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When many tests of signi� cance are examined in a research investigation with
procedures that limit the probability of making at least one Type I error—the
so-called familywise techniques of control—the likelihood of detecting effects can be
very low. That is, when familywise error controlling methods are adopted to assess
statistical signi�cance, the size of the critical value that must be exceeded in order to
obtain statistical signi� cance can be extremely large when the number of tests to be
examined is also very large. In our investigation we examined three methods for
increasing the sensitivity to detect effects when family size is large: the false discovery
rate of error control presented by Benjamini and Hochberg (1995), a modi� ed false
discovery rate presented by Benjamini and Hochberg (2000) which estimates the
number of true null hypotheses prior to adopting false discovery rate control, and a
familywise method modi� ed to control the probability of committing two or more
Type I errors in the family of tests examined—not one, as is the case with the usual
familywise techniques. Our results indicated that the level of signi� cance for the two
or more familywise method of Type I error control varied with the testing scenario
and needed to be set on occasion at values in excess of 0.15 in order to control the
two or more rate at a reasonable value of 0.01. In addition, the false discovery rate
methods typically resulted in substantially greater power to detect non-null effects even
though their levels of signi�cance were set at the standard 0.05 value. Accordingly, we
recommend the Benjamini and Hochberg (1995, 2000) methods of Type I error control
when the number of tests in the family is large.
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1. Introduction
It is common to compute many tests of signi�cance in a typical research investigation
(see, for example, Barton & Huberty, 1989; Knoop, 1986; Schippman & Prien, 1986).
Indeed, not only do researchers examine all possible correlations in, say, 16 ´ 16 and
21 ´ 21 correlation matrices, but we have found a paper in which 444 400 tests were
examined (Drigalenko & Elston, 1997; Mallet, Mazoyer, & Martinot, 1998)! It is well
known that the probability of committing one or more Type I errors increases as the
number of tests examined in the family of tests increases. The prevailing sentiment is
that when many tests of signi�cance are to be computed the error rate should be
controlled familywise, that is, over the entire set (family) of tests. This opinion is
diametricallyopposite to the view that the error rate should be set on the individual test
(the per-test approach) and not on the entire set of tests. Those who favour the per-test
approach do so based on power considerations. That is, as the number of tests in the
family increases there is a concomitant increase in the size of the critical value that
must be exceeded to obtain statistical signi�cance (see Miller, 1981). Thus, though the
prevailing view is for familywise error (FWE) control, there is still a minority of opinion
that argues fervently for per-test control (see Rothman, 1990; Saville, 1990; Wilson,
1962). However, other alternatives also exist for researchers.

FWE methods control the probability of committing one or more Type I errors, but
when many tests of signi�cance are computed is it reasonable to set such a stringent
criterion? Indeed, previous authors have suggested that such a criterion could reason-
ably be relaxed when the number of tests in the family is substantial. Speci�cally,
researchers can choose to control the probability of committing two or more, or
perhaps three or more (or four or more, etc.) Type I errors when the number of tests
is large (Halperin, Lan & Hamdy, 1988).

Another approach to controlling errors in the multiple-testing situation which
affords researchers greater power to detect true effects than conventional FWEmethods
is the false discovery rate (FDR) presented by Benjamini and Hochberg (1995, 2000)
(for other FDR-type procedures, see Benjamini & Liu, 1999; Yekutieli & Benjamini,
1999). The FDR is de�ned by these authors as the expected proportion of the number
of erroneous rejections to the total number of rejections. The motivation for such
control, as Shaffer (1995) suggests, stems from a common misconception regarding
the overall error rate. That is, some believe that the overall rate applied to a family of
hypotheses indicates that on average ‘only a proportion a of the rejected hypotheses
are true ones, i.e., are falsely rejected’ (Shaffer, 1995, p. 567). This is clearly a mis-
conception, for as Shaffer notes, if all hypotheses are true, ‘then 100% of rejected
hypotheses are true, i.e., are rejected in error, in those situations in which any rejec-
tions occur’ (p. 567). Such a misconception, however, suggests setting a rate of error
for the proportion of rejections which are erroneous, hence the FDR.

