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ABSTRACT
Alternatives for positively skewed and heteroscedastic data include the
Yuen-Welch (YW) test, data transformations, and the generalized lin-
ear model (GzLM). Because the GzLM is rarely considered in psychology
compared to the other two, we compared these strategies conceptu-
ally and empirically. The YW test generally has satisfactory power, but
its trimmed mean can deviate substantially from the arithmetic mean,
which is often the desired parameter. The gamma GzLM can be used as
a substitute for the log transformation and addresses the limitations in
inference for the YW and data transformations.

1. Introduction

The one-way analysis of variance (ANOVA) is commonly used in psychological research
for detecting group mean differences. Under conventional applications, estimation efficiency
comes at the cost of strong assumptions about the error structure — homoscedasticity and
normality (Fox 2008). When these assumptions are even slightly violated, power suffers
(Tukey 1960). When assumptions are grossly violated, statistical inference is rendered invalid
(Fox 2008). It is very often the case that assumptions are violated, thereby making the avail-
ability of alternatives necessary (Micceri 1989; Golinski and Cribbie 2009) .

For analyzing skewed and heteroscedastic data, two approaches include the Yuen-Welch
test (Wilcox 2005) from the robust statistical framework and data transformations. However,
neither can make inference to the arithmetic mean. Popularized by Nelder and Wedderburn
(1972), though less applied in the analysis of continuous data in psychology, is the generalized
linear model (GzLM).

We focus on the analysis of continuous outcomes whose data are non-negative, positively
skewed, and heteroscedastic, specifically when the variance is proportional to themean. These
characteristics have been reported to be common with psychological data (Grissom 2000;
Micceri 1989).We begin by describing the Yuen-Welch test, power transformations, and their
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limitations that motivate our consideration of the GzLM. We introduce the GzLM structure,
focusing on the gammamodel. The simulation then compares these estimators for examining
group differences.

1.1. Alternative approaches

... Yuen-Welch test
The Yuen-Welch (Wilcox 2005) omnibus test for group differences generalizes Yuen’s (1974)
proposal to use trimmedmeans alongsideWinsorized variances. The impact of nonnormality
is minimized by trimmed means and the associated Winsorized variances; the impact of het-
eroscedasticity is minimized by a nonpooled standard error and an adjustment to the degrees
of freedom. Details on computed terms can be found in Wilcox’s text (2005, p. 267).

The trimmed mean is based on the removal of some proportion of cases from distribu-
tion tails. Trimming may be done symmetrically or asymmetrically in varying magnitudes,
but 20% symmetric trimming has been recommended to applied researchers for maintaining
Type I error and power rates under normal and contaminated distributions (Keselman et al.
2002). However, the trimmed mean estimates the population trimmed mean — the location
for a distribution whose tails are trimmed away, and therefore unaccounted for. In asymmet-
ric distributions, its confidence intervals generalize to only 60% of the sampled population
(Bonett and Price 2002), and the 20% trimmed mean is representative of only the ‘typical’
responses. If one is indeed interested in only the typical response and power, then the loss of
estimator sufficiency may be justified, and recommendations to “bypass classical parametric
statistics” altogether (Erceg-Hurn and Mirosevich 2008) may be wholly supported.

However, generalizability is important in some areas. Some variables are typically dis-
tributed with positive skewness at the population level, such as response times, clinical dys-
function, and financial costs (Ratcliff 1993; Neal and Simons 2007;Manning 1998; Kilian et al.
2002). Consequently, a researchermay bemore satisfiedwith inferences that do include distri-
bution tails. Consider, for example, the cost of mental health services. Most costs incurred by
individuals may fall in some moderate range, but it would not be uncommon to also observe
the few who incur much greater costs. Group trimmed mean estimates would provide cost
estimates that reflect the typical cases, but any extrapolation would not capture the reality
that there are those who consume more resources. Similarly, in reaction time analyses, data
in the tails may reflect true processes, and so the ideal analysis should eliminate as few of the
meaningful data of interest (Ratcliff 1993).

