Then 

+--------+ ~ ~ ~ 

g(N) = g(f(M)) = g.f(M) ~ g(f(M)) = g(N). 

Hence g is L-closed. 

D 

Proposition 7.1.3. C is stable under restrictions. 

Proof. Let f: X ~ Y be L-closed. It is enough to consider the pullback off along 

an embedding N ~ Y. Consider the following pullback diagram: 

!' 
N 

[ 
x y 

f 

Take any L-closed set C ~ 1-1 (N). By Prop. 3.4.15, there exists an L-closed set 

A~ X such that C = 1-1(N) n A. We have 

J(C) = J(r1(N) n A)= N n J(A). 

Since f is L-closed, f(A) is L-closed. This implies that f(C) is L-closed in N. 

Therefore f' preserves L-closed subobjects, f' is L-closed. 

The following lemma will be helpful in the sequel. 
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Lemma 7.1.4. 1. Fully faithful and surjective ('IT', V)-functors are L-closed. 

2. Let f : X ~ Y be a fully faithful ('IT', V)-functor. Then f is L-closed if and 

only if f (X) is L-closed in Y. 

Proof. 1. Let f: (X, a)~ (Y, b) be a fully faithful and surjective ('IT', V)-functor. 

~ 

Take M £ X and y E f(M). Then 

ks V b(tJ,y)@Tb(Tey.ey(y),tJ). 
l)ET{f(M)) 

Since f is surjective, y = f ( x) for some x E X. T f is surjective, as T preserves 

surjections. So 

k s V b(Tf(~),f(x))@Tb(Tey.ey(f(x)),Tf(~)) 
~eTM 

V b(Tf(~),f(x))@Tb(ery.ey.f(x),Tf(~)) 
~eTM 

= V b(Tf(~),f(x))@Tb(Tf2 .erx.ex(x),Tf(~)) 
~eTM 

V (f°.b.Tf)(~,x) ® (Tf°.Tb.T/2)(Tex.ex(x),~) 
~eTM 

V a(~,x)@Ta(Tex.ex(x),~). 
~eTM 

~ ~ ~ ~ 

This means that x EM and y E f(M). Therefore f(M) £ f(M), f is L-closed. 

2. Let f: X ~ Y be fully faithful. Consider the canonical (£, M) factorization 

X ! f (X) ~ Y of f. Since f is fully faithful, so is f'. Hence f' is fully 

faithful and surjective which implies that it is L-closed. 
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Suppose that f is L-closed, then i is L-closed by condition (C3). Conversely, 

if i is L-closed, then f = i.f' is L-closed. Hence f is L-closed if and only if i 

is L-closed. The latter is equivalent to f (X) being L-closed in Y. 

0 

7.2 C-compactness 

Let X be a ('JI', V)-category. Following Subsection 6.3.2, X is called C-compact 

if and only if !x : X ~ 1 is C-proper, i.e. stably L-closed. Equivalently, X is C­

compact if and only if for any ('JI', V)-category Y the projection map 7r2 : Xx Y ~ Y 

is L-closed. 

Proposition 7.2.1. A (1r, V)-functor f: X ~ Y is C-proper if and only if f x lz: 

Xx Z ~ Y x Z is L-closed for any ('JI', V)-category Z. 

Proof. Follows by Cor. 6.3.2 and Prop. 7.1.3. 0 

Examples 7.2.2. 1. In Ord, every object is C-compact. To show this, we first 

characterize C-proper morphisms in Ord. 

Claim: A monotone map f: (X, ~) ~ (Y, ~) is C-proper if and only if for any 

x EX with f(x) '.::! y there exists w E 1-1( {y}) with x '.::! w. 

We prove the claim using Prop. 7.2.1. Suppose that f is C-proper, then 

f x ly is L-closed. Take x E X with f (x) '.::! y and let K = { (x, y)}. Then 
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~ ~ 

(y, y) EI x ly(K) ~ lxly(K), as lxly is L-closed. So there exists (w, y) EK 

such that Ix ly(w,y) = (y,y). This implies that x ~ w and l(w) = y. 

Conversely, suppose that for any x EX with l(x) ~ y there exists w E 1-1 ( {y}) 

with x ~ w. Take an ordered set (Z, ~)and M ~ XxZ. Let (y, z) EI x lz(M). 

Then there exists ( x, z) E M such that I ( x) ~ y. By hypothesis, there exists 

+-+ 
w E 1-1({y}) with x ~ w. Hence (w,z) EM and Ix lz(w,z) = (y,z), which 

.+--+ .+--+ 

implies (y, z) EI x lz(M). Therefore Ix lz(M) ~Ix lz(M) and Ix lz is 

L-closed. 

Following this characterization, one sees that !x : X ~ 1 is C-proper for any 

ordered set X. Therefore every ordered set is C-compact. 

Observe that C-proper maps coincide with L-complete maps in Ord (see Ex-

amples 4.1.3). 

2. In Met, a metric space (X, d) is C-compact if and only if LX is compact 

where L: Met~ Top is the functor induced by the L-closure. To show this, 

we first characterize C-proper morphisms in Met. 

Claim: A nonexpansive map I: (X, d) ~ (Y, d') is C-proper if and only if for 

any sequence (xn) in X with lim l(xn) = y E Y, there exists a subsequence 
n-+oo 

(xnk) of (xn) and x E 1-1({y}) such that lim Xnk = x. 
n-+oo 

We prove the claim using Prop. 7.2.1. Firstly, assume that f is C-proper. 
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Then f x ly: (Xx Y, d x d') ~ (Y x Y, d' x d') is L-closed. Take any sequence 

(xn) in X such that f(xn) ~ y for some y E Y. Let K £Xx Y be the elements 

of the sequence ( Xn, y). Since f ( Xn) converges to y, for any c > 0 there exists 

m E N such that 

d'(y, f(xm)) + d'(f(xm), y) < €. 

Then 

max { d' ( y, f ( Xm)), d' ( y, y)} + max { d' ( f ( Xm), y), d' ( y, y)} < c, 

which means 

d' X d' ( ( Y, Y), ( J ( Xm), Y)) + d' X d' ( ( J ( Xm), Y), ( Y, Y)) S c. 

