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This paper considers the common problem of testing the equality of means in a
repeated measures design. Recent results indicate that practical problems can arise
when computing confidence intervals for all pairwise differences of the means in
conjunction with the Bonferroni inequality. This suggests, and is confirmed here,
that a problem might occur when performing an omnibus test of equal means. The
problem is that the probability of rejecting is not minimized when the means are
equal and the usual univariate F test is used with the Huynh-Feldt correction (&) for
the degrees of freedom. That is, power can actually decrease as the mean of one
group is lowered, although eventually it increases. A similar problem is found when
using a multivariate method (Hotelling’ s T?). Moreover, the probability of a Type I
error can exceed the nominal level by a large amount. The paper considers methods
for correcting this problem, and new results on comparing trimmed means are
reported as well. In terms of both Type I errors and power, simulations reported here
suggest that a percentile # bootstrap used with 20% trimmed means and an analogue
of the z-adjusted F gives the best results. This is consistent with extant theoretical
results comparing methods based on means with trimmed means.

1. Introduction

Let py,...,u; be the means corresponding to the marginal distributions of some J-variate
distribution. As is well known, repeated measures designs play an important role in many
areas of research where a common goal is to test

Hy py=...=u (1)
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versus H,: at least one mean differs from the others. Recent results related to performing all
pairwise comparisons hint that a previously undetected problem might arise when testing (1).
(Details are given later in this section.) One goal in this paper is to confirm that a problem
does indeed arise and to consider how this problem might be addressed.

Let 1, ..., 1y be the population trimmed means corresponding to the J marginal distri-
butions. Another goal is to report new results on testing
Hy: oy =... =y (2)

which extend results in Wilcox (1997b).

There are many known reasons for possibly preferring the goal of comparing trimmed
means versus means (e.g. Huber, 1981, 1993; Keselman, Lix, & Kowalchuk, 1998; Staudte &
Sheather, 1990; Wilcox, 1997a, 1997b; Wilcox, Keselman, & Kowalchuk, 1998). Briefly,
trimmed means typically have smaller standard errors in applied work, suggesting that com-
paring trimmed means will usually have higher power. Theory, simulations and experience
with actual data indicate that power can be greatly increased by comparing trimmed means
versus means. Moreover, when sampling from normal distributions, little power is lost versus
methods based on means. As is evident, exceptions occur — no single method is perfect in
terms of providing the highest amount of power — but often comparing means can result in
substantially lower power. In fact, very slight departures from normality (in the Kolmogorov
sense) can mean relatively high power when using trimmed means versus low power when
comparing means. In contrast, if sampling is from normal distributions, the advantage of
using means, in terms of power, is small.

Another problem with conventional methods for comparing means is that control over
the probability of a Type I error can be poor and in some situations they are biased, meaning
that power can go down as we move away from the null hypothesis, although eventually
it goes up. (An illustration is given later.). Extant theoretical and simulation results indicate
that switching to trimmed means reduces this problem (Wilcox, 1997a). Another general
argument for comparing population trimmed means is that they satisfy three fundamental
robustness properties not enjoyed by the population mean: quantitative robustness, qualita-
tive robustness and infinitesimal robustness (e.g. Huber, 1981; Staudte & Sheather, 1990).
Despite these results, presumably arguments can still be made for comparing means, but it is
not the goal of this paper to debate this issue. Rather, the goal is to expand on the implications
of results recently reported by Wilcox (1997b).

Let (Xj,...,Xyy), be a random sample from some J-variate distribution, where X;;
represents the ith observation from the jth group, (( =1,...,n;j=1,...,J). Let F; be the
marginal distribution corresponding to the jth group, and let p,; be the y-trimmed mean
where, for any random variable X having distribution F,

1 [Fla-»
= J xdF(x). (3
1 =2y Jrg)

With no trimming, y = 0, we have u; = u, the population mean. An estimate of u; is

where X); = X5); = ... = X,); are the n values in the jth group written in ascending order,
and g = [yn], where [yn] is the greatest integer less than or equal to yn.
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Here attention is focused on u and the 20% trimmed mean, y = 0.2. The reason for using
y = 0.2 stems from published papers examining efficiency, which is of course related to
achieving high power. Briefly, if no trimming is done (y = 0), efficiency can be very poor
under arbitrarily small departures from normality towards a heavy-tailed distribution.
However, if too much trimming is done (for example, medians are used), then efficiency
and power are poor when sampling from a normal distribution. The choice y = 0.2 provides a
good compromise between the mean and median. The choice y = (.2, versus no trimming, is
also motivated by asymptotic results relating to controlling the probability of a Type I error
(Wilcox, 1997a). It is noted that y = 0.2 is consistent with recommendations made by Huber
(1993).