... Raw data transformations
Power transformations can reduce skewness and stabilize variance. When the variance
changes with themean by some power relationship for a strictly positive variable, the Box-Cox
class of power transformations is suitable (Box and Cox 1964). The Box-Cox transformation
is defined by

Y ′ =
{
ln (Y ) if λ = 0
Yλ−1

λ
if λ �= 0

(1)

where Y is the response variable in original scale, Y ′ is the corresponding variable in trans-
formed scale, and λ is the power parameter.
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The natural log transformation (λ = 0) is commonly used in psychology; the newly trans-
formed Y ′ would be submitted to an ANOVA/regression, whereupon the least squares esti-
mation advantage in efficiency could still be harboured (Fox 2008). The model would be

ln (Y ) = β0 + β1x1 + · · · + βpxp + ε, (2)

where the log-transformed response, ln(Y ), is expressed as a linear function of p predictor
variables, x1 through xp, and ε is the normally-distributed and homoscedastic error term.

Transformations aremost usefulwhenboth skewness andheteroscedasticity are simultane-
ously and fully corrected, but this result is not guaranteed. An inspection of log-transformed
residuals may very well indicate the presence of heteroscedasticity in the log error term,
thereby invalidating inference (Manning, Mullahy, and Manning 2001). Furthermore, in the
case of a single categorical predictor, distributions would need to bemade symmetric for each
group simultaneously, thereby generally requiring that groups have similar distributions at the
outset.

Models for a log transformed outcome yield inferences to the arithmetic mean in log scale,
which is equivalent to the geometric mean in original scale. With other Box-Cox transfor-
mations, back-transformations yield medians in original scale. An attempt to interpret arith-
metic means in the original scale using a naive back-transformation would yield discrepant
estimates, as the geometric mean is either equal or lower than the arithmetic mean. Certainly,
there are cases in which interpretation for the mean in transformed scale is useful, such as
when processes are expected to be multiplicative (e.g., a change in X predicts a 10% change
in Y). However, when processes are additive or when sum totals are meaningful, the arith-
metic mean is more useful; multiplying the mean by the number of observations yields the
total sum, but the same cannot be said for the geometricmean (or the trimmedmean). Econo-
metricians have used re-transformation corrections to obtain arithmetic means (Duan 1983;
Manning 1998), but one may also leverage the concept of transformations within the GzLM
framework to directly make inferences in original scale.

1.2. The generalized linearmodel

The generalized linear model is typically estimated by maximum likelihood and relaxes the
assumption that residuals are Gaussian-distributed. The distribution could be specified as
any of the exponential family of probability distributions, such as the gamma, Poisson, bino-
mial, and inverse-Gaussian. Assumptions are then made about the error distribution and the
mean-variance relation (Nelder andWedderburn 1972). For example, the gammadistribution
assumes a specific pattern of heteroscedasticity in which the variance increases proportion-
ally with the mean— specifically, the square of the mean. These assumptions can be assessed
using deviance residuals (which are analogous to residual sum of squares in ordinary least
squares [OLS]). Residuals should tend towards normality and homoscedasticity for continu-
ous responses.

The GzLM also has the link function, which provides the transformation of the expected
values of the outcome:

η = g (μ) , (3)

in which η is the linear predictor of p predictor variables

η = β0 + β1x1 + · · · + βpxp. (4)
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When the link function is correctly specified, the relation between the expected values of
the outcome and the set of predictors, η, is linearized.

The transformation of the expected value, and not of the outcome itself, provides the addi-
tional advantage of interpreting the model’s estimates in the outcome’s original scale (Blough
et al. 1999), which is given by the inverse of the link function.

Unlike raw data transformations, the GzLM allows for the transformation to be specified
separately from the outcome’s distribution (Fox 2008), highlighting the flexibility of exploring
combinations of various link functions and probability distributions. We currently consider
a particular GzLM suitable for continuous data, with the specifications for the gamma distri-
bution and the log link function, ln(μ). The gamma distributionmodels strictly positive con-
tinuous responses and is characterized by two parameters, shape (α) and scale (s). Expected
values are given by the following:

E(Y ) = αs (5)
Var(Y ) = (αs)2 . (6)

Theα parameter controls location,while the scale parameter controls dispersion.A gamma
specification implies amean-variance relation of heteroscedasticity where the variance is pro-
portional to the square of the mean (similar to models using the log transformation).

