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Abstract

Lawvere’s notion of completeness for quantale-enriched categories has been ex-
tended to the theory of lax algebras under the name of L-completeness. In this
work we introduce the corresponding morphism concept and examine its proper-
ties. We explore some important relativized topological concepts like separation,
density, compactness and compactification with respect to L-complete morphisms.
We show that separated L-complete morphisms belong to a factorization system.
Moreover, we investigate relativized topological concepts with respect to maps that
preserve L-closure which is the natural symmetrized closure for lax algebras. We
provide concrete characterizations of Zariski closure and Zariski compactness for

approach spaces.
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1 Introduction



The concepts of completeness, separation and injectivity has been introduced
and studied in the context of (T, V')-categories under the names L-completeness [15],
L-separation and L-injectivity [36]. In this work we introduce the morphism versions
of these notions, the most important of which is L-completeness for morphisms. We
investigate properties of L-complete morphisms and explore relativized topological
concepts like compactness, compactification, separation and denseness with respect
to this class. We show that L-complete and L-separated morphisms belong to a
factorization system. We provide a concrete characterization of this factorization
system in the categories of ordered sets, metric spaces and topological spaces. These
results has been published by the author in [53].

The other focus of our investigation is the symmetrized closure for (T,V)-
categories called the L-closure [36]. We give a novel analysis of L-closure as a
combination of the natural closure and the dual closure. We show that the topol-
ogy induced by the L-closure is the join of the topologies induced by these clo-
sure operators. We explore relativized topological concepts like compactness, sep-
aration,denseness, openness with respect to morphisms that preserve L-closure.
Our investigations lead to concrete characterizations of the Zariski closure and the

Zariski compactness for approach spaces [26].



1.1 (T,V)-categories

(T, V)-categories arise from the marriage of two lines of research, one of which
is enriched category theory [41]. A category X can be described in terms of its
hom-sets. The specification of identity morphisms and the composition law are the

mappings
{»} = hom(z,z) & hom(z,y) x hom(y, z) - hom(z, z)

subject to associativity and unity axioms. An enriched category generalizes this idea
by replacing hom-sets with objects from a general monoidal category. An impor-
tant example comes from Lawvere’s 1973 paper [42] where he describes (pre)metric
spaces as enriched categories over the nonnegative extended real numbers P, =
[0, 0]. Lawvere interprets a metric d: X x X — P, as a hom-functor where P, is
a complete, symmetric, monoidal closed category with arrows given by >, tensor

given by +. So a P,-category is nothing but a pair (X, d) that satisfies
0>d(z,z) &  d(z,y)+d(y,z) 2 d(z, z).

Replacing P, with 2 = {false + true, A, true}, hom-objects simply affirm or deny a

binary relation “ < ” between elements of X which is subject to

truerz<zr & T<yAy<zrz<z



These conditions express reflexivity and transitivity of the binary relation <. Hence
a 2-category is a (pre)ordered set. In general one can consider V-categories where
V = (V,®,k) is a (commutative and unital) quantale. In other words, V is a
complete lattice with an associative and commutative operation ® : V xV —» V and
a unit element £ where ® preserves supremum.

The other line of research that motivates the introduction of (T, V')-categories
is the axiomatization of topological structures via convergence. The works of Haus-
dorff [28], Fréchet [25], Moore and Smith [46], Cartan [7],[8] and Choquet [11] have
been important milestones in this regard. Probably the most remarkable result
is Manes’ presentation of compact Hausdorff spaces as Eilenberg-Moore algebras
of the ultrafilter monad U = (U,e,m) [44]. Barr extended this result to topologi-
cal spaces by relaxing the conditions of the Eilenberg-Moore construction [4]. He
showed that a topological space X can be completely characterized by an ultrafilter

¢ bl

convergence relation “ — ” satisfying
gz & X-opioz = YX-z ()

forall X e U2X,reUX, z € X where z is the principal ultrafilter on z and Z is the
“Kowalsky diagonal operation”. Using the ultrafilter monad U = (U,e,m) and the

quantale 2, one can express this information more formally. Denote the ultrafilter



convergence relation by a: UX x X - 2. Then (}) can be written as
true + a(ex(z),z) &  Ua(%,1) A a(x, z) - a(mx (%), z)

where U represents Barr’s extension of the ultrafilter functor U to the category of
relations.

Generalizing this idea, Clementino, Hofmann and Tholen introduced the notion
of a (T,V)-category [17], [16]. It is obtained by replacing the ultrafilter monad
U with an arbitrary Set-monad T and the quantale 2 with an arbitrary quantale
V. In concrete terms, a (T, V)-category is a pair (X,a) where a: TX + X is a

V-relation (given by a function a: TX x X — V) that satisfies
k<a(ex(z),z) &  Ta(%r)®a(r,z) < a(mx(X),2)

forall ¥ e T?2X, reTX and z € X. Here T represents a suitable extension of
the Set-functor T to the category of V-relations. Using V-relational composition,

these conditions are written as
1x <a.ex & aTa<amy.

Hence a (T, V)-category (X, a) is a lax Eilenberg-Moore algebra in the category of
sets and V-relations.
Taking T as the identity monad, this framework captures ordered sets and metric

spaces for V = 2 and V = P, respectively. When T is the ultrafilter monad, one
5



obtains topological spaces for V = 2. The question is what will be obtained if one
replaces 2 with P,. The answer to this question was given by Clementino and
Hofmann in their 2003 paper [14] where they gave a lax algebraic description of

approach spaces [42] by using numerical convergence relations.

1.2 Summary of the work

Lawvere’s 1973 paper [42] describes Cauchy completeness of metric spaces by ad-
joint (bi)modules. A corresponding concept for (T, V)-categories was introduced
under the name of L-completeness in [15], which was followed by the development
of the concepts of L-separation, L-density and L-closure [36]. In this context, to
a large extent, L-completeness behaves similarly to compactness. To give a cou-
ple of examples, L-completeness is inherited by the L-closed subsets; secondly, for
any subset of an L-separated (T, V')-category L-completeness implies L-closedness.
In topology the morphism notion for compactness leads to proper maps. Inspired
by the interplay between compactness and L-completeness at the level of objects,
we introduce a morphism notion for L-completeness which will be the counterpart
of proper maps in this context. To establish the analogy between compactness
and L-completeness further and rather rigourously we choose to explore topological
concepts for (T, V')-categories using this class of maps.

Early instances of the development of topological concepts in a category ap-
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pear in [47],[45],[31]. More recently, as presented in [13], given a finitely complete
category equipped with a proper factorization system, one can pursue topological
notions in that category by using a distinguished class of “closed morphisms”. In
fact many of these notions can be expressed by using “proper maps” which are
stably “closed” [37]. Having developed an analogue of proper maps in the context
of completeness, we put L-complete morphisms to work in a topological framework.
Our investigation reveals that the topological concepts, like separation and density
can be recovered by L-complete maps, while compactness and compactification nat-
urally translate into L-completeness and L-completion. For example, it is known
that any continuous map of topological spaces with compact domain and Haus-
dorff codomain is proper. For (T, V')-categories any morphism with an L-complete
domain and an L-separated codomain is L-complete. Likewise, the (Antiperfect,
Perfect) factorization of continuous maps of Tychonoff spaces [30], [54], [12], [55]
is obtained with the help of the left adjoint Stone-Cech compactification functor.
Here “antiperfect maps” are the maps which are sent to isomorphisms by the com-
pactification functor. Replacing the notion of compactification by L-completion,
we obtain a similar factorization system for (T, V')-categories, where perfect maps
are replaced by L-complete and L-separated maps. Instead of the antiperfect maps
we now have the morphisms which are sent to isomorphisms by the left adjoint

L-completion functor.



Having L-closure at hand, we also develop topological concepts via the maps
that preserve L-closure, which we call L-closed. To characterize these concepts
concretely, we study L-closure in detail. Under reasonable assumptions L-closure
satisfies the Kuratowski closure axioms and induces a topology on (T, V')-categories.
Hence one obtains a functor L from the category of (T, V)-categories to the cat-
egory of topological spaces [36]. By breaking L-closure into two parts we obtain
two closure operators called the natural closure and the dual closure. We find
that the topology induced by L-closure is the join of the topologies induced by
the natural closure and the dual closure in our main examples. In other words
the functor L going to the category of topological spaces decomposes through the
category of bitopological spaces. Furthermore, we explore the conditions under
which the functor L preserves finite products. We then show that compactness of
a (T, V)-category with respect to L-closed maps can be equivalently characterized
by compactness of its image under the functor L. A comparable result also holds
for openness. Separation and density with respect to L-closed maps turn out to be
the original notions of L-separation and L-density respectively.

Our work on L-closure and L-closed maps leads to two new results for approach
spaces. In his 2006 paper [26] Giuli introduces a closure operator called Zariski
closure. Furhermore, he studies compactness with respect to maps that preserve

Zariski closure, called Zariski compactness. Concrete characterizations of these



notions for approach spaces have been open problems stated by Giuli. Our inves-
tigation reveals that L-closure coincides with Zariski closure for approach spaces.
By our findings on L-closure and compactness with respect to L-closed maps we
provide concrete characterizations of Zariski closure and Zariski compactness for

approach spaces.

1.3 Outline

Now we briefly describe the contents of the following chapters:

Chapter 2

This chapter provides the basic notions and results concerning (T, V')-categories
which appeared originally in [14], [17], [16], [36], [33], [15].

We start by reviewing ordered sets from a categorical perpective. We examine
adjointness and completeness for ordered sets. We give the definition of a quantale
and provide its main examples in our context. Other notions discussed for ordered
sets are complete distributivity and its choice free version constructive complete
distributivity. As ultrafilters play an important role in our examples, we give a
brief summary of facts about filters and ultrafilters.

We present V-relations. These are relations r : X -+ Y given by functions
r: X xY - V. Sets and V-relations (with V-relational composition) form the

category V-Rel. We review some important notions like order and adjointness in
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this category.

A basic component of the theory of (T, V')-categories is the monad T = (T, e, m).
We give the definition of a monad with its main examples in our context. We present
the Beck-Chevalley condition which will be one of the assumptions of our setting.
In particular we show that the ultrafilter monad satisfies this condition.

In order to define a (T, V')-category, one has to extend the Set functor T to the
category V-Rel. This is achieved through certain assumptions on the monad T and
the quantale V. In this regard, we adopt the framework called “strict topological
theory” introduced by Hofmann [33]. We show that our main examples provide
instances of strict topological theories. The extension T of T is defined following
(33].

We present (T, V)-relations and their composition rule: Kleisli convolution. A
(T,V)-relation 7 : X + Y is a V-relation 7 : TX - Y. (T, V)-relations inherit the
order on V-relations.

We define (T, V)-categories and (T, V')-functors. The category they form is
called (T,V)-Cat. When T is the identity monad one simply calls the resulting
category V-Cat. We provide the main examples of (T, V)-categories which are
ordered sets, metric spaces, topological spaces, approach spaces. We present some
important functors between (T, V)-Cat and V-Cat, namely the adjoint pair A° —

A:(T,V)-Cat - V-Cat and M : (T,V)-Cat - V-Cat. Given a (T, V)-category

10



X, its free Eilenberg-Moore algebra |X| and its dual X°P are defined according to
[15]. We show that the quantale V itself is a (T, V)-category. Following [33], we
review ®-exponentiability in (T, V')-Cat as well as some basic limits.

(T, V)-modules (also known as bimodules, profunctors or distributors in liter-
ature) play an important role for developing the notions of separation and com-
pleteness. A (T,V)-module ¢ : (X,a) ~ (¥,b) is a (T, V)-relation ¢ : X + Y
which is compatible with the structure maps of its domain and codomain. For
each (T, V)-category (X, a), its structure map a : X -~ X is a (T,V)-module
and serves as an identity morphism with respect to Kleisli convolution. (T,V)-
categories and (T, V')-modules (with Kleisli convolution) form the category (T, V)-
Mod. (T,V)-modules inherit the order on (T, V')-relations making (T, V)-Mod
a 2-category. Hence one can consider adjointness for (T, V)-modules. We present
the lower star functor (). : (T,V)-Cat — (T, V)-Mod and the upper star functor
(0)* : (T,V)-Cat® - (T,V)-Mod. We examine the notions of full faithfulness,
L-density and L-equivalence for (T, V')-functors.

There is a close relationship between (T, V')-modules and (T, V)-functors. Fol-
lowing [15], we show that a (T, V)-relation 9 : X -~ Y is a (T, V)-module if and
only if both ¥ : |[X|®Y - V and ¢ : X®?®Y - V are (T,V)-functors. As a
result, given a (T, V)-category X = (X,a), the (T,V)-module a : X ~ X gives

rise to the Yoneda (T, V)-functor y: X — VIXI. Here VIXl is the (T, V)-category

11



whose elements are (T, V')-functors 9 : | X| - V. We provide the Yoneda lemma for

(T, V')-categories in accordance with [15].

Chapter 3

This chapter provides the notions of L-completeness [15], L-separation, L-injectivity
and L-closure [36], as well as their interactions. The results presented on these no-
tions originally belong to [15] and [36]. In addition to this known material, we
introduce two new closure operators on (T, V')-categories: the natural closure and
the dual closure. We show that the Zariski closure for approach spaces coincides
with L-closure and provide a concrete characterization for it.

Lawvere describes Cauchy completeness for metric spaces categorically using
adjoint modules [42]. Given a metric space (X, d), there is a bijective correspon-
dance between equivalence classes of Cauchy sequences in X and pairs of adjoint
modules ¢ — 9 between X and the singleton set. A Cauchy sequence (z,) con-
verges to a point z in X if and only if the corresponding pair of adjoint modules
@ - 9 is representable by z as ¢ = d(z,.) and ¥ = d(_,z). Hence a metric spaceX
is Cauchy complete if and only if each pair of adjoint modules between X and
the singleton set is representable. Lawvere’s result motivates the introduction of
completeness for (T, V')-categories under the name L-completeness where one now
asks representability of adjoint (T, V')-modules. After defining L-completeness, we

examine it in our main examples.
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We present tight (T, V)-functors. These are (T, V')-functors 9 : | X| > V where
Y : XP > Visa (T, V)-functor and as a (T, V')-module ¢ : X ~ E is a right adjoint.
For any (T, V)-category X, one denotes the collection of tight (T, V)-functors by
X and considers it as a subcategory of VIXI.

We define L-injectivity for (T, V)-categories which is the generalization of the
concept of an injective object in a category (or an injective module in algebra).
In this context one replaces monomorphisms with L-equivalences and demands
commutativity of diagrams only up to “equivalence”.

We define the natural closure, the dual closure and the L-closure. We consider
these closures in our main examples. When the functor T' preserves finite sums,
ie T(MwN)=TMwTN, and the unit element k is v-irreducible, i.e. k<uvw
implies k£ < u or k < w, the L-closure defines a topology on (T, V)-categories. Hence
L-closure induces a functor L : (T, V)-Cat - Top.

We discuss the connections between L-completeness, L-closure and L-separation.
As indicated earlier, L-completeness behaves similarly to compactness in this con-

text: L-completeness is inherited by L-closed subsets and in an L-separated (T, V)-

category L-completeness implies L-closedness. Futhermore, one sees that L-completeness

is equivalent to L-injectivity. We show that the full subcategory of L-complete
and L-separated (T,V)-categories, (T, V)-Catp g sep, is @ reflective subcategory

of (T,V)-Cat where the reflection maps are the Yoneda functors y: X — X for

13



each (T, V)-category X.

Chapter 4

In this chapter we introduce the morphism notions for L-completeness, L-
separation and L-injectivity.

We define L-completeness for (T, V')-functors. Considering the lower star func-
tor as (-), : (T, V)-Cat - (T, V)-Mod,, where (T, V)-Mod, is the subcategory of
(T, V)-Mod whose morphisms are the left adjoint (T, V')-modules, we see that L-
complete morphisms are (_),-quasi cartesian morphisms in the sense of fibrational
category theory [27]. Equivalently, L-complete morphisms are (_)*-quasi cartesian
morphisms with respect to (.)" : (T, V)-Cat - (T, V)-Mod, where (T, V)-Mod,
is the subcategory of (T, V)-Mod whose morphisms are the right adjoint (T, V)-
modules.

We examine L-complete morphisms in our examples. We investigate their prop-
erties. To name a few, L-complete morphisms have cancellation properties with
respect to monomorphism and L-equivalences, one can characterize them via the
naturality squares induced by the Yoneda functors. Most importantly, L-complete
morphisms are pullback stable.

We define L-separation and L-injectivity for (T, V)-functors. In the language
of abstract homotopy theory L-injective morphisms turn out to be the ones which

have the weak right lifting property with respect to L-equivalences. We show that
14



L-completeness and L-injectivity are equivalent notions at the level of morphisms

as well.

Chapter 5

In this chapter we examine the functor L : (T, V')-Cat — Top induced by the L-
closure. Our findings support the results of Chapter 7 where we explore functional
topology with respect to L-closed morphisms.

Firstly, we consider preservation of finite products for L. Incompatibility of
the product structures in (T,V)-Cat and Top poses some technical difficulties
in this context. To remedy these problems, we assume that the quantale V is
constructively completely distributive and the functor A°: V-Cat - (T, V)-Cat,
presented in Chapter 2, preserves finite products. These assumptions hold in our
main examples and imply that L preserves finite products in these cases.

Secondly, we try to characterize the functor L for approach spaces. We examine
the natural closure, the dual closure and the L-closure in our main examples. We
find that the topology induced by the L-closure is the join of the topologies induced
by the natural closure and the dual closure for approach spaces. Here the join of
two topologies is the smallest topology that contains both topologies. Expressing
this result in categorical terms, one can write L = J.B where the functor B takes an
approach space to the bitopological space whose topologies are the ones induced

by the natural closure and the dual closure and the functor J takes the join of two
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topologies of a bitopological space.

Chapter 6

As presented in [13], one can develop topological notions in a category (which is
finitely complete and comes with a proper factorization system) via a distinguished
class F of morphisms of which one thinks as “closed”. This chapter provides the
basics of the framework of [13] and some of its important results.

We review the notions of a proper factorization system and a subobject in a
category. We give the axioms that the distinguished class F of morphisms has to
satisfy. We present density, properness, compactness, separation, perfectness, com-
pactifications and openness with respect to the class F. To express the relativized

nature of these notions we use F as a prefix.

Chapter 7

In this chapter we explore topological notions in (T, V)-Cat with respect to
L-closed morphisms.

We define L-closed morphisms and examine its properties. The collection of
L-closed morphisms is denoted by C. We define C-compactness and characterize it
for ordered sets and metric spaces. To characterize C-compactness for topological
spaces and approach spaces, we use the functor L induced by the L-closure. We

show that a topological space or an approach space is C-compact if and only if its

16



image under L is a compact topological space. For topological spaces C-compactness
corresponds to b-compactness which is characterized by Salbany [51]. For approach
spaces this notion coincides with Zariski compactness [26] which has not been char-
acterized in concrete terms yet. To do this, we take advantage of the factorization
L = J.B given in Chapter 5. We formulate Zariski compactness of an approach
space X equivalently as 2-compactness of the bitopological space X whose topolo-
gies are induced by its natural closure and its dual closure. We provide a concrete
characterization for this notion.

We examine C-separation and C-density. These concepts correspond to L-
separation and L-density respectively. We define C-openness. Given that the func-
tor L preserves finite products, we show that a (T, V')-functor is C-open if and only
if its image under the functor L is an open map. We also examine C-discrete objects

and C-local homeomorphisms.

Chapter 8

In this chapter we explore topological notions in (T,V)-Cat with respect to
L-complete morphisms.

We start with a comparison between L-closed morphisms and L-complete mor-
phisms. By providing examples we show that these are essentially different classes
of morphisms with the following exception: for a fully faithful (T, V)-functor L-

completeness is equivalent to L-closedness.
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The collection of L-complete morphisms is denoted by £. We examine £-density
and L-separation. These notions correspond to L-separation and L-density respec-
tively. £-compactness turns out to be L-completeness. This puts the initial analogy
between compactness and L-completeness on a firm ground. By taking advan-
tage of the findings of Chapter 6 we obtain more results on L-completeness and
L-separation. We define functorial £-compactification for (T, V)-categories. An
example of this concept is given by L-completion which corresponds to soberifica-
tion for topological spaces. As analogous to the (Antiperfect, Perfect) factorization
system of continuous maps of Tychonoff spaces obtained via Stone-Cech compacti-
fication, we obtain the (L-antiperfect, £-perfect) factorization for (T, V')-categories
via L-completion. Here £-perfect morphisms are L-complete and L-separated mor-
phisms, L-antiperfect morphisms are the ones which are sent to isomorphisms by
the L-completion functor. We find that L-antiperfect morphisms are precisely L-

equivalences.
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2 Preliminaries
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This chapter reviews basic mathematical concepts and provides the preliminaries
for (T, V)-categories which originally appearred in [14], [17], [16], [36], [33], [15].

An excellent source for more details is [50].

2.1 Ordered sets

In this section we review some basic notions and results about ordered sets. We
recall the category of ordered sets and adjunctions in Subsection 2.1.1. Subsec-
tion 2.1.2 provides a categorical formulation of completeness of ordered sets as well
as adjointness criteria for monotone maps. The theory of (T, V')-categories assumes
the presence of a quantale V. We review the notion of a quantale and provide its
main examples in our context in Subsection 2.1.3. The last two subsections are
devoted to distributivity of complete lattices. Constructive complete distributivity,
which is the choice free version of complete distributivity, is explored in Subsec-

tion 2.1.4. We recall complete distributivity in Subsection 2.1.5.

2.1.1 Basic notions

A preordered set (X,<) is a set X together with a reflexive and transitive relation
<, i.e.

z<z & (z<y, y<z = x<2)
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for all z,y,z € X. We usually omit the prefix “pre” and call a preordered set (X, <)
an ordered set (as in [57]). If z < z and z < z, we write z ~ z and say that z and z
are equivalent. X is said to be separated (or antisymmetric) if equivalent elements
are equal to each other, i.e. z ~ z implies z = 2.

Given an ordered set (X, <) one can consider its dual X°? = (X,>). A map

(X, <) - (Y,<) is called monotone if

z<z = f(z)<f(2)

for all z,z € X. Ordered sets and monotone maps form the category Ord. The
hom-sets of Ord carry the pointwise order: given monotone maps f,f': X - Y,
one has f < f/if f(z) < f'(z) for all z € X.

Since Ord is an ordered category, one can consider adjunctions. A monotone
map f: X - Y is called a left adjoint if there exists a monotone map g:Y - X
such that

Ix<g.f & fg<ly.
In that case g is called a right adjoint and the adjunction is denoted by f 4g. A
map f: X - Y is a left adjoint if and only if there exists a map g: Y - X such
that
fle)sy <= z<4(y) (2.1.1)

for all z € X, y € Y. The monotonicity of f and g follows from this condition.
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2.1.2 Completeness
Let (X, <) be an ordered set and S ¢ X. The down-closure of S is the set
1S={z|3zeS: z<z}.

S is said to be down-closed if | S =S. Down-closed sets of the form | z = {z| z < z}

are called principal. One has the monotone map
}: X ->DnX

where the lattice Dn X of down-closed sets ordered by inclusion.
An ordered set X is called complete if | : X - Dn X has a left adjoint. Denote

the left adjoint of | by \/:DnX — X. By (2.1.1), one has
Ve X (\/S<z < Sclz) (2.1.2)

for any down-closed set S € X. Observe that z € X is an upper bound for S if and

only if Sc | z. So (2.1.2) implies that
« \/ S is an upper bound of S,
« for any upper bound z of S, one has \/ S < z.

Hence \/ S is the supremum of S up to equivalence. Given any T ¢ X, one puts

VT=VIT,
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since both T and | T have the same upper bounds. For any z,z € X, \/{z,z2} is
simply denoted by z v z.

As X complete if and only if X°P is complete, one has \/xor = | xop : Dn X°P —
X°P. Dualizing this adjunction yields 1+ A : X — UpX where 1:= ({xop)%,
A = (\Vxo»)™ and Up X := (Dn X°?)*®. The dual notion of infimum is naturally
describable by this adjunction. One denotes the infimum of any 7' ¢ X by AT.
For any z,z € X, A\{z,z} is simply denoted by z A z.

A monotone map f: X — Y is said to preserve supremum of S ¢ X if

FVS)=V (5)

whenever \/ S exists. f is called a sup-map if it preserves all existing suprema in
X. Dually, f is called an inf-map if it preserves all existing infima in X.
Any left adjoint f : X - Y is a sup-map. In case X is complete, f is a left

adjoint if and only if it is a sup-map. Its right adjoint g: Y — X is given by
9(y) = V{z | f(z) <y} (2.1.3)
Dually, given Y complete, a monotone map g:Y — X is a right adjoint if and only

if it is an inf-map. Its left adjoint f: X — Y is given by

f@) = Nylz<g()}. (2.1.4)

A complete and seperated ordered set is called a complete lattice. We will denote

the top and the bottom elements of a complete lattice by T and L respectively.
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2.1.3 Quantales

A commutative and unital quantale V = (V,®,k) is a complete lattice with a com-
mutative and associative operation ® : V x V' - V and a unit element & where

tensoring preserves suprema in each variable, i.e.

ve (Vuw) = V(veu).

iel i€l

Throughout this work V will denote a commutative and unital quantale. We will

drop the adjectives commutative and unital and simply call V a quantale. Further-
more, we assume that V' is nontrivial, i.e. V # {k} or, equivalently, k # L.

Since V is complete and tensoring preserves suprema, for any u € V u ® (.) has

a right adjoint u — (_). Following (2.1.3), one has
u—v=\{w|luew<v}. (2.1.5)

Also

UQWIV < WU—V

for any v,w € V by (2.1.1). Sometimes we also write v o— u instead of u — v.
The unit element k is called v-irreducible if k <u v v implies k <u or k <v.

A frame is a complete lattice which satisifes the infinite distributive law:

vA(Vw) = V(vaw).

el el

So every frame is a quantale with ® =A and k£ =T.
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The main examples of quantales in our context are given below.

Examples 2.1.1. 1. Two element chain 2 = {false, true} = {0,1} where ® = A
and k = 1. The binary operation — is the counterpart of the “implication”,
ie.

u—ov=0<+<= u=1and v=0.

2. Consider the extended nonnegative real numbers [0, co] with its natural order.

Reversing the order one has the complete lattice [0,00]°® where 0 = T and
oo = 1. [0,00]°® becomes a quantale with k =0 and ® = + where the addition
is extended by £ + 00 = 00 + 2 = oo for any z € [0,00]. We will denote this

quantale by

P, = ([07 oo]op’ +’0)'
In this context the operation — becomes truncated subtraction, i.e.

v-u ifv>u,
Vo—U=

0 else.

3. [0,0]% is a frame, since it is a chain. So one can consider it as a quantale

where the tensor is the binary operation meet. Since the order in [0, 0] is

the reversed natural order, one has ® = max and k£ = T = 0. We will denote
this quantale by

Prax = ([0, 00]°P, max, 0).
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One has

v ifv>u,
Vo—u=

0 else.

2.1.4 Constructive complete distributivity

Let X be a complete lattice. Recall from section 2.1.2 that completeness of X
entails the existence of a left adjoint \/:DnX - X to | : X - Dn X.

X is called constructively completely distributive (ccd) [23] if \/: Dn X - X has
itself a left adjoint || : X - Dn X. This means that for any down-closed set S ¢ X
and z € X, one has

lzcS = z<\/S. (2.1.6)

(2.1.4) implies

lz={SeDnX|z<V S} (2.1.7)

An element u € X is called totally below z, written u «< z, if u € | z. So (2.1.7)
implies that

u«xz <> ¥SeDn X, z<\/S = ueS.

Letting S to be an ordinary subset of X, one obtains

ukzg <= VScX, z<\/S =>uelS. (2.1.8)
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Remark 2.1.2. The complete lattices 2 and [0, 0] are both ccd. In 2 one has

(u<«< z <> z=1), whereas in [0,00] one has (u <z <= u>zx).

Lemma 2.1.3. Let X be a ccd lattice and u,v,z, 2 be arbitrary elements of X.

The following assertions hold:
1. u <« z implies u < z.
2. u < z <z implies u < z.
3. u<v <z implies u «< .
4. z=\/{u|u <« z}.
5. If u « z, then there exists v such that u « v < z.

Proof. (1) - (3) are trivial. For (4), \/{u | u « z} < z follows from (1). Putting
| = in place of S in (2.1.6), one gets z < \/ || z = \/{u|u « z}. For (5), let u « z.

Consider

S={w|I: wxvxz}=J{lv|v«z}.

Observe that S is down-closed. Using (4), one gets

VS=V{Vivivkz}=V{v|jvxz} =2z

Since u < z and z < \/ S, u € S. Hence there exists v « z such that u K v« z. O
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Since Dn X is complete, X is ccd if and only if \/: DnX — X is an inf-map.

This means that for any family X of subsets of X, one has

\/(SQYLS) = A VS (2.1.9)

SeX

Let X* ={Tc|JX|VSeX, TnS+a}. As () {S=1 A T, (2.1.9) implies

Sex Tex*
Xisced = V AT=AVS (2.1.10)
Tex* SeX

2.1.5 Complete distributivity

A complete lattice X is said to be completely distributive (cd) if for any family X

of subsets of X

V A8 = AVS (2.1.11)

fel1X Sex SeX

Comparing the left-hand side of (2.1.9) and (2.1.11), one sees that if f € [J X then

A f(S)e LS. So

SeX SeX

V A8 < \/(SFllS)-

fe[1X SeX
On the other hand, if z € [] | S, then for each S € X there exists s € S such
Sex

that z < s. Invoking the Axiom of Choice, one gets f € [] S where f(S) = s and
SeX

z< /\ f(S). Hence

SeX

V A f(S) 2 V(QiS).

fe[1X Sex

So complete distributivity and constructive complete distributivity are equiva-

lent notions in the presence of the Axiom of Choice.
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2.2 Filters

A proper filter ¥ on a set X is a collection of subsets of X such that
e Xerand @é¢r.
o« If Acxand Bey, then AnBex.
e f Acrand Ac B, then Bep.

Throughout this work we only deal with proper filters. So we drop the adjective
proper and simply call them filters.
Given a map f: X - Y and a filter r on X, the image filter f(r) on Y is the

filter generated by the filter basis {f(A) | A€z}, ie.

fF@=1{f(A)[Aer}={BcY|f(B)er}. (2.2.1)

If yis a filter on Y and f(X)n B # @ for all B € v, then one can define the

inverse image filter f~1(y) on X. This is the filter generated by the filter basis

{f~1(B)| Bey}:

F M) =1 {f(B)| Ben}={Ac X |3IBey: [1(B)c A},

Supposing that the inverse image filter is definable, one has

U@ & (7 (9) 2. (2.2.2)
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Let 3 be a filter on X and A € 3. The restriction of 3 to A, denoted by 3|,, is

the inverse image of 3 with respect to the embedding ¢: A - X, i.e.
3la=0(n) ={AnM|Mes}.

If ¢ is a filter on A ¢ X, then one can obtain the image filter 1 r:= i(x) on X. In

this case (2.2.2) becomes

M= & 1Gu =3

Hence there is a one-to-one correspondence between the filters on A ¢ X and the
filters on X which contain A. Each collection is completely determined by the
other.

A filter ¢ is called an ultrafilter if for any filter 3, r € 3 implies ¢ = 3. Given a map
f:X - Y and an ultrafilter r on X, f(r) is an ultrafilter on Y. If A ey, then g, is
an ultrafilter as well. There is a one-to-one correspondence between the ultrafilters
on A € X and the ultrafilters on X which contain A.