Recent results on multiple comparisons (Wilcox, 1997a) suggest that practical problems
might arise when using the usual F test with the Huynh and Feldt (1976) (&) correction for the
degrees of freedom to test (1). The simulations in Section 3 verify that problems do indeed
arise: the probability of a Type I error can be substantially larger than the nominal level and
the probability of rejecting is nof minimized when the null hypothesis of equal means is true.
More precisely, when the marginal distributions are skewed with unequal variances, the
probability of rejecting can decrease as the means become unequal, although eventually it
increases. For example, Table 3 in Section 3 describes a situation where the means are equal
and the probability of rejecting is 0.067 when testing at the @ = 0.05 level. Decreasing the
mean of the first group by about a half standard deviation, so that it differs from the means of
the other three groups, the probability of rejecting dropsto 0.041. Decreasing it by a standard
deviation, the probability of rejecting is 0.066. (This result is not surprising in light of general
results in Wilcox, 1997a, on how skewness affects the paired ¢ test for means.) For another
situation considered in Section 3, the probability of rejecting is 0.106 when H, is true and
drops to 0.054 when the mean of the first group is decreased by a half standard deviation.
Obviously this is an undesirable power property, and there is interest in whether some
alternative method might be more satisfactory.

Switching to the multivariate method for comparing dependent groups (Hotelling’s Tz),
similar problems arise. For the first situation considered in the previous paragraph, the
probability of a Type I error is 0.227 when H, is true, again testing at the 0.05 level.
Decreasing the first mean by a half standard deviation, the probability of rejecting drops to
0.096, and decreasing it by a standard deviation, the probability of rejecting is only 0.145.
That is, there is a substantially higher probability of rejecting when the null hypothesis is true
versus a situation where the first mean differs from the other three by one standard deviation.
The purpose of this paper is to consider two alternative methods for testing (1), plus three new
methods for testing (2). It is already known that when comparing means, the multivariate
method can be unsatisfactory in terms of Type I errors (e.g. Keselman & Keselman, 1990),
but perhaps a bootstrap analogue of this approach gives better results, and one of the goals
here is to investigate this possibility. A related goal is to compare a bootstrap analogue of the
multivariate method with a bootstrap analogue of the usual ¢-adjusted F test.

2. Description of the procedures to be compared

For convenience and brevity, we describe the methods for testing the null hypothesis of equal
trimmed means. The methods we consider for testing (1) are obtained by setting the amount
of trimming to y = 0.
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To begin, first consider a random example, X;,...,X,, from a single population of
participants. Again, let g = [yn], and let

Xgrn X =Xeen,

Yi: X,' ifX(g+1)<X,'<X(n7g),
Xin-g if X; = X, _g).
In other words, Winsorize the X; values and label the results Y;, i = 1,...,n. The statistic

Y=> Yin
is the usual y-Winsorized mean (e.g. Staudte & Sheather, 1990).

Now for fixed j, define Y;; in an analogous fashion — that is, Winsorize each of the marginal
distributions. The estimated Winsorized covariance matrix is V = (u), where

1
n—1

D Wy = V) (Y - Y.

Uk =
Let )_(,j be the trimmed mean for the jth group, and let

J
Q- =(n-29» X;—X)

j=1

where X, = Y X;/J. Also let

0, = ZZ(YU Y-V +Y )
where l_/_j =3 Y;j/n is the Winsorized mean corresponding to the jth group, Y, = Yild,
and Y =) > Y,/(nJ) is the grand Winsorized mean. The Winsorized sum of squares
provides an asymptotically correct estimate of the standard error of the trimmed mean (e.g.,
Staudte & Sheather, 1990). Following Wilcox (1997a, 1993), a test statistic for H, given by
2) is

F ==, 4)

where R, = Q./(J —1)and R, = Q,/[(n —2g — 1) (J — 1)].

The null distribution of F' is approximated with an F distribution using an analogue of
Box’s (1954) (¢) correction of the degrees of freedom when dealing with the violation of the
usual sphericity (or circularity) assumption. (For a description of this assumption, see Kirk,
1995, pp. 275-277; or Rogan, Keselman, & Mendoza, 1979.) Let

_ J? (Ejj - g“)z
J—13 g —203 8+

where & is the population Winsorized covariance between X;; and Xy, E =3 éjkllz,

éj_ = Z éjk/n and

&€

J? (v —©.)

FEEDS) SITARET) SR

:C:‘:

where v =Y > 1)jk/12, and U, = ) yy/n. Using an obvious modification of the approach
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in Huynh and Feldt (1976), let
nJ—1e—-2
J-—Dn-1-U -1z’

T =

The degrees of freedom are estimated to be v = (J/ — 1)zand v, =(J — 1)(n —2g — 1)&.
Thus, reject Hy if F > f;_,, where f| _, is the 1 — « quantile of an F distribution with v; and v,
degrees of freedom. Setting y = 0, this method reduces to the Huynh—Feldt method for
means.

