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Abstract 

This dissertation proposes a computational model of early vision with recurrence, termed 

as early recurrence. The idea is motivated from the research of the primate vision. 

Specifically, the proposed model relies on the following four observations. 1) The primate 

visual system includes two main visual pathways: the dorsal pathway and the ventral 

pathway; 2) The two pathways respond to different visual features; 3) The neurons of the 

dorsal pathway conduct visual information faster than that of the neurons of the ventral 

pathway; 4) There are lower-level feedback connections from the dorsal pathway to the 

ventral pathway. As such, the primate visual system may implement a recurrent mechanism 

to improve visual representations of the ventral pathway.  

Our work starts from a comprehensive review of the literature, based on which a 

conceptualization of early recurrence is proposed. Early recurrence manifests itself as a form 

of surround suppression. We propose that early recurrence is capable of refining the ventral 

processing using results of the dorsal processing.  

Our work further defines a set of computational components to formalize early recurrence. 

Although we do not intend to model the true nature of biology, to verify that the proposed 

computation is biologically consistent, we have applied the model to simulate a 

neurophysiological experiment of a bar-and-checkerboard and a psychological experiment 
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involving a moving contour illusion. Simulation results indicated that the proposed 

computation behaviourally reproduces the original observations. 

The ultimate goal of this work is to investigate whether the proposal is capable of 

improving computer vision applications. To do this, we have applied the model to a variety of 

applications, including visual saliency and contour detection. Based on comparisons against 

the state-of-the-art, we conclude that the proposed model of early recurrence sheds light on a 

generally applicable yet lightweight approach to boost real-life application performance. 
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Chapter 1. Introduction 

The dominant paradigm in computer vision today is that of a feed-forward process that 

uses hierarchical layers of representations, determined mostly by statistical learning methods, 

that extract feature vectors that are then passed through a classifier for ultimate decisions on 

image content. The process has met with substantial success as a variety of high profile 

results have demonstrated (Babaud et al. 1986, Biederman 1987, Cheng et al. 1998, Lowe 

1999, Riesenhuber and Poggio 1999, Angelucci and Sainsbury 2006, Fei-Fei et al. 2006, 

Serre et al. 2007, Bay et al. 2008). In essence, this is a classic pattern recognition strategy as 

has been popular for decades (Fidler and Leonardis 2007). Successes are difficult to criticize, 

but when such successes are coupled with claims of faithfulness to biological vision, then 

there is room for debate. Although it is true that hierarchies and layered representations are 

part of biological visual processing, it is important to add that much more about biological 

vision is simply ignored in this dominant approach. One of those characteristics is feedback 

or recurrence. In a variety of other engineering domains, feedback is a well-understood topic, 

effectively used for a long time (Distefano III et al. 1967). However, in biological vision, 

even though it is acknowledged that feedback is present, its role remains an open question.  

A strong message from this dissertation is that recurrent processes in computer vision are 

important, and that one of the roles they play is to provide spatial and temporal context to 
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improve lower-level and early representations. In this sense, the term “lower-level” and 

“early” are interchangeably used. They refer to the very first few levels of visual areas in the 

primate visual system. In what follows, we will specify these areas in detail. At this point, 

readers can refer to Figure 3-1 to get a brief idea of areas referred as early visual areas. In 

addition, visual areas beyond these areas are higher-level or late visual areas in this work.  

Quoting from (Felzenszwalb et al. 2010): 

“In classical models of object recognition, first, basic features (e.g., edges and lines) are 

analyzed by independent filters that mimic the receptive field profiles of V1 neurons. In a 

feed-forward fashion, the outputs of these filters are fed to filters at the next processing stage, 

pooling information across several filters from the previous level, and so forth at subsequent 

processing stages. Lower-level processing determines higher-level processing. Information 

lost on lower stages is irretrievably lost. Models of this type have proven to be very 

successful in many fields of vision, but have failed to explain object recognition in general. 

Here, we present experiments that, first, show that, similar to demonstrations from the 

Gestaltists; figural aspects determine lower-level processing (as much as the other way 

around). Second, performance on a single element depends on all the other elements in the 

visual scene. Small changes in the overall configuration can lead to large changes in 

performance. Third, grouping of elements is the key. Only if we know how elements group 

across the entire visual field, can we determine performance on individual elements, i.e., 

challenging the classical stereotypical filtering approach, which is the very heart of most 

vision models.” 

Such experimental support for our position is not new, but the above is among the most 

recent.  
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The primate visual system is a large neural network consisting of a massive number of 

feed-forward and feedback connections (Felleman and Van Essen 1991, Lienhart and Maydt 

2002). Between the primary visual cortex (V1) and the lateral geniculate nucleus (LGN), 

feedback influences feed-forward processing in a pathway-specific fashion (i.e., the ventral 

pathway and the dorsal pathway) to sharpen the receptive fields of LGN neurons, and to 

enhance the transmission of signals through the LGN (Field 1987, Fogel and Sagi 1989, 

Georgeson et al. 2007). Within these visual areas, feedback modulatory effects have been 

widely observed. In one study (Angelucci and Bullier 2003), by inactivating high-order 

visual areas the authors noticed a major decrease in the strength of surrounding neurons in 

low-order visual areas. This hints at a mechanism where feedback plays a major role in 

centre-surround interactions. In (Jonas and Buzsaki 2007, Herzog and Clarke 2014), 

feedback circuits from the visual area MT (V5) to the visual area V1 and the thalamus have 

been shown to improve motion perception. In (Hupé et al. 1998, Jones et al. 2002), the 

authors studied feedback influence on figure-segregation. They showed that feedback 

processing amplifies activity of low-order neurons, particularly with low-visible stimuli. 

Feedback effects have been observed even without stimuli (Koenderink 1984, Keller et al. 

2012). 

1.1 Motivations 

The first major motivation to our work is that that early visual areas do not simply act to 

transform feed-forward signals. In fact, they also integrate top-down and lateral information 

to refine visual representations. The underlying visual hierarchy is thus not a feed-forward 

only cascade, and neural activity is not simply data-driven, as proposed by (Hubel and Wiesel 
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1959, Hubel and Wiesel 1962).  

As pointed out by a recent review (Kravitz et al. 2013), the ventral pathway is a recurrent 

occipitotemporal network containing neural representations to associate stimulus with 

response, to process emotionally salient stimuli, to support the assignment of stimulus 

valence, to support long-term memory, to support object-reward association, and to support 

object working memory. Neurons in the ventral pathway communicate via bidirectional 

connections. More specifically, the ventral pathway connects the early visual cortex to higher 

cortical structures to form object representations. The ventral pathway receives most feed-

forward information of visual stimuli from the parvocellular layer of the LGN. The main 

visual processing areas include areas V1, V2, V4 and the inferior temporal (IT) cortex. Visual 

information enters the ventral pathway via area V1 and reaches the rest of the visual areas in 

sequence. Along the pathway, size of neuron’s receptive field (region of the sensory space) 

gradually increases, with visual representation becoming complicated.  

One of the functional roles of ventral processing is to generate view-invariant 

representations. Here we borrow the term “invariant” from computer vision, where it 

characterizes a statistic of an image that is stable to a well-defined set of image 

transformations, such as deformation and scale. A number of neuroscience studies have 

shown that neurons in the ventral pathway have view-invariant characteristics (Lueschow et 

al. 1994, Rolls 2000, Quiroga et al. 2005) for object and face recognition (Gobbini and 

Haxby 2007). Note that this invariant characteristic is in contrast to the dynamic relationship 

among objects within the scene, which is one of the roles of the dorsal processing.  

Obviously, the ventral processing includes a set of mechanisms to extract and refine visual 

information to get view-invariance. Classical theories of the ventral pathway give rise to the 
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idea that it is a serialized hierarchy, with each sequential stage having more complicated 

selectivity and invariance than its lower stage. This sequential view excludes feedback or 

lateral processing. However, recent studies suggest that the ventral pathway is in fact a 

recurrent network. In addition, the network has connections with the dorsal hierarchy at 

multiple stages. The interaction between the dorsal and ventral processing depends on a 

number of factors. To this point, we need to introduce the second motivation for the current 

work.  

The second major motivating element for this thesis is Bullier's fast-brain hypothesis 

(Bullier 2001). The literature has not addressed this hypothesis in any detail with respect to 

the representations and algorithms that might realize it, neither within computer vision nor 

within computational neuroscience. Bullier argued that feedback connections are the best 

candidates for rapid long-distance communication.  In his hypothesis, the LGN is the key 

area. It is a processing hub in the thalamus, which receives major sensory input from the 

retina, and relays most of the information to visual area V1. The LGN has three types of 

cells, the magnocellular cells, the parvocellular cells, and the koniocellular cells. Each type 

has distinct neurophysiological properties. Importantly, information conducted via the 

magnocellular cells reach visual cortices much earlier than that via the parvocellular cells. 

Bullier suggested that results from this first-pass computation are then sent back by feedback 

connections to areas V1 and V2, which act as “active black-boards” for the rest of the visual 

cortical areas: information retro-injected from the parietal cortex is used to guide further 

processing of parvocellular and koniocellular information in the inferior temporal cortex. 

Bullier and his colleagues concluded that latency of visual processing at different visual 

cortices does not conform to a nice feed-forward only hierarchical pattern in the Hubel and 
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Wiesel sense (Nowak et al. 1997, Hupé et al. 1998, Hupé et al. 2001). Areas in the dorsal 

pathway, such as areas MT and MST, respond to input much faster than areas in the ventral 

pathway. Further, they noticed that there exist multitude cross-pathway recurrent connections 

from higher-level dorsal regions to lower-level ventral regions. Based on these observations, 

Bullier proposed that if timing difference permits, the visual system might utilize these 

recurrent connections to send results from the dorsal processing to modulate ventral 

processing.  

Functional studies suggested that the fast-brain mechanism plays an active role in refining 

visual processing in the ventral pathway. A figure-ground discrimination study (Hupé et al. 

1998) showed that feedbacks from the dorsal pathway increase the difference between neural 

responses to a bar moving on a stationary background and neural responses to the same bar 

moving together with the background. An fMRI study (Seghier et al. 2000a) using moving 

Kanisza illusory rectangles found strong and reproducible signal-boosting in areas V1 and 

V2, which are likely caused by recurrence from area MT/V5. In (Beck and Neumann 2010), 

the authors noted that MT-V1 feedback strengthens boundary perception in the chopstick 

illusion experiment. They further suggested that MT-V1 modulation facilitates localized 

motion estimation, which is not possible by pure feed-forward processing. Although evidence 

suggests that impacts of the fast-brain mechanism widely exist in the visual system, attempts 

to model it have not had much progress since Bullier’s early efforts. The significance of it to 

the big picture of biological vision and computer vision is not well understood.  

The third and final motivation for this thesis is the scale-space theory (Witkin 1983). 

Specifically, one could draw a conceptual connection between the fast-brain hypothesis and 

the scale-space analysis. The core idea of scale-space analysis is to examine signals from a 
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multi-scale perspective. In image processing, the basic operation is to convolve an image 

with a group of Gaussian kernels with different variances (scales). As the scale increases, the 

convolved image becomes coarser. This allows gradually smoothing out high-frequency 

image components (i.e., image noise and sharp edges). Stacking the convolved outputs along 

scales constructs a scale-space representation. It has a desired property of causality: once an 

edge disappears at one scale, it will not show in any coarser scales. As such, tracing the 

location of an edge coarse-to-fine becomes available. 

Witkin used one-dimensional signals as an example and proposed an algorithm to 

compute “stable variances” across the scale space (Witkin 1983). He argued that edge 

response at stable variances has a marked correspondence with perceptually salient object 

contours. However, when variance increases, the scale-space representation will lose spatial 

accuracy, that edge response will shift from its actual location. To solve this loss-of-accuracy 

problem, anisotropic diffusion has been proposed to preserve spatial information during 

constructing the scale-space representation (Gregoriou et al. 2009).  

Figure 1-1 illustrates a one-dimension example. Figure A shows the smoothed output 

signals as a result of applying Gaussian kernel progressively over the original signal. Clearly 

shown in figure B, signals are able to catch the intuitive notion of fine-scale information, or 

causality. 

During the era of 1990, Lindeberg and his colleagues applied scale-space analysis to solve 

computer vision problems (Lindeberg 1991, Lindeberg 1993). In (Lindeberg 1994, Lindeberg 

1998), the author addressed the problem of feature detection with automatic scale selection. 

By detecting local extrema over scales of differential expressions, scale selection 
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Figure 1-1 (A) A scale-space representation of one-parameter family of derived signals. The 

fine-scale information is progressively suppressed. (B) Gaussian smoothing does not create new 

zero-crossings, thus the trajectories of zero-crossings in scale-space are never closed from below. 

Image sourced from (Lindeberg 1996). 
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complements traditional scale-space theory by providing explicit mechanisms for predicting 

interesting scales. Figure 1-2 illustrates two examples of difficult edge detection that requires 

auto scale selection. In the bear example, the hairs are high-frequency pixel variations. It 

challenges the algorithm to pick the silhouette of the bear and ignore the hairs. In the 

sunflower example, it requires scale selection to choose coarser scales to process near-by 

sunflowers, and to choose finer scales to process far-away sunflowers.  

In the literature, the discussion of the relationship between the scale-space analysis and the 

primate visual system is limited to an abstract level. It has been hypothesized that the primate 

visual system is capable of computing scale-space smoothing (Lindeberg 1996). Figure 1-3 

depicts a hierarchy of receptive fields at which scale-space processing occurs. Overlaid 

circles represent receptive fields at each stage of the visual hierarchy. As scale increases, 

there is a significant increase of size of receptive fields: a neuron at a coarser scale sees larger 

spatial region. 

There is one aspect of our use of scale-space that differs with the classical views and those 

expressed in the above figures. The above description is a representational scheme where the 

only parameter that changes as scale increases is kernel size; that is, the nature of what each 

kernel computes does not change (for example, each kernel detects edges of the same kind 

but at different scales). In our model, not only does the scale change along the visual 

hierarchy, but also the nature of the kernel: at an early layer edges may be computed, while at 

a higher layer object translation direction might be computed. At different scales, our model 

extracts different visual characteristics. This makes the direct application of previous scale-

space methods inappropriate.  
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Figure 1-2 Examples of challenging edge detection. (A) To extract the silhouette of the bear 

body, hairs must be discarded (as image noise). (B) Nearby and far-away sunflowers require 

edge detection to be scale adaptive. 
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The presentational abstractions of the proposed hierarchy are further examined in Figure 

1-4. The figure illustrates a 4-stage hierarchy from the finest scale to the coarsest scale. 

Coloured circles indicate different natures of kernel at each abstraction level. Although these 

kernels extract different types of visual features, their relative sizes across scales still satisfy 

the scale-space constraints.  
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Figure 1-3 A schematic illustration of foveal system. It shows the receptive fields at different 

level. Note that the relative size of RFs is arbitrary. Image from (Lindeberg and Florack 1994). 
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Figure 1-4 A schematic illustration of the concerned visual hierarchy. Colours are used to 

represent heterogeneous kernels at each scale. 
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1.2 Our Approach 

In this work, we term the aforementioned recurrent connectivity conforming to the fast-

brain hypothesis as early recurrence. To test the hypothesis that early recurrence improves 

early visual representation, we propose in this dissertation a computational model of early 

recurrence. The model formalizes computations of the two visual pathways of the primate 

visual system: a coarse-spatial-fine-temporal representation as the dorsal processing, and a 

fine-spatial representation as the ventral pathway. According to the fast-brain hypothesis, 

feed-forward processing in the dorsal pathway takes place before that in the ventral pathway. 

Via feedback connections, the dorsal representation modulates the processing in the ventral 

pathway. Figure 1-8 illustrates an example of the proposed computation in edge detection.  

We further define a set of principled computational components. We firstly formulate 

feed-forward computations of a number of visual areas, including the retinal ganglion cells 

(RGCs), the LGN, visual areas V1, V2, MT and MST. Then we formulate the recurrent 

operation as a multiplicative inhibition. It is important to point out that our model is by no 

means to represent the true nature of the biology. However, to verify the proposed 

computation is consistent with biology, we applied the proposed computation to simulate two 

biological experiments: a figure-background segregation experiment (Hupé et al. 1998), and 

a Kanisza illusory rectangles experiment (Seghier et al. 2000b).  

The essence of our work is to improve early-level visual representation by suppressing 

distracting features. Intuitively, the proposed computation has a wide range of applications in 

computer vision. One potential usage is in the self-driving vehicle, where the system needs to 

generate a visual representation of the surrounding traffic, and detect hazardous objects (e.g., 

pedestrians, other vehicles) based on this representation. In this example, early recurrence  
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Figure 1-5 Apply early recurrence to improve edge detection. Input image is processed via the 

two visual pathways (black arrows). Early recurrence (red line) applies result of the dorsal 

processing to modulate ventral processing, leading to refined representation for further 

analysis. 
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may facilitate the on-board computer to improve the visual representation by suppressing 

irrelevant visual features. 

To this end, we have applied our model in a variety of applications. In the application of 

visual saliency, three state-of-the-art saliency models have been implemented and revised to 

use modulated features to calculate the saliency representation. We conduct both empirical 

comparison and quantitative analysis with human fixation data.  Results show that the 

modulated saliency representations significantly exceed their non-modulated versions. One 

of the modulated representations is further applied to background subtraction and scene 

recognition. Via quantitative comparison, we conclude that the proposed early recurrent 

modulation improves application performance in a robust and generally applicable manner. 

In the application of edge detection, an early recurrent inhibition operator is developed 

based on our model. The operator is compared with another biologically-inspired operator 

(Grigorescu et al. 2003). The two operators are implemented following a standard edge 

detection paradigm. Using real images, we show that the proposed operator surpasses the 

competitor in most performance metrics. Our work is further used to improve the Canny edge 

detector (Canny 1986) and another edge detector (Martin et al. 2004). The results clearly 

show that the proposed model improve edge detection in real scenes. 

1.3 Contributions 

The main contributions of this dissertation are as follows: 

1) A computational model of early recurrence. 

2) A set of biologically inspired computational components and representations. 

3) A computational framework to include the proposed computation components to model 

early recurrence. The framework has the following key characteristics: 
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a) A biologically plausible hierarchical framework to accommodate early recurrence at 

multiple hierarchical levels.  

b) The framework works in a dynamic manner. The working order and temporal delays 

of early recurrent mechanisms are determined according to the actual primate visual 

system. 

4) The proposed model simulates two biological experiments. Simulation results are 

consistent to the original studies. 

5) Early recurrent modulation has been applied in different computer vision applications. 

Results show consistent improvements over prior-arts.  

During the research, we have transformed some of these contributions into academic 

papers. They are listed as follows: 

 Shi X, Wang B, Tsotsos JK, Early Recurrence Improves Edge Detection, BMVC 2013. 

 Shi X, Tsotsos JK, Background Subtraction via Early Recurrence in Dynamic Scenes, ICPR 2012. 

 Shi X, Bruce NDB, Tsotsos JK, Biologically Motivated Local Contextual Modulation Improves 

Low-level Visual Feature Representations, ICIAR 2012. 

 Shi X, Tsotsos JK, Improved Edge Representation via Early Recurrent Inhibition, CRV 2012. 

 Shi X, Bruce NDB, Tsotsos JK, Fast, Recurrent, Attentional Modulation Improves Saliency 

Representation and Scene Recognition, CVPR-Workshop 2011. 

The rest of this dissertation is arranged as follows. Chapter 2 reviews the related theories 

and models. Chapter 3 proposes the computational model of early recurrence. To verify the 

proposed model, Chapter 4 simulates two biological experiments that support the fast-brain 

hypothesis. To show the influence of early recurrence to computer vision, we further 

investigate its usage in solving practical computer vision problems. Chapter 5 studies the 

application of visual saliency. Chapter 6 studies the application of edge detection. Last but 

not least, Chapter 7 provides the general conclusions. 
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Chapter 2. Literature Review 

The ever-growing knowledge of the primate visual system continues to motivate new 

algorithms to improve performance of computer vision applications. However, the biological 

system is so complex, and there are so many gaps in our knowledge, such that making 

progress is usually non-trivial. We need to follow scientific methodologies to conduct 

research. One of the classic scientific methodologies follows the cycle of observation, 

hypothesis, prediction, experiment, and new theory; then new observation triggers the next 

round. For example, theories of the famous Yarbus fixation experiment have been evolved in 

such a manner. In the original work (Yarbus et al. 1967), the author proposed that deployment 

of eye fixation in the context of a task requires a top-down process. The observer’s task could 

be predicted from his/her pattern of eye movement. For a long time, this idea had been well 

acknowledged. Recent experiments (Greene et al. 2012) challenged the conclusion by 

showing that subjects fail to identify the tasks performed by the observers based on the static 

scan paths (without seeing the order of fixations). However, more recent investigations (Borji 

and Itti 2014, Haji-Abolhassani and Clark 2014) overturned Greene’s work and showed 

counter-examples to support Yarbus’s original hypothesis. Of course, in this dissertation, we 

are not interested in this specific topic, but it is worth stating that the research path these 

debates following are important within the scientific process. 
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Let us consider the research on lower-level visual representations of the primate visual 

system. Since anatomical studies revealing its network structure, theories of visual 

processing from a connectionist perspective have emerged one after another. In general, these 

theories can be classified into two types: feed-forward theories and feedback theories. Feed-

forward theories focus on explaining how the brain extracts and projects information from 

lower-level visual area to higher-level visual areas, while feedback theories emphasize the 

additional contribution of feedback or recurrent mechanisms. Since both feed-forward and 

feedback processing are embodied in the visual cortex, some elements of both types of 

theories have validity. 

Motivated by recent feedback theories, we are interested in modelling the computation of 

lower-level recurrence, and investigating its utility in computer vision. Specifically, our 

biological foundation rests on two elements: lower-level feedback connectivity and timing of 

visual processing. This chapter will provide a literature review on important research that 

motivates our investigation.  

In the following sections, we will first review the biological foundation of the primate 

vision, major feed-forward and feedback theories, timing of visual processing, and the 

hypothesis of early recurrence. The relationship between early recurrence and computer 

vision will be discussed. Specifically, we build a connection between early recurrence and the 

scale-space theory. The ultimate goal of this work is to show that early recurrence can 

fundamentally benefit computer vision applications. Thus, we will also review related 

computer vision systems. 
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2.1 An Overview of Biological Visual Systems 

This section starts with a brief history of biological vision research and ends up with our 

up-to-date knowledge of the primate early visual hierarchy, relevant to this dissertation. A 

subset of the hierarchy is defined to contain the visual areas and connections needed to the 

current study. 

The primate visual system is among the most complicated yet highly efficient 

information-processing networks in the world. It is a massive network containing a large 

number of feed-forward, feedback and lateral connections. Our ancestors began studying the 

brain from ancient times. However, the brain was not originally treated as an important 

organ. Ancient Egyptians thought the heart is the central unit that possesses intelligence. 

During the mummification process, the heart was the only organ left within the body (Wade 

et al. 2011). Our attempts to understand brain functions began during the 17th century BC 

(Wilkins 1992). Due to the limited technologies, until the 4th century BC, the brain was 

believed to merely function as a cooling system to bring down body temperature. Since the 

Hellenistic period, approximately the 3rd century BC, anatomical and physiological studies 

emerged. It was then realized that the brain indeed controls the nervous system. An important 

proposal during the later Roman Empire was that the brain controls the senses, and the 

nervous system controls the muscles. During the Renaissance, anatomical studies discovered 

that the brain contains a large number of components connected via nerves, and that each 

component has a specialized function (Van Laere 1993). At that time, researchers began to 

propose the brain structure and studied the brain in a region-by-region basis. The invention of 

microscope and staining procedure in the late 19th century opened the door to understand the 

brain from a neural network perspective. It was noted that different parts of the brain process 
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sensations, capabilities and intelligence respectively. A large portion of the brain is 

recognized as dedicated to vision (Kandel et al. 2013). 

Contemporary vision research started during the mid-20th century. In late 1950s and early 

1960s, David H. Hubel and Torsten Wiesel announced several important observations that 

greatly expanded our knowledge of the visual system. By studying cats, they discovered the 

columnized neural arrangement in the primary visual cortex (Hubel and Wiesel 1959, Hubel 

and Wiesel 1962). In a later study (Hubel 1963), Hubel put forth a description of the visual 

hierarchy and the concept of the visual pathway, and further hypothesized how visual 

perception may arise. These works have deeply influenced later neuroscience and 

computational vision.   

Brain studies on non-human primates via invasive cell-recording techniques revealed a 

complicated network structure. An early summary can be found in (Felleman and Van Essen 

1991), see Figure 2-1. The primary visual cortex (area V1) stands at the lowest level of the 

brain hierarchy that receives most input signals from the retina. It has connections to many of 

the higher-level visual areas. Further, the authors listed the then-up-to-date connections 

among these areas, which imply far more complexity in possible processing strategies than a 

simple hierarchy. Based on the direction of signal projection, inter-neuron connections were 

categorized as feed-forward connections, feedback connections and lateral connections.  

A recent update to Felleman and Van Essen’s network (Lienhart and Maydt 2002) extends 

the notion of laminar distribution of neurons interconnecting visual areas with an index of 

hierarchical distance. It also confirms that the main visual pathways are mostly composed of 

short to medium distance connections. 
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Figure 2-1 The hierarchy of visual areas and connections. Image from (Felleman and Van Essen 

1991). A recent update (Lienhart and Maydt 2002) confirms that the main visual pathways 

ascending and descending the hierarchy have similar topographical structures. 
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Our investigation focuses on the early stage of the hierarchy, thus only a subset of visual 

areas and associated connections are within our scope, see Figure 2-2. In this view, visual 

processing starts from the Regina Ganglion Cell (RGC) through the lateral geniculate nucleus 

(LGN) into cortical areas. In humans and macaques, the LGN has three main types of cells. 