The dual notion of a filter is an ideal. An ideal i on a set X is a nonempty

collection of subsets of X such that
o« A,/ Beiimplies AuBe€i,

e AcBand Beiimply Aei.
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Lemma 2.2.1. Let a be a filter basis and i be an ideal on X such that AnI =g
for any A € a and I €i. Then there exists an ultrafilter r on X such that a € r and

rni=ga.

Proof. The assumption implies that An(X 1) # & for any A € aand I €i. Consider
b={An(X~I)|Aeca, Ici} which is a filter basis that contains a. Let ¢ be an
ultrafilter which contains b. Then a € ¢ and rni = @ holds as X ~ I € ¢ for any

I €i. ]

2.3 V-relations

Classically a relation T from a set X toaset Y isamapr: X xY - 2. Given
zeX,yeY, zissaid to be r-related to y, written z 7y, if r(z,y) = 1. It is desirable
to generalize the definition of a relation by allowing it to assume a larger array of
values, not just 0 and 1. This can be achieved by replacing 2 with an arbitrary
quantale V.

A V-relation r from a set X to a set Y, denoted by 7 : X -» Y, is a map
r: X xY - V. V-relations compose analogous to matrix multiplication. Given

r: XY and s:Y + Z, the composite s.7r: X + Z is defined by

sr(z,z) = \{/T(x,y) ® s(y, 2)

for x € X, z € Z. The composition is associative. For each set X one has the
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V-relation 1x : X + X where 1x(z,w) equals k if z = w and 1 otherwise. 1x
serves as the identity V-relation with respect to the composition. Hence sets and

V-relations from a category denoted by
V-Rel.
The hom-sets of V-Rel carry the pointwise order of V', ie. for ¢, 7: X -~ Y
g<7 = q(z,y) <r(z,y) Vee X,yeY.

Givenr: X+ Y and s;: Y -+ Z for i € I, one has

(1\4 si).r =\ (si.1).

i€l

Since (- ).r is a sup-map, it has a right adjoint (_) — r defined by
STt < s<te7r
for any s:Y + Z and t: X + Z. By (2.1.3), one gets

te—r(y,2)=\V{s|sr<t}= /§( t(z,2) —r1(z,y) . (2.3.1)

AN
N
N
Y

—te
t

Y
N
\
T N ter
TT N
X

Similarly V-relational composition from the left has a right adjoint.
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Given a V-relation r: X -~ Y, its opposite relation r°:Y -+ X is defined by

r°(y,z) =7(z,9).

Trivially (-)°: V-Rel(X,Y) - V-Rel(Y, X) preserves order. Furthermore, one has
1x°=1x and 7°° = r. It is easy to see that (s.7)° =r°.s°.

There is a functor Set — V-Rel that takes a map f: X = Y to the V-relation
fo: X+ Y where

k if f(z) =y,
fo(z,y) =

1 else.

Since k # 1, this functor is faithful. So it is safe to write f instead of f,. V-
relational composition becomes easier when maps are involved. For s: Y + Z and

p: W -+ X one has

s.f(z,2) = s(f(x),2) & fpwy)= V plw,z).

zef-1(y)
Also f°.q(w,z) = q(w, f(x)) for any ¢: W+ Y.

Since V-Rel is an ordered category, one can consider adjunctions. Given V-
relations 7 : X + Y, s:Y -» X r is said to be a left adjoint to s, written 7 4 s,
if

rs<ly & sr>1y.

In such a case s is said to be a right adjoint to r.
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Lemma 2.3.1. Let 7,7 : X -+ Y, s',s: Y +» X be V-relations such that r + s,

r'+s'. Ifr<r’and s<s’, then r=7".

Proof. Suppose the assumptions hold. Then 7’ < r".s.r <7’.s’.7r < . Together with

the hypothesis 7 < r’/, one obtains 7 = r'.

Foramap f: X » Y, f 4 f° always holds as

ff<ly & fe.f=1x.

One has f.f° =1y when f is surjective and f°.f = 1x when f is injective.

Examples 2.3.2. 1. 2-Rel = Rel is the category of sets and relations.

2. P,-Rel is the category of fuzzy relations. The degree of relatedness of two
elements is given by a nonnegative real number rather than just 0 and 1. The

smaller the number the more the elements are related to each other.

2.4 Monads

One of the main components of the theory of (T, V)-categories is the monad T.
We review the notions of a monad and an Eilenberg-Moore algebra of a monad in
Subsection 2.4.1. We provide examples of some Set-monads that will be relevant in

our context. The Beck-Chevalley condition, which will be one of the assumptions
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of our framework, is reviewed in Subsection 2.4.2. We recall what it means for
a functor, a natural transformation and a monad to satisfy the Beck-Chevalley

condition. Later we demonstrate that the ultrafilter monad satisfies this condition.

2.4.1 Definitions and examples

A monad T = (T,e,m) on a category ¥ consists of a functor T': € - ¥ and natural

transformations e : 1¢ - T (unit), m : 7% - T (multiplication) such that

m.mIT =m.Tm & m.el =1y =Te.m,

i.e. the following diagrams commute for any object X in %.

mrx erx Tex
T3X T°X TX T°X TX
Tmx mx mx
1rx 1rx
T:X TX TX
mx

Now we list some Set-monads that will be relevant in our context.

Examples 2.4.1. 1. The identity functor Id : Set — Set together with the iden-

tity natural transformation 1:Id — Id form the identity monad 1: (Id,1,1).

2. The list monad L = (L,e,m). Here L : Set - Set sends a set X to the set

LX of all finite lists formed by the elements of X. One has L@ = {()} which
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is the empty list. Given a map f: X - Y and (21,22,...,2,) € LX,

Lf(zy,%a,...,20) = (f(z1), f(22),-.., f(Zn))-

For any set X, ex : X - LX sends z € X to the list (z). Given a finite list
of finite lists on X, mx : L?X - LX induces a finite list by removing the

brakets in between, i.e.

mx((3,- .-, %n,), -, (k. 2k ) = (2}, ... 2k, 2k, 2k ).

. Consider the contravariant powerset functor
P:Set -~ Set®

which sends f: X - Y to Pf: PY - PX where Pf(N) = f-}(N) for any

N cY. One has the double powerset monad
P2 = (P% = P°®.P,e,m)

where
P f(r)={BcY|fYB)er}
forany f: X =Y and r € P2X. The natural transformations e : 1gey — P2

and m : P2.P%2 — P? are given by

ex(z)=z={Ac X |zecA) (2.4.1)
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mx(X)={Ac X | A% ¢ X} (2.4.2)

for any set X, X ¢ P2.P2X and z € X where A# = {re P2X | Aet}. One can

also write

mx(X)=U M=

AeX e A
By restricting the double powerset functor and its monad structure, one ob-

tains some interesting submonads.

+ The filter monad F = (F,e,m). F sends a set X to the set of all filters

on X. For any map f: X - Y and any filter r on X,

Ff(e)={N<Y|[7(N)er}

which is the image filter f(r) defined in (2.2.1). The natural transfor-
mations e : lget = F and m : F?2 —» F are given by (2.4.1) and (2.4.2)

where one replaces P? by F.

o The ultrafilter monad U = (U,e,m). U sends a set X to the set of all
ultrafilters on X. All the definitions are the same as the filter monad

except that one replaces “filter” by “ultrafilter”.

Given a monad T = (T,e,m) on a category ¥, a T-algebra (or an FEilenberg-

Moore algebra of T) is a pair (X,a: TX — X) such that the following diagrams
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commute.

mx €x
T’X TX X TX
To o «
1x
TX X X
«

Given T-algebras (X, ) and (Y,5), a morphism f: X - Y in € is called a

T-homomorphism if it makes the following diagram commute.

Tf

TX TY

The category of T-algebras and T-algebra homomorphisms is denoted by #’T.

2.4.2 The Beck-Chevalley condition

A commutative square

g h (2.4.3)
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in Set is said to satisfy the Beck-Chevalley condition (BC) if
hek = f.g°
in 2-Rel. This means that
1z(k(w), h(y)) = z\G{(g(ﬂmw) A f(z,y)
for all w e W and y € Y. Hence the square (2.4.3) satisfies (BC) if and only if for
any w € W and y € Y such that k(w) = h(y) there exists z € X with f(z) =y and

g(z) = w. This is equivalent to saying that the induced morphism i : X - W xz Y

going into the pullback of A and k is surjective.

X
f
7
szy Y
g 4 T2
‘7& h
9% Z

k

Hence the (BC) square (2.4.3) is also referred to as a weak pullback.

A functor T : Set — Set satisfies the Beck-Chevalley condition (BC) if T sends
weak pullbacks to weak pullbacks. Assuming the axiom of choice, surjective maps
are split epimorphisms in Set. Since functors preserve split epimorphisms, Set
functors preserve surjections. So T satisfies (BC) if and only if it sends pullbacks

to weak pullbacks.
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If T belongs to a monad, then it preserves monomorphisms. The same is true if
T satisfies (BC). To see this observe that a morphism m : X - Y is a monomorphism

if

lx m (244)

is a pullback. If m is a monomorphism and T satisfies (BC), then the image of
(2.4.4) is a weak pullback, hence a pullback as T1x = 17x. So T'm is a monomor-
phism.

If a functor 7' : Set — Set preserves monomorphisms, then M ¢ X implies
TM cTX in the sense that TM - T'X is an isomorphism onto its image.

A natural transformation « : F' — G satisfies the Beck-Chevalley condition (BC)
if every naturality square of o satisfies (BC).

A monad T = (T,e,m) is said to satisfy the Beck-Chevalley condition (BC) if
both T and m satisfy (BC).

Except the double powerset monad, all the monads in Examples 2.4.1 satisfy the
Beck-Chevalley condition. We demonstrate it for the ultrafilter monad U = (U, e, m)

below.

Example 2.4.2. Firstly, we show that the ultrafilter functor U satisfies the Beck-
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Chevalley condition. Suppose that the commutative square (2.4.3) satisfies (BC).

Consider its image under U.

Uuf
Ux Uy
Ug Uh
Uw Uz
Uk

Let Uk(w) = Uh(p) for any o € UW and n € UY. We need to show that there
exists an ultrafilter r on X with Ug(r) =to and Uf(r) = 9.
For any W e to and Y €y, one has k(W) nh(Y) # &, since Uk(r0) = Uh(y). Then

g (W) n f-1(Y) + @, as the square (2.4.3) satisfes (BC). So sets of the form

g (W)n YY)

for W € o and Y € y constitute a filter basis. Consider an ultrafilter ¢ which
contains this filter base. One has A € Ug(r) if and only if g71(A) €. So v € Ug(z).
Since tv is an ultrafilter, Ug(z) = to. Similarly U f(z) =19. Therefore the ultrafilter
functor U satisfies (BC).

Now we show that m : U2 —» U satisfies the Beck-Chevalley condition. Recall

that mx(X) = {Ac X | A# ¢ X} for any set X and X € U2X where A# = {e UX |
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Aer}. Given amap f: X - Y, one has the following naturality square.

mx
IED.¢ UX
U2f Uf
U?Yy vy
my

Suppose that 9 € U%Y and r € UX with my () = Uf(x). Then B# ¢ Q) if and only

if f-1(B) €. Observe that if
AP U Y B)=A*n{3eUX|f(3)eB} @ (2.4.5)

forall Aeg, Be®), then {A# nUf-1(B) | Aer, BeQ} becomes a filter basis.
For an ultrafilter X € U?X containing this filter basis, one has U2f(X) = 9 and
mx(X) =r. So it is enough to show that (2.4.5) holds for all Aeg, Be ).

Take any A ez, Be®). Since A< f-1(f(A)) €x, f(A)¥ €. Then Bn f(A)* + @.
Let t € Bnf(A)¥*. For any B € 1), one has Bnf(A) # @ which implies f~1(B)nA # @.
Consider an ultrafilter 3 € UX which contains the filter basis {f~}(B)n A | B € y}.

Then A€z and f(3) =v. Hence 3¢ A#nUf1(B) + @, (2.4.5) holds.
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2.5 Topological theories

Let T = (T,e,m) be a Set-monad and V be a quantale. An Eilenberg-Moore

algebra (X, a) of T consists of a set X and a map a:TX - X such that
aTo=amx and 1x = a.ex. (2.5.1)

An interesting direction to take is to replace the Set-morphism o : TX —» X with a
V-relation o : TX + X and the composition in Set with the V-relational composi-
tion. But the term T’ in (2.5.1) does not make sense unless 7" is defined on V-Rel.
In order to obtain an extension of T to V-Rel, one has to make some investments
in terms of the assumptions. Our choice will be to adopt the framework called
“strict topological theory” introduced by Hofmann [33].

We give the definition of a topological theory in Subsection 2.5.1 and a strict
topological theory in Subsection 2.5.2. We provide exampleé and show that the
ultrafilter monad belongs to a strict topological theory. The extension of T to

V-Rel, as defined in [33], is given in Subsection 2.5.3.

2.5.1 Definition and examples
A topological theory [33] is a triple T = (T, V, &) where
o T=(T,e,m) is a Set-monad.

« V is a quantale
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e £:TV -V is a map which is compatible with the monad T and the quantale

V', which means:

(Tl) ]-V < é'eVy
(T?) §T§ < E.mv,

(T3) k.l < £Tk where 1 is the singleton set {*} and k:1 - V is the map

that sends * to k,

Tk
T1 TV
h s §
1 |74
k
(T4) ® (£.Tm,ETm) <ET(®),
T(®)
T(VxV) TV
(£.Tm, & Tmy) < 13
VxV %
®

(T5) (éx)x:Pv - PyT is a natural transformation.

In the last condition Py : Set - Ord is the V-powerset functor defined by Py X =

VX on objects. For f: X > Y, Pyf: VX - VY is given by

Pufp) W)= V ¢(z)

zef~1(y)
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for any ¢ € VX. The map £x : Py X - PyTX is defined by £x(¢) = £ Ty. So one

has the commutative square

Ex
VX VTX
Py f P/ Tf
VY VTY
y

for any f: X = Y in Set.

Lemma 2.5.1 ([33]). Let 7 = (T, V,€) be a topological theory. Then £.T(—) < —

(6T, & Tmy).

I(-)
T(V xV) TV
(€.T’1T1,§.T7T2) 2 £
VxV 14

Proof. Take any v e T(V x V). Let u=T(m,—)(v). One has
®.(m, —)(u,v)=ue®(u—v)<v &  m(m,—Nu,v)=u—ov
for all u,v e V. Hence
®.(m, —o) < Ty & To.(my, —0) == .
&v : PyV — PyTV is order preserving, as it is a morphism in Ord. This implies

ET(®.(m, =) <ETm, &  ET(my{my, —)) = £.T(—).
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Then
£T(@)(u) = £ T(®)(T(m, —)(0)) = £.T(®.(m1, —))(b) <&.Tma(b). (1)
Similarly
§£Tm(u)=€Tm(v) &  £Tm(u)=6T(—)(0). ()
(T4) implies that
£.Tm (1) ® £ Tmy(u) < ET(8)(u).

By (1) and (1), one obtains
€T (0) 8 E.T(—)(v) <. Tma(v),

€T(—0)(U) < f.Tﬂ'l(U) —o §.T7T2(U).
Since v € T(V x V) is arbitrary, £.T(—) < — (.17, £.T5). O

Example 2.5.2. Consider the ultrafilter monad U = (U,e,m). Let V be a con-
structively completely distributive (ccd) quantale and the map £ : UV — V be given
by

E)=VNA=V{veV|tver}. (2.5.2)

Aer

Then U = (U, V,€) is a topological theory. The details follow.

Firstly, we examine (2.5.2). Observe that

VAA2V{veV|tver)

Aegg
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as /\ 1 v =v. Conversely, for any Aer, let u=/\A Then Actuand tuer

Hence

VAAsV{veV |tver).

Aer

So the equality given in (2.5.2) is justified. Since V is ccd, one can write

AVA=V A\B

Aegr Ber*
where t* ={BcV |VAer, BnA#+ @} by (2.1.10). Observe that r =1*, as ¢ is an

ultrafilter. Hence

AVA=VA\A.

Aer Aer

So £: UV -V is equivalently given by

ER)=AVA=N{veV|[lver}. (2.5.3)

Aegr
Following [33], we now show that conditions (T'1) -~ (T'5) of Subsection 2.5.1 are

satisifed. One actually has equalities for (T'1) and (72).
(T1) For any weV,
Eev(w)=&w)=\{veVtvew}=\{veV]|vsw}=w.
So 1y =€.ey.
(T2) Let X e U?V. By (2.5.2), one has

§UEX) = V{veV|tveUg(x)},
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Emy(X) = V{veV [tvemy(X)}.
Here my(X) = {Ac V| A* ¢ X} where A# = { e UV | Aer}. Let tve
my(X). Then (1 v)*# ¢ X. Given any r € (1 v)#, one has £(x) > v. Hence
re£(1v), (T v)# < £1(1 v). This implies that £-1(1 v) € X and 1 v € UE(X).
Therefore

Emy <EUE.

Similarly, using (2.5.3), one obtains
Emy 2E.UE.
(T3) Trivially k.1, = k. On the other hand, U1 = 1 and Uk(x) = k. Hence k < £(k).
(T4) Let o e U(V x V) such that Um(to) = ¢ and Umy(tv) = 1. One needs to show

V{weV [tweU(e)(w)}

v

V{ueVituer}e\/{veV [tvey}

V{veveV|tuer,tven}.

Assume that tuerand tveny Then tuxV ew and Vx t v e v, hence

.t ux1tver. This implies that 1 (u ®v) € U(®)(t).
(T5) Let f: X =Y, p: X >V be functions and y e UY. Then

Ey-Pvf() (1)

EU(Pvf(9)) (9)
V{veVitveU(P f(»)) (1)}

ViveV Y, en)
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where Y, = (Pvf(cp))_l(T v)={yeY |v< f\{( )S0($)}-

On the other hand,

PyUf.Ex(v) ()

1]

V  &Ue(r)

reUf1(y)

V' V{veVtveUp(r)}

reUf1(y)

V' V{veV|X,er}

el f~1(y)

1

where X, := o7 1(tv) ={z e X |v<p(z)}.
Suppose there exists ¢ € U f1() such that X, e r. Since f(X,) €Y,, one gets
Y, eUf(zx) =v. This shows PyUf.éx <&y . Py f.

To obtain the reverse inequality, suppose that Y, € y. Let w << v. Then for
any y € Y, there exists z € f~1(y) such that u < ¢p(z). Hence the restriction

YY) n X, = Y, of f is surjective.

&

) nX,

X Y
f

Consider 1), which is the restriction of ) to ¥,. Since the ultrafilter functor
preserves surjections, there exists an ultrafilter 3 on f-1(Y;,) n X, such that
Uf(3) =)y, Let r, be the image of 3 under the inclusion f~1(¥,)n X, - X.

Then r, e UX with X, e, and Uf(x,) = .
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So for any u <« v there exists g, € U f~1(p) such that X, € r,. Then

v=\ u < V V{weV|Xyern}
UKy IuEUf_l(U)
<V V{weV|X,er)
reUf-t(n)

This implies

V{veV|Y,ent< VV V{veV|X, ez}

eUf-1(n)

Therefore &y . Py f < PyU f.€x.

2.5.2 Strict topological theories

Let 7 = (T, V,€) be a topological theory. T is called strict if

o T satisfies the Beck-Chevalley condition;

e One has “ =" instead of “ <” in conditions (T'1) — (T'4) of Subsection 2.5.1.

With equality in place, (T'1) and (7'2) imply that (V,¢) is a T-algebra. Likewise
(T'3) and (T4) imply that the maps k:1 - V and () ® () : VxV > V are
T-algebra homomorphisms.

Throughout this work we assume that 7 is a strict topological theory. Further-

more, we assume that 7" sends the singleton set to the singleton set, i.e. 71 = 1.

Examples 2.5.3. 1. Zy = (1,V, 1y) is a strict topological theory for any quan-

tale V. Here 1 stands for the identity monad.
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2. Up = (U, 2,&) is a strict topological theory where U is the ultrafilter monad

and &, : U2 - 2 is induced by (2.5.2).

Since 2 is ccd, U, is a topological theory by Example 2.5.2. We have also
seen that U satisfies the Beck-Chevalley condition in Example 2.4.2. The
map & : U2 — 2 sends the principle ultrafilter z to z for any z € {0,1}.
So &, is basically the identity map. One trivially has equality in conditions

(T1) - (T4).

3. Up, = (U,P,,&p,) is a strict topological theory where &p, : UP, — P, is

induced by (2.5.2), i.e.

ép,(r) =inf{v e V| [0,v] er}.

Since P, is ccd, Up, is a topological theory by Example 2.5.2. Furthermore,
(T1) and (72) hold with equality as shown in Example 2.5.2. So we only

need to check (T'3) and (T4). For (T3), one has
Er.-UK(x) = &, (k) = K,
as k =T. For (T4), Example 2.5.2 implies
EU(+) <+ (£Um, EUms),

since the order on P, is reversed. To obtain £.U(+) > +.(£.Um,£.Ums,), we
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use the equivalent formulation (2.5.3) for &p,:

ép,(x) =sup{v eV |[v,00] €}

For any o € U(V x V') with Um; () = ¢ and Umy(to) = 1, one needs to show

sup{w | [w, 0] € U(+)(r0)}

v

sup{u | [u, o] € g} + sup{v | [v, 0] € p}

sup{u+v | [u,00] €, [v,00] € 4}

where the equality holds since “ + ” preserves suprema in P.. Assume that
[4,00] €x and [v, 0] €. Then [u, 0] x [v, 0] € . This implies [u + v, 00] €

U(+)(w).

. (L, V,€) is a strict topological theory for any quantale V where L = (L, e, m)

is the list monad (see Examples 2.4.1) and £ : LV - V is given by

() =k,

E(V1, V2, V) =V @ U ® ... O Uy,.

L satisfies the Beck-Chevalley condition. The conditions (7'1) and (7'3) triv-
ially hold with equality. One has equality in (T'2) and (7'4) since “ ® ” is as-

sociative and commutative respectively. For (T5), let f: X - Y and p € VX,
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One needs to show {y.Py f(¢) = Py Lf.£x(p). For any (y1,v2,.-.,yn) € LY,

gYPVf((P) (ylsy2a . ,yn) = §L(Pvf((10)) (ylayQa v ayn)
=&(Py f(0) (1), Prf(0)(y2), - -, Pr f(0) ()
V ez)e V e@)e...e V  ¢o(z.)

z1ef~1(y1) z2ef-1(y2) Tnef1(yn)

1

V (1) ® p(22) ® ... ® p(z5)
(21,1’,‘2,.“,21;)
eLf (v1,u2,1Um)

V ELp(zy,%g,...,Ts)

(z1,22,.-,ZTn)
eLf 1 (y1,¥25--¥n)

= Pva-vﬁx(ﬂﬁ) (y1,Y2,- - - Yn)-

The assumption 7'1 = 1 implies the following result which will be helpful in the

sequel.

Lemma 2.5.4 ([36]). Let T = (T, e,m) be a Set-monad where T'1 = 1 and m satisfy

(BC). Then me.e = eTe.

Proof. Since T is a monad, 17x = mx.erx. Composing both sides by m% on the
left, one gets m% > erx which in turn implies m$.ex > erx.ex.

Now take any z € X and X € T2X. One has m%.ex(z,X) < erx.ex(z,X) if
mx (%) = ex(z) implies erx.ex(z) = X. So suppose that mx(X) = ex(z). Consider

the following naturality squares of e and m where z: 1 - X is the map that picks
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reX.

1 T1 T?1
z Tz T?x
mx
X TX =———=T2X
€x erx

One has mx(X) = ex(z) = Tz(x). Since m satisfies (BC), T2z(x) = X. But

erx-ex(z) = T?2z(*), as the outer diagram commutes. Hence erx.ex(z)=%X. O

One has eT.e = T'e.e by the naturality of e. Hence the lemma implies m°.e = Te.e

as well.

2.5.3 Extension of T to V-Rel

Given a topological theory 7 = (T, V,{), one can extend the Set functor T to V-
Rel as given in [33]. Forany r: X -+~ Y, reTX and ) e TY, the extension T of T

is defined by
Tr(z,n) = V{€Tr(w) [ e T(X xY): Tm(w) =1, Tmy(r0) = n} (2.5.4)

where m : X xY - X and mp: X xY > Y are the projection maps.
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So Tr is the smallest map ¢:TX xTY — V such that £.Tr < q-(T'm, Tmy).

(T7T1,T7T2)
T(XxY) TX xTY

f Tr Ve Tr

The reader shall keep in mind that the extension of T to V-Rel is dependent
on the choice of ¢ although this is not reflected in the notation for the sake of
simplicity.

Remark 2.5.5. By Example 2.5.2 we know that U = (U,V,¢) is a topological
theory when V is ced and £ : UV — V is given by £(x) = \/{veV [tver}.

Now we formulate the extension of the ultrafilter functor U to V-Rel following

(25.4). Forr: X+ Y,

1l

Ur(z,v) VA{€Ur(rw) [ eU(X xY): Um(w) =g, Umy(to) =y}

VIV{veVtveUr(m)} |meU(X xY): Um(w) =r, Urs(w) = n}

il

V{veV | meU(XxY): r'}(tv) er, Um () =g, Umy(10) = n}

There exists v € U(X xY') such that 71(1 v) € w, Um;(w) = ¢ and Umy(o) =y if
and only if r~1(1 v) N7} (A) nm;}(B) + @ for any A €, B ey. This is equivalent
to saying that for any A € r, B €t there exists z € A, y € B such that v < r(z,y).

Hence

Ur(r,9)=\/{veV|VAer,VBey Izc A Jye B: v<r(z,y)}.
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If v belongs to the set over which this supremum is formed, then v < A \/ r(z,7),

Aer zcA
Bey yeB
which implies
Ur@en) < AV r(z,y).
Aer zeA
Ben yeB
On the other hand, let u « /\ \/ r(z,y). Then for any A €, B €y there exists
Aer zeA
Ben yeB

z € A, y € B such that u < 7(z,y). Hence u < Ur(r,y). Taking suprema over all

ux A V r(z,vy), one gets
Aexr z€A
Bey yeB

A Vr(z,y) <Ur(,v).

Aer zeA
Bey yeB

Therefore the extension of U to V-Rel is

Ur(e,n) = /{\ V r(z,y). (2:5.5)
Bey veB

Examples 2.5.6. 1. Let 7: X + Y be a 2-relation. In accordance with (2.5.5),

the extension of U to 2-Rel is given by
}:ﬁrn <= VAer,VBey,Jze A JyeB: zry
forany reUX, yeUY.
Equivalently,
tUry < VAer r(A)ey
<= VBen, r°(B)er (2.5.6)

where r(A) ={yeY |3z A: zry} and r*(B)={ze X |Jye B: zry}.
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. Let 7 : X + Y be a P,-relation. Following (2.5.5), the extension of U to
P.-Rel is given by
Ur(x,9) =sup inf r(z,y) (2.5.7)
A ZEA
Bey yeB
forany re UX, neUY.

. For any quantale V, the list functor L is extended to V-Rel by (2.5.4) as

follows:
Let 7 : X + Y be a V-relation, ¢ = (71,Z2,...,%n) and 9 = (y1,Y2,-- -, Ym)-

Then

_ 7(21,%1) @ 7(Z2,Y2) ® ... @ (T, Ynn) if n=m,
Lr(z,p) =

1 else.

If T = (T,V,€) is a strict topological theory, then the extension T of T to V-Rel

_2 — . —_—
becomes a functor. m: T" — T becomes a natural transformation and e: 1y_gey = T

becomes an op-lax natural transformation.

Proposition 2.5.7 ([33]). Let 7 = (T, V, &) be a strict topological theory. Suppose

that the extension T of the functor T : Set — Set to V-Rel is defined as in

(2.5.4). Then T : V-Rel —» V-Rel becomes a functor. Furthermore, given any map

f:X - Y and V-relations 7,5 : X = Y the following assertions hold:

1. Tf=Tf.
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2. (Tr)° =Tr°.
3. r < s implies Tr < T's.
4. ey.r< Tr.ex.

5. my. T r=Trmy.

2.6 (T,V)-relations

A (T, V)-relation r from X to Y, denoted by r: X + Y, is a V-relation r : TX -~
Y. Composition of two (T, V)-relations r: X +~ Y and s: Y + Z is given by the
Kleisli convolution,

o.— T ]
sor:=s.Tr.m%.

(T, V)-relations inherit the order on V-relations. Kleisli convolution is an associa-
tive operation that respects the order on (T, V)-relations. For any 7: X - Y, one
hasroel, =rand ey, or>7.

Like V-relational composition, Kleisli convolution from the right is a sup-map.

Hence for r: X +~ Y, (_) o7 has a right adjoint (.) — r defined by
Sor<t <= s<ter (2.6.1)
for any s:Y -+ Z and t: X -+ Z. Similar to (2.3.1), one gets

t—r(n,2)=\{s|sor<t}= A (t(}:,z) o— Tr.m}(;,t))). (2.6.2)

eTX
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Y

[ e
TT N (2.6.3)

X —

Kleisli convolution from the left does not have a right adjoint in general [35].

2.7 (T,V)-categories

The notion of a (T, V)-category is the main ingredient of the theory developed
in the subsequent chapters. In Subsection 2.7.1 we provide the definition of a
(T, V)-category and its main examples as given in [14], [17], [16]. Subsection 2.7.2
is devoted to the basic facts about (T,V)-categories. Firstly, we consider some
important functors between the category of (T, V')-categories and the category of
V-categories. Following [15], we provide the definitions of a free Eilenberg-Moore
algebra and a dual (T, V)-category and show that the quantale V itself can be
considered as a (T, V)-category. Furthermore, we review ®-exponentiability [33]

and some basic limits in the category of (T, V')-categories.

2.7.1 Definitions and examples

From this point on we assume that 7 = (T, V,£) is a strict topological theory where
T1=1.
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A (T, V)-category (X,a) is a set X together with a (T, V)-relation a: X + X
which satisfies

ex<a & acacga. (2.7.1)

Note that composing both sides of €5 < a with a yields a < aoa. So one actually

has aoa = a. Expressed elementwise, (2.7.1) means
k<a(ex(z),x) &  Ta(%,r) ®a(z,7) < a(mx(X), ) (2.7.2)

forall XeT2X,reTX and z ¢ X.

A (T,V)-functor f:(X,a) - (Y,b) is a map from X to Y which satisfies
fa<bTf

or, equivalently,
a(s,2) <H(TS (@), /(=)
forallreTX,x e X.
(T, V')-categories together with (T, V')-functors form the category

(T, V)-Cat.

If T is the identity monad 1, one calls an (1, V')-category simply a V -category.

Similarly an (1, V)-functor is called a V' -functor. The category they form is called

V-Cat.
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Remark 2.7.1. Given a (T, V')-category (X, a), (2.7.1) can be equivalently written
as

1x <a.ex & aTa<amy.

So (X, a) can be seen as a lax T-algebra (or a lax Eilenberg-Moore algebra) where
the composition is replaced with the V-relational composition. In this respect a
(T, V)-functor f: (X,a) = (Y,b) is a lax T-algebra homomorphism (see Subsec-

tion 2.4.1).
Now we look at the main examples of (T, V')-categories.

Examples 2.7.2. 1. 2-Cat = Ord.
Given a 2-category (X,a) and z,y,2z € X one has
1<a(z,z) &  a(z,y)Aa(y, 2) <a(z,2).

