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Abstract 

With the recent rapid development of high-speed railway in many countries, precise 

inspection for railway electrification systems has become more significant to ensure safe 

railway operation. However, this time-consuming manual inspection is not satisfactory for 

the high-demanding inspection task, thus a safe, fast and automatic inspection method is 

required. With LiDAR (Light Detection and Ranging) data becoming more available, the 

accurate railway electrification scene understanding using LiDAR data becomes feasible 

towards automatic 3D precise inspection. 

This thesis presents a supervised learning method to classify railway electrification 

objects from Mobile Laser Scanning (MLS) data. First, a multi-range Conditional Random 

Field (CRF), which characterizes not only labeling homogeneity at a short range, but also 

the layout compatibility between different objects at a middle range in the probabilistic 

graphical model is implemented and tested. Then, this multi-range CRF model will be 

extended and improved into a hierarchical CRF model to consider multi-scale layout 

compatibility at full range. The proposed method is evaluated on a dataset collected in 

Korea with complex railway electrification systems environment. The experiment shows 

the effectiveness of proposed model.  
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Chapter 1  
Introduction 

1.1 Motivation 
Since the first industrial revolution, railway network gradually became a major component 

of transportation system and the dominant transportation tool in many countries. 

Nowadays, railroad transportation is still one most significant transportation tools both 

domestically and regionally. In United States, approximately 4,758 million railway trips 

occurred annually, and the average trip length is around 6.5 miles in 2012 (APTA, 2014). 

In Canada alone, the railway systems cover 50,000 km of main track-line and transport 75 

million people, as well as $250 billion worth of goods each year. The high-speed railway 

systems have been rapidly developed in some countries, such as France, Japan and China 

in last three decades. Japan is the first country in the world with more than 20 billion trips 

annually and China will construct up to 38,000 km high-speed railway until 2025 (Railway 

Gazette, 2016). Therefore, railway can still play a key role in public transportation in the 

future. To provide electric power for railway trains, a railway electrification system is 

indispensable. In fact, these systems already comprise one third of the global rail track 

systems. A railway electrification system supplies electric power to railway trains without 

an on-board prime mover or local fuel supply, which is advantageous over diesel-based 

systems for faster acceleration and regenerative braking. (Gómez-Expósito et al., 2014). In 

these systems, overhead transmission lines are designed to transmit electricity from feeder 

station and contains several types of transmission lines. A utility pole is a post-like object 
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to support overhead wires for electric power distribution and are associated with objects 

such as suspension insulators and movable brackets. These elements usually have some 

evident designs and distributions, which cause the spatial regularity of railway 

electrification system. Regular maintenance and inspection is indispensable to ensure a 

constant supply of electricity power to all trains on track. However, this task is traditionally 

labor-intensive, time consuming and dangerous for human operators, which impedes 

frequent large-scale inspection. Conventionally, human inspectors usually use crane to 

manually check whether the overhead lines satisfy the regulation requirement as shown in 

Figure 1.1.  

 

Figure 1.1 Overhead line’s inspection in Hungary. (Innoteka, 2012) 
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Recently, various techniques using remotely-sensed data, such as images, Airborne 

Laser Scanning (ALS) data and Mobile Laser Scanning (MLS) data, have been introduced 

to supplement or replace humans’ visual inspection. The remote-sensed data can be 

obtained at regular basis to provide updated information and it is much more accessible for 

inspectors to check the system without physical presentence. Particularly, MLS data 

provide very accurate and high-density point clouds over the railway scene scanned by 

laser scanners mounted on a train or inspection cart. Compared with other data sources, 

MLS data collection is faster, cheaper, more replicable and it will not be influenced by 

extreme weather conditions. Therefore, MLS data is suitable for railway electrification 

inspection tasks.  

As MLS is a relative young technology for infrastructure surveying, there are both 

hardware and software problems need to be solved. Different research topics related with 

MLS data processing are conducted, including point cloud registration (Gálai et al., 2016; 

Gressin et al., 2013; Men et al., 2011), point cloud to image registration (Cui et al., 2016; 

Li et al., 2018) , geo-referencing (Gao et al., 2015), segmentation (Nurunnabi et al., 2016; 

Zhou et al., 2014), classification (Golovinskiy et al., 2009; Najafi et al., 2014; Xiong et al., 

2011; Zhu and Hyyppa, 2014), and change detection (Qin and Gruen, 2014; Xiao et al., 

2015; Xiao et al., 2016).  

For automatic railway electrification system inspection from MLS data, the first 

step is to classify point clouds into meaningful railway objects. After the accurate 

classification of railway scene objects, important objects can be extracted and modeled. By 

comparing the modeled objects with existed models, automatic inspection can be achieved 
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to determine whether the objects still satisfy design requirement. Therefore, accurate 

classification of railway electrification objects is the first important step towards automatic 

inspection. Semantic segmentation or classification of mobile laser point cloud is always a 

popular research topic due to the importance of semantic information for all different tasks 

such as modeling, detection and scene understanding. However, as indicated in previous 

research (Grilli et al., 2017), the large-scale MLS classification for railway electrification 

system has to overcome several problems: 

• Scene complexity: Railway scene is a complex scene with different objects varying 

from their sizes and shapes. Meanwhile, railway electrification system is a 

complicated structure with specific design requirements. Although there are spatial 

relations among objects existed in the scene, this information is also hard to be 

encoded and be applied for classification system.  

• Large dataset: MLS data has high point density compared with data obtained from 

other LiDAR platforms. Majority of mobile laser equipment can measure more than 

600,000 points per second which causes the volume of dataset reach millions of 

points within hundred meters on the railway.   

• High accuracy requirement: To avoid potential operation risk, all railway 

electrification system objects should rigorously follow the accuracy requirements 

of the designs. Therefore, the inspection should distinguish any minor 

displacements and deformations, also requires an extremely accurate classification 

result for all objects.    
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To overcome these limitations, a solid classification algorithm should be proposed 

to handle large-scale dataset and complex scene structures. Fortunately, even though 

railway infrastructure consists of complex objects, it has strong spatial regularities among 

railway elements (Jung et al., 2016). For instance, two consecutive poles have an almost 

fixed distance along railway track direction; contact wire is above the center of the rail with 

a certain height; the catenary wire is also above the contact wire; dropper connects between 

catenary wire and contact wire; the current return wire and pole are located outside rails. 

This relative spatial information is vital in railway scene to help the classification system 

understand the scene and overcome the geometric ambiguities among different objects. 

1.2 Research Objectives 
The main objective of this thesis is to develop an automatic, accurate and robust 

classification algorithm to classify railway electrification system objects in MLS data. This 

objective can be clarified in two points: 

1. Classify railway electrification scene with relative spatial regularities: 

Considering some strong relative spatial regularities both vertically and 

horizontally among railway electrification scene, a supervised method should be 

appropriate to learn this information automatically and then the learnt information 

should be utilized to impose this relative spatial regularity restriction to enforce the 

classification result follow the similar spatial distribution. 

2. Enhance learnt relative spatial regularities: The learnt spatial regularities (Gould 

et al., 2008; Jung et al., 2016; Luo and Sohn, 2014; Roig et al., 2011) is usually 
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primitive-based and this spatial regularity can be imprecise because spatial 

regularity should be instance-based in the railway scene. Due to the difficulty of 

obtaining instance information, a hierarchical spatial relation is introduced to 

overcome the limitation of local primitives. Also, the spatial regularities should be 

learnt in the full scene but not limited to specific ranges. Especially the very long-

range relation in railway electrification scene (For instance, the distance between 

adjacent poles on the railway direction) is usually hard to encode. The objective is 

improving and correcting learnt spatial regularities constrained within fixed-size 

primitives and expanding it to a full-range spatial regularity.   

1.3 Methodology Overview  
This thesis proposed a classification algorithm for targeting railway electrification systems 

using mobile laser scanning data and input data is a 3D point cloud with (X, Y, Z) 

coordinates. To efficiently handle with large volume of mobile laser scanning data, lines 

were extracted to represent original point cloud and it will be used as classification unit. 

This line or sketch based recognition process has also been widely studied in image data 

(Eitz et al., 2011; Yang et al., 2005; Yoon et al., 2010) and it has shown that this line based 

representation can also be effective for object description and recognition. Considering 

many key objects such as overhead lines have linear properties, line-based representation 

can significantly reduce the complexity of the data and preserve objects’ geometrical 

properties.   
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First, the entire MLS point cloud is transformed into 3D voxels. Within each voxel, 

a RANSAC algorithm was applied to extract multiple lines. Several geometric features 

were extracted which include orientation, point density and distance. Then a general 

discriminative classifier Support Vector Machine (Samadzadegan et al., 2010) was selected 

to classify line segments based on its geometrical features.  

To overcome the problem of feature ambiguities in local classifiers, a 

discriminative graph probabilistic framework Conditional Random Field (Lafferty et al., 

2001) was applied to encode contextual information to enhance the SVM classification 

result. Specifically, a multi-range Conditional Random Field (MrCRF), which considered 

layout compatibility between railway elements, as well as local smoothness, was 

introduced. SVM was used as the unary potential of the MrCRF model. Two different 

graphs were designed to consider local smoothness and long-range spatial regularities in 

the horizontal and vertical directions. The MrCRF integrated both local smoothness and 

layout compatibilities in the vertical and horizontal directions.   

There are two types of parameters in this MrCRF model: the first type is the 

parameters in the long-range term, while the other is the weights between different the sub-

terms. Considering the challenge of simultaneously learning all parameters, a piecewise 

training strategy (Shotton et al., 2009) was utilized to train these two types of parameters. 

Parameters in unary term and each pairwise terms were learned individually at first while 

the weights of all CRF potential terms were learned using Stochastic Gradient Descent 

(SGD). Once the training is done, an approximate inference algorithm, Loopy Belief 
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Propagation (Murphy et al., 1999) was used for inference; and the final class label was 

selected by maximizing the node belief. 

However, the spatial regularities learnt in MrCRF model are calculated based on 

the local line primitives and it is usually not accurate and the spatial regularities are 

restricted to certain ranges. To overcome these limitations, a three-layer multi-scale 

hierarchical CRF (HiCRF) classification framework was investigated. A seed-filling line 

merging strategy was proposed to merge line primitives based on its geometry properties. 

With different merging criteria, a three-scale line representation was generated, which will 

serve as nodes in proposed HiCRF respectively. A multi-range CRF model is used for first 

two finer line primitives’ classification within the bottom and middle layer. A fully 

connected CRF model with relative displacement prior potential will be applied for the 

classification of final coarsest line primitives within the top layer. 

The simplified MrCRF model with the combination of vertical and horizontal terms 

in a Radial Basis Function (RBF) kernel similarity function. To accelerate training, I 

replaced SGD optimization with L-BFGS optimization, this can automatically determine 

gradient descent direction and mean field approximation inference was utilized because it 

had a faster convergence (Toyoda and Hasegawa, 2008). 

The proposed model was evaluated on a MLS data of railway electrification system 

scene data collected in Korean high-speed railway. A variety of classification indices 

including confusion matrix, overall accuracy, completeness, correctness, quality and kappa 

index to evaluate the classification performance. To track how the specific class changes 

the classification result, a label transition was also conducted to analyze the influence of 
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different contextual information. With the comparison of different classification models, I 

demonstrated the effectiveness of the designed contextual information for correcting 

misclassification caused by local geometry ambiguities.  

1.4 Contributions 
The main contribution of this thesis is the introduction of a probabilistic framework to 

encode a multi-scale context information at full range of the scene. The specific 

contribution of this thesis can be summarized as follows: 

• Proposing a multi-scale line representation of  original mobile laser scanning data 

to reduce the computational burden of original massive point cloud data produced 

by mobile laser scanner. Inspired by Luo and Sohn (2014), a line representation can 

convert large volume of point cloud to several thousand lines but also well preserve 

the geometric detail of railway electrification scene objects. Meanwhile, this single 

scale line representation is extended to a multi-scale line representation which can 

also implicitly utilize scale information of objects in the scene.   

• Learning spatial regularities automatically from training data in the full scene from 

training data. Also inspired from Chao and Sohn (2014), a multivariate gaussian 

distribution is assumed to express the likelihood of every two class pair distribution 

in the railway scene. A look-up table is also formulated to model prior distribution  

for every two class pair. All these distributions can be obtained from training data 

via Maximum Likelihood (ML) criterion and statistical calculation.  However, this 

automatic spatial regularities learning is only restricted in a certain range. A 
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displacement probability map is later proposed to learning relative spatial 

displacement of every two line primitives at all ranges in the scene from training 

data. Test data will be encouraged to have same spatial regularities at all ranges in 

its scene. This probability displacement map also avoids this multivariate gaussian 

distribution assumption, which is not valid for all class pairs in the railway scene. 

Then, all pairwise spatial regularities can be learnt effectively and completely in 

the training data.    

In this thesis, the single scale line extraction from mobile laser scanning data and feature 

extraction from line primitives are kindly provided by Jung (Jung et al., 2016). Meanwhile, 

Luo’s work (Luo and Sohn, 2014) inspired this work from the idea of learning spatial 

regularities from multiple directions in the training data. 

1.5 Thesis Outline 
This thesis is organized into five chapters. An overview of the chapters is as follows: 

Chapter 1 introduces the motivation and problem domain of this thesis, as well as the 

overview of proposed method.  

Chapter 2 describes the background information and literature review of previous study. 

The comprehensive literature reviews will involve with the topic of railway tracking, 

railway scene understanding and CRF based contextual classification.   

Chapter 3 proposes a multi-range CRF model for the railway electrification system 

classification. It firstly describes how line primitives are extracted from original mobile 
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laser scanning data and how to calculate geometric features to represent individual line 

primitives. Then, the formulation of both unary term and three pairwise terms in CRF 

model is described in the next step. Finally, the training and inference of the model will be 

discussed. The classification result of this multi-range CRF model is presented and 

analyzed. 

Chapter 4 proposes a three-layer hierarchical CRF (HiCRF) model to overcome the 

limitations of multi-range CRF model. A line merging strategy is introduced to generate 

multi-scale line representation firstly and then the graph structure of HiCRF model is 

subsequently demonstrated. Formulation of individual layer in hierarchical CRF model is 

described later with the training and inference strategy. A comparison of different 

classification model is finally conducted and then a detailed analyse of the result reveals 

the rationality of proposed model.  

Chapter 5 gives the conclusion of this study and potential future works.     
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Chapter 2  
Background 

Since the development of railway electrification system for power supply, more than one 

third of the railroads have been electrified globally. Thus, the inspection of railway 

electrification system at a regular basis became important for railway operation. However, 

traditional human visual inspection is dangerous and label-intensive. Therefore, remote-

sensed data, especially mobile laser scanning data, is recently introduced to supplement or 

replace humans’ visual inspection. As the first step of automatic railway electrification 

system inspection, the classification of railway electrification related objects is vital for the 

accuracy of automatic inspection. Although there exists the scarcity of the research about 

automatic classification of railway electrification objects, there are fundamental research 

within the topic of automatic railway environment understanding, which includes but not 

limits to railroad tracking, railway pole detection, transmission wire modeling and railway 

scene classification. Considering the strong contextual information existed in railway 

scenes, contextual-based classification method is a reasonable solution for railway scene 

classification. In this chapter, previous research works related to automatic railway 

environment understanding and contextual-based classification method will be reviewed. 

The first part of this chapter reviews previous research on a variety of topics related to 

railway recognition. The second part discusses existing works focusing on contextual-

based classification but not limited to railway scene. Through this review, a conclusion can 
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be made that there is a research gap between the existing work and a fully automatic railway 

electrification scene classification solution. 

2.1 Automatic Railway Recognition 
Automatic railway recognition is an active research topic in the last few years within the 

field of photogrammetry, computer vision and civil engineering. This topic involves 

railroad classification and inspection, railway side object detection and classification, 

railway scene understanding and modeling, which will be reviewed respectively in next 

three subsections.  

2.1.1 Railroad Classification and Inspection 

Railroad classification and tracking is actively investigated with the use of LiDAR data. 

An automatic rail extraction method (Mohamad et al., 2013) combined terrestrial laser 

points and ALS data to model railway tracks as a dynamic system of local pairs of parallel 

line segments. Another algorithm (Beger et al., 2011) also used ALS data with airborne 

image to detect railroad. A railroad track mask was firstly generated from image, which 

assisted the classification of laser points combined with its height and spatial information. 