The log transformation is applied to the expected values, giving the model

ln [E (Y )] = β0 + β1x1 + · · · + βpxp (7)

or equivalently, in original scale,

E (Y ) = exp
(
β0 + β1x1 + · · · + βpxp

)
. (8)

The natural log transformation is applied to the expected values (Equation 7), which is dif-
ferent from E[ln(y)] (Equation 2). FromEquation 8, it is readily seen that the inverse function
for the log link function (εη) yields a back-transformed inference to the arithmetic mean in
original scale.

... Evaluatingmodel assumptions
While results from the Yuen-Welch test require no strict assumptions regarding probabil-
ity distributions, the tenability of results from either the GzLM or log transformed model
depends on the degree to which assumptions about normality and heteroscedasticity are met.
Methods for evaluating assumptions about the residuals include graphical inspection or for-
mal assumptions tests, such as the Shapiro-Wilk test (1965) for normality or the Brown-
Forsythe test (1974) for homoscedasticity. The Shapiro-Wilk test behaves favourably in a
variety of contaminated distributions (Chen 1971) and has more power compared to alter-
natives (Razali and Wah 2011). The Brown-Forsythe is a robust form of the original Lev-
ene test (1960) and has been used across many disciplines for exploring trends in variances
(Gastwirth et al. 2009). The preliminary use of formal assumptions tests for choosing among
statistical methods, however, generally has deleterious effects on error rates of the final
hypothesis of interest because error rates compound and interact across stages of tests (Zim-
merman 2004; Hayes and Cai 2007; García-Pérez 2012). Graphical inspectionmay be consid-
ered a suitable alternative (Schucany and Ng 2006) but is still considered a preliminary anal-
ysis if it serves as a condition upon which statistical decisions are made (García-Pérez 2012).
However, the use of preliminary assumptions checks for determining subsequent analysis
steps is different from the use of assumptions checks for evaluating the tenability of statistical
conclusions.
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... GzLMs for determining groupmean differences
We focus on GzLMs for the one-way independent groups design. While misspecification of
the family distribution inflates standard errors (Jones 2012), the link function becomes less
relevant for model fit, with a single categorical predictor. With k groups, there would be only
k unique expected values. For two models with only one categorical predictor that share the
same family but not the same link function, equivalent model fit would be obtained because
the total deviance would be the same. For example, a gamma GzLM with log link yields the
same fit as a gamma GzLMwith inverse link when there is a single categorical predictor. Sim-
ilarly, a Gaussian GzLM with log link yields the same fit as a regular ANOVA. In this setting,
then, the link function serves only to provide differentmodel interpretations but not statistical
fit. Beyond this setting, however, different family and link specifications require model com-
parison and evaluation, which may involve inspection of deviance residuals, goodness-of-fit
tests, and comparison of information criteria.

2. Research objective

Previous studies have compared log transformations with the gamma GzLM with log link
(Manning, Mullahy, and Manning 2001; Neal and Simons 2007; Nevill and Copas 1991),
but to our knowledge, GzLMs have not been compared to robust estimators like the Yuen-
Welch’s. We compare the Yuen-Welch test, the log transformation, and the GzLM (gamma
family with log link; Gaussian family with log link) for the one-way independent groups
design. With the context that some researchers may prefer both power and inference
about the arithmetic mean in original scale, we compared these four methods for Type
I error and power, as well as the discrepancy of the alternative estimators (the geomet-
ric and trimmed means) from the expected arithmetic mean. Assumptions tests are used
to inspect residuals within the simulation and to document residual behaviour across data
conditions.

3. Method

Monte Carlo simulations were conducted in R Software (R Development Core Team 2015).
Data with variances increasing proportionately with the mean were generated from gamma
and Box-Cox transformation processes.