The magnocellular (M-) cell mainly responds to high-temporal frequency and low-spatial-

frequency achromatic visual features. The parvocellular (P-) cell mainly responds to low-

temporal frequency high-spatial-frequency chromatic features. The koniocellular (K-) cell 

has physiological properties between that of the P-cell and the M-cell (Xu et al. 2001).  Our 

current work is mostly inspired by research on P- and M- cells, thus K-cells are not modelled 

at present. A large portion of the LGN connects to the primary visual cortex, V1 (Lamme et 

al. 1998, Casagrande and Xu 2004). Although there are other connections from sub-cortical 

regions to cortical regions (Sincich et al. 2004, Van Den Stock et al. 2011), they are irrelevant 

to the current study. From area V1, the visual hierarchy continues along two main visual 

pathways: the dorsal pathway and the ventral pathway (Mishkin and Ungerleider 1982, 

Norman 2002). The dorsal pathway stretches from area V1, via area MT, area MST, to the 

inferior parietal lobe. This pathway is mainly concerned with visuospatial processing (e.g. 

object localization, motion, spatial working memory, visually guided action and navigation, 

etc.). The ventral pathway connects the primary visual cortex to higher cortical structures to 

form object representations. The main visual processing areas include areas V1, V2, V4 and 

the inferior temporal (IT) areas. Each pathway is comprised of neurons that have distinct 

sensory selectivity, and often especially for the earlier layer, they may be considered as being 

specialized for particular visual features. How they may determine visual features in a 

manner that is invariant to illumination, viewpoint, and other external characteristics of 
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image acquisition, and then how the pathway integrates this to form a stable view of the 

world are the major foci of the current research.  

Classic theories of the ventral pathway gave rise to the idea that it is a serial hierarchy, 

with each sequential stage having progressively more complex selectivity and invariance 

than its lower stage. This sequential view excludes any feedback or lateral processing. 

Computation is strictly within the ventral pathway and proceeds in a feed-forward manner. 

However, recent studies suggest that the ventral pathway is actually a much more 

complicated recurrent network (Kravitz et al. 2013). Not only that, the ventral pathway has 

connections with the dorsal pathway at multiple stages. This suggests that, to reach an 

invariant visual representation, ventral processing is not isolated. However, whether feedback 

from the dorsal pathway is capable of impacting the ventral processing critically depends on 

the timing of visual processing between the two pathways.  

Feedback connections have been shown important during visual processing. However, the 

effect of feedback differs from area to area, (Perkel et al. 1986, Van Essen et al. 1986, Henry 

et al. 1991, Salin and Bullier 1995, Martinez-Conde et al. 1999). Interestingly, most feed-

forward and feedback connections within the early visual hierarchy show a paired pattern 

(Battaglini et al. 1982, Bullier et al. 1984, Ferrer et al. 1988, Ferrer et al. 1992, Salin et al. 

1992, Lienhart and Maydt 2002). 

An important property to characterize a neuron is by its receptive field (RF). Specifically, the 

classical definition of receptive field refers to the spatial region where a change of stimulus 

causes a response of the neuron. Neurons in the higher-level visual areas have larger RFs. 

That is, a higher-level neuron will respond to stimuli or visual representation over large 

spatial field. However, with feedback mechanisms, the definition of RF extends beyond this 
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Figure 2-2 The current work focuses on a subset of the primate visual hierarchy, where visual 

processing starts from the Retina, through the LGN into area V1. From area V1, the visual 

hierarchy continues along two main visual pathways: the dorsal pathway (including area MT 

and area MST) and the ventral pathway (including area V2). Texts in the brackets indicate the 

correspondent cell types that the current work simulates.  
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classical sense (Angelucci and Bullier 2003). A non-classical RF describes the extended 

region that, although it cannot drive neural response directly, is capable of exerting 

suppressive or facilitative effects on the response to the presentation of stimuli in the 

classical RF. For example, by reverse correlation, it has been reported that the classical and 

non-classical RF of V1 neurons are 0.45° and 1°.  

It is suggested that feed-forward connectivity determines RF properties and transforms 

visual input into behavioural responses, and feedback connectivity together with lateral 

connectivity plays the roles that tune RF properties based on higher-order perception, 

attention, and visual awareness (Lamme et al. 1998, Angelucci and Bullier 2003, Angelucci 

and Bressloff 2006). Many functional role studies have revealed the influence of feedback 

over area V1 and area V2 (Sandell and Schiller 1982, Alonso et al. 1993, Martinez-Conde et 

al. 1999, Angelucci et al. 2002, Angelucci and Bressloff 2006), and over higher-level visual 

areas, such as area MT (Hupé et al. 1998), area MST (Berzhanskaya et al. 2007), and area V4 

(Ungerleider et al. 2008).  

The current study particularly focuses on the lower-level recurrent connections that cross 

the two visual pathways. However, before reviewing the details, it is necessary to change our 

topic to computational neuroscience. In the next section, we will review how existing 

theories put forth feed-forward and feedback processing, and associated implications to 

computer vision.  

2.2 Computational Models of Feed-forward and Feedback Processing 

The goal of computationally modelling the primate visual system is to quantitatively 

explain certain aspects of visual processing. Connectionism is a common approach to model 
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neural network processing (Feldman and Ballard 1982). A connectionist model usually starts 

from building a hierarchical network of the visual system, based on which the model 

specifies the computation at each hierarchical layer.  

Based on type of modelled connectivity, one can categorize existing models of the primary 

visual system into feed-forward models and models with feedback. In what follows, we will 

first review a number of pure feed-forward models, which do not contain feedback 

components. The review focuses on how these models calculate invariant visual 

representations in pure stimulus-driven fashions. 

2.2.1 Pure Feed-forward Models  

Inspired by Hubel and Wiesel's discovery of the visual hierarchy and neural response 

patterns, many models start from simulating neurophysiological properties. Marr's well-

known work is a classic example (Marr 1982). The initial representation is a two-dimensional 

visual array (retinotopically aligned to visual fields) derived from the retina. This 

representation then projects to higher levels. The feed-forward process continues until a 

three-dimensional interpretation of the scene is fully reconstructed. Specifically, the process 

contains three stages: 

 2D Primal Sketch: to build a 2D primal sketch based on extracted visual features 

(zero-crossings, edges and curves). 

 2.5D Sketch: to construct local surface orientations, contours, discontinuities, and 

depth information based on the 2D primal sketch.  

 3D Sketch: to construct shapes and their spatial relationships on top of the 2.5D sketch. 

Based on the then-up-to-date knowledge of the primate visual hierarchy, visual processing 
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was proposed as a purely feed-forward fashion. Figure 2-3 illustrates the concept from an 

information-flow perspective, which illustrates the basic information flows of the visual 

hierarchy. Marr did not specify the anatomical localizations that compute these 

representations. However, in his theory, there is no feedback mechanism at any stage of the 

hierarchy. Without feedback tunings, the visual processing is hardwired, i.e., the processing 

hierarchy is a static structure. It is now known that the primate visual hierarchy is plastic, and 

can not only learn over time but is also dynamic and adaptable to the input stimulus and 

visual task (Kourtzi and Dicarlo 2006). The view of the static visual process is now 

discarded; however, the legacy remains influential. 

In (Fukushima 1980, Fukushima 1988), a hierarchical multi-layered neural network, the 

so-called Neocognitron, was proposed that is capable of performing position-invariant visual 

pattern recognition. Specifically, position-invariance refers to the ability to recognize a 

pattern regardless of where it is found in the visual scene. Neocognitron model includes an 

input layer and a number of simple cell / complex cell (S-cell / C-cell) pairs that are inspired 

from the biological vision, e.g. (Hubel and Wiesel 1959). In the model, recognizing an object 

is a recursive process of successive S-cell / C-cell refinements. The basic routine is that the 

S-cells extract visual features and the C-cells combine responses of the S-cells over different 

positions, thus achieving localized position-invariance. The highest-level C-cells compute the 

ultimate representation, which is then used for the self-organized learning system for 

recognition tasks (Figure 2-4).  

One disadvantage of the feed-forward Neocognitron network is that the performance drops 

when two or more patterns present simultaneously. To solve this problem, a top-down 

propagation process was added to the conventional Neocognitron network in later extensions, 
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Figure 2-3 Mapping the visual hierarchy with the 3-stage vision expressed by Marr. The visual 

hierarchy works in a pure feed-forward fashion. Input stimuli are captured at the lowest level 

(Retina). Upper level receives input from lower level to form complex visual representation 

(from 2D primal sketch to 2.5D sketch). Finally, the top layer generates the 3D representation to 

restore the scene. 
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Figure 2-4 The typical architecture of the Neocognitron (Fukushima 1980, Fukushima 1988). It 

includes an input layer and a number of S-cell / C-cell pairs. The basic routine is that the S-cells 

extract features (green arrows), and the C-cells combine responses of the S-cells over different 

positions (red arrows) to achieve position invariance. Output of the highest-level C-cells is then 

used for the self-organized learning system for recognition tasks. Note that in this figure, 

information flow is feed-forward only. 
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see (Fukushima 2013) for a review. In an early proposal (Fukushima 1986), the top-down 

processing (called the selective attention model) facilitates the network to segment and 

recognize targets one after another. In recent revisions (Fukushima 2001, Fukushima 2005), 

the network is further improved to recover occluded object parts. To do this, the network first 

detects the occluded object; a mask layer is defined to suppress response that is irrelevant to 

the occluded pattern. As such, by the top-down suppression, the network has the ability, not 

only to recognize occluded patterns correctly, but also to restore the occluded parts. 

Neocognitron has been successfully used in many hand-writing recognition applications 

(Fukushima 2007). In these applications, input images are mostly hand-writing samples. 

However, for generalized object recognition, how to compute invariant feature representation 

is still an on-going major challenge.  

Poggio and his colleagues faced this challenge with a two-step framework (Poggio et al. 

1988). In the first step, different feature extraction algorithms are used. Outputs of these 

algorithms are discontinuity representations with regards to specific features. Each 

discontinuity representation is a retinotopic intensity map, where a higher intensity value 

indicates a higher probability of feature presenting. In the second step, the computed feature 

maps are combined into a surface discontinuity map, which is further used for object 

recognition.  

In (Riesenhuber and Poggio 1999), the authors proposed a computational hierarchy of 

object vision. This work is claimed to be consistent with the processing in the primate ventral 

pathway. Specifically they modelled the processing of area V1 and the inferotemporal cortex 

(IT), which accounts for many recognition tasks. The hierarchy shares many common 

characteristics with Neocognitron. For example, they both have layers of S-cell and C-cell 
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pairs to successively achieve position-invariant. An HMAX operation was proposed for 

feature combination, which includes two methods: sum of features and max of features. The 

sum of features is a weighted linear summation over different feature maps that would 

explain the increase in complexity of the optimal stimulus driving cells for object 

recognition. The max of features is a non-linear operation that pools over slightly distorted 

versions of the same feature-set to provide the substrate for building invariant 

representations. Later, the model was refined (Serre and Riesenhuber 2004) to couple with 

biologically-inspired filters for S-cells, and tuning properties for C-cells.  

Another feed-forward approach is by statistical analysis. One successful example is the 

SIFT descriptor (Lowe 1999, Lowe 2004). In order to compute local scale-invariant features, 

the algorithm starts from transforming the input image into a scale-space representation. The 

author proposed to use Difference-of-Gaussians filter at different spatial scales to extract 

image intensity variations, based on which extrema in both spatial and scale neighbours 

define a set of key locations (descriptors). Each key location is assigned a canonical gradient-

based orientation so as to describe the key location invariantly to rotation. The image is then 

characterized by these key locations. To perform object recognition, a typical method is by 

descriptor matching (Skrypnyk and Lowe 2004, Brown and Lowe 2007). Similar statistical 

based feature descriptors have been recently proposed and successfully used in various 

machine learning applications (Dalal and Triggs 2005, Vedaldi and Fulkerson 2010).  

Progress on feed-forward artificial neural networks (ANN) triggered a series of 

applications that address machine learning problems. Among them, the Convolutional Neural 

Network (CNN) is perhaps the most relevant example. LeCun and his colleagues proposed a 

back-propagation learning network for character recognition (Lecun et al. 1990). The 
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hierarchy of the network simulates S-cell and C-cell pairs. S-cell operation is equivalent to a 

convolution (thus called convolution network), followed by an additive bias function and a 

sigmoid function. The weights to these functions are trainable. C-cell operation performs 

local-averaging and sub-sampling. By such a paired operation, the network achieves location 

and distortion invariance. The output layer measures the Euclidean distance between 

computed vector (representing input) and parameter vector (representing a class). Back 

propagation is applied to train the network. The CNN was then developed with a new 

learning paradigm (Lecun et al. 1998), called Graph Transformer Networks, for more 

generalized hand-writing recognition.  

Recent advances of ANN include the popularized Deep Learning (Lecun et al. 2015). It 

intends to learn representations of data by using hierarchical architecture (similar to the 

visual hierarchy), with complex structures and multiple non-linear transformations. Deep 

Learning has significantly improved the state-of-the-art in speech recognition, visual object 

recognition, object detection and many other domains. 

2.2.2 Feedback: A Missing Component 

Feedback is an important part of visual processing that did not appear in Marr’s three-

stage vision hierarchy. We now know that the primate visual system includes a massive 

feedback network. It is our goal to contribute to an understanding of the role of feedback in 

visual processing. Numerous other studies have the same goal. For example, it has been 

suggested that our brains use feedback to adapt visual processing to current task demands 

(Jones et al. 1997, Baluch and Itti 2010, Greene et al. 2012), past experience (Lee and 

Mumford 2003, Kersten et al. 2004, Borji et al. 2012) and scene context (Chun and Jiang 
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1998, Bar 2004, Oliva and Torralba 2007). In (Lamme and Roelfsema 2000, Roelfsema 

2006), the authors presented neurophysiological evidence and models that connect feedback 

to perceptual grouping tasks. In a more recently study (Felzenszwalb et al. 2010), the authors 

presented convincing evidence suggesting that the cortical processing is not purely 

hierarchical and feed-forward. They claimed that in order to know how the visual system 

processes fine-grained information at a particular location, it is necessary to integrate 

information about the surrounding context over the entire visual field via feedback 

mechanisms. Grouping and segmentation are crucial to understanding vision, and must be 

understood on a global scale. 

2.2.3 Feedback Theories 

It is commonly believed that feedback control in vision facilitates the feed-forward 

processing via different types of neural modulations. The literature suggests that feedback 

modulation can impact feed-forward processing by at least three aspects: strengthening feed-

forward response (Haenny et al. 1988, Motter 1993, Luck et al. 1997), attenuating feed-

forward response (Reynolds et al. 1999) and enhancing baseline activity (Luck et al. 1997, 

Kastner et al. 1999).  

To model a feedback mechanism, we must answer three questions: where does the 

feedback come from? What is the feedback representation? And how does this representation 

affect visual processing? We know that feedback takes place at different levels of the visual 

hierarchy: attentive feedback, intermediate feedback, and early recurrent feedback. These fall 

within the broad category of attentive processes, following the definition in (Tsotsos 2011): 

“Attention is the process by which the brain controls and tunes information processing.” 
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Attentive feedback has been actively studied for decades. However, due to its complicated 

nature, the exact neural origin of attentive feedback is not clear. In many theories, it is 

believed that visual attention is generated outside the visual hierarchy, i.e., in much higher-

level cortical areas (Desimone and Duncan 1995, Kastner and Ungerleider 2000, Gregoriou 

et al. 2009). The representations are abstract, yet capable of containing information about 

where and what to look. 

Among existing attention theories, an early conceptual and influential model was the 

Feature Integration Theory (Treisman and Gelade 1980a). Its computational proposal was 

later proposed in (Koch and Ullman 1985). In this model, a topographical central 

representation, or the so-called saliency map, is computed in pure feed-forward fashion based 

on combinations of extracted visual features. A Winner-Take-All (WTA) procedure is 

developed to compute the most salient region or feature from the central representation as 

attention. Many models employ this feature-driven process and the WTA computation (Phaf 

et al. 1990, Ahmad 1991, Itti et al. 1998, Bruce and Tsotsos 2009a). 

Another well-known feedback model was proposed by Grossberg and colleagues, the 

Adaptive Resonance Theory (ART) (Grossberg 1987, Carpenter and Grossberg 1990, 

Carpenter et al. 1991). ART is a self-organizing neural network for pattern recognition in 

response to arbitrary sequences of input patterns. The system involves both feed-forward 

feature computation and feedback expectation modulation. Feedback takes form as priming 

of expectation, or learned prototype vectors. In this model, the feed-forward representation is 

compared with the feedback representation to measure the belongingness of features to a 

known pattern.   

In (Anderson and Van Essen 1987), the primate visual system has been described as a set 
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of shift-able circuits, or the so-called Shifter Circuits, which provide a generalized routing 

strategy for dynamic control of information flow to calculate visual attention (in the Koch 

and Ullman sense). The strategy can be applied to a broad range of visual tasks, such as 

stereopsis, motion analysis and visual attention. The model includes a bottom-up stimulus-

driven saliency structure to control the routing of neural arrays between the LGN and area 

V1. Shifting of focus is accomplished through feedback controls, during which ascending 

pathways are selectively suppressed by inhibitory neurons (through macro-shifting circuitry). 

However, as a general framework, Shifter Circuits do not include processes for modulating 

neural processing other than selection of inputs. 

Tsotsos and colleagues proposed the Selective Tuning (ST) hypothesis (Tsotsos et al. 

1995). Its earlier prototype (Culhane and Tsotsos 1992) introduced a routing strategy and the 

concept of inhibitory beam that computes a selection based on both feed-forward and 

feedback processing. The up-to-date version of the model simulates a variety of attentive 

mechanisms, several involving feedback. Among these is a top-down biasing of the visual 

processing hierarchy based on task demands, a recurrent localization process that traces 

neural connections from top to bottom of the hierarchy in order to select the stimulus location 

of the most strongly responding neurons at the top, and a top-down suppression mechanism 

that is used to reduce interference among competing stimuli on feed-forward pathways. ST 

has predicted new characteristics of biological visual processes that are supported by 

experiments on human and non-human primates (Tsotsos 2011). Several more specific 

aspects of ST have also appeared, such as motion selection (Tsotsos et al. 2005), active 

search (Zaharescu et al. 2005), and features binding (Tsotsos et al. 2008).  

As for modelling intermediate feedback and early recurrent feedback, the literature is 



 

 

37 

 

limited despite the fact that there are plenty of psychophysical and neurophysiological studies 

on lower-level feedback mechanisms. It is thus our intention in this work to provide one way 

to model early recurrent feedback. 

2.3 Timing of Visual Processing and Early Recurrence 

Now we continue our review on the topic of feedback mechanisms. In this work, timing is 

a critical factor in driving early recurrence. As discussed in previous sections, the LGN 

contains three major types of cells (Irvin et al. 1986, Maunsell et al. 1999): magnocellular 

(M-) cell, parvocellular (P-) cell, and koniocellular (K-) cell. In this work, M and P cells will 

be modelled. Table 2-1 provides a comparison. A key notion is that the M-cells have a faster 

response time to input than that of the P-cells (Lindeberg 1998). If we couple this timing 

property with the spatiotemporal frequency that they respond to, we see that the visual 

processing of low-spatial-and-high-temporal frequency band (by the M-cells) is performed 

prior to the visual processing of high-spatial-and-low-temporal frequency band (by the P-

cells).  

Starting from the LGN, Bullier and his colleagues studied the timing of visual processing 

by examining experimental data of their own and other groups (Bullier 2001). They 

concluded that the latencies of the input signal reaching different visual processing areas do 

not conform to a nice feed-forward hierarchical pattern in the Hubel and Wiesel sense. Table 

2-2 briefly summarizes response latencies among several visual areas.  

In a similar study (Schmolesky et al. 1998), responding latencies evoked by flashing 

stimuli were measured in the LGN and in a number of cortical areas in anesthetised 

macaques. In the LGN, it is observed that the magnocellular cells have a response time that is 
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an average of 17 milliseconds earlier than the parvocellular cells. Visual responses occurred 

in area V1 before any other cortical areas. The next wave of response occurs concurrently in 

areas V3, MT, MST, and FEF. Visual response latencies in area V2 and V4 were 

progressively later and more broadly distributed (Figure 2-5). 

Figure 2-6 overlays some of the temporal response properties just described to a 

hierarchical view of the areas of Table 2-2. It shows that visual areas in the dorsal pathway 

respond to visual stimuli with very short delays compared with visual areas in the ventral 

pathway. Dorsal V1 responds to LGN M-cell input at about 40 milliseconds after stimuli 

onset. Results are sent via the dorsal connections to area MT, MST, FEF and 7a. The top 

layer of the dorsal hierarchy (area 7a) has a mean response delay of 90 milliseconds. 

However, at this moment, the same visual input is being processed in area V2 along the 

ventral pathway, which is a significantly lower-order visual area compared with area 7a. 

Further, it takes a longer time for the top layer of the ventral pathway (e.g., area IT) to 

respond to the visual stimuli. The fact that these visual areas respond to feed-forward stimuli 

at different temporal delays suggests that the two visual pathways are distinguished from 

each other by more than just physical connectivity and spatial receptive field patterns.  

In efforts to understand the rationale behind such asynchronized information routing, 

researchers have proposed that the primary visual system may include feedback mechanisms 

that use results of early dorsal processing to modulate ventral processing. In (Hupé et al. 

1998, Bullier 2001), the authors showed that feedback from area MT plays a role in 

differentiating a moving or flashing figure from background pixels, particularly for low 

saliency stimuli. They proposed that the neural response to visual stimuli at area V1 is 

modulated by feedback from area MT. They further hypothesized that recurrence acts in a  
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Table 2-1 LGN neural receptive field characteristics and connectivity 

LGN type Receptive 

field size 

Corresponding 

Photoreceptor 

From Retinal 

Ganglion Cell 

To Area V1 Spatiotemporal 

frequency and 

Chromatic Sensitivity 

Magnocell

ular 

Large Rods Parasol Cells Dorsal layers Low spatial  

High temporal  

Achromatic 

Parvocellul

ar 

Small Cones Midget Cells Ventral layers Band spatial  

Low temporal  

Chromatic 
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non-linear fashion to improve the gain of the centre mechanism and that it combine with 

horizontal connections to generate the centre-surround interactions. 

In (Hupé et al. 2001), the authors investigated the time course of the recurrence. In the 

experiment, area MT neurons were inactivated. They showed that the response time of the V1 

neurons was significantly affected by the inactivation. For the majority of the neurons 

marked in area V1, V2 and V3, the response decreased. Similar observation was reported 

with flashing stimuli. In both experiments, response latency was measured, which indicated 

that neurons in area V1 were affected with the earliest time by the feedback from area MT. 

These results indicated that recurrence from the dorsal pathway influences the ventral 

processing in very low levels.  

As a result of these observations, Bullier developed his integrated model of visual 

processing (Bullier 2001). In the model, information from the magnocellular layers of the 

LGN through the dorsal pathway is very rapidly communicated. Results from this “first-pass 

computation” then projects back via recurrent connections to the ventral layers of area V1, 

and actively modulate the ventral processing. In Bullier’s view, the first-pass computation 

modulates ventral processing all the way to the Inferotemporal cortex.  

To sum up the work, they concluded the areas within the dorsal pathway that respond to 

input stimuli earlier than those in the ventral pathway. Further, they concluded that there are 

rich recurrent connections across the two pathways especially from higher-level dorsal 

regions to lower-level ventral regions. Following these observations, they proposed the so-

called fast-brain hypothesis: if timing differences permit, then the visual system might utilize 

these early recurrent connections to modulate ventral processing. Figure 2-7 illustrates this 

idea.  
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Table 2-2 Response latencies among early visual areas. Response latencies among early visual 

areas. Earliest and median latencies are recorded from monkeys in different studies. Earliest 

latencies refer to the delays observed with 10 percentile neural activations. At a brief 

comparison, it shows that the dorsal pathway requires shorter time than the ventral pathway to 

process visual input. 

Visual Area The Dorsal pathway The Ventral pathway 

V1 MT MST FEF 7a V1 V2 V4 IT 

Earliest latency 

(millisecond) 

20-31 25 35 35 - 45 50 40 55 100 100 

Mean latency 

(millisecond) 

40 45 45 65 90 65 85 100 - 150 100 - 

400 
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Figure 2-5 Timing of visual processing in various visual areas observed by (Schmolesky et al. 

1998). The data observed are consistent with those reported by Bullier and colleagues, that the 

M-cells and the dorsal pathway conducts signal faster than the P-cells and the ventral pathway. 
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Figure 2-6 Response latencies of the visual hierarchy. Darker boxes indicate the M-cells and 

visual areas in the dorsal pathway. Lighter boxes indicate the P-cells and visual areas in the 

ventral pathway. Texts in brackets show visual features extracted. Numbers besides each box 

indicate the mean responding latencies as summarized in Table 2-2. 
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The functional roles of early recurrence have been studied. For example, a figure-ground 

discrimination experiment (Hupé et al. 1998) showed that dorsal feedback increases the 

difference between neural responses to a bar moving on a stationary background and those to 

the same bar moving together with the background. An fMRI study (Seghier et al. 2000a) 

using moving Kanisza illusory rectangles found strong and reproducible signals in area V1 

and area V2 caused by area MT recurrence. The authors noted that MT-V1 feedback 

selectively strengthens the boundary signals in the chopstick illusion experiment to trigger 

boundary completion and figure-ground separation. It is further suggested (Bayerl and 

Neumann 2006) that MT-V1 modulation generates localized motion estimation, which is 

impossible by pure feed-forward interactions. 