This means that a is a reflexive and transitive relation on X. Hence X is an
ordered set. On the other hand, a 2-functor f: (X,a) - (Y,b) is a monotone

map, as
a(z, z) <b(f(z), f(2))

for all z,2 € X. Therefore 2-Cat is isomorphic to Ord.

2. P,-Cat = Met.
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Given a P,-category (X,a) and z,y,2 € X,

02 a(z,x) & a(z,y) +a(y, 2) 2 a(z, 2). (2.7.3)

One can consider the value a(z, y) as the distance from the point z to the point
y. Then (2.7.3) implies that every point has zero distance to itself and the
distance function satisfies the triangle inequality. So (X, a) is a (pre)metric
space. Following the convention in category theory, we will simply call (X, a)

a metric space. A IP,-functor f: (X, a) - (Y,b) satisfies

a(z,2) 2 b(f(z), f(2))

for all z,z € X. This means that f is a nonexpansive map.

Therefore P,-Cat is isomorphic to Met which is the category of metric spaces

and nonexpansive maps.

A metric space (X, a) which satisfies a(z,y) = a(y, z) for all 7,y € X is called
a symmetric metric space. If a(z,y) = 0 implies z = y, then X is callled a

separated metric space.

. (U, 2)-Cat = Top [4].

We will demonstrate the correspondance between (U,2)-Cat and Top fol-

lowing [56]. Let (X,7) be a topological space. Consider the ultrafilter con-
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vergence relation a: UX x X - 2 given by
rarz <= VYOcXopen (zeO=0c¢y).

forre UX, z e X. Then (X, a) is a (U, 2)-category as follows:

The conditions in (2.7.2) translates to
Taz (2.7.4)

XUar & raz = mx(X)az (2.7.5)
forall XeU?X,reUX and z ¢ X.

Trivially, the principle ultrafilter z converges to z for any z € X. To see that
the second condition is satisfied, suppose that ¥ Uar and r a z. Let O be
any open neighbourhood of z. Since ¢ converges to z, O er. As X Uar, this

implies a°(0) = {3 UX |32€ O: 3az} € X (see (2.5.6)). Then
a®(0)c{3eUX|Oe3}=0%eX.

Hence O e mx(X), mx (%) converges to z. So (X,a) is a (U, 2)-category.

Conversely, let (X,a) be a (U,2)-category. Then it satisfies (2.7.4) and

(2.7.5). One can define open sets of X by
O a-open in X < a°(0)c O*.
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Trivially, a°(X) € X#. For any a-open 0,,0; ¢ X,
a°(01n 0y) € a°(01) na*(0,) € OF nOF = (0,1 0,)*.

Furthermore,

a"(JO) =Ueo(0)) € QO? 3 0,)*

for any collection {O; ¢ X | O; a-open, i € I'}. Therefore a-open sets form a

topology on X.

The correspondence between topological spaces and (U, 2)-categories is bijec-
tive (4], [38].

A map f:(X,7) - (Y,7') is continuous if and only if for any re UX, z € X
if ¢ converges to z, then f(r) converges to f(z). This precisely means that
f:(X,a) » (Y,b) is a (U, 2)-functor where 7 and 7’ correspond to a and b

respectively.

. (U,P,)-Cat = App [14].

An approach space, introduced by Lowen [43], is a simultaneous generaliza-
tion of a topological space and a metric space. There are several equivalent
characterizations of an approach space. We will mention the characterizations

by “distances”, “towers” and “regular function frames”.

An approach space (X,0) consists of a set X and a distance function ¢ :

PX x X - [0, 00] which satisfies the following conditions:
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({z},z) =0,

+ §(2,7) = oo,

« 5(AuB,z)=min{6(A,z), 6(B,z)},

e 5(A,7) <5(A®),z) +e where A©) = {z¢ X | 5(A,z) <e},

for all z € X and A,B ¢ X. Let (X,0) and (Y,d’) be approach spaces. A

map f:X - Y is called a contraction if

6(A,z) 2 8'(F(A), f(z))
for all Ac X, x € X. Approach spaces and contractions form the category
App.

The bijective correspondence between approach spaces and (U, P, )-categories

is established as follows [14]:

Given an approach space (X, 6), one has the corresponding (U, P, )-category

(X,a) where a: UX x X — [0, 00] is defined by

a(r,z) =sup{0(A,z) | Aer} (2.7.6)

forre UX, z € X. Conversely, given a (U, P, )-category (X, a), the distance

function § : PX x X — [0, 0o] of the corresponding approach space is given by

0(A,z) =inf{a(r,z) | Aex} (2.7.7)
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for Ac X, z € X. Futhermore, f:(X,48) - (Y,d’) is a contraction if and only
if f:(X,a) - (Y,b) is a (U, P, )-functor where a and b correspond to § and

¢’ respectively via (2.7.6) and (2.7.7).

Proposition 2.7.3 ([43]). Let (X, ) be an approach space. For any z € X,

A, B ¢ X, the following assertions hold:
1. £ € A implies §(A,z) = 0.
2. Ac B implies 6(B,z) < (4, z).
3. 6(4,2) < sup d(A,y) + (B, x).
ye

An approach structure on a set X is equivalently given by a tower. A tower

is a family of functions
te: PX > PX, ¢€¢€[0,00]
that satisfies the following conditions for all A, B<c X and €,0 € [0, o0]:

. Act.(A),

® te(@) =9,

te(AuB) =t.(A)ut.(B),

te(ts(A)) € tero(A),

te(A) = 1t (A4).

E<a
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Transition from a distance function ¢ to a tower {t. | € € [0,00]} is done by
setting

te(A)={z e X|6(A,z)<e}
We will denote the set {z € X | §(A,z) <€} by A®).

One can also put an approach structure on a set X by a regular function
frame. A regular function frame is a collection R of functions from X to

[0, o] which satisfy

« VSCR,VSER,
e Vu,veR, unveR,
e VueR,Vae[0,00], pu+aeR,

e VueR, Vae[0,00], max{u-c,0}eR.

Given an approach space (X,d), its regular function frame R is the set of

contractions from (X, §) to (P,,d") where

0'(A,z) = max{z -sup A,0}.

Remark 2.7.4. Consider the following commutative diagram which will be useful
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in the sequel.

Ord ——— Top
(2.7.8)

Met &—— App
The embedding 2 — P, which takes 1L to co and T to 0 induces the vertical em-
beddings which are both reflective and coreflective. An ordered set (X, <) becomes

a metric space (X, d) with the distance

0 ify<uz,
d(y,z) =

oo otherwise .
Similarly any topological space (X, 7) can be construed as an approach space (X, d)

where

0 ifzeAd,
(A, z) =

oo otherwise .

The coreflection of an approach space (X, ) in Top has the closure operator defined
by
A={reX|6(A z)=0}
The horizontal embeddings of the diagram are coreflective. The embedding

Ord < Top is the Alexandroff topology functor which takes (X, <) to the topolog-

ical space whose open sets are the down-closed sets. The collection {| z |z € X} of
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principal down-closures form a basis for this topology. The embedding Met - App

takes a metric space (X, d) to the approach space (X,d) where
0(A,z) =infd(y, )
yeA

for Ac X, zeX.

2.7.2 Basic facts

There are some important functors between (T, V)-Cat and V-Cat. One defines

the functors M and A° as follows:

M: (T,V)-Cat — V-Cat
(X,a) — (TX,Ta.mS{)

f— Tf

A® : V-Cat — (T,V)-Cat
(X,0) — (X,ex.Tb)

f—

To see that M is a functor, take a (T, V')-category (X,a). One has e < a which

69



implies T'e$, < Ta. Then 17x = Te%.m% < -’I_’a.m}. Secondly,

= = = =2
Tam%.Tam = TaTl ampy.m

T, T o °
TaT a.TmS.m%

1l

T(a.Ta.mS).m%

1l

IA

al °
Ta.m$%

Hence MX = (TX,Ta.ms) is a V-category. Since T is a functor, M(g.f) = Mg.M .
Therefore M is a functor.
To see that A° is a functor, take a V-category (X,b). One has 1x < b which

implies 17x < Tb. Then ek < ej{fb. Secondly,

(e%-Tb)o (ex.Th) = e%.Tb.T(e%.Th).m%

= e}Tb‘(TeX)°.—T2b.m‘;(
= €%.Tb.(Tex)m%.Th
= €%.Tb.Tb
= e%.T(b.b)

5. Th

IN

Hence A°X = (X, €%.Tb) is a (T, V)-category and A° is a functor.

For each (T, V)-category (X, a), there are two important (T, V )-categories to
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consider. These are the free Eilenberg-Moore algebra
| X|=(TX,mx)
and the dual (T, V')-category
X°P = A°(M(X)P).
Lemma 2.7.5. The functor A° has a right adjoint defined by

A: (T, V)-Cat — V-Cat
(X,a) — (X,a.ex)

f— f

Proof. Firstly, we show that A is a functor. Let (X, a) be a (T, V)-category. Then

e% < a implies 1x < a.ex. On the other hand,
aex.a.ex <aTaerx.ex <aTam%.ex <aex.

Hence AX = (X, a.ex) is a V-category and A is a functor.

Now we show that A° 4 A. Observe that
b<ey.Thex

for any V-category X = (X, b) as e is an op-lax natural transformation. This means

1x : X - A(A*(X)) is a V-functor. On the other hand, given any (T, V)-category
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(X,a),
e T(aex) =ex.TaTex <ex.Tamg <aTamg <a
which implies that 1x : A°(A(X)) - X is a (T, V)-functor. Therefore A° 4 A where

the unit and the counit of the adjunction are the identity natural transformations.

O

Remarks 2.7.6. 1. The embeddings Ord — Top and Met - App in diagram
(2.7.8) are instances of the functor A° : V-Cat - (T,V)-Cat. The func-
tor A sends a topological space X to the ordered set (X,<) with the dual
specialization order, i.e. z < y if and only if @ c @v—} For an approach
space X = (X, 6), AX is the metric space (X,d) where d(z,y) = 6({z},y) for

z,ye X.

2. Consider the functor M. Let X = (X,a) be a topological space with the
convergence relation a : UX - X and M(X) = (UX,<). As shown in [15],

given ultrafilters ¢,y € UX, one has

r<y — IXeU?X:mx(X)=¢r & XUay
<= VAer,Bey, IweUAyeB: way
< VAer,Bey, AnB+o

< VAeg, Aey.
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Let X = (X,a) be an approach space with the convergence P,-relation a :
UX -+ X. Suppose that “a” corresponds to the approach distance ¢ : PX x

X - [0,00]. Then MX is the metric space (UX,d) where
d(z,n) =inf{v e [0,00] | VA er, AW ep} (2.7.9)
for all ultrafilters ¢, on X [15]. The details follow.

One has MX = (UX,Ua.m%) where
Ua.m(x,9) = inf{Ua(X,9) | X e UX : mx(X) =1}.

Furthermore, Ua(X%,9) =sup inf a(3,y) by (2.5.7).
Acx 3€A

Bey yeB
Let
u = inf{sup inf a(3,y)|XeU%X: mx(X) =1}
Aex 3€A
Bey yeB
and

w = inf{v e [0,00] | VAer, A® ey}

We will show that u = w. For X € U2X with mx (%) =, A € ¢ implies

A# ={3eUX | Aej}eX. Hence

sup inf a(3,y) <wu.
Agq  jeA#
Bey yeB

So for any € >0, A e, B ey, there exists v € A#,y € B such that a(w,y) <
u+¢. Then

6(A,y) = inf{a(3,y) |3€ A%} <a(v,y) Su+e.
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Soy e A*¢)n B # @. Since y is an ultrafilter, A(*) e y. As this holds for all

Aegand >0, one gets w < u.

For the reverse inequality, observe that A*$)n B # @ for all A€, B ey and

€ > 0 by the definition of w. For any y € A(®*¢) n B, one has
inf{a(3,y) |3€ A%} =0(A,y) Sw+e.

Hence ingﬁ a(3,y) <w +e¢. Since this holds for all Aex and B ey,
3€A

yeB

sup inf a(3,y) <w+e.
A 3eA*
Bey yeB

Let A= {A#*cUX |Aer}and I={ZcUX |sup inlf_ a(3,y) >w+¢}. Then
Bey  3€
yeB
2 is a filter basis and J is an ideal such that A#nZ = @ for any A# e A, T € 7.
By Lemma 2.2.1, there exist X € U2X with 2 ¢ X and X nJ = . This means

that mx (%) = and sup inj{ a(3,v) <w+¢e. Hence u < w.
€
55 veB

One can put a V-category structure on the quantale V. Consider the map
—: V xV - V given in (2.1.5). Since k is the unit element with respect to ®,

k <v — v for any v e V. One also has
U (u—-v)®@(V—ow)<ve®(v—ow)w

which implies that

(u—v)®(v—ow)< (u—w)
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for any u,v,w € V. So ly < — and — . — < —. In other words (V,—) is a
V-category.

One can also put a (T, V)-category structure on the quantale V.

Proposition 2.7.7 ([15], [33]). (V,hom¢) is a (T, V)-category with homg =TV 5

Vo V.

Proof. Firstly, 1y < — and 1y = £.ey imply 1y <— ..ey. Hence

Recall from Lemma 2.5.1 that
T (=) < — (£.Tm,ETma) =— (€ x &) Ty, Tmy).

Then T(—) < — .(£ x&) by the definition of the extension of T to V-Rel (2.5.4).

Using V-relational composition, one can write it as T(—o) <€°. — .£. Hence
ET(—)<— £

Also — . — < —o since V is a V-category. £.T¢ < &.my holds, as 7 is a topological

theory. Then
(= &) T(— &)= — £ T(=)TES —. — £TE< (= .£).my.
So (= .£).T(~ .£).m%, < (—o .£) which means that

(= &) o (=& <(=9)
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Hence (V, home) is a (T, V')-category. O

Examples 2.7.8. The (U, 2)-category 2 is the Sierpinski space with {0} open. The

(U, P.)-category P, is the approach space (P,,d) where
0(A,z) = max{z - sup A,0}
for AcP,, xeP,.
Given (T, V)—categories (X,a) and (Y,b), one can form their tensor product
(X,a)® (Y,b)=(XxY,a®b)
where
a® b(w, (z,y)) = a(Tm1(w), z) ® b(Tr2(w),y)

for w e T(X xY),(z,y) € X xY. The singleton set together with the constant
relation k, denoted by (E, k), is the ®-neutral object.

In general (T, V')-Cat is not a closed category. But one has the following result.

Proposition 2.7.9 ([33]). Let X = (X, a) be a (T, V)-category. X ® () has a right

adjoint ()X if a.Ta = a.mx

A (T,V)-category (X,a) which satisfies the conditon of Prop. 2.7.9 is called
®-ezponentiable. Given another (T,V')-category (Y,b), the underlying set of the

tensor exponential object (Y%, [a,b]) is the set of all (T, V')-functors from X to Y.
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The structure [a,b] is defined by

[0,8)(p, 1) =/ {0 € V | V2 € X,q € T (p); a(Tms(a), ) @ v < b(Teu(a), h(z))}
(2.7.10)
where p e T(YX),he YX ev:YX xX - Y is the evaluation map, 7, : X xYIXl - X
and 7y : X x YIXI - YIX! are the projection maps.
Lemma 2.7.10 ([36]). Let X = (X,a) and Y = (Y,b) be (T, V)-categories where

X is ®-exponentiable and f, g € YX!. Then

[a,6](eyx(£), 9) = x{}( bley (f(2)), 9(x))

Given a (T,V)-category X = (X,a) and i : M - X, M is subcategory of X
with the structure °.a.T%. Since T : Set - Set preserves monomorphisms, one has
Ti:TM - TX. So we will simply denote this subcategory by (M, a).

Since the forgetful functor from (T, V)-Cat to Set is topological, the limits in
(T, V)-Cat are formed in Set with the initial structure on them. In particular we

will denote the cartesian product of (X, a) and (Y,b) by
(X xY,axb)
where a x b = (m1°.a.Tm;) A (m2°.0.T,), i.e.
axb(rw, (z,y)) = a(Tm(w),z) Ab(Tm(t0),y)

for all o e T(X xY),(z,y) € X xY. The terminal object is the singleton set with

the constant relation T, which will be denoted by 1 = (1, T).
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2.8 (T,V)-modules

(T, V)-modules play an important role in developing the notions of separation and
completeness for (T, V)-categories. Firstly, we define (T, V)-modules and review
the notions of full faithfulness, L-density and L-equivalence for (T, V')-functors as
given in [36]. Secondly, we explore the relationship between (T, V')-functors and
(T, V)-modules following [15]. We provide the Yoneda functor and the Yoneda
lemma for (T, V')-categories [15].

Let (X, a), (Y,b) be (T, V)-categories and ¢ : X -~ Y be a (T, V)-relation. ¢

is called a (T, V')-module if
poa<yp & bop<ep.

In such a case we write ¢ : X ~ Y. (T, V)-categories and (T, V')-modules with the

Kleisli convolution form the category
(T,V)-Mod.

Since a > e and the Kleisli convolution preserves order, poa > poe% = . Similarly
bow > . So one actually has ¢oa = ¢ and bop = . Asaresult a: X ~ X functions
as the identity morphism of (X, a) in (T, V)-Mod. (T, V)-Mod is a 2-category, as
(T, V)-modules inherit the order on (T, V)-relations. This allows one to consider
adjunctions in (T, V')-Mod.
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A (T,V)-functor f : (X,a) - (Y,b) induces two important (T,V')-modules:

fe:(X,a) ~ (Y,b) and f*:(Y,b) ~ (X,a) given by

f+=bTf & fr=fb.
For (T, V)-modules ¢ : (Y,b) ~ (Z,c) and ¢ : (Z,¢c) ~ (Y,b), one has

gofe=0Tf &  [froy=f9
These identities follow from
@o f,=p.Tb.T*f.m% = 9. Tb.m3 . Tf = p.Tf,
frot=fobTh.my = fou.
Given (T, V)-functors f: (X,a) - (Y,b), g: (Y,b) - (Z,c) one has
(9-f)s=ge0fs & (gf)" =f"eg"

Observe that for any (T, V)-category (X,a), a = (1x)" = (1x),. So one has the
lower star functor and the upper star functor

(), : (T,V)-Cat - (T,V)-Mod &  (.)":((T,V)-Cat)® - (T,V)-Mod

which are identical on objects and which take a (T,V)-functor f to f, and f*
respectively.

One sees that f, 4 f* as

frofi=fbTf2a=(lx)",
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foo f*=bTfTfTbmy <bTbm§ =bob<b=(ly)"

Let f,9:(X,a) = (Y,b) be (T, V)-functors. By taking advantage of the adjunctions
f«— f*and g. 497,

frzg = f.<g.
One defines f > g if f* > ¢* or, equivalently, f, < g.. f and g are called equivalent,

written f~g,if f<gand f>g.

Lemma 2.8.1 ([36]). Let f,g: (X,a) = (Y¥,b) be (T,V)-functors. Then f < g if

and only if k£ <b(ey(f(z)),9(z)) for all z € X.
Proof. Suppose that f < g. Then g, < f,. For all z € X, one has
k <a(ex(z),z) < g" 0 g.(ex(x),2) < g" o fu(ex(z),z) = b(T f.ex(z), 9(z))
=bey (f(z)), 9(2)).

Conversely, suppose that k < b(ey (f(z)), g(z)) for all z € X. Sincee: T - Id is

an op-lax natural transformation and (Y,b) is a (T, V')-category, one gets

f*(9,2) =b(v, f(z)) < Tb(ery (n), ey (f(z))) @ bey (f(z)), 9(z))
<b(my.ery(n),9(x))
=b(y, 9(x))

= 9*(Ua$)-
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forallze X, neTY. Hence f*<g*, f<g.

O
One calls a (T, V)-functor f: (X,a) - (Y,b) fully faithful if
frofe=(1x)"
or, equivalently,
(T f(x), f(=)) = a(x,z) (2.8.1)

for all z € X, r e TX. Since f*o f, > (1x)" always holds, f is fully faithful if and
only if f*o f, <(1x)". A fully faithful (T, V)-functor that is also injective is called

a full emdedding. f is called L-dense if

foo fr=(1y)".

Since f.o f* < (ly)" always holds, f is L-dense if and only if f. o f* > (1y)".
Composition of fully faithful (L-dense) (T, V')-functors are fully faithful (L-dense).
A (T, V)-functor which is both fully faithful and L-dense is called an L-equivalence.
L-equivalences are isomorphisms in (T, V)-Mod.

The following proposition will be useful in the sequel.

Proposition 2.8.2 ([36]). Let f: (X,a) - (¥,b), g : (Y,b) = (Z,c) be (T,V)-

functors.

1. If g.f is fully faithful, then f is fully faithful.
81



2. If g.f is L-dense, then g is L-dense.
3. If g.f is fully faithful and f is L-dense, then g is fully faithful.
4. If g.f is L-dense and g is fully faithful, then f is L-dense.
5. If f is surjective, then it is L-dense.
Proof. We only show 1,3 and 5. Proofs of 2 and 4 are similar.

1. Suppose that g.f is fully faithful. Then

(IX)* =(g'f)*°(g-f)* =frogtog,of, 2 f 0o f..

3. Suppose that g.f is fully faithful and f is L-dense. Then

(y)* =feof*=fio(lx) o f*=fio(ffogogiofi)o f" =g 0g..

5. Suppose that f is surjective. Then f.f° =1y. Hence

foo f*=bTFT(f°.b).m$ =bT(f.f°).Tbm$ =bThm$ =b=(ly)".

Proposition 2.8.3. Fully faithful (T, V)-functors are pullback stable.
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Proof. Let g: (Y,b) = (Z, c) be a fully faithful (T, V')-functor. Consider its pullback

along a (T, V)-functor f:(X,a) — (Z,c¢).

T2
(X xzY,axb) (Y,b)
J
™ g
(X,a) (Z,¢)
f

Take any w e T(X xzY) and (z,y) e T(X xzY). Then

a(Tmy(mw),z) < (T f.Tm(w), f(z)) = c(Tg.Tme(w),g(y)) = b(Tm2(1),y).

This means that a(T'71(r0),z) = a(Tm(t),z) Ab(TT2(t0),y). So

(1xxzy)  =axb=n].a.Tm = (m)" o (m1)..

Hence m, is fully faithful. O

Examples 2.8.4. 1. In Met, a nonexpansive map f : (X,d) - (Y,d') is fully
faithful if and only if d(z, 2) = d'(f(x), f(2)) for all z,z € X. So fully faithful

maps are precisely isometries.

2. Given a continuous map f: X - Y in Top, let f™!1: OY - OX denote the
corresponding frame homomorphism between the lattice of open sets of Y

and the lattice of open sets of X.
83



Claim: f:X - Y is fully faithful if and only if f~!: OY - OX is surjective.

To see this, let f be fully faithful and U ¢ X be an open set. Take any point
z € U. The collection & = {V ¢ X |30 cY open: f(z) € O, f"1(O)c V} is
a filter on X. Let ¢ be any ultrafilter that contains #. Then f(r) converges
to f(z), since for any open neighbourhood O of f(z), f-1(O)e F ct. As f
is fully faithful, r converges to z (see (2.8.1)). Given that r is arbitrary, any
ultrafilter refining & converges to z. This implies that & converges to z.
Hence U € &#. Then there exists an open set O, €Y such that z € f~1(0,) ¢
U. Repeating this for each z € U, one gets U = qu_l(Oz) = (U O.).
e

zelU

Hence f! is surjective.

Conversely, assume that f~! is surjective. Let ¢ be any ultrafilter on X such
that f(r) converges to f(z). Take any open neighbourhood U ¢ X of z. Since
[~ is surjective, there exists an open neighbourhood O ¢ Y of f(z) such that
f1(0)=U. As f(r) converges to f(z), O € f(z). Then f~}(O)=Uerand
converges to z. Therefore f is fully faithful.

In light of this characterization, f is fully faithful if and only if OX = {f~1(O) |
O open in Y}. If f is also injective, i.e. a full embedding, then X is homeo-
morphic with f(X). Hence f is a subspace embedding. On the other hand,

every subspace embedding is a full emdedding. So full embeddings in Top
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are precisely subspace embeddings.
There is a close relationship between (T, V')-modules and (T, V)-functors.

Proposition 2.8.5 ([15]). Let (X, a), (Y,b) be (T, V)-categories and v : (X,a) +

(Y,b) be a (T, V)-relation. The following are equivalent:
1. ¥:(X,a) ~ (Y,b) is a (T, V)-module.
2. Both9:|X|®Y >V and 9: X?®Y - V are (T, V)-functors.

Proof. Suppose that ¢ : (X,a) ~ (Y,b) is a (T,V)-module. ¢ : |X|®Y - V isa

(T, V)-functor if and only if

mx(Tm (2),r) © f(Tm2(W), y) < £TY(W) — 9(x,y)

for any 20 ¢ T(TX xY) and (r,y) € TX x Y. This inequality holds trivially if

mx. Tm(20) £ r. So assume mx. T (20) =¢. In that case one needs to show

£.TY(W) @ b(Tm2(2W), y) < ¥(r,y)-

Observe that

ETY(W) < TY(Tm (W), Tro(2)) (1)

by the definition of the extension of T to V-Rel (2.5.4). As % is a T-module, one
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has b.T%.m$, < ¢ or, equivalently, b.T% < 9.mx. Then

ETY(W) ® b(Tm2(W),y) < Typ(Tm (W), T>(20)) @ b(Tma(2W), )

IN

IN

¥.mx (Tm(2W),y)

¥(x,y)

Hence ¥ : | X|®Y - V is a (T, V)-functor.
Now we look at 1 : X°P@Y — V where X°P = A°(M(X)%?) = (T'X, e%X.TmXTza°).

Y:XP®Y - Visa (T, V)-functor if and only if

e Tmx T a*(Tmy(2), 1) @ b(Tm(20),y) < E.TH(2W) — $(z,v)
or, equivalently,

T a.Tms erx(x, Tm () @ £ TH(W) ® b(Tms(20), y) < ¥(x,v)

for any W e T(TX xY) and (r,y) € TX xY. This inequality is obtained as follows:
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Tza.Tm}.eTx (r, Tm1(20)) ® £ T(2W) ® b(Tm2(2), y)
<T’a.Tm erx(r, Tm(28)) ® Top(Tm (), Tr2(W)) ® b(To(25), y)
< b.Ti/}.Tza.Tm}.eTx(p, )
<bTY.T a.Tms.m%(x,y)
= 0. Ty.T amiy.ms(x,y)
= b.T.m% . Tam%(x,v)
<.Tam%(x,y)

<P(r,y)

The steps depend on the inequality (1), the facts that (T',e,m) is a monad which
satisfies (BC) and ¥ is a (T, V)-module.

Conversely, suppose that both ¢ : | X|®Y -V and 9 : X°p ®Y -V are (T, V)-
functors. One needs to show b.Tv,/).mj( < and w.Ta.mj{ <. Pick any x € TX and

yeY. Then

V  Ty(X,9)®b(h,y)
XeT?2X
mx (X)=¢
yelTY

V V  ETY(W) e b(y,y).
XeT2X WeT(TXxY)
mx(X)=r Tm (W)=%

yeTY T2 (2W)=y

b.Ty.m%(x,y)

Since T satisfies (BC), for any § € TY and X € T?X with mx(X) = r there exists
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WeT(TX xY) such that Tm () =X and Tm(2W) =y. So

bTy.mi(ry)= V  ETH(IV) @ b(T72(2W), ).
WeT(TXxY)
mx . Tm1(2)=¢

Asy:|X|®Y -V isa (T, V)-functor,

£.TY(2W) ® b(T7(2W),y) < ¥(r,y)

for any W e T(TX xY) with mx.Tm;(20) =x. Hence

V  €Ty(0) 8 (Tr(20),4) < 9(x,).
o s o)

Therefore b.T4.m$ < 1.

For the second inequality, observe that
$ Tams <bey.(¥.Tams) <bT(.Tams).erx =b.Ty.T a.Tm.erx,
as (Y,b) is a (T, V)-category and e is an op-lax natural transformation. Hence

= = =2
v.Tam%(r,y) < b.TY.T a.Tmk.erx(x,y)

=V T?,b(%,t))@b(t),y)®_T—2a.Tm3{.eTx(;,%)

XeT2X
yeTY

=2
=V V  ETY() @b(y,y) T aTmk.erx(x,X)
XeT2X WeT(TXxY)
9eTY T (2)=%
Tra(W)=1

=\ ETY(W) @ b(Tma(W),y) ® T a.Tms.erx(r, Tmy(20))
WeT(TXxY)
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where the last equality follows as T satisfies (BC).

Since ¥ : XP®Y - V is a (T, V)-functor, one has
=2
£ TY(W) ® b(T2(W),y) ® T a.Tm erx(x, Tm(W)) < ¥(x,y)
for any W e T(TX xY). Hence

V  ETY(20) ® b(Tm2(2W),y) ® —T2a.Tm3(.eTx (r, Tm (20)) < ¥(r,y).
WeT(TXxY)

Therefore z/)Ta.m} <. O

In particular for any (T, V)-category (X,a), a: X ~ X can be seen as a (T, V)-

functor a:|X|® X - V . Since |X| is ®-exponentiable, one consider its mate
y= ra,1:X—>Vle

called the Yoneda functor of X. It is given by y(z) = a(-,z). The following result

corresponds to the Yoneda lemma for (T, V')-categories.

Proposition 2.8.6 ([15]). Let (X,a) be a (T, V)-category and 9 : |X| = V be a

(T, V)-functor. Then

1. [mx, home](Ty(x), %) < 9(p) for all g TX,

2. [mx, home[(Ty(x),¥) > ¥(x) for all r e TX if and only if ¥ : X? > V is a

(T, V)-functor.
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Proof. 1. One has the following commutative diagrams where the square on the

left is a pullback.

lrx xy
TX x X TX x VXl 1%4

J

My My ev

X VX TX x X TX x VXl

Y lrx xy

Let ¢ € VXl and r e TX. By (2.7.10),

[mx, home[(Ty(x),v) = \/{veV|VpeTX,3eTm (Ty(x));
mx(Tm1(3),9) ® v < home(Tev(3),% (1))}
=\V{veV|¥yeTX,DemP(y),3eT(TX xVIXl):

Tm(3) =9, Tm2(3) = Ty(x); v < &Tev(3) = 9(n)}-

Observe the following commutative diagram. The square below is a weak

pullback as T satisfies (BC).
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TV

Ta
Tev
T(TX x X) T(TX x VX1
T(1rx x y)
T’IT2 T7T2
TX TV WX
Ty

So one has

[mx, homeJ(Ty(x), %) = \V{ve V| Vpe TX, D emx (), WeT(TX x X):
Tm(2) =Y, Tm(W) = 1; v <ETa(2W) —p(n)}

=V{veV|veTX,9emy(n); vs A (£Ta(2W) = 4(v))}
WeT(TXxX)
T (W)=
Tﬂz(ﬁn)=}

=V{veV|veTX,Demit(n); v<( V  &ETa(W)) —y(h)}
WeT(TXxX)
Ty ()=
Tra (W)=

=V{veV|vyeTX,9emy(n); v<Ta(D,r) ~¥(n)}

=\{veV|VyeTX; Tami(y,zr)®v<y(n)}. (2.8.2)
Suppose that v € V belongs to the set over which the supremum in (2.8.2) is
taken. Then for y =, one gets

v=k®v<Tam%(r,r)®v<Y(x).
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Hence [mx, home](Ty(x), $) < ¥(r)-
2. Let ¢ e VIXI. As X°P = A°(M(X)P), ¢ : X°P - V is a (T, V)-functor if and
only if 9 : MX - V is a V-functor. The latter means
Ta.m(n,x) ®9(x) <9(y)

for any r,9 e TX. That is equivalent to [mx, home](Ty(x),¥) 2 ¥(x) for all

reTX by (2.8.2).