Railroad centerline was finally extracted from those classified points using an adopted 

random consensus algorithm. A similar strategy was also applied on the extraction of 

railroad centerline using only mobile laser scanning data (Jwa and Sohn, 2015). Naïve 

Bayes classifiers was applied for finding railway track points and then a Kalman filter was 

estimated to progressively model railroad centerline. These algorithms always relied on a 

previous classification of railway track points.  
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After the classification is the detection and tracking of railroad. There are some 

initial research works about railway inspection. A neural network based (Sacchi et al., 

2001) algorithm was proposed to detect vandal acts, but the method is too restricted only 

in metro station with abnormal human behavior. Another neural network based (Marino et 

al., 2007) method relied on two multilayer perceptron neural classifiers (MLPNCs) to 

specifically classify and locate fastening bolts. The input is image set from a digital line-

scan camera. The limitation of this method is that it can only detect bolts to determine the 

quality of railway tracks and it requires a lot of railway track images. Another fastener 

detection algorithm (Feng et al., 2014) detected and classify fasteners damage degree from 

images. The method detected track and sleeper first, then the extracted information was 

utilized to iteratively localize and model fasteners using a probabilistic structure topic 

model (STM). Their method is more robust and general for different railway tracks, but the 

result is significantly influenced by line detection quality for track and sleeper detection.  

2.1.2 Railway Object Detection  

Railway object detection was attracted a lot of attention recently as many specific objects 

along railway track are interesting for users. Power line is an important part of railway 

electrification system and a region growing based algorithm (Zhang et al., 2016) was 

proposed to detect them in MLS data. The powerline was classified according to the 

assumption that it should be parallel to railway tracks. The classified power line points 

were modeled by fitting the points to a polynomial model. Guo et al. (2016) proposed a 

power line reconstruction method based on the Random Sample Consensus (RANSAC) 

rule. Before the reconstruction of power lines, ALS data were classified into five categories 
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(power line, vegetation, building, ground and pylon) by applying the JointBoost classifier. 

Admitted that those results of power line detection algorithms were promising, but it did 

not distinguish different power line types, which is not satisfactory for precise further 

inspection task.  

2.1.3 Railway Scene Classification 

Railway scene understanding is a more challenging task for understanding the railway 

environment. Pastucha (2016) presented a method to detect and locate the overhead 

catenary system using mobile laser scanning data. Both point density and location 

information were utilized to detect the overhead catenary system related objects and then 

a modified DBSCAN algorithm was applied to classify original point cloud. Nevertheless, 

the overhead catenary system is composed of multiple objects and several types of 

electricity wires, which was not distinguished in their method. A more well-defined 

classification system (Arastounia, 2015) was presented to classify the whole scene into 

railway tracks, cantilevers and electricity cables. The method recognized those objects 

progressively with their geometric features and they achieved a good both object and point 

based accuracy. This method was completely unsupervised, and it needed a lot of parameter 

tuning to adjust different datasets. Another similar railway scene understanding algorithm 

(Zhu and Hyyppa, 2014) was introduced with different railway scene types. The approach 

utilized mobile laser scanning data for pole and building façade classification while ALS 

data was applied to get tree, ground and building roofs. Building roofs will combine with 

building facades to generate building models. The ground will refine through existing DTM 
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model. Their approach also met the generalization problem and required large amount of 

input data from different data sources. 

2.2 Context Based Classification 
Contextual information (Strat and Fischler, 1991) is defined as any information which 

influence the perception of objects or scenes within its domain. It has been proven effective 

to improve the classification results that consider only the unary appearance features. 

Usually context can be interpreted in visual perception level or objective statistical level. 

Recently, due to the technology of several graph probabilistic models, objective statistical 

level context dominates the context information research in the community of computer 

vision. In this review, only the classification methods related with objective statistical level 

context is reviewed. Meanwhile, there is a thorough review on how those graph 

probabilistic models is used for classification task.  

2.2.1 Statistical Context Information 

There are a variety of different context information types. Galleguillos and Belongie (2010) 

categorized the statistical context into three major types: semantic (probability), spatial 

(position) and scale (size).  

Semantic context shows the compatibility of certain objects and certain scenes or 

other objects. For instance, cows are more likely to appear together with grassland but not 

airplane. Compared to early manual designed compatibility rules, current research prefers 

to extract semantic context automatically from labeled training data due to the difficulty of 

defining a lot semantic context rules. The symmetric, co-occurrence matrix is the most 
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common type of semantic context. In occurrence matrix, each element indicates the number 

of times that a given class occurs in a relation to another class. For example, the widely 

applied gray-level co-occurrence matrix (GLCM) defined the gray-level spatial 

dependence over pixels, which is widely used as a image texture descriptor. An extension 

of co-occurrence (Ladicky et al., 2010) was proposed under a probabilistic graph 

framework with computational-efficient inference to encode this semantic context 

generally for all class-pairs within the same scene. 

Spatial context describes the likelihood of locating an object at certain positions. 

Spatial layout in a graph probabilistic framework (Shotton et al., 2009;Winn and Shotton, 

2006) was encoded as the probability of pairwise class occurrence at the specific location 

in the image in a look-up table. Gould et al. (2008) encoded non-parametric relative 

location maps over super-pixels as a unary global feature, which can efficiently combine 

local and global features within a simple local framework. Also, their method is capable of 

modeling complex 2D spatial relationships, not only those simple relative location relations 

(above, beside, or enclosed), but also complex relationships among multiple objects at 

multiple directions. This multiple object layout (Desai et al., 2011) was also encoded as 

spatial histogram feature in several directions for object detection task.  

Scale context refers to the information for object sizes in the scene.  Metadata (e.g. 

position, orientation, geometric horizon, and calibration) of cameras (Strat and Fischler, 

1991) can give some implicit information about object size through certain camera physical 

model. Nevertheless, scale context is still very hard to express due to the complexity of the 

object’s geometry and potential occlusion. The recent object detectors may give some clues 
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in scale context and it has been explored (Li et al., 2009;Yao et al., 2012) to combine with 

other context information. These methods both use a pre-designed object detector to 

provide objects scale information. 

2.2.2 Probabilistic Graph Model 

Instead of encoding contextual information into a local unary feature, probabilistic graph 

model is a general framework to encode the contextual information directly as an 

interaction among multiple primitives in different data sources. Probabilistic graph model 

expresses multivariate probability statistics based on both the graph theory and probability 

theory (Bishop, 2006). By considering dependency of variables using potential functions, 

the graphical model successfully simplifies the design of a complex probabilistic system. 

The key idea of the graphical model is that it parameterizes the probability distributions 

into a graph factorization. Due to its great flexibility and universality, it has been widely 

applied to many fields, such as computer vision, bioinformatics, social network analysis 

and natural language processing.  

In a probabilistic graph, nodes and edges are indispensable two elements. The nodes 

in the graph are random variables. As the random variable can be discrete or continuous, 

the probabilistic graph model can be discrete or continuous. But classification problem is 

predicting the variable hidden state from a discrete set, so all the graph probabilistic models 

applied in classification problem are discrete. Edge demonstrates the statistical 

dependencies between random variables. Due to the different properties of dependencies, 

the graph can be also directed or undirected. Directed graph only has directed edges to 

correlate nodes as a “parent-child” relation, which can be modeled using conditional 
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probabilities. Typical directed graph models are Bayesian Network and Hidden Markov 

Model (HMM). However, directed probabilistic graph model will have difficulty to model 

the random variables in which their causality cannot be fully observed (Pearl, 2014). In 

contrast, the undirected graphical model is much more flexible with this causality structure, 

which makes it more general to different problems. For undirected probabilistic graph 

model, clique is the concept that the subset of undirected graph in which nodes inside a 

clique are fully-connected. The key of undirected probabilistic graph model is expressing 

this probabilistic dependency among nodes factor multiplication inside of the clique. 

According to the size of maximum clique inside the graph, undirected probabilistic graph 

can be categorized as pairwise or high-order graph. There are two typical undirected 

probabilistic graph models, Markov Random Field (MRF) and Conditional Random Field 

(CRF), which will be respectively reviewed on their applications for image classification 

task in next two subsections. 

2.2.2.1 Markov Random Field 

Markov Random Field is an undirected probability graph which follows local Markov 

property among its nodes connected with edges within a clique. Specifically, in a Markov 

Random Field, if there is an absence of edge between two nodes, which indicates that they 

are conditionally independent given all other random variables in the graph. By contrast, 

an edge means a dependency relation between two nodes. A Markov random field Y, the 

probability distribution 𝑝(𝑌)	can be written as a Gibbs distribution according to the 

Hammersley-Clifford theorem (Hammersley and Clifford, 1971) as follows: 
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 𝑝(𝑌) =
1
𝑍) 𝜑+

+∈-
(𝑦+) (2.1) 

where 𝐶 is the clique sets in the graph and 𝜑+ is the potential function of a clique 𝑐. Z is a 

normalization term summing up the product of the potential function over the collection of 

cliques 𝐶.  

MRF provides a general framework to design potential function to encode context 

information for classification problems, which is widely applied in both image and LiDAR 

point cloud classification. A MRF based spectral–spatial hyperspectral image classification 

approach (Sun et al., 2015) was introduced to apply a MRF based prior as a hidden field 

for spatial smoothness. MRF prior was served as a spatial smoothness term to generate a 

smoother classification result. Schindler (2012) made a comparison between several 

smoothing methods for land-cover classification. It reported that MRF based smoothing 

model can significantly improve image classification quality but also caused over-

smoothing problem. Another similar algorithm (Grinias et al., 2016) improved this spatial 

MRF smoothness by incorporating a multilevel “fuzzy no-border/border” map as weight 

coefficients in a MRF-based multilevel logistic model to overcome potential over-

smoothing problem caused in previous proposed MRF model. Cao et al.(2018) also 

combined MRF with Convolutional Neural Network (CNN) to classify hyperspectral 

image. In the paper, MRF served as a smoothing post-processing to refine the classification 

result of CNN model. Besides smoothing based MRF model, a MRF based unsupervised 

segmentation approach Grinias et al., (2016) was proposed to combine all region 

appearance clues for segmenting roads and building and then a typical random forest 
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supervised classification coupled with segments to detect roads and buildings in very high-

resolution satellite image.  

Besides these applications on image classification, MRF model was also introduced 

for point cloud classification in various ways. Lafarge and Mallet (2012) applied MRF to 

classify airborne LiDAR point clouds into building, vegetation and ground, where the Potts 

model was used for the pairwise potentials, maximizing local smoothness. Another 

smoothness MRF for airborne LiDAR point cloud classification (Zhu et al., 2017) was 

coupled with high-order semantic constraints. These methods only considered smoothness 

and they also met over-smooth problem. A variant of MRF, Associative Markov network 

(AMN) has been introduced (Triebel et al., 2006) for applying pairwise potential as a 

weighted Potts model to reduce the risk of over-smoothness. Correspondingly, non-

associative Markov Network was also introduced (Shapovalov and Velizhev, 2011) for 3D 

point cloud classification. The advantage of the model is that it can impose more flexible 

constraints in contrast to AMN model simply for smoothness purpose. Also, a higher-order 

non-AMN model (Najafi et al., 2014) was introduced to encode a variety of high-order 

potential functions to model complex smoothness and geometric constraints.  

As seen from the previous review, the most popular application of MRF based 

classification model is by encoding a smoothness context to assume neighboring primitives 

that belongs to the same semantic objects. However, these MRF based smoothness terms 

cannot capture the conditional dependencies between labels and features, which causes the 

over-smoothing problem. Fortunately, Conditional Random Field (Lafferty et al., 2001) 
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gives a more flexible solution for allowing the potential function conditioned on class label 

as well as observations data (Kumar and Hebert, 2006). 

2.2.2.2 Conditional Random Field 

A Conditional Random Field (CRF) is an undirected probabilistic graph 𝐺	which is 

composed of a set of nodes 𝑛 and edges 𝑒 which connect nodes. The nodes can be image 

pixel, individual point or in my case line primitive. Edges which connect nodes model the 

statistical relation between the connected nodes. As a discriminative classifier, CRF 

directly computes posterior probability 𝑝(𝑌|𝑋) between hidden variable 𝑌and observed 

data 𝑋 into a multiplication of potential factor as follows:  

 𝑝(𝑌|𝑋) =
1

𝑍(𝑋))𝜑6(𝑦6, 𝑋))𝜑+(𝑦+, 𝑋)
8∈-6∈9

 (2.2) 

Where 𝜑6(𝑦6, 𝑋) represents unary potential, which encodes the importance of each node 

with observed data 𝑋. The clique potential 𝜑8(𝑦8, 𝑋) models the relation between hidden 

variable 𝑦6  and nodes 𝑥6 within a clique 𝑐. Dependent on the nodes involved in each clique, 

the clique potential𝜑8(𝑦8, 𝑋)  can be pairwise or high-order. Due to the exponential 

computational increase with the clique order, high-order potential is not widely applied 

even though some specific formulated high-order clique potentials (Kohli and Torr, 2009) 

can be computational trackable.  𝑆 and 𝐶 are the number of nodes and cliques within the 

graph 𝐺 respectively. 𝑍(𝑋) is a normalization constant to normalize the multiplication into 

a probability output ranging from 0 to 1 and is not related to any class label. In the context 

of classification problem, hidden variable 𝑌 is a label vector which should be determined 

for each node 𝑥6 and observed data 𝑋 is usually a feature vector to represent each node in 
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feature space. The classification goal is assigning the most probable class label 𝑦6 to each 

node 𝑥6 which can maximize the posterior probability.  

Compared with those MRF based classification methods, CRF was more heavily 

applied for classification tasks to encode more complex context information as well. He et 

al. (2004) introduced a multi-scale CRF to label the image which firstly integrated local, 

regional and global features in different spatial scales for image semantic labeling.  A 

hierarchical Conditional Random Field (Yang and Förstner, 2011) was proposed to model 

contextual information via both spatial and hierarchical structures. The image was first 

hierarchically segmented into 3 scales and a 3-layer Conditional Random Field was 

established, edges can represent the neighborhoods at one scale or at different scales.  

Through this way, the CRF model can express the influence on different region scales 

which is not modeled by one-local conditional random field. Another two-layer 

Conditional Random Field (Albert et al., 2014) was introduced for the classification of land 

cover and land use. One layer in the model is land cover layer while the other layer is land 

use layer. The node in land cover layer represents super-voxel from aerial image while the 

node in land use layer represents geometry of objects from geospatial database. Inter-layer 

edge was constructed if the super voxel has the overlapping with objects in the database. 

Intra-layer edge is the same as standard CRF. To consider more sophisticated relation 

among multiple objects, a high-order smoothness CRF framework (Kohli and Torr, 2009) 

was proposed to extend conventional Potts model into a more general 𝑃= Potts model for 

high-order label consistency in image semantic segmentation. Another high-order CRF 

(Wegner et al., 2013) was later introduced to form a high-order clique for road extraction. 
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They connected super pixels together along straight lines or 3-junctions and used a 

truncated linear function to penalize background pixels in road-dominant cliques, which is 

a special case for the 𝑃=	Potts Model. These methods usually can only encode contextual 

information within some certain ranges. Koltun (2011) represented a fully-connected CRF 

model to expand traditional grid-like CRF model to connect every node pair and a Gaussian 

pairwise potential was used to model the similarity between connected nodes. A mean field 

inference algorithm was proposed to solve the large-scale inference problem. The biggest 

contribution of this method is extending the range of contextual information to the full 

scene. Recently, CRF successfully combined multiple types of context information 

(semantic, spatial and object scale) together into a unified framework. Yao et al. (2012) 

proposed a unified CRF framework to impose several context information, which included 

object-scene compatibilities, object and semantic compatibilities, smoothness and relative 

spatial location among objects. An interesting trend is that CRF and CNN can be tightly 

coupled for image semantic task (Arnab et al., 2016;Arnab et al., 2018;Chen et al., 

2018;Zheng et al., 2015), which becomes a standard technology for image semantic task 

nowadays. 