Although evidence suggests that impacts of early recurrence widely exist in the primate 

visual system (Rauss et al. 2011), attempts to model such mechanism have not had much 

progress since Bullier’s early efforts (Nowak et al. 1997, Hupé et al. 1998). In the big picture 

of vision, little is known about the significance of early recurrence. 

In computer vision, a related fast magnocellular mechanism has been modelled as context 

modulation to facilitate object recognition. Visual context may provide constraints to 

influence visual processing. Torralba and colleagues (Torralba 2003, Oliva and Torralba 

2007) modelled one aspect of visual context from a scene perspective. Context is modelled as 

a topographical representation (scene Gist) of the structural summary of an input scene. 

Based on learned knowledge, a scene Gist is used to estimate the likelihood of a scene 

containing a target, and it further predicts the probable location/scale of the target. A Gist 

representation serves to facilitate object recognition, where it primes the input image with a 

multiplicative operation that suppresses irrelevant image regions.  
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Figure 2-7 Early recurrence feedback paradigm. The figure assumes visual stimuli project 

through two visual pathways separately, with each pathway computing different visual features 

and transmitting information at different speeds. D-Li represents layer i of the dorsal pathway. 

V-Li represents layer i of the ventral pathway. In this example, early recurrence is between the 

dorsal area (D-L1) to the ventral area (V-L0), and between D-Ln-1 and V-L1, respectively. 

 

 

 

 

D-L1

D-L0

D-Ln-1

D-Ln

…     ...

V-L1

V-L0

V-Ln-1

V-Ln

…     ...

Input



 

 

46 

 

A similar concept (Bar 2004) is proposed with more neurophysiological foundations. 

Using functional imaging combined with MEG recording, Bar and colleagues found that the 

main sites in the brain to mediate both spatial and non-spatial context are near the 

parahippocampal cortex and retrosplenial cortex. Context is activated as early as 130 

milliseconds after stimuli onset. In their model of contextual facilitation, context is 

represented using context frames. Rapid bottom-up information through the magnocellular 

pathway activates a context frame, which then feeds back to IT. Intersections of context 

frame and object perception in IT yield a unique object.  

2.4 Connections to Scale-Space Analysis 

Another motivating component for this research is the scale-space theory (Witkin 1983). 

The goal of scale-space analysis is, by studying input signal at multiple scales, to create a 

scale-invariant visual representation for high level visual processing. The main motivation 

behind this is that a target represented in an image manifests itself as a meaningful entity 

only over certain ranges of spatial scale. Without a-priori information, an automated image 

processing system should have the adaptability to process objects of different scales. 

The basic approach of scale-space analysis is to convolve an image with a group of 

Gaussian kernels with different kernel variance. As the variance increases, the convolved 

image becomes coarser, with high-frequency pixel variations (i.e., image noise and high-

frequency edges) gradually disappearing. Stacking the convolved images by sorted by 

variance constructs a representation in the scale space. This representation has the desired 

character of causality, where no spurious edge should be detected as the convolved image 

become coarser. In order to detect edges, in (Witkin 1983), the author proposed a covering 
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algorithm to compute a stable covering across the scale space. It was shown that output with 

stable variance has a marked correspondence with perceptually salient object edges. 

However, as Gaussian variance increases, the output representation loses spatial accuracy. 

The edge detected in the stable variance presentation may be severely shifted from the actual 

edge (in the original image). To cope with this loss of spatial accuracy problem, anisotropic 

diffusion has been proposed to preserve location information during the construction of 

scale-space representation (Gregoriou et al. 2009).  

Figure 2-8 illustrates a one-dimensional example. Image (A) shows the Gaussian envelope 

at different variances. Image (B) shows the result of applying Gaussian kernels progressively 

over the original signal. Clearly from image (C), signals are successively smoother, yet are 

still able to catch the intuitive notion of fine-scale information.  

The idea can be extended to two-dimensional image processing. During the 1990s, 

Lindeberg and his colleagues conducted research that applied scale-space analysis to solve 

computer vision problems. In his PhD dissertation (Lindeberg 1991) and later in (Lindeberg 

1991, Lindeberg 1993), he presented a method to transform an image into the discrete scale-

space domain. In the scale-space hierarchy, the lowest level represents the original pixels. 

Higher-level representations are computed by convolving the image with Gaussian filters of 

different variance kernels. This hierarchy is used for two-dimensional blob detection, which 

is similar to the 1D stable-cover algorithm (Witkin 1983). 

Lindeberg’s blob representation has been used to extract image structure. The author has 

used this model to solve a number of computer vision applications, including perceptual 

saliency, edge detection, histogram analysis, and junction classification. In later studies 

(Lindeberg 1994, Lindeberg 1998), the author proposed a strategy of automatic scale 
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selection. By detecting local extrema across scales, it complements classical scale-space 

theory by providing an explicit mechanism to predict the most informative scale.  

The relationship between the scale-space theory and the primate visual system was 

discussed in (Lindeberg and Florack 1994). The work provides an idealized model based on 

first principles. A foveal system is defined with a dense distribution of receptive fields 

analogous to neurons in the primate visual hierarchy over space and scales (Figure 2-9).  

There is one aspect of the biological visual hierarchy that seems inconsistent with scale-

space analysis. In scale-space, the only parameter that changes as scale increases is the kernel 

size; that is, the nature of what each kernel computes does not change. For example, each 

kernel detects edges of the same kind but at different scales. However in the primate visual 

hierarchy, as processing level increases, not only does the scale change but also the nature of 

the information processing. For example, the primary visual cortex computes local 

translation patterns, while the MST computes global motion patterns. This makes the direct 

application of classical scale-space methods a bit problematic. 

A conceptual connection may be drawn between the fast-brain idea and the scale-space 

theory. We note that both concepts focus on the lower-level visual areas. In both theories, the 

computation starts from basic feature processing. In the following chapters, we will propose 

and show that early recurrence may be playing a role to automatically adapt visual processing 

to the correct scale. 
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A                         B                                                                              C            

Figure 2-8 (A) One-dimensional Gaussian kernels with different standard deviation. (B) A scale-

space representation is to generate a one-parameter family of derived signals in which the fine-

scale information is successively suppressed. (C) Since new zero-crossings cannot be created by 

the diffusion equation in the one-dimensional case, the trajectories of zero-crossings in scale-

space (here, zero-crossings of the second derivative) form paths across scales that are never 

closed from below. Images are from (Lindeberg 1994). 
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Figure 2-9 A schematic illustration of foveal system. It shows receptive fields at different level of 

the primate visual hierarchy. Note that the relative size of receptive fields is arbitrary. From 

(Lindeberg 1996). 
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2.5 Conclusion 

In this chapter, we reviewed the literature that is closely related to the current work. The 

review starts from biological research. The intention is to provide a biological foundation to 

model early recurrence. Our understanding of the primate visual system is still an on-going 

process. This process leads to new theories that replace older ones. Further, theories motivate 

computational neuroscience with models that not only explain biological observations, but 

also influence research of computer vision. Biologically-inspired computer vision has 

therefore become popular in recent years.  

Likewise, the main motivations for the current work from the biological side include the 

temporally asynchronized visual pathways in the primate visual system, and the lower-level 

cross-pathway feedback connectivity. These properties hint at a recurrent mechanism, which 

we called early recurrence that is fundamentally different from traditional attentive feedback 

mechanisms.  

The second motivation is from the scale-space theory in computer vision, where the goal 

is to facilitate visual processing with scale-invariant visual representations. We noted that the 

scale-space methods focus on the hierarchical levels that are similar to where the early 

recurrent mechanism takes place. From this perspective, early recurrence may provide an 

additional solution to scale-invariant visual representations.   
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Chapter 3. A Computational Model of Early Vision with 

Recurrence 

In this chapter, a computational model of early recurrent processing is proposed. As 

reviewed in the previous chapter, the main motivations from biology are the notion of lower-

level cross-pathway feedback connections (Felleman and Van Essen 1991, Lienhart and 

Maydt 2002), and the fast-brain hypothesis (Bullier 2001). Our proposed model puts forth a 

modulating mechanism to improve early visual representation. The modulation takes place 

automatically as visual processing proceeds via the two visual pathways: the visual system 

uses results of computation from the dorsal pathway to modulate computation in the ventral 

pathway. The modulation takes form as a multiplicative inhibition process. After the 

modulation, early ventral information inconsistent with the dorsal representation is 

suppressed, leading to a refined version of the ventral representation for higher-level visual 

processing. 

The computational foundations of the Selective Tuning (ST) model of visual attention 

explicitly permit the inclusion of early recurrence even though it was not part of the original 

formulation (Tsotsos 2011). There is no discussion of any automatic recurrent mechanisms in 

its previous works; however, they are also not precluded. The reason that automatic recurrent 

mechanisms such as those discussed here fit well within ST's attentional processing is that all 
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of ST development is about reducing the search space inherent in the visual processing. This 

is precisely to what early recurrence contributes; the early and automatic recurrent influence 

described here helps in the reduction of the search for valid interpretations of early 

representations by reducing or eliminating the presence of spurious, and thus distracting in a 

search sense, responses. 

In the first part of this chapter, a conceptual description of the model is introduced, 

followed by a discussion of how early recurrence is distinct from other feedback mechanisms 

in the literature. In the second part, a set of computational components to implement the 

proposed recurrent modulation is formalized. To fully explore the modulation, a feed-forward 

hierarchy is defined based on a simplified network of the two main visual pathways 

(reviewed in the previous chapter). Within this simplified network, two sets of recurrent 

connections are discussed: 1) recurrence from the dorsal area MT to the ventral layer of area 

V1, and 2) recurrence from the dorsal areas MT/MST to the ventral layer of area V2. Finally, 

using a synthetic example, we show how early recurrence improves the computation in the 

ventral pathway.  

3.1 The Model 

The model is defined using a simplified visual hierarchy as illustrated in Figure 3-1. The 

simplified hierarchy includes the two main visual pathways: the dorsal pathway and the 

ventral pathway. In this hierarchy, the dorsal pathway starts from the magnocellular layer of 

the LGN, continues via areas V1, MT, MST, and reaches areas 7a and FEF. The ventral 

pathway starts from the parvocellular layer of the LGN, reaches areas V1, V2, V4, and 

terminates at area IT. From the figure, we see that each visual area has an associated visual  
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Figure 3-1 A simplified visual hierarchy. Areas in the dashed region are the deemed early visual 

areas, where early recurrence takes place (blue arrows). Black arrows are the feed-forward 

connections within the pathways. There are other types of feedback connections in the early 

visual hierarchy. However, they are not the focus of this study. 
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feature speciality (and this is also simplified and abstract for the purposes of this work). The 

hierarchy also includes a number of feed-forward and feedback connections. Further, each 

block in the figure conceptualizes a visual area. Blocks within the dashed region are the 

deemed early visual areas. Blocks out of the region are deemed as higher-level visual areas. 

They receive feed-forward activations from the early visual areas. The proposed early 

recurrent mechanism takes place within the dashed region. Visual areas outside this are not 

further considered in this work. Blue arrows illustrate the feedback connections. The 

biological support for the existence of these feedback connections can be found in the classic 

review of (Felleman and Van Essen 1991) and a recent update (Lienhart and Maydt 2002). 

Black arrows are the feed-forward connections within the pathways. It is worth noting that 

there are other types of feedback connections in the early visual hierarchy. However, they are 

not the focus of this study. 

Although this view is much more simplified from the actual primate visual hierarchy, the 

network suffices to demonstrate the points of our model. The primary goal of this dissertation 

is within the computer vision domain; that is, we do not intend to develop a detailed 

biological vision theory. Instead, we put forth a computational model to describe a possible 

functional role for early recurrence, and ultimately to show its utility in improving computer 

vision algorithms. However, we will show in the next Chapter that the proposed model is 

capable of simulating neurophysiological experiments. 

The proposed early recurrence leads to a cross-pathway feedback mechanism from early 

dorsal areas to early ventral areas. The conceptualized information flow of early recurrence is 

illustrated in Figure 3-2, where D-Li represents a dorsal area and V-Li represents a ventral 

area. Although many visual areas have bidirectional connections, and they may represent  
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Figure 3-2 A conceptualization of early recurrence. Inputs are processed via two visual 

pathways. The dorsal pathway (D-L0 … D-Ln) has a faster processing speed. Thus its results 

could be sent back to the ventral area (V-L0 … V-Ln) before it receives feed-forward 

information from its lower levels. The figure particularly illustrates two such early recurrent 

possibilities, namely between D-L1 and V-L0, and between D-Ln-1 and V-L1. 
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pathways for a different kind of early recurrence, they are not considered in this thesis.  

The timing of visual processing along the two pathways, as described in Chapter 2, has an 

asynchronising aspect. Visual areas within the dorsal pathway have shorter response latency 

to input stimuli compared with that of the ventral pathway. Given that there exist feedback 

connections between a dorsal area and a ventral area. Results of the dorsal area can reach the 

ventral area before it receives feed-forward information of the same stimuli from its lower-

level visual area in the ventral pathway. Since the dorsal and the ventral pathways respond to 

different visual characteristics, feedback from the dorsal pathway provides the ventral 

pathway with information that is otherwise unavailable (from its own pathway). Figure 3-2 

particularly illustrates two examples of such early recurrence, namely between D-L1 and V-

L0, and between D-Ln-1 and V-L1. 

Compared with existing models focusing on the interaction between the two visual 

pathways, the proposed model distinguishes itself in the hierarchical level of interaction, and 

also in the form of interaction. Let us focus on the first aspect, the hierarchical level of 

interaction. In its simplest form, assuming visual area on each level performs certain 

operations to extract visual information from its lower-level visual area. We use d𝑖() and v𝑗() 

to represent the operation of dorsal area 𝑖 and ventral area 𝑗 respectively. As illustrated in 

Figure 3-2, the chain reaction of the dorsal and the ventral pathway without early recurrence 

is then expressed as: 

𝐷𝑚 =  d𝑚 (d𝑚−1 (… d𝑗(… d1(d0(𝐼))))),    (3-1) 

𝑉𝑛 =  v𝑛 (v𝑛−1(… v𝑖(… v1(v0(𝐼))))),     (3-2) 

where 𝐼 is the input, and 𝐷𝑛 and 𝑉𝑛 are the outputs at the highest level of the two visual 

pathways respectively. Early recurrence happens at ventral layer 1. It leads to a refined visual 
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representation. The chain reaction is altered, which can be described as: 

𝑉̅𝑛 =  v𝑛 (v𝑛−1 (… v𝑖 (… v1,d𝑗
(v0(𝐼))))),    (3-3) 

where v1,d𝑗
 represents that the ventral area v1 is modulated by the dorsal area 𝑑𝑗. In this case, 

the top-level of the ventral pathway 𝑉̅𝑛 is altered as a result of the chain reaction. Note that 

visual features extracted by the lower-level ventral areas are localized and relatively simple 

(e.g., edge, curvature). Therefore we propose that early recurrent modulation provides the 

ventral processing with a unique way to refine its representation from basic levels yet 

spatially accurate.  

However, we must state that our early recurrent model has its limitations. The model itself 

describes an additional mechanism in the big picture of vision. We will discuss in the later 

chapters the similarities and the differences between the proposed model and prior arts. In 

addition, our understanding of the primate visual system is evolving; at present, we can only 

model certain aspects of early recurrence. However, we do believe the contribution of our 

model is significant in terms of helping to solve difficult computer vision challenges. 

3.1.1 The Feed-forward Hierarchy 

The simplified visual hierarchy (Figure 3-1) includes both the retino-cortical processing 

stage and the cortico-cortical processing stage. During the retino-cortical stage, retinal 

ganglion cells (RGC) project visual information to the primary visual cortex (area V1) via the 

lateral geniculate nucleus (LGN). Here, two types of RGC cells are modelled, the Parasol 

Ganglion Cell (PGC) and the Midget Ganglion Cell (MGC). The PGC has relatively larger 

dendritic tree and cell body than that of the PGC. Receptive fields (RFs) of the PGC and the 

MGC both have center-surround response patterns. The spatial extent of the PGC RF is in 
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general larger than that of the MGC. The PGC and MGC have distinct contrast sensitivity 

(Kaplan and Shapley 1986). Temporally, the MGC responds to fast changing stimuli and the 

PGC responds to slowly changing variations.  

In the LGN, two types of cells are modelled. They are the parvocellular (P-) cell and the 

magnocellular (M-) cell (Norton and Casagrande 1982). The P-cells receive most input from 

the MGCs. They have relatively smaller center-surround RFs, and respond to chromatic 

information. The M-cells receive most input from the PGCs. They have relatively larger 

center-surround RFs, and are blind to colour (Perry et al. 1984).  

Figure 3-3 conceptually illustrates 2 cases of LGN center-surround RFs, on-centre and 

off-centre respectively. In each case, the LGN cell is the white disk on top of its input layer, 

and small disks represent RGCs. A small white disk represents on an RGC cell, and small 

grey disk represents an off cell.  

From the LGN, visual processing enters the cortico-cortical stage. The first major visual 

area that receives input from the LGN is area V1 (Hendrickson et al. 1978, Lund 1988). The 

receptive fields of V1 neurons are larger than that of the LGN cells. LGN-V1 feed-forward 

connections are spatially aligned. V1 neurons are organized in hyper-columns (Ts'o et al. 

1990), or the so-called ice cube structure (Hubel and Wiesel 1977). By this structure, V1 

neurons exhibit an orderly progression spanning across different orientations.  

Figure 3-4 conceptualizes the formation of a V1 spatial receptive field. Spatial orientation 

selectivity of the V1 neuron is determined by the spatial arrangement of its connected LGN 

cells. Each V1 neuron encodes one orientation. In this example, the V1 neuron encodes 

horizontal orientation. 

From area V1, visual information projects to the two main visual pathways: the dorsal 



 

 

60 

 

pathway and the ventral pathway (Mishkin et al. 1983, Casagrande and Xu 2004). The dorsal 

pathway starts from area V1, via area MT, MST, and terminates in the posterior parietal 

cortex. Functionally, this pathway is associated with motion, location and motor control. The 

ventral pathway starts from area V1, via area V2, V4, and terminates in the inferior temporal 

cortex (IT). This pathway is functionally associated with spatially-accurate object processing, 

such as edge, curvature, shape and object form. 

In our model, each pathway is a multi-layered pyramid. Each layer is one of the 

aforementioned visual areas. It is further reasonable to assume each layer is organized as a 

grid of columnar computational units (neurons). Each unit receives input from units of other 

levels (via inter-cortical-region connections, feed-forward or feedback), or from units within 

the same level (intra-cortical-region connections, laterally). The two pathways and their 

visual areas are further discussed below. 
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Figure 3-3 A semantic view of centre-surround receptive field of the LGN. Each LGN cell is the 

white disk on top of input layer cells (RGCs). Two types of LGN cells, on-centre and off-centre 

are modelled respectively. 
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Figure 3-4 The formation of V1 spatial receptive field. Spatial orientation selectivity of each V1 

neuron is determined by the spatial arrangement of LGN cells. In this example, the V1 neuron 

encodes horizontal orientation. 
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The Dorsal Pathway 

The visual area MT receives most input from the dorsal layers of area V1 (Ungerleider 

and Desimone 1986). MT neurons are sensitive to spatiotemporal variations (Barberini et al. 

2005). An MT neuron connects to a set of V1 neurons, and has a larger visual field. This 

property allows the MT neuron to integrate spatiotemporal information across larger spatial 

range. From an energy analysis perspective, this spatiotemporal response profile 

characterizes motion energy (Adelson and Bergen 1985). A direct result of the integration is 

the ability to achieve position-invariant motion perception, similar to the edge perception 

proposed in Neocognitron (Fukushima 1980, Fukushima 1988). Another result is to solve the 

aperture problem (Pack and Born 2001). In (Treue and Andersen 1996), the authors noted a 

spatiotemporal summation effect of MT neurons in macaques. In addition, they concluded a 

substantial portion of MT neurons respond to velocity changes (gradients), with each such 

neuron having a preferred spatiotemporal gradient orientation. 

Based on these observations, the current work focuses on modelling two types of MT 

neurons (Figure 3-5). An MTvc neuron performs speed summation, which integrates V1 

response of the same spatiotemporal orientation. That is, an MTvc cell has the spatiotemporal 

orientation selectivity identical to V1 neurons but with larger receptive field. An MTvg 

gradient-tuned neuron responds to spatiotemporal gradient changes. It receives input from a 

set of V1 neurons of different spatiotemporal orientations.  
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Figure 3-5 Two types of MT neurons are modelled. Left: flat speed summation MT neuron 

(MTvc). This neuron accumulates V1 responses of the same spatiotemporal orientation. Right: 

velocity gradient tuned MT neuron (MTvg). This neuron receives input from V1 of different 

spatiotemporal orientations. In this example, the MTvg integrates fast speed, middle speed and 

slow speed V1 neurons in horizontal direction. 
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Area MT connects to area MST (Maunsell and Van Essen 1983, Ungerleider and 

Desimone 1986). Each MST neuron receives input from a set of MT neurons, and thus has an 

even-larger receptive field. MST neurons respond to motion of different types, such as 

rotation, expansion, extraction, or combinations of these complex motion patterns. (Duffy 

and Wurtz 1991, Graziano et al. 1994, Duffy 1998). In principle, our model follows the 

motion model proposed in (Tsotsos et al. 2005). 

The Ventral Pathway 

Area V2 receives feed-forward projection from the ventral layers of area V1. It responds 

to end-stopped visual patterns (Dobbins et al. 1987). A V2 neuron can be modelled as a V1 

simple cell inhibited by two displaced V1 complex cells at elongated ends (Figure 3-6). 

Depending on the orientations of displaced V1 complex cells, end-stopped cells respond to 

different curvatures. In (Rodriguez-Sanchez and Tsotsos 2012), four types of V2 neuron have 

been proposed. They respond to different local curvatures or corners. A Type-1 cell is the 

result of the sum of the responses of simple cells at the same location but with different 

orientations. A Type-2 cell has simple components that integrate the difference in response of 

two simple cells of different size at the same location. A Type-3 cell has complex components 

that result from the difference between a simple cell and two displaced complex cells. A 

Type-4 cell is the most generalized type; it adds a rotated component to a Type-3 cell such 

that it can distinguish between curvature directions. It is noted in (Rodriguez-Sanchez and 

Tsotsos 2011) that Type-1, Type-2 and Type-3 end-stopped cells are analogous to special 

cases of Type-4 cell. Thus, in the current work, we only implement Type-4 end-stopped cells. 
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Figure 3-6 An example of a Type-4 V2 end-stopped neuron. End-stopped cell with complex 

components from the difference between a V1 simple cell and two displaced V1 complex cells 

(dashed enclosures) with additional rotated component. 
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3.1.2 Early Recurrent Modulation 

The essence of our model lies in the recurrent connectivity and the modulation mechanism 

from a dorsal area to a ventral area within the early visual hierarchy. Specifically, early 

recurrence refers to the processing that applies the early dorsal representation to modulate 

early ventral processing.  

Early recurrence is a mechanism of non-classical RF suppression. In Chapter 2, we have 

reviewed that classical RF refers to the region of visual space in which stimuli drive neural 

response. Non-classical RF, in contrast, is an extended surrounding region that can cause 

suppressive effect to neural response. Figure 3-7 schematically illustrates and compares the 

proposed suppression with non-classical RF inhibition mechanisms using object contour 

detection as an example. Self-inhibition (left figure) is an influential model of center-

surround interactions. The idea has been supported by neurophysiological data and 

psychophysical experiments. Lower-level center-surround interaction mostly takes form as 

suppressive results (Nelson and Frost 1978). An orientation-selective cell will show reduced 

response when multiple stimuli of the same orientation present at the surrounding region 

(Schiller et al. 1976). In (Grigorescu et al. 2003), the authors demonstrated improved contour 

detection in cluttered. 

Instead of the circular-shaped surrounding region, a butterfly-shaped surrounding region 

(Zeng et al. 2011) consists of two adaptive inhibitory end-regions and two non-adaptive 

inhibitory side-regions (Figure 3-7 middle figure). The butterfly-shaped inhibition zone 

includes two regions, a side region and an end region. The strength of the side region 

inhibition is calculated based on the local features in the side regions at a fine spatial scale, 

and the strength of the end region inhibition adaptively varies at both fine and coarse scales.  
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Figure 3-7 Schematic drawings of non-classical RF inhibition mechanisms. Left: self-inhibition 

(Grigorescu et al. 2003), Middle: the butterfly-shaped self-inhibition (Zeng et al. 2011), which 

consists of two adaptive inhibitory end-regions and two non-adaptive inhibitory side-regions. 

Right: the proposed recurrent inhibition. 
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Computationally, the end regions exert weaker inhibition where a contour is more likely to 

exist. The literature demonstrated that the object contours were extracted more effectively 

than (Grigorescu et al. 2003). However, the biological underpinning for such butterfly-shaped 

regions is not clear.  

The most important aspect of the proposed early recurrent inhibition is that the strength of 

surrounding inhibition to the ventral neuron is caused by feedback from the dorsal pathway 

(Figure 3-7 right figure). The two pathways respond to different spatiotemporal visual 

characteristics. We can infer that early recurrence is capable of facilitating ventral 

computation with additional information that is not directly computable by the ventral 

pathway itself. This is in contrast to the aforementioned self- inhibition, where the inhibition 

representation is generated within the ventral pathway. 