Proceeding along the lines of Wilcox (1997a), an alternative method of testing the
hypothesis of equal trimmed means can be derived using a simple generalization of the
usual multivariate method for means. Let

Uj:)_(,j—X,J, j=1...,J -1
Then a test statistic for H,, given by (2) is
n-29(n—-2g—-J+1)
-0l -1

where U = (U,,...,U;_)), and H, is rejected if H > f;_,, the 1 — a quantile of an F distri-
bution with v =J — land v, =n — 2g — J + 1 degrees of freedom. When y = 0, H reduces
to the usual multivariate T test statistic for means.

Hall and Padmanabhan (1992) report theoretical (asymptotic) results on a percentile ¢
bootstrap method for trimmed means. The basic strategy is to estimate an appropriate critical
value using the data at hand versus assuming that the null distribution has a particular
form. Extending their method in an obvious way, a critical value for the test statistic ' can
be estimated as follows. First, generate a bootstrap sample by randomly sampling, with
replacement, n rows of observations from the matrix

H= uv-iuT,

Xt Xy
Xt s Xy
Label the results
* *
Xi1s. X0y
* *
nls---s4nJ
Next, set
<
Cij = le — th

That is, shift the bootstrap samples so that, in effect, the bootstrap sample is obtained from
a distribution for which the null hypothesis of equal trimmed means is true. Put another
way, approximate the distribution of X;; — p, with the distribution of X,”; - X,j. Next, compute
F*, the value of the F statistic based on the C;j values. Repeat this process B times yielding
Fi,b=1,...,B. Let F(”{) =... < F&}) be the B values written in ascending order and set
m = (1 — a)B. Then an estimate of an appropriate critical value is F(;). That is, reject the
hypothesis of equal trimmed means if F > F(Tn). (For more details about the percentile #
bootstrap method, see Efron & Tibshirani, 1993.) Again, setting y = 0 yields a method for
comparing means. A bootstrap analogue of the multivariate method is obtained in a similar
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manner. That is, compute H* using the C;j values, repeat this process B times yielding Hj,
b=1,...,B, and reject if H > H(*m).

Some additional comments about the bootstrap method just described might be helpful.
Consider the ten observations 1, 1, 1, 1, 1, 1, 1, 1, 1 and 100. The trimmed mean is 1, so
centering these ten values yields 0, 0, 0, 0, 0, 0, 0, 0, 0 and 99. As is evident, the trimmed
mean of the centred values is zero, as desired. However, the expected value of the bootstrap
trimmed mean, with respect to the bootstrap distribution, is not equal to zero. This feature has
already been discussed by Wilcox (1998) and found to be negligible in terms of probability
coverage and Type I error probabilities when comparing independent groups. Based on the
simulations described here, we find this to be unimportant for the problem at hand.

Here B = 599 is used because it gives good results in related situations (Wilcox, 1997a).
The reason for using B = 599 rather than B = 600 stems from results in Hall (1986) showing
that it is advantageous to choose B such that 1 — « is a multiple of (B+ 1)"', and here
attention is focused on a = 0.05.

3. Simulation results

Simulations were used to check the small-sample properties of the methods described in the
previous section when J = 4. The general procedure was to generate observations from a
multivariate normal distribution with a particular correlation matrix, and variances all equal
to one, and then transform the observations when considering non-normal distributions. The
variances of the marginal distributions were also varied in a manner to be described. Three of
the four correlation matrices considered here have a common correlation, p, with p = 0.1, 0.5
and 0.8. The fourth correlation matrix is pj, = 0.8, pj3 = 0.5, pjs = 0.2, p53 = 0.5, poy = 0.2
and p34 = 0.2. The first three matrices correspond to € = 1, while the last matrix corresponds
to ¢ = 0.43. In our J = 4 design, the possible values for ¢ range between 1 and 1/(J — 1) =
0.33. Henceforth, these four correlation matrices will be called C1, C2, C3 and C4,
respectively. One reason for reporting the results for these four matrices is to illustrate
what happens when all of the correlations are small, all of them are moderately large, all
are close to one, and when the correlations are more or less uniformly distributed between
0 and 1.

Simulations were run by generating observations from a multivariate normal distribution
via the IMSL (International Mathematical and Statistical Library, 1987) subroutine RNMVN.
Non-normal distributions were generated using the g-and-4 distribution (Hoaglin, 1985).
That is, generate Z,»j from a multivariate normal distribution and set

Zi)— 1
X, = Mexp(hZ&/Z).
8

For g = 0 this last expression is taken to be

The reason for using the g-and-/ distribution is that it provides a convenient method for
considering a very wide range of situations corresponding to both symmetric and asymmetric
distributions. The case g = h = 0 corresponds to a normal distribution. The case g =0
corresponds to a symmetric distribution, and as g increases, skewness increases as well. The
parameter & determines heavy-tailedness. As & increases, heavy-tailedness increases as well.
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Table 1. Some properties of the g-and-/ distribution

8 h K K &y 5}

0.0 0.0 0.00 3.00 0.00 3.0
0.0 0.5 0.00 - 0.00 11 896.2
0.5 0.0 1.75 8.9 1.81 9.7
0.5 0.5 - - 120.10 18393.6

Table 1 summarizes the skewness (x;) and kurtosis (x,) for the four g-and-# distributions used
in the simulations. Again, the non-normal distributions considered here might seem extreme,
but it is unclear how non-normal distributions might be in practice, so if a method performs
well under seemingly extreme departures from normality, it would seem preferable to a
method that does not.