Hence 

inf { d' x d' ( ( y, y), ( f ( Xn), y)) + d' x d' ( ( f ( Xn), y), ( y, y))} = 0. 
(xn,y)eK 

~ 

So (y, y) E f x ly(K). Since f x ly is L-closed, (y, y) E f x ly(K). Hence 

~ 

there exists (x, y) E K such that f x ly(x, y) = (y, y), i.e. f (x) = y. As f is 

nonexpansive, we have 

inf {d x d'((x, y), (xn, y)) + d x d'((xn, y), (x, y))} = 0. 
(xn,y)eK 

So 

inf {max{d(x, Xn), d'(y, y)} + max{d(xn, x), d'(y, y)}} = 0, 
(xn,y)eK 
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inf { d(x, Xn) + d(xn, x)} = 0. 
(xn,y)eK 

For any k E N, pick Xnk such that 

Then one obtains a subsequence (xnk) of (xn) with lim Xnk = x E r 1 ( {y} ). 
n_.oo 

Conversely, assume that any sequence (xn) such that f (xn) -+ y E Y, has a 

convergent subsequence (xnk) whose limit is in J-1( {y} ). Take any metric 

space (Z, d"). We need to show that f x lz: (Xx Z, d x d") ~ (Y x Z, d' x d") 

is L-closed. Let M ~Xx Zand (y, z) E f x lz(M). This means 

inf {max{d'(y,J(xo)), d"(z, zo)} + max{d'(f(xo), y), d"(z0 , z)}} = 0. 
(xo,zo)EM 

Then for any n EN there exists (xn, Zn) EM such that 

max { d' ( y, f ( Xn)), d" ( z, Zn)} + max { d' ( f ( Xn), y), d" (Zn, z)} < _!_. 
2n 

The sequence f(xn) converges toy, as 

d'(y,J(xn)) +d'(f(xn),y) < 2~. 

Similarly (zn) converges to z. Then (xn) has a subsequence (xnk) such that 

( Xnk) -+ x and f ( x) = y by hypothesis. Adjusting the indices if necessary, for 

any nk E N one can find ( Xnk, Znk) E M such that 

max{d(x, Xnk), d"(z, Znk)} + max{d(xnk' x), d"(znk' z)} < -
2

1 
+ -

2
1 

<I_. 
nk nk nk 

202 



+-+ +-+ +-+ 
Hence (x, z) EM and (y, z) E f x lz(M). Therefore f x lz(M) £ f x lz(M), 

f x lz is L-closed. 

Following this characterization, !x : X ~ 1 is C-proper if and only if every 

sequence in X has a convergent subsequence. So a metric space (X, d) is C-

compact if and only if (X, d) is sequentially compact. The latter is equivalent 

to LX being compact, where the topology of LX is induced by the L-closure 

(see Examples 5.2.4). 

In the remaining part of this section we will try to formulate C-compactness 

in Top and App. For topological spaces this notion is known as b-compactness 

[51]. In App, C-compactness coincides with Zariski compactness [26]. This concept 

has not been characterized in concrete terms yet. To do that we will require some 

intermediate results. As a principle we will try to obtain these results in the most 

general terms. 

Recall that a ('11', V)-category X is C-compact if and only if for any ('11', V)-

category Y the projection map 1f2 : X x Y --+ Y is L-closed. Consider the functor 

L : ('11', V)-Cat --+ Top induced by the L-closure. One sees that 7r2 : Xx Y --+ Y 

being L-closed is equivalent to L7r2 : L(X x Y) --+ LY being closure preserving. So 

X is C-compact if and only if L7r2 : L(X x Y) --+ LY is closure preserving for any 

('11', V)-category Y. 

Our first aim is to characterize C-compactness of a (U, V)-category X, for V = 2 
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or P +,in terms of compactness of the topological space LX. Observe that, different 

from the characterization of C-compactness, this requires the projection map ?T2 : 

LX x Y ~ Y to be closure preserving for any topological space Y. 

Now we look at a characterization of compactness for topological spaces. Given 

an ultrafilter .:#"on a set X, define the test space X§ =Xu { oo} with the following 

topology [5]: 

• For each x * oo, the neighbourhoods of x are all subsets of X§ that contain 

x. 

• The neighbourhoods of the point oo are {Fu { oo} IF E .:#"}. 

Proposition 7.2.3. [21) For a topological space X, the following are equivalent: 

1. X is compact, i.e. every ultrafilter in X converges. 

2. For each topological space Y, the projection ?T2 : X x Y ~ Y is closure pre-

serving. 

3. For each nonconvergent ultrafilter .:#" on X, the projection ?Tx§ : Xx X§ -+ 

x§ is closure preserving. 

By generalizing a result in [21), we obtain the following characterization of C­

compactness. 
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Theorem 7.2.4. Suppose that L: (11"', V)-Cat--+ Top satisfies the following condi-

tion: 

(t) For each (11"', V)-category X and each nonconvergent ultrafilter !#"on X, X§ E 

L(('lr, V)-Cat). 

Then LX is compact if X is C-compact. Furthermore, if L preserves finite products, 

then X is C-compact if and only if LX is compact. 

Proof. Assume that X is a (11', V)-category and ( t) holds. 

Let X be C-compact and !#" be a nonconvergent ultrafilter on X. In light of the 

Prop. 7.2.3, we need to show that nx§ : LX x X§ --+ X§ is closure preserving. By 

condition (t), there exists a (11"', V)-category Y such that LY= X§. So it is enough 

to show that 7rLY : LX x LY --+ LY is closure preserving. One has the following 

commutative diagram in Top: 

L(X x Y) 

idl~ 
LX x LY LY 

7rLY 

Since Xis C-compact, Ln2 is closure preserving. One has L7r2 = 7rLy.id where L7r2 is 

closure preserving and id is surjective. This implies that 7rLY is closure preserving. 

Conversely, assume that LX is compact. Then 7rLY : LX x LY--+ LY is closure 

preserving for any (11"', V)-category Y. If L preserves finite products, then id: L(X x 
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Y)--+ LX x LY is a homeomorphism, hence closure preserving. Then L7r2 = 7rLy.id 

is closure preserving for any ('Ir, V)-category Y. Therefore X is C-compact. 

D 

Corollary 7.2.5. Let X be a (lU, V)-category where V is 2 or P +· Then X is 

C-compact if and only if LX is compact. 

Proof. We check that the conditions of Theorem 7.2.4 are satisfied. Firstly, L(u,2) 

and L(lU,IP'+) preserve finite products by Prop. 5.1.9. Condition (t) is satisfied as 

follows: 

Given a topological space X and any nonconvergent ultrafilter § on X, consider 

the topological space xg. = x u { 00} with the following topology [21]: 

• For each x * oo, the neighbourhoods of x are the cofinite subsets of X which 

contain x and oo. 

• The neighbourhoods of the point oo are {Fu { oo} I F E §}. 

One has Lcu,2)Xff = x§ [21). To see this, take x E X. For any y E X, y has 

a neighbourhood that does not contain x. So y ¢ { x}. Also oo ¢ { x}, as § is 

nonconvergent. Then { x} = { x }. So { x} is open in Lcu,2)Xg. and any subset of 

Xu { oo} that contains xis a neighbourhood of x. On the other hand, { oo} = xg_, 

since any neighbourhood of any x EX contains oo. Then the neighbourhoods of oo 

in Lcu,2)Xg. are (Fu { oo}) n xg. =Fu { oo} for FE§. Therefore Lcu,2)Xg. = X§. 
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Given an approach space X and any nonconvergent ultrafilter §on X, consider 

the appoach space i(X§) where i : Top ~ App is the subcategory embedding. 

Then Lcu,IP+)(i(X§)) = Lcu,2)X§ = Xff by commutativity of diagram (5.2.5). So 

condition ( t) of Theorem 7.2.4 is satisfied for Top and App. 