One defines the (T,V)-category X = (X ,fi) by
X={ypeV¥|yp: X% >V isa (T, V)-functor}.

X is considered as a subcategory of VIX| and @ is the restriction of [mx, hom] to
X. The following is an important property of the Yoneda functor y: X - VXL
Corollary 2.8.7 ([15]). The Yoneda functor y: (X,a) - (X,@) is fully faithful.
Proof. By Prop. 2.8.5, a: X’ ® X - V is a (T, V)-functor. Then y(z) = a(_,z) :
X > V is a (T, V)-functor and y(z) € X for all z € X. So one has y: (X,a) -
(X,a).

Letting ¢ = y(z) in Prop. 2.8.6, one gets

[mx, home](Ty(x), y(2)) = y(z)(x) = a(r, z)

forallre TX, x € X. Hence the Yoneda functor is functor is fully faithful. O
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3 L-completeness, L-separation, L-closure
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This chapter reviews some important notions for (T, V')-categories like
L-completeness [15], L-separation, L-closure and L-injectivity [36], as well their in-
teractions. In addition to these known concepts, we introduce two new closure
operators in (T, V)-Cat, namely the natural closure and the dual closure, in Sec-
tion 3.4. By investigating L-closure in detail, we show that L-closure for approach
spaces is equal to its Zariski closure [26]. Furthermore, we provide a concrete char-

acterization of this closure for approach spaces.

3.1 L-separation

Let X = (X,a) be a (T, V)-category. Recall that two (T, V)-functors f,g: Z - X
are called equivalent, written f ~ g, if f, = g, or, equivalently, f* = g*. X is called
L-separated if given any (T, V)-functors f,¢9: Z - X, f ~ g implies f =g.

In this context it is enough to consider the ®-neutral object E in the place of

Z as the next proposition shows.

Proposition 3.1.1 ([36]). Let X = (X, a) be a (T, V)-category. Then the following

are equivalent:

1. X is L-separated.
2. For any z,y € X, z ~y implies z = y.

3. For any z,y € X, k <a(ex(z),y) and k < a(ex(y),z) implies z = y.
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4. The Yoneda functor y: X — X is injective.

Proof. (1 < 2) Suppose that X is L-separated. One can consider an element z € X
as amap z: E > X. Then (2) means, given any z,y: £ - X, z ~ y implies z = y.
Letting Z = E, one gets the result.

For the reverse implication suppose that x ~ y implies z =y for all z,y € X. Let
f ~g. One has

(f(z))* = (f-z)* =fioz,=g.02. = (g'z)* = (g(z))*’

ie. f(z)=~g(z) for all z € Z. By the hypothesis, f(z) = g(2) for all z € Z. Hence
f =9, X is L-separated.

(2 & 3 < 4) One has

y(z)=y(y) < z°=y

— z<y & y<=z

< k<a(ex(z),y) & k<alex(z),y)
where the last equivalence is due to Lemma 2.8.1. d
Corollary 3.1.2. 1. The (T, V)-category V = (V, hom¢) is L-separated.

2. Let X = (X,a), Y = (Y,b) be (T, V)-categories where X is ®-exponentiable
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and Y is L-separated. Then YX is L-separated. In particular VIX! is L-

separated.

3. Any subcategory of an L-separated (T, V')-category is L-separated. In partic-

ular X is L-separated for any (T, V)-category X.

Proof. 1. Let u,w € V such that k <{(ey(u)) — w and k < £(ey(w)) —o u. Since
£.ey =1y, one has k <u — w and kK < w — u. This implies u < w and w < u.

Hence u = w.

2. Let f,g € YXI such that & < [a,b](eyx(f),g) and k < [a,b](eyx(g), f). By
Lemma 2.7.10, one gets k < b(ey(f(z)),9(z)) and & < b(ey(g9(z)), f(z)) for
all z € X. Since Y is L-separated, f(z) = g(z) for all z € X by Prop. 3.1.2.

Hence f =g, YX is L-separated.
Since V' is L-separated and |X| is ®-exponentiable, VX! is L-separated.

3. Trivial.

O

Examples 3.1.3. 1. An ordered set (X,<) is L-separated if and only if the
order < is antisymmetric. Hence an L-separated ordered set is precisely what

is usually called a partially ordered set.

2. A metric space (X, d) is L-separated if and only if for any z,y € X, d(z,y) =
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d(y,z) =0 implies z = y.

3. A topological space (X,7) is L-separated if and only if for any z,z ¢ X, z > z
and z > implies z = z or, equivalently, z € m and T € m implies ¢ = z. So
for any two distinct points z,z € X there exists an open set which contains

one but not the other. This means that X is Tj.

4. An approach space (X,d) is L-separated if and only if for any z,z € X,
0({z},z) = 6({z},z) = 0 implies that = = z. The coreflection of (X, ¢) in Top
has the closure operator defined by A = {z € X | §(4,z) = 0}. So (X,d) is
L-separated if and only if z € m and € {7} implies x = z. This means that

the coreflection of (X, 9) is Tp.

3.2 L-completeness

Let X =(X,a) be a (T, V)-category. X is called L-complete [15] if for any adjunc-
tion ¢ 41 with ¢ : Z ~ X, ¥ : X ~ Z there exists a (T, V)-functor f: Z - X such
that ¢ = f, or, equivalently, ¥ = f*.

Assuming the axiom of choice, Z can be replaced by the ®-neutral object F.

Proposition 3.2.1 ([15]). For a (T, V)-category X = (X,a) the following are

equivalent:

1. X is L-complete.
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2. For any left adjoint (T,V)-module ¢ : E ~ X there exists € X such that

Y=z,

3. For any right adjoint (T, V)-module ¥ : X ~ E, there exists z € X such that
P =x*.
Proof. One has (2 < 3) by uniqueness of adjoints. (1 = 3) is trivial. We show
3=1).
Let p 49 :(X,a) ~ (Z,c). Given z € Z, one has po z, 4 2* 01). By hypothesis,
there exists z € X such that 2* o9 = z*. Repeating this for all z € Z, one obtains a
function f:Z - X where f(2)=z.

Then
P(r,2) =270 (r,*) =" (1, %) = (f(2)) (&%) = 2" o f*(&,%) = * (&, 2)

forany ze€ Z, re UZ. Hence ¢ = f* = f°.a.
To see that f is a (T, V')-functor, one needs to show f.c < a.Tf or, equivalently,

c¢.T f° < f°.a. This holds, as
cTfe<cTf TaTex <cTf.Tamy = C.Tz/).m} <y = fa.
a

Let X = (X,a), Y = (Y,b) be a (T, V)-categories. Recall from Prop. 2.8.5

that a (T, V)-relation ¢ : (X,a) + (Y,b) is a (T, V)-module if and only if both
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¢:|X|®Y > Vand p: XP®Y - V are (T,V)-functors. A (T, V)-functor
Y| X| =V is called tight [36] if 3 : X°P - V is a (T, V)-functor and as a (T, V)-
module 1 : X ~ E is a right adjoint. We will denote the collection of tight (T, V)-
functors by X and consider it as a subcategory of X. Observe that the codomain

of the Yoneda functor y can be taken as ()~( ,a@) since T, 4 z* for all z € X.

Corollary 3.2.2. Let X = (X,a) be a (T, V)-category. X is L-complete if and

only if the Yoneda functor y: X — X is surjective.

Now we investigate the conditions under which a (T, V)-module 9 : (X,a) ~
(E,k) is a right adjoint. Suppose that 1 has a left adjoint ¢ : (E,k) ~ (X, a).
Then p o < (1x)" implies ¢ < (1x)" — 9 (see (2.6.1)). On the other hand, one
has ((1x)" — ¥) o9 < (1x)" and (1g)" < ¥ o ¢ which implies (1x)* — ¥ < ¢.
Hence if ¢ is a right adjoint, then its left adjoint is necessarily (1x)" — 1. Since

((1x)" — ) o< (1x)" always holds, ¥ is a right adjoint if and only if
(1e)" <o ((1x)” — ).
Given that ¥ : (X,a) ~ (E,k) is a (T, V)-module, one has
¥ =kotp = kTy.m = Ty.mk. (3.2.1)

Also ¢ : |X| - V, ¢ : X°P > V are (T, V)-functors by Prop. 2.8.5, hence 9 € X.

Using (2.6.2), (3.2.1) and Lemma 2.7.10, one finds
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/\ (1)()*(;, T) o= T’(bm}(;, *)

1T X

= A a(r,z) —9(x)

€T X

= A Eev(¥(x)) — a(r,z)

€T X

= A ev(®¥()) — y(2)(x)

eTX

((lx)* — w)(*ﬂ:)

= [mx, home](ex(¥),y(z))

= a(ex(v¥),y(z)). (3.2.2)

Lemma 3.2.3 ([36]). Let ¢ : (X,a) ~ (E,k) be a (T, V)-module and ¢ = (1x)" —
1. Then

Top(x) = Ta(erg-ex(¥), Ty(x))

forallreTX.

Proof. Consider ¢ € X as a map 1 :1 - X. One has

p(x,2) =a(ex(¥), y(x)) = y* Teg.Y(+,z)

for all € X. So ¢ = y°.G.e5.4. This implies Ty = T(y°.d.e5.1) = Ty>Ta.Teg.T.
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Since T1 =1 and e:Id — T is a natural transformation, one gets

To(*,1r) Ty Ta.Teg . TY(*,1)

Ta(Teg.T(+), Ty(x))

Ta(Teg-ex(¥), Ty(z))

Ta(erg-ex(¥), Ty(x))
O

Proposition 3.2.4 ([36]). Let X = (X, a) be a (T, V)-category. A (T, V)-module

1 : X ~ E is a right adjoint if and only if

k< V () ®Ta(erg-ex(¥), Ty(x))

€T X

In such a case 1 has a left adjoint ¢ : E ~ X where ¢(z) =a(eg(v), y(z)).

Proof. Following the discussion above, 9 : (X,a) ~ (F,k) is a right adjoint if
and only if its left adjoint is ¢ = (1x)" «— 9. This is equivalent to the condition
(1g)" < Yoy, ie (lg) < w.Ttp.m"E. One obtains the desired inequality by

Lemma 3.2.3. Also ¢(z) = ((1x)" — ¥)(z) =a(ex(®), y(z)) as given in (3.2.2). O

In particular a V-module 9 : (X, a) ~ (E, k) is a right adjoint if and only if

k< \ ¢(z)e ( A #(2) — a(z,2)). (3.2.3)

zeX zeX
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Examples 3.2.5. 1. Every ordered set (X, <) is L-complete as follows:
A 2-module ¥ : X ~ E corresponds to the monotone map ¢ : X°° — 2
which is the characteristic function of a set A€ X. If z < 2z and 2 € A,
then 1 = ¢(2z) < 9(z) which means that z ¢ A. Hence 9 corresponds to a

down-closed set Ac X.

By (3.2.3), 9 is a right adjoint if and only if there exists z € A such that for
all z € A, x < z. This means A = z or, equivalently, ¥ = 2*. So every right

adjoint 2-module 9 : X ~ E is representable. Therefore X is L-complete.

2. A metric space X = (X,d) is L-complete if and only if X is Cauchy complete
[42]. Here a sequence (z,) converges to a point z € X if lim (d(zn, ) +

d(z,2,)) = 0.

Firstly, we show that adjoint P,-modules ¢ -4 ¢ : X ~ E correspond to

equivalence classes of Cauchy sequences in X and vice versa.

Given ¢ 41 : X ~ E, one has
Y@ +e()2dEs) & ntp@)p@)-0  (32.4)
for ,z € X. For any n eN, pick , € X such that p(z,) +¥(z,) <. Then

A, Tm) + (T, 7) () + 9(m) + Y(m) + 9(7) S =+

3|~

for n,m € N. So (z,) is a Cauchy sequence. If one obtains another Cauchy
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sequence (y,) during this process, then

22

A(Zn,Yn) + d(Yn, Tn) SY(Tn) + 0 (Yn) + ¥ (Yn) + @(z0) < — +

S~
S

Hence (z,) and (y,) are equivalent. So the adjunction ¢ 4 9 : X ~ E

corresponds to an equivalence class of Cauchy sequences in X.

Conversely, let {(z,)} be an equivalence class Cauchy sequences in X. Define

p: X ->P,and ¢Y: X? > P, by
o(z) = lim d(zn,2) &  9(2) = lim d(z,,)

for all z € X. For any n € N, z,2 € X, one has d(z,2) < d(z,z,) +d(z,, 2).

Then

d(z,z) < lim (d(z,zn) + d(a:mz))

IN

lim d(z,z,) + lim d(z,, 2)
n—00 n—>oo

IN

P(z) +o(2).
Furthermore, in)g {lim (d(zn,z) + d(:v,xn))} =0, since (z,) is Cauchy. Hence
b3 n-+oo
in}f({tp(z) +1(z)} = 1n)f({71g£1° d(&n,7) + lim d(z,2,)} =0

So ¢ <1 : X ~ E. Therefore there is a one-to-one correspondence between
adjoint P,-modules ¢ 4 9 : X ~ E and equivalence classes of Cauchy se-

quences in X.
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Suppose that ¢ 41 : X ~ E corresponds to the equivalence class {(z,)} of

Cauchy sequences. Now we show that

p=x, <> limzx,=z.

If ¢ =z, for some z € X, then ¢(z) = d(z,2) and ¥(z) =d(z,z) for all z € X.

(3.2.4) implies

S|l

d(z,z5) + d(zn, z) = p(zn) + (25) <

Letting n — oo, one gets 7}1_{2 Zn = . Conversely, if (z,) converges to z € X,
then lim d(z,,z) = 0 and gim d(z,z,) = 0. Take any z € X. d(z,,2) <
n-»o00 —> 00

d(z,,z) + d(z,2) implies

IN

lim d(z,, 2)

n—>o00

lim d(z,,z) +d(z,2)

IN

v(z) 0+d(z,2).

Similarly d(z,z) < d(z,z,) + d(z,, 2z) implies d(z,2) < ¢(2). Hence p(z) =
d(z,z) for all z € X. This means ¢ = z,.

So a left adjoint ¢ : E ~ X is representable by a point z € X precisely when
the corresponding Cauchy sequence converges to z. Therefore a metric space

is L-complete if and only if it is Cauchy complete.

. As shown in [15], a topological space is L-complete if and only if it is quasi

sober, i.e. every irreducible closed set can be written as the closure of a
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point. Here an irreducible closed set is a closed set which cannot be written

as a union of two proper closed subsets.

To see this assume that ¢ 49 : (X,a) ~ (E,k) is a pair of adjoint (U, 2)-
modules. The (U, 2)-module ¢ corresponds to the continuous map ¢ : X —
2 where 2 is the Sierpinski space. So ¢ can be identified with the closed
subset A := ¢1({1}) of X. Similarly ¢ corresponds to the continuous maps
Y :|X] > 2and ¥ : X > 2. So it can be identified with A ¢ UX where
A:=9"1({1}). Ais closed both in | X| and X°°. The topology on | X| is given
by the Zariski closure where for an ultrafilter 3, 3 € A if and only if 3 < U A.
X° = A°(M(X)°) has the Alexandroff topology of the dual order on MX.

The order on MX is given by
<3< VAecy, Acy
for ultrafilters 1, 3 (see Remarks 2.7.6). The closed subsets of X°P are precisely

the down-closed subsets of MX.

As a result of the adjunction inequalities, one finds that ¢ — 1 if and only
if there exists a closed set A € X, a down-closed and Zariski closed Ac UX
such that

JreUX: Aer,re A & VizeA zeA 3>z (3.2.5)
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This implies that A is the down-closure of ¢ in MX,
A=llr={3eUX|VzeA, -z}

Having an ultrafilter ¢ which contains the closed set A and which converges
to every point of A is equivalent to saying that A is an irreducible closed set.
So ¢ - 1 corresponds to the irreducible closed set A. There exists z € X such

that ¢ = z, if and only if ¢(2) = £.(2) = a(z, 2) for all z € X. One obtains
2eAd = @(2)=1 < -2 < ze{z}.

So X is L-complete if and only if for any irreducible closed set A ¢ X there

exists € X such that A = m, i.e. X is quasi sober.

Now we provide an alternative perspective on L-completeness in Top which
will be useful in the sequel. For a filter 3 on X, let convj:={z € X |3 > z}. 3
is called irreducible [32] if conv 3 € 3. Given an irreducible filter 3, conv 3 is an
irreducible closed set. With this terminology a topological space X is quasi
sober if and only if for any irreducible ultrafilter 3 € UX there exists z € X

such that conv 3 = conv z [32].

We establish a bijective correspondence between irreducible ultrafilters on X

and pairs of adjoint (U, 2)-modules between X and E as follows:

Given any ¢ 4% : X ~ F, consider the corresponding ultrafilter ¥ mentioned

in (3.2.5). Firstly, r converges to all the points of A. Secondly, A € r. So
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if ¢ converges to a point £ € X, then z € A = A. Hence conv r = A,
is an irreducible ultrafilter. We also know that A =|| r. Conversely, given
any irreducible ultrafilter r on X, let A := conv r. Then A is a closed set
such that A € r and ¢ converges to every point in A. This implies that
lr={3eUX|VzeA, 3z} Setting A:=|r, A becomes a down-closed and
Zariski closed subset of UX that satisfies (3.2.5). This implies the existence
of an adjunction ¢ 49 : X ~ E. Hence there is a bijective correspondence
between the adjoint pairs ¢ <419 : X ~ F and irreducible ultrafilters x € UX

with convr=A and | r= A

Suppose that ¢ 41 : X ~ E corresponds to an irreducible ultrafilter r. Then
the left adjoint ¢ is representable by z € X if and only if A = m = conv T or,
equivalently, conv ¢ = conv z. Therefore a topological space X is L-complete
if and only if for any irreducible ultrafilter r € UX, there exists z € X such

that conv ¢ = conv z. This exactly means that X is quasi sober [32].

. An approach space is L-complete if and only if every irreducible variable closed

set is representable by a point [15]. The details follow.

There is a bijective correspondence between contractions p : X - P, and

families (A, )yep, Of subsets A, € X satisfying

Av = n Au, (326)

u>v
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(A)™ ¢ Ayyy Vu,vePy, (3.2.7)
where A®) = {z € X | §(A,z) < v} and §(4,z) = inf{a(z,z) | A € ¢} for
veP,, Ac X. Given p: X - P,, one defines A, := p~1([0,v]) for all v € P,.
Conversely, having a family (A,),cp,, one gets the contraction p by defining
p(z) = inf{v e P, | z € A,}. A family A = (A,)vep, Of subsets 4, ¢ X
satisfying (3.2.6) is called a variable set. If A satisfies (3.2.7), then it is called
closed.

Assume that ¢ 4 ¢ : (X,a) ~ (E,k) is a pair of adjoint (U, P,)-modules.
The (U, P,)-module ¢ is essentially a contraction from X to P,. Hence it
corresponds to a closed variable set A = (Ay)yep,. Similarly, the right adjoint

¥ : X ~ E determines a variable set A = (A, )yep, Of subsets A, € UX where

Ay :=971([0,v]).

The adjunction condition (1x)* > ¢ o9 translates to a < p.Uy.m% = .. So
a(r, z) < P(x) + ()

for all z € X,re UX. On the other hand, (1g)* <% o ¢ translates to

0=inf (¥ +&e()} = inf {Y(@) +inf{veV][0,v] € Up(r)}}

inf {(zr) +inf{ve V| A, er}}.
eUX
Upon further examination, one finds that

A, ={reUX |VueP, Ve A, a(r,z) <u+v}
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for all v € P,. Furthermore, ¢ - % if and only if
VveP, (v>0 = UA,NnA, + @) (3.2.8)

A variable set A is called irreducible if it satisfies (3.2.8).

If o =z, for some z € X, then ¢ = a(a':, -). Hence

P(2) = a(,2) = igf {a(s,2) | {z} €} = ({2}, 2)
for all z € X. This means that
Ay ={ze X |6({z},2) <v} = {z}¥ (3.2.9)
for all v € P,. So X is L-complete if and only if every irreducible variable

closed set A = (Ay)wep, is representable by a point z € X as in (3.2.9).

L-completeness turns out to be sobriety for approach spaces [2], [15]. An
approach space is called sober (2] if it is a fixed point of the dual adjunction
between App and the category AFrm of approach frames and homomor-

phisms.

3.3 L-injectivity

A (T, V)-category X is called L-injective if given any (T,V)-functor h: Y - X
and any L-equivalence f:Y — Z, there exists a (T, V)-functor g: Z - X such that
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g9.f~h.

Z
[
[
[
9
[
v

X
The (T, V)-category V is L-injective. To see this, let A: Y - V be a (T, V)-

functor and f:Y — Z be an L-equivalence. Since |E|= E° = E, one can consider h
asa (T,V)-module h: E ~ Y by Prop. 2.8.5. Then the (T, V)-module f,oh: E ~ Z

corresponds to a (T, V)-functor g: Z - V. One has

9-f() = 9(f(¥)) = fe o h(*, f(¥)) = f* o fa o h(*,y) = h(y)

for all y e Y. Hence g.f = h, V is L-injective.

Proposition 3.3.1 ([36]). Let X,Y bea (T, V)-categories where X is ®-exponentiable

and Y is L-injective. Then Y X is L-injective.

Proof. Let h: A > YX be a (T,V)-functor and f : A > B be an L-equivalence.
Consider the mate h, : A® X - Y of h. Since f is an L-equivalence, so is
felx: A® X - B® X. Then there exists a (T,V)-functor g,: B® X - Y
with ¢,.(f®1x) ~ h,, as Y is L-injective. The corresponding (T, V')-functor

FRI

g: B > YX satisfies g.f ~ h. O
Corollary 3.3.2. VXl is L-injective for any (T, V)-category X.
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3.4 Closure operators in (T,V)-Cat
3.4.1 Natural closure and dual closure

Definition 3.4.1. Let X = (X, a) be a (T, V)-category, M ¢ X and z ¢ X. We say

that z is in the natural closure of M, denoted by z € ﬁ, if

k< 'V a(r z).

1eTM

M is called n-closed if M =M.

In the definition above one actually has a(Ti(z),z) where ¢ : M - X is the

inclusion map. We omit this style of writing for the sake of simplicity.

Proposition 3.4.2. Let f:(X,a) - (Y,b) be a (T,V)-functor, M,Nc X, OcY

and z € X. Then one has:
1. McM; Nc M implies N ¢ M.

2. f T = @, then 3 = @.

-
<

4. f(M)< F(M) and f(3) 2 £1(0).

—X

—M
5. NcM,then N =N nM.

—

6. If k is v-irreducible and T preserves finite sums, then M u N = Mu 7\7
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Proof. 1. Letze M. As k<a(ex(z),z)< \T/Ma(;,x), e M. Hence M c M.
I€

N ¢ M implies TN ¢ TM since T : Set — Set preserves monomorphisms.
Then

k< Voa(rz)< V a(r2).

TN 1cTM

Sol_\)/gl\_/[).

2. Since T@ =@, k £ \/ a(x,z) = L. Hence Z-0.
337

3. M < M follows from (1). Observe that M is precisely the set which makes

the following diagram lax commutative.

— a’®
M i TM

Applying the functor T to this diagram, one finds that ™ is precisely the

—> Ta® 1 —
set such that (TM —'> 1<TM S TM S ). So for any y € TM, one has
_— —
k< \/ Ta(%,y). Toshow M c M, letze M.
XeT2M
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Then

Eand
IA

V a(y,z)

—
yeTM

V ( V Ta(%,9))®a(y,z)

qu]\_/; XeT2M

V (V Ta(%,9)ea(y,z))

peTM  XeT2M

V' a(mx(X),z)

XeT2M

=V a(x2).

eTM

IN

IN

IN

- 3 —
Hence ze M, M c M.

4. Letye f(]\?) Then there exists z € M such that k< \/ a(z,z) and f(z) = y.
T M

One has

k< V ar,z)< \T/Mb(Tf(zc),f(x))S Vo b(n,y)

eTM 9eT(f(M))

Hence y € f(M), f(M) ¢ f(M). Letting M = f~1(O) gives f1(0) 2 f-1(O).

5. Let N e M S X with 6.4’ = 7: N < X. To distinguish between the natural

—X —M
closure of N in X and in M, we will write N and N respectively.
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Then

X
reN nM <= k< \ ao(Tji(x),r)
1€TN

— k< ;eyNa(Ti'Ti,(F), i(z))

= k< \ ©°.aTi(Ti(x),z)
TN
M

< z€eN

6. Suppose that k is v-irreducible and T preserves finite sums. Recall from
Subsection 2.1.3 that k is v-irreducible if k < uvv implies k <u or k <v. One

_— = — —_— = —
has M u N 2 M u N by monotonicity of the natural closure. MuNc MuN

follows, as

ks Voamo)= V oawa)=(V e@wn)v( V awo).

teT(MuUN) eTMUTN eTM 1eTN

O

Corollary 3.4.3. If k is v-irreducible and T preserves finite sums, then the natural

closure induces a functor N : (T, V)-Cat - Top.
Examples 3.4.4. 1. For an ordered set (X,<), z € M if and only if there exists
y € M such that y < z.

2. For a metric space (X,d), z € M if and only if 1551 d(y,z) =0.
Yy

3. For a topological space (X,7), z € M if and only if there exists an ultrafilter

r on M that converges to z. This is equivalent to saying that M n O # @ for
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any open neighbourhood O of x. Hence the natural closure of X is equal to

the closure induced by 7.
4. For an approach space (X,0), z € M if and only if
§(M,z) = inf{a(r,z) | M ex} = 0.
So M = M©.

Given (T, V)-category X = (X,a), consider A°(A(X)?) = (X, (Ta.Tex.ex)’)
(see Section 2.7.2). We will define the dual closure of X as the natural closure of

A°(A(X)P).

Definition 3.4.5. Let X = (X,a) be a (T, V)-category, M ¢ X and z € X. We say

that z is in the dual closure of M, denoted by z € M , if

k< V Ta(Tex.ex(x),r).
eTM

M is called d-closed if M = M.

Proposition 3.4.6. Let f:(X,a) - (Y,b) be a (T, V)-functor, M,Nc X, OcY

and z € X. Then one has:
1. MQM; NgMimpliesNEM.

2. fT@ =0, then @ = @.

<11
<t
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4. f(M) < F(M) and £(0) 2 1(0).

M X
5. NcM,then N =N nM.

e —
6. If k is v-irreducible and T preserves finite sums, then M uUN =M u N.

Proof. Follows from Prop. 3.4.2 and the fact that the dual closure of X = (X, a) is

the natural closure of A°(A(X)). a

Corollary 3.4.7. If k is v-irreducible and T preserves finite sums, then the dual

closure induces a functor D : (T, V)-Cat - Top.

Examples 3.4.8. 1. When T is the identity monad, (X, (Ta.Tex.ex)°) = (X, a°).
So for an ordered set (X,<), z € M if and only if there exists y € M such that

<.
2. For a metric space (X,d), z € M if and only if inj\f! d(z,y) =0.
ye

3. Let (X, 7) be a topological space which corresponds to the (U,2)-category
(X,a). One has m$.ex = Uex.ex by Prop. 2.5.4. So ﬁa(Uex.ex(a:),;) =
Ua.m$(ex(x),z). Recall from Remarks 2.7.6 that Ua.ms is the structure on

MX = (UX, <) where
1<y <= VAer Acy. (3.4.1)

So z € M if and only if there exists an ultrafilter r on M such that ex(z) <t.

By (3.4.1), this means that for any set N containing 2, N ¢ r. That is
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equivalent to saying that m € r. Therefore

zeM {z}M 2.

. Let (X,6) be an approach space which corresponds to the (U, P, )-category
(X,a). Asabove one has Ua(Uex.ex(x),z) = Ua.m (ex(x),z) where Ua.m5

is the structure of the metric space MX = (UX,d). By Remarks 2.7.6,
d(z,p) = inf{c € [0,00] | VA ez, A® ep}.
—
Then z € M if and only if

0= Z[Eiggdrklja.(Uex.ex(z),;)

=F51(r}1waa.mx(ex(x),;)

_ . . ()
F€1[rjljfwmf{5 €[0,00] | VAez, A €}

= Inf inf{c e [0, 00] | {z}® e}

= inf inf{e € [0,00] | {z}¥ M €7}
reUX

=inf{e €[0,00]| It e UX : {x} O M e}

= inf{e € [0, 0] | {z} ¥ M = &}

Hence

ceM < Ve>0, {z}ONM 2 2.
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3.4.2 L-closure

L-closure [36] is a hybrid of the natural closure and the dual closure.
Let X = (X,a) be a (T, V)-category, M ¢ X and z € X. One says that z is in

the L-closure of M, denoted by z € ﬁ, if

k< \ a(r,r)®Ta(Tex.ex(),r)-
TM )

M is called L-closed if H =M.

Remark 3.4.9. Given a (T, V')-category (X, a), one has the (T, V)-category X ®
A(A(X)%®) = (X x X,a® (Ta.Tex.ex)’). Consider X as a subcategory of X ®
A°(A(X)°P) via the map dx : X = X x X. Then the structure a®™ on X is given

by

o™ (g,z) = &°.a® (TaTex.ex) To(x, )

a(Tm.T6(x), m.6(z)) ® (Ta.Tex.ex) (T T8(x), m.6(z))

a(r,z) ® Ta.Tex ex(z,x)

forany ze X, reTX.
Define the functor

S:(T,V)-Cat - (T,V)-Cat
which is identical on morphisms and sends a (T, V')-category (X, a) to (X,a™™).

118



The functoriality of S follows from the commutative diagram below.

fof geg

X ® A°(A(X)P) Y @ A°(A(Y)™)

Z & A°(A(Z))

dx dy 0z

f g
Given a (T, V)-category X = (X,a), we call SX the symmetrization of X. So

L-closure of X is the natural closure of its symmetrization.

Proposition 3.4.10 ([36]). Let (X,a) be a (T,V)-category, M ¢ X and z € X.

Suppose that i : M - X is the inclusion map. Then the following are equivalent:
1. ze M.
2. k<i,ot*(ex(z), ).
3. (1g)" <x*0i,0i*ox,.
4. i*ox, 4x*01,.

5. z, : E ~ X factors through ¢, : M ~ X by a morphism ¢ : E ~ M in

(T, V)-Mod.
6. For all (T, V)-functors g,h: X =Y with g.i = h.7, one has g(z) ~ h(z).

7. For all (T, V)-functors g,h: X - V with ¢.i = h.i, one has g(z) = h(z).
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Proof. (1 < 2 <> 3) Observe that

k< \ a(r,z) ®Ta(Tex.ex(z),r) (1)

eTM
is equivalent to k < (a.T%).(Ti°.Ta.Tex.ex(z,)). By Lemma 2.5.4, m%.ex =

Tex.ex. Hence
k < (aTi).(Ti* Tam.ex)(z, z)
= (aTi).T(i.a).m%.(ex(z), z)
= i,04"(ex(z),T)
= 4,0 (Tz(x),z(x))
= z%o0i, 04 ox,(x,%)

So (1) is equivalent to k < i, oi*(ex(z),z) and (1g)* < z*oi,04* o 1,.

(3 <> 4) One always has
i*ox,o0x* 01, <i* o1, = (1p)7,

since i : M — X is fully faithful. Therefore (1g)* < z* o4, 04* o z, if and only if
i*ox, 4xT*01,.