An important goal of this thesis work is to formalize the computation of early recurrence 

to improve computer vision applications. However, before deriving the computation, a 

discussion is needed to strengthen our proposed idea from biological perspectives. In 

particular, the work has three hypotheses. The first hypothesis concerns the conditions 

required to the visual network to accommodate and exert early recurrence. This is the 

precondition of early recurrence. The second hypothesis concerns the nature of operation of 

early recurrence. This and the first hypothesis together will lead us to formalize the 

computational components of early recurrence. The third hypothesis concerns the functional 

role of early recurrence. This hypothesis inspires us to apply early recurrence to improve 

computer vision applications. In all, these three hypotheses distinguish early recurrence from 

other known recurrent mechanisms. In what follows, we will describe these hypotheses and 

related biological research to support them. Specifically, since Hypothesis 1 concerns the 
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biological facts, we provide evidence for it by reviewing important research from the 

literature. In Chapter 4, we apply the model to simulate two biological experiments. 

Observations from the simulations will also be used as evidence to validate Hypothesis 2 and 

Hypothesis 3. 

Hypothesis 1: Requirements 

In the primate visual system, two visual areas, with one in the dorsal pathway and the 

other in the ventral pathway, must satisfy the following two requirements, without which 

early recurrence cannot take place. The first requirement is that there exists a feedback 

connection between a dorsal area (source) and a ventral area (target). The second requirement 

is that timing of processing allows the feedback signal from the source to reach the target 

before the target receives the feed-forward signal, which is via the ventral pathway. 

The two requirements are illustrated in Figure 3-8. In this example, 𝐷𝑖 refers to the dorsal 

region at level 𝑖. 𝑉𝑗 refers to the ventral region at level 𝑗. Note that in this case, level 𝑗 is at a 

lower level than level 𝑖 in the visual hierarchy. 𝑓𝑓𝑑 denotes the feed-forward connectivity in 

the dorsal pathway and 𝑓𝑓𝑣 denotes the feed-forward connectivity in the ventral pathway, 

and 𝑓𝑏 denotes the feedback connectivity. The timing condition manifests itself as the 

following formula:  

𝑇𝑓𝑓𝑑 + 𝑇𝐷𝑖
+ 𝑇𝑓𝑏 ≤ 𝑇𝑓𝑓𝑣,     (3-4) 

where 𝑇𝑓𝑓𝑑 refers to time required for signals of visual input to travel to the dorsal region, 𝑇𝐷𝑖
 

refers to time required for the dorsal region 𝐷𝑖 to respond to the input, 𝑇𝑓𝑏 refers to time 

required for the dorsal responses to travel back to the ventral region 𝑉𝑗, and  𝑇𝑓𝑓𝑣 refers to 

time required for signals of visual input to travel to the ventral region.  
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We found evidence to support the first requirement from brain anatomy studies using 

combined injection techniques. Van Essen and colleagues concluded the existence of not one 

but numerous cross-pathway recurrent connections in the primate visual system (Maunsell 

and Van Essen 1983, Van Essen and Maunsell 1983). One possible dorsal region is area MT, 

which receives input from area V1 and has feed-forward connections to higher-level visual 

areas, such as area MST. Being at the center of the dorsal pathway, studies revealed that area 

MT has feedback connections to many visual areas in the ventral pathway, such as areas V1, 

V2, and V4. Further, feedback effects have been observed in both non-human primates (Salin 

and Bullier 1995, Hupé et al. 2001) and humans (Pascual-Leone and Walsh 2001, Silvanto et 

al. 2005). 

Feedback connections from area MT to lower-level visual areas show diversified patterns. 

This indicates that feedback signals might modulate the visual hierarchy in different manners. 

If feedback is from a dorsal area and feedback axons terminate at a ventral area, then the first 

condition of our hypothesis is satisfied. For example, the feed-forward connection from area 

V1 to area MT is mostly from layer 4B of area V1. However, feedback from area MT reaches 

layer 6 of area V1 (Maunsell and Van Essen 1983). This indicates an asymmetric feed-

forward-feedback loop, which makes it possible that area MT feedback has a modulatory 

effect not only on the dorsal layers of area V1 (4Cβ), but also the ventral layers of area V1 

(4Cα). Similar asymmetric loops have been found between area MT and area V2: feed-

forward starts from layer 2 and layer 3 of area V2, and feedback starts from area MT and 

terminates at almost all layers of area V2 (Maunsell and Van Essen 1983).  

Several studies examining the timing of visual processing provide evidence that the 

second requirement is also satisfied. Since mid-1990s, multi-sites cell recording techniques 
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Figure 3-8 Early recurrence requires that: 1) there exists feedback connections: 𝒇𝒇𝒅 and 𝒇𝒇𝒗 

are feed-forward connections, and 𝒇𝒃 is the feedback connection; and 2) the accumulated time 

of feed-forward projection (𝑻𝒇𝒇𝒅), of neuron responding (𝑻𝒇𝒃), and of feedback projection along 

the dorsal pathway (𝑻𝒇𝒃) is no more than the time needed for feed-forward traversal along the 

ventral pathway (𝑻𝒇𝒇𝒗). 
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on rats, cats and primates have provided us with significant observations of temporal 

processing order. Bullier and his colleagues (Henry et al. 1991, Salin and Bullier 1995, 

Nowak et al. 1997, Angelucci and Bullier 2003) conducted several neurophysiological 

probes and confirmed the temporal order of lower-level cortical processing at a number of 

visual areas. During the same period of time, Schmolesky and colleagues (Schmolesky et al. 

1998) reached similar conclusions using macaque monkeys. With a unified test protocol over 

multiple visual areas, they concluded that the dorsal pathway and the ventral pathway 

respond to visual stimuli with very different time courses. In general, visual areas in the 

dorsal pathway respond to visual input much earlier than those in the ventral pathway. 

Specifically, the magnocellular cells of the LGN become active 15-20 milliseconds earlier 

than that of the parvocellular cells in macaques (Maunsell et al. 1999). The authors pointed 

out that this temporal separation leads to a diversified representation in layers 4Cα and 4Cβ 

of area V1. Thus, it is suggested that a functional separation in the LGN and area V1 appears 

to have more profound impact on the dorsal and ventral pathway beyond area V1.  

More recently, consistent results have been observed on humans using magnetic and 

imaging techniques. These non-invasive techniques are essentially harmless. By combining 

the two, one can collect accurate results, spatiotemporally. Based on several studies, it was 

concluded in (Barnikol et al. 2006) that the critical time for the first sweep of object 

processing in the visual hierarchy is around 50 -150 milliseconds after stimuli onset. The 

study also noted that there are strong recursively deployed cortical arrangements. We infer 

that this short-delayed recursion cannot come from higher-level cortical areas, but caused by 

lower-level recurrence. Based on the literature, a list of visual areas that are capable of 

accommodating early recurrence is derived (Table 3-1).  
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Table 3-1 Visual areas that could allow early recurrence to take place. Time measurements in 

brackets indicate response delays after stimuli onset. Numbers are concluded from the 

literature as listed below. “–” indicates that the literature does not support recurrent 

connectivity between the regions.  

                 From 

To 
MT (45msec) MST (45msec) 7a (90msec) 

V1 (65msec) Likely Likely Not Likely 

V2 (85msec) Likely Likely Not Likely 

V4 (100 - 150msec) – Likely Likely 

IT (100 - 400msec) – – Likely 

* Literature provides support and the indicated species: 

   Area V1: (Maunsell and Gibson 1992) monkey, (Nowak et al. 1995) monkey 

   Area V2: (Nowak et al. 1995) monkey 

   Area V4: (Chelazzi et al. 2001) monkey 

   Area IT: (Goebel et al. 1998) monkey 

   Area MT: (Pascual-Leone and Walsh 2001) human, (Schmolesky et al. 1998) monkey 

   Area MST: (Kawano et al. 1994) monkey, (Schmolesky et al. 1998) monkey 

   Area 7a: (Bushnell et al. 1981) monkey 
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Hypothesis 2: Recurrent Operation 

The Hypothesis 2 is that early recurrence modulates a ventral representation in a surround 

suppression fashion. In the context of visual search, it has been shown that top-down 

recurrent processing causes surround suppression (Tsotsos 1990, Boehler et al. 2009). Such 

top-down attentive suppression is a key component of Selective Tuning (ST) (Tsotsos et al. 

1995). The authors proposed a mathematical representation, theta-winner-take-all (θ-WTA). 

The operation suppresses irrelevant features within a receptive field. θ-WTA proceeds in 

successive layers in a top-down fashion, leading to an inhibition beam. At the lowest level of 

this beam (input layer), pixels attracting the attention are localized.  

Although ST is a model of visual attention, the surround suppression computation is 

consistent with the current work, as is its motivation. However, the functional role of early 

recurrence in our work does not concern attentional processing per se (that is, top-down 

volitional attention), attended visual features or attended spatial locations. Rather it plays a 

simpler role to improve the quality of ventral processing. Early recurrence has no top-down 

component and occurs automatically along the feed-forward projection rather than 

deliberately. Therefore, as will be shown in the formalization section, the θ-WTA has been 

much simplified to exclude attention-related parameters.  

We propose that early recurrence operates non-linearly and multiplicatively. The non-

linearity is two-fold. The first is the non-linear response pattern of the dorsal neurons: given a 

linear input (e.g., contrast), a neuron's response saturates at a certain threshold, leading to 

non-linear output strength. This responding profile has been observed in the early dorsal 

areas and has been modelled as a sigmoid function or a softmax function (Snowden et al. 

1991, Simoncelli and Heeger 1998, Osborne et al. 2004). 
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Another factor causing non-linearity is due to the feedback connectivity between the 

dorsal neurons and the ventral neurons. As noted in (Angelucci and Bullier 2003), a ventral 

neuron has connection with several dorsal neurons, and vice versa. If feedback influences the 

ventral computation linearly, one should observe ventral neural activity changes regardless to 

feed-forward activations. However experiments suggested the opposite results (Girard and 

Bullier 1989, Girard et al. 1992): only feed-forward activation has such a linear response 

pattern. When connections from area V1 to area V2 are blocked, V2 neurons do not respond 

at all, despite the fact that they receive feedback activations from the dorsal area MT. 

It should be clarified that the actual feedback representation and the actual modulation is 

complicated. The current work does not intend to characterize its full scope. Instead, we are 

interested in exploring how to behaviourally formalize the mechanism, such that one can use 

it to improve computer vision algorithms in practice. 

We propose that one way to define the recurrent representation is via a weighted-sum 

operation. The weights can base on multiple criteria, such as connectivity and neural 

saturation. The recurrent representation is defined as the point-by-point measure of degree of 

influence of a dorsal neuron on a ventral neuron. Numerically, a large value indicates a strong 

dorsal response, while a small value indicating a weak dorsal response. A value 𝐴𝑖 in the 

recurrent representation can be defined as: 

𝐴𝑖 = ∑ 𝜔𝑗𝛼𝑖𝑗
𝑛
𝑗=1 ,      (3-5) 

where 𝑗 = 1, … , 𝑛 represents a criterion, 𝑖 = 1,2,3, … , 𝑚 indexes neurons, 𝛼𝑖𝑗 denotes input 

strength of neuron 𝑖 at criterion 𝑗, and  𝜔𝑗 denotes weight.  

Given a recurrent representation, it is proposed that the ventral neuron is modulated via 

multiplication, which is defined as: 
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𝑅𝑖 = | 𝐴𝑖 ∗ 𝐼𝑖  |,      (3-6) 

where 𝐼𝑖 denotes the input strength (ventral neuron),  𝑅𝑖 represents the modulated result, ∗ 

represents the modulation, and | | is a rectification function to bound output strength within 

certain range. In a simple way, the recurrent representation defines inhibition strength but in a 

reverse manner. A large value in 𝑅𝑖 indicates weak inhibition strength, and a small value 

indicates strong inhibition strength.  

In the formalization section, different possible types of recurrent operations are considered 

and compared. A quantitative analysis shows that multiplicative inhibition fit best to 

biological data. 

Hypothesis 3: Functional Role 

The Hypothesis 3 is that the functional role of early recurrence is to apply dorsal 

representation to refine ventral representations. Earlier, a connection to scale-space theory 

was briefly described but not further pursued. That connection has relevance here. In essence, 

the dorsal and ventral pathways perform computations at different spatial scales (as well as 

temporal) as commonly considered in scale-space theories in computer vision. The effect 

applies beyond edges, however, and is true for any visual features that may exist over 

different spatial (or temporal) scales. In this sense, we may assert that perhaps biological 

vision is specifically designed to embody a form of scale-space analysis and our work is an 

instance of this. 

A Contextual Modulation View of Early Recurrence 

Before presenting computational details, it is worth mentioning the significance of early 

recurrence to the big picture of vision. At first glance, early recurrence is a shortcut of the 
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visual hierarchy and a hardwired mechanism. The routing pattern between the two pathways 

seems not to conform to the Hubel and Wiesel’s hierarchy. Early recurrence provides the 

ventral pathway a form of local context. In later chapters, we will formalize this local context 

in two forms: a spatiotemporal context, i.e., motion information, and a coarse-scale spatial 

context. Synthetic and real images will be used to investigate the influences of these contexts 

on visual processing in a number of neurobiological experiments and computer vision 

applications. 

The proposed early recurrent mechanism is very different from global contextual 

modulation models (Bar 2004, Oliva and Torralba 2007). In these works, the authors 

described a global context representation for object recognition. The common characteristics 

between Bar’s model and the current work is that in both models, the context representation 

is generated in the dorsal pathway. The proposed early recurrence is different from it from at 

least two aspects. The first aspect is the form of context representation. In Bar’s theory, 

context is a description of spatial stimuli arrangements. It is built on a global view, which is 

not likely to happen for the early dorsal areas. The second aspect is the context facilitation 

operation. In Bar’s theory, context directly biases the object selection process, which takes 

place in the Inferotemporal complex (IT). The essence of the global context is a guess of 

object categories (Bar 2004, Kveraga et al. 2007) or a probabilistic deployment of how likely 

the object may be found in the ventral presentation given the global description (Torralba 

2003, Torralba et al. 2003, Oliva and Torralba 2007). The global contextual modulation 

enables the visual system to prune unlikely object candidates. Implicitly, this mechanism 

relies on past experience. Performance will therefore degrade given unfamiliar object or 

scene settings.  
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In our work, we consider an operation at much lowered visual areas. Our work concerns 

what local spatiotemporal scale differences may be productively combined to improve the 

representations upon which higher order computations, such as those in area IT, operate.  

Examples of Early Recurrence 

Our first example considers early recurrence between area MT and area V1/V2. Area MT 

is concerned with integration of velocity and velocity gradient from visual area V1 

(Ungerleider and Desimone 1986, Treue and Andersen 1996, Born and Bradley 2005, Rust et 

al. 2006). Early recurrent connections have been located between area MT and area V1 

(Figure 3-9), and between area MT and area V2 (Figure 3-10). From Table 3-1, the timing of 

visual processing allows feedback from area MT to reach area V1 and area V2 before they 

receive feed-forward signals from the ventral connections. Therefore, we propose that early 

recurrence between area MT and these early visual areas exist. Specifically, for area V1, the 

modulation refines the V1 representation of spatial orientation, and for area V2, the 

modulation improves the V2 end-stopped cell responses. 

Our second example is early recurrence between area MST and area V2. Area MST 

receives most feed-forward inputs from area MT. Neurons in area MST have large receptive 

fields and thus respond to large-scale spatiotemporal variations, motion patterns, or optical 

flows (Duffy and Wurtz 1991, Duffy and Wurtz 1997, Duffy 1998, Smith et al. 2006). More 

specifically, motion patterns extracted by area MST include translation, rotation, extraction, 

and contraction (Graziano et al. 1994, Watanabe 1998). However, as a higher-order visual 

area, area MST has a coarse spatial representation, which means the representation lacks 

spatial accuracy: although responding actively to motion, area MST is unable to localize the 

moving stimuli. 
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Figure 3-9 Recurrent connections from MT to area V1 (layer 4Cβ). During the dorsal 

processing, feed-forward information reaches area MT via area V1 (layer 4Cα-4B) 

approximately 45 milliseconds after stimulus onset. The temporal difference allows results of 

MT to modulate area V1 (layer 4Cβ) approximately 65 milliseconds after stimulus onset. 
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Figure 3-10 Recurrent connections from area MT to area V2 (thin stripe). During the dorsal 

processing, feed-forward information reaches area MT via V1 (layer 4Cα-4B) approximately 45 

milliseconds after stimulus onset. The timing allows result of area MT to modulate area V2 (thin 

stripe) approximately 85 milliseconds after stimulus onset. 

 

 

 

 

 

 

 

 

V1

MT

Thin Strip

V2

4B



 

 

82 

 

As reviewed in the previous chapter, the literature supports that area MST has recurrent 

connections to area V2 (Figure 3-11) (Duffy and Wurtz 1991, Felleman and Van Essen 1991, 

Graziano et al. 1994) and that the timing (Table 3-1) permits recurrence from area MST 

reaching area V2 before area V2 receiving feed-forward activation from area V1 

(Schmolesky et al. 1998). Therefore, we proposed that there exist early recurrent mechanisms 

between area MST and area V2, and that feedback from area MST improves curvature 

representation computed by the end-stopped cells found in area V2 (Levitt et al. 1994, 

Felleman et al. 2015). The modulation turns curvatures inconsistent with area MST’s 

representation inhibited. Modulation improves the signal-to-noise ratio of curvature 

representation, where the signal refers to actual curvature stimuli and noise refers to 

distracting stimuli. It is thus the modulated curvature representation that projects into higher-

level ventral areas for object processing. 

Early Recurrence Patterns 

It is proposed that the early recurrent operation depends on the axon terminating patterns 

between the dorsal neurons and targeted ventral neurons. As shown in Figure 3-12, the 

current work sketches three modulation patterns. To clearly present the patterns, we use MT-

V1 recurrence as an example: 

Pattern-1: in its simplest manner, early recurrence has a spatially anisotropic suppression 

pattern. Each neuron of area V1 is modulated by recurrent signals from a set of neurons from 

area MT of the same spatial orientation followed by a sigmoid non-linear operation (Figure 

3-12 top figure). 

Pattern-2:  each neuron of area V1 is modulated by recurrent signals from a multitude of 

neurons of area MT of different spatial orientations. Each neuron of area MT contributes to 
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the modulation with equal strength (Figure 3-12 middle figure). In this case, the recurrence is 

spatially isotropic. The recurrent representation reflects the motion energy calculated by the 

dorsal pathway. The recurrence inhibits response of area V1 if recurrent signals from area 

MT indicate no motion in the neighbourhood of area V1. Alternatively, neural activity of area 

V1 remains unaffected if recurrence indicates a strong local motion pattern (without regards 

to any specific direction or direction gradients). 

Pattern-3: in a more generalized manner, a neuron of area V1 can be modulated by 

recurrent signals from a multitude of neurons of area MT of different spatial orientations. 

Unlike Pattern-2, each neuron of area MT contributes to the modulation with varying 

strength depending on the connectivity (Figure 3-12 bottom figure). It is easy to see that 

Pattern-3 is the generalized form, where Pattern-1 and Pattern-2 are two extreme cases. In 

reality, each V1 neuron has a preferred tuning profile. Maximum suppression to the neuron 

may be achieved if the recurrent signal is at its preferred orientation. Conversely, a V1 

neuron is least suppressed (or not affected at all) if the recurrent representation is not at its 

preferred orientation. Numerically, the modulation at a V1 neuron can be modelled as 

weighted sum over all connected MT neurons.  
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Figure 3-11 Early recurrent connection from area MST to area V2 (thin stripe). During the 

dorsal processing, feed-forward information reaches area MST via area V1 (layer 4Cα-4B) and 

area MT approximately 45 milliseconds after stimuli onset. Temporal properties allow results of 

area MT feed back into area V2 (thin stripe) to modulate ventral processing that starts 

approximately 85 milliseconds after stimuli onset. 
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Figure 3-12 Three axon-terminating patterns lead to three early recurrent modulations 

paradigms. Coordinate with red bars represent weighting strength.  
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3.2 Formalization 

This section formalizes the computational components for the proposed early recurrent 

modulation. We first define the receptive field of each visual area in the simplified hierarchy 

using an image-filtering approach. To best associate a filter representation with the 

formalized receptive field, the filter is implemented and parameterized informed by the 

relevant neurophysiology. In our simplified visual hierarchy, the two feed-forward pathways 

start from the retina, via the LGN, and forward into a number of cortical regions. These 

cortical regions include area V1, V2, MT, and MST. With an example using synthetic 

octagon stimuli, we will show how visual features are extracted and interpreted along the two 

visual pathways. Note that we will not show recurrence results in this section, as they will be 

discussed in detail in the following chapters. 

On the basis of this filter-based visual hierarchy, the computation of early recurrence is 

formalized. Early recurrent representation is in general a weighted summation over responses 

of a set of dorsal neurons and its application takes the form of multiplicative inhibition. In 

what follows, computational relationships between neurons in the dorsal pathway (source 

neurons) and neurons in the ventral pathway (target neurons) are formalized in detail. 

Numerically, we derive anisotropic and isotropic modulation paradigms, which correspond to 

Pattern-1 and Pattern-2 as discussed in the previous section, respectively.  

The visual pathways considered in the current network are illustrated in Figure 3-1. To 

facilitate our discussion, the word “modelled” is used hereafter as an adjective prior to the 

word “cell” or “neuron” to indicate that the entity is a computational component proposed in 

the current work, whereas a cell or neuron without the word “modelled” implies a biological 

entity. 
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As reviewed above, neurons of higher-level visual areas have larger receptive fields: they 

“see” larger visual areas than lower-level neurons. From a connectionist perspective, this is 

achieved by network convergence, where a higher-level neuron receives inputs from multiple 

lower-level neurons. To make our computation follow this property, we use relative receptive 

field size as a factor to define filter kernel size. The relative receptive field size is realized by 

relative filter kernel size. A size ratio (SR) is thus defined to describe the relative size of the 

receptive field with regards to the lowest level receptive field.  

Table 3-2 provides an informative comparison of RFs in different visual areas. Sizes 

reported in the literature are on different animals. It is therefore difficult to make a fair 

comparison across different layers of areas, except for areas V1, V2 and MT. Nevertheless, 

we can infer from the table that as information progresses to higher level visual areas, size of 

RF increases. The finest spatial accuracy is at Midget Ganglion Cells (MGCs) in the retina. 

MGCs connect to P-cells in the LGN, and the relative receptive field size is approximately 

2.9°. At area V2, receptive field increases to 5.4°, and size ratio (SR) is 18, which indicates 

that the dimension of the filter representing a V2 neuron should be about 18 times larger than 

that of the MGC. From the table, we can see that at the level of area MT, each neuron 

responds to a spatial region of approximately 15.3°, and has a SR of approximately 51 times 

that of MGC. 

 

 

 

 

 



 

 

88 

 

 

 

 

 

Table 3-2 Comparison of receptive field size 

Cell/Neuron  Average receptive field center diameter  Size Ratio (SR) 

RGC (MGC) 0.3° (Peichl and Wassle 1979) cat 1.0 

RGC (PGC) 0.83° (Peichl and Wassle 1979) cat 2.7 

LGN (P-cell) 0.87°  (Xu et al. 2001) owl monkey 2.9 

LGN (M-cell) 0.92° (Xu et al. 2001) owl monkey 3.1 

V1 0.5° - 1.3° (Angelucci et al. 2002) macaque 1.5 - 4.5 

V2 5.4° (Angelucci et al. 2002) macaque 18 

MT 15.3° (Angelucci et al. 2002) macaque 51 
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3.2.1 Formalization of the Feed-forward Pathways 

We model the feed-forward processing in the simplified visual hierarchy as an image 

filtering system involving a cascade of image filters. Each visual area is modelled by a set of 

image filters that characterize it receptive field in the classical way.  

3.2.1.1 The Retinal Ganglion Cell (RGC) 

Two types of retinal ganglion cells are modelled. The Parasol Ganglion Cells (PGCs) and 

the Midget Ganglion Cells (MGCs) have center-surround response properties with different 

spatiotemporal frequencies. The spatial response profile of the modelled PGCs and the 

modelled MGCs is defined by a two-dimensional Difference-of-Gaussians (DoGs) function 

derived from (Rodieck 1965, Davson 2012): 

𝑓𝑅𝐺𝐶
𝑠𝑝𝑎𝑡𝑖𝑎𝑙(𝑥, 𝑦) =

1

2𝜋𝜎𝑐
2 𝑒

−
𝑥2+𝑦2

2𝜎𝑐
2 −

1

2𝜋𝜎𝑠
2 𝑒

−
𝑥2+𝑦2

2𝜎𝑠
2

,    (3-7) 

The spatial frequency of RGC varies by changing the value of 𝜎𝑅𝐺𝐶𝑠 (Figure 3-13 B). As 

suggested in (Marr and Hildreth 1980), we use 𝜎𝑅𝐺𝐶𝑐 = 1.6 ∗ 𝜎𝑅𝐺𝐶𝑠, which approximates 

one-octave bandwidth (Figure 3-13 C). 

Receptive fields of MGCs (Figure 3-13 plot A) and PGCs (Figure 3-13 plot B) have 

similarly shaped spatial profiles but different spatial frequency tuning properties. In general, 

the PGCs have relatively large RF size, which respond to low-spatial-frequency input. In the 

current work, we use 𝜎𝑅𝐺𝐶𝑠 = 0.8 and 1.6 for MGCs, and use 𝜎𝑅𝐺𝐶𝑠 = 1.6 and 3.2 for PGCs. 