0 

Remark 7.2.6. Examples 7.2.2 and Cor. 7.2.5 show that C-compactness can be 

characterized in terms of the functor L for metric, topological and approach spaces 

with the exception of ordered sets where every ordered set is C-compact. 

We will characterize C-compactness (Zariski compactness) for approach spaces 

using bitopological spaces and Salbany's notion of 2-compactness. We present some 

useful terminology from (51] below. 

Let X = (X, T, a) be a bitopological space. X is called 2-compact if r v a is 

compact. At each point x EX, rva has the local basis {OnU Ix E 0 E r,x EU Ea}. 

One calls X 2-separated if T v a is Hausdorff. X is called 2-regular if both of the 

following conditions are satisfied: 

• For any point x EX and any r-closed set C, there exist a disjoint r-open set 

U and a a-open set 0 such that x EU, C £ 0. 

• For any point x E X and any a-closed set K, there exist a disjoint r -open set 

U and a a-open set 0 such that x E 0, K £ U. 
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Recall from Section 5.2 that an approach space X = (X, 8) corresponds to 

the bitopological space Bcu,n»+)X = (X, 7, 7) where 7 and 7 are the topologies 

induced by the natural closure and the dual closure respectively. Furthermore, one 

has Leu.IP+) = J.Bcu,IP+) by Prop. 5.2.5, i.e. Lcu,IP+)X = J(X, 7, 7) = (X, 7 v 7). By 

Car. 7.2.5, the approach space Xis C-compact if and only if (X, 7 v 7) is compact 

or, equivalently, (X, 7, 7) is 2-compact. One has the following characterization of 

2-compactness for 2-regular bitopological spaces. 

Proposition 7.2.7. [51] Let X = (X,T,a-) be a 2-regular bitopological space. Xis 

2-compact if and only if every T-closed set is a-compact and every a-closed set is 

T-compact. 

In the above proposition, r-compact means compact with respect to the topol­

ogy T, i.e. every T-open cover has a finite subcover. Likewise for a-compactness. 

Lemma 7.2.8. Let X = (X, 8) be an approach space. Then Bcu,n»+)X = (X, 7, 7) 

is 2-regular. 

Proof. Let K ~ X be 7-closed and x E X 'K. Since X' K is 7-open, there 

exists c > 0 such that {x}(c:) ~ X 'K by Examples 5.2.2. {x}(c:) is 7-closed, as 

({x}(c:))(o) ~ {x}<c:)_ So there exist disjoint 7-open set {x}((c:)) and 7-open set 

X '{x}(c:) such that x E {x}((c:)) and K ~ X' {x}(c:)_ 

Now suppose that C ~ X is 7-closed and x EX' C. Since X 'C is 7-open, 
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8( C, x) > 0 by Examples 5.2.1. Pick c such that 8( C, x) > c > 0. Consider LJ {y }((c:)). 
yeC 

Since each {y }«c:>> is 7-open, so is LJ {y }«c:>>. Observe that LJ {y }<c:> ~ c<c:>. So 
~c ~c 

(LJ{y}(c:))(O) ~ (C(c:))(O) ~. c<c:>. Hence we have 
yeC 

C ~ u {y }((c:)) ~ ( u {y }(c))(O) ~ C(c:). 
yeC yeC 

Since <5(C,x) > c, x E (X" c<c:>) ~ (X" (LJ{y}<c:>)<0>) which is "1-open. On the 
yeC 

other hand, C is a subset of the 7-open set LJ{y}((c:)) where ( LJ{y}((c)))n(x' 
yeC yeC 

(LJ{y}<c:>)<0>) = 0. So we are done 
yeC 

D 

Corollary 7.2.9. Let X = (X, 8) be an approach space with Bcu,!P'+)X = (X, ""t, 7). 

X is C-compact (Zariski compact) if and only if the following conditions hold: 

· 1. Every "°1-closed subset of X is 7-compact. 

2. Every 7-closed subset of Xis ""1-compact. 

Proof. Follows from Cor. 7.2.5, Prop. 5.2.5, Prop. 7.2. 7 and Prop. 7.2.8. D 

This result also applies to Top. Furthermore, the above characterization can 

be carried one step further. 

Corollary 7.2.10. (51) Let X be a topological space. Xis C-compact (b-compact) 

if and only if the following conditions hold. 

209 



1. Every subset of X is compact. 

2. Every closed subset of X can be written as a finite union of point closures. 

Proof. Let X be a topological space, LX = (X, 7). Suppose that Xis C-compact, 

i.e. LX is compact. Take any M ~ X and let { Oi I i E I} be an arbitrary open 

cover of M. Then {Oi Ii E J}U{{x} Ix~ LJOi} is an 7-open cover of X. Since 
iel 

n m __ 

LX is compact, there exists n, m E N such that X = (LJ Oi) LJ ( LJ { Xj}). But 
i=l j=l 

-- n 
{xi} ~ X 'LJOi for 1 ~ j ~ m, since X 'LJOi is closed. Hence M ~ LJOi, M 

iel iel i=l 

is compact. Now let C £ X be closed. { {x} I x E C} is a 7-open cover of C. 

Since X is C-compact, every closed subset of X is 7-compact. Hence there exists 
n __ 

Xi, ... , Xn EC such that C = LJ {xi}· 
i=l 

Conversely, assume that every subset of Xis compact and every closed subset of 

X can be written as a finite union of point closures. Then trivially every 7-closed 

subset of Xis compact. Let C £ X be closed. Consider an open cover {{Yi} Ii EI} 
n __ 

of C by 7-basic open sets. One has C = LJ { Xj} by hypothesis. Then for any 
j=l 

n __ n __ 

1 ~ j ~ n, there exists Yii such that Xj E {YiJ· Hence C = LJ {xi}£ LJ {YiJ· So C 
j=l j=l 

is 7-compact. 

D 
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7.3 C-separation, C- compact C-separated objects 

Following Section 6.4, a (11', V)-functor f: X--+ Y is called C-separated if and only 

if 81 = (lx, lx): X--+ X xy Xis L-closed. 

Proposition 7.3.1. Let f: X --+ Y be a (11', V)-functor. Then f is C-separated if 

and only if it is L-separated. 

Proof. f is C-separated if and only if 8 f is L-closed. Since 81 is fully faithful, it is 

enough to consider whether 81(X) is L-closed in X xy X by Lemma 7.1.4. Observe 

that 

~xxx 

81(X) n (X xy X) 

+.+XxX 
= ~ n (X xy X) 

{(x,z) Ix~ z, J(x) = f(z)} 

~XxyX 

by Prop. 3.4.13 and Prop. 3.5.1. 81(X) = 81(X) = ~ if and only if x ~ z 

and f(x) = f (z) implies x = z for any x, z E X. This is equivalent to f being 

L-separa ted. D 

A (11', V)-category Xis called C-separated if and only if !x: X--+ 1 is C-separated. 

Corollary 7.3.2. Let X be a (11', V)-category. Then Xis C-separated if and only 

if it is L-separated. 
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Proof By Prop. 7.3.1, X is C-separated if and only if !x : X --+ 1 is L-separated. 