(3=15) (1g)" <2* 01, 01* oz, implies
r,<zc,o0x%0i,0t"0x,<1,01 01, <2,.

Hence z, =%, 0i* oz, where i*oz,: E ~ M.

120



(5=6) Let z, =i, opfor ¢g: E~ M. If g.i = h.i, then

(9(z)), =gu0Ts=guioi,op=(g.1),0p=(hi),ocp=h,0i,0op=h,or, =(h(z)),.

(6 = 7) Follows as V is L-separated.
(7 = 3) Consider z, : E ~ X and i,04* oz, : E ~ X. By Prop. 2.8.5,
these (T, V)-modules correspond to (T,V)-functors g : X - Vand h: X - V

respectively. For z € M, one has

"ot 01" oz, (*,2)

9:i(2) = 9(1(2)) = 2. (x,i(2)) = 1" 0 2. (*, 2)
= 1,01  ox,(*,i(2))
= h(i(2))
= h.i(2).
By hypothesis, g(z) = h(z). This means that z.(*,z) =, 0oi* o z,(*,z). Then
(1g)" <z* oz, =12"0i,0i* 01z,.
O
Let ¥ : (X,a) ~ (X,a) be a (T, V)-module. Observe that a = (1x)" <1 implies

e% <a <. Conversely, if e <1, then a =aoce} <aot = 1. Hence (1x)* < if

and only if e <.

Proposition 3.4.11 ([36]). Let X = (X,a) be a (T,V)-category and i : M = X

be the inclusion map. Then : is L-dense if and only if z € M forall z e X.
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Proof. i is L-dense if and only if (1x)" <4, oi* which is equivalent to €% <1, oi*.
That is equivalent to k < i, oi*(ex(z),z) for all z € X. Hence i is L-dense if and

only if € Mforall ze X by Prop. 3.4.10. O

Prop. 3.4.10 implies that M ¢ M. So M is the largest subset D of X such that

M - D is L-dense by Prop. 3.4.11.

Remark 3.4.12. Let f : X - Y be a (T,V)-functor. Similar to the proof of

Prop. 3.4.11, one gets
fisL-dense <= VyeY, k< f.of*(ey(v),v).

Consider the canonical factorization X 4 f(X) LY of f. Since surjective
(T, V)-functors are L-dense, f is L-dense if and only if ¢ is L-dense by Prop. 2.8.2.

Then Prop. 3.4.11 gives

>

fisL-dense <= VyeY, ye f(X).
Surjectivity of f’ implies that g.f = h.f if and only if g.i = k. for all (T, V)-
functors g,h:Y — Z. Since f being L-dense is equivalent to ¢ being L-dense,
fisL-dense <= Vg,h:Y >2Z, (g9.f=h.f=g=h)
by Prop. 3.4.10 and Prop. 3.4.11. So L-dense ('I[‘,V)—furictors are “epimorphisms

up to ~” in (T, V)-Cat. Similarly, one gets

fisL-dense <= Vg,h:Y =V, (¢.f=h.f=>g=h).
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Proposition 3.4.13 ([36]). Let f: (X,a) - (Y,b) be a (T, V)-functor, M, N ¢ X

O cY and z € X. Then one has:
1. M cM; N ¢ M implies N ¢ M.

2. f T@ =@, then @ = @.

<t
<1

4. f(M) < (M) and £(0) 2 £(0).

X

oM
5 ENcM,then N =N nM.

>

6. If k is v-irreducible and T preserves finite sums, then M u N = MuN.

Proof. We only show idempotency of the L-closure. The other assertions hold by
Prop. 3.4.2 and the fact that L-closure of X = (X, a) is the natural closure of its
symmetrization SX.
YN - =
By Prop. 3.4.11, both M - M and M < M are L-dense. Then the composite
M < M is L-dense. Since M is the largest subset of X that contains M as an

S o
L-dense subset, one has M ¢ M. O

Corollary 3.4.14 ([36]). If k is v-irreducible and 7" preserves finite sums, then the

L-closure induces a functor L : (T, V)-Cat - Top.

Corollary 3.4.15. Let N c M ¢ X. Then N is L-closed in M if and only if there

exists an L-closed set A ¢ X such that N = An M.
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M X

Proof. Assume that N is L-closed in M. Then by Prop. 3.4.13, N = N =N nMm

X
where N is L-closed in X. Conversely, assume that there exists an L-closed set
A ¢ X such that N=An M. Then

(—)M (———-—-—)M <—)M (—)M (—)X
N =(AnM) cA nM =(A nM)nM=AnM=N.

Hence N is L-closed in M. O

Examples 3.4.16. 1. For an ordered set (X,<), z € M if and only if there exists

y € M such that x <y and y < z.
2. For a metric space (X,d), z ¢ M if and only if inAfl{d(x,y) +d(y,z)} =0.
ye

3. For a topological space (X,7), z € M if and only if there exists an ultrafilter

r which converges to z and contains both m and M. This implies
«> _
zeM <= VO opennbhdofx, Mn{z}nO #g.

Hence L-closure of X is equal to its b-closure or Skula closure [3], [52].

4. Let (X,d) be an approach space which corresponds to the (U, P, )-category
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(X,a). Then z € M if and only if

0= inf {a(r,z) + Ua.(Uex.ex(z),r)}
= Fel(leg/l {a(;, z) + Ua.m (ex (1):25)}

= Felg}fw {a(;,:c) +inf{c e P, | {.7:}(5) € p}}

inf{e+ inf alr,2)}

(=} e

PP
Hler gk ool
Mn{z} e

inf {e +6(M n {z}”, )}

Hence

zeM < Ve>0, 5(Mn{z}® z)=0. (3.4.2)

Remark 3.4.17. Let X = (X,4) be an approach space. The Zariski closure of

M c X [26}, [19] is given by
M”:={zeX|V¥g,heR, (g = b = 9(z) = h(z)}.

Here R is the regular function frame of (X,d) which is actually the set of con-
tractions from X to P,. The concrete characterization of Zariski closure for ap-
proach spaces has not been known for some time. However, by taking advantage of
Prop. 3.4.10, one can write L-closure of M ¢ X as

M={zeX|Yg,h:X ~P., (g =hp = 9(z) = h(z)}.
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So Zariski closure of an approach space is equal to its L-closure. The concrete

characterization of the Zariski closure is given by (3.4.2).

3.5 Connections between L-separation, L-completeness and

L-closure

One can formulate L-separatedness via L-closure.

Proposition 3.5.1 ([36]). Let X = (X, a) be a (T, V)-category and A c X x X be

the diagonal. Then A= {(z,y) e X x X |z ~y}.

Proof. Assume that (z,y) € A, Let m,m : X x X - X be the projection maps
and 7: A = X x X be the inclusion map . Since 7.¢ = M., one gets z = my(z,y) =~
ma(z,y) =y by Prop. 3.4.10.

Conversely assume that z ~ y. For (z,w) € X x X, one has

(z,9).(z,w) = axalexxx(z,y), (2,w))

= a(Tm.exxx(z,¥), 2) A a(TTz.exxx (2, y), w)
= a(ex.m(3,9),2) Aa(ex.my(z,y), w)

= a(ex(w),2) Aalex(y),w)

= a(ex(z),z) ra(ex(z),w)

= (z,z),(z,w).
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So (z,y) ~ (z,z). Let g,h: X x X - Y be (T, V)-functors such that g.i = h.i. Then
9(z,y) 2 9(z,z) = h(z,z) ~ h(z,y). Hence (z,y) € A by Prop. 3.4.10.

O

Corollary 3.5.2 ([36]). A (T,V)-category X = (X,a) is L-separated if and only if

the diagonal A is L-closed in X x X.

Exploring the relationship between L-closure and L-completeness leads to inter-

esting results.

Proposition 3.5.3 ([36]). Let X = (X,a) be a (T, V)-category and M ¢ X.
1. If X is L-complete and M is L-closed then M is L-complete.
2. If X is L-separated and M is L-complete then M is L-closed.

Proof. 1. Let p 49 : M ~ E and 1 : M - X be the inclusion map. Then
i,op-Yoi*: X ~ E. Since X is L-complete, there exists x € X such that
i, 0 = z,. This means z € M - M, as M is L-closed. i, 0 ¢ = x, implies

p=1*oz,. Hence
o(*,y) =i oz (%,y) = T.(*,1(y)) = 7.(*,7)
for ye M. Since z € M, ¢ =z, and M is L-complete.

2. Let z ¢ M. Then i* ox, 4zx*0t, : M ~ E by Prop. 3.4.10. Since M is

complete, there exists y € M such that y* = z* oi,. Then i(y)" = z*, as i
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is fully faithful. Since X is L-separated, one gets i(y) = z. So z € M, M is
L-closed.

a

Proposition 3.5.4 ([36]). Let X = (X,a) be a (T,V)-category. The Yoneda

functor y: X — X is L-dense.

Proof. Take any v € X. Then

k< \V a(Ty(r),v) ® Ta(erg-ex(¥), Ty(x))

T X

by Prop. 3.2.4 and Prop. 2.8.6. As erg.eg = m5;.ex, that is equivalent to

k<yoy*(ex(¥).9)-
Then y: X — X is L-dense by Remark 3.4.12. O

Corollary 3.5.5. Let X = (X,a) be a (T, V)-category. Then X = y(X) where

y: X - X is the Yoneda functor.
Proof. X = y(X) if and only if y: X - X is L-dense by Remark 3.4.12. O

Theorem 3.5.6 ([36]). Let X = (X,a) be a (T, V)-category. X is L-complete if

and only if X is L-injective.

Proof. Suppose that X is L-complete. Let f : Y - Z be an L-equivalence and

h:Y - X bea (T, V)-functor. Since f is an L-equivalence, one has h, o f* 4 f,oh*.
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As X is L-complete, there exists a (T, V)-functor g: Z - X such that g, = h, o f*.
This implies g. o f. = h,, g.f ~h, i.e. g.f ~h. Hence X is L-injective.

Conversely, suppose that X is L-injective. X is L-complete if y : X - X is
surjective by Cor. 3.2.2. So it is enough to show that y is a retraction. One has
Ix: X->Xandy: X - X which is an L-equivalence by Cor. 2.8.7 and Prop. 3.5.4.
Since X is L-injective, there exists m : X - X such that m.y ~ 1x. This implies
ymy=ylx=1;.y Then ymy=1;.y, as X is L-separated by Cor. 3.1.2. Since
y is L-dense, one gets y.m =~ 1 by Remark 3.4.12. Using again the fact that X is

L-separated, y.m = 1)}. O
Corollary 3.5.7. VIXl is L-complete for any (T, V')-category X.

Proof. VXl is L-injective by Cor. 3.3.2. O
Corollary 3.5.8. X is L-complete for any (T, V')-category X.

Proof. By Cor. 3.5.5 and Cor. 3.5.7, X is an L-closed subset of VIXI which is L-

complete. Then X is L-complete by Prop. 3.5.3. O

We will denote the full subcategory of L-complete and L-separated (T,V)-

categories by (T, V)-Catp g sep-

Theorem 3.5.9 ([36]). (T, V)-Catcp g sep is a reflective subcategory of (T, V)-Cat

with reflection maps y: X — X for each (T, V)-category X.
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Proof. Let X be a (T,V)-category and f: X - Y be a (T, V)-functor where Y is
L-complete and L-separated. Asy: X — X isan L-equivalence and Y is L-injective,
there exists a (T, V')-functor g : X =Y such that g.y =~ f. This implies g.y = f, since
Y is L-separated. If there exists another (T, V')-functor A : X - Y with hy=~f,

then h.y ~ g.y. AsY is L-separated and y is L-dense, one gets h = g.
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4 L-completeness, L-separation, L-injectivity for

morphisms
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The previous chapters summarized the framework for (T, V')-categories as pre-
sented in [36], [33] and [15]. The parts that should be highlighted include the
concepts of L-completeness, L-separation and L-injectivity as well as the results
showing their interactions. In this section we introduce morphism counterparts of
these notions [53]. For our purposes L-complete morphisms will be the most im-
portant among the others. Later in Chapter 8 we will develop a topological theory

based on L-complete morphisms in the style of [13].

4.1 L-complete morphisms

Definition 4.1.1. Let f: X - Y be a (T, V)-functor. We say that f is L-complete
if for any left adjoint (T, V)-module ¢ : Z ~ X and any (T,V)-functor h: Z > Y

such that f, o ¢ = h,, there exists a (T,V)-functor g : Z - X with ¢ = g, and

fg=nh.

Recall the lower star functor of Section 2.8. Since f, - f* for any (T, V)-functor
f, one has (.), : (T, V)-Cat - (T, V)-Mod, where (T, V')-Mod, is the subcategory
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of (T,V)-Mod whose morphisms are the left adjoint (T, V')-modules. Taking the
functor (.). into account, we see that a (T,V)-functor is L-complete if and only
if it is a (-).-quasi cartesian morphism in the sense of fibrational category theory
[27]. Here quasi refers to that fact the morphism g in the definition is only unique
up to =.

The above definition can be equivalently expressed with the upper star notation,
i.e. f is L-complete if given any right adjoint (T,V)-module ¥ : X ~ Z and any
(T,V)-functor h : Z - Y such that ¢ o f* = h*, there exists a (T, V)-functor

g:Z - X withy=g* and f.g=h.

g Y
Z e - X z

N ST TN

Y Y

X

Now considering (-)* : (T, V)-Cat - (T, V)-Mod, where (T, V)-Mod, is the
subcategory of (T, V')-Mod whose morphisms are the right adjoint (T, V')-modules,
we conclude that a (T, V)-functor is L-complete if and only if it is a (.)*-quasi
cocartesian morphism.

Similar to the case of L-complete objects, one can replace the (T, V)-category

Z by the ®-neutral object F assuming that the axiom of choice holds.
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Proposition 4.1.2. For a (T, V)-functor f: X =Y, the following are equivalent:

1. f: X - Y is L-complete.

2. For any left adjoint (T, V')-module ¢ : E ~ X and y € Y such that f,o¢ =y,,

there exists z € X with ¢ =z, and f(z)=v.

3. For any right adjoint (T, V)-module ® : X ~ F and y € Y such that 1o f* = y*,

there exists € X with ¢ = z* and f(z) =v.

Examples 4.1.3. 1. In Ord, every ordered set X is L-complete as shown in
Examples 3.2.5. So there is a one-to-one correspondence between the left
adjoint 2-modules ¢ : £~ X and the elements of X. Hence a monotone map
f:(X,<) = (Y,<) is L-complete if and only if given any z € X with f(z) ~y

for some y € Y, there exists w € f~1({y}) such that z ~ w.

f) ———

2. In Met, there is a one-to-one correspondence between the adjoint P,-modules
v -y : X ~ E and the equivalence classes of Cauchy sequences in X as shown

in Examples 3.2.5. The left adjoint ¢ : E ~ X is representable by a point
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z € X precisely when the elements of the equivalence class of Cauchy sequences
corresponding to ¢ - ¢ converges to z.

Let f: (X,d) - (Y,d") be a nonexpansive map and ¢ 4% : X ~ E be a
pair of adjoint P,-modules. Suppose that the pair ¢ - 1 corresponds to the

equivalence class of Cauchy sequences {(z,)} in X.

Claim: The pair f,o@ <o f* corresponds to the equivalence class of Cauchy
sequences {(f(z,))} inY.

Since (z,) is Cauchy and f is nonexpansive, (f(z,)) is Cauchy. Its equiv-
alence class corresponds to the left adjoint P,-module 7{13?0 d'(f(zy), -). So

showing f. o = lim d'(f(z,), -) will suffice. Pick any y €Y', then

feo go(y)

inf{p(z) + f.(2,9)}

= inf{p(z) +d'(f(2),y)}-

Since ¢ ~1 9 corresponds to the equivalence class of Cauchy sequences {(z,)},

we have p(z) = 711_210 d(zn,x). So

feop(y) = inf{lim d(z,,z) +d'(f(),v)}.
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Now,

1\

lim d(zs,2) +d'(f(2),9) > Jim d'(f(n), f(2)) +d(f(2),9)

= Jim (¢, 1) (7))

\%

lim d'(f(22), ).
This holds for all z € X. So

inf { lim d(z,,) + &'(f(),1)} > lim d'(f(2.), ).

zeX n—oo

Hence, f, 0 ¢ 2 lim d'(f(z.), -).

To obtain the reverse inequality, observe that we have

inf{lim d(zy,z) +d'(f(2),y)} < lim d(zk, 2n) + d'(f(2n),y)

for any n € N. Taking the limit of both sides,

IN

inf{Jim d(zi,2) +&'(f(2),0)} < Jim ( Jim d(zk, 20) + ¢ (f(20).9))

n—00

0+ Jim d'(/(2),9).

Il

Hence f, o < lim d'(f(z,), -). Therefore our claim is justified.

So a nonexpansive map f : X - Y is L-complete if and only if given any

Cauchy sequence (z,) in X with 1l;im f(zn) =y, there exists z € f~1({y})
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such that lim z, =z
n—oo

(Zn) - - - -~ >z
|
|
I ¥
|
[TCN J—

. Now we characterize L-complete morphisms in Top. Let f: X - Y be a
continuous map and ¢ 44 : X ~ E be a pair of adjoint (U, 2)-modules. In
Example 3.2.5 we have seen that ¢ 41 : X ~ E corresponds bijectively to a

closed set A ¢ X and a down-closed and Zariski closed A c UX such that
JreUX: Aeg,re A and VieAd zeA 31 (4.1.1)

Here A := ¢71({1}) and A :=9~1({1}). Upon further examination, one finds
that
A=lr={3cUX|VzeA 3->z}

and A is an irreducible closed set. The left adjoint ¢ is representable by a
point z € X if and only if A4 = {z}.

The first step towards the characterization of L-complete morphisms in Top
is finding the counterparts of the adjoint pair f, o ¢ 4 o f*. Suppose that
feow 4o f* corresponds to an irreducible closed set B ¢ Y and a Zariski

closed and down-closed set Bc UY'.

Claim: B = f(A).
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One has
feow(y) = f.Up(y) = \U/X Up(3) @ (U f(3),v)

for all y e Y. Since B = (f. o) 1({1}), we get
B={yeY |33eUX: Ae3 & f(3) >y}

Let y € f(A) where y = f(z) for some z € A. Then there is r € UX, given
in (4.1.1), with r > z and A e . This implies that f(z) - y. Hence y € B,
f(A) ¢ B. Since B is closed, we get ﬂ_A5 c B. Conversely, let y € B.
Then there exists 3 € UX such that A € 3 and f(3) - y. This implies that

f(A)e f(3). As f(3) » vy, f(A)nO # g for any open neighbourhood O of y.

Hence y € f(A), B< f(A).

So if ¢ 49 : X ~ E corresponds to an irreducible closed set A € X, then

faop Ao f*:Y ~ E corresponds to the irreducible closed set f(A)cY.

Hence a continuous map f : X - Y is L-complete if and only if for any
irreducible closed set A ¢ X with f(A) = @ for some y € Y, there exists
z ¢ f-1({y}) such that A = {z}. We call such maps quasi fibrewise sober. In

case the point z is unique, f is called fibrewise sober [48].

Now we identify L-complete maps from an alternative perspective. Recall that
Example 3.2.5 also provides a bijective correspondence between the adjoint

pairs ¢ 4 ¥ : X ~ E and irreducible ultrafilters ¢t € UX with conv ¢ = A
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and | r = A. The left adjoint ¢ is representable by z ¢ X if and only if

CONV E = CONV T.

Consider the adjoint pair f, o 4 %o f*: Y ~ E. It corresponds to an

irreducible ultrafilter to € UY such that

convto =B & | w=8. (4.1.2)

Claim: f(z) satisfies the conditions in (4.1.2).

We know that conv r = A. Hence f(A) < conv f(r), as f is continuous. On
the other hand, f(A) € f(xr) implies conv f(z) € f(A). Since the limit points
of a filter is a closed set, conv f(r) = f(A). f(x) is irreducible, as f(A) € f(x).

This also shows that conv f(r) = B.

Secondly, | f(z) = B as follows: We have B={ye UY | Vy € f(A),y > y},
since B = f(A). Take any € B. For B <l f(¢), one needs to show n < f(r)
in MY. Let C € vy. Since n converges to all points of f(A), f(A) c C.
Then we have C € f(r), as A er. Soy < f(r). Conversely, f(x) € B, as

F(A) = conv f(x). Since B is down-closed, |} f(zr) € B.

So if ¢ <1 : X ~ E corresponds to an irreducible ultrafilter r € UX, then

foop 1o f*:Y ~ E corresponds to the irreducible ultrafilter f(x) e UY.

Hence a continuous map f: X =Y is L-complete if and only if for any irre-

ducible ultrafilter r € UX with conv f(r) = conv v, there exists z € f “1({y})
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such that conv ¢ = conv z.

fle) ———
Now we investigate properties of L-complete (T, V')-functors.

Proposition 4.1.4. 1. Fully faithful and surjective (T, V')-functors are L-complete.

In particular isomorphisms in (T, V)-Cat are L-complete.
2. L-complete (T, V)-functors are closed under composition.
3. If g.f is L-complete and g is monic then f is L-complete.
4. If g.f is L-complete and f is an L-equivalence then g is L-complete.

Proof. 1. Let f: X - Y be a fully faithful and surjective (T, V')-functor. Sup-
pose that ¢ : E ~ X is a left adjoint (T, V)-module such that f. oy =1y, for
some y € Y. Since f is fully faithful, one gets ¢ = f* oy,. As f is surjective,

there exists z € X such that f(z) =y. Then
p=[f"o(f(z))s=[f"ofioz.=1..

Hence f is L-complete. Isomorphisms in (T, V')-Cat are fully faithful bijective

(T, V)-functors. So isomorphisms are L-complete.
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2. Let f: X >Y,g:Y - Z be L-complete (T, V)-functors. Assume that
¢: E ~ X is a left adjoint (T, V)-module such that (g.f). o ¢ = z, for some
zeZ. Then g.o(f.op) =2, Since foop: E~Y is a left adjoint (T, V)-
module and ¢ is L-complete, there exists y € Y such that f, o ¢ = y, and
9(y) = z. Using the fact that f is L-complete, there exists z € X such that

p=z,and f(z)=y. So ¢ =z, and g.f(z) = 2. Hence g.f is L-complete.

3. Let f: X—>Y,9:Y > Z be (T,V)-functors where g.f is L-complete and g
is monic. Assume that ¢ : £ ~ X is a left adjoint (T, V)-module such that

feogp =1y, for some yeY. Then

(9-f)eow=gs0fuop=g.0u.=(g(y))s

Since g. f is L-complete, there exists x € X such that ¢ = z, and g.f(z) = g(y).

Then f(z) =y, as g is monic. Hence f is L-complete.

4. Let f: X =Y, 9:Y - Z be (T, V)-functors where g.f is L-complete and f
is an L-equivalence. Assume that ¢ : E ~ Y is a left adjoint (T, V)-module

such that g, o¢ = 2, for some z € Z. Since f is an L-equivalence, f,o f*op=¢
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and f* oy is left adjoint (T, V)-module.
X
frop fe
/ @ \
E
z*\\ //9

Z

Y

*

As g.f is L-complete, there exists z € X such that f*oyp =z, and ¢.f(z) = 2.
Then

p=Ffeof op=fioz. = (f(z))

Hence g is L-complete.

Theorem 4.1.5. L-complete (T, V')-functors are stable under pullback.

Proof. Let g: (Y,b) = (Z,c) be an L-complete (T, V)-functor. Consider its pullback

along a (T, V)-functor f:(X,a) = (Z,c).

(X xzY,axb) (Y,b)
J

™ g

(X,a) (Z,c)
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We need to show that m; is L-complete. So assume (). o ¢ = (zg). for some
zoe X and p 49 : (X xzY,axb) ~ (E, k). Then we have the following commutative

diagram in (T, V)-Mod.

(E,k) (X xz Y,axb) (72). (Y.b)
1/* g*

(20). )
(X,a) (Z,¢)

S0 g, o (m2)x 0 ¢ = fao(20)s = (f(20)). Where (m3). 0 ¢ + 3o (m)*. Since g
is L-complete, there exists yo € Y such that (m2). 0o ¢ = (v0). and g(vo) = f(zo)-
Hence (zg,yp) € X xz Y.

Claim: ¢ = (9, Y0)+-

It suffices to show that ¢ < (2o, %)+ and 9 < (zo,%)* by Lemma 2.3.1.

Since ¢ is a (T, V')-module, one has ¢ = (a xb) o ¢ = (a x b).Tp.m3,. So for any

(z,y) e X x5 Y,
o(z,y) = \/  Tp(w)e (axb)(w,(z,y))
weT(XxzY)
- T(}(/ Y)T(p(m) ® (a(Tm (1), z) Ab(Tme(m),y))
< \V  Te(n)®a(Tm (o), z)
weT (XxzY)

= (m). o p(z) = (20)«(2) = alex(20), 7).
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Similarly ¢(z,y) < b(ey(vo),y). Hence
o(z,y) < alex(zo),z) Ab(ey (30),y) = (Z0,%0)+(,9).

So p< (:L.O)yO)*-

Now we show 9 < (zo,%o)*. By hypothesis, (zg)* = 9o (m)*. So for any re TX,

a(r,@0) =V Ta(mix(r),Tm(w)) ® ¢(mw).
weT(Xx7Y)
Considering ¢ = T'm;(t0), we get
Ta(m$. T (1), Tm (1)) ® ¥(1) < a(T (1), zo)-
As T is order preserving, lrx =Te%.m$ < Ta.mj(. This means that

k < Ta(m%.Tmy(w), Tri(t0)).

Hence ¥(r0) < a(T'm (), zo). Similarly, (yo)* = ¥o(ms)* implies 1 (10) < b(Tm2(10),Yo).

Then
P(r0) € a(Tr(w),zo) Ab(Tm(10),y0) = a x b(tv, (%o, Y0)) = (Zo,Yo)* (10)

forall o e T(X xzY'). Hence 9 < (zo,y0)*-

O

A pair (f, S) consisting of a morphism f : A - B and asource S = {7;: A > A;},,

is called a multiple pullback of a sink {f;: A; = B}, provided that
144



o f=fimforalliel,

» For each pair (f’, S') where f': A’ > B is a morphism and 5’ = {n]: A’ > A;},
is a source such that f’ = f;.n] for all ¢ € I, there exists a unique morphism
g: A" > Awith f'=fgand n,=m,.gforalliel.

Proposition 4.1.6. L-complete (T, V')-functors are stable under multiple pullback.
Proof. Consider a sink {f; : (Xj,a;) = (Z,c)}; of L-complete (T, V)-functors. Tak-
ing the limit of the diagram, one gets

(P’Ha'i)

T

(Xi)a'i)

(Z,¢)

where (P, [] a;) is the fibred product of (X, a;)’s over Z and m;’s are the projection
maps. To prove the claim, one needs to show that f is L-complete. So it is enough

to show that there exists j € I for which 7; is L-complete. This is done similarly to

the proof of Theorem 4.1.5. O

Remark 4.1.7. In Section 3.5, we have seen that every (T,V)-category (X,a)
has the L-completion ()~( ,@) consisting of tight (T, V)-functors. Let ) denote the
L-completion functor.

y : (Ti V)'Cat - (T, V)"Catcpl & sep
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S~

=

Y

To see the action of Y on morphisms, recall that )~( can also be seen as the collection
of right adjoint (T, V')-modules from X to E. For a (T, V)-functor f: X - Y, one
has Y(f) = f where

f) = o f*
for e X. The family of the Yoneda functors yx : X — X form a natural transfor-
mation

y:1(1v)-cat > V.
This gives us another way to characterize L-complete morphisms.

Proposition 4.1.8. Let f: X - Y be a (T, V)-functor. Then f is L-complete if
and only if the naturality square

Yx

<

~

is a weak pullback.
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Proof. The naturality square is a weak pullback if and only if for any 9 € X and
y € Y such that }(7,[)) = yy(y), there exists z € X satisfying ¥ = yx(z) and f(z) = y.
This is equivalent to saying that for any right adjoint (T, V)-module ¥ : X ~ E
and y € Y such that 9 o f* = y* there exists z € X satisfying ¢ = z* and f(z) = y.

That is equivalent to f being L-complete. 0

Corollary 4.1.9. A (T,V)-category X is L-complete if and only if !x : X - 1 is
L-complete.
Proof. By Prop. 4.1.8, !x : X - 1 is L-complete if and only if

yx .
X

=

n

is a weak pullback. Since 1= 1, this is equivalent to saying that yx is surjective.

yx is surjective if and only if X is L-complete by Cor. 3.2.2. a

This result is another confirmation that the morphism notion of L-completeness

is the natural extension of the corresponding object notion.
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4.2 L-separated morphisms

Let Y be a (T, V)-category. Consider the comma category (T,V)-Cat/Y whose
objects are the (T, V)-functors with the codomain Y. A morphism from k: Z - Y

to f: X =Y in this category is a (T, V')-functor g: Z - X such that f.g = k.

Definition 4.2.1. We call a (T, V)-functor f : X - Y L-separated if it is an L-
separated object in the ordered category (T,V)-Cat/Y. This means, given any

morphisms g, h: k - f such that g ~ h, one has g = h.

So a (T, V)-functor f: X - Y is L-separated if and only if given any (T, V)-
functors g,h : Z - X such that g ~ h and f.g = f.h, one has f = g. This means
that f L-separated if and only if it is jointly monic with the lower star (upper star)
operation.

As in the case of L-separated objects, it is sufficient to consider the ®-neutral
object E instead of Z. Hence f : X = Y is L-separated if and only if x ~ w and

f(x) = f(w) implies z = w for all z,w e X.

Examples 4.2.2. 1. In Ord, a monotone map f: X — Y is L-separated if and

only if its fibres are partially ordered sets.

2. In Met, a nonexpansive map f : (X,d) - (Y,d’) is L-separated if and only if

for all z,w € X in the same fibre of f, d(z,w) = d(w,z) = 0 implies z = w.
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3. In Top, a continous map f: X - Y is L-separated if and only if its fibres are

Tp.

4. In App, a contraction f: X - Y is L-separated if and only if its coreflection

in Top has T fibres.

Proposition 4.2.3. 1. If X is L-separated then any (T, V)-functor f: X - Y

is L-separated.

2. L-separated (T, V')-functors are stable under pullback.

Proof. (1) is trivial. For (2), consider the following pullback diagram where g :

Y - Z is L-separated.
T2
XxzY Y

J

™ g

X Z

f

Let (z,y),(2',y’) € X xz Y such that (z,y). = (2/,y'). and m(z,y) = m (', y').
Then = = 2’ and we have g(y) = f(z) = f(2') = g(¥’). On the other hand, (z,y), =
(z',y"). implies that y, = y,. Since g is L-separated, one gets y = y’. Hence

(z,y) = (2',y"), m is L-separated. a

Proposition 4.2.4. Let f: X - Y be (T, V)-functor such that X is L-complete

and Y is L-separated. Then f is L-complete.
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Proof. Suppose the assumptions hold. Let ¢ : E ~ X be a left adjoint (T, V)-
module such that f, oy =y, for some y € Y. Since X is L-complete, there exists
z € X such that ¢ =z,. Then f,oz, = (f(z)). =y.. AsY is L-separated, f(z) =y.

Hence f is L-complete. O

4.3 L-injective morphisms

Definition 4.3.1. We call a (T,V)-functor f : X - Y L-injective if it is an L-
injective object in (T,V)-Cat/Y. This means, given any morphism j: k - f and

any L-equivalence i : k — h, there exists a morphism g : h — f such that g.4 =~ j.