Suppose we have J ( j = 1, . . . , J ) means, m1, m2, . . . , mJ , and our interest is in testing
m hypotheses of which m0 are true. Let S equal the number of correctly rejected
hypotheses from the set of R rejections; the number of falsely rejected hypotheses will
be V . In terms of the random variable V , the per-comparison error rate is E(V /M), while
the familywise rate is given by P(V $ 1). Thus, testing each and every comparison at a

guarantees that E(V /M) # a, while testing each and every comparison at a/M (Bonfer-
roni) guarantees P(V $ 1) # a.

According to Benjamini and Hochberg (1995) the proportion of errors committed
by falsely rejecting null hypotheses can be expressed by the random variable

28 H.J. Keselman et al.



Q = V/(V + S). It is important to note that Q is de�ned to be zero when R = 0; that is,
the error rate is zero when there are no rejections. The FDR was de�ned by Benjamini
and Hochberg as the mean of Q, that is

E(Q) = E
V

V + S

³ ´
= E

V

R

³ ´

= E
Number of false rejections

Number of rejections

³ ´
;

thus, FDR is the mean of the proportion of the falsely declared tests among all tests
declared signi�cant.

As Benjamini and Hochberg (1995) indicate, this error rate has a number of
important properties. For example, when m0 < m, the FDR is smaller than or equal to
the FWE because in this case the latter is given by P(R $ 1) $ E(V /R) = E(Q). This
indicates that if the FWE is controlled for a procedure, then FDR is as well. Moreover,
and most importantly for the purposes of this paper, if one adopts a procedure which
provides strong (i.e., over all possible mean con�gurations) FDR control, rather than
strong FWE control, then based on the preceding relationship, a gain in power can be
expected.

In addition to these characteristics, Benjamini, Hochberg, and Kling (1994) provide
a number of illustrations where FDR control seems more reasonable than FWE or
per-test control. Exploratory research, for example, would be one area of application for
FDR control. That is, in new areas of inquiry where we are merely trying to see what
parameters might be important for the phenomenon under investigation, a few errors
of inference should be tolerable; thus, one can reasonably adopt the less stringent FDR
method of control which does not completely ignore the multiple-testing problem, as
does per-test control, and yet provides greater sensitivity than FWEcontrol. Only at later
stages in the development of our conceptual formulations does one need more stringent
FWE control. Another area where FDR control might be preferred over FWE control,
suggested by Benjamini and Hochberg (1995), would be when two treatments (say,
treatments for dyslexia) are being compared in multiple subgroups (say, children of
different ages). In studies of this sort, where an overall decision regarding the ef�cacy
of the treatment is not of interest, but rather where separate recommendations would
be made within each subgroup, researchers may well be willing to tolerate a few errors
of inference and accordingly would pro�t from adopting FDR rather than FWEcontrol.

Simulation studies comparing the power of the Benjamini–Hochberg (BH) proce-
dure to several FWE controlling procedures (for detecting non-null pairwise mean
differences) have shown that as the number of treatment groups increases (beyond
J = 4), the power advantage of the BHprocedure over the FWEcontrolling procedures
becomes increasingly large (Benjamini et al., 1994; Keselman, Cribbie, & Holland, 1999;
Williams, Jones, & Tukey, 1999). The power of FWE controlling procedures is highly
dependent on the family size (i.e., number of comparisons), decreasing rapidly with
larger families (Holland & Cheung, 2002; Miller, 1981). Therefore, control of the FDR
results in more power than FWE controlling procedures in experiments with many
treatment groups, yet provides more control over Type I errors than per-test controlling
procedures.