This is equivalent to X being L-separated. 0 

C-compact C-separated objects in Top are the b-compact T0 spaces. As stated 

in [51], a topological space Xis T0 if and only if its b-topology is Hausdorff. We also 

know that X is b-compact if and only if its b-topology is compact by Cor. 7.2.5. 

Hence a topological space Xis C-compact C-separated if and only if its b-topology 

is compact Hausdorff. 

In Top, separated objects with respect to the closed maps are precisely Haus­

dorff spaces. So a topological space X is C-separated if and only if LX is separated. 

This result can also be extended to approach spaces. 

Proposition 7.3.3. Let X = (X, 8) be an approach space. Xis C-separated if and 

only if LX is separated (Hausdorff). 

Proof. Let X = (X, 8) be C-separated and x, z EX be two distinct points. Since X 

is C-separated, i.e. L-separated, NX = (X, 7) is T0 by Examples 3.1.3. Without 

loss of generality, assume that there exists 0 E 7 that contains z but not x. Then 

x E X " 0 which is 7-closed. Since B(IU,IP\)X = ( X, 7, 7) is 2-regular, there exists 

disjoint V E 7, U E T such that x E X " 0 ~ U and z E V. Then LX is Hausdorff, 

since its topology is the join of 7 and T by Prop. 5.2.5. 

Conversely, let LX be Hausdorff. We need to show that NX = (X, 7) is T0 . Let 
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x, z E X such that {tj = W, i.e. { x} (o) = { z} (o). By way of contradiction, assume 

x t. z. Since LX is Hausdorff, there exists c, ;\ > 0, U, VE-; such that x E Un{x}((c:))' 

z E Vn{z}((A)) with Un{x}((c:))nVn{z}((A)) = 0. Then Un{x}<0>nvn{z}(o) = 0. 

But this is a contradiction, since x E Un { x} (O) n V n { z} (O). Hence x = z, NX is 

D 

So an approach space X = (X, 8) is C-compact C-separated if and only if LX 

is compact Hausdorff. Hence one has the following is a pullback diagram in CAT 

where C-cpct C-sep denotes the full subcategory of C-compact C-separated approach 

spaces. 

L 
C-cpct C-sep Cpct Haus 

r~ 
r 

App Top 

L 

In fact we have the following commutative diagram where the right hand side square 

is a pullback by the definitions of 2-compactness and 2-separation. Since L = J.B, 
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the left hand side square is a pullback as well. 

B J 
C-cpct C-sep 2-cpct 2-sep Cpct Haus 

r r r 
App Bi Top Top 

B J 

7.4 C-density 

In accordance with Section 6.2, a (11', V)-functor f is called C-dense if and only if 

in any factorization f = i.g, if i EC n M, then i is an isomorphism. 

Proposition 7.4.1. Let f: X ~ Y be a (11', V)-functor. f is C-dense if and only if 

f is L-dense. 

Proof. Let f be C-dense. Consider the X !. f(:X) ~ Y factorization for f. Since 

~ 

f (X) is L-closed in Y, i is L-closed. Then i EC n M. As f is C-dense, i becomes 

~ 

an isomorphism. Hence f(X) = Y and f is L-dense by Remark 3.4.12. 

Conversely, suppose that f is L-dense. Consider any factorization X ! Z .!::; Y 

~ 

off where i EC nM. By Prop. 2.8.2, i is L-dense. So i(Z) = Y. On the other hand, 

i(Z) is L-closed, since i is L-closed. Hence i(Z) = Y, i E £. Therefore i E £ n M, i 

is an isomorphism. D 
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~ 

This means that a ('Ir, V)-functor f: X--+ Y is C-dense if and only if f(X) = Y. 

Corollary 7.4.2. Any L-dense L-closed subobject is an isomorphism. 

Proof. Follows from Prop. 6.2.l and Prop. 7.4.1. D 

Example 7.4.3. Suppose that f : X --+ Y is a continuous map between the topo-

logical spaces. Let r 1
: OY--+ OX denote the corresponding frame homomorphism 

between the lattice of open sets of Y and the lattice of open sets of X. 

Claim: f: X--+ Y is C-dense (L-dense) if and only if 1-1 
: OY--+ OX is injective. 

To see this, let f : X --+ Y be C-dense. Take open sets 0 1 , 0 2 ~ Y such that 

~ 

y E 0 1. Since f is C-dense, l (X) = Y which means that l (X) is dense in LY. 

So l(X) n 01 n {y} * 0. This implies l(X) n 0 2 n {y} * 0. Hence there exists 

z E 0 2 n { y}. Since z E { y}, any open set containing z also contains y. In particular, 

y E 02. Hence 01 ~ 02. Similarly, we get 02 ~ 01. Therefore rl is injective. 

Conversely, assume that r 1 is injective. Let g, h : Y --+ 2 be continuous maps 

where 2 is the Sierpinski space. Suppose that g * h. Then g-1
( {O}) * h-1 ( {O} ). 

Since l-1 is injective, r 1(g-1
( {O} )) * l-1(h-1

( {O} )). Hence g.j * h.l. So given 

any g, h: Y--+ 2, g.f = h.l implies g = h. Then l is L-dense by Remark 3.4.12. 
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7.5 C-openness 

Following Section 6.7, a ('Ir, V)-functor is called C-open if and only if it stably 

reflects C-density, i.e. L-density. We will denote the collection of C-open maps by 

c+. 

Definition 7.5.1. Let I: X ~ Y be a ('Ir, V)-functor. We say that I is L-open if 

~ 

Recall from Prop. 3.4.13 that r 1 (N) 21-1(N) always holds. So I is L-open if 

~ 

and only if 1-1(N) £ r 1(N) for all N £ Y. 

Proposition 7.5.2. For a ('Ir, V)-functor I: X ~ Y, the following are equivalent: 

1. I is L-open. 

2. L/: LX ~LY is an open map in Top, i.e. for any 0 £ X open in LX, f(O) 

is open in LY. 

Proof. Let f be L-open, 0 £ X be an open set of LX. Then X '0 is closed in LX, 

~ 

i.e. X ' 0 £ X ' 0. Since I is L-open, 

This implies that Y' 1(0) £ l(X '0) £ Y '1(0). Hence Y '1(0) is closed in 

LY, 1(0) is open in LY. Therefore LI is an open map. 
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Conversely, assume that L/: LX ~LY is an open map in Top. Then f(M 0
) ~ 

f(M)° for all M ~ X where (_)° represents the interior operators of LX and LY, 

i.e. M 0 = X' (X 'M), f(M)° = Y' (Y' f(M)). In particular, /(!-1(K)
0

) ~ 

J(f-1(K))
0 

~ K 0 for any K ~ Y. This implies r 1(K)
0 

~ r 1(K0
). Rewriting this 

inclusion by closures and putting K = y' N, one obtains x 'r1 (N) ~ r 1 (Y '\. N). 

L-open. 

D 

Proposition 7.5.3. Let f: X ~ Y be a (11', V)-functor. Then we have (1 => 2 => 3). 