Observe that f : X — Y is L-injective if and only if given any solid arrow

commutative square

BN

i ad f (4.3.1)

in (T, V)-Cat where ¢ is an L-equivalence, there exists g : B - X such that f.g = h
and ¢.7 ~ j. Indeed, having j: k — f in (T, V)-Cat/Y means that k = f.5. So the
commutative square (4.3.1) corresponds to the morphisms j: k- f and i: k — h.
In (T,V)-Cat/Y there exists g : B - X with the desired properties if and only if
there exists g : h - f such that g.7 ~ j.
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So, in the language of general homotopy theory, L-injective (T, V')-functors are
the morphisms in (T, V')-Cat which have weak right lifting property with respect
to L-equivalences.

In Section 3.5 we have seen that L-completeness and L-injectivity are equivalent
notions at the level of objects. These notions are also equivalent at the level of

morphisms as the next theorem shows.

Theorem 4.3.2. Let f: X - Y be a (T, V)-functor. f is L-complete if and only

if f is L-injective.

Proof. Let f be L-complete. Suppose that we have the commutative square (4.3.1)
where ¢ is an L-equivalence. Then f, 0 j. = h,o%,. As i is an L-equivalence, we get
feojeoi* =h, and j, 01* 41, 0j* Since f is L-complete, there exists g: B - X
such that 7, oi* =g, and f.g=h. Then j ~ g.7 and f is L-injective.

Conversely, let f be L-injective. By Prop. 4.1.8, f is L-complete if the following

diagram is a weak pullback or, equivalently, the induced map ¢ is surjective. So it
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is enough to show that ¢ is a retraction.

Y

Firstly, }" is L-complete and L-separated by Prop. 4.2.3 and 4.2.4. So m is L;
complete and L-separated as a pullback of } On the other hand, 75 is fully faithful
as a pullback of yy which is fully faithful. Since yx : X — X is an L-equivalence
and 7 is fully faithful, 7 is an L-equivalence by Prop. 2.8.2. We have the following

commutative square:

1x
X X
7
7
/ .
1 4 .1 =
o 1i=f
Ve
Y x- X Y
Y m

Since f is L-injective, there exists m: Y X X - X such that m.i ~ 1x and 71.4.m =
m1. Then we have my.i.m.i = m1.¢ with i.m.1 ~ i. As m; is L-separated, i.m.i = 1.

That implies i.m = 1Y 50 88 1 is L-dense. Now we have my.t.m = m.1l,

-~ X ~

Y Y
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1.m I Using again the fact that m is L-separated, we obtain ¢.m = 1Y %
% %

Hence 7 is a retraction.

a

Since L-injectivity and L-completeness are equivalent notions, L-complete mophisms
have the weak right lifting property with respect to L-equivalences. This fact be-
comes very helpful for showing that L-complete and L-separated morphisms belong
to a factorization system. We will consider this factorizations system in detail in

Chapter 8.
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5 The functor L
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In this chapter we investigate the functor L : (T, V')-Cat — Top that is induced
by the L-closure (see Subsection 3.4.2). Our results complement Chapter 7 where
we explore the functional topology on (T, V)-Cat with respect to “L-closed maps”.

A theme that we will frequently encounter in Chapter 7 is the preservation of
finite products by the functor L. We investigate the necessary conditions for L to
have this property in Section 5.1. In Section 5.2, we examine the functor L(yp,) :
App - Top which will be important in studying compactness with respect to “L-
closed maps” for approach spaces. This concept is known as Zariski compactness
[26] and has not been characterized yet. We will provide such a characterization in

Section 7.2.

5.1 Preservation of finite products

Suppose that the quantale V is constructively completely distributive (ccd). In this

setting the L-closure can be equivalently formulized as follows.

Proposition 5.1.1. Let V be a ccd quantale, (X,a) be a (T, V)-category, M ¢ X

and z € X. Then the following assertions are equivalent:

«>

1. xe M.
2. For all € « k there exists ¢ ¢ TM such that € < a(r,z) ® Ta(Tex.ex(z),r).

3. For all € « k there exists r € TM such that € < a(z,z) ® Ta(Tex.ex(z),).
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Proof. (1=2)Letz e M. Then k < \ a(z,z)®Ta(Tex.ex(x),r). If € < k, then
reTM
there exists r € TM such that € < a(x,z) ® Ta(Tex.ex(x),t) by (2.1.8).
(2=3) Let € < k. By Lemma 2.1.3, there exists €; € V such that € « &; « k.

For €; «< k, there exists x e TM with
e1<a(x,z) ® Ta(Tex.ex(z),r)
by hypothesis. Since € « €;, we get
e < a(r,z) ® Ta(Tex.ex(z),r).
(3 = 1) Suppose that for all € «< k there exists . €¢ TM such that
€ <a(r.,z)® Ta(TeX.eX(m),pe).

Since V is ccd, k= \/ € by Lemma 2.1.3. Then

exk

k=Ve< V a(t,z)®Ta(Tex.ex(z),r.) < \V a(x,z) ® Ta(Tex.ex(z),r).
exk re€TM cTM

Hence z € M. O
Recall from Prop. 3.4.13 that the L-closure is additive when T preserves finite
sums and k is v-irreducible. Assuming that V is ccd, we replace v-irreducibility by

the condition (5.1.1) below.

Proposition 5.1.2. Suppose that T preserves finite sums, V' is ccd and satisfies

the following condition:

ukk & wsk = uvw<k. (56.1.1)
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Then the L-closure is additive.

Proof. Let (X,a) be a (T, V)-category and M, N ¢ X. Since L-closure is monotone,
—> <> > > >
it is enough to show M UN ¢ M u N. Suppose that z ¢ M u N. Then there exists

€1 < k such that for all gy e TM,

€1 K a(r,z) ®Ta(Tex.ex(x),;)

and there exists €2 «< k such that for all x e TN,

g2 k a(r,z) ® Ta(Tex.ex(z),r).

By (5.1.1), one has € vey « k. Since T preserves finite sums, for all f e TM UTN =

T(MuN),
e1vVer ka(r,z) ® Ta(Tex.ex(x),r).
This exactly means that x ¢ M U N. O

So the L-closure induces the functor L : (T,V)-Cat — Top given that the

conditions of Prop. 5.1.2 are satisfied.

Remark 5.1.3. Condition (5.1.1) implies v-irreducibility of k as shown in [34].
To see this, let kK <uvwv, A={z eV |2 <k}, A, ={z e A|z < u} and
A,={z e A|z<v}. Forany z <« k, one has z < u or z <v. Hence A c A, U A,.

Trivially A2 A,uA,. So A=A, UA,.
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Furthermore, k = \/ A =\/{z € A| z > y} for any y € A as follows. Given any
z € A, one has zvy € A by condition (5.1.1) where zvy 2y and zvy >z. So\/ A<
V{z € A|z >y}. On the other hand, one trivially has \/ A>\/{z e A|z > y}.

Consider the following cases. If k = \/ A,, then k < u. If k # \/ A,, then there
exists y € A such that y ¢ A,. Take any x € A with  >y. Then z € A, or z € A,.
One gets z € A,, as T € A, will imply y € A, which is a contradiction. So {z € A |
z >y} ¢ A,. Taking supremum of both sides, k = \/{z e A|z >y} c VA, <v.

Hence k < u or k < v which means that & is v-irreducible.

Lemma 5.1.4 ([24]). Suppose that V is a ccd quantale and (5.1.1) holds. Then

for every w <« k there exists u « k such that w <« u ® u.
Proof. For any uj,us < k, u3 Vup < k by (5.1.1). Then

Uy @ up < (ul V’u,g) ® ('U,l V'U,2)

and
\/ Uy ® Ug < v U ® Uu.
ul,ug«k u«xk
One gets
k=kok=\V we V uu= V wous\ usou
uy <k us <k uy, U<k u<xk
Then for any w <« k there exists u <« k such that w < u ® u. a

Remark 5.1.5. Let X = (X,a), Y = (Y,b) be (T, V)-categories. Consider the

(T, V)-category A°(A(X)) whose structure is (Ta.Tex.ex) (see Subsection 2.7.2).
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The functor A preserves products, since A° -+ A. Furthermore, the operation (_)°P

is compatible with products. If A® preserves finite products, then
A (A(X xY)P) = A°((AX x AY)?P) = A°(A(X)PxA(Y)P) = A°(A(X)P)xA°(A(Y)P).
That means

(T(a x b).T«eny.eny)o = (Ta.Tex.ex)o x (Tb.TCy.ey)o.
Proposition 5.1.6. Assume that T and V satisfies the conditions of Prop. 5.1.2,
k=Tand A°: V-Cat — (T, V)-Cat preserves finite products. ThenL : (T, V)-Cat -
Top preserves finite products.
Proof. Let X = (X,a), Y = (Y,b) be (T, V)-categories. We need to show that
L(XxY)2LX xLY, ie. M =77 for all M € X xY where M is the closure of M
in LX xLY.

Take any M € X xY. Since L is a functor, id : L(X xY) > LX xLY is continuous.
Hence M € M. To show that M ¢ 117, let (z,y) € M and fix g9 < k. Let m,m,
be the projection maps. Then (z,y) € M implies z € m (M) ¢ m , since my is
continuous. Similarly, one has y € ;2—(}\—4_5 . There exists € «< k such that g <e®¢
by Lemma 5.1.4. As x € m, there exists ¢ € T(m(M)) such that

£ < a(r,z) ® Ta(Tex.ex(x),r)-

Similarly, there exists y € T(ma(M)) such that

£ < b(,y) ® Th(Tey ey (y),y),
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as y € my(M). Since k =T, we have
exa(r,z) & e<«Ta(Tex.ex(x),r),

exb(y,y) & e«Tb(Tey.ey(y),y).

Then € = ene < a(x, ) Ab(y,y). Similarly € < Ta(Tex.ex(z),r) ATb(Tey ey (y),1).

Hence
g0 <e®e < (a(r,z) Ab(h,y)) ® (Ta(Tex.ex(z),r) ATb(Tey.ey(y),y)).

Since T satisfies the Beck-Chevalley property, the map (T'7ry, T'm2) : TM — T'(m(M))x
T(mo(M)) is surjective. So there exists to € TM such that Tm(w) = ¢ and

Tmy(r0) = 1. Hence

g0 < a(Tmy(w),z) Ab(Tma(r),y)
® Ta(Tex.ex(x), Tmi (1)) AT(Tey.ey(y), Tma(r0))

= (axb)(r, (z,y)) ® ((Ta.Tex.ex)’ x (Tb.Tey.ey) ) (1o, (x,7)).
Since A° preserves finite products, Remark 5.1.5 implies

g0 < (axb)(m,(z,y))® (T(axb).Texxy.exxy) (10,(z,y))

= (axb)(w,(z,9)) ® T(axb)(Texxy-exxy(z,y), ).
<> —_— >
Hence (z,y) € M. Therefore M ¢ M. O

Now we look at the implications of this result for our main examples.
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Corollary 5.1.7. Ly : Ord - Top and Lp, : Met — Top preserve finite products.

Proof. In these cases T and A° are identity functors. The quantales 2 and P, are

ccd where k =T and (5.1.1) holds. Hence Prop. 5.1.6 applies. O

Proposition 5.1.8. Let V be a completely distributive (cd) quantale. Then A°:

V-Cat — (U, V)-Cat preserves finite products.

Proof. Let X = (X,a), Y = (Y,b) be V-categories. One has A°(X) = (X,e%.Ua),

A°(Y) = (Y,e5.Ub) and A°(X x Y) = (X x Y, e, U(ns.amy A mg.bmp)). If
U(nS.a.m A 75.bmy) = Unl.Ua.Umy A Ung.UbUT,, (1)
then

€y U(m.amy A TSbTo) = €py (UnSUaUny A Uns.Ub.UT,)

exxy Umi.UaUm A €y Uns . Ub. Uy

m1.e%x.Ua.Umy A 3.6 Ub.UT,.

Since 73.e%.Ua.Um A m5.e5.Ub.UT, is the structure on A°(X) x A°(Y), the result
follows. In the remaining part of the proof we will show that (1) holds.
As U preserves order, we have U(ﬂf.a.m ATH.b.y) < Uwf.ﬁa.Uﬂl A Uﬂg.ﬁb.Uﬂg.

To show the reverse inequality, recall from (2.5.5) that for r: X - Y in V-Rel,

Ur(en)= A\ V(=)

Aeyr zcA
Ben yeB
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forallreUX,npeUY.

Let 1,3 be two ultrafilters on X x Y, then

(Uwi’ﬁa.Um A Uﬂg.—ljb.Unz)(m,z,) = Ua(Umy(m),Um(3)) A Ub(Ua(10), Uma(3))

=( ANV a(x,z)) A ( ANV b(y,w))
AeUmy (o) zeA BeUma () yeB
CeUm (3) #<C DeUmy(3) weD

= AV AV (az2) A by,w)
AeUm (o) €A BeUmy (o) yeB
CeUmi(3) ?¢C DelUnmy(;) weD

< A AV V(e 2) A byw) (CD)
AeUry (o) BeUrnz(w) zeA yeB
CeUm(3) DeUma(3) #€C weD

= AV (az.2) A b(y,w))
AxBew (z,y)eAxB
CxDey (3 w)eCxD

SNV (al@2) 2 bly,w))
Few (z,y)eF
G (z,w)eG

=N\ V mam A m5.bm((z,y),(z,w))
Feno (z,y)eF
G (z,w)eG

=U(75.a.my A 75.b.73)(10,3).
So Uﬂf.Ua.Um A U7r§.Ub.U7r2 < U(w‘l’.a.m A T5.b.72). O

Corollary 5.1.9. Ly : Top » Top and Lwp,) : App » Top preserve finite

products.

Proof. The ultrafilter functor U and the quantales 2 and P, satisfy the conditions

of Prop. 5.1.2. Furthermore, 2 and P, are completely distributive quantales where

162



k =T7. Hence Prop. 5.1.8 and Prop. 5.1.6 applies. d

5.2 Lyp,) from a bitopological viewpoint

In this section we investigate the functor Liyp,) : App — Top via the framework
of bitopological spaces.

A bitopological space (X,T,0) is a set X equipped with two topologies 7,0. Let
(Y,7',0') be another bitopological space. A map f: X — Y is called bicontinuous
if it is continuous with respect to both topologies, i.e. both f: (X,7) - (Y,7')
and f : (X,0) - (Y,0’) are continuous maps in Tép. Bitopological spaces and
bicontinuous maps form the category BiTop.

Recall the natural closure, the dual closure and the L-closure as defined in
Section 3.4. If k is v-irreducible and T preserves finite sums, then these clo-
sures induce the functors N : (T,V)-Cat - Top, D : (T,V)-Cat -~ Top and

L:(T,V)-Cat — Top. Given a (T, V)-category X = (X, a), let
NX =(X,7), DX=(X,%), LX=(X,?).
Then (X, a) naturally corresponds to the bit;opological space (X,7T,T). Let
B: (T, V)-Cat - BiTop
be the functor which sends (X, a) to (X, 7, 7). Also consider the functor

J:BiTop - Top
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which joins the topologies of a bitopological space, i.e. J(X,T,0) = (X,7v0o) where
T v o is the coarsest topology which contains both 7 and ¢. At each point z € X,
7vo has the local basis {OnU |z € O e,z € U e 0}. The final aim of this section is
to show that for an épproach space, the topology induced by its L-closure is the join

of the topologies induced by its natural closure and dual closure, i.e. ¥ =7 v T

or, Lwp,) =JBwp,)-

We start by examining the topologies induced by the natural closure and the
dual closure in our examples.

Let X = (X,a) be a (T,V)-category, M ¢ X and z € X. Recall from Subsec-

tion 3.4.1 that z is in the natural closure of M, denoted by z € M, if

k< V a(r,z).

eTM
Examples 5.2.1. For an object X = (X,a) in Ord, Met, Top or App, we have

NX = (X, 7).

1. For an ordered set (X,<), z € M if and only if there exists y € M such that
y<x. So M is closed in NX if it is up-closed and open if it is down-closed.
The collection {| z | z € X} of principal down-closures forms a basis for 7.

So N, : Ord - Top is the Alexandroff topology functor.

2. For a metric space (X,d), z € M if and only if inAf4 d(y,z) = 0. Therefore
ye

Np, : Met — Top is the usual forgetful functor. The collection {B(z) | z €
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X,e > 0} forms a basis for 7 where BI(z) := {y € X | d(y,z) <e}. We call

BI(z) the right open ball of radius € at z.

3. The natural closure of a topological space (X, 7) is the closure induced by 7.

So7=T7, Nwz) : Top - Top is the identity functor.

4. For an approach space (X,0), z € M if and only if 6(M,z) =0. So M is
closed in NX if M = M and open if §(X \ M,z) >0 for all z € M. The

functor Neyp,) : App — Top is the coreflector.

By taking the functor N into consideration, we can augment diagram (2.7.8)

and obtain the following commutative diagram.

Ord C Top
(5.2.1)
v N

Met < App

Let X = (X,a) be a (T, V)-category, M ¢ X and z € X. Recall from Subsec-

tion 3.4.1 that z is in the dual closure of M, denoted by x € M , if

k< V Ta(Tex.ex(z),r)-
eTM
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The dual closure of X is the natural closure of A°(A(X)°). This implies that

D =N.A°(A(L)).

Examples 5.2.2. For an object X = (X,a) in Ord, Met, Top or App, we have

DX = (X, 7).

1. For an ordered set (X,<), = ¢ M if and only if there exists y € M such that
z<y. So M c X is closed in DX if it is down-closed and open if it is up-
closed. The collection {t z | € X} of the principal up-closures forms a basis

-
for 7.

2. For a metric space (X,d), z € M if and only if inAi; d(z,y) = 0. The collection
ye
{BL(z) |z € X,e >0} forms a basis for T where B.(z) := {y € X | d(z,y) <€}.

We call B.(z) the left open ball of radius € at z.

3. Let (X, 7) be a topological space. Recall from Examples 3.4.8 that z € M if

and only if {z} M + @.

Let O ¢ X. Then

OeT <= X\O closed in DX
= (X\N0)cX\O
= VzeX ({z}JN(X\0)#+8 = 1eX\0)

— VzeO, {z}<cO.
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Furthermore, m € 7, since for any y € Z;}_, Zy—}_ c m So the collection of

point closures {{z} | z € X} forms a basis for 7.

. Let (X,0) be an approach space. Recall from Examples 3.4.8 that z € M if
and only if {z}? M # @ for all € >0. Let O € X. Then
OeT <= X~Oclosed in DX
—> ETO) cX\O
<= VzeX (Ve>0, {z}ON(X 0)+8 = ¢ X\0)

= VYzeO, 3e>0: {z}® cO.

As in the case of topological spaces, one may try to show that the collection
{{z}® | z € X, € > 0} is a basis for 7. Unfortunately that does not hold.

But we can reach a comparable result by a slight modification.

The dual closure can be equivalently characterized by
P
zeM <= Ve>0, {z}OONM=+g

where {z}'® = {z ¢ X | 6({z},2) < €}. Observe that if z ¢ M, then
o+ {} PN M c {2} N\ M for any € > 0. Conversely, {2} NM + &

trivially implies {z}{¥ N M ¢ @.

So

OeT <+ Vre0,3>0: {z}{coO. (5.2.2)
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Lemma 5.2.3. The collection B = {{z}'® |z e X, ¢ > 0} is a basis for 7.

Proof. Clearly any element of 7 can be written as a union of the elements of
B by (5.2.2). So it is enough to show that every element of Bisin 7.

Take any {:c}((s)) eBand z € {:c}((e)). Let 6({z},2) = 1. Pick €, such that

0<ey <e-¢€;. Then by Prop. 2.7.3,

6({z},y) < sup 6({z},w) + 6({2},y) = 6({z}, 2) +6({z},y) <er +ea <

WeE{Z

for any y € {z}((iz))‘ Hence {z}((ez)) c {.’E}((E)).

Therefore for arbitrary z € {z}{)), there exists €, > 0 such that {2} ¢

{2}, S0 {2} e 7. O

The composite A°(A(-)°P) commutes with the embeddings of diagram (2.7.8).
Having diagram (5.2.1) and the fact that D = N. A°(A(-)°P), we obtain the following

commutative diagram.

Ord < Top
Top (5.2.3)
V X(um)
Met ¢ App
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The commutative diagrams (5.2.1) and (5.2.3) induce the following commutative

diagram for the functor B: (T, V)-Cat - BiTop.

Ord ¢ Top
N
BiTop (5.2.4)
y &,m
Met ¢ App

Now we examine the topologies induced by the L-closure in our examples.
Let X = (X,a) be a (T,V)-category, M € X and z € X. Recall from Subsec-

tion 3.4.2 that z is in the L-closure of M, denoted by z € H, if

k< V a(r,r)® Ta(Tex.ex(x),t).
€TM

The L-closure of X is the natural closure of its symmetrization SX. This implies

that L = N.S. We denote LX by (X, 7).

Examples 5.2.4. 1. For an ordered set (X,<), z ¢ M if and only if there exists
y € M such that z ~ y, i.e. 2 <y and y <z. Let = denote equivalence class
of = with respect to ~. M is closed in LX if and only if z € M for all z ¢ M.
Observe that this also the characterization of M being open in LX. The

collection {z | z € X} forms a basis for 7.
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2. For a metric space (X,d), z € M if and only if inj&{d(x,y) +d(y,z)} =0. The
ye

collection {B2(z) | z € X,e > 0} forms a basis for 7 where Bi(z) = {y ¢ X |

d(y,z) +d(z,y) <e}. We call B(z) the symmetrized open ball of radius € at

x.

3. Let (X,7) be a topological space. Recall from Examples 3.4.16 that the L-
closure of X is equal to its b-closure, i.e. T € M if and only if M n{_a:}—nO +Q
for any open neighbourhood O of z. L2 : Top ~ Top is the b-topology

functor.

4. Let (X,6) be an approach space. Recall from Examples 3.4.16 that z € M if

and only if 6(M n{z}©,z) =0 for all € > 0.

Let O € X. Then

Oe¥ < X O closedinLX
= (X\0)cX\O
= VzeX (Ve>0, 6(z,(XNO){z}9)=0 = ze X\ 0)

= Vze0,3e>0: 6(z,(X~0){z}®)>0.

Similar to dual closure, {z}®) can be equivalently replaced by {z}{) in the

formulation of the L-closure, i.e.

geM < VYe>0, (M {2} z)=o0.
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The symmetrization functor S commutes with the embeddings of diagram (2.7.8).
Having diagram (5.2.1) and the fact that L = N.S, we obtain the following commu-

tative diagram.

Ord ¢ Top
N
Top (5.2.5)
7’ w-k)
Met ¢ App
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Proposition 5.2.5. I—(lU,IP+) = J.B(um).

Proof. Let X = (X, ) be an approach space. J.Byp,)(X) is the topological space
(X, 7 v ) with the local basis By = {{z}{*¥ n O |e>0, Oe 7 : 2¢O} for
each z € X by Lemma 5.2.3. Let M ¢ X. The closure operator associated with

J.B(w,p,)(X) is given by
1M = Y({£}@n0)eB, Ma{n}(@n0+g.

On the other hand, the topology 7 on Lp,)X is induced by the L-closure.

One has

zeM < Ve>0, §(Mn{z}{ g)=0

— VYe>0,zeMn{z}{E)

_—
Since the natural closure for approach spaces is idempotent, z € M n {z}{() if

and only if M n {x}((s)) nO # @ for any O € 7 that contains z. Hence

zeM < V¥e>0,¥0e7:2¢0, Mn{z}NnO¢gp

= V({2} D n0)eB,, Mn{z}{NnO+a.
So M = M. Therefore Ly p,)X = J.Be,)(X). O

Remark 5.2.6. Observe that commutativity of the diagrams (5.2.4) and (5.2.5)

makes the factorization L = J.B also work for Ord, Met and Top. So for any object

. . <> >
X in these categories, onehas 7 = 7 v 7.
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In Ord, this means that 7 has the local basis | £ 1 z for each z € X which is
exactly the set z. In Met, one sees that the topology induced by the symmetrized
open balls is the same as the topology induced by the left open balls and the right
open balls. In Top, this implies that O nm where O is an open neighbourhood

of z is a local basis of the b-topology for x € X .
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6 Functional topology
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Given a finitely complete category € equipped with a proper factorization sys-
tem, one can pursue topological notions by using a distinguished class F of “closed
morphisms” [13]. This chapter will provide the basics of the framework of [13]
together with some of its results. We will use this setting to develop topological
notions in (T, V)-Cat in the following chapters. It is important to emphasize that

the results in this chapter originally appeared in [13] unless stated otherwise.

6.1 The setting

6.1.1 Factorization system

A factorization system for a category % consists of two classes of morphisms £ and

M such that

(FS1) £ and M contain all isomorphisms and are closed under composition.

(FS2) For every morphism f in & there exists e € £ and m € M such that f =m.e.

(FS3) €& is orthogonal to M, i.e. given any commutative square




with e € £ and m € M, there exists a unique morphism f that makes the

whole diagram commutative.

(&, M) is called a proper factorization system if every morphism in £ is an

epimorphism and every morphism in M is a monomorphism.
Proposition 6.1.1. Let (£, M) be a proper factorization system. Then,
1. EnM=1Iso
2. g.f e M imples f e M.
3. g.fe€& imples ge&.

4. M is stable under pullback.

6.1.2 Subobjects

Let X be an object in ¥. Morphisms in M with codomain X are called subobjects
of X. There is a preorder “<” on the subobjects of X defined by 4 < j if there exists
a morphism k such that ¢ = j.k. Having <, one deﬁﬂes the equivalence relation ~ as
i~ j if and only if i < 7 and j <¢. In a concrete category, equivalence classes of the
subobjects of X are in one-to-one correspondence with the subsets of X.

Given a morphism f: X - Y in ¥ and a subobject ¢ : M - X of X, the tmage
of i under f, denoted by f[], is given by the (£, M) factorization of f.i as shown
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in the following diagram:

>

For a subobject j: N = Y of Y, the preimage of j under f, denoted by f-1[j],

is the pullback of j along f.

P
e

A pullback of f along a morphism in M is a called a restriction of f.

6.1.3 Closed maps

A topology is characterized by its open sets or, equivalently its closed sets. In the
category theoretical setting of [13], one uses a collection F of morphisms which
are thought of as being “closed”. The collection F has to satisfy the following

conditions:
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(Cl) F is closed under composition and it contains all isomorphisms.
(C2) Fn M is stable under pullback.

(C3) F has the right cancellation property with respect to &, i.e. if g.f € F and

fe&, then ge F.

A morphism in F is called an F-closed map. Fn M constitute the collection of

F-closed subobjects.

Example 6.1.2. Consider Top with the proper factorization system (£, M) where
£ is the collection of surjective continuous maps and M is the collection of subspace

embeddings. The collection F = {closed maps} satisfies (C1) ~ (C3). Another

possible candidate for F is the collection of open continuous maps.

From now on we assume that € is a finitely complete category with a proper

factorization system (£, M) and a collection F of morphisms satisfying (C1)-(C3).

Remark 6.1.3. Let ¥/Y denote the comma category of objects (A4, s) over Y where
s:A—Y is a morphism in ¥. A morphism f: (A,s) - (B,t) of €/Y is just a mor-
phism f: A— B of ¥ for which t.f =s. Let Uy : €/Y — ¥ be the forgetful functor
that sends f : (4,5) > (B,t) to f: A > B. Then (€, My) = (U;*(£), Uy} (M))
becomes a proper factorization system for /Y with Fy = Uy (F) satisfying (C1)-

(C3). We will drop the subscript Y when there is no danger of confusion.
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6.2 Dense maps

A morphism f: X - Y is called F-dense if in any factorization f =1.g, if i € Fn M,

then 7 is an isomorphism.
Proposition 6.2.1. 1. If fe &, then f is F-dense.
2. Any F-dense F-closed subobject is an isomorphism.

Proof. 1. Let f € £. Then in any factorization f =1.g, i € £ by Prop. 6.1.1. As

1€ M, 1 is an isomorphism.

2. Let f be an F-dense F-closed subobject. Consider an (£, M) factorization
f=1i.gfor f. Since f e F and g€ &, i € F by condition (C3). As f is F-dense
and ¢ is an F-closed subobject, 7 becomes an isomorphism. On the other
hand, g € M, since f e M. So g € En M and it is an isomorphism as well.

This implies that f is an isomorphism.

6.3 Compactness

6.3.1 Proper maps

Morphisms which are stably F-closed deserve special attention. A morphism f is

called F-proper if every pullback of f is in F. The class of F-proper maps will be
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denoted by F*. The following characterization of F-proper maps will useful in the

sequel.

Proposition 6.3.1. A map f: X — Y is F-proper if and only if every restriction

of fxlz: X xZ =Y xZ is F-closed for any object Z.

Proof. Let f be F-proper and Z be an object in ¥. Since f x 1z is a pullback
of f, any restriction f’ of f x 1 is a pullback of f as well. Hence f’ is F-closed.
Conversely, suppose that every restriction of f x 1z is F-closed for any object Z.

Consider the pullback of f along a morphism g: B - Y.

gl
A X
|
f f
B Y
g
This diagram can be extended as follows:
(9", f') m
A X xB X
J
f! fx1p f
B Y xB Y
(9,1B) m
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Since the outer square and the right-hand side square are pullbacks, the left-hand
side square is a pullback. One has (g, 1g) € M, since m2.(g,1p) = 1g € M. So f' is

a restriction of f x 1g and by hypothesis it is F-closed.

If F is stable under restrictions, then Prop. 6.3.1 can be simplified further.

Corollary 6.3.2. Suppose that F stable under restrictions. Then f is F-proper if

and only if fx1z: X xZ - Y xZ is F-closed for any object Z.

F* is closed under composition and it is the largest pullback stable subclass
of 7. As a consequence, one has F n M ¢ F*. F-proper maps have some nice

cancellation properties.

Proposition 6.3.3. 1. If g.f € 7* and ¢ is a monomorphism, then f € F*.

2. If g.f e F* and f € £*, where £* denotes the morphisms that are stably in &,

then g € F*

Proof. 1. Let f: X »>Y,g:Y > Z. Assume that g.f ¢ F* and ¢ is monomor-
phism. Take the pullback of f along an arbitrary morphism m : B —» Y.

Since g is monic, the right-hand side square of the diagram below is a pull-
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back. Then 1g.s = s € F as a pullback of g.f € 7*. Hence f € F*.

s 1p

2. This statement follows from the composablity of adjacent pullback diagrams

and condition (C3).

6.3.2 Compact objects

A topological space X is compact if and only if the unique map to the singleton set
is proper. Taking this fact as a reference, an object X in ¥ is called F-compact if
and only if !y : X — 1 is F-proper where 1 is the terminal object of &.

The Kuratowski-Mrowka theorem states that a topological space X is compact
if and only if the projection map 7 : X xY — Y is closed for any topological
space Y. One can easily prove the Kuratowski-Mrowka theorem in our categorical

setting.
Proposition 6.3.4. The following are equivalent:

1. X is F-compact.
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2. For any object Y, the projection map my: X xY = Y is F-closed.
3. For any object Y, the projection map m: X xY = Y is F-proper.
4. For any F-compact object Y, X xY is F-compact.

Proof. (1 <> 2), (1< 3) Pullbacks of !x : X — 1 are precisely the projection maps
m: X xY >Y forY in %.

B=4) (XxY->1)=(XxY->Y->1) (4=1) TakeY =1 O

F-compactness is carried backward by F-proper maps and forward by maps

that are stably in £.