Several different CRF frameworks were also proposed for 3D point cloud or RGBD 

image classification. Lim et Suter (Lim and Suter, 2007;Lim and Suter, 2008;Lim and 

Suter, 2009) used both standard and multi-scale CRF to incorporate both spatial 

relationship and neighbor smoothness to classify terrestrial LiDAR point cloud. The node 

in the graph model is super-voxel to reduce the computational difficulty. Within each 

super-voxel, there are also edges related to the points belong to the same super-voxel.  This 
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algorithm enlarged the neighbor scope to capture more contextual information. However, 

the down sampling operation deteriorated the distinction of minor objects and the algorithm 

was only tested on small and simple scene. Koppula et al. (2011) demonstrated a 

discriminant function to consider visual and geometry unary information and geometry 

spatial context (vertical and horizontal displacement) as a pairwise term to classify point 

cloud obtained from RGBD data. Niemeyer et al. (2012, 2014) introduced a point-based 

CRF framework for semantic labeling to classifying complex urban scene from airborne 

laser scanning data. Random Forest was used to train both association and interaction 

potentials in the CRF model.  The same strategy was also used by (Vosselman et al., 2017) 

on a segment level for the same task. Niemeyera et al. (2016) continued their work on 

proposing a two-layer CRF to preserve the small object in a point-based layer and 

formulate long range relationships in segment-based layer. Two different CRF models on 

point and segments were established individually and interacted with each other through a 

high-order smooth term with an extra long-range energy cost in point-layer and segments 

formulation in segment-layer. This method considered context information at two scales 

individually and the relation between two layers was just formulated as a high-order 

homogeneity constraint. Similar hybrid CRF (Lu et al., 2009) was introduced to extract 

DTM from DSM from airborne LiDAR data, in which both height estimation and ground 

classification are within the proposed framework. The approach calculated some geometric 

feature to predict point cloud as ground/non-ground and then a DTM will be extracted 

through a random field based on point classification. However, this hybrid representation 

did not encode contextual information with different classification primitives. Spatial 
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layout is also incorporated into a multi-range asymmetric CRF for terrestrial LiDAR data 

classification (Luo and Sohn, 2014). In the short range, the algorithm applied Potts model 

for local smoothness. Layout information is obtained from a prior table which represents 

layout information obtained from training data. A multivariate Gaussian distribution is 

assumed to represent long-range pairwise terms.  

2.3 Chapter Summary 
Railway electrification system classification is still not well researched albeit that there are 

quite few researches on railway object and scene recognition. But these methods still 

commonly meet several problems unsolved. Firstly, they usually set very complex ad-hoc 

rules to detect and classify objects, which is not general for different scenes. Another 

limitation is that these methods all sequentially processed the data and both detection and 

classification results were influenced by previous operation result. Finally, these methods 

do not have a detailed definition of objects in the railway electrification scene and they also 

did not consider the spatial regularities in the scene.  From the review of context-based 

classification methods, it is noticeable that probabilistic graph model, especially 

Conditional Random Field, provides quite solid framework which can incorporate multiple 

types of context information to improve classification result. Therefore, CRF based model 

shows the potential to solve railway electrification scene classification problem. But the 

context information imposed in CRF model also have the problem of ambiguities, 

inaccuracies and incompleteness. 
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Chapter 3  
Multi-Range Conditional Random Field 

This chapter proposes a multi-range conditional random filed (MrCRF) framework to 

classify railway electrification system objects in mobile laser scanning data. Railway tracks, 

which were firstly extracted using a method proposed by Jwa and Sohn (2015), with MLS 

data are used as input data. The railway track contains the coordinates of several railway 

points and every two adjacent railway points will compose a railway line segment. 

Therefore, every railway track will consist of several railway line segments. Line-based 

classification is applied where linear segments are used as unit entities. After generating 

the voxel structure from MLS data, linear segments for each voxel are extracted by 

applying the RANSAC algorithm where points are considered as consensus if the distance 

between the point and a candidate line is smaller than a certain user-defined distance. Note 

that multiple linear segments can be extracted in each voxel. After applying the SVM 

classifier, the proposed MrCRF, which considers short range and middle-range horizontal 

and long-range vertical relations, is applied to classify linear segments. In MrCRF, two 

different graphs, which represent short-range and middle-range relations, respectively, are 

generated to define adjacent relationships. Based on the generated graphs, integrated CRF 

is conducted to refine the SVM results. First, a brief description about model design in 

Section 3.1 will be introduced, then the design of two graphs used in the model will be 

shown in Section 3.2. The unary term will be demonstrated in Section 3.3 while three 

pairwise terms in the model will be explained in Section 3.4. The training and the inference 
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of the proposed model is illustrated in Section 3.5. the classification model is evaluated on 

a high-speed dataset in South Korea in Section 3.6. Some discussion and comparison of 

my methods with several different classification models will be presented in Section 3.7. 

A summary is provided in Section 3.8. 

3.1 Graphical Model Design 
CRF is used to encode known relations between observations and to construct consistent 

interpretations. It usually consists of a unary term, which represents the importance of each 

node, and a pairwise term, which represents the contextual information with a graph. In 

this thesis, the contextual information is expressed by the local smoothness with a short-

range graph and spatial layouts in both vertical and horizontal directions with a middle-

range graph. Thus, the proposed multi-range CRF consists of a combination of a unary 

term and three different pairwise terms. The unary term is designed to encode the likelihood 

of each node to be assigned with each label given the node features. Three pairwise terms 

formulate the local smoothness, vertical spatial layout and horizontal spatial layout through 

edges in the graphs given the observation of edge feature 𝑋. 

In a pairwise CRF, the posterior probability 𝑝(𝑌|𝑋) of the label vector 𝑌 based on 

the observed data 𝑋 is expressed as follows: 

 𝑝(𝑌|𝑋) =
1

𝑍(𝑋))𝜑6(𝑦6, 𝑋)))𝜑6>?𝑦6, 𝑦>, 𝑋@
>A=B6∈96∈9

 (3.1)    

where 𝜑6(𝑦6, 𝑥) is the unary potential and 𝜑6>?𝑦6, 𝑦>, 𝑥@ represents the pairwise potential. 

𝑍(𝑥) is the normalization constant (partition function) to ensure the probabilities p sum up 
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to 1. S is a set of nodes in the graph, and 𝑁6 represents the neighbors of node i connected 

via edges in the graph. Due to the monotonic property of the logarithm, Eq. (3.1) can also 

be expressed as follows: 

 
𝑝(𝑌|𝑋) =

1
𝑍(𝑋) 𝑒𝑥𝑝

D𝜆F𝜑6(𝑦6, 𝑋)
6∈9

+ 𝛼FF 𝜑6>?𝑦6, 𝑦>, 𝑋@
>A=B6∈9

	I (3.2)    

where 𝜆 and 𝛼 are the weight parameters to balance the unary term and pairwise term, 

respectively. In the model, the pairwise term in Eq. (3.2) is expanded to three pairwise 

terms as follows: 

 
𝑝(𝑌|𝑋) =

1
𝑍(𝑋) 𝑒𝑥𝑝 J𝜆F𝜑6(𝑦6, 𝑋)

6∈9

+ 𝛼FF 𝜑6>9 ?𝑦6, 𝑦>, 𝑋@
>A=B

K6∈9

+ 𝛽F F 𝜑6>MN?𝑦6, 𝑦>, 𝑋@
>A=B

O6∈9

+ 𝛾FF 𝜑6>MQ?𝑦6, 𝑦>, 𝑋@
>A=B

O6∈9

R 

(3.3)    

where 𝜑6(𝑦6, 𝑋) , 𝜑6>9 ?𝑦6, 𝑦>, 𝑋@ , 𝜑6>MN?𝑦6, 𝑦>, 𝑋@  and 𝜑6>MQ?𝑦6, 𝑦>, 𝑋@  represent the unary 

potential, short-range pairwise potential, vertical middle-range pairwise potential and 

horizontal middle-range pairwise potential, respectively. 𝜆 , 𝛼 , 𝛽  and 𝛾  are the weight 

parameters for the four sub-terms, respectively. 

3.2 Definition of the Graph 
In a CRF model, dependent relations between nodes are defined by an adjacent graph. In image 

space, the adjacent relation is normally determined by adjacent pixels using the standard four-

connected neighborhood (Gould et al., 2008;Shotton et al., 2009) or using the eight-

connected neighborhood (He et al., 2004). However, in laser scanning points that are 
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irregularly distributed, the definition of adjacent relations is not straightforward. In 

previous studies using point data, neighborhood relations are defined by Delaunay 

Triangulation (DT) (Douillard et al., 2008), k nearest neighbors (Niemeyer et al., 2014) and 

super-voxels (Lim and Suter, 2009). Chao and Sohn (2014) also projected 3D points into a 2D 

plane to model both horizontal and vertical relations within the plane. In this thesis, two 

different neighboring systems are defined for establishing the short-range and long-range 

relation. A sphere with a user-defined radius (1.5 m in this thesis to connect adjacent lines 

within the adjacent voxel) is used to define the short-range relation (Figure 3.1a), while a 

cylinder with a hole is used for middle-range relation (Figure 3.1b). The height and radius 

of the cylinder and the radius of the hole are heuristically chosen as 5 m, 1.5 m and 1.5 m, 

respectively, based on a priori knowledge of the railway electrification system design used 

for the current site. those parameters are set for fully constructing edges with the lines on 

one side of the railway to discover all layout information, while separating them from 

different sides of the railway. The orientation of the cylinder is determined by the rail vector.  

 

 

 

 

 

 

 

 Figure 3.1 Neighboring systems: (a) for short-range graph; (b) for middle-range graph; 

and (c) combined neighboring systems. 
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Once two types of neighboring systems are defined, short-range and middle-range 

graphs are generated. In graphs 𝐺 = (𝑉, 𝐸) , a node 𝑣 ∈ 𝑉  represents a line segment 

extracted from MLS data, and an edge 𝑒 ∈ 𝐸  is constructed if a line is found in each 

neighboring system. As mentioned above, three different graphs, the short-range graph, 

middle-range vertical graph and middle-range horizontal graph, are generated for the 

proposed CRF model G = WGX, GMN,GMQ,Y.In the short-range graph 𝐺9 = (𝑉, 𝐸9), a line is 

considered as a neighbor node if the center point of the line is found in the sphere generated 

from the other line. Note that an edge is excluded if the angle difference between two lines 

is significantly different from a user-defined threshold (manually set in this thesis). This 

exclusion is applied because that two lines, which have a larger angle difference, are likely 

to belong to different classes. Middle-range vertical graph 𝐺ZN = (𝑉, 𝐸MN) is generated by 

applying the cylinder with a hole so that short-range relations are excluded. The middle-

range horizontal graph 𝐺ZQ = (𝑉, 𝐸MQ) is the same as the middle -range vertical graph, but 

with different edge features. Furthermore, a line whose center is below the corresponding 

rail vector is excluded from the middle range graph. It can largely reduce the number of 

middle-range edges, so that the inference speed can be significantly accelerated. In both 

graphs, multiple edges for one line can be generated. The implementation of two 

neighboring systems were conducted together with Dr. Jung (Jung et al., 2016). 

3.3 Unary Term 
The unary term in Eq. (3.3) corresponds to the log posterior probability of any label 𝑦6 

given observation 𝑥6. Because the unary term only considers node features, the posterior 
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probability of any local classifiers can be used. SVM is a very typical discriminative 

classifier that maps the data into a high-dimensional feature space and finds a hyperplane 

that separates the feature space with the maximum margin (Lodha et al., 2006). The SVM 

classifier shows success in multiple class classification problems. Thus, the SVM classifier 

is firstly apply to classify the railway scene. In the SVM setting, a common Radius Basis 

Function (RBF) kernel is selected and the gamma value in RBF kernel is 0.1. There is also 

an equal weight for all classes for SVM training. The six-dimensional features is used to 

represent the property of a line segment as follows: 

• Point density: the density of points that support a line segment. 

• Residuals: the standard deviation calculated from the line segment and its 

supporting points. 

• Verticality: the vertical angle of the line. 

• Horizontal angle: the angle between the line segment and its corresponding rail 

vector in the XY plane. 

• Height: the height difference between a line segment and its corresponding railway 

line segments. 

• Distance: the horizontal distance between a line segment and its corresponding 

railway line segments.  

The SVM log posterior probability results are used as the unary term in the CRF model as 

follows: 

 𝜑6(𝑦6, 𝑋) = 𝑙𝑜𝑔?𝑝(𝑦6|𝑥6)@ (3.4)    
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3.4 Pairwise Terms 
There are three pairwise terms in the model, which express the local smoothness in a short 

range and spatial regularities in both vertical and horizontal direction in a middle range. 

3.4.1 Short-Range Binary Term 

The second term in Eq. (3.3) represents the short-range pairwise term, which is designed 

to enforce local smoothness. Local smoothness is a universal assumption that things in the 

physical world are spatially smooth (Schindler, 2012), which means that the neighboring 

line segments are more likely to have the same label. This term is designed by the Potts 

model favoring neighboring entities i and j to have the same label and penalizing the 

configuration of different labels. The Potts model is simple, but quite effective for many 

smoothness applications. In my research, the short-range pairwise potential 𝜑6>9 ?𝑦6, 𝑦>, 𝑋@ 

can be expressed as follows: 

 𝜑6>9 ?𝑦6 = 𝑙, 𝑦> = 𝑘, 𝑋@ = _1, 𝑙 = 𝑘
0, 𝑙 ≠ 𝑘 (3.5)    

3.4.2 Middle-Range Binary Term 

The scene layout illustrates the relative location of objects in the scene. For the railway 

scene, obvious regularities in terms of the relative location are evident in both the vertical 

and horizontal directions. For instance, the suspension insulator is always higher than the 

transmission wires, while the catenary wire is always closer to the rail tracks compared to 

the current return wire. This layout information can be automatically learned from the 

training data. Co-occurrence statistics recently have attracted more attention in 
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representing spatial layout. This can reflect relative locations for all objects in a map, and 

then, the map intensity represents how possible it is that two objects co-occur in a certain 

pattern. For the middle-range terms, the co-occurrence statistic is adopted to define  

“above-below” and “near-far” relations in both the vertical and horizontal directions, which 

are described in next two subsections, respectively. 

3.4.2.1 CRF Based on Vertical Layout Compatibility  

To embed the vertical layout compatibility in the CRF model, the “above-below” 

relationship is modeled for middle-range neighbors. The Bayes rule is used to calculate the 

posterior probability as follows: 

 𝑝?𝑦bcdef = 𝑙, 𝑦cfgdh = 𝑘|𝑒6>@

=
𝑝?𝑒6>|𝑦bcdef = 𝑙, 𝑦cfgdh = 𝑘@𝑝(𝑦bcdef = 𝑙, 𝑦cfgdh = 𝑘)

∑ 𝑝?𝑒6>|𝑦bcdef = 𝑙, 𝑦cfgdh = 𝑘@𝑝(𝑦bcdef = 𝑙, 𝑦cfgdh = 𝑘)jklmno∈Z,jlopmq∈Z
 

(3.6)    

where ?𝑦6, 𝑦>@ is a pair of lines consisting of the edge 𝑒6> in graph 𝐺ZN . 𝑦bcdef  indicates the 

node above the other in the edge 𝑒6>, while 𝑦cfgdh  indicates the node below the other. 

𝑝(𝑦bcdef = 𝑙, 𝑦cfgdh = 𝑘) is the prior probability that class type	𝑙 is above class 

type 𝑘. The prior probability is represented by the co-occurrence rate, which is statistically 

obtained from the training data. In this thesis, the co-occurrence rate is formulated from a 

look-up table, as shown in Figure 3.2(a). The likelihood function in Eq. (3.6) is the 

probability distribution function of edge 𝑒6>  given a configuration that class 𝑙	 is above 

class k, which quantitatively measures how likely class l can be found above class k. Here, 

it uses three-dimensional feature vector 𝑢6>  to represent edge 𝑒6>.  The feature vector 
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consists of the height difference, horizontal angle difference and verticality difference 

between two line segments. It is assumed that the edge feature distribution follows a 

multivariate Gaussian distribution as follows: 

 𝑝?𝑢6>t𝑦bcdef = 𝑙, 𝑦cfgdh = 𝑘@

=
𝑒𝑥𝑝u−12 ?𝑢6> − 𝜇g,y@

z
Σg,y|}?𝑢6> − 𝜇g,y@~

2𝜋�tΣg,yt
 

(3.7)    

where 𝜇g,y  and Σg,y  are the mean vector and covariance matrix, respectively. In the study, 

the parameters are trained from the training data through the Maximum Likelihood (ML) 

algorithm. Figure 3.2(b) shows the estimated probability distribution of the height 

difference between the electricity feeder and catenary wires. In the figure, the estimated 

probability distribution from the training data fits the test data feature distribution well. 

This indicates that the multivariate Gaussian distribution is applicable to the railway scene. 