When h > 1/k, E(X — y)k is not defined and the corresponding entry in Table 1 is left blank.
A possible criticism of simulations performed on a computer is that observations are
generated from a finite interval, so the moments are finite even when in theory they are
not, in which case observations are not being generated from a distribution having the
theoretical skewness and kurtosis values listed in Table 1. In fact, as h gets large, there is an
increasing difference between the theoretical and actual values for skewness and kurtosis.
Accordingly, Table 1 also lists the estimated skewness (k;) and kurtosis (&,) based on 100 000
observations generated from the distribution.

The g-and-h distributions with g = 0.5 deserve a special comment because the resulting
levels of kurtosis or skewness might seem extreme and unrealistic. Empirical attempts at
determining realistic ranges for skewness and kurtosis in psychological research have been
published, but doubt remains as to what constitutes a satisfactory range of values in a simu-
lation study because estimated ranges vary drastically among published papers (e.g., Wilcox,
1997a). Yet, a practical issue is whether a hypothesis testing method can be found that
performs well over all realistic values for skewness and kurtosis. The g-and-#/ distribution is
used with the idea that if two methods perform well under normality, and the first breaks
down as we increase skewness or kurtosis, but the second does not, even under seemingly
unrealistic departures from normality, this suggests that the second method is more
satisfactory. (For a more detailed discussion of designing simulation studies, see Wilcox,
1995.)

Because of results in Wilcox (1997a), additional simulations were also run where the
marginal distributions had a lognormal or exponential distribution. This was accomplished by
generating X;; from a multivariate normal distribution, computing U;; = ®(Xj;), where ®(x) is
the standard normal distribution, and then transforming the U;;s using an appropriate quantile
function. (A description of these quantile functions can be found in Parzen, 1979.)

Simulations were also run where the marginal distributions had equal and unequal
variances. When working with skewed distributions, the marginal distributions were first
shifted so that they have a mean (or trimmed mean when appropriate) of zero, and then the ith
observation in the jth group was multiplied by o}, (o1, 03, 03, 04) = (1,3,4,5). (The means
and trimmed means of the g-and-/ distributions used here are listed in Wilcox, 1997, p. 73.
The lognormal has p; = 1.111, and the exponential has i, = 0.761.) When examining power,
the mean (or trimmed mean) of the first group was shifted by &.
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For each replication in the simulations, both ' and H were used to test the hypothesis of
equal means (or trimmed means) with @ = 0.5 and n = 21. When not using the bootstrap
method, 10 000 replications were used to estimate the actual probability of a Type I error, the
estimate being the proportion of times H,, was rejected among all the replications used. When
using the bootstrap method, 1000 replications were used instead. Results in Robey and
Barcikowski (1992) suggest that using 1000 replications is adequate. For example, suppose
we follow Bradley’s (1978) so-called liberal criterion where, when testing at the 0.05 level,
the actual probability of rejecting should not drop below 0.025 or be above 0.075. Further
suppose simulation results are used to test at the 0.05 level the hypothesis that when using F,
for example, the actual probability of a Type I error is a = 0.05. In symbols, if the actual
probability of a Type I error is 7 when using F, simulations can be used to test H,: = = 0.05.
The number of replications needed to achieve power equal to 0.9, when = = 0.025 or 0.075,
is 976.

Table 2 reports the estimated Type I error probabilities for g-and-# distributions when the
bootstrap is not used. Estimates that do not satisfy Bradley’s liberal criterion are shown in
bold. For normal distributions (g = & = 0) where the marginal distributions have a common
variance, both F' and H provide good control over the probability of a Type I error when using
means (y = 0), as would be expected. With unequal variances, both methods again give good
results. However, for heavy-tailed distributions (2 = 0.5), both become too conservative in
terms of Type I errors, meaning that the estimated probability of a Type I error drops below
Bradley’s criterion of 0.025, a result that was expected based on related simulation studies
(Wilcox, 1997a). In contrast, comparing trimmed means (y = 0.2) with F results in a Type I

Table 2. Estimated Type I error probabilities for means (parametric)

Cl1 C2 C3 C4

h y c F H F H F H F H

Symmetric distributions (g = 0)
0.0 0.0 (1,1,1,1) 0.049 0.052 0.048 0.054 0.048 0.051 0.049  0.050