Plot C and plot D compare cell response profile in spatial domain and frequency domain 

respectively. As σ increases, the spatial region of the receptive field extends, and its 

frequency selection becomes lower. 
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The RGCs respond after receiving a preferred signal. The temporal delay is short. The 

temporal characteristic of RGCs is modelled using a one-dimensional low-pass filter: 

𝑓𝑅𝐺𝐶
𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙(𝑡) =

Τ(𝑡)

2𝜋𝜎𝑅𝐺𝐶𝑡
2 𝑒

−
𝑡2

2𝜎𝑅𝐺𝐶𝑡
2

,     (3-8) 

where Τ(𝑡) = 1 iff 𝑡 > 0; this forces 𝑓𝑉1
𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙(𝑡) = 0 when 𝑡 ≤ 0.  

Therefore, given an input stimuli 𝐼(𝑥, 𝑦, 𝑡), the response of RGCs is represented as: 

𝑅𝑅𝐺𝐶
𝑠𝑝𝑎𝑡𝑖𝑜𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 = Θ[𝐼(𝑥, 𝑦, 𝑡) ⊛ 𝑓𝑅𝐺𝐶

𝑠𝑝𝑎𝑡𝑖𝑎𝑙(𝑥, 𝑦) ⊛ 𝑓𝑅𝐺𝐶
𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙(𝑡)],  (3-9) 

where ⊛ denotes the convolving operation, and Θ[𝑚] denotes a sigmoid function that 

rectifies the responses in a non-linear manner using a Hyperbolic tangent function. 

3.2.1.2 The Lateral Geniculate Nucleus (LGN) 

The LGN receives feed-forward input from the RGCs. Two types of LGN cell, the 

magnocellular cell (M-cell) and the parvocellular cell (P-cell) are formalized. The third type, 

the Koniocellular cell, is ignored in this work. This is because the property of K-cell is 

somewhere between the M-cell and the P-cell. Thus, by formalizing the M-cell and the P-

cell, our computational representation is sufficient to express the main idea. It might be the 

case that K-cells add robustness due to the additional scales of space and time considered but 

this examination is left for future work.  In our work, modelled M-cells receive input from 

modelled PGCs, and modelled P-cells receive from modelled MGCs. 

Similar to the RGCs, the LGN cells have center-surround receptive fields. Unlike the 

RGCs, receptive fields of the LGN cells are relatively large. The spatial response patterns 

(Figure 3-14 plot A and plot B) of the modelled M-cell and modelled P-cell are determined as 

a two-dimensional Difference-of-Gaussian function (Rodieck 1965, Einevoll and Plesser 

2012) as: 
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Figure 3-13 Response patterns of Retinal Ganglion Cell spatial receptive fields. (A) and (B) 

illustrate an example of MGC and PGC responses in spatial domain. (C) and (D) compare cell 

response profile in spatial domain and frequency domain respectively. As 𝝈 increases, the 

spatial region of RF extends, and its frequency selection becomes lower. 

A) B)
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D)
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𝑓𝐿𝐺𝑁
𝑠𝑝𝑎𝑡𝑖𝑎𝑙(𝑥, 𝑦) =

1

2𝜋𝜎𝐿𝐺𝑁𝑐
2 𝑒

−
𝑥2+𝑦2

2𝜎𝐿𝐺𝑁𝑐
2

−
1

2𝜋𝜎𝐿𝐺𝑁𝑠
2 𝑒

−
𝑥2+𝑦2

2𝜎𝐿𝐺𝑁𝑠
2

,   (3-10) 

The temporal response pattern (Figure 3-14 C) of modelled M-cells and modelled P-cells 

are determined as an impulse response filter: 

𝑓𝐿𝐺𝑁
𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙(𝑡) =

𝑐1Τ(𝑡)

𝜎𝐿𝐺𝑁𝑡1
2 𝑒

−
𝑡

𝜎𝐿𝐺𝑁𝑡1 −
Τ(𝑡)

𝜎𝐿𝐺𝑁𝑡2
2 𝑒

−
𝑡

𝜎𝐿𝐺𝑁𝑡2,    (3-11) 

where Τ(𝑡) = 1 iff 𝑡 > 0;  this forces  𝑓𝐿𝐺𝑁
𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙(𝑡) = 0  when 𝑡 ≤ 0.  

3.2.1.3 The Primary Visual Cortex (V1) 

The primary visual cortex (V1) is the entrance to the visual cortical hierarchy and a main 

visual processing site where neurons have strong orientation preferences. The modelled V1 

has two layers of modelled cells. The first layer contains modelled simple cells (SCs), which 

receive feed-forward input from modelled LGN cells (modelled M-cells and modelled P-

cells). The second layer contains modelled complex cells (CCs), which provide further 

analysis based on output of model SCs. 

[SC] Model V1 Simple Cell 

The spatial frequency selectivity of modelled simple cells can be described as a two-

dimensional Gabor orientation filter (Daugman 1980, Jones and Palmer 1987) as: 

𝑓𝑉1𝑠𝑠
𝑠𝑝𝑎𝑡𝑖𝑎𝑙(𝑥, 𝑦) = 𝑒

−
𝑥′

2
+𝛾2𝑦′

2

2𝜎𝑉1𝑠𝑐
2

cos(2𝜋
𝑥′

𝜆
+ 𝜓),    (3-12) 

where 𝑥′ = 𝑥 cos 𝜃 + 𝑦 sin 𝜃 and 𝑦′ = 𝑦 cos 𝜃 − 𝑥 sin 𝜃 are the rotational factors, 𝜃 denotes 

the spatial orientation, 𝜎𝑉1𝑠𝑐 denotes the sigma of the Gaussian envelope, 𝜆 denotes the 

wavelength of the sinusoidal parameter, and 𝜓 denotes the phase shift. In the current work, 

𝜆 = 𝜎𝑉1𝑠𝑐/0.56 is used, which yields approximately one-octave bandwidth (Figure 3-15). 
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Figure 3-14 LGN spatiotemporal receptive fields. (A) and (B) illustrate spatial response patterns 

of the LGN cell, 2D views of the real and imaginary parts. Red indicates positive value and blue 

indicates negative values. Plot C illustrates the temporal response pattern, which is defined as 

an impulse response filter. The horizontal axis is time, and the vertical axis is the filter value. 

(C) shows a filter pair (odd and even components). 

 

A) B)

C)
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The temporal frequency profile of modelled SCs is defined by a one-dimensional low-pass 

filter. The operation is expressed as: 

𝑓𝑉1𝑠𝑠
𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙(𝑡) =

Τ(𝑡)

2𝜋𝜎𝑉1𝑡
2 𝑒

−
𝑡2

2𝜎𝑉1𝑡
2

,     (3-13) 

where Τ(𝑡) = 1 iff 𝑡 > 0; this forces 𝑓𝑉1𝑠𝑠
𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙(𝑡) = 0 when 𝑡 ≤ 0.  

SCs that receive signals from M-cells have higher temporal and lower spatial frequency 

response profiles, where SCs that receive signals from P-cells have lower temporal and band-

pass spatial frequency response profiles (Tootell et al. 1988). The spatiotemporal frequency 

selection is set as follows: 

Figure 3-15 illustrates the V1 receptive fields. The proposed usage of Gabor filters leads 

to even component (plot A) and odd component (plot B) of V1 simple cell. RFs from small to 

large correspond to 𝜎𝑉1𝑠𝑐 from 2.0 to 16.0 respectively as suggested in Table 3-1. The 

frequency spectrum in 2D (plot C) and 1D (plot D) illustrates the selectivity of these filters in 

the frequency domain. It is shown that larger 𝜎𝑉1𝑠𝑐 values yield lower central frequencies, 

and vice versa. 

 [CC] Model V1 Complex Cell 

Modelled complex cells integrate simple cell responses. A quadrature pair is used to model 

the complex cell, which computes the square root over outputs of two simple cells that are 90 

degrees out of phase (Figure 3-16). The general complex cell spatiotemporal response can be 

represented as:  

𝑅′𝑉1𝑐𝑐
𝑠𝑝𝑎𝑡𝑖𝑜𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 = √(𝑅𝑉1𝑠𝑠

𝑒𝑣𝑒𝑛)2 + (𝑅𝑉1𝑠𝑠
𝑜𝑑𝑑 )2 ,    (3-14) 

Given the separate spatial and temporal LGN and simple cell representation, the general 

spatiotemporal representation along the feed-forward pathway from LGN to V1 complex cell 
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(Figure 3-17) can then be derived following (Adelson and Bergen 1985): 

𝑅𝑉1𝑐𝑐
𝑠𝑝𝑎𝑡𝑖𝑜𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 = Θ[𝑅𝑉1𝑠𝑠

𝑠𝑝𝑎𝑡𝑖𝑎𝑙𝑜𝑑𝑑𝑅𝑉1𝑠𝑠
𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙𝑒𝑣𝑒𝑛 − 𝑅𝑉1𝑠𝑠

𝑠𝑝𝑎𝑡𝑖𝑎𝑙𝑒𝑣𝑒𝑛𝑅𝑉1𝑠𝑠
𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙𝑒𝑣𝑒𝑛 ],  (3-15) 

3.2.1.4 The Visual Cortex V2 

Modelled V2 neurons receive feed-forward input from Modelled V1 CCs. Cells in area V2 

have larger receptive fields than that of V1, and with end-stopped response patterns. Inspired 

by (Dobbins et al. 1987, Boynton and Hegde 2004), four types of V2 end-stopped receptive 

fields have been proposed in (Rodriguez-Sanchez and Tsotsos 2011). End-stopped cells are 

modelled as a V1 simple cell suppressed by two displaced V1 complex cells at elongated 

ends. Suppression allows end-stopped cells to perform curvature estimation. Depending on 

the rotational components, the end-stopped cell computes convexity/concavity. In this work, 

Type 4 cells (one of the four end-stopped cells, the most complicated one in terms of 

computational representation) are implemented: 

𝑅𝑉2
𝑒𝑛𝑑−𝑠𝑡𝑜𝑝𝑝𝑒𝑑 = Θ [𝑐0𝑅𝑉1𝑠𝑠

𝑐𝑒𝑛𝑡𝑒𝑟𝜃0 − (𝑐1𝑅𝑉1𝑐𝑐
𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑑𝜃1 + 𝑐2𝑅𝑉1𝑐𝑐

𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑑𝜃2)],  (3-16) 

where 𝑅𝑉1𝑠𝑠
𝑐𝑒𝑛𝑡𝑒𝑟𝜃0  is the center SC response, 𝑅𝑉1𝑐𝑐

𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑑𝜃1  and 𝑅𝑉1𝑐𝑐
𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑑𝜃2  are two displaced 

CC responses, 𝜃1  and 𝜃2  are the relative orientations from the center SC orientation 𝜃0 . 

Parameters 𝑐0, 𝑐1, and 𝑐2 are weighting constants. Figure 3-18 shows an example of a Type 4 

end-stopped cell with two displaced CCs of 45° relative to the center SC. 
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Table 3-3 𝝈𝑽𝟏𝒔𝒄 set to simulate V1 Simple Cells. 

𝜎𝑉1𝑠𝑐 for dorsal V1 neuron 2.0, 4.0, 8.0 

𝜎𝑉1𝑠𝑐 for ventral V1 neuron 4.0, 8.0, 16.0 
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Figure 3-15 A V1 simple cell spatial receptive field. (A) and (B) illustrate even and odd 

component of the proposed usage of Gabor filters. RFs from small to large correspond to σ 

values from 2.0 to 16.0 respectively as suggested in Table 3-1. The frequency spectrum in 2D (C) 

and 1D (D) illustrates the selectivity of these filters in the frequency domain. It is shown that 

larger σ value yields lower central frequency, and vice versa. 

A) B)

C)

D)
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Even Opponent Odd Opponent

(  )2 (  )2

∑ 

 Energy 
 

Figure 3-16 The formation of a V1 complex cell receptive field. A quadrature pair is used to 

model the complex cell. This is from an energy summation perspective, which computes the 

square root over outputs of two simple cells that are 90 degrees out of phase. 
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Figure 3-17 LGN-V1 spatiotemporal analyses. Given the separate spatial and temporal LGN 

and simple cell representation, the general spatiotemporal representation along the feed-

forward pathway from LGN to V1 complex cell can then be derived following (Adelson and 

Bergen 1985).  Circles with “X” indicates dot multiple operation, and circles with “+” indicates 

plus operation. 
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Figure 3-18 The formation of a Type-4 V2 end-stopped cell. It calculates the difference between 

a simple cell and two displaced complex cells with rotated component. Compared with Type-3 

cells it can distinguish between curvature directions.  C0, C1 and C2 represent weightings to 

add the components. 

 

 

V1 Simple Cell

135o displaced 
V1 Complex Cell

45o displaced V1 
Complex Cell

+

c2c1

Type-4 V2 End-stopped Cell

+
-- c0



 

 

101 

 

3.2.1.5 The Middle Temporal Cortex (MT) 

Area MT is an important cortical region in the dorsal pathway, which processes local 

motion. It has larger receptive fields than area V1 and is sensitive to high-temporal-low-

spatial frequency moving patterns. This spatiotemporal detection characteristic of MT 

neurons has been shown to respond to both velocity changes (Weller et al. 1984) and velocity 

gradients (Treue and Andersen 1996) . We follow (Tsotsos et al. 2005) to separately model 

these two types of MT neurons. 

Modelled MT neurons receive and integrate feed-forward input from the V1 CCs. 

Modelled velocity-change neurons (MTvc) accumulate opponent energy from V1 neurons 

within a larger spatial area. The spatiotemporal property of MTvc is determined by a 

Gaussian envelope as: 

𝑓𝑀𝑇𝑣𝑐
𝑠𝑝𝑎𝑡𝑖𝑜𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙(𝑥, 𝑦, 𝑡) = 𝑒

−
𝑥2+𝛾𝑀𝑇𝑣𝑐

2 𝑦2+𝜉𝑀𝑇𝑣𝑐
2 𝑡2

2𝜎𝑀𝑇𝑣𝑐
2

,    (3-17) 

where 𝜎𝑀𝑇𝑣𝑐 denotes the Gaussian standard deviation, which defines the spatial extend of the 

receptive field. 𝛾𝑀𝑇𝑣𝑐 is the spatial aspect ratio, where 𝛾 = 1 yields a circular MT spatial receptive 

field. 𝜉𝑀𝑇𝑣𝑐 is the temporal aspect ratio. 

Modelled velocity-gradient neurons (MTvg) detect changes in velocity across V1 neurons 

within a larger spatial area. Depending on the velocity direction and velocity gradient, (Treue 

and Andersen 1996) defines four gradient types: clockwise shear,  counter-clockwise shear, 

stretching and compression. Figure 3-19 shows a polarized view to illustrate these four types. 

If direction of motion and direction of gradient has a right angle, then it is a shearing motion. 

If direction of motion and direction of gradient is consistent, then it is a stretching motion. If 

direction of motion and direction of gradient oppose each other, then it is a compression 

motion. 
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To facilitate the discussion, we separate the spatial and temporal RF properties. The 

temporal property of MTvg is determined by a Gaussian envelope as: 

𝑓𝑀𝑇𝑣𝑔
𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙(𝑡) = 𝑒

−
𝜉𝑀𝑇𝑣𝑔

2 𝑡2

2𝜎𝑀𝑇𝑣𝑔
2

,      (3-18) 

where σMTvg defines the spread on the temporal axis, and  ξMTvg is the temporal aspect ratio. 

Spatially, a modelled MTvg accumulates V1 speed gradients. To formalize this property, 

(𝑥 − 𝑦 − 𝑠) columnized representation of V1 opponent responses is assumed, where 𝑥 and 𝑦 

represent the spatial location, and 𝑠 denotes spatiotemporal orientations or velocity, i.e. s =1, 

2, 3 denotes slow / middle / fast speeds respectively. The summation of MTvg is modelled as 

template matching on spatiotemporal planes: 

𝑅𝑀𝑇𝑣𝑔
𝑠𝑝𝑎𝑡𝑖𝑎𝑙(𝑥, 𝑦) = ∑ 𝑅𝑉1𝑐𝑐

𝑠 (𝑥, 𝑦)𝑠∈1,2,3 ⊛ 𝑇𝑠(𝑥, 𝑦),   (3-19) 

Where ⊛ denotes convolution, RV1cc
s (x, y) denotes V1 complex-cell response to velocity s. 

Ts is the template for velocity s.  

In our implementation, a template matching set contains three 5-by-5 templates, with each 

template representing a speed. Table 3-4 shows an example of a set of templates to detect 

gradient changes of rightward stretching. Intuitively, when a stimulus is stretching to the 

right, one would expect to observe strong energy shift, spatially from left to right, and speed-

wise from slower to faster. This can be revealed in Table 3-4 by 1s on the left-most column in 

low-speed motion template, 1s on the middle column in middle-speed motion template, and 

1s on the right-most columns in high-speed motion template. 
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Counter-clockwise share

Stretching

 

Figure 3-19 Basic gradient types defined gradients (Treue and Andersen 1996). Depending on 

the velocity direction and velocity gradient, four gradient types are defined: clockwise shear, 

counter-clockwise shear, stretching and compression. 
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Table 3-4 An example a set of templates to detect gradient changes of rightward acceleration. 

When a stimulus moves toward right with increasing speed, one would observe strong energy 

shift, spatially from left to right, and speed-wise from slower to faster. This can be revealed by 

1s on the left-most column in low-speed motion template, 1s on the middle column in middle-

speed motion template, and 1s on the right-most columns in high-speed motion template. 

1.0 0.0 0.0 0.0 0.0 

1.0 0.0 0.0 0.0 0.0 

1.0 0.0 0.0 0.0 0.0 

1.0 0.0 0.0 0.0 0.0 

1.0 0.0 0.0 0.0 0.0 

𝐬 = 𝟏 (Low-speed motion) 

 

0.0 0.0 1.0 0.0 0.0 

0.0 0.0 1.0 0.0 0.0 

0.0 0.0 1.0 0.0 0.0 

0.0 0.0 1.0 0.0 0.0 

0.0 0.0 1.0 0.0 0.0 

𝐬 = 𝟐 (Mid-speed motion) 

 

0.0 0.0 0.0 0.0 1.0 

0.0 0.0 0.0 0.0 1.0 

0.0 0.0 0.0 0.0 1.0 

0.0 0.0 0.0 0.0 1.0 

0.0 0.0 0.0 0.0 1.0 

𝐬 = 𝟑  (High-speed motion) 
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3.2.1.6 The Medial Superior Temporal Cortex (MST) 

Neurons of area MST have larger receptive fields than the MT neurons, and are tuned to 

more complex motion patterns: expand or approach, contract or recede, and rotation (Duffy 

and Wurtz 1991, Duffy and Wurtz 1997, Duffy 1998, Smith et al. 2006). In our model, a 

modelled MST neuron further integrates activations from the modelled MT neurons. The 

spatiotemporal properties of modelled MST neuron can be defined as: 

𝑓𝑀𝑆𝑇
𝑠𝑝𝑎𝑡𝑖𝑜𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙(𝑥, 𝑦, 𝑡) = 𝑒

−
𝑥2+𝛾𝑀𝑆𝑇

2 𝑦2+𝜉𝑀𝑆𝑇
2 𝑡2

2𝜎𝑀𝑆𝑇
2

,    (3-20) 

where σMST denotes the Gaussian standard deviation, which defines the spatial extend of the 

receptive field, γMST is the spatial aspect ratio, where γ = 1 yields a circular MT spatial 

receptive field, and ξMST is the temporal aspect ratio. 

3.2.1.7 A Summary of the Modelled Visual Hierarchy 

The formalized visual hierarchy includes a representation of both the dorsal pathway and 

the ventral pathway. From the feature processing point of view, the two pathways interpret 

different spatiotemporal visual characteristics. We modelled the feed-forward processing 

along the visual hierarchy using a set of image filters, which are summarized in Table 3-5. 
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Table 3-5 A summary of the modelled hierarchy. 

Visual area Cell type Spatial filter  Spatial 𝝈  Temporal filter 

RGC midget cell DoG 0.8, 1.6  Low-pass 

parasol cell DoG 1.6, 3.2 Low-pass 

LGN parvocellular cell DoG 1.6 Low-pass 

magnocellular cell DoG 2.0 Impulse Response Filter 

V1 Simple cell Log-Gabor ventral: 2.0, 4.0, 8.0 

dorsal: 4.0, 8.0, 16.0 

Low-pass 

 Complex cell Energy summation ventral: 4.0, 8.0, 16.0 

dorsal: 8.0, 16.0, 32.0 

Low-pass 

V2 Type-4 cell Energy summation 8.0, 16.0, 32.0 Low-pass 

MT velocity cell Energy summation 32.0 Low-pass 

 gradient cell Energy summation 32.0 Low-pass 

MST MST cell Energy summation 64.0 Low-pass 
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3.2.2 Formalization of Early Recurrence 

3.2.2.1 General Formula 

Early recurrence from the dorsal pathway modulates ventral processing. The modulation 

inhibits ventral neural response representation. The general modulation processing can be 

expressed as: 

𝑅𝑣𝑒𝑛𝑡𝑟𝑎𝑙
′ = Θ[𝑅𝑣𝑒𝑛𝑡𝑟𝑎𝑙 ∙ 𝐼𝑛ℎ𝑑𝑜𝑟𝑠𝑎𝑙],    (3-21) 

where 𝑅𝑣𝑒𝑛𝑡𝑟𝑎𝑙 denotes the original ventral representation, which is driven by feed-forward 

signal. ∙ denotes the recurrent operation. 𝐼𝑛ℎ𝑑𝑜𝑟𝑠𝑎𝑙 denotes the recurrent representation that is 

generated from the dorsal pathway. Θ is rectification function. The early recurrent 

representation 𝐼𝑛ℎ𝑑𝑜𝑟𝑠𝑎𝑙 is further defined as: 

𝐼𝑛ℎ𝑑𝑜𝑟𝑠𝑎𝑙 =
𝜔𝑖𝑅𝑑𝑜𝑟𝑠𝑎𝑙_𝑖

‖∑ 𝜔𝑗𝑅𝑑𝑜𝑟𝑠𝑎𝑙_𝑗𝑗 ‖
,     (3-22) 

where 𝑅𝑑𝑜𝑟𝑠𝑎𝑙_𝑖 denotes the dorsal neuron response to preferred spatiotemporal orientation 𝑖. 

This is the result of feed-forward computation. 𝜔𝑖 denotes its weighting strength, with 

𝜔𝑖 ∈ [0, 1]. Further, the denominator ‖∑ 𝜔𝑗𝑅𝑑𝑜𝑟𝑠𝑎𝑙_𝑗𝑗 ‖ indicates that the recurrent 

representation is normalized. The modulation reaches its stable state when 𝑅𝑣𝑒𝑛𝑡𝑟𝑎𝑙
′ =

 𝑅𝑣𝑒𝑛𝑡𝑟𝑎𝑙. Since the feedback representation is non-zero, the model implies that modulation 

will be stabilized when the system lacks motion cues, or the motion cue is stopped (motion is 

off-set).  

Depending on the setting of 𝜔𝑖, one may derive the three different modulation patterns 

proposed in the previous section: 

Pattern-1 (Anisotropic): early recurrence has a spatially anisotropic suppression pattern. 

Each ventral neuron receives recurrent signals from dorsal neurons of the same 
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spatiotemporal preference. This is done by: 

𝜔𝑖 = {
1, 𝑖𝑓 𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑎𝑙𝑠𝑜 𝑝𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑 𝑏𝑦 𝑣𝑒𝑛𝑟𝑎𝑙 𝑛𝑒𝑢𝑟𝑜𝑛

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
,  (3-23) 

Pattern-2 (Isotropic): the ventral neuron receives recurrent signals from all dorsal 

neurons in an equal manner. To do this, one can fix 𝜔𝑖 = 1 for all dorsal neurons. This 

isotropic representation is an equal summation of dorsal strengths.  

Pattern-3 (General): In a more generalized manner, the ventral neuron receives recurrent 

signals of different strengths. Each ventral neuron has a preferred tuning profile. Maximum 

suppression is achieved if the recurrent signal matches the preferred profile and least affected 

at its non-preferred profile. Between the preferred and non-preferred profile, the suppressive-

ness may show linear or non-linear tuning effects. 

3.2.2.2 Recurrence between Area MT and Area V1/V2  

Recurrence between area MT and area V1/V2 takes place between dorsal area MT and 

ventral layers of area V1 and area V2. The recurrence applies the MT representation to 

modulate V1 edge representation, and V2 curvature representation. Specifically, given the 

aforementioned V1 response (𝑅𝑉1𝑐𝑐
𝑠𝑝𝑎𝑡𝑖𝑜𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙

), V2 response (𝑅𝑉2
𝑒𝑛𝑑−𝑠𝑡𝑜𝑝𝑝𝑒𝑑

) and MT 

response, the general early recurrent equation is then: 

𝑅𝑉1𝑐𝑐−𝑀𝑇
′ 𝑠𝑝𝑎𝑡𝑖𝑜𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 = Θ[𝑅𝑉1𝑐𝑐

𝑠𝑝𝑎𝑡𝑖𝑜𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 ∙ 𝐼𝑛ℎ𝑀𝑇],    (3-24) 

𝑅𝑉2−𝑀𝑇
′ 𝑒𝑛𝑑−𝑠𝑡𝑜𝑝𝑝𝑒𝑑 = Θ[𝑅𝑉2

𝑒𝑛𝑑−𝑠𝑡𝑜𝑝𝑝𝑒𝑑 ∙ 𝐼𝑛ℎ𝑀𝑇],    (3-25) 

where 𝐼𝑛ℎ𝑀𝑇 is a combined representation of RMTvc and RMTvg. RMTvc indicates directional 

features and RMTvg represents velocity gradients: 

𝐼𝑛ℎ𝑀𝑇 =
𝜔𝑖( 𝑅𝑀𝑇𝑣𝑐_𝑖+𝑅𝑀𝑇𝑣𝑔_𝑖)

‖∑ 𝜔𝑗( 𝑅𝑀𝑇𝑣𝑐_𝑗+𝑅𝑀𝑇𝑣𝑔_𝑗)𝑗 ‖
,     (3-26) 
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3.2.2.3 Recurrence between Area MST and Area V2  

Recurrence between area MST and area V2 modulates V2 curvature representation. 