As Hochberg and Benjamini (1990) and Benjamini and Hochberg (2000) note, the
FDR can result in conservative rates of Type I error when some of the tested hypo-
theses are indeed false. Accordingly, these authors developed an adaptive FDR (AFDR)
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controlling procedure which estimates the number of true null hypotheses and then
subsequently applies the estimate with the FDR method of control. Benjamini and
Hochberg (2000) demonstrate that the AFDR can result in greater power to detect
effects than the usual FDR method of control.

Based on the preceding, the purpose of our investigation was to identify the two or
more Type I error properties of an FWEmethod. Speci�cally, as a �rst step in exploring
this approach to Type I error control, we wanted to determine what the FWEs would
need to be in various multiple-testing scenarios such that the probability of making
two or more Type Ierrors would be controlled at some reasonable value. Then, based on
these results, and some ancillary comparisons between it and the FDR methods of
control, we could make recommendations regarding the preferred method for multiple-
testing scenarios. In the remainder of this paper we let g stand for the probability of
making two or more Type I errors, that is, g = P(V $ 2).

2. Procedures
A Monte Carlo study was conducted to determine the FWE rates necessary for
controlling g at 0.01 with Hochberg’s (1988) Bonferroni-type (HB) procedure. We
chose the HB method over other Bonferroni-type procedures because Olejnik, Li,
Supattathum, and Huberty (1997) found relatively small power differences between
them and, most importantly, because the HB procedure is very simple to apply.
However, researchers who prefer to use the other more complicated, and slightly
more powerful, Bonferroni-type FWEmethods (Hommel, 1988; Rom, 1990) mayrefer to
Westfall, Tobias, Rom, Wol�nger, and Hochberg (1999).

2.1. The HB Procedure
In this procedure, the p(i)-values corresponding to the m statistics for testing the
hypotheses H1, . . . , Hm are ordered from smallest to largest. Then, for any i = m,
m ± 1, . . . , 1, if p(i) # a/(m ± i + 1), the HB procedure rejects all Hi¢ (i¢ # i). According
to this procedure, therefore, one begins by assessing the largest p(i )-value, p(m). If
p(m) # a, all hypotheses are rejected. If p(m) > a, then Hm is accepted and one proceeds
to compare p(m± 1) to a/2. If P(m± 1) # a/2, then all Hi (i = m ± 1, . . . , 1) are rejected; if not,
then H(m± 1) is accepted and one proceeds to compare p(m± 2) with a/3, and so on. HBhas
been shown to control the FWE for several situations of dependent tests, that is, for a
wide variety of multivariate distributions that make HB applicable to most testing
situations psychologists might encounter. In particular, Sarkar and Chang (1997) proved
that HB controls the FWE when the distribution of the test statistics has exchangeable
positive dependence, and Sarkar (1998) proved that HB controls the FWE when the
distribution satis�es the ordered multivariate totallypositive of order 2 (MTP2) condition
(see also Benjamini & Yekutieli, 2001). These distributional conditions include those we
study in our examples (to be discussed shortly).

2.2. The BH Procedure
Benjamini and Hochberg (1995) proposed controlling the FDR, instead of the often
conservative FWEor the often liberal per-test error rate. In this procedure, the p(i )-values
corresponding to the m statistics for testing the hypotheses H1, . . . , Hm are also ordered
from smallest to largest, p(1) # p(2) # , . . . , # p(m). Let k be the largest value of i for which
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p(i) # (i/m)a, then reject all Hi, i = 1, 2, . . . , k. According to this procedure one begins
by assessing the largest p(i )-value, p(m), proceeding to smaller p(i)-values as long as
p(i) > (i/m)a. Testing stops when p(k) # (k/m)a.