05 00 0.022 0.032 0.019 0.030  0.017 0.031 0.022  0.029
00 02 0.046  0.029 0.041 0.028  0.029 0.028 0.047  0.028
05 02 0.038  0.020 0.034 0.020 0.023 0.023 0.037  0.020
00 00 (1,3,4,5) 0.051  0.050 0.051 0.050  0.050 0.048 0.049  0.051
05 00 0.012  0.022 0.032 0.018 0.026 0.023 0.027  0.023
00 02 0.054  0.030 0.047 0.033  0.048 0.041 0.051  0.037
05 02 0.042  0.018 0.035 0.021 0.031 0.027 0.031  0.027

Asymmetric distributions (g = 0.5)
0.0 0.0 (1,1,1,1) 0.038  0.055 0.040 0.054  0.041 0.049 0.039  0.056

05 00 0.016 0.037 0.013 0.030  0.013 0.025 0.016 0.033
00 02 0.041  0.030 0.035 0.023  0.027 0.022 0.042  0.025
05 02 0.034  0.019 0.028 0.019  0.022 0.020 0.035  0.020
00 00 (1,3,4,5) 0.047  0.082 0.054 0.095 0.061 0.105 0.047  0.098
05 00 0.054  0.216 0.092 0.274  0.152 0.332 0.065 0.308
00 02 0.049  0.037 0.045 0.042  0.047 0.056 0.049  0.044

05 02 0.037  0.022 0.035 0.031 0.038 0.039 0.037  0.030
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error probability reasonably close to the nominal level, even when sampling from a heavy-
tailed distribution, except for the C3 condition. Using H is a bit less satisfactory, the estimated
probability of a Type I error dropping below 0.025 in some cases. For asymmetric
distributions (g = 0.5), H can result in an estimated Type I error probability exceeding
0.075 and even 0.2 when comparing means. Using F' to compare means typically results in
better control over the probability of a Type I error, but in two cases the estimate exceeds 0.1.
Generally, comparing trimmed means with F provides the best control over the probability of
a Type I error.

Next, consider the situation where the marginal distributions are lognormal. Table 3 shows
the estimated probability of rejecting when not using the bootstrap. Results with § = —1
reflect power when the first distribution is shifted a half standard deviation. In terms of Type |
errors (6 = 0), both methods for means are unsatisfactory, meaning that the estimated Type I
error probabilities typically do not satisfy Bradley’s liberal criterion. Particularly interesting
are the results when the marginal distributions have unequal variances. In some instances,
power actually decreases as we move away from the null hypothesis, although eventually it
goes up. Comparing means with H is especially unsatisfactory. Switching to trimmed means
(y = 0.2), F yields much better power properties and generally provides better control over
the Type I error probability. The main difficulty is that it can be too conservative in some
situations, meaning that the estimated probability of a Type I error can drop below 0.025.

Table 3. Estimated Type I error probabilities and power for lognormal and exponential
distributions (parametric)

Cl1 C2 C3 C4

8 y c F H F H F H F H

Lognormal distribution
0 00 (1,1,1,1) 0.018 0.062 0.021 0.044  0.019 0.030 0.023 0.052

-1 0.0 0.386  0.426 0.542 0.614  0.792 0.854 0.489 0.779
0 0.2 0.025  0.021 0.022 0.015  0.015 0.012 0.027  0.017
-1 0.2 0.705  0.542 0.864 0.736  0.978 0.941 0.835 0.885

0 0.0 (1,345 0.042 0.177 0.067 0.227  0.106 0.250 0.054  0.227

-1 0.0 0.033  0.076 0.041 0.096  0.054 0.117 0.054  0.075
-2 0.0 0.054  0.157 0.066 0.145  0.116 0.259 0.058 0.248

0 0.2 0.037  0.055 0.040 0.066  0.040 0.087 0.049 0.071
-1 0.2 0.049  0.060 0.060 0.046  0.080 0.072 0.053  0.077
-2 0.2 0.165  0.457 0.287 0.464  0.493 0.618 0.195 0.738

Exponential distribution
0 0.0 (1,1,1,1) 0.031  0.060 0.037 0.052  0.036 0.047 0.036  0.058

0 0.0 (1,345 0.046 0.103 0.072 0.136  0.072 0.136 0.050 0.128
-0.5 0.0 0.044  0.066 0.049 0.067  0.055 0.085 0.047  0.066

0 02 (1,1,1,1) 0.035 0.029 0.034 0.018  0.024 0.015 0.037  0.022

0 02 (1,345 0.044 0.051 0.043 0.058  0.049 0.077 0.048  0.062
-0.5 0.2 0.050  0.041 0.053 0.036  0.056 0.051 0.051  0.048
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As for exponential distributions, similar results are obtained, only the problems just noted
are less severe. (Now 6 = —0.5 is used because this reflects a shift of a half standard
deviation.) Simulations were also run with § = —1, but nothing interesting was found when
comparing means.