Then, the vertical long-range pairwise term can be expressed as follows: 

 𝜑6>ZN?𝑦6, 𝑦>, 𝑋@ = 𝑙𝑜𝑔 �𝑝?𝑦bcdef = 𝑙, 𝑦cfgdh = 𝑘|𝑒6>@� (3.8)    

With ten classes (introduced in Section 3.6), 100 types of pairwise potentials are 

learned from the training data, generating different multivariate Gaussian distributions. The 

designed long-range potentials are not asymmetric because both the prior and likelihood 

are asymmetric, which makes potential 𝜑6>ZN?𝑦6, 𝑦>, 𝑋@ ≠ 𝜑>6ZN?𝑦>, 𝑦6, 𝑋@ . This 

configuration will encourage the right vertical layout and penalize the opposite vertical 

layout. 
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                           (a)                                                                  (b)  
Figure 3.2 Prior and likelihood estimation of the vertical middle-range pairwise 

potential:  (a) look-up table where row i is below column j; and (b) probability density 

distribution of the height difference (red curve: estimated Gaussian distribution learned 

from the training data). 

3.4.2.2 CRF Based on Horizontal Layout Compatibility  

Similar to the vertical middle-range pairwise term, a “near-far” relationship in this middle-

range horizontal pairwise term is modeled. The same middle-range graph is used, but a 

different feature property is applied to represent the near-far relationship. Three-

dimensional feature vector 𝛿6> which consists of the horizontal angle difference, vertical 

angle difference and horizontal distance difference, is formulated between two line 

segments. The Bayes rule is also used to calculate the posterior probability as follows: 

 𝑝?𝑦�fb� = 𝑙, 𝑦�b� = 𝑘|𝛿6>@

=
𝑝?𝛿6>|𝑦�fb� = 𝑙, 𝑦�b� = 𝑘@𝑝?𝑦�fb� = 𝑙, 𝑦�b� = 𝑘@

∑ 𝑝?𝛿6>|𝑦�fb� = 𝑙, 𝑦�b� = 𝑘@𝑝?𝑦�fb� = 𝑙, 𝑦�b� = 𝑘@j�ok�∈Z,j�k�∈Z
 

(3.9)    

where ?𝑦6, 𝑦>@ is a pair of lines consisting of the edge 𝑒6>  in graph 𝐺ZQ . 𝑦�fb�  and 𝑦�b� 

represent the horizontal relations between nodes.  
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In Eq. (3.9), 𝑝?𝑦�fb� = 𝑙, 𝑦�b� = 𝑘@ is the prior probability that class type 	𝑙  is 

closer to the railway than class type 𝑘. The prior probability is expressed by a look-up table 

for the near-far relation as shown in Figure 3.3(a). Similarly, distributions for the edge 

features in horizontal relation distributions are formulated as a multivariate Gaussian 

distribution as follows: 

 𝑝?𝑢6>t𝑦�fb� = 𝑙, 𝑦�b� = 𝑘@

=
𝑒𝑥𝑝u−12 ?𝑢6> − 𝜇g,y@

z
Σg,y|}?𝑢6> − 𝜇g,y@~

2𝜋�tΣg,yt
 

(3.10)    

where 𝜇g,y  is the mean vector and 𝛴g,y  represents the covariance matrix. The estimated 

probability distribution of the horizontal angle difference is shown for the electricity feeder 

and catenary wire in Figure 3.3(b). Like the vertical middle-range pairwise potential, the 

horizontal middle -range pairwise potential is also asymmetric, and it encourages the right 

horizontal layout configuration. 
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                           (a)                                                                      (b)  

Figure 3.3 Prior and likelihood estimation of the horizontal middle-range pairwise 

potential: (a) look-up table where row i is closer to the railway than column j; and (b) 

probability density distribution of the verticality difference (red curve: estimated 

Gaussian distribution learned from training data). 

3.5 Training and Inference 
As mentioned above, there are two types of parameters to be trained in the integrated CRF 

model. The first type is the parameters in the middle-range term, while the other is the 

weights between different sub-terms (𝜆, 𝛼, 𝛽 and 𝛾 in Eq. (3.3)). The parameters in the 

middle-range term include the prior term and the parameters (𝜇 , ∑ ) in multivariate 

Gaussian distributions for estimating the likelihood function. Generally, parameters in CRF 

can be learned by maximizing the posterior probabilities of true labels given the training 

data (Luo and Sohn, 2014). The partial derivative needs to be calculated to find the best 

parameters that maximizes the posterior probability of true labels. However, because the 

partial derivative is a nonlinear function with respect to each term, it is challenging to 
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directly calculate the partial derivative, which makes it very difficult to train all parameters 

at once. Some previous research works (Gould et al., 2008;Kohli and Torr, 2009;Shotton 

et al., 2009) simplified the training through assigning the same weight value to the unary 

term and pairwise term. However, this simplification cannot reflect the relative importance 

of each term in the final decision-making. Alternatively, a two-step training strategy is set 

to train all parameters. Firstly, the parameters in the middle-range term are trained 

individually. Second, the relative weights for sub-terms are subsequently learned through 

the Stochastic Gradient Decent (SGD) algorithm. The inference is applied when all 

parameters are trained. Section 3.5.1 introduces how these parameters in the CRF model 

are trained, while Section 3.5.2 demonstrates the inference operation to the final decision-

making. 

3.5.1 Parameter Estimation 

For the unary term in the integrated CRF model, it directly uses the SVM confidence value 

as the unary term, which is learned from the same training data as the CRF model. Pairwise 

potential is implemented as the Potts model that each edge potential is the exponent of an 

identity matrix. Thus, no parameter needs to be trained. In two middle-range pairwise 

terms, the prior is obtained from relative location probability maps (look-up tables, 𝐿e and 

𝐿8 ), which statistically calculate the co-occurrence rate over all class pairs. If a line 

primitive i with class label c is higher than a line primitive j with class label 𝑐� , the 

corresponding element 𝐿e(𝑐, 𝑐�) in the look-up table gets a vote. Once all vertical relations 

are recorded in the look-up table, elements in the look-up table are normalized, satisfying 
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∑ 𝐿e(𝑐, 𝑐�)�
+�} = 1 . In a similar way, 𝐿8  is calculated by considering the  

near-far relation. The multivariate Gaussian distribution parameters are estimated by the 

traditional maximum likelihood algorithm (Gauvain and Lee, 1994), which calculates the 

mean vector and covariance matrix from training data. 

Once all terms are estimated, the weights for sub-terms using the SGD algorithm 

(Vishwanathan et al., 2006) are learnt. SGD is a stochastic approximation of gradient 

descent optimization technology to find the global minimum of the objective function. 

Different from traditional gradient descent (GD), which uses whole training data to 

calculate the partial derivate, SGD randomly picks a subset of training samples and then 

updates the parameters according to the gradient calculated by the subset of training data. 

Although it is not the exact gradient that moves to the optimal solution directly, the 

parameter updating process using the subset of training data can be much simplified. In the 

CRF model proposed in this thesis, the marginal probability of training data is required to 

compute the partial derivative, so the inference process should be applied at every iteration 

to update the partial derivative. 

The objective function to be maximized is the logarithm form of the estimated 

posterior probability as follows: 
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 LP(𝜃) = 𝜆F𝜑6(𝑋, 𝑦6)
6∈N

+ 𝛼F F 𝜑6>9 ?𝑋, 𝑦6, 𝑦>@
>∈=K�6∈N

+ 𝛽F F 𝜑6>ZN?𝑋, 𝑦6 , 𝑦>@
>∈=O�6∈N

+ 𝛾F F 𝜑6>ZQ?𝑋, 𝑦6, 𝑦>@
>∈=O�6∈N

− 𝐼𝑛[𝑍(𝑋)] 

(3.11)    

In Eq. (3.11), λ is set to one. This is because weights (λ, α, β and γ) can be scaled 

up or down, which does not affect the result of inference. To update the weight parameters 

(α, β and γ), the partial derivative regarding each weight term is calculated as follows: 

 
𝑔�� =

𝜕𝐿𝑃(𝜃�)
𝜕𝛼 =F F 𝜑6>9 ?𝑋, 𝑦6, 𝑦>@

>∈=K�6∈N

−
1

𝑍(𝑋)	×	
𝜕𝑍(𝑋)
𝜕𝛼  (3.12) 

 1
𝑍(𝑋) 	× 	

𝜕𝑍(𝑋)
𝜕𝛼 =F F 𝜑6>9 ?𝑋, 𝑦6, 𝑦>@

>∈=K�6∈N

	× 	𝑀 �𝑃?𝑌|𝑋, 𝑦6 , 𝑦>, 𝜃�@� (3.13) 

where 𝑔��  is the partial derivative of 𝛼  after 𝑡  updates and 𝑀�𝑃?𝑌|𝑋, 𝑦6, 𝑦>, 𝜃�@� is the 

edge margin of the short-range pairwise term, which is obtained from the inference 

operation given the current weight parameters. The weight parameter of short-range 

updates uses the following equation: 

 𝛼��} = 𝛼� − 𝜀	 × 	𝑔��  (3.14) 

In Eq. (3.14), a learning rate 𝜀  needs to be properly determined to make the function 

converge stably and control the converging speed. However, it is not an easy task to 

determine a proper learning rate. The common strategy is to set a relatively larger learning 

rate at the beginning to accelerate convergence and then reduce the learning rate gradually 
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to ensure a stable convergence (Bowling and Veloso, 2002). A similar strategy is applied 

here to determine the learning rate. 

3.5.2 Inference 

Inference is the operation to find the best possible label configuration in the graphical 

model given the observation 𝑋. Usually the inference operation can be divided into exact 

inference and approximate inference. Exact inference is applicable to certain special 

graphs, such as chain-structure or tree-structure graphs. However, the exact inference 

cannot be applied in this case where a graph has loops. Thus, the Loopy Belief Propagation 

(LBP) algorithm, which was reported as a satisfactory solution for the inference of graphs 

with loops, is applied for approximate inference. The final label is decided by maximizing 

the node belief from the inference results. 

3.6 Experiment Results 
The proposed MrCRF method was tested on MLS data taken at the Honam high-speed 

railway in South Korea. The MLS data were acquired in 2014 using the Trimble MX8 

system, which was mounted on an inspection train with a speed of 50 km/h to 70 km/h. 

Trimble MX8 system is a premium mobile laser scanning system which can produce 

accurate dense point cloud with dual scanners producing more than one million points per 

second. The advantage of Trimble MX8 system makes it suitable for our task because it 

can provide higher resolution of railway electrification scene objects for the later 

classification and modeling task.  The average density varies on the position of the laser 
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scanner ranging from 100 points/m2 to 800 points/m2. Figure 3.4 and Table 3.1 show the 

Trimble MX8 system used for this study and its technical specifications. 

 

Figure 3.4 Trimble MX8 mounted on a train.  

Table 3.1 Specifications of the Trimble MX8 system. 

Parameter Values 
Accuracy 10 mm 
Precision 5 mm 

Maximum effective measurement rate 600,000 points/second 
Line scan speed Up to 200 lines/second 

Echo signal intensity High resolution 16-bit intensity 
Range Up to 500 m 

 

The length of the dataset selected for this thesis is approximately 1 km. There are 

two pairs of rail tracks and 24 poles at regular intervals. The dataset was divided into six 

sub-regions for cross-validation purposes, each of which has four poles (two pole-pairs), 

and its length is approximately 160 m. Under this setting, to evaluate the result of each sub-

region, the rest five sub-regions will be used for training. Therefore, usually approximate 

800m railway dataset will be used for training and each training set has more than 20,000 

line primitives. Each sub-region has a slightly different configuration of key objects 

comprising the railway electrification system. This thesis is aimed to recognize 10 different 

classes of the railway electrification system objects, as shown in Figure 3.5. The targeted 
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objects play important roles for safely supplying the electricity to the trains. A brief 

description of the targeted object classes is given below: 

• Electricity feeder (EF): a set of electric conductors that originate from a primary 

distribution center and supply power to one or more secondary distribution centers. 

The electricity feeders are located at the top of the railway scene with an elevation of 

8 m above the ground (vertical configuration), while they are horizontally placed 

between rail tracks and poles (horizontal configuration).  

• Catenary wire (CAW): a wire to keep the geometry of contact wires within defined 

limits. The catenary wires are at an elevation of approximately 6.5 m above the rails 

and approximately 1.2 m above the contact wire (vertical configuration). In the 

horizontal configuration, the wire is located just above the rails. 

• Contact wire (COW): a wire that transfers electrical energy to the train and directly 

contacts the train. In the vertical configuration of the railway scene, this wire is at an 

elevation of approximately 5.3 m above the rails.  

• Current return wire (CRW): a wire observed outside the rails in the horizontal 

configuration and supported by a pole. The current return wires are located between 

the catenary wire and the contact wire in the vertical configuration.  

• Connecting wire (CNW): a wire connecting the catenary or contact wires to the poles. 

Thus, the characteristics of the horizontal and vertical configurations of the connecting 

wires vary relatively more compared to the other targeted objects. 

• Suspension insulator (SI): a structure connecting between the electricity feeder and 

pole, which is observed at the top of the railway scene. Note that the suspension 



 

 45 

insulator and a structure attached to the pole are defined as the class “suspension 

insulator”. 

• Movable bracket (MB): a movable structure attached to the pole, which supports the 

wires.  

• Dropper (Dro): a vertical wire connecting between catenary wire and contact wire.  

• Pole (Pole): a pole is located outside of the rail tracks and track beds.  

• Ground (Gro): a ground surface placed underneath the overhead wires and rail tracks.  

 

Figure 3.5 Electrification system configuration and 10 object classes of the Honam 

high-speed railway: (a) a photograph; and (b) Mobile Laser Scanning (MLS) data. 

The reference data labeled with 10 object classes was produced by a manual 

classification method provided by commercial software, TerraScan. Figure 3.6 shows the 

results of the manually-labelled reference data. In Figure 3.6, major overhead wires (i.e., 

contact and catenary wires) and associated structures (i.e., poles, suspension insulators and 

brackets) have relatively strong regularities of object layout and appearance. However, 

some scenes, such as Sub-region 5 and Sub-region 6 in Figure 3.6, show more complex 
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object configurations where the layout regularity is not directly applicable; the sub-regions 

contain many merging wires and double contact/catenary wires (not single). Furthermore, 

the contact wire is often not observed at one side of the railway. 

 

Figure 3.6 Manually-classified reference data: (a) entire region; and (b–g) six sub-

regions (different colors represent different classes). 

3.6.1 Line Extraction Results 

Instead of classifying the entire MLS laser point cloud, our classification process 

determines object labels to lines where their member points are classified with the same 

labels. This line-based classification is suitable for classifying railway corridor scenes, as 

many key objects (i.e., wires and poles) can be well represented with linear primitives. For 

converting the MLS point clouds (Figure 3.7a) into the line space, the railway corridor 

scene was represented with voxels with a 1-m bin size (Figure 3.7b), and line segments 
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were extracted per voxel using a conventional RANSAC algorithm (Figure 3.7c). The inlier 

threshold (maximum point distance with respect to the corresponding line) used for 

RANSAC was heuristically determined as 5 cm by considering the positional accuracy of 

the mobile laser scanner Trimble MX8, the minimum distance between wires and the 

acceptable tolerance of the noises degrading the performance of the classification. Table 

3.2 shows the total number of lines extracted from each sub-region. Note that the 

RANSAC-based method works iteratively until a termination condition is met, which 

allows extracting multiple line segments within a voxel. Due to the scene complexity, a 

relatively larger number of lines were extracted in Sub-region 5 and Sub-region 6.  

 
Figure 3.7 Example of voxelization and line extraction: (a) input MLS data and rail 

vectors, (b) voxelization; and (c) extracted lines. 

Table 3.2 Extracted lines for each sub-region. 

Sub-Region Region 
1 

Region 
2 

Region 
3 

Region 
4 

Region 
5 

Region 
6 

# of extracted 
lines 4327 4427 3783 4091 4730 4762 
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3.6.2 Classification Results 

The classification results over the test railway corridor scene were produced by three different 

classifiers: (1) the local classifier (SVM) without contextual features; (2) the short-range CRF 

(SrCRF) model with local smoothness; and (3) the multi-range CRF (MrCRF) with local 

smoothness and layout regularity. The overall classification results are shown in Figure 3.8.  