The BH procedure has been shown to control the FDR for several situations of
dependent tests, that is, for a wide variety of multivariate distributions that make FDR
applicable to most testing situations social scientists might encounter (see Sarkar, 1998;
Sarkar & Chang, 1997). In addition, simulation studies comparing the power of the BH
procedure to several FWE controlling procedures have shown that as the number of
treatment groups increases (beyond J = 4), the power advantage of the BHprocedure
over the FWEcontrolling procedures becomes increasinglylarge (Benjamini et al., 1994;
Keselman et al., 1999). The power of FWE controlling procedures is highly dependent
on the family size (i.e., number of tests), decreasing rapidly with larger families (Holland
& Cheung, 2002; Miller, 1981). Therefore, control of the FDR results in more power
than FWE controlling procedures in experiments with many treatment groups, but yet
provides more control over Type I errors than per-test controlling procedures.

2.3. The AFDR Procedure
Benjamini and Hochberg (2000) also presented a modi�ed (adaptive) version of their
original procedure that uses the data to estimate the number of true hypotheses (m̂0).
(The adaptive BHprocedure has only been demonstrated, not proven, to control FDR,
and only in the independent case.) With the original procedure, when the number of
true null hypotheses, is less than the total number of hypotheses, the FDR rate is
controlled at a level less than that speci�ed (a).

To compute the AFDR procedure according to Benjamini and Hochberg (2000) one
would perform the following steps:
1. Order the p(i)-values.
2. Compare each p(i) to ai/m (as in the BHprocedure). If all Hi are retained, testing

stops.
3. If any Hi is rejected with the criterion of the BHprocedure, then testing continues

by estimating the slopes Si = (1 ± p(i))/(m ± i + 1).
4. Beginning with i = 1, proceed as long as Si $ Si± 1. When, for the �rst time,

Sj < Sj± 1, stop. Set m̂0 = min([1/Sj + 1], m), where [x] is the largest integer less than
or equal to x.

5. Starting with the largest p(i)-value, p(m), compare each p(i) to a(i/m̂0). Testing stops
when p(k) # (k/m̂0)a.

One disadvantage of the AFDR procedure, noted by both Benjamini and Hochberg
(2000) and Holland and Cheung (2002), is that it is possible for an Hi to be rejected with
p(i) > a. Therefore, it is suggested, by both authors, that Hi only be rejected if the
hypothesis satis�es the rejection criterion of the AFDR, and p(i ) # a. To illustrate this
procedure, assume a researcher has conducted a study with J = 4 and a = 0.05. The
ordered p(i)-values associated with the m = 6 pairwise comparisons are: p(1) = 0.0014,
p(2) = 0.0044, p(3) = 0.0097, p(4) = 0.0145, p(5) = 0.0490 and p(6) = 0.1239. The �rst stage
of the AFDR procedure would involve comparing p(6) = 0.1239 to a(i/m) =

0.05(6/6) = 0.05. Since 0.1239 > .05, the procedure would continue by comparing
p(5) = 0.0490 to a(i/m) = 0.05(5/6) = 0.0417. Again, since 0.0490 > 0.0417, the proce-
dure would continue by comparing p(4) = 0.0145 to a(i/m) = 0.05(4/6) = 0.0333. Since
0.0145 < 0.0333, H4 would be rejected. Because at least one Hi was rejected during the
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�rst stage, testing continues by estimating each of the slopes, Si = (1 ± p(i ))/(m ± i + 1),
for i = 1, . . . , m. The calculated slopes for this example are: S1 = 0.1664, S2 = 0.1991,
S3 = 0.2475, S4 = 0.3285, S5 = 0.4755 and S6 = 0.8761. Given that all Si > Si± 1, Sj is
set at m = 6. The estimated number of true nulls is then determined by m̂0 =

min([1/Sj + 1], m) = min([1/6 + 1], 6) = min([1.1667], 6) = 1. Therefore, the AFDRpro-
cedure would compare p(6) = 0.1239 to a(i/m̂0) = 0.05(6/1) = 0.30. Since 0.1239 < 0.30,
but 0.1239 > a, H6 would not be rejected and the procedure would continue by
comparing p(5) = 0.0490 to 0.05(5/1) = 0.25. Since 0.0490 < 0.25 and 0.0490 < a, H5

would be rejected; in addition, all Hk would also be rejected (i.e., H1, H2, H3 and H4).