Specifically, given the aforementioned V2 (𝑅𝑉2
𝑒𝑛𝑑−𝑠𝑡𝑜𝑝𝑝𝑒𝑑

) response and MST responses 

(RMST), the general early recurrent equation is then: 

𝑅𝑉2−𝑀𝑆𝑇
′ 𝑒𝑛𝑑−𝑠𝑡𝑜𝑝𝑝𝑒𝑑 = Θ[𝑅𝑉2

𝑒𝑛𝑑−𝑠𝑡𝑜𝑝𝑝𝑒𝑑 ∙ 𝐼𝑛ℎ𝑀𝑆𝑇],    (3-27) 

where 𝐼𝑛ℎ𝑀𝑆𝑇 denotes the MST recurrent representation: 

𝐼𝑛ℎ𝑀𝑆𝑇 =
𝜔𝑖𝑅𝑀𝑆𝑇_𝑖

‖∑ 𝜔𝑗(𝑅𝑀𝑆𝑇_𝑗)𝑗 ‖
,     (3-28) 

3.2.3 A Full Feed-forward Hierarchy Example 

The model has been implemented and investigated in several scenarios to address different 

computer vision algorithms. Both synthetic and real images have been used to study the 

impact of early recurrence to lower-level visual feature processing.  

Before discussing the impact of early recurrence, it is important to move one step further 

on these feed-forward pathways to illustrate how stimuli are computed and interpreted 

through the hierarchy. In what follows, we use synthetic octagon stimuli with complex 

motion patterns as an example. 

Figure 3-20 shows an example using purely motion-defined objects. Two octagons with 

plaid patterns are used. The left octagon rotates in a clockwise direction and the octagon on 

the right rotates in a counter-clockwise direction. The two objects move at equal speed. 

Figure 3-21 shows the response of retinal ganglion cells. The top row shows the on-center 

and off-center PGC responses. Since PGCs have larger receptive fields, they respond to 

coarse level intensity variations. The bottom row shows on-center and off-center MGC 

responses. Due to the small receptive fields, PGCs respond to fine-level intensity changes. 
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Figure 3-20 Input stimuli are two octagons with plaid patterns are used. The octagon on the left 

rotates clockwise and the octagon on the right rotates counter-clockwise. 
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Figure 3-22 shows output of the LGN spatiotemporal responses. The top row shows the 

parvocellular cell responses. Since parvocellular cells are not sensitive to temporal variations, 

the output of parvocellular cells accumulates Midget Retina Cells responses with a low-pass 

spatiotemporal filtering effect.  

Row 2 to row 4 of Figure 3-22 illustrates the magnocellular cell responses of the LGN. 

Since the magnocellular cells are very sensitive to temporal variations, three types of 

magnocellular cells are implemented. They respond to fast, middle and slow temporal 

variation respectively. We follow (Adelson and Bergen 1985) for the spatiotemporal analysis 

to derive odd and even cell responses. For each magnocellular cell, the left image shows the 

even cell responses and the right image shows the odd cell responses. We compare among the 

three cell types. It illustrates that as temporal resolution goes from fast (row 2) to slow (row 

4), responses to the surround region of the octagons are gradually weakened, while the 

responses to the center region of the octagons become stronger. This is consistent with the 

stimuli that since the two octagons are rotating, the speed near the centre of the octagon is 

slower than in the surrounding region. 

Figures 3.23 to 3.25 illustrate area V1 responses to the magnocellular cell inputs. V1 cells 

extract different spatiotemporal orientations. To simplify the computation, the current study 

separates spatiotemporal analysis into spatial and temporal analysis. These figures illustrate 

how V1 extracts fast-, middle-, and slow-speed motion input into 12 orientations 

respectively. 
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Figure 3-21 The RGC response. Top row: parasol on-centre and off-centre responses. Bottom 

row: midget cell on-centre and off-centre responses. 
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Figure 3-26 compares fast-, middle- and slow-speed motion patterns with motion directed 

to the left. The speed at the outer region of the octagons is faster than that at the center 

region. This observation is consistent with the patterns shown here: there are significant 

responses at the outer regions in the fast-speed cell response (top-row), and stronger 

responses at the center regions in the slow-speed cell response (bottom-row). Responses of 

the middle-speed cell (middle-row) highlight the regions in between. 

Figure 3-27 illustrates area V1 responses to parvocellular cell input. 

Figure 3-28 illustrates area MT responses. Area MT accumulates area V1 responses and 

further extracts complex motion patterns. The figure clearly illustrates that the two octagons 

contain strong shearing motion. 

Figure 3-29 illustrates area V2 responses to area V1 input. Compared with area V1, three 

points are observed in the V2 presentation. The first observation is that V2 responses to 

curvatures (e.g. curved-boundary of the octagons). The second observation is that due to 

larger receptive fields, area V2 extracts more complete edges. Last but not least, due to the 

inhibitive nature of the V2 receptive fields, V2 representation clearly highlights edges and 

curvatures from the noisy patterns.  

An interesting aspect of the proposed model lies in the ability of the dorsal pathway to 

respond to different types of motion patterns and coarse-scale spatial information. These fast-

computed representations facilitate ventral processing in the form of local context that the 

ventral pathway is unable to compute by itself. In the next chapter, we will show how these 

dorsal presentations modulate edge and curvature representations computed in the ventral 

pathway. 
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Figure 3-22 The LGN responses to RGC inputs. Top row: parvocellular cell responses. Bottom 

rows: magnocellular cell responses. Left and right figures in each row illustrate even and odd 

cells respectively following (Adelson and Bergen 1985). Row 2 shows magnocellular cell 

response to fast motion; row 3 shows middle-speed motion; and row 4 shows slow speed motion. 
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Figure 3-23 V1 responses to fast-speed motion stimuli. Arrows indicate preferred orientations. 

 

 

 

 

 

 

 

 



 

 

116 

 

 

 

 

 

 

Figure 3-24 V1 responses to middle-speed motion stimuli. Arrows indicate preferred 

orientations. 
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Figure 3-25 V1 responses to slow-speed motion stimuli. Arrows indicate preferred orientations. 
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Figure 3-26 V1 responses to fast-, middle- and slow-speed motion patterns with moving 

direction to the left. Arrows indicate preferred orientations. Length of arrows illustrates speeds. 

 

 

 

 

 

Fast speed 

motion

Middle speed 

motion

Slow speed 

motion



 

 

119 

 

 

 

 

 

 

Figure 3-27 V1 responses to parvocellular cell inputs. Arrows indicate preferred orientations. 
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Figure 3-28 MT responses reveal that the two circles contain strong shear motion. 
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Figure 3-29 V2 responses to curvatures. Arrows indicate preferred orientations. 
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Chapter 4. Experiments 

In Chapter 3, we proposed a computational model of early recurrence. Using synthetic 

moving octagons, we illustrated how visual stimuli are processed by the proposed model. 

The ultimate goal of this work is to show how the proposed computational components might 

improve computer vision algorithms. However, before discussing topics in computer vision, 

in this chapter we will illustrate the connections between the proposed model and the 

biological vision.  

Specifically, we report our efforts to simulate two experiments on biological subjects: a 

figure-background segregation experiment on macaques (Hupé et al. 1998) and a Kanisza 

illusory rectangle experiment on humans (Seghier et al. 2000b). These two experiments are 

well-known studies of the impact of lower-level recurrence of visual processing. In both 

experiments, the authors conduct quantitative analysis to measure the extent to which 

recurrent activity impacts the lower-level ventral response. They drew similar conclusions, 

which include the verification of the existence of early recurrence and the observation of 

modulation effect on the ventral processing.  

We followed the test protocols from the original manuscripts to set up testing stimuli and 

experiment conditions. We wanted to know whether the proposed computation could 

reproduce observations that have been reported on biological subjects. Additionally, to study 
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the recurrent impact, we investigated alternative recurrent operations other than the 

multiplicative inhibition. If the simulations are successful, the proposed computational model 

itself will serve as an evidence to support the fast-brain hypothesis (Bullier 2001), and we 

will also be confident to apply the proposed model in computer vision systems.  

4.1 Figure-Background Segmentation  

By inactivation of the higher-order visual areas V5/MT of macaques, Bullier and his 

colleagues studied the hypothesis that feedback amplifies neural activity on lower-level 

visual areas, such as areas V1, V2, and V3 (Hupé et al. 1998, Bullier et al. 2001). In this 

experiment, the centre of the visual field contains a bar. Background contains randomly 

distributed checker-box. The bar has the same width as the background checker-box. The 

background checker-box has similar appearance to the central bar. By setting the bar and the 

background in three different relative motion patterns, the authors showed that early feedback 

representation was important in differentiating the figure from the background. Feedback 

facilitates response to an object moving within the classical receptive field and enhances 

suppression evoked by background stimuli in the surrounding region. This facilitatory effect 

strengthens for stimuli of lower saliency. That is, the modulation effect is prominent when 

stimuli are of low visibility. The study suggests a lower-level recurrent mechanism that 

reduces interference of moving distractors, especially when the stimuli are in complicated 

moving patterns. 

4.1.1 Stimuli 

The current work simulated this experiment. We generated the same stimuli as those 
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described in (Hupé et al. 1998). The stimuli include a solid bar moving constantly in front of 

randomly distributed checker-box. In the original experiment, the moving bar was optimized 

in the approximate size and velocity for the V1 neuron, and the orientation was optimized to 

within 15° by measurement of an orientation tuning curve. In our experiment, this is done by 

setting the filter spatiotemporal properties in the approximate size and velocity of the stimuli.  

We investigated early recurrence using three sets of relative moving patterns following the 

original work. In Set 1, the bar moves in front of the stationary checker-box (Figure 4-1a). In 

Set 2, the bar and the checker-box move coherently to the same direction and at the same 

velocity (Figure 4-1b). In Set 3, only the checker-box moves while the bar remains stationary 

(Figure 4-1c). 

We measured the contrast between the foreground and the background using the 

Michelson contrast function (Michelson 1995). We used a set of luminance values, with 

mean dark field luminance 𝐿0, checker-box luminance 𝐿𝑐𝑏, and bar luminance 𝐿𝑏𝑎𝑟. The 

contrast of the bar is then calculated as: 

𝐶𝑏𝑎𝑟 = (𝐿𝑏𝑎𝑟 − 𝐿0)/𝐿0,      (4-1) 

The contrast of the light background checker-box relative to luminance 𝐿0 is calculated as:  

𝐶𝑐𝑏 = (𝐿𝑐𝑏 − 𝐿0)/𝐿0,      (4-2) 

(Hupé et al. 1998) used a salience score is to indicate contrast difference between the bar 

and the checker-box, which is defined as: 

𝑆𝑎𝑙𝑖𝑒𝑛𝑐𝑦 = 𝐶𝑏𝑎𝑟/𝐶𝑐𝑏,      (4-3) 

To be consistent with the original study, we set 𝑆𝑎𝑙𝑖𝑒𝑛𝑐𝑦 ∈ [1.0, 3.0] as low saliency, 

𝑆𝑎𝑙𝑖𝑒𝑛𝑐𝑦 ∈ [3.0, 4.5] as middle saliency, and 𝑆𝑎𝑙𝑖𝑒𝑛𝑐𝑦 ∈ [4.5, 6.0] as high saliency. When 

𝑆𝑎𝑙𝑖𝑒𝑛𝑐𝑦 = 1.0, the bar has the same intensity value with the background checker-box.  
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Figure 4-1 Test stimuli and three relative moving patterns. The stimuli include a solid bar that 

moves in front of a randomly distributed checker-box pattern at a constant velocity. a) Set 1: 

the bar moves on the stationary background. b) Set 2: the bar and the background move 

together.  c) Set 3: the background moves and the bar remain stationary. 
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Saliency = 1.0 Saliency = 2.0 Saliency = 3.0 Saliency = 4.0 Saliency = 5.0 Saliency = 6.0  

Figure 4-2 Stimuli at different saliency scores. At 𝑺𝒂𝒍𝒊𝒆𝒏𝒄𝒚 = 𝟏. 𝟎, the bar has the same 

luminance value with the background checker-box. At 𝑺𝒂𝒍𝒊𝒆𝒏𝒄𝒚 = 𝟔. 𝟎, luminance of the bar is 

approximate 4.75 times of intensity of the background checker-box. 
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When 𝑆𝑎𝑙𝑖𝑒𝑛𝑐𝑦 = 6.0, the intensity of bar is approximately 4.75 times of the intensity of the 

background checker-box. Figure 4-2 illustrates the relative intensity of bar and checker-box 

in different saliency settings. 

In Hupé’s experiment, orientation and size of stimuli are optimized to the receptive field 

of V1 neuron. In our case, we used a bar size of 8-pixel by 32-pixel, which are consistent 

with the modelled V1 receptive field. Stimuli move horizontally. The size of each checker-

box is 8-pixel by 8-pixel. We ran the experiment 10 times for each setting. During each time, 

a background checker-box is randomly generated. Results reported in the following sections 

are the average value of the 10 runs. 

4.1.2 Procedure 

The proposed computation has been implemented using Matlab. The simulation is 

conducted on a Windows 7 PC. Table 4-1 summarizes the parameters of the proposed model. 

The modelled visual hierarchy includes the two visual pathways. The modelled dorsal 

pathway includes the retinal parasol ganglion cells (PGCs), the magnocellular cells of the 

LGN (M-cells), the dorsal layer of area V1 (noted as Dorsal V1), and area MT. The modelled 

ventral pathway includes the retinal midget ganglion cells (MGCs), the parvocellular cells of 

the LGN (P-cells), and the ventral layer of area V1 (noted as Ventral V1).  

We did not include the other modelled visual areas discussed in Chapter 3 (i.e., area V2 

and area MST). This is because the authors (Hupé et al. 1998) had attributed the observation 

to a mechanism between area MT and area V1. Thus, for the recurrence in our experiment, 

only that from the modelled area MT to the modelled area V1 was tested. 

When choosing the recurrent pattern, we noticed that in the original experiment, the  
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Table 4-1 Experiment parameters used to configure the modelled neurons. 

Modelled Visual Area Parameter Settings 

Parasol Ganglion Cells 2 spatiotemporal settings (𝜎𝑠 = 1.6 and 3.2) 

Magnocellular Cells 2 spatiotemporal settings (𝜎𝑠 = 3.2 and 6.4) 

Dorsal V1 12 spatiotemporal orientations with 30° apart. 

Area MT 12 translation orientations with 30° apart  

4 gradient orientations (0°, 90°, 180°, 270°) 

Midget Ganglion Cells 2 spatiotemporal settings (𝜎𝑠 = 0.8 and 1.6) 

Parvocellular Cells 2 spatiotemporal settings (𝜎𝑠 = 1.6 and 3.2) 

Ventral V1 12 spatiotemporal orientations with 30° apart. 
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authors set both foreground and background stimuli to move to the same direction. This 

setting corresponds to the anisotropic modulation pattern (Pattern-1) of our proposal, where 

feedback is a single-direction representation. 

In our simulation, we first investigated the output representations with and without early 

recurrence. Figure 4-3 compares model outputs for the three moving patterns, i.e., the bar 

moves in front of the stationary background, the background moves behind the stationary bar, 

and both the bar and the background move coherently. In the figure, a more reddish colour 

indicates a stronger neural response, while a more bluish colour indicates a weaker neural 

response. Consistent with the original experiment, we used a middle-to-high saliency score 

(e.g., 𝑆𝑎𝑙𝑖𝑒𝑛𝑐𝑦 = 4.5).  

When the bar moves on the stationary background (Figure 4-3a), the non-modulated 

ventral V1 output representation (middle) contains a mixed energy distribution covering both 

stimuli and background regions. We noted that the bar region is more reddish than the 

background region. This is due that the ventral V1 responds actively to low temporal high 

spatial frequency visual information, thus its response to the bar is slightly stronger than its 

response to the background. In the modulated ventral V1 representation (right), neural 

response to the background is suppressed. However, since the dorsal representation has a 

coarse spatial resolution, a small portion of the background pixels surrounding the bar 

remains reddish. Our results show that the recurrent modulation indeed facilitates the ventral 

processing on the moving bar. 

Figure 4-3b shows the case where the background check-box moves behind the bar while 

the bar is stationary. Compared with the Set 1 on the non-modulated ventral V1 
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representation (middle), neural response to the bar is weaker. The peak response to the bar is 

similar to the peak response to the background. In the modulated ventral V1 representation 

(right), due to that the dorsal pathway reacts to background motion, neural response to the 

background is enhanced. In addition, the boundary of the bar in both representations is 

broken. At first glance, this seems incorrect: as the bar is stationary, the dorsal pathway 

should not respond to the bar at all. However, this could be explained as the dorsal pathway 

detects the relative motion of the central bar with respect to the background. This is verifiable 

when we inspected the dorsal opponent energy representation, which clearly shows the 

counter-direction motion. 

When the bar and the background move coherently (Figure 4-3c), responses to the 

background and the bar have been moderately extracted in the non-modulated ventral V1 

representation (middle). In the modulated ventral V1 representation (right), response to the 

bar is enhanced: the bar region becomes more reddish. However, when compared with Set 1 

(Figure 4-3a), the facilitatory effect from the dorsal representation is weaker. 
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Figure 4-3 General observations of the three moving patterns. The left column shows stimuli as 

in Figure 4-1. These correspond to the three relative motion patterns. The middle and the right 

columns show ventral V1 response without and with early recurrent modulation, respectively. 

Reddish colours indicate stronger neural responses, while bluish colours indicate weaker neural 

responses.  
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4.1.3 Results 

This section reports our quantitative analysis of model outputs at different saliency scores 

and at different moving velocities. In addition, we suspected that the proposed multiplicative 

inhibition may not be the only operation of early recurrence but might be the one that fits the 

current scenarios. Thus, we implemented an additive recurrent operation and compared it 

with the multiplicative operation. 

Towards a fair comparison, responses of non-modulated and modulated ventral V1 

representations are normalized (L1 norm). A centre region is defined that includes the bar and 

nearby background pixels. Output (pixel values) within the centre region and the whole 

region are accumulated respectively. We used the numerical ratio (𝑟𝑎𝑡𝑒𝑟) between the centre 

region strength and the whole region strength to indicate the selectivity of the target. Thus, 

𝑟𝑎𝑡𝑒𝑟 ∈ [0. .1]. In a straightforward manner, a higher ratio indicates that the response to the 

target is more significant.  𝑟𝑎𝑡𝑒𝑟 = 1 indicates that the response to the background is 

negligible. Alternatively, a lower 𝑟𝑎𝑡𝑒𝑟 indicates that the response to the bar is weaker 

relative to the surroundings. 

We simulated the cell-recording experiment reported in (Hupé et al. 1998). We compared 

our results with theirs in a case-by-case manner, and concluded that the proposed model is 

capable of reproducing the original observations. In a sense, our simulation may be used as a 

piece of evidence to support the fast-brain hypothesis. Details are described as follows. 

Bar with different saliency settings 

When a salient bar (middle-to-high saliency score) moves on the stationary background, 

we could see that early recurrence has a facilitatory effect. We noted that the recurrence from 
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area MT suppresses ventral V1 response to the checker-box, where  𝑟𝑎𝑡𝑒𝑟 is high. When the 

strength of recurrence is reduced, we observed decreased  𝑟𝑎𝑡𝑒𝑟 for the moving bar.  

Compared to data reported in (Hupé et al. 1998), our results show a similar pattern of 

response suppression. An explanation of such an observation using the proposed model is 

that without early recurrence, information of motion and coarse spatial variation of the bar 

cannot reach the ventral V1. Consequently, the ventral V1 representation has less 

discriminative power to distinguish the bar from the background. As shown in the centre 

column of Figure 4-3a, the output ventral V1 representation includes responses to the 

background, thus the ratio 𝑟𝑎𝑡𝑒𝑟 is low. When the feedback is presented, the dorsal response 

is sent back to modulate the ventral V1. In this case, the ventral V1 response to the 

background stimuli is suppressed. As shown in the right column of Figure 4-3a, the 

modulated ventral V1 response is mostly focusing on the bar. In this case, 𝑟𝑎𝑡𝑒𝑟 is higher 

than that without early recurrence. 

By visually inspecting the non-modulated and the modulated ventral V1 representations, 

we observed that the recurrent strength is dependent on the saliency score of the stimuli. 

Following the pattern of Figure 4-3a, Figure 4-4 shows that the suppressive effect is more 

significant in the low-saliency cases than in the high-saliency cases. At low-saliency, the 

centre bar is barely visible when both the bar and background move coherently. However, 

when the bar moves on the stationary background, the bar is clearly visible. We therefore 

extrapolated that area MT indeed provides information of motion and spatiotemporal 

variation, such that the visual system can use it to modulate ventral V1 processing. 
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Figure 4-4 Saliency dependent suppression effects. a): Saliency = 1 and b) Saliency = 2. It shows 

that suppressive effect is more significant on low-saliency stimuli. 
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The original experiment showed a decrease of 39% in area V1 response when recurrence is 

absent. In our experiment, we observed similar decrease of 𝑟𝑎𝑡𝑒𝑟 in almost all saliency and 

speed settings. We computed 𝑟𝑎𝑡𝑒𝑟 for each saliency score and speed. For each setting, we 

repeated the experiment 10 times, each with a randomly generated background checker-box. 

𝑟𝑎𝑡𝑒𝑟 values are average and reported in Table 4-2. We followed the original work to use the 

term “control” to refer to results with early recurrence and use the term “cool” to refer to 

results without early recurrence. From the table, we see that early recurrence boosts ventral 

V1 processing in all saliency and moving speed settings. In their original experiment, the 

authors only tested a single moving speed. In our case, we tested three moving speeds, where 

the bar moves at 1-pixel per sampled image is the optimized speed for the neuron that we 

constructed. When we increased the speed, we observed both ventral V1 responses with and 

without recurrence decreased as expected. However, the recurrent effect remains similar, 

except that in the 1-pixel setting, 𝑟𝑎𝑡𝑒𝑟 saturates to 1 when the saliency score is higher. 

Further, when the saliency score increases, we observed a decreased modulation effect. This 

is because at middle-to-high saliency scores, visual features extracted by the ventral pathway 

itself are already discriminative enough to segregate the bar from the stationary background. 

In all, the simulation indicates that early recurrence has the ability to improve ventral 

response in low saliency cases, consistent with what was reported by Hupé et al.  

 

 

 

 

 



 

 

136 

 

 

 

 

 

Table 4-2 Response changes from control (recurrence is present) to cooled dorsal areas 

(recurrence is NOT present). Scores are measured when the bar moves on the stationary 

background. 

           Speed 

Saliency 

1-pixel per sampled image 3-pixel per sampled image 5-pixel per sampled image  

Control Cool Gain Control Cool Gain Control Cool Gain 

1.0 0.879 0.309 64.8% 0.745 0.230 69.1% 0.715 0.213 70.2% 

2.0 0.955 0.304 68.2% 0.856 0.268 68.7% 0.774 0.251 67.6% 

3.0 0.987 0.435 55.9% 0.899 0.278 69.1% 0.796 0.265 66.7% 

4.0 0.995 0.512 48.5% 0.929 0.291 68.7% 0.827 0.265 67.9% 

5.0 0.998 0.624 39.0% 0.950 0.323 66.0% 0.846 0.292 65.5% 

6.0 0.999 0.686 31.4% 0.967 0.354 63.3% 0.861 0.299 65.3% 
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In Hupé’s experiment, the authors also observed modulatory effects in V2 and V3 a (Hupé 

et al. 1998). We suspected this may due to two reasons. First, it may be caused by direct 

recurrence from the dorsal pathway. Second, it may be caused by the modulation in area V1. 

Specifically, inconsistent visual features with the recurrent representation have been 

suppressed at area V1. Therefore, they will thus not reach area V2 and area V3, which leads 

to the observed modulatory effects. 

Local context modulation effect with moving/stationary background 

We knew that, due to network convergence, receptive fields of area MT are larger than 

those in the lower-level visual regions (e.g., area V1). Therefore, feedback from area MT 

facilitates ventral V1 processing with local context information. To test this effect, we 

compared the case where the bar moves on the stationary background (Set 1) with the case 

where the bar and the background move together (Set 2). 

First, we noticed that the ventral V1 response to Set 2 was much weaker compared to Set 

1. When the bar moves on the stationary background, the dorsal processing responds mainly 

to the bar and does not respond to the background. Via early recurrence, ventral V1 response 

towards the background is mostly suppressed. However, response towards the bar remains 

strong. In a test where the bar moves at 1-pixel per sampled image and the saliency score is 

2, we observed an average response ratio 𝑟𝑎𝑡𝑒𝑟 = 0.304 when recurrence is absent, and 

𝑟𝑎𝑡𝑒𝑟 = 0.955 when recurrence is present. This is a strong indication of an early recurrence 

effect. 