1. f is C-open. 

2. f is L-open 

3. f reflects L-density. 

Proof. (1 => 2) Let f be C-open and N ~ Y. Consider the following pullback 

217 



diagram. 

f" 
r 1(N) N 

r f' 
[ 

~ ~ 

f- 1(N) N 

r r 
x y 

f 

~ 

As f is C-open, f' reflects L-density. Then r 1 (N) ~ r 1 (N) is L-dense as a 

~ ~ 

pullback of N ~ N along f'. Hence f- 1 (N) = r 1 (N) by Prop. 3.4.11, f is L-open. 

~ 

(2 => 3) Assume that f is L-open and N ~ Y is L-dense, i.e. N = Y. Taking 

the pullback of f along N ~ Y, one gets 

f-1(N) N 

r [ 
x y 

f 

~ ~ 

Since f is L-open, f- 1(N) = f- 1(N). Sox= r 1(Y) = r 1(N) = r 1(N). Hence 

r 1 (N) ~Xis L-dense, f reflects L-density. D 

The proposition implies that the collection of C-open maps are included in the 
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collection of L-open maps. Furthermore, both type of maps reflect L-density. But 

C-open maps is the largest pullback stable collection which has this property. So 

if L-open maps are pullback stable, then these collections will be equal. Hence we 

will have the equivalence of C-openness and L-openness. 

Proposition 7.5.4. Suppose that L: ('Ir, V)-Cat -+Top preserves finite products. 

Then L-open maps are pullback stable. 

Proof. Let f : X -+ Z, g : Y -+ Z be ('Ir, V)-functors. Suppose that f is L-open. 

Consider its pullback along g. 

XxzY----~Y 

~, r 1 g 

X----~z 

f 

By Prop. 7.5.2, it is enough to show that L7r2 : L(X xz Y) -+ LY is open in 

Top. Since L preserves finite products, L(X x Y) ~ LX x LY. So {M x N I 

M open in LX, N open in LY} is a basis for L(X x Y). 

Take a basic open set in L(X xz Y), say (M x N) n (X xz Y) where Mis open 

in LX and N is open in LY. Then 7r2 (M x N n (X xz Y)) = N n g-1 (f(M)). Since 

f is L-open and g is continuous, g-1(f(M)) is open in LY. Then N n g-1 f(M) is 

open in LY. Hence 7r2 is L-open. 

D 
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Corollary 7.5.5. Suppose that L : (11', V)-Cat --+ Top preserves finite products. 

Then a (11', V)-functor is C-open if and only if it is L-open. 

Proof. Follows by Prop. 7.5.3 and Prop. 7.5.4. D 

As we have seen in Section 5.1, the functor L preserves finite products in the 

case of Ord, Met, Top and App. So Cor. 7.5.5 applies in these examples. 

C-open maps also satisfy the conditions (Cl)-(C3) of Subsection 6.1.3. So one 

can develop topological notions by considering C-open maps. Following Section 6. 7, 

a (11', V)-category X is called C-discrete if X is c+ -separated. i.e. 8 x : X x X --+ X 

is C-open. 

Proposition 7.5.6. Let X be a (11', V)-category and L : (11', V)-Cat --+ Top pre­

serve finite products. Then Xis C-discrete if and only if LX is a discrete topological 

space. 
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Proof. We get the characterization of C-discreteness as follows: 

X C-discrete ~ 8x: X ~Xx X C-open 

~ 8x : X ~ X x X L-open 

~ 8 x ( X) = !:::,. open in L( X x X) ~ LX x LX 

~ V x E X, 3 U, V 3 x open in LX : ( x, x) £ U x V £ !:::,. 

~ VxEX, 3W3xopeninLX:(x,x)£WxW~!:::,. 

~ VxEX, 3W3xopeninLX:W={x} 

~ Vx EX, {x} open in LX 

~ LX discrete. 

D 

Example 7.5. 7. Let X be a topological space. M £ X is called locally closed if 

there exist an open set 0 and a closed set C such that M = 0 n C. X is called a 

Td space [1] if each singleton is locally closed. Td is a separation axiom between T0 

and T1. By Prop.7.5.6, a topological space X is C-discrete if and only if its LX is 

discrete. This is equivalent to X being a Td space as follows: 

Take any x EX. Suppose that Xis a Td space. Then there exists U £ X open 

and C £ X closed such that { x} = U n C. As U n C is open LX, LX is discrete. 

Conversely, let LX be discrete. Then {x} is open in LX. Recall from Remark 5.2.6 

that the collection { 0 n { x} Ix E 0 open} is a local basis at x. So there exists an 
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open neighbourhood U of x such that U n { x} = { x}. Hence { x} is locally closed, 

Xis Td. 

A ('Ir, V)-functor f: X--+ Y is called C-local homeomorphism if f is C+ -perfect. 

Proposition 7.5.8. Let f: X --+ Y be a ('Ir, V)-functor and L: ('Ir, V)-Cat --+Top 

preserve finite products. Then f is C-local homeomorphism if and only if Lf is 

open and locally injective, i.e. each x E X has a neighbourhood W in LX such that 

f1w is injective. 

Proof. Since C+ is pullback stable, f is C+ -perfect if and only if both f and 51 : 

X xy X --+ X are C-open. By Prop. 7.5.2 and Cor. 7.5.5, Lf is an open map. The 

equivalence of 51 : X xy X--+ X being C-open and Lf being locally injective can be 

shown as follows: 

5 f C-open <==> 5 f L-open 

<==> 61(X) =~open in L(X xy X) 

<==> Vx EX, 3U, V :> x open in LX: U x V n X xy X £; ~ 

<==> Vx EX, 3W :>x open in LX: W x WnX xyX £; ~ 

<==> Vx EX, 3W :> x open in LX: Vy,z E W (f(y) = f(z) => y = z) 

<==> Vx EX, 3W :> x open in LX: f1w is injective. 
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8 Functional topology with respect to 

L-complete morphisms 
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In this chapter we develop topological notions for ('II', V)-categories using the 

categorical framework outlined in Chapter 6. Our main parameter :F will be the 

collection of L-complete ('II', V)-functors. 

8.1 L-complete morphisms vs. L-closed morphisms 

Firstly, we compare L-complete maps, L-closed maps and C-proper maps in our 

main examples. This will give us a first idea about how the topological theory 

based on L-complete maps will be similar to or different from the one based on 

L-closed maps. 

Examples 8.1.1. 1. In Ord, a monotone map f: (X, ~) ~ (Y, ~)is L-complete 

if and only if given any x EX with f (x) ~ y, there exists w E J- 1( {y}) with 

x ~ w (see Examples 4.1.3). Recall from Examples 7.2.2 that this is also the 

characterization of C-proper maps. So L-complete maps and C-proper maps 

coincide in Ord. 