 
(a) 

 
(b) 

 
(c) 

Figure 3.8 Classification results produced over the entire railway test scene: (a) 

SVM; (b) short-range Conditional Random Field (CRF); and (c) multi-range CRF; 

electricity feeder (black), catenary wire (blue), contact wire (red), current return wire (sky 

blue), connecting wire (dark green), suspension insulator (brown), movable bracket 

(magenta), dropper (green), pole (grey) and ground (orange). 
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Six-fold cross-validation was applied to evaluate the performance of each classifier 

to reduce the bias due to training and testing data selection. Under this setting, five sub-

regions will be used as training data while the rest one sub-region will be evaluated. 

Therefore, all six sub-regions can be evaluated finally and the result will be combined 

together. The posterior probability generated by SVM was used as the input of the unary 

potential in the short-range and multi-range CRF models. The SVM classifier used several 

features characterizing the targeted railway electrification system objects, which included 

density, residuals, verticality, horizontal angle, height and horizontal distance. In CRF 

models, the line-based graphs were generated with two difference scales, one for the short-

range graph with a smaller proximity of associations and the other for the long-range graph 

with a larger one (Section 3.2). Note that, in the middle-range graph, lines were excluded 

if the height of a line is below one of its corresponding rail track vectors. This exclusion 

can reduce the number of middle-range edges and simplify the graph complexity, which 

can significantly accelerate the inference speed. Table 3.3 shows the number of edges 

generated in each sub-region. Figure 3.9 (a), (b) show the examples of short-range and 

middle-range graphs, respectively. In the horizontal CRF model, the horizontal angle 

difference, vertical angle difference and the difference of horizontal distances between two 

nodes were used as features, while in the vertical CRF model, the height difference between 

two nodes was used as the feature. For the multi-range CRF model, multivariate Gaussian 

parameters in middle-range pairwise terms were estimated by the maximum likelihood 

algorithm, while the weight parameters for four sub-terms in the CRF model were 

estimated by the SGD algorithm as described in Section 3.5. To ensure stable convergence, 
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the learning rate in SGD starts at 0.0001, and it will halve with the increase of the iterations. 

For the vertical and horizontal middle-range pairwise terms, the learning rate is always half 

of the short-range term because the gradient is steeper for the long-range term. Under this 

setting, it can make sure all weights can converge together.  

Table 3.3 Edge number of different models in different sub-regions. 

Edge Number Region 1 Region 2 Region 3 Region 4 Region 5 Region 6 
# of short-range edges 6967 7844 6671 7657 9460 8469 
# of long-range edges  7000 7557 6764 7728 11,331 8005 

 

Figure 3.9 Examples of the adjacency graph: (a) short-range graph; and (b) middle-

range graph. 

The proposed MrCRF classifier was implemented on a desktop computer with 16 

GM of memory, an Intel® Core™ i7-4790 CPU with 3.60 GHZ that runs the Windows 10 

Professional OS. A total of only 320.45 s was required for classifying the entire datasets. 

The most of computational gain was obtained by the fact that the proposed algorithm 

classifies line primitives instead of point clouds. In the training stage, the training of both 

horizontal and vertical multivariate Gaussian distribution parameters cost 0.94 s, while the 

training of weight parameters was relatively time consuming, varying from 1.5 h to 3 h in 

six-fold cross-validation due to inefficient convergence in the LBP algorithm.  
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To evaluate the performance of the classification methods by comparing  results 

obtained with the reference data, a confusion matrix, also known as an error metric, was 

used. Each column of the confusion matrix indicates the instances in a classification result, 

while each row represents the instance in a reference. Based on the confusion matrix, the 

performance of a classifier for each class is measured with five different scores, overall 

accuracy (OA), completeness (Comp.), correctness (Corr.), quality (Quality) and kappa 

index (Kappa) (Rutzinger et al., 2009). 

 Overall	Accuracy = 	
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑁 + 𝐹𝑃 

Correctness = 	
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 

Completeness =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 

(3.15) 

 𝑄𝑢𝑎𝑙𝑖𝑡𝑦 =
Corr.× Comp.

𝐶orr.+Comp.−Corr.× Comp. 

𝐾𝑎𝑝𝑝𝑎 =
𝑂𝐴 − 𝑂𝐸
1 − 𝑂𝐸  

 

TP (true positive) represents an instance in the classification result correctly identified by 

a reference; FP (false positive) is an instance incorrectly identified by a reference; FN 

(false negative) represents a missing instance incorrectly identified by a reference. OA is 

overall accuracy while OE is hypothetical probability of chance agreement. Overall 

accuracy shows how many entities are correctly classified. Meanwhile, the correctness, 

measuring the fraction of the number of true positive prediction of a certain class from the 

total number of the positive class predicted, can be estimated. The completeness can 

measure the percentage of the number of true positive prediction of a certain class from the 
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total number of the class in the reference. The quality is the balance between correctness 

and completeness, which reflects the classification quality of a certain class. The Kappa 

Index is an index to illustrate overall classification result with the consideration of the 

quality of every class.  

3.6.2.1 SVM Classification Results 

Table 3.4 shows the confusion matrix produced by the SVM classifier. A high rate of the 

overall accuracy (approximately 98.91%) was achieved by the SVM classifier. As in Table 

3.4, per class precision and recall indicate that a group category of “major wire” objects 

(i.e., electricity feeder, catenary wire, contact wire, current return wire) and ground were 

significantly well classified with over 99% accuracy. The major wire objects play 

important roles to transfer the electricity. The shapes of these major objects do not vary 

much across railway corridor scenes. This strong regularity leads to a small variance in 

features characterizing the major wire objects used in SVM, which produced highly 

accurate classification results. However, there are some misclassification errors, which 

mainly occurred over a group category of “supporting structure” objects (i.e., suspension 

insulator, movable bracket, dropper and pole) and the other group category of “non-major 

wire” objects (i.e., dropper and connecting wire). In particular, relatively low completeness 

for those classes can be observed compared to their corresponding correctness value. The 

highest classification errors in both correctness (80.22%) and completeness (66.97%) were 

produced by SVM over suspension insulator objects, which were often confused with 

movable brackets and poles. Furthermore, it was interesting to observe that movable 

brackets and poles were mislabeled as various classes, such as suspension insulator, 
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dropper, pole and ground; where many poles were misclassified to ground in SVM results; 

while some droppers in the reference were classified to movable bracket or pole in the 

classified results. 

Table 3.4 Confusion matrix for SVM results: electricity feeder (EF), catenary wire 

(CAW), contact wire (COW), current return wire (CRW), connecting wire (CNW), 

suspension insulator (SI), movable bracket (MB), dropper (Dro), pole (Pole) and ground 

(Gro). 

 Classified Comp.  
(%) EF CAW COW CRW CNW SI MB Dro Pole Gro 

Reference 

EF 1249 0 0 0 2 0 0 0 0 0 99.84 
CAW 0 1365 0 0 4 0 2 0 0 0 99.56 
COW 0 1 687 0 2 0 1 0 0 1 99.28 
CRW 0 0 0 970 0 0 1 0 0 0 99.90 
CNW 0 8 0 0 372 0 12 0 6 6 92.08 

SI 0 0 0 0 0 73 15 0 16 5 66.97 
MB 1 1 0 6 7 12 375 12 8 11 86.61 
Dro 0 0 0 0 0 0 4 134 5 1 93.06 
Pole 0 0 0 0 2 6 9 1 678 69 88.63 
Gro 0 0 0 0 0 0 2 0 46 19,932 99.76 

Corr. (%) 99.92 99.27 100 99.38 95.63 80.22 89.07 91.16 89.33 99.54  

Qual. (%) 99.76 98.84 99.28 99.28 88.36 57.48 78.29 85.36 80.15 99.30  

Overall Accuracy (%)           98.91 
Kappa Index (%)           97.31 

 

3.6.2.2 SrCRF Classification Results  

The classification results of SrCRF are summarized in Table 3.5. As in Table 3.5, the 

overall accuracy of the SrCRF is 98.76%, which shows similar classification performance 

compared to the SVM results. It is found that the highest classification errors were 

produced by SrCRF, over the suspension insulator in precision (89.10%) and the movable 

bracket in recall (76.15%). Thus, the lowest error bound per object produced by SrCRF is 

higher than SVM. However, similar to the SVM results, it is observed that a classification 

tendency of SrCRF, which produced higher accuracy over the “major wire” objects and a 
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lower accuracy over “non-major wire” objects, while the lowest success rate was obtained 

over “supporting structure” objects. Furthermore, the pole and movable brackets were 

misclassified with several types of classes. Compared to the SVM results (Table 3.4), the 

SrCRF improved the classification performance in both correctness and completeness 

measures for over the suspension insulator and dropper: +10.99% and +3.28% in 

correctness; +9.18% and +1.34% in completeness, respectively. While, over the movable 

bracket, +2.07% completeness was improved by SrCRF, but shows similar performance in 

precision. Major wires and pole remained at a similar level of accuracy. 

Table 3.5 Confusion matrix for SrCRF results: electricity feeder (EF), catenary wire 

(CAW), contact wire (COW), current return wire (CRW), connecting wire (CNW), 

suspension insulator (SI), movable bracket (MB), dropper (Dro), pole (Pole) and ground 

(Gro). 

 Classified Comp.  
(%) EF CAW COW CRW CNW SI MB Dro Pole Gro 

Reference 

EF 1249 0 0 0 2 0 0 0 0 0 99.84 
CAW 0 1365 0 0 4 0 2 0 0 0 99.56 
COW 0 0 688 0 2 0 1 0 0 1 99.42 
CRW 0 0 0 970 0 0 1 0 0 0 99.90 
CNW 0 30 0 0 349 0 17 0 4 4 86.39 

SI 0 0 0 0 0 83 14 0 11 1 76.15 
MB 0 2 0 6 7 8 384 8 13 5 88.68 
Dro 0 0 0 0 0 0 3 136 5 0 94.44 
Pole 0 0 0 0 2 0 6 0 612 145 80.00 
Gro 0 0 0 0 0 0 3 0 17 19,960 99.90 

Corr. (%) 100 97.71 100 99.39 95.36 91.21 89.10 94.44 92.45 99.22  
Qual. (%) 99.84 97.29 99.42 99.29 82.91 70.94 80.00 89.47 75.09 99.12  

Overall Accuracy (%)           98.76 
Kappa Index (%)           96.92 

3.6.2.3 MrCRF Classification Results 

Different with SVM classifier and SrCRF classifier, MrCRF needs a training stage to train 

both the middle range potential terms and weight matrix described in Section 3.5.1. The 

look-up table and multivariate Gaussian distribution parameters were trained from the 
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training data (Section 3.5.1). The weight parameters for different terms were estimated 

using the SGD algorithm (Section 3.5.1). The weight of the unary term (λ) was always 

fixed to one. The maximum number of iterations was fixed at 250. Figure 3.10 shows the 

transition of the weight values according to the iterations. The weight for short-range term 

α slightly increased and quickly converged to a little higher value than the unary term (λ=1). 

The weight values for horizontal and vertical long-range terms (β and γ) rapidly decreased 

at the first stage, and then, the slope was gradually reduced. The results indicate that short-

range potential affects the classification results in the proposed CRF model more.  

 

Figure 3.10. Weight learning of MrCRF using the SGD algorithm. 

Table 3.6 describes the confusion matrix measuring the classification performance 

of MrCRF. As shown in Table 3.6, the overall accuracy of the MrCRF is 99.44%. The 

MrCRF shows that both correctness and completeness values of all classes were higher 

than 90%. Compared to the SVM results, major wires and ground remained at a similar 

level of accuracy. Significant improvement was achieved over the suspension insulator 

(93.58% in completeness and 99.03% in correctness), movable bracket (94.92% in 
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completeness and 93.84% in correctness) and pole (97.65% in completeness and 93.14% 

in correctness). However, the classification accuracy for the connecting wire was 

degenerated, representing 91.58% in completeness and 95.36% in correctness. 

Completeness for the dropper was also degenerated (90.28%). Overall, the results (Table 

3.4) clearly suggest that MrCRF outperformed SVM and SrCRF, by improving not only 

the overall classification accuracy, but also per-class accuracy. 

Table 3.6 Confusion matrix for MrCRF results: electricity feeder (EF), catenary wire 

(CAW), contact wire (COW), current return wire (CRW), connecting wire (CNW), 

suspension insulator (SI), movable bracket (MB), dropper (Dro), pole (Pole) and ground 

(Gro). 

 Classified Comp.  
(%) EF CAW COW CRW CNW SI MB Dro Pole Gro 

Reference 

EF 1244 0 0 0 7 0 0 0 0 0 99.44 
CAW 0 1366 0 0 2 0 1 0 2 0 99.64 
COW 0 2 684 0 3 0 1 0 2 0 98.84 
CRW 0 0 0 970 1 0 0 0 0 0 99.90 
CNW 0 8 14 7 370 0 1 0 4 0 91.58 

SI 0 0 0 0 0 102 0 0 7 0 93.58 
MB 0 3 0 11 4 0 411 0 4 0 94.92 
Dro 0 0 0 0 0 0 6 130 8 0 90.28 
Pole 0 0 0 0 1 1 16 0 747 0 97.65 
Gro 0 0 0 0 0 0 2 0 28 19,950 99.85 

Corr. (%) 100 99.06 97.99 98.18 95.36 99.03 93.84 100 93.14 100  
Qual. (%) 99.44 98.71 96.88 98.08 87.67 92.73 89.35 90.28 91.10 99.85  

Overall Accuracy (%)           99.44 
Kappa Index (%)           98.63 

3.7 Discussion 
Three different classifiers, including SVM, SrCRF and MrCRF, were developed to classify 

the railway electrification system objects from MLS data. Table 3.7 summarizes the overall 

classification performance obtained by three classifiers measured with correctness, 

completeness and quality score using Eq. (3.15). As in Table 3.7, the SVM classifier 

produced the lowest classification performance in terms of quality (93.39%) and 
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correctness (94.35%) compared to SrCRF and MrCRF classifiers, while a similar 

completeness rate to the one produced by SrCRF. It is found that SVM is the least effective 

classifier for recognizing the supporting structure objects, including the suspension 

insulator, movable brackets and poles. However, this result is expected. The supporting 

structure objects are much more complex compared to the object types. The objects are 

comprised of multiple parts (e.g., suspension insulator and movable brackets), which cause 

difficulties to holistically characterize the objects in terms of shape, geometry and spatial 

relations. Furthermore, the physical size of supporting structure objects (object scale) is 

large and often attached to the other type of classes. Thus, it can be observed that the lines 

extracted from the objects were easily fragmented. In this study, line segments are used as 

features for classification purposes. The fragmented line segments are effective in 

representing local object characteristics but are not effective to characterize them in their full 

object scales. Thus, similar feature distributions can be found in different objects. 

Table 3.7 A summary of the classification performance achieved by three classifiers 
(unit: %). 

Class 
(a) SVM (b) SrCRF (c) MrCRF 

Comp. Corr. Qual. Comp. Corr. Qual. Comp. Corr. Qual. 
EF 99.84 99.92 99.76 99.84 100 99.84 99.44 100 99.44 

CAW 99.56 99.27 98.84 99.56 97.71 97.29 99.64 99.06 98.71 
COW 99.28 100 99.28 99.42 100 99.42 98.84 97.99 96.88 
CRW 99.90 99.38 99.28 99.90 99.39 99.29 99.90 98.18 98.08 
CNW 92.08 95.63 88.36 86.39 95.36 82.91 91.58 95.36 87.67 

SI 66.97 80.22 57.48 76.15 91.21 70.94 93.58 99.03 92.73 
MB 86.61 89.07 78.29 88.68 89.10 80.00 94.92 93.84 89.35 
Dro 93.06 91.16 85.36 94.44 94.44 89.47 90.28 100 90.28 
Pole 88.63 89.33 80.15 80.00 92.45 75.09 97.65 93.14 91.10 
Gro 99.76 99.54 99.30 99.90 99.22 99.12 99.85 100 99.85 

Average 92.57 94.35 88.61 92.43 95.89 89.34 96.57 97.66 94.41 
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The most gains achieved by MrCRF come from its discriminative ability improved 

by enforcing spatial layout regularities (horizontal and vertical layout compatibility) 

among objects. For instance, all movable brackets, which were misclassified to dropper in 

the SVM results, were rectified by the middle-range CRF (Figure 3.11a). This is because 

the horizontal layout term in the middle-range CRF utilizes the placement relations of 

droppers to the rail track and movable bracket in the horizontal direction, which shows a 

strong regular pattern (i.e., the dropper is closer to the railway vector than the movable 

bracket in the horizontal direction). Furthermore, poles, which were misclassified to 

ground in SrCRF, were well refined (Figure 3.11b). With a similar reason to the dropper 

case, the misclassification errors over the pole class can be rectified by utilizing the 

horizontal layout compatibility between the rail track and pole (i.e., the pole is always 

observed at the farthest position from the rail track in the horizontal direction). In contrast 

to the horizontal regularity, the suspension insulator and movable brackets were 

significantly improved in both completeness and correctness by enforcing their vertical 

regularities in the middle-range CRF (Figure 3.11c).  
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Figure 3.11 The comparison of classification result: (a) the dropper in the SVM results 

(left) was classified to movable bracket in the integrated CRF model (right); (b) the 

ground in the SrCRF (left) was classified to pole in MrCRF model (right); (c) the 

suspension insulators were well rectified in MrCRF model. Black circle represents the 

misclassified line primitives in SVM corrected by MrCRF. 