Proposition 6.3.5. 1. If f: X - Y is F-proper with Y F-compact, then X is

F-compact.
2. If f: X > Y isin &* with X F-compact, then Y is F-compact.
Proof. (1) (X > 1) =(X %Y > 1). (2) Follows from Prop. 6.3.3. O

A morphism f: X - Y is F-proper if and only f if it is an F-compact object
in the comma category €/Y. This follows from the fact that the unique map

lr: (X, f) = (Y, 1y) going to the terminal object is f itself.
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6.4 Separation
6.4.1 Separated morphisms, separated objects

A morphism f : X - Y is called F-separated if the induced morphism 07 = (1x,1x):

X - X xy X is F-proper.

X (6.4.1)

Y

Since &5 € M, f is F-separated if and only if d; is F-closed.

Proposition 6.4.1. 1. F-separated maps are closed under composition and

contain all monomorphisms.

2. F-separated maps are stable under pullback.

3. If g.f is F-separated, then f is F-separated.

4. If g.f is F-separated and f € £n F*, then g is F-separated.

Proof. See [13]. O
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Like F-compactness, one calls a (T, V')-category X F-separated (or F-Hausdorff)
if and only if Ix : X — 1is F-separated. This means that éx = (1x,1x): X - X xX

is F-proper. Since dx € M this is equivalent to dx being F-closed.

Example 6.4.2. Consider Top with F = {closed maps}. A continuous map f is
JF-separated if and only if two distinct points in the same fibre of f is separated by
disjoint open sets. A topological space X is F-separated if and only if it is Hausdorff.
In the case of F = {open maps}, F-separation coincide with local injectivity for

maps and discreteness for objects.

Proposition 6.4.3. The following are equivalent:

1. X is F-separated.

2. Any morphism f: X - Y is F-separated.

3. There exists an F-separated morphism f: X - Y with Y F-separated.

4. For any Y, the projection X xY — Y is F-separated.

5. For any F-separated Y, X xY is F-separated.

6. For any f: X — Y such that f e EnF*, Y is F-separated.

7. In any equalizer diagram




s is F-proper.

Proof. (1) = (2) (X »1)=(X %Y > 1), apply Prop. 6.4.1.

(2)=(3) TakeY=1. (3)= (1) By Prop. 6.4.1.

(1) < (4) <> (5) Similar to Prop. 6.3.4.

(1) = (6) By (X > 1) =(X > Y > 1) and Prop. 6.4.1.  (6) = (1) Take f = 1x.

(1) < (7) The pullbacks of dx are exactly such equalizers s. O

Corollary 6.4.4. The full subcategory of F-compact objects and the full subcat-

egory of F-separated objects is closed under finite limits in %.

Proof. The full subcategory of F-compact objects is closed under finite limits by
Prop. 6.3.4, Prop. 6.4.3-(7) and Prop. 6.3.5. The full subcategory of F-separated ob-
jects is closed under finite limits by Prop. 6.4.3-(3),(5) and the fact that monomor-

phisms are F-separated. O

Observing diagram (6.4.1), it is easy to see as §5 = (1x,1x) : X — X xy X is the
morphism &x,5) = (1x,1x) : (X, f) = (X, f) x (X, f) in €/Y. Hence a morphism
f:X ->Y in ¥ is F-separated if and only if (X, f) is an F-separated object in the

comma category €Y.
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6.4.2 Relationship between compactness and separation

In Top, a continuous map between a compact domain and a Hausdorff codomain

is proper. In our categorical framework one has the following result.

Proposition 6.4.5. Any morphism f : X - Y with X F-compact and Y F-

separated is F-proper.

Proof. Let f: X - Y be a morphism where X is F-compact and Y is F-separated.
f can be written as m.(lx, f). Since (lx, f) is a pullback of §y and Y is F-
separated, (1x, f) is F-proper. On the other hand 7, is F-proper as it is a pullback

of Ix: X - 1and X is F-compact. Hence f =m.(1x, f) is F-proper. O

Corollary 6.4.6. Let Y be an F-compact and F-separated object. Then a mor-

phism f: X - Y is F-proper if and only if X is F-compact.
Proof. Follows by Prop. 6.4.5 and Prop. 6.3.5. O
Corollary 6.4.7. If g.f is F-proper and g is F-separated then f is F-proper.

Proof. Let f: X -»Y and g:Y - Z. Consider the comma category ¥/Z. One has
f:g.f - g where g.f is an F-compact object and g is an F-separated object in

€/Z. By Prop. 6.4.5, f is an F-proper map in ¥/Z and hence in €. O

An F-proper morphism cannot be extended along an F-dense subobject with

an F-separated codomain.
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Corollary 6.4.8. Let f: X - Y be an F-proper morphism. In any factorization
f=(X SzK5 Y') where g is an F-dense subobject and Z is F-separated, g is an

isomorphism.

Proof. Since Z is F-separated, h is F-separated. Then g is F-proper by Cor. 6.4.7.
So g is an F-dense F-closed subobject, which is indeed an isomorphism by Prop. 6.2.1.

O

6.5 Perfect maps

A morphism f is called F-perfect if it is both F-proper and F-separated. So an

F-perfect morphism f: X =Y is an F-compact Hausdorff object in €/Y .

Proposition 6.5.1. 1. F-perfect morphisms are closed under composition and

stable under pullback.
2. If g.f is F-perfect and g is F-separated then f is F-perfect.
3. If g.f is F-perfect, f is F-perfect and stably in £, then g is F-perfect.
Proof. Follows from Prop. 6.3.3, Prop. 6.4.1 and Cor. 6.4.7. g

Example 6.5.2. Consider Top with F = {open maps}. In this case, F-perfect
maps correspond precisely to open and locally injective maps. These maps are

local homeomorphisms in Top.
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6.6 Compactifications

An F-compactification of an object X is an F-dense embedding i : X - K where
K is F-compact and F-separated. An object X is called F-Tychonoff if X admits
an F-compactification. Let F-Tych denote the full subcategory of F-Tychonoff ob-
jects and F-CompHaus denote the full subcategory of F-compact and F-separated
objects. Consider a functor 8 : F-Tych - F-CompHaus which comes with a natural
transformation {Bx : X = fX}. One calls 8 a functorial F-compactification if each
Bx is an F-dense embedding. (By abuse of notation the functor and the natural

transformation will be denoted by the same letter).

Example 6.6.1. The main example of an F-compactification is the Stone-Cech

compactification in Top with F = closed maps.

By considering F-compactifications in the comma category, one can also develop

an F-compactification of morphisms. Let f : X - Y. Consider the following
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diagram:

X
B Bx
P X
; T p (6.6.1)
Kf Bf
Y BY

By

By is an F-compactification of f as follows. Firstly, uy € M since it is a pullback
of By € M. One has By € M as Bx € M. Then Bx = us.B; where Sx is F-dense
and pyf, By € M. This implies that By is F-dense, assuming that morphisms in M
are F-initial (a morphism g:Y - Z is called F-initial if any F-closed subobject of
Y is a pullback of an F-closed subobject of Z along g). On the other hand, «; is
F-perfect as a pullback of Bf. Hence we have an F-dense embedding By : f - kg
in the comma category €/Y where ky is F-compact and F-separated. So one can
think s : f - k; as an F-compactification of f in €/Y".

The following proposition provides a characterization of F-perfect morphisms.
The analogous result in Top with respect to the Stone-Cech compactification be-
longs to Isbell and Henriksen [29]. It states that B sends BX \ X into fY \Y

which is equivalent to saying that the naturality square (6.6.2) is a pullback.

Proposition 6.6.2. Suppose that § is a functorial F-compactification and mor-
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phisms in M are F-initial. For a morphism f: X - Y, the following are equivalent:

1. f is F-perfect.

2. f cannot be extended along an F-dense subobject with an F-separated codomain.

3. The naturality diagram below is a pullback.

Bx
X

BX
J

f Bf (6.6.2)

BY
By

Proof. (1 = 2) By Cor. 6.4.8.

(2 = 3) Under the assumptions the morphism S; in diagram (6.6.1) is an F-
dense subobject, hence an isomorphism. This means that the naturality square is
a pullback.

(3 =1) f is F-perfect, since it is a pullback of Bf which is F-perfect. O

If 7-Comp Haus is reflective in F-Tych with the reflection morphisms 8x : X -
BX, then f is a functorial compactification. Furthermore, the reflexivity induces
(F-antiperfect, F-perfect) factorization system on F-Tych where a morphism is
called F-antiperfect if its image under B is an isomorphism. Given a morphism

f:X =Y, one has the factorization f = k;.Bf as given in diagram (6.6.1) where
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kg is an F-perfect morphism and By is an F-antiperfect morphism. Let Pz and
Az denote the collection of F-perfect morphisms and F-antiperfect morphisms in

F-Tych respectively.

Proposition 6.6.3. Suppose that F-Comp Haus is reflective in F-Tych and mor-
phisms in M are F-initial. Then (Az, Pr) is a (generally non-proper) factorization

system for F-Tych.

Proof. See [13]. O

6.7 Open maps

Now we consider another important topological concept, openness for morphisms.
A continuous open map f: X — Y in Top reflects dense subsets in the sense that
given a dense subset M ¢ Y, f~1(M) is dense in X. Secondly, in Top open maps
are stable under pullback. With the help of these observations one can define open
morphisms in our category theoretical setting.

A morphism f: X - Y in ¥ is said to reflect F-density if for any F-dense
subobject m of Y, f~1[m] is an F-dense subobject of X. One calls f F-open if it
stably reflects F-density, i.e. every pullback of f reflects F-density. The collection

F-open morphisms is denoted by F*.

Proposition 6.7.1. 1. F* is closed under composition and contains isomor-
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phisms.
2. F* is stable under pullback.
3. If g.f € F* and g is monic then f e F*.
4. If g.fe F* and fe&* then ge F*.

Proof. (1) and (2) are trivial. (3) can be proven similar to Prop. 6.3.3. To show
(4), let g.f e F* and f e £*. A pullback of g.f will be ¢'.f’ where ¢’ is a pullback
of g and f’ € £ is a pullback of f. So it is enough to show that g reflects F-density
whenever g.f does and f € £*. Let m be an F-dense subobject of the codomain
of g. Since f € £, one has g-'[m] = F[f[g [m]]] = fI(g.F)[m]]. (g.£)[m] is

F-dense, as g.f reflects F-density. Then f[(g.f)*[m]] is F-dense, since fe£. O

As a consequence, F* satisfies the conditions (C1) - (C3) .and induces a topo-
logical structure on % in case £ is stable under pullback.

A topological space is discrete if and only if dx : X - X x X is an open map.
A continuous map is a local homeomorphism if and only if it is open and locally
injective. Taking these as a reference, one calls an object X in € F-discrete if X
is F*-separated. A morphism f: X — Y is called an F-local homeomorphism if f

is F*-perfect, i.e. both f and 0f are F-open.
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7 Functional topology with respect to L-closed

morphisms
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In this chapter we develop topological notions for (T, V')-categories using the
categorical framework outlined in Chapter 6. Our main parameter F will be the

collection of “L-closed” (T, V')-functors.

7.1 Factorization system, L-closed morphisms

Let

& = {surjective (T, V)-functors} & M = {full embeddings}.

Then (£, M) is a proper factorization system, as (T,V)-Cat is topological over

Set. This will be the default factorization system we will consider for (T, V')-Cat.

Definition 7.1.1. Let f: X - Y be a (T, V)-functor. We say that f is L-closed if

it preserves L-closure, i.e. f(](\_i) = f(M) for all M c X.
For a (T, V)-functor f: X - Y, one has f(ﬁ) c f(M) by Prop. 3.4.13. So
fisLclosed <= f(M)cf(M) VYMcX.
X oM
In particular, an embedding % : M - X is L-closed if and only if N ¢ N for all
N c M. Since L-closure is hereditary,

i: M < X is L-closed <= M is an L-closed subset of X.

One can equivalently define an L-closed (T, V)-functor as a morphism which
preserves L-closed subobjects. We will denote the collection of L-closed (T, V)-

functors by C.
195



Proposition 7.1.2. C satisfies conditions (C1) - (C3) of Subsection 6.1.3.

Proof. (C1) L-closed maps are trivially closed under composition. Let f: X - Y

be an isomorphism in (T, V')-Cat with the inverse g: Y - X. By Prop. 3.4.13,

(M) = g™ (M) € g7 (M) = £(M)
for all M ¢ X. So f is L-closed.

(C2) Consider the following pullback square where N < Y is an L-closed embed-

ding.
FHN) N
F
X Y

Since N < Y is L-closed, N is L-closed, i.e. N=N. By Prop. 3.4.13, we have
FHNY e fFHUN) = fHN).

This means that f~1(/N) an is L-closed subset of X. Hence f~}(N) - X is

L-closed.

(C3) Let f: X -Y ,g:Y - Z be (T, V)-functors such that g.f is L-closed and

fe&. Take any N c Y. Since f is surjective, there exists M ¢ X such that
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F(M)=N. Then

o(N) = g(f(M)) = g.f (M) € g(F(M)) = 9(N).

Hence g is L-closed.

Proposition 7.1.3. C is stable under restrictions.

Proof. Let f: X - Y be L-closed. It is enough to consider the pullback of f along

an embedding V - Y. Consider the following pullback diagram:

fl
) N
!
X Y

f

Take any L-closed set C' ¢ f~1(N). By Prop. 3.4.15, there exists an L-closed set

A c X such that C = f"1(N)n A. We have

F(€)=f(fH(N)nA)=Nnf(A)

Since f is L-closed, f(A) is L-closed. This implies that f(C) is L-closed in N.

Therefore f’ preserves L-closed subobjects, f’ is L-closed. a

The following lemma will be helpful in the sequel.
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Lemma 7.1.4. 1. Fully faithful and surjective (T, V')-functors are L-closed.

2. Let f: X =Y be a fully faithful (T, V)-functor. Then f is L-closed if and

only if f(X) is L-closed in Y.

Proof. 1. Let f:(X,a) - (Y,b) be a fully faithful and surjective (T, V)-functor.

—
Take M ¢ X and y € f(M). Then

k< b(an)‘X’Tb(TW-eY(y),U)
9eT(f(M))

Since f is surjective, y = f(z) for some z € X. T'f is surjective, as T preserves

surjections. So

Ead
A

< \T/Mb(Tf(zc),f(w))®Tb(Tey.ey(f($)),Tf(x))
=V 0(Tf(x),f(x)) ®Tb(ery-ey.f(2), Tf(r))

TM

=V 0(Tf(x), f(z)) ® TH(T f*.erx.ex(z), Tf(z))

eTM

=V (f 0T z)® (Tf To.Tf*)(Tex.ex(z),r)

eTM
=V a(r,z)®Ta(Tex.ex(z),r).
1€TM

This means that z € M and Y€ f(ﬁ) Therefore f(M) f(1\7), f is L-closed.

2. Let f: X =Y be fully faithful. Consider the canonical (£, M) factorization
X % f(X) 3 Y of f. Since f is fully faithful, so is f. Hence f” is fully
faithful and surjective which implies that it is L-closed.
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Suppose that f is L-closed, then i is L-closed by condition (C3). Conversely,
if ¢ is L-closed, then f =i.f’" is L-closed. Hence f is L-closed if and only if 4

is L-closed. The latter is equivalent to f(X) being L-closed in Y.

7.2 (C-compactness

Let X be a (T,V)-category. Following Subsection 6.3.2, X is called C-compact
if and only if !'x : X — 1 is C-proper, i.e. stably L-closed. Equivalently, X is C-
compact if and only if for any (T, V')-category Y the projection map my: X xY - Y

is L-closed.

Proposition 7.2.1. A (T, V)-functor f: X - Y is C-proper if and only if f x 15 :

X xZ -Y xZ is L-closed for any (T, V)-category Z.

Proof. Follows by Cor. 6.3.2 and Prop. 7.1.3. a

Examples 7.2.2. 1. In Ord, every object is C-compact. To show this, we first
characterize C-proper morphisms in Ord.

Claim: A monotone map f: (X, <) — (Y,<) is C-proper if and only if for any

z € X with f(z) = y there exists w ¢ f~}({y}) with z ~ w.

We prove the claim using Prop. 7.2.1. Suppose that f is C-proper, then

f x 1y is L-closed. Take z € X with f(z) ~ y and let K = {(z,y)}. Then
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(v,y) € m c fxly(?), as fx1y is L-closed. So there exists (w,y) € K
such that f x ly(w,y) = (y,y). This implies that z ~ w and f(w) = .
Conversely, suppose that for any z € X with f(z) ~ y there exists w € f~1({y})
with z ~ w. Take an ordered set (Z,<) and M ¢ XxZ. Let (y,2) € m
Then there exists (z,2) € M such that f(z) ~y. By hypothesis, there exists
w e f1({y}) with z ~ w. Hence (w,2) € M and fx1z(w,2) = (y,2), which
implies (y,2) € f x 12(]\7). Therefore m c fx lz(]\(_/[)) and fx1z is

L-closed.

Following this characterization, one sees that !x : X — 1 is C-proper for any

ordered set X. Therefore every ordered set is C-compact.

Observe that C-proper maps coincide with L-complete maps in Ord (see Ex-

amples 4.1.3).

. In Met, a metric space (X,d) is C-compact if and only if LX is compact
where L : Met — Top is the functor induced by the L-closure. To show this,

we first characterize C-proper morphisms in Met.
Claim: A nonexpansive map f: (X,d) » (Y,d’) is C-proper if and only if for
any sequence (z,) in X with 7lim f(z,) =y €Y, there exists a subsequence

(zn,) of (z,) and z € f~}({y}) such that rlll_{go Tp, = Z.

We prove the claim using Prop. 7.2.1. Firstly, assume that f is C-proper.
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Then fx1y: (X xY,dxd) - (Y xY,d' xd') is L-closed. Take any sequence
(z,) in X such that f(z,) >y forsomey €Y. Let K ¢ X xY be the elements
of the sequence (z,,y). Since f(z,) converges to y, for any € > 0 there exists

m € N such that
d'(y, f(zm)) +d'(f(zm),y) <e.

Then

max{d'(y, f(zm)),d' (y,y)} + max{d'(f(zm), v),d' (y,¥)} <,

which means

d' xd'((y,9), (f(zm),¥)) +d' xd'((f(zm),¥), (¥,¥)) <&

Hence

% (0,9), (). 9)) + & x (@), ), (0:9))} = .

So (y,y) € fx1y(K). Since f x 1y is L-closed, (y,y) € f x ly((f—{)). Hence
there exists (z,y) € K such that fx1y(z,y) = (y,y), ie. f(z)=y. As fis

nonexpansive, we have

uf,’;ji,{{d xd'((2,9), (zn,9)) +d x d'((zn, 9), (2,9))} = 0.

So

it (max{d(z,2,),d'(5,9)) + max{d(ws, ), d'(,)}} =0,
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inf {d(z,z,)+d(zn,z)}=0.

(zn,y)eK

For any k ¢ N, pick z,, such that

d(z,2n,) + d(n, , T) < %

Then one obtains a subsequence () of (z,) with lim z,, =z € f1({y}).

Conversely, assume that any sequence (z,) such that f(z,) >y €Y, has a
convergent subsequence (z,,) whose limit is in f~1({y}). Take any metric
space (Z,d"). We need to show that fx1z: (X xZ,dxd") - (Y xZ,d" xd")

>
is L-closed. Let M ¢ X x Z and (y,2) € f x 1z(M). This means

ok | {max{d (y, f(2.)), d"(2,20)} + max{d'(f(2.),y), d" (2., 2)}} = 0.

Then for any n € N there exists (2,,2,) € M such that

max{d'(y, f(2n)),d"(2,22)} + max{d'(f(zn), y),d" (2, 2)} < %

The sequence f(z,) converges to y, as

d'(y, f(2n)) +d'(F(n), ) < %

Similarly (2,) converges to z. Then (z,) has a subsequence (z,,) such that
(Zn,) = = and f(z) =y by hypothesis. Adjusting the indices if necessary, for
any ng € N one can find (z,,,2,,) € M such that

1! " 1 1 1
max{d(z,Zn,),d" (2, 2n,)} + max{d(zn,,z),d" (2n,,2)} < G + G < —
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Hence (z,2) € M and (y,2) € f x IZ(Z\H/I). Therefore f x 1z(M) c f x IZ(A?),

f x 1z is L-closed.

Following this characterization, !x : X — 1 is C-proper if and only if every
sequence in X has a convergent subsequence. So a metric space (X,d) is C-
compact if and only if (X, d) is sequentially compact. The latter is equivalent
to LX being compact, where the topology of LX is induced by the L-closure

(see Examples 5.2.4).

In the remaining part of this section we will try to formulate C-compactness
in Top and App. For topological spaces this notion is known as b-compactness
[51]. In App, C-compactness coincides with Zariski compactness [26]. This concept
has not been characterized in concrete terms yet. To do that we will require some
intermediate results. As a principle we will try to obtain these results in the most
general terms.

Recall that a (T, V)-category X is C-compact if and only if for any (T,V)-
category Y the projection map my : X xY - Y is L-closed. Consider the functor
L: (T,V)-Cat - Top induced by the L-closure. One sees that 73 : X xY - Y
being L-closed is equivalent to Ly : L(X xY) - LY being closure preserving. So
X is C-compact if and only if L7y : L(X xY) —» LY is closure preserving for any
(T, V)-category Y.

Our first aim is to characterize C-compactness of a (U, V')-category X, for V =2
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or P,, in terms of compactness of the topological space LX. Observe that, different
from the characterization of C-compactness, this requires the projection map m, :
LX xY - Y to be closure preserving for any topological space Y.

Now we look at a characterization of compactness for topological spaces. Given
an ultrafilter & on a set X, define the test space Xg = X U {0} with the following

topology [5]:

o For each z # oo, the neighbourhoods of z are all subsets of X & that contain

x.

 The neighbourhoods of the point co are {F U {0} | F ¢ F}.

Proposition 7.2.3. [21] For a topological space X, the following are equivalent:

1. X is compact, i.e. every ultrafilter in X converges.

2. For each topological space Y, the projection m3 : X xY — Y is closure pre-

serving.

3. For each nonconvergent ultrafilter & on X, the projection 7x, : X x Xg -

X g is closure preserving.

By generalizing a result in [21], we obtain the following characterization of C-

compactness.
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Theorem 7.2.4. Suppose that L : (T, V)-Cat - Top satisfies the following condi-

tion:

(t) For each (T, V')-category X and each nonconvergent ultrafilter & on X, X €

L((T, V)-Cat).

Then LX is compact if X is C-compact. Furthermore, if L preserves finite products,

then X is C-compact if and only if LX is compact.

Proof. Assume that X is a (T, V')-category and (1) holds.

Let X be C-compact and & be a nonconvergent ultrafilter on X. In light of the
Prop. 7.2.3, we need to show that mx, : LX x Xg - X g is closure preserving. By
condition (1), there exists a (T, V')-category Y such that LY = Xz. So it is enough
to show that my : LX x LY — LY is closure preserving. One has the following

commutative diagram in Top:

L(X xY)
L’ﬂ'g
id
LX xLY LY
LY

Since X is C-compact, L7, is closure preserving. One has L7y = m y.id where L, is
closure preserving and id is surjective. This implies that 7 y is closure preserving.
Conversely, assume that LX is compact. Then 7y : LX x LY — LY is closure

preserving for any (T, V')-category Y. If L preserves finite products, then id : L(X x
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Y) - LX xLY is a homeomorphism, hence closure preserving. Then Lmy = m y.id

is closure preserving for any (T, V)-category Y. Therefore X is C-compact.

O

Corollary 7.2.5. Let X be a (U, V)-category where V is 2 or P,. Then X is

C-compact if and only if LX is compact.

Proof. We check that the conditions of Theorem 7.2.4 are satisﬁéd. Firstly, L(y,2)
and Lyp,) preserve finite products by Prop. 5.1.9. Condition (t) is satisfied as
follows:

Given a topological space X and any nonconvergent ultrafilter % on X, consider

the topological space X5 = X u{oo} with the following topology [21]:

» For each z # oo, the neighbourhoods of z are the cofinite subsets of X which

contain z and oo.
» The neighbourhoods of the point oo are {F u {0} | F € F}.

One has Ly X%z = X# [21]. To see this, take z ¢ X. For any y € X, y has
a neighbourhood that does not contain z. So y ¢ m Also oo ¢ _{x_}, as & is
nonconvergent. Then m = {z}. So {z} is open in Ly X% and any subset of
X U {00} that contains z is a neighbourhood of z. On the other hand, {0} = X,
since any neighbourhood of any z € X contains co. Then the neighbourhoods of oo

in Lz X% are (Fu{oo})n X% = Fu{oo} for F e #. Therefore LiynXy = Xs.
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Given an approach space X and any nonconvergent ultrafilter & on X, consider
the appoach space i(Xj) where i : Top < App is the subcategory embedding.
Then Lwp,)(i(X%)) = LwzX%s = Xg by commutativity of diagram (5.2.5). So
condition () of Theorem 7.2.4 is satisfied for Top and App.

O

Remark 7.2.6. Examples 7.2.2 and Cor. 7.2.5 show that C-compactness can be
characterized in terms of the functor L for metric, topological and approach spaces

with the exception of ordered sets where every ordered set is C-compact.

We will characterize C-compactness (Zariski compactness) for approach spaces
using bitopological spaces and Salbany’s notion of 2-compactness. We present some
useful terminology from [51] below.

Let X = (X,7,0) be a bitopological space. X is called 2-compact if Tv o is
compact. At each point z € X, 7vo has the local basis {OnU |z €O e,z e U €o}.
One calls X 2-separated if 7 v o is Hausdorff. X is called 2-regular if both of the

following conditions are satisfied:

 For any point z € X and any 7-closed set C, there exist a disjoint 7-open set

U and a o-open set O such that x e U, C c O.

« For any point z € X and any o-closed set K, there exist a disjoint 7-open set

U and a o-open set O such that z ¢ O, K c U.
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Recall from Section 5.2 that an approach space X = (X,d) corresponds to
the bitopological space Byp,)X = (X ,7,7) where 7 and 7 are the topologies
induced by the natural closure and the dual closure respectively. Furthermore, one
has L p,) = J.Bwp,) by Prop. 5.2.5, ie. Liyp,)X = J(X, 7. =(X, TV 7). By
Cor. 7.2.5, the approach space X is C-compact if and only if (X, 7 v ) is compact
or, equivalently, (X, 7, %) is 2-compact. One has the following characterization of

2-compactness for 2-regular bitopological spaces.

Proposition 7.2.7. [51] Let X = (X, 7,0) be a 2-regular bitopological space. X is
2-compact if and only if every 7-closed set is o-compact and every o-closed set is

T-compact.

In the above proposition, 7-compact means compact with respect to the topol-

ogy T, i.e. every T-open cover has a finite subcover. Likewise for o-compactness.

Lemma 7.2.8. Let X = (X, 6) be an approach space. Then Byp, X = (X, 7, )

is 2-regular.

Proof. Let K ¢ X be T-closed and z € X \ K. Since X \ K is T-open, there
exists € > 0 such that {z}® ¢ X \ K by Examples 5.2.2. {z}® is 7-closed, as
({z})© ¢ {£}*). So there exist disjoint T -open set {z}*) and 7-open set
X ~ {2} such that z € {z}(() and K ¢ X \ {z}(®.

Now suppose that C ¢ X is 7-closed and z € X ~ C. Since X \ C is 7 -open,
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6(C,z) > 0 by Examples 5.2.1. Pick € such that 6(C,z) > £ > 0. Consider | J{y}{).
yeC

Since each {y}() is T-open, so is (J{y}(). Observe that | J{y}© c C®). So
yeC yeC

(U{y})® ¢ (C®)® c C®). Hence we have
yeC

Ce YW@ e (Uun©)® o,
yeC yeC

Since §(C,z) > €, 7 € (X N C®) c (X~ (U{y}®)@) which is 7-open. On the

yeC

other hand, C is a subset of the *T-open set |J{y}) where ( |J{y}P)N (X~
yeC yeC

(U{y}(E))(O)) =¢g. So we are done
yeC

O

Corollary 7.2.9. Let X = (X, 0) be an approach space with Biyp,)X = (X, 7, 7).

X is C-compact (Zariski compact) if and only if the following conditions hold:
" 1. Every 7 -closed subset of X is T -compact.
2. Every T -closed subset of X is 7-compact.
Proof. Follows from Cor. 7.2.5, Prop. 5.2.5, Prop. 7.2.7 and Prop. 7.2.8. (|

This result also applies to Top. Furthermore, the above characterization can

be carried one step further.

Corollary 7.2.10. [51] Let X be a topological space. X is C-compact (b-compact)

if and only if the following conditions hold.
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1. Every subset of X is compact.
2. Every closed subset of X can be written as a finite union of point closures.

Proof. Let X be a topological space, LX = (X, 7). Suppose that X is C-compact,

i.e. LX is compact. Take any M ¢ X and let {O; | i € I} be an arbitrary open

cover of M. Then {O; |i e IYU{{z} |z ¢ (JO:} is an 7 -open cover of X. Since
iel

LX is compact, there exists n,m € N such that X = ((JO;) JU(UJ{z,}). But
i=1 j=1

{z;} € X ~|JO; for 1 < j <m, since X \|JO; is closed. Hence M c | JO,, M

iel tel =1

is compact. Now let C € X be closed. {{z} |z € C} is a T-open cover of C.
Since X is C-compact, every closed subset of X is T -compact. Hence there exists
Ty,..., %, € C such that C = J{z;}.

i=1

Conversely, assume that every subset of X is compact and every closed subset of

X can be written as a finite union of point closures. Then trivially every 7 -closed

subset of X is compact. Let C ¢ X be closed. Consider an open cover {{y;} | i€ I}
of C by 7 -basic open sets. One has C = | J{z;} by hypothesis. Then for any
=1

—_— n o n
1 < j <, there exists y;; such that z; € {y;;}. Hence C = J{z;} ¢ U {y;,}. So C
=1 =1

. %=
1s 7 -compact.
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7.3 C(-separation, C- compact C-separated objects

Following Section 6.4, a (T, V)-functor f: X — Y is called C-separated if and only

if 05 =(1x,1x): X - X xy X is L-closed.

Proposition 7.3.1. Let f: X - Y be a (T, V)-functor. Then f is C-separated if

and only if it is L-separated.

Proof. f is C-separated if and only if 0y is L-closed. Since 4y is fully faithful, it is
enough to consider whether d;(X) is L-closed in X xy X by Lemma 7.1.4. Observe

that

«— > XxyX

5700 X a(Xxy X)

(—)XXX
= A n(XXyX)

= {(z,2) |z =2 f(z) = f(2)}

(—)XX X
by Prop. 3.4.13 and Prop. 35.1. 8;(X)  =6;(X) = A if and only if z = z

and f(z) = f(z) implies © = z for any z,z € X. This is equivalent to f being

L-separated. O
A (T, V)-category X is called C-separated if and only if |x : X — 1 is C-separated.

Corollary 7.3.2. Let X be a (T, V)-category. Then X is C-separated if and only

if it is L-separated.
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Proof. By Prop. 7.3.1, X is C-separated if and only if !x : X - 1 is L-separated.

This is equivalent to X being L-separated. O

C-compact C-separated objects in Top are the b-compact T; spaces. As stated
in [51], a topological space X is Ty if and only if its b-topology is Hausdorff. We also
know that X is b-compact if and only if its b-topology is compact by Cor. 7.2.5.
Hence a topological space X is C-compact C-separated if and only if its b-topology
is compact Hausdorff.