However, when the stimuli and the background move coherently, the average response 

ratio is 𝑟𝑎𝑡𝑒𝑟 = 0.159 without recurrence, and 𝑟𝑎𝑡𝑒𝑟 = 0.151 with recurrence. Similar ratios 
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are observed in all saliency settings. It seems in these cases, dorsal neurons respond to 

motion of both the bar and the background. Therefore, in the modulated ventral V1 

representation, response to the surround pixels is not suppressed at all. 

To further study this contextual modulation effect, we also investigated the case where the 

background moves and the bar remains stationary. Results show similar reversed modulation 

effect. The average response ratios are 𝑟𝑎𝑡𝑒𝑟 = 0.139 without modulation, and 𝑟𝑎𝑡𝑒𝑟 =

0.127 with modulation.  

In (Hupé et al. 1998), the authors reported a similar push-pull recurrent effect. They noted 

that, as expected from the inhibitory interactions of many visual cortical neurons, the 

response to Set 2 was usually much weaker than when the bar moves on the stationary 

background. For a number of V3 neurons, inactivating area MT has a differential effect on 

the responses to these two stimuli. When the bar moves alone, the inactivation of area MT 

leads to response decrease. In contrast, response is enhanced when both the bar and the 

background move coherently. Further, in most cases, the modulatory effect when the 

background moves alone is null or very weak. 

When studying early recurrence from a local context perspective, we observed that 

saliency is also an important factor in the suppression effect. When the early recurrent 

representation is inactivated, we noted a significant increase of response when the bar and the 

background move together. As we discussed, this effect is strong in low saliency cases but 

not in high saliency cases. Table 4-3 summarizes this pull-push effect when the bar and the 

background move together in varied saliency scores. 
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Table 4-3 Observed pull-push effect when the bar and the background move together with 

different saliency scores. Control indicates recurrence is present, and Cool indicates recurrence 

is NOT present. 

              Speed 

Saliency 

1-pixel per sampled image 

Control Cool Gain 

1.0 0.131 0.134 -2.2% 

2.0 0.151 0.159 -5.3% 

3.0 0.217 0.209 3.7% 

4.0 0.307 0.274 10.7% 

5.0 0.405 0.341 15.8% 

6.0 0.529 0.402 24.0% 
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Multiplicative recurrence vs. Additive recurrence 

In Chapter 3, we hypothesized that for the type of early recurrent modulation, the essence 

of the operation is a multiplicative inhibition process that applies the fast-processed dorsal 

representation to suppress the slowly-processed ventral representation. An alternative way to 

model early recurrence is via an additive inhibition. Unlike the proposed multiplicative 

inhibition, an additive inhibition uses the dorsal representation as a gain factor over the 

ventral feed-forward representation. In this manner, the additive inhibition is defined as: 

𝑅𝑣𝑒𝑛𝑡𝑟𝑎𝑙
′ = Θ[𝑅𝑣𝑒𝑛𝑡𝑟𝑎𝑙 + 𝐼𝑛ℎ𝑑𝑜𝑟𝑠𝑎𝑙],     (4-4) 

To test whether the additive inhibition has similar properties to the multiplicative 

inhibition, we repeated the experiment to compare results between the multiplicative 

inhibition and the additive inhibition. 

When the bar moves on the stationary background, we observed comparable modulation 

effects in both additive and multiplicative inhibition. Table 4-4 - Table 4-6 compare the 

average response ratio at different speed settings. In these settings, both the multiplicative 

recurrence and the additive recurrence improve neural response to the moving bar. The 

multiplicative inhibition is slightly better than the additive inhibition. 

When the bar and the background move together (Table 4-7 - Table 4-9), or the 

background moves but the bar is stationary (Table 4-10 - Table 4-12), we observed 

inconsistent results. We compared the average response ratio at different speed settings. We 

noted that the multiplicative inhibition yields different response ratios from the additive 

inhibition. When the bar becomes more salient, the multiplicative inhibition improves the bar 

responses. However, responses are reduced with the additive inhibition.  

 



 

 

141 

 

 

 

 

 

Table 4-4 A comparison between multiplicative recurrent modulation and additive recurrent 

modulation. Stimuli: the bar moves on the stationary background at a speed of 1-pixel per 

frame. Control indicates recurrence is present, and Cool indicates recurrence is NOT present. 

                 Type 

Saliency 

Multiplicative Recurrence Additive Recurrence  

Control Cool Gain Control Cool Gain 

1.0 0.879 0.309 64.8% 0.799 0.309 61.3% 

2.0 0.955 0.304 68.2% 0.905 0.304 66.4% 

3.0 0.987 0.435 55.9% 0.950 0.435 54.2% 

4.0 0.995 0.512 48.5% 0.970 0.512 47.2% 

5.0 0.998 0.624 39.0% 0.980 0.61 37.8% 

6.0 0.999 0.686 31.4% 0.980 0.686 30.0% 
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Table 4-5 A comparison between multiplicative recurrent modulation and additive recurrent 

modulation. Stimuli: the bar moves on the stationary background at a speed of 3-pixel per 

frame. Control indicates recurrence is present, and Cool indicates recurrence is NOT present. 

                  Type 

Saliency 

Multiplicative Recurrence Additive Recurrence  

Control Cool Gain Control Cool Gain 

1.0 0.745 0.230 69.1% 0.715 0.230 67.8% 

2.0 0.856 0.268 68.7% 0.766 0.268 65.0% 

3.0 0.899 0.278 69.1% 0.804 0.278 65.4% 

4.0 0.929 0.291 68.7% 0.830 0.291 64.9% 

5.0 0.950 0.323 66.0% 0.841 0.323 61.6% 

6.0 0.967 0.354 63.3% 0.867 0.354 59.2% 
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Table 4-6 A comparison between multiplicative recurrent modulation and additive recurrent 

modulation. Stimuli: the bar moves on the stationary background at a speed of 5-pixel per 

frame. Control indicates recurrence is present, and Cool indicates recurrence is NOT present. 

               Type 

Saliency 

Multiplicative Recurrence Additive Recurrence  

Control Cool Gain Control Cool Gain 

1.0 0.715 0.213 70.2% 0.666 0.213 68.0% 

2.0 0.774 0.251 67.6% 0.678 0.251 63.0% 

3.0 0.796 0.265 66.7% 0.708 0.265 62.6% 

4.0 0.827 0.265 67.9% 0.700 0.265 62.1% 

5.0 0.846 0.292 65.5% 0.731 0.292 60.1% 

6.0 0.861 0.299 65.3% 0.729 0.299 59.0% 
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Table 4-7 A comparison between multiplicative recurrent modulation and additive recurrent 

modulation. Stimuli: the bar and the background move together at a speed of 1-pixel per frame. 

Additive recurrence test results are against our guess with reduced responses in higher saliency 

scores. Control indicates recurrence is present, and Cool indicates recurrence is NOT present. 

                 Type 

Saliency 

Multiplicative Recurrence Additive Recurrence  

Control Cool Gain Control Cool Gain 

1.0 0.131 0.134 -2.3% 0.133 0.134 -0.8% 

2.0 0.151 0.159 -5.3% 0.141 0.159 -12.8% 

3.0 0.217 0.209 3.7% 0.161 0.209 -29.8% 

4.0 0.307 0.274 10.7% 0.18 0.274 -52.2% 

5.0 0.405 0.341 15.8% 0.198 0.341 -72.2% 

6.0 0.529 0.402 24.0% 0.224 0.402 -79.5% 
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Table 4-8 A comparison between multiplicative recurrent modulation and additive recurrent 

modulation. Stimuli: the bar and the background move together at a speed of 3-pixel per frame. 

Additive Recurrence test results are against our guess with reduced responses in higher saliency 

scores. Control indicates recurrence is present, and Cool indicates recurrence is NOT present. 

                 Type 

Saliency 

Multiplicative Recurrence Additive Recurrence  

Control Cool Gain Control Cool Gain 

1.0 0.129 0.135 -4.7% 0.132 0.135 -2.3% 

2.0 0.179 0.164 8.4% 0.148 0.164 -10.8% 

3.0 0.269 0.209 22.3% 0.167 0.209 -25.1% 

4.0 0.353 0.253 28.3% 0.182 0.253 -39.0% 

5.0 0.453 0.307 32.2% 0.199 0.307 -54.3% 

6.0 0.556 0.35 37.1% 0.218 0.35 -60.6% 
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Table 4-9 A comparison between multiplicative recurrent modulation and additive recurrent 

modulation. Stimuli: the bar and the background move together at a speed of 5-pixel per frame. 

Additive Recurrence test results are against our guess with reduced responses in higher saliency 

scores. Control indicates recurrence is present, and Cool indicates recurrence is NOT present. 

                 Type 

Saliency 

Multiplicative Recurrence Additive Recurrence  

Control Cool Gain Control Cool Gain 

1.0 0.119 0.112 5.9% 0.132 0.112 15.2% 

2.0 0.173 0.133 23.1% 0.149 0.133 10.7% 

3.0 0.206 0.15 27.2% 0.161 0.15 6.8% 

4.0 0.281 0.179 36.3% 0.177 0.179 -1.1% 

5.0 0.361 0.218 39.6% 0.195 0.218 -11.8% 

6.0 0.418 0.233 44.3% 0.208 0.233 -12.0% 
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Table 4-10 A comparison between multiplicative recurrent modulation and additive recurrent 

modulation. Stimuli: only the background moves at a speed of 1-pixel per frame. Control 

indicates recurrence is present, and Cool indicates recurrence is NOT present. 

                  Type 

Saliency 

Multiplicative Recurrence Additive Recurrence  

Control Cool Gain Control Cool Gain 

1.0 0.117 0.128 -9.4% 0.122 0.128 -4.9% 

2.0 0.127 0.139 -9.40% 0.123 0.139 -13.00% 

3.0 0.14 0.145 -3.60% 0.131 0.145 -10.70% 

4.0 0.165 0.162 1.80% 0.137 0.162 -18.20% 

5.0 0.171 0.165 3.50% 0.137 0.165 -20.40% 

6.0 0.195 0.181 7.20% 0.141 0.181 -28.40% 
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Table 4-11 A comparison between multiplicative recurrent modulation and additive recurrent 

modulation. Stimuli: only the background moves at a speed of 3-pixel per frame. Control 

indicates recurrence is present, and Cool indicates recurrence is NOT present. 

                  Type 

Saliency 

Multiplicative Recurrence Additive Recurrence  

Control Cool Gain Control Cool Gain 

1.0 0.133 0.139 -4.50% 0.132 0.139 -5.30% 

2.0 0.163 0.147 9.80% 0.139 0.147 -5.80% 

3.0 0.196 0.158 19.40% 0.146 0.158 -8.20% 

4.0 0.257 0.174 32.30% 0.152 0.174 -14.50% 

5.0 0.282 0.19 32.60% 0.157 0.19 -21.00% 

6.0 0.317 0.2 36.90% 0.161 0.2 -24.20% 
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Table 4-12 A comparison between multiplicative recurrent modulation and additive recurrent 

modulation. Stimuli: only the background moves at a speed of 5-pixel per frame. Control 

indicates recurrence is present, and Cool indicates recurrence is NOT present. 

                  Type 

Saliency 

Multiplicative Recurrence Additive Recurrence  

Control Cool Gain Control Cool Gain 

1.0 0.147 0.125 15.00% 0.135 0.125 7.40% 

2.0 0.19 0.146 23.20% 0.145 0.146 -0.70% 

3.0 0.232 0.151 34.90% 0.152 0.151 0.70% 

4.0 0.309 0.18 41.70% 0.153 0.18 -17.60% 

5.0 0.328 0.186 43.30% 0.166 0.186 -12.00% 

6.0 0.861 0.299 65.3% 0.729 0.299 59.0% 
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Among the centre-surround inhibition mechanisms discussed in the literature, addition is 

widely used to model how the surrounding response may inhibit the centre response, or vice 

versa. For example, the centre-surround LGN were modelled by using the Difference-of-

Gaussians filter (Rodieck 1965, Davson 2012, Einevoll and Plesser 2012). The common 

cause to this type of inhibition is lateral mechanisms. However, the proposed model describes 

a different type of inhibitive mechanism, which utilizes feedback connections. This may be 

one of the reasons to explain why the additive inhibition is not as good as the multiplicative 

inhibition.  

The proposed multiplicative inhibition also shares common characteristics to the gate 

control approaches of traditional top-down attention theories. For example, in VISIT (Ahmad 

1991), the author proposed a number of gated features, which are computed based on a 

conjunction of lower-level features in constant time. Gated features are then used to inhibit 

other (unattended) features. In this manner, a gated feature map leads to a binary 

representation, which is used to multiply with up-coming features. As a result, irrelevant 

features are inhibited, leaving relevant features projects to higher cortical layers. The similar 

idea has been used in SERR (Humphreys and Muller 1993), where higher-level features are 

grouped to generate a “relative temperature map”. In this representation, a “hot region” is 

more likely to become the next switch-on point and is therefore used as a gate or an anchor to 

group visual features. 

4.1.4 Conclusion 

Our results are consistent with the cell-recording experiments reported in (Hupé et al. 

1998). This indicates that the proposed computational model of early recurrence is capable of 
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explaining the feedback mechanism from dorsal area MT to ventral layers of area V1. 

Recurrence acts in a push-pull fashion, amplifying response to the optimal stimulus. The 

effect is stronger in low-saliency cases.  

Our results support the hypothesis that feedback information from the dorsal areas 

facilitates the ventral processing of a bar moving on a stationary background. The boosting 

effect from the feedback is prominent, particularly in low-salience settings. In our view, the 

response of a higher-level ventral neuron is not simply determined by its feed-forward input 

or the local network via horizontal connections, but is also dependent on recurrence from the 

dorsal processing. Further, early recurrence in the form of multiplicative inhibition fits the 

neurobiology better than the additive inhibition. In conclusion, our simulation supports the 

Hypothesis 2 and the Hypothesis 3 proposed in Chapter 3: early recurrence is a multiplicative 

mechanism that applies information from the dorsal pathway to improve processing in the 

ventral pathway. 

4.2 Kanisza Illusory Rectangles 

In the literature, illusory contours (ICs) (Ginsburg 1975) have been suggested useful in 

studying how visual information is processed and integrated within the visual system. Using 

cell-recording techniques (Lee and Nguyen 2001, Ramsden et al. 2001) and neuroimaging 

techniques (Seghier and Vuilleumier 2006), the authors have identified a number of cerebral 

substrates that are relevant to the perception of ICs. 

Based on dynamic property, ICs can be categorized into static ICs and dynamic ICs. A key 

challenge in studying static ICs is to localize the visual areas that cause the illusion. Most 

literature attributes this to the lower-level visual areas (Hirsch et al. 1995, Zeki 1996, 



 

 

152 

 

Mendola et al. 1999). For example, in an experiment involving human subjects (Ffytche and 

Zeki 1996), the authors concluded that ICs are populated mostly in visual area V2. 

Essentially, the perception is a ventral processing mechanism. 

Different from static ICs, dynamic ICs involve dorsal processing. Until the 1990s, our 

understanding of dynamic ICs was very limited. Although some studies attributed them with 

the dorsal pathway (Ramachandran et al. 1994, Goebel et al. 1998), many questions remain 

unclear, such as how the dorsal processing is involved and what their associated temporal 

relationships are.  

Seghier and his colleagues made an important observation (Seghier et al. 2000b). They 

identified the visual areas that involve the perception of moving Kanisza rectangles using 

fMRI. The experiment included two sets of moving Pac-Man patterns, a stimulation pattern 

and a reference pattern, where the stimulation pattern causes illusion and the reference 

pattern does not. Their collected data suggested that the dorsal visual area MT and area MST 

involve a mechanism that causes ventral visual area V1 and area V2 to see the moving 

rectangle. They concluded that area V1 response is more prominent to animated illusory 

contours than to static illusory contours (Delon-Martin et al. 2000, Seghier et al. 2000a). 

Possibly, they hypothesized that this motion-cued illusion is originated from recurrence of the 

higher-level dorsal areas. This conclusion differed from a previous study from (Larsson et al. 

1999), which suggested strong activation emerged from within area V1.  

In this section, we report our effort to repeat the moving Kanisza rectangle experiment 

conducted in (Seghier et al. 2000b). Our intention is to understand whether the proposed 

computation can simulate the biological process that causes the illusion. 
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4.2.1 Stimuli 

Visual stimuli include a set of 10 white Pac-Mans, placed in two vertical lines at a 

constant spatial distance. Each Pac-Man can rotate around its centre by 90° either in 

clockwise or counter-clockwise direction. In the stimulation pattern, four of the 10 Pac-Mans 

are arranged to create a static illusory Kanisza rectangle (Figure 4-5).  

In a moving illusory Kanisza rectangle experiment, the 10 Pac-Mans rotate following two 

sets of patterns: a stimulation pattern and a reference pattern. In the stimulation pattern, at 

each sample image, all Pac-Mans in the left column rotate clockwise by 90°, and all Pac-

Mans in the right column rotate counter-clockwise by 90°. In this way, the illusory Kanisza 

rectangle moves downwards (Figure 4-6). 

In the reference pattern, each Pac-Man is tilted by 45° (Figure 4-7). Otherwise, Pac-Mans 

move in the same way as in the simulation pattern. This set-up ensures that in all sampled 

images, the 10 Pac-Mans never show an illusory pattern: the stimuli disallow the perception 

of the illusory Kanisza rectangle. 

Note that in the reference pattern, there would be no chance for any illusory Kanisza 

rectangle to present. However, we are interested in investigating the model’s behaviour when 

a single illusory Kanisza rectangle presents at one sampled image but disappears in the next. 

Therefore, a third transient pattern is introduced. In this pattern, each Pac-Man rotates 45 

degrees for each sampled image (Figure 4-8). 
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Figure 4-5 An example of static illusory Kanisza rectangle. Experiments in the literature 

attributed the perception of the dark rectangle enclosed by the four Pac-Mans as a mechanism 

in the ventral pathway. 
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Figure 4-6 An example of moving illusory Kanisza rectangle. During the experiment, Pac-Mans 

rotate in a stimulation pattern, such that the dark rectangle moves downwards. 
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Figure 4-7 An example of moving Pac-Mans in the reference pattern. The Pac-Mans are tilted 

by 45 degrees. This setup ensures that throughout the experiment, no illusory Kanisza rectangle 

will be perceived. 
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Figure 4-8 A third rotation pattern, the transient pattern. Illusory Kanisza rectangle shows at 

one stage of the refresh and disappears in the next. 
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4.2.2 Procedure 

The proposed computation has been implemented using Matlab. The simulation is 

conducted on a Windows 7 PC. In (Seghier et al. 2000a), from the subject’s view, the illusory 

rectangle extends 2° horizontally by 1.7° vertically, and the rectangles were displayed 

symmetrically with respect to the vertical meridian of the two columns. The radius of each 

Pac-Man extends approximately 0.45°. Thus, the support ratio of contour (Shipley and 

Kellman 1992), which is the ratio of the total length of the borders, actually show to the 

perimeter of the rectangle, is 0.48. To make our experiment consistent, we used a similar 

ratio. Each Pac-Man has a diameter of 50 pixels. The distance between horizontally adjacent 

Pac-Mans (measured between the two Pac-Mans’ centre points) is 90 pixels, and the distance 

between vertically adjacent Pac-Mans is 75 pixels. 

4.2.3 Results 

In Seghier et al experiment, the authors identified two distinctive regions that may cause 

the illusory perception: visual areas V1/V2 and visual areas located far in the dorsal pathway 

(corresponding to visual area MT/MST). They noted that the stimulation pattern leads to 

strong activation to the illusory contour. Further, response in lower-level visual areas to the 

moving IC is stronger than that to the static IC. In our experiment, we have observed 

comparable results. 

In the static Kanisza illusory experiment, the dorsal pathway was “deactivated” due to 

lacks of motion information. Visual features of the Pac-Mans are solely computed in the 

ventral pathway. However, since the receptive field of area V1/V2 is relatively smaller than 

that of the higher-level ventral areas, it is unlikely that these regions perceive the illusory 
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rectangle. As shown in Figure 4-9, output representation of area V1/V2 extracts the fine 

details of Pac-Mans. Our modelled V1 representation provides a collection of edges that 

construct Pac-Mans. The modelled V2 representation further computes the curvature 

information and end-stopped information, such that it is capable of showing smoothed curves 

and highlights corners. However, both representations fail to echo the IC. We thus conclude 

that the perception of the illusory contour is unlikely to emerge by area V1 or area V2. 

Instead, it may be the result of higher-level ventral processing. 

In the moving Kanisza illusory experiment, the dorsal pathway responds to motion and 

sends results to modulate lower-level ventral areas. By the recurrent modulation, we 

observed strong activations in area V1 and area V2. However, the strong activations only 

show in the stimulation pattern, not in the reference pattern. Interestingly, the response to the 

transient pattern is weak, even if there is no illusory rectangle.  

Figure 4-10 illustrates the response of dorsal V1 neurons. Note that the dorsal V1 has a 

coarse spatial accuracy: the region lit around each Pac-Man is blurry. Although it reacts to 

motion, its output representation does not contain the moving illusory contour. This is 

because the receptive fields at this level are very small.  

Along the dorsal pathway, area MT integrates motion information from area V1 (Figure 4-

11). Although an MT neuron has a larger receptive field, it still cannot cover the complete 

illusory region. In contrast, area MST has a clear response to the illusory rectangle (Figure 4-

12). However, at this level, spatial information is lost. From the brightness, it is hard to 

localize or recognize the actual contour of the Pac-Mans. 

Figure 4-13 illustrates the early recurrent modulation between area MST and area V2. 

Immediately, since area MST has strong response to the illusory contour, in the modulated 
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V2 representation, curvatures of Pac-Mans defining the rectangle are much more brightened. 

We compared the modulated and the non-modulated V2 representations over the corners of 

each Pac-Man. In absence of modulation, the corner pixels of each Pac-Man are brighter. 

This is due to the V2 end-stopped cells responding strongly to the ending point of an edge. 

However, since MST neurons respond actively to the illusory region, recurrence from area 

MST plays a role that inhibits V2 to ending points within the region. We further hypothesized 

that a lack of ending points may facilitate higher-level ventral computation to close the 

missing contour.  

In the reference pattern experiment (Figure 4-7), no illusory rectangle presents at any 

sampled images. We observed no significant activations in area V2 during the whole process 

(Figure 4-14). Although the dorsal regions respond to motion, their responses remain 

localized. In the output representation of area MST, it is difficult to distinguish any region 

based on motion cues. In this case, the feedback representation has very limited impact on 

the ventral processing, which is consistent with the results reported in (Ffytche and Zeki 

1996, Seghier et al. 2000a).  

However, with the transient rotation pattern (Figure 4-8), we observed different results. As 

shown in Figure 4-15, the MST neurons respond to motion and perceive the illusory contour. 

However, activation to the illusory contour is weaker compared with that in the stimulation 

pattern. This may due to the distracting samples between the two illusory samples. The result 

of area MST feeds back to modulate area V2 processing. Note that in Figure 4-15, edges 

contributing to the illusory rectangle are brighter. Further, in the next sampled image where 

no illusory rectangle presents, the very same region remains active.  
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Figure 4-9 Ventral pathway output representations to static Pac-Man input. 
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Figure 4-10 Dorsal layers of area V1 responses to the moving Pac-Mans for the stimulation 

pattern. Brighter areas indicate neural responses to motion toward the four directions. 
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Figure 4-11 Area MT neural responses to the moving Pac-Mans for the stimulation pattern. 

Brighter areas indicate neural responses to motion toward the four directions. 
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Figure 4-12 Area MST neural responses to the moving Pac-Mans for the simulation pattern. 

Note there is a strong activation over the illusory contour region. 
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Figure 4-13 Non-modulated (left) and modulated (right) V2 representations for stimulation 

pattern. It clearly shows that early recurrence causes an activation over the illusory contour 

region in the modulated V2 representation. The result shown here is in agreement with (Seghier 

et al. 2000a). 
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Figure 4-14 Non-modulated (left) and modulated (right) V2 representations for with reference 

pattern. Since there is no illusory contour throughout the simulation, there is no significant 

activation in the modulated V2 representation. 
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Figure 4-15 Non-modulated and modulated V2 representations for the transient pattern. We 

show two refreshments: (r1) includes an illusory contour, and (r2) is without the illusory 

contour. In both cases, the contour regions have been activated, indicating that early recurrence 

may cause illusions even without illusion presence. 
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4.2.4 Conclusion 

To answer the question of what causes the perception of the moving illusory contour, it is 

important to analyze the phenomenon from a spatiotemporal perspective. On one hand, the 

spatial extent of the receptive field is important. It leads to the region in the visual system 

that is more likely to cause the illusion. On the other hand, the temporal correlation across 

multiple visual areas may provide insight into the temporal delays between the two visual 

pathways.  

In this regard, existing studies of illusory contours can be divided into two categories: 

those supporting the hypothesis that illusory contour perception is caused by localized-and-

lower-level mechanisms (Lesher and Mingolla 1993, Matthews and Welch 1997, Rajimehr 

2004), and those supporting global-and-higher-level mechanisms (Grill-Spector et al. 2001, 

Vuilleumier et al. 2001, Han et al. 2002).  

For the localized-and-lower-level mechanism, it is assumed that only the early visual areas 

(such as area V1 and area V2) are involved. Evidence from functional imaging and cell-

recording supports this mechanism (Seghier and Vuilleumier 2006). The cause of illusory 

contour perception is that the receptive fields of lower-level areas are small and 

retinotopically organized. Their functional properties may afford an efficient detection of 

local details. The local details include edge and contour, which provide a critical input for the 

generation of illusory contours. Further, because of this localized property, lateral 

information is very limited. The initial representation of edge and contour may thus be 

associated with illusory information, based on relative brightness and contrast information.  