3.8 Chapter Summary 
In this chapter, MrCRF model is described and the classification performance of the model 

is evaluated on a 1 km dataset in South Korea, which shows the proposed MrCRF achieved 

significant improvement on the classification results obtained by local classifier SVM. The 

result clearly reflects how local smoothness and spatial layout encoded in MrCRF model 

can help the classification decision-making. However, it is found that its performance still 
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needs to be further improved, especially over the connecting wire and dropper. Both 

completeness and correctness for the connecting wire were degenerated, as shown in Table 

3.7. This degeneracy is caused by a locality of the line segment used for characterizing the 

spatial layouts. If a set of fragmented line segments is extracted from a single connecting 

line, their distributions in horizontal locations vary, which leads to the ambiguity of 

encoding the horizontal layout characteristics between connecting lines and other objects. 

Furthermore, the completeness of the dropper was lowered. This is due to the fact that the 

contact wire is missing at certain regions so that the relation between the dropper and contact 

wire does not follow the defined vertical regularity. These problems can be potentially 

resolved by encoding the layout regularities with primitives adaptive to object scales and 

learning more spatial layout at more ranges, which inspires us to propose a multi-layer 

hierarchical CRF model. 
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Chapter 4  
Multi-Scale Hierarchical Conditional 
Random Field 

In this chapter, a multi-scale hierarchical Conditional Random Filed (HiCRF) framework 

is proposed to improve the classification results obtained by MrCRF proposed in the 

previous chapter. The MrCRF introduces multi-scale line representation and full-range 

spatial regularities. A hierarchical multi-scale data representation such as image pyramid 

have shown its success in pattern recognition tasks. In this hierarchical framework, spatial 

location between objects can be learnt on different scales to adopt different object geometry 

properties. Also, this hierarchical framework can incorporate the information and combine 

all the spatial cues from different scales. For instance, Yang and Forstner (2011) proposed 

a hierarchical model to favor region consistency for classifying man-made objects. Albert 

et al. (2017) used a two-layer CRF to both classify land cover and land use. The success of 

these methods used multi-layer hierarchical model to encode contextual relations among 

entities at different scales. Moreover, recently proposed fully-connected CRF model 

Koltum (2011) extends contextual information for any entity pair, which largely enriches 

the contextual information formulated in the model. Therefore, to overcome the limitations 

of proposed MrCRF model in limited ranges and inaccurately learnt relative displacement. 

A multi-scale hierarchical CRF (HiCRF) model is introduced to understand relative spatial 

displacement at multiple scales with arbitrary range. To represent objects at different 

scales, the line primitives will be merged according to line geometric similarity and 
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consequently the corridor scene will be represented by lines at three different scales. The 

HiCRF with three different layers will correspondingly encode the contextual information 

of line primitives individually and mutually. In the bottom and middle layer, a similar idea 

of MrCRF introduced in the previous chapter will be applied to encode the local 

smoothness and relative spatial displacement at different scales. The top layer will be a 

fully-connected CRF model to learn the relative spatial distribution at arbitrary range in the 

whole scene at an approximate object scale. 

First, it introduces a seed-fill based line merging algorithm to generate a multi-scale 

line representation of mobile laser scanning data in Section 4.1. The structure of a HiCRF 

to extend MrCRF model will be explained in Section 4.2. Then, the bottom and middle 

layer design in proposed three-layer hierarchical model will be demonstrated in Section 4.3 

while the top layer design will be explained in Section 4.4. The training and inference of 

this model will be explained in Section 4.5. The evaluation of the results on the same 

dataset shown in Section 3.6. The comparison and analysis between different methods will 

be conducted in Section 4.6. A chapter summary will be made in Section 4.7.  

4.1 Multi-scale Data Representation 
Line primitives restricted in a certain scale (depends on voxel size) is over-segmented and 

can affect the correctness of spatial relation learnt in a local range. Multi-scale data 

representation is a common strategy to express data into different levels and it can also 

propagate longer range dependencies (Yao et al., 2012).  For image data and point cloud 

data format, there are several segmentation methods to segment them into meaningful 
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patches according to the homogeneity of individual primitives. Similar to this idea, line 

primitives based on their geometric similarities are aggregated. Specifically, a seed line is 

randomly selected and its nearest neighbor will be checked. If the differences of horizontal 

and vertical angle of two lines are within thresholds, the algorithm will consider merging 

these two lines and this closet neighbor line will become the next seed line. Otherwise, a 

new seed line will be randomly selected. This process is repeated until all line primitives 

are processed. Then, the associated point is found with each line primitive and the points 

of merged lines will be used to generate new lines using the same RANSAC algorithm. 

Finally, this procedure process will repeat once to generate another line representation with 

a more relaxed merging threshold.  It is worth to note that this line representation will be 

closest to instance data representation. Therefore, the mobile laser scanning data is 

represented into three different representations. The flow chart for this line merging is 

shown is Figure 4.1 as follow: 

 

Figure 4.1 Flow chart of line merging algorithm to generate multi-scale 

representation. 
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4.2 Graph Model Design 
The goal of the HiCRF model is to consider the aforementioned concept of the multi-scale 

line representation so that a three-layer CRF model is designed to encode the relations 

among line primitives both at individual scale and different scales. The mathematical 

model of HiCRF is expressed as follow: 

 𝑝(𝑌|𝑋) =
1

𝑍(𝑋) 𝑒𝑥𝑝
·𝐸}(𝑦6, 𝑋) + 𝐸¸?𝑦6, 𝑦>, 𝑋@ + 𝐸¹?𝑦6, 𝑦>, 𝑋@º (4.1) 

Where 𝐸} is the sum of unary potential of all line primitives in three layers and  𝐸¸ is the 

sum of all pairwise potentials within each layer. 𝐸¹ is the sum of hierarchical pairwise 

potential between bottom and middle layers and also between middle and top layers. The 

specific formulation of each term is defined as: 

 
E1?yi,X@=λFφi?yi,X@

i∈B

+ηFφi?yi,X@
i∈M

+δFφi?yi,X@
i∈T

 (4.2) 

 𝐸¸?𝑦6, 𝑦>, 𝑋@ = 𝛼F F 𝜑6>Å9?𝑦6, 𝑦>, 𝑋@
>A=B

ÆK6∈Å

+ 𝜇F F 𝜑6>ÅM?𝑦6, 𝑦>, 𝑋@
>A=B

ÆÇ6∈Å

+ 𝛽F F 𝜑6>M9?𝑦6, 𝑦>, 𝑋@ + 𝜈F F 𝜑6>MM?𝑦6, 𝑦>, 𝑋@
>A=B

ÇÇ6∈M>A=B
ÇK6∈M

+ 𝛾F F 𝜑6>zÉ?𝑦6, 𝑦>, 𝑋@
>A=B

Ê6∈z

 

(4.3) 

 𝐸¹?𝑦6, 𝑦>, 𝑋@ = 𝜌 F F 𝜑6>ÅM?𝑦6, 𝑦>, 𝑋@
>A=B

ÆÇ6∈ÅM

+ 𝜔 F F 𝜑6>Mz?𝑦6, 𝑦>, 𝑋@
>A=B

ÇÊ6∈Mz

 
(4.4) 
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Where superscript set {𝐵,𝑀, 𝑇} is added to represent variables in bottom, middle and top 

layer respectively. Second superscript set {𝑆,𝑀, 𝐹}  corresponds to intra-layer edges at 

short, middle and full range. Variable {𝑖, 𝑗} indicates nodes in the graph while 𝑁6 shows 

intra-layer or inter-layer edges which connect node 𝑖. The variable 𝑦 represents node label 

and  𝑋 is node feature vectors. 𝜑(. ) is potential function in the model while 𝑍(𝑋) is the 

partition function to normalize the potential function into probabilities. The weight 

parameter set Ω = {𝜆, 𝜂, 𝛿, 𝛼, 𝜇, 𝛽, 𝜈, 𝛾, 𝜌, 𝜔}  express the relative importance of each 

potential term in the model.  

Figure 4.2 illustrates the detail graph structure of this model. The HiCRF model is 

composed of three layers in which corresponds each scale of line primitives representing 

original point cloud data. In the bottom and middle layer, a multi-range CRF model will be 

utilized individually to learn local smoothness at short range and relative spatial regularities 

at middle range. A fully connected CRF model will be introduced in the top layer to encode 

relative spatial regularities at arbitrary range. To express the relation among all line 

primitives in three layers, there are two types of edges: intra-layer edge (blue lines in Figure 

4.2) and inter-layer edge (red dotted lines in Figure 4.2). The intra-layer edge represents 

the line primitives relations at each layer, while the inter-layer edges encode the relation 

between line primitives between adjacent layers. The intra-layer edge in bottom and middle 

layer will be determined by adjacency graph defined in Section 3.2 with same setting while 

it will be fully connected in top layer of the proposed model. The inter-layer edge is 

dependent on the line merging procedure which means the edge will be established among 

line primitives if a line primitive is merged to another line primitive. 
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Figure 4.2 Hierarchical three-layer CRF (HiCRF) model. The circle represents node 

as line primitives and the size of the circle depicts the line primitive scale. Blue lines 

demonstrate intra-layer edges while red dotted lines show inter-layer edges. All edges are 

pairwise (without high-order cliques). 

4.3 Bottom and Middle Layers 
In bottom and middle layers, both local smoothness and multi-scale spatial regularities are 

introduced into classification. Therefore, a simplified multi-range CRF model is introduced 

in these two layers. The core idea of this simplified multi-range CRF model is also 

considering different context information adapted at different ranges. The multi-range 

graph will combine a short-range graph to apply local smoothness and a middle-range 

graph to apply relative spatial layout (Jung et al., 2016). However, the vertical and 

horizontal pairwise terms will be combined into a middle-range pairwise term. Considering 

the monotony of logarithm, the multi-range CRF model will be expressed as below: 
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𝑝(𝑌|𝑋) =

1
𝑍(𝑋) 𝑒𝑥𝑝 J𝜆F𝜑6(𝑦6, 𝑋)

6∈9

+ 𝛼F F 𝜑6>9 ?𝑦6, 𝑦>, 𝑋@
>A=B

K6∈9

+ 𝛽F F 𝜑6>M?𝑦6, 𝑦>, 𝑋@
>A=B

Ç6∈9

R 

(4.5) 

As seen from the Eq. 4.5, 𝜑6(𝑦6, 𝑋) is a unary potential representing the importance of 

individual node. 𝜑6>9 ?𝑦6, 𝑦>, 𝑋@ is short-range pairwise potential encoding local smoothness 

while 𝜑6>M?𝑦6, 𝑦>, 𝑋@ is middle-range pairwise potential modeling relative spatial layout at 

a certain middle range in the whole scene. 𝑁69and 𝑁6M are nodes connected to node 𝑖 at 

short-range and middle-range respectively. {𝜆, 𝛼, 𝛽}  are the weight parameters for 

corresponding three sub-terms. Keeping consistency with our previous work (Jung et al., 

2016) to define the adjacency graph and unary potential, a novel short-range pairwise term 

and middle-range pairwise term will be explained in the Section 4.3.1 and Section 4.3.2.  

4.3.1 Short-Range Binary Term 

Local smoothness is a very general assumption that neighboring entities such as pixel or 

individual point prefer to belong with same object and this is more significant with the 

increase of sensor resolution (Schindler, 2012). In a short-range domain, this assumption 

is also applicable to scene interpretation.  The Potts model was firstly proposed to encode 

the smoothness into a CRF framework which simply give penalty if two connected nodes 

in CRF are assigned different labels, and vice versa. However, this arbitrary penalty does 

not consider data feature and it sometimes causes over-smoothness. Therefore, contrast-

sensitive Potts model was introduced to compromise between data feature and smoothness 
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degree. It still gives a penalty to nodes having the same label and the penalty assigned to 

connected nodes with different labels, which will be determined by the similarity between 

feature vectors of two nodes with its Euclidean distance (Niemeyera et al., 2016): 

 
𝜑6>9 ?𝑦6, 𝑦>, 𝑋@ = Ó

0																																																				𝑖𝑓	𝑦6 ≠ 𝑦>

𝑝 + (1 − 𝑝)𝑒|
ÕBÖ×

¸Ø× 																					𝑖𝑓	𝑦6 = 𝑦>
    (4.6) 

Where 𝑑6> = Ú𝑓6(𝑥) − 𝑓>(𝑥)Ú  is the feature vector Euclidean distance. 𝑝  measures the 

degree of data-dependent smoothing. The value of 𝑝 is between from 0 and 1 while larger 

𝑝 means the smoothing is less-dependant on the data, and vice versa. The parameter 𝜎¸ 

determines how large feature similarity can affect smoothing degree. Usually it 

corresponds to the mean value of all squared feature distance (Niemeyera et al., 2016) and 

can be determined in the training stage. This contrast-sensitive Potts model can preserve 

some small objects while have a smoothing effect on background. 

4.3.2 Middle-Range Binary Term 

Spatial relationship is an important global feature in different scenes (Gould et al., 2008). 

This relationship is very general and can be applied to different data sources. In corridor 

scene, there is obvious spatial regularities existed in both vertical and horizontal direction. 

For instance, diverse types of transmission lines distribute vertically in different heights 

and catenary wire is always horizontally closer to railway track compared with the current 

return wire.  The task is learning all this inter-class spatial relation at a certain range from 

training data and use this relative spatial information to guide classifier to correct 

misclassification which does not follow trained spatial regularities. Instead of the previous 
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method (Jung et al., 2016) using two potential terms to encode horizontal and vertical 

relation from ad-hoc multivariate Gaussian distribution assumption, a Relative Location 

Prior potential (Volpi and Ferrari, 2015) was applied for middle range pairwise term to 

encourage similar spatial arrangement found in the training data. The potential is 

formulated as follows: 

 
𝜑6>M?𝑦6, 𝑦>, 𝑋@ = log Ý

1
𝑚F𝑓g|y?𝑑gy� , 𝑑6>@

ß

��}

à (4.7) 

Where 𝑑gy  are relative location vectors between all the nodes labeled as 𝑙 and connected 

nodes labeled as 𝑘 in the training data. 𝑑6> is the relative location vector between node 𝑖 

and node 𝑗. Relative location vector is a two-dimensional vector in which the first element 

is the height difference of line primitives while the second element is the difference of line 

primitives’ horizontal distance to its corresponding railway track. Noted that specific class-

pair relative location vectors can be both “different” displacement and “self’ distribution. 

To be more specific, 𝑙 = 𝑘 means the object itself spatial distribution within middle range. 

Otherwise, it shows relative location between two different objects. 𝑓g|y?𝑑gy� , 𝑑6>@ is a 

Radial Basis Function (RBF) kernel to measure the similarity between vector 𝑑6> and a 

relative location vector 𝑑gy�  in the training displacement vectors for class label  𝑙 and 𝑘. 𝑚 

is the number of all training displacement vector between label 𝑙 and label 𝑘.  Figure 4.3 

shows a learnt relative location vector distribution for specific class-pair and another class 

itself spatial distribution. As shown in the Figure 4.3(a), catenary wire is most obviously 

horizontally 1.6 meter closer to its railway track compared to electricity feeder while 
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vertically mostly 1.7 meter lower than electricity feeder.  Figure 4.3(b) demonstrates how 

movable bracket line primitives horizontally and vertically distribute in a middle-range. 