Next attention is turned to the bootstrap method. Table 4 shows the estimated Type I error
probabilities when sampling from the g-and-A distributions. For normal distributions
(g = h = 0) where the marginal distributions have a common variance, both F and H
provide a good control over the probability of a Type I error when using means (y = 0). With
unequal variances, both methods again give reasonably good results, with the F statistic being
perhaps a bit better. However, for heavy-tailed distributions (4 = 0.5), both become too
conservative in terms of Type I errors, a result that was expected based on related simulation
studies (Wilcox, 1997a). In some cases the estimated probability of a Type I error drops
below 0.01. In contrast, comparing trimmed means (y = 0.2) with F results in a Type I error
probability reasonably close to the nominal level, even when sampling from a heavy-tailed
distribution. Using H is a bit less satisfactory, the probability of a Type I error dropping below
0.025 in some cases. For asymmetric distributions (g = 0.5), H results in an estimated Type I
error probability exceeding 0.075 in some cases, when comparing means. Using F' to compare
means usually results in better control over the probability of a Type I error, but in one
instance the estimate exceeds 0.1. Generally, comparing trimmed means (y = 0.2) with F
provides the best control over the probability of a Type I error, with the other three methods
being unsatisfactory in some situations.

Table 4. Estimated Type I error probabilities for g-and-4 distributions (using the bootstrap)

Cl1 C2 C3 C4

h y c F H F H F H F H

Symmetric distributions (g = 0)
0.0 0.0 (1,1,1,1) 0.044 0.038 0.046 0.040 0.050 0.034 0.054 0.044

0.5 0.0 0.006 0.007 0.012 0.008 0.011 0.006 0.017 0.006
0.0 02 0.053 0.029 0.051 0.031 0.046 0.030 0.064  0.035
0.5 0.2 0.058  0.025 0.059 0.026  0.042 0.021 0.065 0.032
0.0 0.0 (1,3,4,5) 0.056  0.024 0.053 0.022  0.040 0.020 0.060  0.027
0.5 0.0 0.012  0.006 0.007 0.005 0.013 0.004 0.017  0.009
0.0 02 0.060  0.034 0.055 0.032  0.048 0.025 0.057 0.033
0.5 0.2 0.056  0.024 0.053 0.022  0.040 0.020 0.060  0.027
Asymmetric distributions (g = 0.5)

0.0 0.0 (1,1,1,1) 0.038  0.031 0.035 0.029 0.045 - 0.029  0.030
0.5 0.0 0.008 0.003 0.008 0.002 0.010 - 0.006 0.005
0.0 02 0.053 0.026 0.047 0.021 0.043 - 0.043  0.026
0.5 0.2 0.050  0.021 0.045 0.022  0.037 - 0.057  0.022
0.0 0.0 (1,3,4,5) 0.048 0.051 0.044 0.050  0.053 - 0.050  0.047
0.5 0.0 0.038  0.086 0.062 0.103 0.116 - 0.050  0.100
0.0 02 0.063 0.041 0.057 0.044  0.050 - 0.054  0.036

05 02 0.054  0.037 0.054 0.034  0.047 - 0.058 0.034




Repeated measures ANOVA 79

Note that in Table 4, no results are given for matrix C3 when g = 0.5. This is because on
very rare occasions the bootstrap method breaks down when trying to invert the covariance
matrix.

Finally, Table 5 shows estimated Type I error probabilities and power for lognormal and
exponential distributions when using the bootstrap. Note that when comparing means
(y = 0), sampling is from a lognormal distribution and the marginal distributions have a
common variance, both F' and H can be too conservative in terms of Type I errors. In fact, the
bootstrap seems to be a bit less satisfactory than using F' with no bootstrap at all. As for
comparing trimmed means (y = 0.2) with H, again the probability of a Type I error can be
less than 0.025, but reasonably good control is obtained with F, the estimates ranging
between 0.029 and 0.045.

Particularly interesting are the results for the lognormal distribution when the marginal
distributions have unequal variances. For means, the bootstrap does not correct the problem
noted in Table 3: power goes down when the first mean is decreased by a half standard
deviation, and with a shift of one standard deviation the probability of rejecting is about the
same as when the null hypothesis is true. In contrast, when using F’ with trimmed means, the
probability of rejecting increases with a half standard deviation shift. Moreover, power can be
substantially higher versus using means. Again, H is not quite as satisfactory as F'. Also, using
F to compare trimmed means with a bootstrap critical value provides slightly better control
over the probability of a Type I error versus using no bootstrap at all.