Furthermore, L-completeness is equivalent to L-closedness. To see this, sup-

pose that f: (X, ~) ~ (Y, ~) is L-closed. Let f(x) ~ y for some y E Y. Then 

~ +-~ 

y E {f (x )}. As f is L-closed, {f (x)} = f ( { x} ). So there exists w E { x} such 

~ 

that f ( w) = y. Since w E { x} means x ~ w, f is L-complete. Conversely, every 

L-complete map is C-proper, hence L-closed. 
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So the notions of L-completeness, L-closedness and C-properness _coincide in 

Ord. 

2. In Met, a nonexpansive map f : (X, d) ~ (Y, d') is L-complete if and only 

if given any Cauchy sequence (xn) in X with lim f (xn) = y, there exists 
n-.oo 

x E 1-1( {y}) such that lim Xn = x (see Examples 4.1.3). 
n-.oo 

Recall from Examples 7.2.2 that a nonexpansive map f is C-proper if for any 

sequence (xn) in X with lim l(xn) = y E Y, there exists a subsequence (xnk) 
n-.oo 

of (xn) and x E 1-1 ( {y}) such that lim Xnk = x. Since a Cauchy sequence 
n-.oo 

which has a convergent subsequence is itself convergent, C-proper maps are 

L-complete. One also has the following: 

Claim: L-closed nonexpansive maps are L-complete. 

Suppose that I: (X, d) ~ (Y, d') is an L-closed nonexpansive map and (xn) 

is a Cauchy sequence in X with lim J(xn) = y. Let M be the set consisting 
n-.oo 

+--------7 +-+ 
of the elements of the sequence (xn)· Then y EI (M) = f (M). So there exists 

x E M such that f (x) = y. x E M means that inf ( d(x, Xn) + d(xn, x)) = 0. 
XnEM 

Picking Xnk for each k E N, one obtains a subsequence (xnk) of (xn) such 

that lim Xnk = x. Since (xn) is Cauchy, it converges to x as well. Hence f is 
n-.oo 

L-complete. 

Unlike the case in Ord, L-completeness, L-closedness and C-properness are 
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distinct from each other in Met. Consider the following pullback diagram in 

Met. 

1 

!IR: IR~ 1 is L-complete, since IR is a complete metric space. Furthermore, !IR 

is L-closed, since its codomain is the one point. set. As L-complete maps are 

stable under pullback, n1 : IR x IR~ IR is L-complete. But n1 is not L-closed. 

To see this, let G be the graph of the function y = ~. G is an L-closed set 

in JR x JR, but n1(G) =JR" {O} is not. So n1 is not L-closed. Hence n1 is an 

L-complete map that is not L-closed. This also shows that !IR is an L-closed 

map which is not C-proper. Therefore in Met, we have 

C-proper maps~ L-closed maps ~ L-complete maps. 

3. In Top, a continuous map f : X ~ Y is L-complete if and only if for any 

irreducible closed set A £ X with f (A) = {y} for some y E Y, there exists 

x E 1-1( {y}) such that A= {x} (see Examples 4.1.3). 

L-closed maps are not generally L-complete in Top. Consider an infinite set 
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\ 

X with the cofinite topology. The closed subsets are all finite subsets of X 

and the set X itself. So X cannot be written as a union of two proper closed 

subsets. Hence X is an irreducible closed set. Consider !x : X -+ 1. We 

have !x(X) = {*}. But there is no x EX such that {x} = X. So !xis not 

L-complete. Hence !x: X-+ 1 is L-closed but not L-complete. 

Therefore in general we have 

C-proper (1r, V)-functors ~ L-closed (1r, V)-functors * L-complete (1r, V)-functors. 

L-complete (1r, V)-functors are different from L-closed (1r, V)-functors. But 

there is an important subcollection of (1r, V)-functors in which L-completeness and 

L-closedness coincide. 

Lemma 8.1.2. Let f : X -+ Y be a fully faithful (1r, V)-functor. Then f is L-

complete if and only if f is L-closed. 

Proof. Assume that f is L-closed. Let <p : E ~ X be a left adjoint (1r, V)-module 

such that f* ocp = y*. Considering the canonical (£,M) factorization X ~ J(X) ~ 
+----+ 

Y off, we can write i* o (!; o cp) = y*. Then we have y E f(X) by Prop. 3.4.10. 

Since f is L-closed, f(X) is L-closed by Lemma 7.1.4. Hence y E f (X), i.e. there 

exists x EX such that f (x) = y. Then f* o <p = y* = f* ox*. Since f is fully faithful, 

<p = x*. Therefore f is L-complete. 
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Conversely, assume that f is L-complete. Write f = i.f' as above. As f' is 

surjective, it is L-dense. It is also fully faithful, since f is fully faithful. Hence f' 

is an L-equivalence. Then i is L-complete by Prop. 4.1.4. Since f is fully faithful, 

~ 

it is enough to show that J(X) is L-closed by Lemma 7.1.4. Take y E f(X). By 

Prop. 3.4.10, (IE)* ~ y* o i* o i* o y*. Composing both sides with y* and taking 

advantage of the adjunctions, we see that 

Hence i* o i* o y* = y*. Since i* o y* : E ~ f (X) is a left adjoint (11', V)-module 

and i is L-complete, there exists f(x) E f(X) such that i(f(x)) = f(x) = y. Hence 

~ 

y E f (X), f(X) ~ f (X). D 

8.2 The setting 

We keep (£, M) to denote the proper factorization system of surjective (11', V)-

functors and full embeddings. We denote the collection of L-complete (11', V)-

functors by £. 

£ is closed under composition and contains isomorphisms by Prop. 4.1.4. Since 

£is stable under pullback, so is £nM. Hence£ satisfies conditions (Cl) and (C2) 

of Subsection 6.1.3. However£ does not satisfy condition (C3), i.e. g.f E £ and 

f E £ does not necessarily imply that g E £. 
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Example 8.2.1. Let G be the graph of the function y = ~· Consider 7ri : G ~IR 

which is the restriction of the projection map 7r1 : IR x IR ~ IR to G. We know 

from Examples 8.1.1 that 7r1 is L-complete. On the other hand, ·i : G <-+ IR x IR is 

L-closed, since G is L-closed in IR x R Then i is L-complete by Lemma 8.1.2. This 

implies that 7ri = 7r1 .i is L-complete. Consider the canonical (£, M) factorization 

G ~IR" {O} 4 IR for 7ri. Since IR" {O} is not L-closed in IR, j : IR" {O} <-+IR is not 

L-closed. Hence it is not L-complete by Lemma 8.1.2. So one has 7ri = j.p where 7ri 

is L-complete, pis surjective but j is not L-complete. 

Instead of condition ( C3), we have an analogous result by replacing surjective 

(11', V)-functors with L-equivalences, i.e. g.f E £ and f is an L-equivalence imply 

that g E £. This is given by Prop. 4.1.4. 

Most of the results in this chapter will be corollaries of the general results 

presented in Chapter 6. Proofs will be omitted unless they require condition ( C3) 

to hold. 

8.3 £-density 

In accordance with Section 6.2, a (11', V)-functor f is called £-dense if and only if 

in any factorization f = i.g, if i E £ n M, then i is an isomorphism. 