 

 

 

 

 

 

(a)    (b) 

 

 

4.4 Fully Connected Top Layer 
In the bottom and middle layer, the relative location information is learnt through different 

scale. However, this spatial information is driven based on the line primitive captured at a 

certain range. There are also longer spatial relations, which is not able to be represented 

with fixed range constraints. For instance, usually two consecutive poles have a certain 

pre-defined distance on one side of the railway. However, this information cannot be 

expressed in relative location prior. To encode the spatial relations at any arbitrary range 

and learn the spatial relation at instance scale, a fully connected CRF model is proposed to 

connect all line primitives in the top layer. The fully connected CRF model (Arnab et al., 

Figure 4.3 Example of relative displacement vector. (a) shows the relative 

displacement vector distribution for the electricity feeder and catenary wire in horizontal 

and vertical direction. (b) shows movable bracket ‘self’ spatial distribution. 
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2016; Chen et al., 2018; Koltun, 2011; Zheng et al., 2015) already became a standard 

technique for structure prediction, especially image semantic segmentation tasks. 

However, usually these fully connected CRF models need some specific type of potential 

function to ensure efficient inference (Campbell et al., 2013; Koltun, 2011; Wang et al., 

2015; Zhang and Chen, 2012). To connect all the line primitives, all line primitives in top 

layer will be connected to any others at one side of the railway. Under this setting, the 

number of the fully-connected edges is still tractable to apply general inference algorithm 

because there are fewest line primitives at top layer. To encode relative spatial information 

at arbitrary range, a relative displacement probability map which inspired from Gould et 

al. (2008) is constructed. Different with their map in 2D, the map is a 3D map based on the 

coordinate offset of points. This map Μg|y?𝑑6>@ encodes the conditional probability that the 

line primitive 𝑗  with a label 𝑙  given a line primitive 𝑖  with the label 𝑘  at a relative 

displacement vector 𝑑6> , which is a three-dimensional vector to express the relative 

displacement between two lines in both 𝑥, 𝑦  and 𝑧  direction. To be noted that the 

coordinate of all points is normalized to the range [0,1] so the relative displacement vector 

𝑑6> ∈ [−1,1] × [−1,1] × [−1,1]. 

The map is learnt through counting the number of relative displacement of each 

class-pair from the centroid of each line primitives in the training data and it will quantize 

into a bin over the size 100 × 100 × 100.  If 𝑙 ≠ 𝑘 in the class-pair 𝑙𝑘 within the edge, 

both Μg|y?𝑑6>@ and Μy|g?−𝑑6>@ will add a count while 𝑙 = 𝑘 indicates that it represents 

“self” relative displacement for every class label. Finally, the map will normalize to ensure 

that ∑ Μg|y?𝑑6>@ = 1Z
g�}  for a given class label 𝑘 and 𝐿 is the number of all class labels.  
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The example of learnt relative displacement probability map is shown in Figure 4.4. It is 

observable that movable bracket and pole relative displacement almost only occurs at 𝑧 

axis and certain fixed 𝑥  and 𝑦  interval. It is natural that movable bracket is a pole-

subordinate structure and it usually only has height difference with its belonged pole and 

fixed 𝑥 and 𝑦 interval demonstrates the displacement of two consecutive poles in the scene. 

The potential function of fully connected top layer will encourage the configuration 

which follows the layout from the map, the specific formulation is as follows: 

 𝜑6>zÉ?𝑦6, 𝑦>, 𝑋@ = log
1
2 ãΜjÖ|jB?𝑑6>@ + ΜjBtjÖ?−𝑑6>@ä (4.8) 

The designed potential is not symmetric because the relative displacement 

probability map is asymmetric, which encourages the consistency with the relative spatial 

regularities from training data and penalizes the opposition. 
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Figure 4.4 Learnt displacement map. (a) 3D relative displacement probability map for 

the class pair pole and movable bracket.  (b) a table of all conditional probabilities at a 

certain relative displacement. Darker means higher probability. 

4.5 Training and Inference 
As discussed in previous sections, there are two types of parameters to be determined in 

this model, the first type is the parameters within each potential function such as balancing 

weight in contrast sensitive Potts model and free weight in RBF kernel based similarity 

measurement. Another type is the set of weight parameters among each potential function. 

Besides these estimated parameters, unary terms in individual layer should be trained from 
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discriminative classifiers. the same two-stage training strategy is also utilized to train the 

multi-layer HiCRF model. After training, an inference algorithm is applied to classify those 

line primitives in test sites. However, the difference between this training and inference 

with MrCRF model will be explained in next two subsections. 

4.5.1 L-BFGS Based Training 

In the two-stage training strategy, the first stage is determining all training parameters 

except the weight set. For three unary terms in each layer, three independent Support 

Vector Machine (SVM) classifiers will be trained individually without considering any 

pairwise potentials. In the multi-range model for the bottom and middle layer, balancing 

weight in contrast-sensitive Potts model and free weight in RBF kernel function should be 

determined for each layer individually. Due to the gradient calculation difficulty, balancing 

weight in contrast-sensitive Potts model will be manually set and the free weight in RBF 

kernel function will be determined for each class-pair by calculating the mean value of 

squared distance of all location vectors. In the second stage, a MAP based training strategy 

is applied to maximize the log conditional likelihood for simultaneously training all 

weights among all potential term. Instead of using SGD optimization algorithm in previous 

MrCRF training, the optimization is conducted through a Limited Memory BFGS (L-

BFGS) optimization because it can use inverse Hessian matrix to steer its search direction 

and consequently has a faster convergence. The gradient calculation is same as described 

in Section 3.5.1. 
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4.5.2 Maximum Posterior Marginal Inference 

The popular MAP inference usually maximizes the posterior probability defined in Eq. 4.1. 

However, it will have two potential problems in high dimension applications. The 

estimated posterior probability can be extremely small and also it cannot distinguish the 

wrong prediction with single error at one component or entirely wrong (Domke, 2013). 

Another alternative is to maximize the marginal probability of label distribution 𝑃(𝑦6|𝑥)  

at each node site, which means it minimizes the number of mislabeled node sites (He et al., 

2004). This Maximum Posterior Marginal (MPM) inference was reported to have a better 

performance on image labeling task (Toyoda and Hasegawa, 2008), which will be adopted 

in this case. The computation of exact MPM inference is usually intractable (He et al., 

2004;Toyoda and Hasegawa, 2008) for multi-class classification problem. Therefore, the 

mean field approximation is applied because it is usually faster than LBP algorithm and 

can be extended for large scale inference task (Koltun, 2011). Besides, it doesn’t require 

submodular potential function, which is not applicable in this potential function design. 

4.6 Experiment and Results 
To evaluate the algorithm, the same Korean high-speed railway electrification scene 

dataset described in Section 3.6 is also applied. The classification performance is also 

evaluated on six-folder cross validation. Firstly, the line extraction and merging from 

original massive point cloud will be analyzed to construct a multi-scale representation in 

Section 4.6.1. Then classification result with several other classifiers will be compared in 

Section 4.6.2. Finally, an analysis on classification results will be done in Section 4.6.3.  
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4.6.1 Multi-Scale Line Extraction 

A RANSAC algorithm will be firstly applied to generate lines from each voxel after 

voxelization. The voxel size is 1 meter while RANSAC has a 5 centimeters consensus 

threshold. Multiple lines can be generated in the same voxel. This setting is same as in the 

previous multi-range line extraction. Then, the generated over segmented lines were 

merged continuously to generate another two scales of line representation. These three-

scale line representations will be expressed as scale 1 to scale 3 from RANSAC extracted 

lines to final merged lines in the later paragraph. The goal is trying to get a line 

representation which is close to the instance level representation of original point cloud. 

Also, it is also important that the threshold cannot be too loose to merge lines from different 

objects. 

The Figure 4.5 demonstrates the merging result of one subset and it is noticeable 

that this line representation preserves the detail of object structures in the scene and many 

objects are much more normalized to instance level in a higher scale. For example, 

electricity wires are usually represented by many small line primitives with similar length 

while it is represented as several lengthy line primitives in the last scale. Meanwhile, those 

more complex structures such as movable bracket is still well preserved with several line 

primitives. The specific line number of each sub region in three different scales is also 

shown in Table 4.1. Original point cloud with approximate two hundred thousand points 

in each sub region was converted to thousands of line primitives but preserves the enough 

detail of each object instance. 
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Figure 4.5 Three-scale line representation. (a) is the original pint cloud in subset 1 and 

(b) is the extracted line primitives using RANSAC algorithm. (c) shows the merged line 

primitives and (d) represents final merged line primitives with relaxer thresholds.  (black: 

electricity feeder, blue: catenary wire, red: contact wire, sky blue: current return wire , 

dark green: connecting wire, brown: suspension insulator, magenta: movable bracket, 

green: dropper, grey: pole and yellow: ground). 

Table 4.1 Line number in three scales for each sub-region 

Line Number Region 1 Region 2 Region 3 Region 4 Region 5 Region 6 
Scale 1 4327 4438 3783 4093 4724 4762 
Scale 2 2830 2904 2420 2623 2848 3063 
Scale 3 1732 1687 1379 1466 1540 1735 

 

4.6.2 Classification Results 

The classification of six sub-regions has been done on the same desktop described in 

section 3.6.2. A total of 268.32s was achieved for classifying all datasets, which was 
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slightly faster than MrCRF due to the optimization of the algorithm. For the training stage, 

relative displacement probability map will cost around 30s for each sub-region and the 

weight training will spend more time, which varies from 3 minutes to 10 minutes. This 

much faster training contributes from the application of L-BFGS algorithm and also the 

code optimization with the introduction of parallel computing. 

 Table 4.2 shows the classification results obtained by proposed HiCRF. For 

obtaining these results, the same geometric line features is applied to calculate the potential 

for each term in HiCRF. The training data was used to create relative location prior, relative 

displacement probability map with bin size 100 and the weight set among all potential 

functions. An equal weight was initialized and usually the weight training will usually 

converge after around 25 epochs. Noted that the relative location prior will be generated 

twice for scale 1 and scale 2 while relative displacement probability map was only 

generated for scale 3. Three SVM classifiers (Chang and Lin, 2011) were trained 

independently. Then, the output of three SVM classifiers were served as the unary potential 

and the graph for each layer was generated subsequently. The MPM based mean field 

approximation provided by Domke (2013) was finally conducted to determine the final 

label of all line primitives.  
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Table 4.2 Confusion matrix of HiCRF model 

 Classified Comp.  
(%) EF CAW COW CRW CNW SI MB Dro Pole Gro 

Reference 

EF 1251 0 0 0 0 0 0 0 0 0 100 
CAW 0 1363 0 0 5 0 1 0 0 0 99.56 
COW 0 0 689 0 1 0 1 0 0 0 99.71 
CRW 0 0 0 970 0 0 0 0 1 0 99.90 
CNW 0 7 0 0 385 0 2 0 3 1 96.73 

SI 0 0 0 0 0 106 2 0 3 0 95.50 
MB 0 1 0 1 1 3 405 3 4 0 96.89 
Dro 0 1 0 0 0 0 2 140 0 0 97.90 
Pole 0 0 0 7 6 1 0 0 760 7 97.31 
Gro 0 0 0 0 0 0 3 0 20 19,970 99.88 

Corr. (%) 100 99.34 100 99.18 96.73 96.36 97.36 97.90 96.08 99.95  
Qual. (%) 100 98.91 99.71 99.08 93.67 92.24 94.41 95.89 93.46 99.84  

Overall Accuracy (%)           99.67 
Kappa Index (%)           99.18 

 

 

Figure 4.6 Multi-layer hierarchical classification result: (a) is the visualization of the 

classification result of subset 1 and (b) shows the misclassified line primitives in subset 1 

with red and correct classification with black color. (c) and (d) presented similar results 

for subset 5. 

A conducted comparative analysis of HiCRF performance to the results produced 

by other classifiers, which include SVM, MrCRF and variant of HiCRF (i.e., short-range 
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bottom layer and two layers) will be conducted. For this performance measure, the same 

classification evaluation index explained in previous section (Rutzinger et al., 2009) is also 

used. Table 4.2 demonstrates that the proposed HiCRF can produce an over 99% overall 

accuracy and kappa index. With respect to the classification performance for each class, it 

is observed that a performance (almost 99% quality) was achieved on those electricity 

wires except for connecting wire. The minor objects such as suspension insulator, movable 

bracket and dropper have relatively lower quality performance, but the quality value of 

worst suspension insulator was still over 92%. The ground object was detected with a very 

high classification quality due to its limit on the height. HiCRF produced misclassification 

error mostly generated between two objects including pole-ground, movable bracket- 

suspension insulator, catenary wire-connecting wire. It is not a trivial task to discriminate 

these objects as they are located closely with each other and their appearances are similar. 

The subset 1 reached the best classification performance, while the subset 5 had the worst. 

From the visual inspection, the performance variation is mainly caused by the significant 

difference of spatial distribution between two subsets. The visualization of the 

classification result of these two subsets were shown in Figure 4.6. In general, the proposed 

model achieved a very good classification result on those electricity wires, while it also 

produced slightly lower accuracy but still competitive classification result on those 

complex and small electrification-related objects in the scene. Also, the challenging poles 

also had a good classification quality, which was over 93%.  
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Figure 4.7 The average quantitative classification result of different models. 

The HiCRF classification results produced by HiCRF ware compared with 

following several classifiers: (1) SVM classifier used for the first layer unary term (SVM) 

(2) SVM with context features (the feature difference of edge features in MrCRF model) 

(3) CRF with only short-range term (SrCRF) (4) MrCRF model described in Section 3. (5) 

CRF with short and middle range terms in bottom layer (BlCRF) (6) two-layer CRF model 

without top layer in proposed model (TlCRF). Figure 4.7 shows the results of comparative 

performance analysis.  

The SVM classifier without any contextual information produced the worst 

performance while HiCRF outperformed all other classifiers in all classification evaluation 

indices. With regard to the performance of two SVM classifiers, it is observable that 
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CoSVM outperforms SVM with only geometry features. It is shown that context features 

indeed can help the classification. Meanwhile, SVM with context features still had worse 

performance than MrCRF model which encoded explicit context information into a CRF 

model, which showed that CRF model is more effective in expressing context information 

than SVM. Comparing the classification results of all different CRF models, with more 

introduced contextual information, the performance of the CRF model improved 

accordingly. For instance, the local smoothness constraint improved the SVM 

classification result by around 1% in both average completeness and correctness. With 

learnt spatial relative location in middle range at one scale, the result of quality improved 

by 4%. Another 2.5% improvement on average classification quality was obtained through 

this supervised learning of multi-scale relative spatial distribution. Meanwhile, the 

classification results of BlCRF achieved the similar performance produced by MrCRF 

reported by Jung et al. (2016) with simpler pairwise functions. The TlCRF showed slightly 

better performance compared to the results of BlCRF, especially correctness and quality 

measure. This indicates that introducing an additional graph layer can positively contribute 

to the classification results. Specifically, the comparison of proposed HiCRF model and 

SVM classification result was illustrated in Table 4.3. Firstly, it is very observable that 

HiCRF model improves the classification results of suspension insulator (+36.79%), 

movable bracket (+11.81%), dropper (+10.08%) and pole (+13.51%) although these 

objects are quite challenging for classification due to its variant geometry and spatial 

distribution. All types of electricity wires have limited improvement except for a slight 

decrease on catenary wire and current return wire. To be noted that the confusing 
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connecting wire result was significantly improved. This is important because it is very hard 

to distinguish connecting wire and other electricity wires, especially in overlapped areas. 

Four typical electricity wires with certain height almost achieved perfect performance both 

in SVM and HiCRF model. Also, the misclassification between ground and pole which 

heavily occurred in SVM classification was significantly corrected. The detailed label 

transition from SVM to HiCRF model shown in Figure 4.8 also demonstrates that proposed 

model could effectively correct the misclassification in SVM result, especially those lines 

misclassified to pole due to imbalanced training. For instance, all transitions from pole to 

ground are positive and more than 70% transitions from ground to pole are positive, which 

largely improved the overall accuracy. 