Table 5. Estimated Type I error probabilities and power for lognormal and exponential
distributions (using the bootstrap method)

Cl1 C2 C3 C4

8 y c F H F H F H F H

Lognormal distribution

0 00 (1,1,1,1) 0.019 0.007 0.013 0.005 0.011 0.004 0.018 0.007

-1 0.0 0.317 0.232 0.454 0.338  0.700 0.612 0.381 0.531
0 0.2 0.045  0.020 0.038 0.015  0.029 0.012 0.041 0.016
-1 0.2 0.721  0.534 0.877 0.709  0.975 0.905 0.862  0.875
0 0.0 (1,345 0.042 0.070 0.046 0.072  0.068 0.061 0.048  0.063
-1 0.0 0.029  0.020 0.028 0.018  0.036 0.026 0.035 0.012
-2 0.0 0.042  0.023 0.037 0.015  0.062 0.029 0.049  0.033
0 0.2 0.051  0.047 0.042 0.046  0.047 0.037 0.050 0.043
-1 0.2 0.062  0.038 0.074 0.031 0.079 0.031 0.075  0.045
-2 0.2 0.207  0.313 0.291 0.248  0.443 0.255 0217 0416

Exponential distribution
0 0.0 (1,1,1,1) 0.036  0.027 0.033 0.018 0.025 0.014 0.040  0.021

0 0.0 (1,345 0.048 0.058 0.046 0.050  0.053 0.044 0.050 0.047
-0.5 0.0 0.044  0.030 0.038 0.021 0.043 0.026 0.045 0.018

0 02 (1,1,1,1) 0.051 0.021 0.043 0.018 0.036 0.016 0.047  0.018

0 02 (1,345 0.061 0.048 0.049 0.046  0.048 0.035 0.055 0.039
-0.5 0.2 0.064  0.025 0.057 0.025  0.061 0.029 0.064  0.028
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It is noted that power was also checked when observations were generated from skewed
g-and-A distributions: no new insights were obtained, so the results are not reported.

Finally, we compare the power of the percentile ¢ bootstrap method based on F and
trimmed means with the power of Friedman’s test as well as the parametric F test based on
means. First consider situations where the marginal distributions are normal with a common
variance of 1, three of the marginal distributions have means equal to zero and the fourth has
mean 6 = —1. For the four covariance matrices considered here, C1-C4, power using the
bootstrap method was estimated to be 0.855, 0.880, 0.988 and 0.982, respectively. As for
Friedman’s test, power was estimated to be 0.853, 0.984, 1.0 and 0.867 based on 10000
replications. For the parametric F test using means, the estimates are 0.942, 0.997, 1 and 0.998.
Thus, comparing means has more power, as would be expected. For (o}, 0,,03,04) =
(1,3,4,5) and 6 = —2, power estimates were 0.302, 0.312, 0.483, 0.361 using the bootstrap
with trimmed means versus 0.283, 0.399, 0.628, 0.299 using Friedman’s test. For the
parametric F test for means the estimates are 0.383, 0.603, 0.744 and 0.441. For symmetric
heavy-tailed distributions (g = 0, & = 0.5) having equal marginal variances, the estimates
were 0.673, 0.710, 0.896, 0.871 versus 0.559, 0.761, 0.972, 0.568 with Friedman’s test and
0.188, 0.299, 0.528, 0.241 with means. This illustrates the well-known result that when
comparing means, power can be relatively poor even under slight departures from normality.
For unequal marginal variances the estimates were 0.495, 0.551, 0.691, 0.590 using trimmed
means and the bootstrap versus 0.379, 0.513, 0.756, 0.395 using Friedman. Thus, situations
arise where the bootstrap with trimmed means has more power versus Friedman’s test, but the
reverse happens as well. For asymmetric distributions, power advantages will depend on how
the groups differ simply because the tests are designed to be sensitive to different features of
the data (Vargha and Delaney, 1998, p. 185, provide a useful description of the alternative
hypothesis of Friedman’s test.)

4. An illustration

A portion of a study by M. Earleywine collected data on hangover symptoms after individuals
are given a specific amount of alcohol in a laboratory setting. Each individual was measured
at three different times. For the control group, the hypothesis of equal means for the three
times is not rejected with the z-adjusted F test, the significance level being 0.51. Switching to
trimmed means, the test statistic is ' = 2.69 and the bootstrap 0.05 critical value is 3.16.
Thus, again we do not reject, but we do reject with o = 0.1. Friedman’s test has a significance
level of 0.11. If we pool the controls with the experimental group, again comparing measures
taken at three different times, the hypothesis of equal means has a significance level of 0.41.
In contrast, for trimmed means the test statistic is F' = 5.89 with an a = 0.05 bootstrap
critical value of 3.26, so the hypothesis of equal trimmed means is rejected. In fairness, the
data are highly skewed, so comparing means is not the same as comparing trimmed means.
The only point is that the choice of method can give a substantially different result.

5. Concluding remarks

In summary, poor control over the probability of a Type I error was illustrated when
comparing repeated measures means with either the univariate z-adjusted F' or multivariate
T? statistic, H, and an undesirable power property was illustrated as well. Switching to the
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percentile f bootstrap method does not necessarily eliminate these problems when attention is
restricted to means. However, comparing trimmed means with a bootstrap method provides
good control over the probability of a Type I error, it eliminates the undesirable power
property associated with means, and high power is achieved for non-normal distributions
versus low power when using means. The main concern with comparing trimmed means with
the z-adjusted F and no bootstrap is that in some cases the probability of a Type I error can be
substantially less than nominal level.