3.1. Data generation

Two sets of expected value configurations were used for power, one set of locations being
low and another being high, such that there was a shift in location (one unit or three units)
for group two. Thus, the expected mean configurations for power settings were the following:
[2, 3, 2], [10, 11, 10], [2, 5, 2], and [10, 13, 10]. ForType I error conditions,mean configurations
were [2, 2, 2] and [10, 10, 10].

For the Box-Cox data, the power parameter of λ varied (λ: 0, 0.2, 0.4, or 0.6). In the trans-
formed scale, we compared an equal variances condition (σ 2 = 0.10, for all groups) to unequal
variances (σ 2

1 = σ 2
3 = 0.10 and σ 2

2 = 0.20).
For the gamma-distributed data, the parameter α varied (α = 0.5, 1, 1.5, 2, or 2.5). Increas-

ingα corresponds to decreasing skewness. The scale s parameter was held constant.Whenα is
less or equal to 1, the distribution is monotonically declining; for αs above 1, the distribution
is bell-shaped and positively skewed.
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We used equal sample sizes (n = 40 per group) and two sets of unequal sample sizes
(n1= 30, n2 = 60, n3= 30 and n1 = 50, n2= 20, n3 = 50). Because the higher loca-
tion in group two corresponds to greater variance, the first set of unequal sample sizes is
a positively paired unequal sample size condition (i.e., higher variance is weighted by a
larger group sample size), while the second set is a negatively paired unequal sample size
condition.

3.2. Evaluation

Each estimator was evaluated on 5000 replicates.The gamma with log link (GammaLog), the
Gaussian with log link (GaussianLog), log transformation on the raw response (LogDV), and
the Yuen-Welch test (YW) were applied to each of the replicates. The models (i.e., Gamma-
Log, GaussianLog, and LogDV) treated Group 1 as the referent group. For example, in raw
scale via the inverse link function, the expected response given by the GzLMs with log link
is:

E(Y ) = exp(β0 + β1(x1 = Group2) + β2(x2 = Group3)). (9)

The models’ deviance residuals were evaluated by two diagnostic tests, the Shapiro-Wilk
(1965) and the Brown-Forsythe (1974), for descriptive purposes; these tests did not inform
method selection, as all estimators were each evaluated on 5000 replicates. Power rates were
reported unconditionally (significant F-test) and conditionally (significant on F-test and non-
significant on diagnostic tests). A conditional power rate is therefore the probability of detect-
ing a true effect when there is no evidence of assumption violations. The significance level was
.05, and empirical Type I error rates were considered acceptable with liberal bounds of .025
and .075 (Bradley 1978). Type I error rates were also reported unconditionally (false posi-
tive without diagnostic tests) and conditionally (false positive and nonsignificant diagnostic
tests).

4. Results

Tables 1 and 2 show descriptive statistics for the response in original scale. Standard devia-
tions, skewness, and kurtosis values increased with decreases in α for gamma-distributed data
and with decreases in λ for the Box-Cox data.

Table . Descriptive statistics for gamma-distributed data.

SD Skew Kurtosis

Locations α G G G G G G G G G

Low . . . . . . . . . .
 . . . . . . . . .
. . . . . . . . . .
 . . . . . . . . .
. . . . . . . . . .

High . . . . . . . . . .
 . . . . . . . . .
. . . . . . . . . .
 . . . . . . . . .
. . . . . . . . . .

Note. G-G refers to the three groups. α = shape parameter of the gamma distribution. SD = standard deviation. For brevity,
descriptives are shown for the effect size of  and for equal sample sizes.
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Table . Descriptive statistics for Box-Cox data.

SD Skew Kurtosis

Locations Variances λ G G G G G G G G G

Low Equal  . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .

Unequal  . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .

High Equal  . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .

Unequal  . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .

Note. G-G refers to the three groups. λ = power parameter. SD = standard deviation. The (un)equal variances are in trans-
formed scale. For brevity, descriptives are shown for the effect size of  and for equal sample sizes.