Table 4.3 Classification result of proposed model and SVM 

 SVM (Without context) HiCRF (With context) 
Comp.[%] Corr.[%] Qual.[%] Comp.[%] Corr.[%] Qual.[%] 

EF 99.84 100.00 99.84 100 (+0.16) 100.00 (0.00) 100.00 (+0.16) 
CAW 99.63 99.42 99.06 99.56 (-0.07) 99.34 (-0.08) 98.91 (-0.15) 
COW 99.42 100.00 99.42 99.71 (+0.29) 100.00 (0.00) 99.71 (+0.29) 
CRW 99.90 99.28 99.18 99.90 (0.00) 99.18 (-0.10) 99.08 (-0.10) 
CNW 93.97 96.14 90.56 96.73 (+2.76) 96.73 (+0.59) 93.67 (+3.11) 

SI 64.86 79.12 55.38 95.50 (+30.64) 96.36 (+17.24) 92.17 (+36.79) 
MB 89.71 91.24 82.60 96.89 (+7.18) 97.36 (+6.12) 94.41 (+11.81) 
Dro 92.36 92.36 85.81 97.90 (+5.54) 97.90 (+5.54) 95.89 (+10.08) 
Pole 90.65 87.30 80.09 97.31 (+6.66) 96.08 (+8.78) 93.60 (+13.51) 
Gro 99.69 99.68 99.38 99.88 (+0.19) 99.96 (+0.28) 99.85 (+0.47) 

OA (%) 98.99 99.67 (+0.68) 
Kappa (%) 97.52 99.18 (+0.60) 
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Figure 4.8 Label transition from SVM classification result to HiCRF model. EF 

(electricity feeder), CAW (catenary wire), COW (contact wire), CRW (current return 

wire), CNW (connecting wire), SI (suspension insulator), MB (movable bracket), Dro 

(dropper), Pol (pole) and Gro (ground). 

4.6.3 Discussion 

This section includes several discussions to investigate how both local smoothness and 

relative configuration of spatial locations can improve the classification results. Also, this 

section analyzes the influence of the difference of learnt relative location with different 

line primitive scales to the classification performance at the bottom and middle layers. 

Finally, the improvement of classification performance due to relative displacement at 

arbitrary range in the fully connected top layer will be discussed. 
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4.6.3.1 Improvement due to local smoothness and relative spatial location 

To better understand how the contextual information improves the classification, the 

visualization of one subset classification result for three different classifiers was shown in 

Figure 4.9. In the figure, the red circle indicates the misclassification of SVM and corrected 

by local smoothness in short range, while the blue circle demonstrates the misclassification 

in SVM result further corrected by learnt relative spatial location in the middle layer. In 

contrast, the red rectangle shows the wrong classification caused by short range CRF while 

the blue rectangle means the wrong classification caused by middle range CRF.  

From the figure, local smoothness plays a key role to correct the misclassification 

(pole to ground) which was the most occurred misclassified type in SVM classification 

result. However, the contrast sensitive Potts model caused the smoothness dependent on 

the geometric feature of line primitives, which gave rise to some wrong classifications 

shown as red rectangle. For instance, ground was misclassified as pole because these line 

primitives were more vertical represented as pole line primitives. This misclassification 

was lately corrected by middle range spatial location as the height difference between pole 

and ground. 
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From Figure 4.9 (a) and (c), it is observable that learnt spatial location further 

improves the classification error which cannot be corrected by short range smoothness 

pairwise terms. Due to learnt height difference between different objects, suspension 

insulator and pole misclassified as ground were corrected. Moreover, the misclassification 

between dropper and pole was corrected due to their difference on horizontal difference to 

railway. A second example is that suspension insulator misclassified as pole in the short 

range was also corrected due to horizontal railway distance difference. Nevertheless, 

connecting wires were misclassified as movable bracket due to their spatial ambiguities 

between these two objects in local scale. In conclusion, both local smoothness and the 

learnt relative spatial location can partly correct the misclassification existed in local 

classifier while it also caused some misclassification due to their geometry and spatial 

ambiguities. 

       (a)                                           (b)                                              (c) 

Figure 4.9 Comparison of different classification model result in subset 4. The 

classification results were produced by (a) SVM, (b) CRF with short range and (c) CRF 

with short and middle range: Each colored circle shows classification errors produced for 

different object classes. 
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4.6.3.2 Classification performances at different scales 

Table 4.4 presents comparative classification performances produced by BlCRF and 

TlCRF. Also, a qualitative comparison between BlCRF and TlCRF without fully connected 

top layer (HiCRF) is illustrated in Figure 4.10. As suggested in Table 4.4, TlCRF produced 

higher classification performance over most of object classes compared to BlCRF. As 

shown in this figure, BlCRF shows a tendency to misclassify movable brackets as dropper. 

It can be observed that the movable bracket-dropper misclassification errors were caused 

since the spatial relation between these two objects in bottom layer is ambiguous (has a 

weak discriminative power) because these two objects are smaller and they would be 

confused in spatial distribution with other smaller line primitives. In Figure 4.10, it can 

also be noticed that these bracket-dropper misclassification errors were rectified by TlCRF 

model. However, TlCRF produced other type of misclassification errors with suspension 

insulators. It is quite understandable because pole and suspension insulator is more 

horizontally distinguishable with other objects in a smaller scale. These misclassification 

types made the decrease of the completeness of suspension insulator in the second-layer 

CRF model, while a significant increase of the dropper’s correctness. 

Table 4.4 Comparison between BlCRF and TlCRF 

 BlCRF TlCRF 
Comp.[%] Corr.[%] Qual.[%] Comp.[%] Corr.[%] Qual.[%] 

EF 100.00 100.00 100.00 100.00 (+0.00) 100.00 (+0.00) 100.00 (+0.00) 
CAW 99.63 98.41 98.06 99.78 (+0.15) 98.84 (+0.43) 98.63 (+0.57) 
COW 99.71 99.57 99.28 99.71 (+0.00) 99.71 (+0.14) 99.42 (+0.14) 
CRW 99.90 99.28 99.18 99.90 (+0.00) 99.28 (+0.00) 99.18 (+0.00) 
CNW 92.46 96.84 89.76 94.97 (+2.51) 96.43 (+0.41) 91.75 (+1.99) 

SI 95.50 92.98 89.08 91.89 (-3.61) 96.23 (+3.25) 88.70 (-0.38) 
MB 91.39 95.50 87.61 93.06 (+1.67) 95.34 (-0.16) 89.02 (+1.41) 
Dro 93.71 91.16 85.90 93.71 (+0.00) 96.40 (+5.24) 90.54 (+4.64) 
Pole 97.06 94.63 91.99 96.93 (-0.13) 94.74 (+0.11) 91.98 (-0.01) 
Gro 99.87 99.94 99.82 99.89 (+0.02) 99.95 (+0.01) 99.84 (+0.02) 

OA (%) 99.48 99.54 (+0.06) 
Kappa (%) 98.71 98.88 (+017) 
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Moreover, all electricity wires improved both the completeness and correctness in 

TlCRF because their spatial relationship was much more normalized in scale 2 (2nd layer), 

which caused a more accurate object-based relation. Especially, the completeness of 

connecting wire was significantly improved. Movable bracket had a better completeness 

result but produced a slightly worse result in TlCRF due to the correction of 

misclassification with dropper. Pole almost had same classification results because it has 

overlapped with many other objects and its vertical structure doesn’t change much in these 

two layers. The observation proved the assumption that same class will have different 

classification performance at different scales due to disparate spatial distribution. 

4.6.3.3 Improvement due to fully-connected top layer 

A relative spatial displacement at full range in the top layer should learn more spatial 

relations at an approximate instance scale. The quantitative evaluation on the improvement 

Figure 4.10 The classification result of subset 3: (a) is the result of BlCRF model while 

(b) shows the result of TlCRF model. Red rectangle means misclassification in BlCRF 

but corrected in TlCRF and red circle is opposite. 

   (a) bottom-layer                                                      (b) two-layer 
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of this layer through the comparison between the classification results obtained by TlCRF 

and proposed HiCRF model is shown in Table 4.5. Except for a very slight decrease on 

current return wire, the quality of all other classes improved up to more than 5%. The 

average results of all evaluation indices increased up to around 2%. The quality of 

suspension insulator, movable bracket and dropper all clearly improves. This improvement 

is quite significant considering the classification challenge of these objects because of its 

variant geometric shape and complex spatial distribution. Also, the classification results of 

pole and connecting wire were also augmented, especially on the boundary of these two 

objects. The improvement was credit to the introduced relative displacement at a longer 

range. 

Table 4.5 Comparison between TlCRF and BlCRF 

HiCRF - TlCRF 
Class Average (%) 

EF CAW COW CRW CNW SI MB Dro Pole Gro  

Index
(%) 

Comp. 0.00 -0.22 0.00 0.00 +1.76 +3.60 +3.83 +4.20 +0.38 -0.01 +1.35 

Corr. 0.00 +0.50 +0.29 -0.10 +0.31 +0.14 +2.01 +1.50 +1.34 +0.01 +0.60 

Qual. 0.00 +0.28 +0.29 -0.10 +1.93 +3.48 +5.39 +5.35 +1.62 0.00 +1.82 

OA 
 

+0.12 

Kappa +0.30 
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Figure 4.11 Examples of misclassification occurred in TlCRF corrected by HiCRF 

in subset 5: The left column is the classification of TlCRF while the right column is the 

corresponding result of HiCRF. (a), (b) are left view and the rest are front view. (sky 

blue: current return wire; black: electricity feeder; blue: catenary wire; green: dropper; 

brown: suspension insulator; magenta: movable bracket; grey: pole). 

The visualized improvement was shown in Figure 4.11. Three pair of improvement 

illustrated the correctness made by full-connected top layer for dropper, movable bracket 

and suspension insulator respectively. Dropper usually had some fixed intervals in the 

whole scene while movable bracket and suspension insulator also appear regularly on the 

railway direction with its associated poles on the one side of the railway. These spatial 

regularities can be captured by the encoded relative displacement at full ranges. 

Combining it with relative location learnt in multi scales, the classification system can 

better distinguish the label of individual line primitives. The information was particularly 
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useful to distinguish the line primitives located on the object boundary where most 

misclassification occurred. 

4.7 Chapter Summary 
In this chapter, a HiCRF classifier which captures the relative spatial relations among all 

objects in the full-range of the scene at multiple scales is proposed. To deal with large 

volume of original point cloud and reduce computational burden, a multi-scale line 

representation, which was adopted due to a lot linear objects in the scene, is used. The 

original line representation is generated via fixed voxel generation while a seed-filling 

based line-merging algorithm was introduced to generate multi-scale line representations 

considering the geometry of each line primitives.  

A local smoothness was applied through a contrast-sensitive Potts model in a short 

range, which generated a smoother classification result also considered the geometry 

feature of line primitives. A relative location was considered between two objects based on 

their horizontal and vertical distance to its corresponding railway vectors in a middle range 

at different scales. This leaded to a difference spatial relation learning and objects had 

different classification performance on different scales. Finally, the relative displacement 

between two line primitives in an approximate instance-level scale was proposed to learn 

all possible spatial relations at full range in the whole scene. All the information was 

incorporated into a hierarchical probabilistic graphical model to favor the test data have a 

similar spatial regularity as training data. 
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From the classification results, it is noticeable that the proposed contextual 

information helps the classifier to understand the scene better. The local smoothness and 

spatial regularities at certain scale significantly improved the classification result. Spatial 

regularities introduced at multiple scales also produce different classification performance 

over different objects dependant on the object shape and size. Finally, it is found that the 

full-range spatial regularities at approximate object-scale can improve the result due to this 

long-range spatial correction. 
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Chapter 5  
Conclusions and Future Works 

This thesis aims to tackle the problem of railway electrification system classification with 

mobile laser scanning data. Considering the existing strong spatial layout in railway 

electrification scene, this thesis developed two major methods for this task: (1) proposed a 

MrCRF model to integrate strong relative and local smoothness in a probabilistic 

framework to overcome geometry ambiguities problem of conventional supervised local 

classifier; (2) presented a multi-scale HiCRF model to utilize relative spatial layout at 

multiple scales and full range in the scene to improve the classification accuracy. In this 

chapter, I will summarize the research and discuss the conclusions for this problem as well 

as the potential future work direction. 

5.1 Conclusions 
In this research, a supervised classification model was proposed to classify railway 

electrification system objects.  The research can be decomposed into two parts, a MrCRF 

model and a multi-scale HiCRF model. 

In Chapter 3, a line-based multi-range Conditional Random Field (MrCRF) model 

was proposed to combine local smoothness and relative spatial layout in both vertical and 

horizontal direction. Considering the linearity of electrification system objects and the 

large volume of mobile laser scanning data, a line representation from fixed size voxel was 

introduced. Several railway-vector based geometrical features were extracted and a RBF 
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kernel based SVM classifier was used to produce unary potential in MrCRF model. Local 

smoothness via Potts model was proposed in short range while one hundred Naïve Bayes 

classifiers were trained to model spatial layout in middle range. The result showed an 

average completeness of 97.66% and an average correct of 97.07% for all classes. 

However, the experiment showed the limitations in representing objects with fixed local 

scales, which caused problems in characterizing the short-range and middle-range regularities 

and, thus, led to misclassification errors. 

A multi-scale hierarchical Conditional Random Field (HiCRF) model was 

presented in Chapter 4 to improve the classification result of MrCRF by introducing multi-

scale line representation and full range spatial regularities learning in an approximate 

instance level. A seed-fill based line merging algorithm was proposed to generate a three-

scale line representation to consider the scale difference of electrification system objects 

and generate an approximate instance-level line representation. A three-layer HiCRF 

model is subsequently described, which the bottom and middle layer was implemented to 

encode local smoothness and relative location at two different line primitive’s scales while 

the top layer encoded full range displacement vector at an approximate instance level. The 

experiment showed that proposed model can improve MrCRF classification result on the 

same railway electrification scene dataset. 

The advantage of proposed MrCRF and HiCRF model can both automatically learn 

the relative spatial regularities from training data. Therefore, they can be mitigated to 

different datasets with minor modification on some manually set thresholds. In conclusion, 
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the proposed models achieve a good classification performance which can be extendable 

for different datasets. 

5.2 Future Works 
Impressive results on railway electrification system objects classification has been 

presented in this thesis and the method can be used for automatic inspection task. However, 

there are some limitations of the current methodology. Firstly, the classification task is 

separate of railway tracking task, which causes a two-stage processing. Secondly, there are 

still some complex relative spatial regularities existed in railway electrification scene 

which cannot be encoded in our model. Finally, we still manually designed some line-based 

geometric features which can be replaced by automatic feature engineering technologies. 

To solve these limitations,  some innovative ideas can be implemented for the future work.  

1. Unified framework for railway tracking and scene classification 

Current classification model is based on pre-existing railway tracks extracted from 

another algorithm (Jwa and Sohn, 2015).  All geometrical features are relied on the 

railway tracking result. However, railway tracking errors will also affect the 

relative spatial regularities learning, which may degrade classification result. The 

ideal case is that the railway tracking and the railway electrification scene 

classification can be conducted simultaneously. Tracked railway vector can 

establish the relative spatial regularities among electrification system objects while 

the learnt spatial regulates should also give the cue for railway tracking.   

2. High-order scene regularities 
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In the method, all scene layout regularities were encoded as pairwise potential 

functions in CRF model. In this thesis, only the relations between two line 

primitives such as “electricity feeder is 1.5 meter higher than catenary wire” or 

“two adjacent poles are away 80 meters on the railway direction” are modeled.  

However, there are more complex relative spatial regularities involved more than 

two objects in railway electrification scene. For example, dropper should connect 

catenary wire and contact wire. This relation can be modeled as high-order 

potential functions in the CRF model. This is especially more achievable since the 

recent introduction of new computational-efficient high-order inference 

algorithms (Kappes et al., 2013; Kohli and Torr, 2009).  

3. The combination of deep learning and graphical model 

Currently, some hand-crafted features is implemented to encode both local 

geometric information and contextual information. Since the remarkable success 

of deep learning algorithms in various computer vision tasks, Convolutional 

Neural Network (Krizhevsky et al., 2012) became popular for scene understanding 

task in both image and LiDAR domain. Traditional CNN is limited in learning 

contextual information which is the advantage of probabilistic graphic model. 

Therefore, there are some initial exploration (Arnab et al., 2016;  Arnab et al., 

2018;  Zheng et al., 2015) in combining these models. However, these methods are 

all applied on image semantic segmentation task and it also needs a lot of training 

data for training which is very hard to get in the practical problem. Therefore, there 
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are still improvement to combine CNN model and graphical model to learn local 

and context features automatically for 3D LiDAR data. 

4. Automatic modelling of railway electrification scene objects 

Classification is the first step towards automatic inspection task. Since the accurate 

classification result is achieved for all important objects, automatic modeling is the 

next step to parametrize those objects so the comparison between pre-designed 

models can be made to determine whether the objects is still effective. 
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