2.4. The two or more FWE procedure
In our study the FWE properties of g were investigated for three different testing
scenarios. First, this rate was determined for testing the hypotheses that each of 50,
100 and 150 population proportions were equal to 0.5. In our second scenario, we
investigated the family of hypotheses that each population correlation coef�cient
equalled zero in a 16 ´ 16 (family size 120) correlation matrix. In our last scenario, we
examined the family of all possible pairwise comparisons, testing the hypotheses H0:
mj = mj ¢ ( j Þ j ¢) in a completely randomized design containing ten groups of subjects
(i.e., family size of 45). In all cases, we initially were only interested in testing complete
null hypotheses.

Our familyof all possible proportions was generated in the following manner. Let Y1,
Y2, Y3 and Y4 be multivariate Bernoulli with respective category probabilities pi, p1 ± pi,
p2 ± pi and 1 ± p1 ± p2 + pi. Here, p1 and p2 are probabilities of ‘yes’ for each of
two correlated questionnaire responses. The values of p1 = p2 = 0.5 were selected,
and pi was obtained from the relationship

pi = r

�����������������������������������������
[(p1 ± p2

1)(p2 ± p2
2)]

q
+ p1p2.

Accordingly, the value of r determines pi. We considered a low and high value for r,
namely r = 0.3 and r = 0.8. In particular, to obtain, say, r = 0.8 we selected a two-digit
random number from 00 to 99 and if that number was between 00 and 44, then Y1 = 1

and the other three Ys were set to 0; if between 45 and 49, then Y2 = 1 and the other
three Ys were 0; if between 50 and 54, then Y3 = 1 and the other three Ys were 0;
if between 55 and 99, then Y4 = 1 and the other three Ys were 0.

To illustrate, consider a sample of N items from the above distribution. De�ne X1 as
the sum of all the Y1s plus the sum of all the Y2s and X2 as the sum of all the Y1s plus
the sum of all the Y3s. Then X1 is Binomial(N, p1), X2 is Binomial(N, p2) and
Corr(X1, X2) = r. By generating data in this manner we were able to obtain correlated
pairs of questions (Q1, Q2), (Q3, Q4), etc. where, say, Q1 is uncorrelated with any other
questions apart from Q2. A SAS/IML (SAS Institute, 1989) program was written to
generate data from this distribution.

To generate our null and non-null correlation (16 ´ 16) matrices we followed the
procedures discussed in Olejnik et al. (1997). Speci�cally, in the null case (rij = 0 for
all i Þ j ), data were generated for 16 mutually independent variables, each having a
standard normal distribution. For the non-zero (non-null) cases, like Olejnik et al., we
adopted the procedure described by Kaiser and Dickman (1962).

For the pairwise multiple-comparison problem, to generate pseudo-random normal
variates, we used the SAS generator RANNOR (SAS Institute, 1999). If Zij is a standard
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normal variate, then Xij = mj + jj ´ Zij is a normal variate with mean equal to mj and
variance equal to j2

j ( j = j¢).
In addition to exploring what FWE rates would need to be in order to obtain 0.01

control for g, we compared the power rates of the two or more HB procedures to the
BH methods. (We will have more to say about this in Section 3.) For the family of
proportion tests we created a non-null case by setting half of the true proportions to
0.59. In the 16 ´ 16 all possible pairwise correlations family we created a non-null case
by setting the correlations between the �rst 11 variables to 0.15. For the pairwise
comparisons problem we investigated three non-null cases for m1, m2, . . . , m10: (a) 0, 0.5,
1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, (b) 0, 0, 0, 0, 0, 1.3, 1.3, 1.3, 1.3, 1.3, and (c) 0, 0, 0, 0, 0, 0, 0,
0, 0, 1.3.