Proposition 8.3.1. Let f: X ~ Y be a (11', V)-functor. f is £-dense if and only if 
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it is L-dense. 

Proof. A full embedding is L-complete if and only if it is L-closed by Lemma 8.1.2. 

So £-density coincides with C-density. C-dense maps are precisely L-dense maps by 

Prop. 7.4.1. D 

Corollary 8.3.2. Any L-dense L-complete subobject is an isomorphism. 

Proof. A subobject is L-complete if and only if it is L-closed by Lemma 8.1.2. An 

L-dense L-closed subobject is an isomorphism by Cor. 7.4.2. D 

8.4 £-compactness 

Following Subsection 6.3.2, a (1l, V)-category X is called £-compact if and only if 

the unique map !x : X --+ 1 is in £* = £. 

Proposition 8.4.1. Xis £-compact if and only if X is L-complete. 

Proof. X is £-compact if and only if !x : X --+ 1 is L-complete. This is equivalent 

to X being L-complete by Cor. 4.1.9. D 

The following is an analogue of the Kuratowski-Mrowka theorem for L-completeness. 

Corollary 8.4.2. For a (1l, V)-category X, the following are equivalent. 

l. X is L-complete 
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2. For any ('JI', V)-category Y, the projection Xx Y--+ Y is L-complete. 

3. For any L-complete ('JI', V)-category Y, X x Y is L-complete 

Proof. Follows from Prop. 6.3.4. D 

Moreover, L-completeness is carried forwards by L-equivalences and backwards 

by L-complete morphisms. 

Corollary 8.4.3. 1. If f: X--+ Y is L-complete with Y L-complete, then X is 

L-complete. 

2. If f: X--+ Y is an L-equivalence with X L-complete, then Y is L-complete. 

Proof. (1) follows from Prop. 6.3.5. (2) follows from Prop. 6.3.5 and Prop. 4.1.4. 

D 

Consider a ('JI', V)-functor f : X --+ Y as an object of the comma category 

('JI', V)-Cat/Y. One sees that f : X --+ Y is L-complete if and only if f is an 

£-compact object in ('JI', V)-Cat/Y. 

8.5 £-separation 

Let f : X --+ Y be a ('JI', V)-functor. In accordance with Section 6.4, f is called 

£-separated if and only if 81 = (lx, lx): X--+ X xy Xis in£*= .C. 
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Proposition 8.5.1. Let f : X ~ Y be a (1', V)-functor. f is £-separated if and 

only if it is L-separated. 

Proof. Observe that 81 = (lx, lx) : X ~ X xy X is fully faithful. Then 81 is L­

complete if and only if it is L-closed by Lemma 8.1.2. Hence f is £-separated if 

and only if it is C-separated. We also know that C-separated maps are precisely 

L-seperated maps by Prop. 7.3.1. 0 

Corollary 8.5.2. 1. L-separated maps are closed under composition and con-

tain all monomorphisms. 

2. L-separated maps are stable under pullback. 

3. If g.f is L-separated then f is L-separated. 

4. Suppose that g.f is L-separated and f is an L-equivalence which is L-complete, 

then g is L-separated. 

Proof. (1)-(3) follow from Prop. 6.4.1. (4) follows from Prop. 6.4.l and Prop. 4.1.4. 

0 

One calls a (1', V)-category X £-separated if and only if !x : X ~ 1 is £­

separated. 

Corollary 8.5.3. Let X be a (1', V)-category. Then X is £-separated if and only 

if it is L-separated. 
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Proof. X is £-separated if and only if !x : X --+ 1 is L-separated by Prop. 8.5.1. 

This is equivalent to X being L-separated. D 

As in the case of £-compactness, one sees that a ('II', V)-functor f : X --+ Y is 

L-separated if and only if it is an £-separated object in ('II', V)-Cat/Y. 

Corollary 8.5.4. For a ('f, V)-category X, the following are equivalent: 

1. X is L-separated. 

2. Any morphism f : X --+ Y is L-separated. 

3. There exists an L-separated morphism f: X--+ Y with Y L-separated. 

4. For any ('II', V)-category Y, the projection X x Y --+ Y is L-separated. 

5. For any L-separated ('II', V)-category Y, Xx Y is L-separated. 

6. For any L-complete L-equivalence f: X--+ Y, Y is L-separated. 

7. In any equalizer diagram 

s 
A B x 

s is L-complete. 

Proof. (1) is equivalent to (6) by Prop. 6.4.3 and Cor. 8.5.2. The rest follows from 

Prop. 6.4.3. 

D 
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In Top, a continuous map between a compact domain and a Hausdorff codomain 

is proper. The analogous statement about the maps with £-compact domain and 

£-separated codomain gives us the following result. 

Corollary 8.5.5. Any ('f, V)-functor f : X --+ Y with X L-complete and Y L­

separated is L-complete. 

Proof. Follows from Prop. 6.4.5. D 

Corollary 8.5.6. Let Y be an L-complete and L-separated object. Then a ('f, V)­

functor f: X--+ Y is L-complete if and only if X is L-complete. 

Proof. Follows from Prop. 6.4.6. D 

Corollary 8.5. 7. If g.f is L-complete with g L-separated, then f is L-complete. 

Proof. Follows from Cor. 6.4. 7. D 

An L-complete morphism cannot be extended along an L-dense subobject with 

an L-separated codomain. 

Corollary 8.5.8. Let f : X --+ Y be an L-complete ('f, V)-functor. In any factor­

ization f = X ~ Z !!. Y where g is an L-dense subobject and Z is L-separated, g is 

an isomorphism. 

Proof. Follows from Cor. 6.4.8. D 
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8.6 £-perfect maps 

Following Section 6.5, a (11', V)-functor f is called £-perfect if it is both £-proper 

and £-separated. So a (11', V)-functor is £-perfect if and only if it is L-complete 

and L-separated. Hence an L-complete L-separated morphism f : X --+ Y is an 

£-compact £-separated object in (11', V)-Cat/Y. 

Corollary 8.6.1. 1. If g.f is L-complete L-separated and g is L-separated then 

f is L-complete L-separated. 

2. If g.f is L-complete L-separated, f is an L-complete L-equivalence, then g is 

L-complete L-separated. 

Proof. (1) follows from Prop. 6.5.1. (2) follows from Cor. 8.5.2 and Prop. 4.1.4. D 

8. 7 £-compactifications 

Recall from Section 6.6 that an F-compactification of an object X is an F-dense 

embedding i : X --+ K where K is F-compact and F-separated. Replacing F by £, 

one gets an L-dense embedding i: X ~ K where K is L-complete and L-separated. 

But such an embedding exists only for L-separated objects by Cor. 8.5.4. To extend 

the notion to a larger collection, we ask i to be only fully faithful. 

Definition 8.7.1. Let X be a (11', V)-category. An £-compactification of Xis given 

by an L-equivalence i: X--+ K where K is £-compact and £-separated. 
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We are particularly interested in a functorial £-compactification of (11', V)­

categories. By that we mean a functor r : (11', V)-Cat ~ (11', V)-Catcpt & sep which 

comes with a natural transformation bx : X ~ r X} xe('ll',V)-Cat where each /x is 

an L-equivalence and each r Xis L-complete and L-separated. 