Power and Type I error trends were similar across sample size conditions, except for Type
I errors on the Box-Cox data. The GammaLog and GaussianLog models yielded unbiased
estimates of populationmeans. The trimmedmeans and unadjusted, back-transformed values
were systematically lower than the population arithmetic mean. The discrepancy from the
arithmetic mean for the YW was generally less than that of LogDV.

4.1. Gamma-distributed data

... Type I error and power
All unconditional (without diagnostics) Type I error rates were nearly nominal. Conditional
(with diagnostics) Type I error rates were overly conservative for the LogDV andGaussianLog
but still nearly nominal for the GammaLog (Table 3).

TheGammaLog hadmore power than the LogDV.At low locations, theGammaLog advan-
tage ranged 24 to 89 percentage points (pp); at high locations, the advantage ranged 7 to 31

Table . Type I error rates for gamma-distributed data.

Without diagnostics With diagnostics

Locations Shapes YW GammaLog LogDV GaussianLog GammaLog Pass LogDV Pass GaussianLog Pass

Low (, , ) . . . . . .  .00  .00 
 . . . . .  .00  .00 
. . . . . .  .01  .00 
 . . . . .  .01  .00 
. . . . . .  .02  .00 

High (, , ) . . . . . .  .00  .00 
 . . . . .  .00  .00 
. . . . . .  .01  .00 
 . . . . .  .01  .00 
. . . . . .  .02  .00 

Note. YW= Yuen-Welch test. GammaLog= gammamodel with log link. LogDV= log transformedmodel. GaussianLog= Gaus-
sian model with log link. Unconditional rates are obtained without diagnostics tests. Conditional rates are obtained with
nonsignificant results on diagnostic tests. ‘Pass’ columns indicate the number of replicates (out of ) that passed both
diagnostics tests. Trends were similar for the unequal sample sizes.
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Figure . Power rates accounting for diagnostic tests, for gamma-distributed data. ‘Low’and ‘High’ refers to
location conditions. GammaLog= gammamodel with log link. LogDV= log transformedmodel. Gaussian-
Log= Gaussian model with log link. Shape refers to the gamma distribution parameter (α). ‘’ and ‘’ refers
to effect size conditions. The unequal sample size conditions are excluded because trends were similar.

pp (Figure 1). Across conditions, median decrease in power due to diagnostics was 3 pp for
the GammaLog, 22 pp for LogDV, and 38 pp for GaussianLog. Table 4 shows that the rates at
which both diagnostic tests were simultaneously passed by the GammaLog and LogDV did
not differ between the effect sizes. Without diagnostics, however, the models generally had
advantage over the YW, especially the GammaLog at lower αs.

Figure . Discrepancy from the arithmeticmean, for gamma-distributed data.GammaLog= gammamodel
with log link. LogDV = log transformed model. GaussianLog = Gaussian model with log link. Shape refers
to the gamma distribution parameter (α). ‘Low’ and ‘High’ refers to location conditions. ‘’ and ‘’ refers to
effect size conditions. The geometric and trimmed means are more discrepant from the arithmetic mean
for lower shapes, higher locations, and larger effect sizes. For brevity, only discrepancies for Group  are
shown.
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... Discrepancy from the arithmetic mean
Discrepancies for the LogDV and YW were stronger with lower α and with higher locations
(Figure 2). Across conditions, the LogDV discrepancy ranged from −0.56 to −9.13, and the
trimmed mean discrepancy ranged from −0.29 to −5.25.

4.2. Box-Cox data

... Type I error and power
Type I error rates (equal variances in transformed scale)
The models had adequate unconditional and conditional Type I error rates across all sample
size conditions.

Type I error rates (unequal variances in transformed scale)
Without diagnostics, the model-based estimators were slightly liberal in equal sample size
conditions (Table 5), slightly conservative in the positively paired sample sizes condition
(Table 6), and overly liberal in the negatively paired sample sizes condition (Table 7). With
diagnostics, conditional Type I error rates were near zero across all sample size conditions.