Two power rates were collected: (a) the probability of detecting all possible non-
null tests (all-tests/pairs rate) and (b) the average of the per-test/pair power rates.
Non-null parameters were chosen such that comparisons between the procedures
would, if possible, avoid �oor and ceiling effects.

The sample size for the �rst two scenarios investigated was 500, while for the third
scenario we examined the cases n = 10 and n = 20 per group. Ten thousand simula-
tions were performed for each investigated condition.1

3. Results

3.1. Type I error rates

Scenario 1
H0: P= 0.5. Table 1 contains estimates of the FWE that were necessary to obtain
g . 0.01 control for the HB procedure when testing 50, 100 and 150 proportions. The
FWE values ranged from 0.069 to 0.152, with larger values occurring when the
correlation among the items (questions) was smaller. That is, when r = 0.3 the FWE
value necessary to obtain 0.01 g control was approximately equal to 0.15, twice the
value when r = 0.8.
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1As previously indicated, the FDR error rate is zero when there are no rejections. Thus, for accurate estimation of empirical
rates of error, the number of replications should be large when simulating FDR rates. To check the stability of our FDR values
we conducted a number of additional simulations based on 100 000 replicationsand found that these FDR rates were virtually
identical to those we report based on 10 000 replications.

Table 1. Hochberg (1988) FWE rates of Type I error such that g # 0.01 (null hypotheses P = 0.5)

Family size

r 50 100 150

0.3 0.152 0.150 0.140
0.8 0.070 0.069 0.072

Note: g = P(V > 2) # 0.01.



Scenario 2
H0 : r = 0 . For the family of 120 tests of correlation coef�cients from the 16 ´ 16

correlation matrix, similar results were obtained. That is, a FWEvalue of approximately
0.15 was required to achieve approximately 0.01 control for the FWE procedure.

Scenario 3
H0 : mj = mj ¢ ( j Þ j¢) . In our last scenario we examined all possible pairwise comparisons
(45) in a ten-group completely randomized design. As we found with the other two
testing scenarios, the FWE Type I error rates that were necessary to achieve 0.01 g

control varied with the conditions investigated. For example, when n = 10, the HBFWE
value was approximatelyequal to 0.08, while when n = 20 the value was approximately
equal to 0.05.

In summary, our Type I error results indicated that with at most a 0.15 FWEvalue the
g rate could be controlled at the 0.01 level. This result applied to testing the hypotheses
that each of 50, 100 and 150 population proportions were equal to 0.5 and the family
of hypotheses that each population correlation coef�cient equalled zero in a 16 ´ 16

(family size 120) correlation matrix, though in our tests of proportions scenario smaller
FWE values could be adopted when the correlation between the questions was large.2

With the all possible pairwise comparison problem, the FWEvalues needed to achieve
0.01 g control was approximately 0.08 and 0.05 for the two cases of sample size
investigated, n = 10 and n = 20, respectively.

Based on comments from reviewers on an earlier draft of our paper, we decided that
before probing further into the two or more errors method of Type I error FWEcontrol
we could �rst compare the sensitivityof the method to the BHapproaches. That is, if the
FDR and AFDR methods of Type I error control afford greater sensitivity for detecting
non-null effects with a more traditional level of signi�cance (e.g., 0.05), then the two or
more FWE Type I error method of control would not be attractive to researchers and
accordingly it would not be worth pursuing this investigation further. Interestingly,
though, it is also worth noting that we had also collected two or more Type I error data
for the BHand AFDRmethods and found that in all cases, the rates necessary to achieve
0.01 control were much smaller than the values reported in Table 1 (i.e., ranging from
0.022 to 0.072).