Proposition 8. 7.2. The L-completion functor Y: (11', V)-Cat ~ (11', V)-Catcpt & sep 

together with the natural transformation {yx : X ~ Y(X)} xe('ll',V)-Cat is a functorial 

£-compactification. 

Proof. See Theorem 3.5.9 and Remark 4.1.7. D 

Examples 8. 7.3. In Met, .C-compactification of a metric space is its Cauchy com­

pletion. In Top, £-compactification takes the form of soberification where Y is the 

soberification functor [40]. 

Working in the comma category, one can extend the £-compactification notion 

to morphisms. 

Definition 8.7.4. Let f: X ~ Y be a (11', V)-functor. £-compactification off is 

given by an L-equivalence i : f ~ g where g is £-compact and £-separated. 

An £-compactification of a morphism corresponds to its L-completion. The 

functorial L-completion Y for objects provides such an L-completion for morphisms. 
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To see this, let f: X ~ Y be any ('lr, V)-functor. Consider the following diagram: 

By Cor. 8.5.4 and Cor. 8.5.5, f is L-complete and L-separated. Then 7r1 is L-

complete and L-separated as a pullback off. On the other hand, 7r2 is fully faithful 

as a pullback of yv which is fully faithful. Since yx is an L-equivalence and 7r2 

is fully faithful, i is an L-equivalence by Prop. 2.8.2. Hence i : f ~ 7r1 is an L-

equivalence where 7r1 is L-complete and L-separated. This means that i : f ~ 7r1 is 

an L-completion off. 

The Isbell-Henriksen theorem [29) which describes the perfect maps in topology 

translates into a characterization of £-perfect maps. 

Proposition 8.7.5. For a ('lr, V)-functor f: X ~ Y, the following are equivalent: 

1. f is L-complete and L-separated. 

237 



2. The naturality square 

yx -x x 

J j l j (8.7.2) 

y y 
yY 

is a pullback. 

Proof. Assume that f is L-complete and L-separated. Then the naturality square 

- -
is a weak pullback by Prop. 4.1.8. Given y E Y, 'l/; EX with f('l/;) = w(y), assume 

that there exists x, z E X such that f (x) = y, 'l/; = x* and f (z) = y, 'l/; = z*. This 

means that f(x) = f(z) and x '.:::'. z. Since f is L-separated, x = z. So, the naturality 

square is a pullback. Conversely, suppose that naturality square is a pullback. 

Then f is L-complete and L-separated as a pullback off which is L-complete and 

L-separa ted. 

D 

Considering the functors (-L: (11', V)-Cat ~ (11', V)-Modt and(_)*: (11', V)-Cat ~ 

(11', V)-Modr of Section 2.8, we also see that an L-complete L-separated (11', V)-

functor is a (-) * -cartesian morphism or equivalently a ( _ )*-cocartesian morphism. 
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8.8 (£-antiperfect, £-perfect) factorization system for ('Ir, V)-

Cat 

The (Antiperfect, Perfect) factorization of the continuous maps of Tychonoff spaces 

[30], [54], [12], [55] is obtained with the help of the left adjoint Stone-Cech compact-

ification functor. Here an "antiperfect map" stands for a map which is sent to an 

isomorphism by the compactification functor. Analogously in our context the reftec-

tor Y induces (£-antiperfect, £-perfect) factorization system for ('Ir, V)-Cat. Here 

£-antiperfect morphisms are precisely the ones that are mapped to isomorphisms 

by Y. These types of factorization systems are studied in [9], [39], [49]. 

Lemma 8.8.1. Let f: X--+ Y be a ('Ir, V)-functor. f is £-antiperfect if and only 

if f is an L-equivalence. 

-
Proof. Suppose that f is £-antiperfect, i.e. Y(f) = f is an isomorphism. Then f 

- -
is an L-equivalence. The naturality square (8. 7.2) gives f.yx = yY .f where yx, yY, f 

are L-equivalences. Then f is an L-equivalence by Prop 2.8.2. 

- - - -
Conversely, suppose that f is an L-equivalence. Define f : Y --+ X by f ('I/;) = 

'ljJ o f * for any right adjoint ('Ir, V)-module 'I/; : Y ":Jr E. Then f = (f)-1
. Hence 

-
Y(f) = f is an isomorphism. D 

Theorem 8.8.2. Let C be the collection of L-equivalences and JI/ be the collection 

of L-complete and L-separated morphisms. Then (<C, JI/) is a factorization system 
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for ('Ir, V)-Cat. 

Proof. We check conditions (FS1)-(FS3) of Subsection 6.1.1. Firstly, both g and ./It 

contain all isomorphisms and they are closed under composition. Secondly, given 

any ('Ir, V)-functor f: X--+ Y, one has an (g, ..4') factorization f = i.n1 as shown in 

diagram (8.7.1). To show that g J. ./It, consider the following commutative square 

where i is an L-equivalence and f is L-complete and L-separated. 

J 
A x 

-;( 

/ 
/ 

/ 

i / f / g 
/ 

/ 
/ 

B y 
h 

Since f is L-complete, it is L-injective by Theorem 4.3.2. So there exists g : B --+ X 

such that g.i ~ j and f.g = h. Then we have f.g.i = f.j. As f is L-separated, g.i = j. 

For the uniqueness part, suppose that there exists m: B --+ X such that f.m = h 

and m.i = j. Then f.g = f.m and g.i = m.i. Since i is L-dense, g ~ m. Invoking 

L-separatedness off again, we get g = m. D 

Examples 8.8.3. 1. Let f : X --+ Y be a nonexpansive map in Met. f is an 

L-equivalence if and only if it is a dense isometry. f is L-complete and L-

separated if and only if for any Cauchy sequence ( Xn) in X with lim f ( Xn) = y, 
n-+oo 

there exists a unique x E 1-1( {y}) such that lim Xn = x. So (Dense isometry, 
n-+oo 

L-complete L-separated) is a factorization system in Met (53]. 
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2. Let I: X-+ Y be a continuous map in Top. I is L-complete and L-separated 

if and only if it is fibrewise sober (48]. Let r 1 
: OY -+ 0 X denote the 

corresponding frame homomorphism between the lattice of open sets of Y 

and the lattice of open sets of X. We know that I is fully faithful if and 

only if r 1 
: OY -+ OX is surjective by Examples 2.8.4. Furthermore, I 

is L-dense if and only if 1-1 
: OY -+ OX is injective by Example 7.4.3. 

Therefore, I is an L-equivalence if and only if 1-1 
: OY -+ 0 X is a frame 

isomorphism or, equivalently, I is an isomorphism as a continuous map in the 

category of locales, i.e. the opposite category of the category of frames. Let's 

denote the canonical functor from the category of topological spaces to the 

category of locales by .Z: Top-+ Loe. Then (.Z-1(Iso), Fibrewise sober) is 

a factorization system in Top (53]. 
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