Conditional power (equal variances in transformed scale)
Tables 8 and 9 show diagnostic test behaviour for effect sizes 1 and 3, respectively. With the
lower effect size, the LogDV had a trivial advantage over the GammaLog at λ = 0. The Gaus-
sianLog increased in powerwith increasedλ and surpassed theGammaLog and LogDV above
λ∼ 0.50; this corresponded with the increasing rates for the diagnostic tests, as well as distri-
butions that were increasingly normalized. As λ increased, power for the LogDV and Gam-
maLog decreased; the extent of these decreases was more pronounced with the larger effect
size and can be explained by the failure to pass the Brown-Forsythe test.

Conditional power (unequal variances in transformed scale)
With the larger effect size, however, power for LogDVandGammaLog increased . Atλ= 0, for
which the log transformation would have been most suitable, power was essentially nil when
variances were unequal in transformed space (Figure 3), which corresponded to the low rates
at which the Brown-Forsythe test was passed. Similarly, even with more normal distributions
at higher λ, the GaussianLog almost always failed the Brown-Forsythe.

Unconditional power
Without diagnostics, unconditional power for the GammaLog was superior to the YW on all
conditions. Across the four conditions where YW’s power was below 80% (unequal variances,
high location, λ near zero), the GammaLog and LogDV had 12 to 33 pp more power than
the YW. The reduction in power due to diagnostic tests was greater in unequal variance
conditions; while median reduction in power was 11 pp for both GammaLog and LogDV
and 29 pp for GaussianLog in equal variance conditions, median reduction was 91 pp for
both GammaLog and LogDV and 100 pp for GaussianLog in unequal variance conditions.

4.2.2. Discrepancy from the arithmetic mean

Discrepancy was consistently near zero for the GammaLog and GaussianLog but increased
slightly for LogDV and YW with higher skewness (i.e., lower λ), higher locations, and
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Table . Type I error rates for Box-Cox data, with equal sample sizes.

Without diagnostics With diagnostics

Locations Variances λ YW GammaLog LogDV GaussianLog GammaLog Pass LogDV Pass GaussianLog Pass

Low
(, , )

Equal  . . . . .  .  . 
. . . . . .  .  . 
. . . . . .  .  . 
. . . . . .  .  . 

Unequal  . .08 . .08 .00  .00  .00 
. . .08 . . .00  .00  .00 
. . . . . .00  .00  .00 
. . . . . .00  .00  .00 

High
(, , )

Equal  . . . . .  .  . 
. . . . . .  .  . 
. . . . . .  .  . 
. . . . . .  .  . 

Unequal  . .08 . .08 .00  .00  .00 
. . . . . .00  .00  .00 
. . . . . .00  .00  .00 
. . . . . .00  .00  .00 

Note. YW= Yuen-Welch test.GammaLog= gammamodel with log link. LogDV= log transformedmodel.GaussianLog=Gaus-
sian model with log link. λ = power parameter. Unconditional rates are obtained without diagnostics tests. Conditional rates
are obtainedwith nonsignificant results on diagnostic tests. ‘Pass’columns indicate the number of replicates (out of ) that
passed both diagnostics tests.

higher effect sizes. Discrepancies were also slightly more pronounced with unequal variances
(Figure 4), though magnitudes were not as large as those in the gamma setting.

5. Discussion

We compared the GzLM, the log transformation, and the Yuen-Welch test with gamma-
distributed and Box-Cox data for their abilities to detect group mean differences when data
exhibit non-normality and heteroscedasticity and for their discrepancies from the arithmetic
mean.

Table . Type I error rates for Box-Cox data, with positively paired unequal sample sizes.

Without diagnostics With diagnostics

Locations Variances λ YW GammaLog LogDV GaussianLog GammaLog Pass LogDV Pass GaussianLog Pass

Low
(, , )

Equal  . . . . .  .  . 
. . . . . .  .  . 
. . . . . .  .  . 
. . . . . .  .  . 