3.2. Power rates
As just indicated, we had compared the two or more Type I error HB controlling
methods to the two or more Type I error BH methods. Thus, not only did we gather
empirical rates of Type I error but also power rates. These power rates always favoured,
frequently by a substantial amount, the FDR approaches. However, because we would
not be recommending that the two or more approach to Type I error control be applied
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makes a Type I error, there is likely to be a similar test statistic that also leads to a Type I error, and hence there are likely to be
at least two Type I errors. However, if r is small (i.e., r = 0.3), the existence of one Type I error does not strongly imply the
existence of another Type I error. Since it is easier to make two Type I errors with larger r than smaller r, less control needs to
be placed on FWE with larger r than with smaller r to guarantee equivalent tight control on g. We examined this hypothesis by
re-examiningour tests of proportions scenario; however, we set r = 0.5. The FWE values necessary to achieve 0.01 g control
were between the values reported for r = 0.3 and r = 0.8, though closer to the r = 0.3 values because r = 0.5 is closer to
r = 0.3 than it is to r = 0.8.



to the FDR methods, we accordingly went on to compare the power of the procedures
using a = 0.05 with the FDR methods. The 0.05 criterion was selected because it is a
familiar and accepted standard; however, 0.05 is also a representative Type I error value
for the values that were found when the two or more criterion was applied to BHand
AFDR. Thus, from these perspectives, the power of the approaches is being compared
under ‘comparable’ conditions of Type I error control.

Scenario 1
H0 : P = 0.5 . Table 2 contains the all-tests and average per-test power values for the
family of proportions tests. Most evident from Table 2 is that the power values for the
FWEprocedure were always less than the BHand AFDR values. In particular, the AFDR
method was always more powerful than the BHmethod which in turn was always more
powerful than the HB FWEmethod. The differences between the all-tests rates could be
described as substantial (i.e., greater than 0.20) (see Einot & Gabriel, 1975). On the
other hand, the per-test rates, though still favouring the AFDR method over the
BH method and the BH method over the HB method, were not always as dramatically
different (i.e., less than 0.20).

Scenario 2
H0 : r = 0. The power values for the family of 120 tests of correlations from the 16 ´ 16

matrix were not dramatically different as they were for the tests of all possible
proportions, nor did they always favour FDR control over FWE control. When power
was de�ned as the probability of detecting all non-null hypotheses, the HB procedure
had a slight power advantage over the BHand AFDRmethods (HB = 0.09 vs. BH = 0.01

and AFDR = 0.04, respectively). (Remember a . 0.15 for HB, while a = 0.05 for the
FDRmethods.) However, the per-test rates favoured the FDRapproaches (AFDR = 0.90,
BH = 0.85 and HB = 0.80).
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Table 2. Power rates for testing null hypotheses that P = 0.5

Family size

50 100 150

Procedure All-tests Per-test All-tests Per-test All-tests Per-test

r = 0.3
HB 0.09 0.90 0.00 0.85 0.00 0.81
BH 0.46 0.97 0.20 0.96 0.09 0.96
AFDR 0.65 0.98 0.41 0.98 0.28 0.98

r = 0.8
HB 0.05 0.85 0.00 0.78 0.00 0.75
BH 0.52 0.96 0.27 0.96 0.15 0.96
AFDR 0.68 0.98 0.48 0.98 0.34 0.98



Scenario 3
H0 : mj = mj¢ ( j Þ j¢) . Table 3 contains all–pairs and per-pair power rates for the all
possible pairwise comparison problem for just one case of sample size, namely n = 10

(n = 20 results were very similar in pattern) for the three non-null cases investigated.
Once again, the AFDRrates were largest followed by the BHmethod and then by the HB
method. Furthermore, as with the tests of all possible proportions data, many of the
differences could be described as substantial (e.g., per-pair power rates were HB = 0.38,
BH = 0.75 and AFDR = 0.86 for the non-null case 0, 0, 0, 0, 0, 1.3, 1.3, 1.3, 1.3, 1.3).