In Top, separated objects with respect to the closed maps are precisely Haus-
dorff spaces. So a topological space X is C-separated if and only if LX is separated.

This result can also be extended to approach spaces.

Proposition 7.3.3. Let X = (X,d) be an approach space. X is C-separated if and

only if LX is separated (Hausdorff).

Proof. Let X = (X,0) be C-separated and z,z € X be two distinct points. Since X
is C-separated, i.e. L-separated, NX = (X, 7) is Ty by Examples 3.1.3. Without
loss of generality, assume that there exists O € 7 that contains z but not . Then
z € X \ O which is 7-closed. Since Byp,)X = (X, 7, T) is 2-regular, there exists
disjoint Ve 7, U € 7 such that ze X ~OcU and z¢ V. Then LX is Hausdorff,
since its topology is the join of 7 and 7 by Prop. 5.2.5.

Conversely, let LX be Hausdorff. We need to show that NX = (X, 7) is Ty. Let
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z,z € X such that {—:c—}) = {—z_i, ie. {:c}(o) = {z}(o). By way of contradiction, assume
¢ # 2. Since LX is Hausdorff, there exists e, A >0, U,V € 7 such that z ¢ Un{x}((e)),
2e Vn{z}™ with Un{z}{ D ava{z}{M = g Then Un{z} ¥ nVn{z}?¥ = 2.
But this is a contradiction, since z € U n {x}(o) nVn {z}(o). Hence z = 2, NX is

To. O

So an approach space X = (X,0) is C-compact C-separated if and only if LX
is compact Hausdorff. Hence one has the following is a pullback diagram in CAT
where C-cpct C-sep denotes the full subcategory of C-compact C-separated approach

spaces.

C-cpct C-sep Cpct Haus

-

App Top
L

In fact we have the following commutative diagram where the right hand side square

is a pullback by the definitions of 2-compactness and 2-separation. Since L = J.B,
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the left hand side square is a pullback as well.

B J
C-cpct C-sep ———— 2-cpct 2-sep ———— > Cpct Haus
J J
App BiTop Top
B J

7.4 (C-density

In accordance with Section 6.2, a (T, V)-functor f is called C-dense if and only if

in any factorization f =1t.g, if i € C n M, then 7 is an isomorphism.

Proposition 7.4.1. Let f: X - Y be a (T, V)-functor. f is C-dense if and only if

f is L-dense.

Proof. Let f be C-dense. Consider the X z f(X) &Y factorization for f. Since
f(X) is L-closed in Y, ¢ is L-closed. Then i e Cn M. As f is C-dense, i becomes
€—>

an isomorphism. Hence f(X) =Y and f is L-dense by Remark 3.4.12.

Conversely, suppose that f is L-dense. Consider any factorization X 5 Z iy

«—>

of f where i e CnM. By Prop. 2.8.2, 7 is L-dense. So i(Z) =Y. On the other hand,
1(Z) is L-closed, since i is L-closed. Hence i(Z) =Y, i € £. Thereforei e £En M, i
is an isomorphism. ]
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This means that a (T, V)-functor f: X - Y is C-dense if and only if f(X) =Y.
Corollary 7.4.2. Any L-dense L-closed subobject is an isomorphism.
Proof. Follows from Prop. 6.2.1 and Prop. 7.4.1. O

Example 7.4.3. Suppose that f: X — Y is a continuous map between the topo-
logical spaces. Let f™': OY - OX denote the corresponding frame homomorphism
between the lattice of open sets of Y and the lattice of open sets of X.
Claim: f: X - Y is C-dense (L-dense) if and only if f™': OY - OX is injective.
To see this, let f: X — Y be C-dense. Take open sets 03,05 € Y such that
FHOL) = fHO,), ie. f(X)NO; = f(X)nO,. We show that O; = Oy. Let
y € O,. Since f is C-dense, m =Y which means that f(X) is dense in LY.
So f(X)nO;n{y} #+ @. This implies f(X)nOsn {y} + @. Hence there exists
z2€ 0y nm. Since z € m, any open set containing 2z also contains y. In particular,
y € Oy. Hence Oy € O,. Similarly, we get O, € O,. Therefore ! is injective.
Conversely, assume that f~! is injective. Let g,h:Y — 2 be continuous maps
where 2 is the Sierpinski space. Suppose that g # h. Then g7*({0}) # A*({0}).
Since f7! is injective, f}(g7*({0})) # f~2(h"2({0})). Hence g.f # h.f. So given

any g,h:Y - 2, g.f = h.f implies g = h. Then f is L-dense by Remark 3.4.12.
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7.5 C-openness

Following Section 6.7, a (T,V)-functor is called C-open if and only if it stably
reflects C-density, i.e. L-density. We will denote the collection of C-open maps by

C*.

Definition 7.5.1. Let f: X - Y be a (T, V)-functor. We say that f is L-open if

>

f'l(ﬁ) =fYN)foral NcY.

Recall from Prop. 3.4.13 that f‘l((ﬁ) 2 f7(N) always holds. So f is L-open if

> «—
and only if fY(N)c fY(N) foral NcY.
Proposition 7.5.2. For a (T, V)-functor f: X — Y, the following are equivalent:
1. f is L-open.

2. Lf :LX - LY is an open map in Top, i.e. for any O € X open in LX, f(O)

is open in LY.

Proof. Let f be L-open, O ¢ X be an open set of LX. Then X \ O is closed in LX,

ie. XN0c X 0. Since f is L-open,

FAY~FO)) = (Y ~ f(0)) e X~ OB c X 0.

This implies that Y \ f(O) € f(X ~NO) c Y \ f(O). Hence Y \ f(O) is closed in

LY, f(O) is open in LY. Therefore Lf is an open map.
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Conversely, assume that Lf : LX - LY is an open map in Top. Then f(M°) c
f(M)® for all M ¢ X where (_)° represents the interior operators of LX and LY,
ie. M° =X~ WS, f(M)° =Y~ m In particular, f(f™}(K)") ¢
f(fY(K))" < K° for any K ¢ Y. This implies f~1(K)° ¢ f}(K°). Rewriting this
inclusion by closures and putting K = Y \ N, one obtains X \ }‘_16/_3 c (Y~ ﬁ)
Since f™1(Y Xf)) =X f‘l(ﬁ), f‘l((ﬁ) c m for any N c Y. Therefore f is
L-open.

]
Proposition 7.5.3. Let f : X — Y bea (T, V)-functor. Then we have (1 = 2 = 3).
1. f is C-open.
2. f is L-open
3. f reflects L-density.

Proof. (1 = 2) Let f be C-open and N ¢ Y. Consider the following pullback
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diagram.

fll
) N
C
<> f’ >
fHN) N
| [
b'e Y
f

As f is C-open, f’ reflects L-density. Then f™'(N) - f“l((ﬁ) is L-dense as a
<> e >

pullback of N & N along f’. Hence f™(N) = f~}(N) by Prop. 3.4.11, f is L-open.

(2 = 3) Assume that f is L-open and N - Y is L-dense, i.e. N-v. Taking

the pullback of f along N - Y, one gets

fHN)
[_I

X

N =— =

f

Since f is L-open, f‘l(]HV) = fA(N). So X = f1(Y) = f'l(}_\;) = f1(N). Hence

fY(N) > X is L-dense, f reflects L-density. O

The proposition implies that the collection of C-open maps are included in the
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collection of L-open maps. Furthermore, both type of maps reflect L-density. But
C-open maps is the largest pullback stable collection which has this property. So
if L-open maps are pullback stable, then these collections will be equal. Hence we

will have the equivalence of C-openness and L-openness.

Proposition 7.5.4. Suppose that L : (T, V)-Cat — Top preserves finite products.

Then L-open maps are pullback stable.

Proof. Let f: X - Z, g:Y - Z be (T,V)-functors. Suppose that f is L-open.
Consider its pullback along g.

Up

szy
J

™ g

X Z
f

By Prop. 7.5.2, it is enough to show that Lm : L(X xzY) —» LY is open in
Top. Since L preserves finite products, L(X xY) 2 LX xLY. So {M x N |
M open in LX, N open in LY} is a basis for L(X xY').

Take a basic open set in L(X xzY), say (M x N)n (X xzY) where M is open
in LX and N is open in LY. Then my(M x Nn(X xzY)) = Nng 1(f(M)). Since
f is L-open and g is continuous, g~1(f(M)) is open in LY. Then Nng=1f(M) is

open in LY. Hence m; is L-open.
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Corollary 7.5.5. Suppose that L : (T,V)-Cat — Top preserves finite products.

Then a (T, V)-functor is C-open if and only if it is L-open.

Proof. Follows by Prop. 7.5.3 and Prop. 7.5.4. O

As we have seen in Section 5.1, the functor L preserves finite products in the
case of Ord, Met, Top and App. So Cor. 7.5.5 applies in these examples.

C-open maps also satisfy the conditions (C'1) - (C3) of Subsection 6.1.3. So one
can develop topological notions by considering C-open maps. Following Section 6.7,
a (T,V)-category X is called C-discrete if X is C*-separated. ie. dx : X x X - X

is C-open.

Proposition 7.5.6. Let X be a (T, V)-category and L : (T, V)-Cat — Top pre-
serve finite products. Then X is C-discrete if and only if LX is a discrete topological

space.
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Proof. We get the characterization of C-discreteness as follows:

X C-discrete <= 6x: X - X x X C-open
<= {x:X > X xX L-open
< O0x(X)=Aopenin L(X xX)zLX xLX
= VzeX, 3U,Vozopenin LX:(z,2)cUxVcA
< VzeX, IWo>szopenin LX: (z,2)cWxWcA
< VzelX, IW>s2openin LX: W = {z}
< VzelX, {z} openin LX

<= LX discrete.

O

Example 7.5.7. Let X be a topological space. M ¢ X is called locally closed if
there exist an open set O and a closed set C such that M = OnC. X is called a
Ty space [1] if each singleton is locally closed. Ty is a separation axiom between T
and 7;. By Prop.7.5.6, a topological space X is C-discrete if and only if its LX is
discrete. This is equivalent to X being a Ty space as follows:

Take any x € X. Suppose that X is a T, space. Then there exists U ¢ X open
and C ¢ X closed such that {z} =UnC. As UnC is open LX, LX is discrete.
Conversely, let LX be discrete. Then {z} is open in LX. Recall from Remark 5.2.6

that the collection {O n{z} |z € O open} is a local basis at z. So there exists an
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open neighbourhood U of z such that U n {z} = {z}. Hence {z} is locally closed,

X is Td.
A (T,V)-functor f: X — Y is called C-local homeomorphism if f is C*-perfect.

Proposition 7.5.8. Let f: X - Y be a (T, V)-functor and L : (T, V)-Cat - Top
preserve finite products. Then f is C-local homeomorphism if and only if Lf is
open and locally injective, i.e. each z € X has a neighbourhood W in LX such that

fiw is injective.

Proof. Since C* is pullback stable, f is C*-perfect if and only if both f and é; :
X xy X - X are C-open. By Prop. 7.5.2 and Cor. 7.5.5, Lf is an open map. The
equivalence of 05 : X xy X - X being C-open and L f being locally injective can be

shown as follows:

df C-open <= 07 L-open
<> §7(X)=A open in L(X xy X)
< VzeX, U, Vazopenin LX:UxVnXxy XcA
e VzeX, IWszopenin LX:WxWnXxy XcA
~— VzelX, BWa:copeninLX:Vy,zeW(f(y):f(z)=>y=z)

<= VzeX, 3IW 3z open in LX: fiw is injective.
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8 Functional topology with respect to

L-complete morphisms
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In this chapter we develop topological notions for (T, V')-categories using the
categorical framework outlined in Chapter 6. Our main parameter F will be the

collection of L-complete (T, V')-functors.

8.1 L-complete morphisms vs. L-closed morphisms

Firstly, we compare L-complete maps, L-closed maps and C-proper maps in our
main examples. This will give us a first idea about how the topological theory
based on L-complete maps will be similar to or different from the one based on

L-closed maps.

Examples 8.1.1. 1. In Ord, a monotone map f : (X, <) - (Y, <) is L-complete
if and only if given any z € X with f(z) ~ v, there exists w ¢ f~1({y}) with
z ~ w (see Examples 4.1.3). Recall from Examples 7.2.2 that this is also the
characterization of C-proper maps. So L-complete maps and C-proper maps
coincide in Ord.
Furthermore, L-completeness is equivalent to L-closedness. To see this, sup-
pose that f: (X, <) = (Y,<) is L-closed. Let f(z) ~y for some y € Y. Then
Y€ m As f is L-closed, m =f (m) So there exists w € i_:c_}> such
that f(w) =y. Sincew € f{;i means z ~ w, f is L-complete. Conversely, every

L-complete map is C-proper, hence L-closed.
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So the notions of L-completeness, L-closedness and C-properness coincide in

Ord.

. In Met, a nonexpansive map f : (X,d) - (Y,d’) is L-complete if and only
if given any Cauchy sequence (z,) in X with lim f(z,) = vy, there exists

z € f~1({y}) such that lim 2, = 2 (see Examples 4.1.3).

Recall from Examples 7.2.2 that a nonexpansive map f is C-proper if for any
sequence (zn) in X with lim f (zn) =y € Y, there exists a subsequence (z,, )
of (z,) and z € f~1({y}) such that lim z,, = 2. Since a Cauchy sequence
which has a convergent subsequence is itself convergent, C-proper maps are
L-complete. One also has the following:

Claim: L-closed nonexpansive maps are L-complete.

Suppose that f: (X,d) - (Y,d’) is an L-closed nonexpansive map and (z,)
is a Cauchy sequence in X with 711}1010 f(zn) =y. Let M be the set consisting
of the elements of the sequence (z,). Then y € m =f (ﬁ) So there exists
z € M such that flz)=y. xe€ M means that zl,fifw (d(x,xn) + d(xn,x)) = 0.
Picking z,, for each k € N, one obtains a subsequence (z,,) of (z,) such
that &1_{20 Zn, = 2. Since (z,) is Cauchy, it converges to z as well. Hence f is

L-complete.

Unlike the case in Ord, L-completeness, L-closedness and C-properness are
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distinct from each other in Met. Consider the following pullback diagram in

Met.
T2
RxR

™ !IR

g : R > 1is L-complete, since R is a complete metric space. Furthermore, !g
is L-closed, since its codomain is the one point set. As L-complete maps are
stable under pullback, m; : R x R - R is L-complete. But 7; is not L-closed.

To see this, let G be the graph of the function y = 2. G is an L-closed set

in R xR, but m(G) = R~ {0} is not. So m; is not L-closed. Hence =, is an

L-complete map that is not L-closed. This also shows that !g is an L-closed

map which is not C-proper. Therefore in Met, we have

C-proper maps & L-closed maps & L-complete maps.

. In Top, a continuous map f : X - Y is L-complete if and only if for any

irreducible closed set A ¢ X with f(A) = {y} for some y € Y, there exists

z € f1({y}) such that A = {z} (see Examples 4.1.3).

L-closed maps are not generally L-complete in Top. Consider an infinite set
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X with the cofinite topology. The closed subsets are all finite subsets of X
and the set X itself. So X cannot be written as a union of two proper closed
subsets. Hence X is an irreducible closed set. Consider !x : X - 1. We
have m = I_;}— But there is no z € X such that {—x}— = X. So !x is not

L-complete. Hence !x : X — 1 is L-closed but not L-complete.

Therefore in general we have
C-proper (T, V)-functors & L-closed (T, V')-functors # L-complete (T, V')-functors.

L-complete (T,V)-functors are different from L-closed (T,V)-functors. But
there is an important subcollection of (T, V')-functors in which L-completeness and

L-closedness coincide.

Lemma 8.1.2. Let f : X - Y be a fully faithful (T, V)-functor. Then f is L-

complete if and only if f is L-closed.

Proof. Assume that f is L-closed. Let ¢ : E ~ X be a left adjoint (T, V')-module

such that f, o =y,. Considering the canonical (£, M) factorization X LN f(X) e
A e d

Y of f, we can write %, o (f! o) = y,. Then we have y ¢ f(X) by Prop. 3.4.10.

Since f is L-closed, f(X) is L-closed by Lemma 7.1.4. Hence y € f(X), i.e. there

exists z € X such that f(z) =y. Then f.op =y, = f.oz,. Since f is fully faithful,

¢ = x,. Therefore f is L-complete.
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Conversely, assume that f is L-complete. Write f = i.f’ as above. As f’ is
surjective, it is L-dense. It is also fully faithful, since f is fully faithful. Hence f’
is an L-equivalence. Then i is L-complete by Prop. 4.1.4. Since f is fully faithful,

—>
it is enough to show that f(X) is L-closed by Lemma 7.1.4. Take y € f(X). By
Prop. 3.4.10, (1g)" € y* o i, oi* oy,. Composing both sides with y, and taking

advantage of the adjunctions, we see that
Ye Y0y 0,01 0y, <t 0t oy, <Y,

Hence i, 04* oy, = y,. Since t* oy, : E ~ f(X) is a left adjoint (T, V)-module
and % is L-complete, there exists f(z) € f(X) such that i(f(z)) = f(z) =y. Hence

ye f(X), F(X) € F(X). O

8.2 The setting

We keep (£, M) to denote the proper factorization system of surjective (T, V)-
functors and full embeddings. We denote the collection of L-complete (T, V)-
functors by L.

L is closed under composition and contains isomorphisms by Prop. 4.1.4. Since
L is stable under pullback, so is LnM. Hence L satisfies conditions (C1) and (C2)
of Subsection 6.1.3. However £ does not satisfy condition (C3), i.e. g.f € £ and
f € £ does not necessarily imply that g € L.
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Example 8.2.1. Let G be the graph of the function y = L. Consider 7} : G - R
which is the restriction of the projection map 7 : RxR - R to G. We know
from Examples 8.1.1 that m; is L-complete. On the other hand, : : G -~ R xR is
L-closed, since G is L-closed in R x R. Then 7 is L-complete by Lemma 8.1.2. This
implies that 7} = 7.4 is L-complete. Consider the canonical (£, M) factorization
G5 R~ {0} LR for 7y. Since R \ {0} is not L-closed in R, j: R\ {0} = R is not
L-closed. Hence it is not L-complete by Lemma 8.1.2. So one has 7] = j.p where 7]

is L-complete, p is surjective but j is not L-complete.

Instead of condition (C3), we have an analogous result by replacing surjective
(T, V)-functors with L-equivalences, i.e. g.f € £ and f is an L-equivalence imply
that g € £. This is given by Prop. 4.1.4.

Most of the results in this chapter will be corollaries of the general results
presented in Chapter 6. Proofs will be omitted unless they require condition (C3)

to hold.

8.3 L-density

In accordance with Section 6.2, a (T, V)-functor f is called £-dense if and only if

in any factorization f =1i.g, if ¢ € £Ln M, then ¢ is an isomorphism.

Proposition 8.3.1. Let f: X - Y bea (T, V)-functor. f is £-dense if and only if
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it is L-dense.

Proof. A full embedding is L-complete if and only if it is L-closed by Lemma 8.1.2.
So L-density coincides with C-density. C-dense maps are precisely L-dense maps by

Prop. 7.4.1. O
Corollary 8.3.2. Any L-dense L-complete subobject is an isomorphism.

Proof. A subobject is L-complete if and only if it is L-closed by Lemma 8.1.2. An

L-dense L-closed subobject is an isomorphism by Cor. 7.4.2. |

8.4 L-compactness

Following Subsection 6.3.2, a (T, V)-category X is called £-compact if and only if

the unique map !x : X - lisin £* = L.
Proposition 8.4.1. X is £-compact if and only if X is L-complete.

Proof. X is L-compact if and only if !x : X — 1 is L-complete. This is equivalent

to X being L-complete by Cor. 4.1.9. a

The following is an analogue of the Kuratowski-Mrowka theorem for L-completeness.

Corollary 8.4.2. For a (T, V)-category X, the following are equivalent.

1. X is L-complete
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2. For any (T, V)-category Y, the projection X xY - Y is L-complete.
3. For any L-complete (T, V)-category Y, X xY is L-complete
Proof. Follows from Prop. 6.3.4. ]

Moreover, L-completeness is carried forwards by L-equivalences and backwards

by L-complete morphisms.

Corollary 8.4.3. 1. If f: X - Y is L-complete with Y L-complete, then X is

L-complete.
2. If f: X » Y is an L-equivalence with X L-complete, then Y is L-complete.

Proof. (1) follows from Prop. 6.3.5. (2) follows from Prop. 6.3.5 and Prop. 4.1.4.

g
Consider a (T, V)-functor f : X - Y as an object of the comma category
(T,V)-Cat/Y. One sees that f : X - Y is L-complete if and only if f is an
L-compact object in (T, V)-Cat/Y.
8.5 L-separation

Let f: X - Y be a (T,V)-functor. In accordance with Section 6.4, f is called

L-separated if and only if 65 = (1x,1x): X > X xy X isin L* = L.
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Proposition 8.5.1. Let f: X - Y be a (T, V)-functor. f is L-separated if and

only if it is L-separated.

Proof. Observe that 05 = (1x,1x) : X - X xy X is fully faithful. Then ;s is L-
complete if and only if it is L-closed by Lemma 8.1.2. Hence f is L-separated if
and only if it is C-separated. We also know that C-separated maps are precisely

L-seperated maps by Prop. 7.3.1. O

Corollary 8.5.2. 1. L-separated maps are closed under composition and con-

tain all monomorphisms.
2. L-separated maps are stable under pullback.
3. If g.f is L-separated then f is L-separated.

4. Suppose that g.f is L-separated and f is an L-equivalence which is L-complete,

then g is L-separated.

Proof. (1)-(3) follow from Prop. 6.4.1. (4) follows from Prop. 6.4.1 and Prop. 4.1.4.

d

One calls a (T, V)-category X L-separated if and only if !x : X —» 1 is L-

separated.

Corollary 8.5.3. Let X be a (T, V)-category. Then X is L-separated if and only

if it is L-separated.
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Proof. X is L-separated if and only if !x : X - 1 is L-separated by Prop. 8.5.1.

This is equivalent to X being L-separated. g

As in the case of L-compactness, one sees that a (T,V)-functor f: X - Y is

L-separated if and only if it is an L-separated object in (T, V)-Cat/Y.
Corollary 8.5.4. For a (T, V)-category X, the following are equivalent:

1. X is L-separated.

2. Any morphism f: X - Y is L-separated.

3. There exists an L-separated morphism f: X — Y with ¥ L-separated.

4. For any (T, V)-category Y, the projection X xY — Y is L-separated.

5. For any L-separated (T, V)-category Y, X x Y is L-separated.

6. For any L-complete L-equivalence f: X - Y, Y is L-separated.

7. In any equalizer diagram

A

s is L-complete.

Proof. (1) is equivalent to (6) by Prop. 6.4.3 and Cor. 8.5.2. The rest follows from

Prop. 6.4.3.
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In Top, a continuous map between a compact domain and a Hausdorff codomain
is proper. The analogous statement about the maps with £-compact domain and

L-separated codomain gives us the following result.

Corollary 8.5.5. Any (T,V)-functor f : X — Y with X L-complete and Y L-

separated is L-complete.
Proof. Follows from Prop. 6.4.5. a

Corollary 8.5.6. Let Y be an L-complete and L-separated object. Then a (T, V)-

functor f: X — Y is L-complete if and only if X is L-complete.

Proof. Follows from Prop. 6.4.6. d
Corollary 8.5.7. If g.f is L-complete with g L-separated, then f is L-complete.
Proof. Follows from Cor. 6.4.7. O

An L-complete morphism cannot be extended along an L-dense subobject with

an L-separated codomain.

Corollary 8.5.8. Let f: X - Y be an L-complete (T, V)-functor. In any factor-
ization f =X Sz%y where g is an L-dense subobject and Z is L-separated, g is

an isomorphism.

Proof. Follows from Cor. 6.4.8. O
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8.6 L-perfect maps

Following Section 6.5, a (T, V)-functor f is called L-perfect if it is both L-proper
and L-separated. So a (T, V)-functor is L-perfect if and only if it is L-complete
and L-separated. Hence an L-complete L-separated morphism f: X - Y is an
L-compact L-separated object in (T, V)-Cat/Y.

Corollary 8.6.1. 1. If g.f is L-complete L-separated and g is L-separated then

f is L-complete L-separated.

2. If g.f is L-complete L-separated, f is an L-complete L-equivalence, then g is

L-complete L-separated.

Proof. (1) follows from Prop. 6.5.1. (2) follows from Cor. 8.5.2 and Prop. 4.1.4. O

8.7 L-compactifications

Recall from Section 6.6 that an F-compactification of an object X is an F-dense
embedding i : X - K where K is F-compact and F-separated. Replacing F by L,
one gets an L-dense embedding 7 : X - K where K is L-complete and L-separated.
But such an embedding exists only for L-separated objects by Cor. 8.5.4. To extend

the notion to a larger collection, we ask ¢ to be only fully faithful.

Definition 8.7.1. Let X be a (T, V)-category. An L-compactification of X is given

by an L-equivalence 7 : X - K where K is £-compact and L-separated.
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We are particularly interested in a functorial L-compactification of (T,V)-
categories. By that we mean a functor I' : (T, V)-Cat — (T, V')-Catcp g sep Which
comes with a natural transformation {yx : X = I'X}xe(r,v).cat Where each yx is

an L-equivalence and each I'X is L-complete and L-separated.

Proposition 8.7.2. The L-completion functor Y : (T, V')-Cat — (T, V)-Catcp & sep
together with the natural transformation {yx : X = Y(X)} xe¢(1,v)-cat is a functorial

L-compactification.

Proof. See Theorem 3.5.9 and Remark 4.1.7. O

Examples 8.7.3. In Met, £-compactification of a metric space is its Cauchy com-
pletion. In Top, £-compactification takes the form of soberification where ) is the

soberification functor [40].

Working in the comma category, one can extend the £-compactification notion

to morphisms.

Definition 8.7.4. Let f: X - Y be a (T, V)-functor. L-compactification of f is

given by an L-equivalence ¢ : f - g where g is £-compact and L-separated.

An L-compactification of a morphism corresponds to its L-completion. The

functorial L-completion Y for objects provides such an L-completion for morphisms.
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To see this, let f: X =Y be any (T, V)-functor. Consider the following diagram:

X
. yx
1
Y x- )~( 5(
f Y ] 7]'2 (871)
™ }'
Y Y

¥y

By Cor. 8.5.4 and Cor. 8.5.5, } is L-complete and L-separated. Then m; is L-
complete and L-separated as a pullback of } On the other hand, 73 is fully faithful
as a pullback of y which is fully faithful. Since yx is an L-equivalence and o
is fully faithful, 7 is an L-equivalence by Prop. 2.8.2. Hence i : f — m is an L-
equivalence where m; is L-complete and L-separated. This means that i: f — 7y is
an L-completion of f.

The Isbell-Henriksen theorem [29] which describes the perfect maps in topology

translates into a characterization of £L-perfect maps.
Proposition 8.7.5. For a (T, V)-functor f: X — Y, the following are equivalent:

1. f is L-complete and L-separated.

237




2. The naturality square

yx

D2

f f (8.7.2)

<

is a pullback.

Proof. Assume that f is L-complete and L-separated. Then the naturality square
is a weak pullback by Prop. 4.1.8. Given ye Y, 9 ¢ X with }(w) = yy(y), assume
that there exists z,2z € X such that f(z) =y, ¥ = z* and f(2) =y, ¥ = z*. This
means that f(z) = f(2) and z ~ 2. Since f is L-separated, z = z. So, the naturality
square is a pullback. Conversely, suppose that naturality square is a pullback.
Then f is L-complete and L-separated as a pullback of ;‘ which is L-complete and

L-separated.

O

Considering the functors (), : (T, V)-Cat - (T,V)-Mod, and (-)" : (T, V)-Cat -
(T, V)-Mod, of Section 2.8, we also see that an L-complete L-separated (T,V)-

functor is a (.),-cartesian morphism or equivalently a (_)*-cocartesian morphism.

238



8.8 (L-antiperfect, L-perfect) factorization system for (T,V)-

Cat

The (Antiperfect, Perfect) factorization of the continuous maps of Tychonoff spaces
(30], [54], [12], [55] is obtained with the help of the left adjoint Stone-Cech compact-
ification functor. Here an “antiperfect map” stands for a map which is sent to an
isomorphism by the compactification functor. Analogously in our context the reflec-
tor Y induces (L-antiperfect, £-perfect) factorization system for (T,V')-Cat. Here
L-antiperfect morphisms are precisely the ones that are mapped to isomorphisms

by ). These types of factorization systems are studied in [9], [39], [49].

Lemma 8.8.1. Let f: X - Y be a (T, V)-functor. f is L-antiperfect if and only

if f is an L-equivalence.

Proof. Suppose that f is L-antiperfect, i.e. Y(f) = }' is an isomorphism. Then }
is an L-equivalence. The naturality square (8.7.2) gives }'.yx = yy.f where yx, yy,;’
are L-equivalences. Then f is an L-equivalence by Prop 2.8.2.

Conversely, suppose that f is an L-equivalence. Define ;‘ Y > X by ;‘(1/1) =
Yo f, for any right adjoint (T,V)-module ¥ : Y ~ E. Then } = (})“1. Hence

Y(f)= f is an isomorphism. 0

Theorem 8.8.2. Let & be the collection of L-equivalences and .# be the collection

of L-complete and L-separated morphisms. Then (&, .#) is a factorization system
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for (T, V)-Cat.

Proof. We check conditions (FS1)-(FS3) of Subsection 6.1.1. Firstly, both & and .#
contain all isomorphisms and they are closed under composition. Secondly, given
any (T, V)-functor f: X - Y, one has an (&, #) factorization f = 4.7, as shown in
diagram (8.7.1). To show that & L .#, consider the following commutative square

where ¢ is an L-equivalence and f is L-complete and L-separated.

h

Since f is L-complete, it is L-injective by Theorem 4.3.2. So there exists g: B - X
such that ¢g.i ~ 7 and f.g = h. Then we have f.g.1 = f.j. As f is L-separated, g.7 = j.
For the uniqueness part, suppose that there exists m : B - X such that fm =h
and m.4 = j. Then f.g = f-m and g.7 = m.i. Since ¢ is L-dense, g ~ m. Invoking

L-separatedness of f again, we get g =m. a

Examples 8.8.3. 1. Let f : X - Y be a nonexpansive map in Met. f is an
L-equivalence if and only if it is a dense isometry. f is L-complete and L-
separated if and only if for any Cauchy sequence (z,) in X with il_.rg f(zs) =y,
there exists a unique z € f~1({y}) such that lim 2, =z. So (Dense isometry,

L-complete L-separated) is a factorization system in Met [53].
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2. Let f: X - Y be a continuous map in Top. f is L-complete and L-separated
if and omly if it is fibrewise sober [48]. Let f!: OY - OX denote the
corresponding frame homomorphism between the lattice of open sets of Y
and the lattice of open sets of X. We know that f is fully faithful if and
only if f™! : OY - OX is surjective by Examples 2.8.4. Furthermore, f
is L-dense if and only if f™ : OY - OX is injective by Example 7.4.3.
Therefore, f is an L-equivalence if and only if f™! : OY - OX is a frame
isomorphism or, equivalently, f is an isomorphism as a continuous map in the
category of locales, i.e. the opposite category of the category of frames. Let’s
denote the canonical functor from the category of topological spaces to the
category of locales by . : Top — Loc. Then (£-1(Iso), Fibrewise sober) is

a factorization system in Top [53].
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