Unequal  . . .02 .02 .00  .00  .00 
. . . .02 . .00  .00  .00 
. . .02 .02 .02 .00  .00  .00 
. . .02 .02 .02 .00  .00  .00 

High
(, , )

Equal  . . . . .  .  . 
. . . . . .  .  . 
. . . . . .  .  . 
. . . . . .  .  . 

Unequal  . . .02 . .00  .00  .00 
. . . .02 .02 .00  .00  .00 
. . .02 .02 .02 .00  .00  .00 
. . .02 .02 .02 .00  .00  .00 

Note. YW = Yuen-Welch test. GammaLog = gamma model with log link. Log DV = log transformed model. GaussianLog =
Gaussian model with log link. λ = power parameter. Unconditional rates are obtained without diagnostics tests. Conditional
rates are obtained with nonsignificant results on diagnostic tests. ‘Pass’ columns indicate the number of replicates (out of
) that passed both diagnostics tests.
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Table . Type I error rates for Box-Cox data, with negatively paired unequal sample sizes.

Without diagnostics With diagnostics

Locations Variances λ YW GammaLog LogDV GaussianLog GammaLog Pass LogDV Pass GaussianLog Pass

Low
(, , )

Equal  . . . . .  .  . 
. . . . . .  .  . 
. . . . . .  .  . 
. . . . . .  .  . 

Unequal  . .16 .15 .16 .01  .01  .01 
. . .16 .14 .16 .01  .01  .01 
. .08 .17 .17 .17 .01  .01  .02 
. . .15 .16 .15 .02  .02  .02 

High
(, , )

Equal  . . . . .  .  . 
. . . . . .  .  . 
. . . . . .  .  . 
. . . . . .  .  . 

Unequal  . .17 .14 .16 .02  .02  .01 
. . .14 .13 .14 .01  .01  .01 
. . .12 .12 .13 .01  .01  .01 
. . .13 .13 .13 .02  .02  .01 

Note. YW= Yuen-Welch test.GammaLog= gammamodel with log link. LogDV= log transformedmodel.GaussianLog=Gaus-
sian model with log link. λ = power parameter. Unconditional rates are obtained without diagnostics tests. Conditional rates
are obtainedwith nonsignificant results on diagnostic tests. ‘Pass’columns indicate the number of replicates (out of ) that
passed both diagnostics tests.

For positive skewness and variances that are proportional to means, two estimators that
retain all relevant data are the LogDV model and the gamma model. For the Box-Cox data,
both had similar rates for power and diagnostic tests, but the LogDV did not show clear supe-
riority in power compared to the GammaLog. For the gamma-distributed data, the LogDV
tended to have significant departures from normality. Overall, although both models gener-
ally follow the same trends, there is a greater power disadvantage when applying the LogDV
to gamma-distributed data than there is when applying the GammaLog to the Box-Cox data.
Further, when the GammaLog Even when λ = 0 for the tested conditions, for which the log
raw data transformation would be ideal, the LogDV advantage was only slight when error
variances were equal in transformed scale. For situations in which the natural logarithmic
transformation is viable, the gamma GzLM may also be considered. Certainly, this depends
on the data situation; previous simulations have shown that the gamma model suffers from
inefficiency, more so than the log-transformed model, when there is kurtosis in transformed
scale (Manning, Mullahy, and Manning 2001).

For both these models, the state of error variances in transformed space is important
to note, along with the mean-variance relation concept. These were demonstrated by the
condition of unequal variances in transformed space for the Box-Cox data. Though results
were stated as relations to increasing and decreasing λ values, it is not exactly the λ param-
eter that matters. Consider λ = 0. When variances were equal, models with either the
log-transformed response (LogDV) or the gamma family (GammaLog) worked well because
linearity could be achieved. When variances were unequal, both failed. Transformations
do not always guarantee linearization, and GzLMs do not always fit if the mean-variance
relation is not approximated. It is not simply the presence or magnitude of skewness and
heteroscedasticity that determines whether one should use the GzLM but rather the presence
of some mean-variance relation.