4. Discussion
When many tests of signi�cance are to be examined in a research investigation,
controlling the probability of a Type I error with traditional FWE procedures can
result in substantial reductions in power to detect effects (see Miller, 1981). While
multiple comparisonists are certainly aware of this phenomenon, applied researchers
may not be and therefore may simply routinely apply currently popular methods of
control. Though this issue has been discussed over the years in the applied and
statistical literatures, it has recently been readdressed by Benjamini and Hochberg
(1995) by wayof their FDRapproach to Type I error control. Their approach is intended
to provide greater power to detect effects than the currently popular FWE procedures
and be more stringent with respect to Type I error control than would be the case if
the Type I error rate is set on each individual test. Furthermore, they also presented a
modi�ed FDR, the adaptive FDR, which also provides Type I error protection and even
greater sensitivity to detecting non-null effects than even their FDR approach to
multiple testing.

Because of this renewed interest in increasing sensitivity to detecting effects when a
large family of tests is to be examined, we decided to examine an approach to Type I
error control that had been suggested earlier in the literature, namely controlling the
rate of error at, say, t or more errors, where in our investigation, we set t at 2 (see
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Table 3. Power rates for all possible pairwise tests ( J = 10)

Procedure All-pairs Per-pair

m1, . . . , m10 = 0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5
HB 0.00 0.61
BH 0.00 0.77
AFDR 0.00 0.79

m1, . . . , m10 = 0, 0, 0, 0, 0, 1.3, 1.3, 1.3, 1.3, 1.3
HB 0.01 0.38
BH 0.13 0.75
AFDR 0.26 0.86

m1, . . . , m10 = 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.3
HB 0.05 0.35
BH 0.21 0.53
AFDR 0.33 0.62



Halperin et al., 1988). That is, traditional FWE methods protect against any error while
the two or more error rate does not consider the presence of only one error to be
serious when the family of tests is large in number.

We examined three scenarios involving many tests of signi�cance: (a) testing that
all proportions equal 0.5 when the family size of proportions tests was 50, 100 and
150; (b) testing that all of the 120 correlation coef�cients equal zero from a 16 ´ 16

correlation matrix; and (c) testing all pairwise comparisons in a ten-group completely
randomized design. The �rst of these scenarios would typify many clinical/medical-type
research studies where responses from a large questionnaire are examined for some
population of subjects, the second scenario has been reported (see Olejniket al., 1997),
and the third would not be that uncommon in behavioural science investigations
(Keselman et al., 1998).

Speci�cally, we were interested in determining what the FWE value would need to
be set at in order to provide 0.01 g protection for Hochberg’s (1988) step-up Bonferroni-
type controlling procedure when all tested hypotheses were true. Finally, in the second
phase of our investigation we compared the all-tests/pairs and average per-test/pair
power rates of the HB and FDR procedures.

Our results indicated that with at most a 0.15 FWE value the g rate could be
controlled at the 0.01 level. This result applied to testing the hypotheses that each of 50,
100 and 150 population proportions were equal to 0.5 and the family of hypotheses
that each population correlation coef�cient equalled zero in a 16 ´ 16 (family size 120)
correlation matrix, though in our tests of proportions scenario smaller FWE values
could be adopted when the correlation between the questions was large. With the all
possible pairwise comparison problem, the FWE values needed to achieve 0.01 g

control was approximately 0.08 and 0.05 for the two cases of sample size investigated,
n = 10 and n = 20, respectively.

Our second major �nding was that the power to detect effects, either per-test/
pair or for all tests/pairs, was typically larger when adopting FDR control than for the
FWE HB procedure. Indeed, though the FWE HB procedure occasionally used levels
of signi�cance that were considerably larger (e.g., a = 0.15) than 0.05 (in order to
give g = 0.01), the BH and AFDR power values based on a 0.05 level of signi�-
cance nonetheless were typically substantially larger (i.e., more than 0.20 percentage
points) than the FWE power values. Accordingly, at this time, we do not see the need
to explore further the two or more FWE method of Type I error control and therefore
strongly recommend the BHmethods of Type I error control, particularly the adaptive
FDR.3
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