For completeness, it is noted that other bootstrap methods (e.g., Efron & Tibshirani, 1993;
Westfall & Young, 1993) might give better control over the probability of a Type I error when
comparing means. However, even if such a method could be found, slight departures from
normality can drastically reduce power (e.g. Wilcox, 1997a). In contrast, comparing trimmed
means maintains high power in these same situations for the general reasons summarized
in Wilcox (1997a). Consequently, comparing trimmed means with a percentile ¢ bootstrap
method appears to have practical value.

References

Box, G. E. P. (1954). Some theorems on quadratic forms applied in the study of analysis of variance
problems: II. Effect of inequality of variance and correlation of errors in the two-way
classification. Annals of Statistics, 25, 484-498.

Bradley, J. V. (1978). Robustness? British Journal of Mathematical and Statistical Psychology, 31,
144-152.

Efron, B., & Tibshirani, R. J. (1993). An introduction to bootstrap. New York: Chapman & Hall.

Hall, P. (1986). On the number of bootstrap simulations required to construct a confidence interval.
Annals of Statistics, 14, 1431-1452.

Hall, P., & Padmanabhan, A.R. (1992). On the bootstrap and the trimmed mean. Journal of Multivariate
Analysis, 41, 132-153.

Hoaglin, D. C. (1985). Summarizing shape numerically, the g-and-/ distributions. In D. Hoaglin,
F. Mosteller, & J. Tukey (Eds.), Exploring data tables, trends, and shapes (pp. 461-515). New
York: Wiley.

Huber, P. J. (1981). Robust statistics. New York: Wiley.

Huber, P. J. (1993). Projection pursuit and robustness. In S. Morgenthaler, E. Ronchetti, & W. Stahel
(Eds.), New directions in statistical data analysis and robustness. Boston: Birkhduser Verlag.

Huynh, H., & Feldt, L. S. (1976). Estimation of the Box correction for degrees of freedom from
sample data in randomized block and split-plot designs. Journal of Educational Statistics, 1,
69-82.

International Mathematical and Statistical Library (1987). Library I (Vol. II). Houston, TX: IMSL.

Keselman, J. C., & Keselman, H. J. (1990). Analysing unbalanced repeated measures designs. British
Journal of Mathematical and Statistical Psychology, 43, 265-282.

Keselman, H. J., Lix, L. M., & Kowalchuk, R. K. (1998). Multiple comparison procedures for trimmed
means. Psychological Methods, 3, 123—-141.

Kirk, R. E. (1995). Experimental design (3rd ed.). Pacific Grove, CA: Brooks/Cole.

Parzen, E. (1979). Nonparametric statistical data modeling (with discussion). Journal of the American
Statistical Association, 74, 105-120.

Robey, R. R., & Barcikowski, R. S. (1992). Type I error and the number of iterations in Monte Carlo
studies of robustness. British Journal of Mathematical and Statistical Psychology, 45, 283—288.

Rogan, J. C., Keselman, H. J., & Mendoza, J. L. (1979). Analysis of repeated measurements. British
Journal of Mathematical and Statistical Psychology, 32, 269-286.

Staudte, R. G., & Sheather, S. J. (1990). Robust estimation and testing. New York: Wiley.

Vargha, A., & Delaney, H. D. (1998). The Kruskal —Wallis test and stochastic homogeneity. Journal of
Educational and Behavioural Statistics, 23, 170—192.

Westfall, P. H., & Young, S. S. (1993). Resampling based multiple testing. New York: Wiley.



82 Rand R. Wilcox et al.

Wilcox, R. R. (1993). Analysing repeated measures or randomized block designs using trimmed means.
British Journal of Mathematical and Statistical Psychology, 46, 63-76.

Wilcox, R. R. (1995). ANOVA: The practical importance of heteroscedastic methods, using trimmed
means versus means, and designing simulation studies. British Journal of Mathematical and
Statistical Psychology, 48, 99-114.

Wilcox, R. R. (1997a). Introduction to robust estimation and hypothesis testing. San Diego, CA:
Academic Press.

Wilcox, R. R. (1997b). Pairwise comparisons using trimmed means or M-estimators when working with
dependent groups. Biometrical Journal, 39, 677-688.

Wilcox, R. R. (1998). The goals and strategies of robust methods (with discussion). British Journal of
Mathematical and Statistical Psychology, 51, 1-61.

Wilcox, R. R., Keselman, H. J., & Kowalchuk, R. K. (1998). Can tests for treatment group equality be
improved?: The bootstrap and trimmed means conjecture. British Journal of Mathematical and
Statistical Psychology, 51, 123-134.

Received 13 March 1998; revised version received 9 February 1999