Our simulation used null hypothesis tests as proxies for the inspection of model residuals,
leading to the contrast between unconditional and conditional error rates. The reduction in
power due to assumptions tests was drastic when assumptions were not approximated well,
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Figure . Power accounting for diagnostic tests, for Box-Cox data. GammaLog = gamma model with log
link. LogDV = log transformed model. GaussianLog = Gaussian model with log link. Lambda is the power
parameter (λ). Panel (a) shows the equal variances condition while panel (b) shows the unequal variances
condition. ‘Low’and ‘High’refers to location conditions. ‘’and ‘’refers to effect size conditions. The unequal
sample size conditions are excluded because trends were similar.

and they were smaller when assumptions could be somewhat met (e.g., the GammaLog’ s
rates were reduced by 3 pp under gamma-generated data and by 11 pp in some Box-Cox data).
Still, a logical limitation of interpreting conditional error rates on their own is the assumption
of tests’ results corresponding to researchers’ judgments on the severity of violations. As
sample size increases, these tests have increased power for detecting even minute departures,
though researchers may consider such departures less consequential. Even if formal tests
are used in practice, stringency could be imposed with a more logically-aligned equivalence
test, such as one for detecting evidence of homoscedasticity (Kim and Cribbie 2017; Mara
and Cribbie 2017) or with conservative alpha levels (Schucany and Ng 2006). In practice, we
recommend neither reliance on assumptions tests nor conditional approaches for method
selection. We do recommend researchers to consider alternative frameworks and to do due
diligence by inspecting assumptions, be it graphically or visually, for critically evaluating
conclusions.

The YWwith 20% trimmedmeans is an alternative that requires no assumption evaluation
and that has adequate properties across many distributions and sample size configurations.
When lower sample sizes are paired with higher variance and when errors are unequal in
transformed space, the YW maintains (unconditional) Type I error rates where parametric
alternatives are not suitable. Its inference to the trimmed population does, however, reduce
generalizability. When distributions are approximately symmetrical, as with higher λ and α
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Figure . Discrepancy from the arithmetic mean, for Box Cox data. GammaLog = gamma model with log
link. LogDV = log transformed model. GaussianLog = Gaussian model with log link. Lambda is the power
parameter (λ). Panel (a) shows the equal variances condition while panel (b) show the unequal variances
condition. Note the differences in scale for the panels’ y-axies. ‘Low’and ‘High’ refers to location conditions.
‘’ and ‘’ refers to effect size conditions. Geometric and trimmedmeans are more discrepant from the arith-
metic meanwith lower power parameters and the higher location. For brevity, only discrepancies for Group
 are shown.

values, the trimmed mean is only slightly discrepant from the arithmetic mean. When pop-
ulation distributions are more asymmetric, the 20% trimmed mean is more discrepant; the
inference to the bulk of the population has no implied representation for potentially mean-
ingful distribution tails, thereby lowering generalizability. The YW is a valuable alternative,
but researchers should be cognizant of generalizability and that there may be situations where
it is statistically and substantively worthwhile to determine whether a parametric option is
viable.

6. Final remarks

Overall, the choice of alternative frameworks involves substantive and data considerations
asides from power. The growing awareness and application of robust statistics is greatly
beneficial, but one should not simply default to robust approaches just because nonnormality
and heteroscedasticity are present. Similarly, just because skewness and heteroscedasticity
can be modeled using the gamma GzLM (or a model with log transformation) does not
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mean that the assumed nature of heteroscedasticity is actually tenable. It is not necessarily
the case that the psychological data of interest are truly generated from gamma processes
(just as data are likely not truly generated from Gaussian processes), and therefore, it may
also not be the case that a gamma model would be ideal across as many scenarios as the YW.
The log model and gamma GzLM have similar trends; with the popular use of natural log
transformations in psychology, there may be many scenarios in which the gamma GzLM
could serve well. If a GzLM is tenable, then one obtains unbiased inferences about the pop-
ulation mean, estimator sufficiency, and potentially, higher power for detecting effects. We
encourage researchers who desire not only power but also interpretation about population
means to consider and evaluate the tenability of parametric options before or alongside robust
alternatives.
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