The global-and-higher-level mechanism involves higher-level visual areas. Vision 

generated at higher-level visual areas covers a larger receptive field. At the top level, 
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representation of global scene structure becomes available. The higher-level representation 

may also involve experience, task or higher-level visual mechanisms. For example, a 

neuroimaging experiment (Grill-Spector et al. 2001) shows that the lateral occipital complex 

is a visual area that generates localized illusory contour representation based on its shape 

recognition results. Global information feeds back to the lower-level areas in V1/V2 to 

influence the figure-ground segregation. This reinjection of global information into lower-

level analysis may be important for the brain to see an illusory contour. 

Here, we believe that the temporal delay is an important factor to separate those two 

mechanisms. For the first mechanism, the initial representations of area V1 and area V2 are 

generated within the first 100 milliseconds after the stimuli onset (Lee and Nguyen 2001, 

Foxe and Simpson 2002). For the second mechanism, since the feedback comes from higher-

level visual regions, the perception of illusory contour should require a much longer time 

(Murray et al. 2002, Pegna et al. 2002). Based on this clue, in the current study, we propose 

that for moving Kanisza illusory rectangles, the cause is neither localized-and-lower-level 

mechanisms nor global-and-higher-level mechanisms. Instead, early recurrence is likely to be 

the real cause.  

4.3 Discussion 

The proposed recurrent computation manifests itself as a lower-level feedback process 

during a feed-forward sweep of visual information processing. The temporal delays between 

the dorsal and the ventral areas, and the availability of cross-pathway recurrent connections 

allow this early recurrent mechanism to be at play. In this work, we hypothesize that the 

recurrent operation between the dorsal area and the ventral area takes a form as multiplicative 
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inhibition. Early recurrence suppresses ventral processing. As such, only consistent visual 

features remain in higher-level ventral representations.  

At first glance, the proposed model shares many common characteristics with Hubel and 

Wiesel’s visual hierarchy. However, their model describes a feed-forward visual processing 

paradigm without considering the temporal latency between the two pathways. As more 

evidence supports the temporal dynamics during early visual processing and supports the 

diversified feature processing between the visual pathways, we investigated pathway 

interactions during a feed-forward swipe. A key motivation to the current work is to 

formalize how the visual hierarchy utilizes shortcuts between the dorsal pathway and the 

ventral pathway to facilitate ventral processing. In this sense, the current work does not stand 

opposed to Hubel and Wiesel’s idea. Rather, we have proposed a recurrent mechanism that 

takes place during the feed-forward processing.  

Early recurrence provides a mechanism to refine the ventral representation. We noticed 

that the refinement may be achieved by feed-forward selective mechanisms, such as H-max 

(Riesenhuber and Poggio 1999, Serre et al. 2007) and signal pooling (Barlow and Tripathy 

1997). Although the goal of H-max and signal pooling is to some degree similar to the 

proposed model, there is no concept of early recurrence in those models. In those works, 

winning features are selected based on intrinsic feed-forward analysis. In our view, early 

recurrence proceeds in a different way. The selectivity is achieved by surround suppression 

wherein the suppression comes from the dorsal pathway. Although the recurrent 

representation is based on feed-forward information, features computed in the dorsal and the 

ventral pathways are of different natures. For example, we have shown how to use motion 

information to facilitate object processing.  



 

 

171 

 

Alternatively, lower-level feature representation refinement may be performed via lateral 

suppression. The current work is not opposed to such idea. Early recurrence provides an 

additional approach to improve early visual representation. In future work, we may further 

investigate the property of early recurrence to distinguish it from lateral suppression.  

From a context facilitation perspective, early recurrence provides a mechanism to apply 

localized dorsal information to facilitate ventral processing. Based on the physiological 

properties of the dorsal pathway, the dorsal representation is a description of input: it catches 

the perceptually salient information but lacks spatial accuracy. On the other hand, the lower-

level ventral areas compute more detailed spatial variations, which are then constructed into 

edges, corners, curvatures, and shapes. Without a selective mechanism, information of target 

and background are mixed. When early recurrence presents, we propose that the dorsal 

representation is used to suppress the ventral processing of background features: ventral 

neurons correspondent to spatial locations not in favour of dorsal processing (non-salient 

regions) are inhibited. This modulation takes place at the very low level of the visual 

hierarchy, and thus the refinement is of the simplest form of visual features. In our 

experiment, we showed how edge representation is refined such that only target-related edges 

remain in the modulated representation.  

Following the proposed model, we further investigated its utility in computer vision. The 

scope of computer vision applications that may utilize the proposed mechanism is very 

broad. Most feature-based vision systems may take advantage of the proposed operation to 

improve their representations. Multiplicative inhibition is simple in definition and has low 

computational complexity.  

We will present two computer vision applications in the following chapters. These 
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applications utilize early recurrence to refine simple visual features, which are then used in 

higher-level modules for different purposes. The intention here is to demonstrate that 1) early 

recurrence is a promising technique to boost performance, and 2) the proposed operation is 

easy to implement to fit these applications. 
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Chapter 5. Impact of Early Recurrence on Visual 

Computation 

In the previous chapters, we have proposed the model of early recurrence with its 

associated computational components. By simulating two biological experiments, we showed 

that the proposed computation is consistent with biology. 

From this chapter, we report our efforts to apply the computation to improve computer 

vision systems. This chapter focuses on the topic of visual saliency and two related 

applications: background subtraction and scene recognition. 

5.1 Early Recurrence Improved Visual Saliency Representation 

Visual saliency is a subjective perceptual quality measurement. It is a representation to 

indicate how visual stimuli appear different from the rest of the visual field (Itti 2007). A 

classic usage of visual saliency is to detect region-of-interest. Detected (salient) regions 

facilitate the system with reduced search space and computational burden, which may 

ultimately improve the overall system performance. In this context, an optimal saliency 

representation picks all and only the content of interest. A sub-optimal saliency 

representation, on the other hand, may contain either false positives (regions that do not 

contain content of interest) or false negatives (content of interest that is not picked at all).  
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In this chapter, we first show that early recurrence can be used to improve different types 

of visual saliency representations. We then use background subtraction and scene recognition 

as examples to further show how the visual saliency representations can be used to boost 

practical system performance.  

In the literature of neuroscience, most studies attribute visual saliency as a lower-level 

representation based on simple features (Li 2002, Treue 2003). One of the theories holds that 

visual saliency is computed within the primary visual cortex (Li and Snowden 2006). Further, 

since visual saliency is closely related with object perception, it is commonly deemed as a 

mechanism in the ventral pathway (Treue 2003, Vanrullen 2003). 

Visual saliency is also related to the concept of visual attention (Koch and Ullman 1985). 

In a number of saliency-based attention models (Itti et al. 1998, Zhang et al. 2008, Bruce and 

Tsotsos 2009a), it is the driving factor that cues region-of-interest selection. 

In an early psychological study, visual saliency is described as a master map 

representation (Treisman and Gelade 1980b). The idea was originally proposed to determine 

attended locations. The theory states that visual information extracted via different visual 

pathways forms a centralized map. The intensity values on the map represent how important 

or salient a region is compared with its surrounding regions. Based on this master map 

representation, the region with the strongest intensity value is selected as the attended 

location. The process is analogous to a spotlight mechanism. This theory motivated a 

computational representation (Koch and Ullman 1985). In addition to the saliency map 

calculation, the model also includes winner-take-all algorithm to pick the most salient region 

(the winner) as the attended location.  

A further development (Itti et al. 1998) applies saliency information to predict eye 
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fixations. The core computation includes a feature extraction module and a winner-take-all 

module. Different filter-based techniques extract visual features such as intensity, colour, 

motion, and shape. Each extracted feature forms a feature map representation: an intensity 

image measuring the feature distribution. A saliency map is then computed based on 

weighted summation over all feature maps (Itti and Koch 2001). The winner-take-all module 

then selects the most prominent set of pixels as the attended region. Based on an experiment 

on human subjects, the authors concluded that the proposed computation is capable of 

predicting eye fixations. Bruce and Tsotsos studied visual saliency from an information 

theory perspective (Bruce and Tsotsos 2009a). In their model, visual saliency is measured as 

center-surround entropy, or self-information of a given image. Further, the authors proposed 

to construct feature maps using filters learned via independent component analysis (ICA).  

5.1.1 Rationale  

In Chapter 3, we proposed the core concept of early recurrence: to apply results of dorsal 

computation to refine early ventral processing. For the application of visual saliency, we 

hypothesize that the dorsal processing (on motion and coarse scale-spatial variation) has 

strong impacts on the saliency computation.  

Of course, we are not the first to include motion in the saliency representation. In (Koch 

and Ullman 1985) and its computational implementation (Itti et al. 1998), motion has already 

been used. However, the way they use motion is debatable.  

In Itti et al., the saliency map is constructed by combining all feature maps. During this 

process, motion is just one of the many features the model considers. The whole computation 

manifests itself as a feed-forward mechanism. Motion does not have the priority in 
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constructing the saliency map; and it is not used to modulate other feature representations. 

This simple approach seems to be effective. In a test case where an object has a simple 

motion pattern in front of stationary background, the target location will be easily picked up 

as the fixation. However, the performance will decrease if input becomes complicated. The 

saliency map will be heavily “polluted” by the intricate and scattered motion patterns. To 

solve this problem, there have been many attempts to improve the quality of the feature 

maps. For example, one can use more complicated motion filters, or even rely on learning 

algorithms, to correlate with the motion. However, this approach leads to increased 

computational costs, and does not fundamentally correct the behaviour. 

During our investigation, Bullier’s fast-brain hypothesis motivated us (Bullier 2001). The 

notions of fast dorsal processing and lower-level recurrent connectivity inspired us with an 

alternative approach: unlike Itti et al., we use motion and coarse-scale spatial variation as 

feedback representation to modulate the saliency computation.  

By comparing output of the modelled dorsal pathway with human-labelled ground truth, 

we observed that the dorsal representation has a marked correspondence with visual saliency. 

However, the representation lacks the spatial accuracy. At the same time, output of the 

modelled ventral pathway contains background, cluttered scene-parts, and image noise in 

details. By early recurrence, a substantial number of the non-salient pixels can be suppressed, 

leaving details of the salient target untouched. That is, via early recurrence, a spatially-

accurate yet perceptually-salient representation is computable.  

To investigate whether the proposed early recurrent operation fits the role, we applied our 

computations to several existing visual saliency models. We used real images and 

surveillance videos to verify our model. We used standard matrices to evaluate saliency 



 

 

177 

 

performance. To draw a quantitative conclusion, we include human fixation data to compute 

correlation between model output and biological observations.  

5.1.2 Experiment 

Following Chapter 3, we implemented a number of visual areas within the two main 

visual pathways. Implementation of the dorsal pathway includes the magnocellular layer of 

the LGN, the dorsal layers of area V1, and the middle temporal cortex (MT). Implementation 

of the ventral pathway includes the parvocellular layers of the LGN and the ventral layers of 

area V1.  

The recurrent computation further relies on the facts that: 1) the two visual pathways 

compute different visual features, 2) the pathways have different conduction speeds, with the 

dorsal pathway conducting signals faster than the ventral pathway, and 3) the network allows 

to use the dorsal representation to modulate the ventral processing. 

Figure 5-1 illustrates the visual hierarchy of the implemented model. We calculated two 

sets of visual features separately, corresponding to the dorsal features and the ventral 

features. They are defined using different spatiotemporal scales. Specifically, to be consistent 

with the neuroscience literature (Derrington et al. 1984), the dorsal pathway computes high-

temporal-low-spatial frequency scale features (i.e., coarse spatial variation and motion) and 

the ventral pathway computes low-temporal-high-spatial frequency scale features (i.e., fine 

pixel variation). Details of the computation are in Chapter 3.2.  
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Figure 5-1 Connections between dorsal and ventral pathways considered in this work. Grey 

blocks denote dorsal areas, and white blocks denote ventral areas. Lines denote connections, 

particularly the double arrow line denotes early recurrence from area MT to area V1. 
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The proposed computation has been implemented using Matlab. The simulation is 

conducted on a Windows 7 PC. The purpose of the evaluation is to determine whether early 

recurrence is generally applicable to boost existing saliency models. In our evaluation, we 

used three existing models (Itti et al. 1998, Zhang et al. 2008, Bruce and Tsotsos 2009a), 

which compute saliency from different perspectives. In particular, saliency in (Itti et al. 1998) 

is defined as strength of summed visual feature activations, while in the other two proposals 

(Zhang et al. 2008, Bruce and Tsotsos 2009a), visual saliency arises from measuring the self-

information (but in different manners) based on natural image statistics. In our comparison, 

saliency maps calculated by these original models provide us with a baseline for 

performance. It is important to note that the ventral computation concerned in the current 

model represents the conventional kind of feature processing seen in the three existing 

models. In our proposal, it is the modulated ventral representations, rather than their original 

versions, that generate the final saliency map. 

The proposed computation fits itself easily into the existing models by applying the 

recurrent representation to modulate feature processing. This is such that in the revised 

models, saliency representations are calculated based on the modulated feature maps. One 

can then evaluate to what extent early recurrence improves saliency performance over 

baseline scores. The implementations are tested with a set of cluttered images that were 

introduced in (Bruce and Tsotsos 2009a) to evaluate static stimuli and are also tested with a 

set of surveillance videos from YouTube to evaluate spatiotemporal stimuli. 

We measured saliency performance by the receiver operating characteristic (ROC) curve, 

which have been widely used in related work. For a given ground truth (𝐺) and a normalized 

saliency map (𝑆), by varying the threshold 𝛿 ∈ [0. .1], a smooth curve is generated as true 
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positive rate 𝐺(𝑥, 𝑦) ≥ 𝛿 and 𝑆(𝑥, 𝑦) ≥ 𝛿 versus false positive rate 𝐺(𝑥, 𝑦) ≤ 𝛿 and 

𝑆(𝑥, 𝑦) ≥ 𝛿, where (𝑥, 𝑦) gives a pixel’s coordinates. 

Figure 5-2 shows the improved saliency maps given static input images. Saliency maps 

produced by the original models and the modulated versions are paired in groups. Reddish 

pixels indicate salient regions. We see that as visual input becomes complicated, saliency 

calculated by the baseline models become less discriminative and less correlated with 

fixation density maps recorded on human subjects (Bruce and Tsotsos 2009a). 

We also see that the modulation leads to more similarities between object regions and 

reddish regions in the modulated saliency maps (right image of each pair) than those in the 

original saliency maps (left image of each pair). The main difference between a pair of 

saliency maps is that a substantial number of background pixels are suppressed in the 

modulated saliency maps. Although salient regions calculated by the three baseline models 

are different, in the modulated versions, salient regions are all confined to the recurrent 

representations, leaving the remaining regions mostly in blue (not salient). 

It is interesting to note that although early recurrence leads to improved saliency 

representations, the recurrent representations themselves are not always matching with the 

eye fixations. In our examples, the recurrent representation usually yields a coarse spatial 

scale description. This is consistent with our understanding that the dorsal representation is 

indeed lack of visual accuracy. However, the dorsal representation provides the desired 

context of surroundings. In a way, this context facilitates the ventral processing to respond to 

salient targets. 

Mean ROC curves have been generated based on human fixation densities (Bruce and 

Tsotsos 2009a). From the ROC plots of Figure 5-2, it is obvious that curves produced by the 
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modulated saliency maps (solid lines) augment their original versions (dashed lines) 

significantly. Areas under the curves are calculated. We see that the modulation increases the 

area for all three methods, which confirms that early recurrence is effective in improving 

these saliency measurements. 

Figure 5-3 illustrates improved saliency calculation for spatiotemporal inputs (videos). 

Test samples include videos from various viewing angles and under different illuminant 

conditions. Targets (i.e., vehicles and pedestrians) are manually labelled as ground truth for 

evaluation. We see that the recurrent representations in each test clearly highlight regions of 

moving stimuli, leaving stationary and cluttered scene parts suppressed. The improvement 

over the original saliency model is obvious when we compare the mean ROC curves (red 

lines versus blue lines). In this investigation, we also compared a reference model similar to 

(Bruce and Tsotsos 2009b), where saliency is computed using output of spatiotemporal filters 

(green lines). 

In conclusion, we conducted empirical and quantitative comparisons to study the 

facilitatory effect of early recurrence in saliency calculation. From the modulated saliency 

maps and the associated ROC curves, we concluded that early recurrence leads to significant 

improvements. 
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Figure 5-2 Comparison of saliency given static input images. Up part from left to right: original 

images, feedback strength elicited from the fast dorsal activation, visual saliency based on 

modulated ventral features and visual saliency based on non-modulated ventral features. 

Bottom part: associated ROC curves. 
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Figure 5-3 Use early spatiotemporal recurrence to improve visual saliency. Left: image from test 

videos. Middle: early recurrent representations that highlight regions consisting with moving 

objects. Right: Mean ROC curves of original (Bruce and Tsotsos 2009a) (blue), a spatiotemporal 

alternative (Bruce and Tsotsos 2009b) (green) and our current work (red). 
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5.2 Background Subtraction 

Background subtraction refers to a general process of improving signal response of a 

target by removing interference of background pixels. It is a fundamental task in various 

computer vision and image processing applications.  

Existing approaches attempt to solve background subtraction using methods from statistics 

(Cucchiara et al. 2003), density estimation (Lee 2005, Han et al. 2008), feature learning (Gao 

et al. 2008, Han and Davis 2012), etc.  

5.2.1 Rationale 

At first glance, the problem of background subtraction shares many similarities with the 

aforementioned visual saliency. We therefore hypothesized that visual saliency 

representations based on the modulated ventral representation may improve background 

subtraction performance. 

We borrowed the idea of early recurrent (ER) processing from the primate visual system. 

During feature extraction, center-surround (CS) inhibition utilizes lateral connectivity to 

suppress the response of neighbourhood activations (Figure 3-7). Further, it is possible that 

the dorsal information plays a role in suppressing the ventral computation via early 

recurrence. 

Inspired by the two types of inhibition, a computational model for unsupervised background 

subtraction is proposed (Figure 5-4). The model hypothesizes that the background of a 

dynamic scene can be eliminated in two steps. First, spatiotemporal features are computed by 

the modelled dorsal pathway. In this representation, activations of the foreground and 

background are mixed. By CS inhibition, a substantial portion of the background may be 
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suppressed, leading to a refined spatiotemporal representation containing perceptually salient 

foreground only. Second, the refined spatiotemporal representation is used to inhibit the fine-

scale spatial features computed by the modelled ventral pathway, such that foreground object 

features are accurately localized. In its most straightforward manner, ER inhibition is defined 

as pixel-wise multiplication.  

5.2.2 Experiment 

We investigated the effect of center-surround inhibition and early recurrent inhibition in 

subtracting background. We used real video sequences from (Gao et al. 2008), which have 

been widely used for background subtraction applications in the literature. 

The proposed computation has been implemented using Matlab. The simulation is 

conducted on a Windows 7 PC. The computation simulates the early recurrent processing 

between the dorsal and the ventral pathways of the primate visual system. The process can be 

described as: 

𝑅𝑖(𝑥, 𝑦) = 𝐻(𝐸𝑖
𝑉(𝑥, 𝑦) ∙ 𝐼𝑛ℎ𝑖

𝐸𝑅(𝑥, 𝑦)),     (5-1) 

where 𝑅𝑖(𝑥, 𝑦) denotes the output for features 𝑖. 𝐻(𝑠) = max (𝑠, 0) is a rectification function. 

𝐸𝑖
𝑉(𝑥, 𝑦) denotes energy of ventral (spatial). In many existing works, 𝐸𝑠

𝑉 is deemed as output 

representation. 𝐼𝑛ℎ𝑖
𝐸𝑅(𝑥, 𝑦)  denotes early recurrent inhibition between the dorsal pathway 

and the ventral pathway as: 

𝐼𝑛ℎ𝑖
𝐸𝑅(𝑥, 𝑦) = 𝐻(𝐸𝑖

𝐷(𝑥, 𝑦) − 𝛼 ∙ 𝐼𝑛ℎ𝑖
𝐶𝑆(𝑥, 𝑦)),    (5-2) 

where 𝐸𝑖
𝐷(𝑥, 𝑦) denotes energy of dorsal (spatiotemporal) features. 𝐼𝑛ℎ𝑖

𝐶𝑆(𝑥, 𝑦) denotes CS 

inhibition, and 𝛼 is a constant that weights the CS inhibition. 
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Figure 5-4 The proposed model of background subtraction using Tempete video sequence (a). 

Background of dynamic scene can be eliminated in two steps. 1) Spatiotemporal features are 

computed by the modelled dorsal pathway (b). By CS inhibition, background pixels are 

suppressed, leading to a refined representation containing only foreground pixels (d). 2) The 

refined representation inhibits the fine-scale spatial features computed by the modelled ventral 

pathway (c), leading to the final output representation (e). 
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Formalization of ventral features 𝐸𝑖
𝑉(𝑥, 𝑦), dorsal features 𝐸𝑖

𝐷(𝑥, 𝑦) are as proposed in 

Chapter 3.2. CS inhibition 𝐼𝑛ℎ𝑖
𝐶𝑆(𝑥, 𝑦), and ER inhibition 𝐼𝑛ℎ𝑖

𝐸𝑅(𝑥, 𝑦) are discussed in the 

rest of this section. 

Center-surround inhibition weighting 

The center-surround inhibition, 𝐼𝑛ℎ𝑖
𝐶𝑆 is defined in an anisotropic manner to self-inhibit 

the dorsal representation. The process is formalized as a convolution of dorsal energy 

𝐸𝑖
𝐷 with a weighting function, which is defined as: 

𝐼𝑛ℎ𝜃
𝐶𝑆(𝑥, 𝑦) = 𝐸𝜃

𝐷(𝑥, 𝑦) ∗  𝜔𝜃
𝐷(𝑥, 𝑦),    (5-3) 

𝜔𝜃
𝐷(𝑥, 𝑦) =

𝐻(𝐷𝑜𝐺𝜎(𝑥,𝑦))

‖𝐻(𝐷𝑜𝐺𝜎(𝑥,𝑦))‖1
,     (5-4) 

where 𝐷𝑜𝐺𝜎(𝑥, 𝑦) denotes the centre-surround strength, and ‖. ‖1denotes the L1 norm. 𝜎𝑐  is 

the center bandwidth, and 𝜎𝑠 denotes the surround bandwidth. We set 𝜎𝑠 = 4𝜎𝑐 following 

(Kaplan et al. 1979, Einevoll and Plesser 2012).  

The result of CS inhibition is a refined dorsal representation that perceptually catches the 

foreground, as shown in Figure 5-4 (d). Due to its low-spatial frequency response profile, this 

representation lacks spatial-accuracy. 

Figure 5-5 illustrates the effect of CS inhibition with different 𝛼 values. The first row 

represents the overall inhibition from the dorsal pathway 𝐼𝑛ℎ𝑖
𝐸𝑅(𝑥, 𝑦), and the second row 

shows the inhibited ventral features. When 𝛼 increases, background pixels (wallpaper and 

calendar) fade out gradually, and foreground pixels (ball and train) remain mostly untouched. 

If 𝛼 continues increasing, the foreground will also be suppressed. We noticed 

𝐼𝑛ℎ𝑖
𝐸𝑅(𝑥, 𝑦) covers target regions that are perceptually salient. However, compared with the 

ventral representation, 𝐼𝑛ℎ𝑖
𝐸𝑅(𝑥, 𝑦) is relatively coarse.  
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Figure 5-5 Centre-surround inhibition weighting parameter α. Motion patterns included in the 

input: camera motion (leftward), calendar motion (upward), ball motion (leftward) and train 

motion (leftward). 
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Figure 5-6 Saliency representation computed by AIM. For each sequence, figures in clock-wise 

order: input, ground truth, original AIM saliency, AIM+ER, and AIM+ER+CS. Also shown are 

the mean ROC curves over all frames for each sequence. The area under each curve is 

displayed in the bracket of the legend. 
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To quantitatively evaluate the effect of background subtraction, output is attached to a 

state-of-the-art saliency model, AIM (Bruce and Tsotsos 2009a) to compute visual saliency. 

The goal is to determine whether the feature maps refined by 𝐼𝑛ℎ𝐸𝑅(𝑥, 𝑦)  lead to improved 

saliency representations. It is thus natural to deem AIM based on original feature maps to 

provide baseline performance. 

Real scene sequences (with ground truth) from (Gao et al. 2008) are used. This dataset 

contains different types of figure-background and spatiotemporal variations. It has been 

widely used in related background subtraction studies.  

Figure 5-6 compares different saliency representations. The right column of each video 

illustrates saliency maps from top to bottom: based on original features (AIM), based on 

features modulated by ER inhibition only (AIM+ER), and based on features modulated by 

both CS and ER inhibitions (AIM+ER+CS). High intensity values indicate high saliency. We 

see that there are more similarities between the ground truth (top-middle drawing) and the 

salient regions computed by AIM+ER+CS. 

Saliency performance is measured by ROC curves over all frames for each sequence. 

Given the ground truth, the ROC curve is defined as true positive rate versus false positive 

rate. It is clearly shown in Figure 5-6 that the curves generated by AIM+ER+CS augment the 

other two algorithms significantly. Area under curve (AUC) is calculated. ER+CS inhibitions 

raise AUC in most tests, which further confirm that early recurrence is a generally effective 

method in background subtraction. 

In conclusion, we proposed a novel approach of unsupervised background subtraction for 

dynamic scenes. The model is inspired by the early recurrent processing of the primate visual 

system. In this model, representation computed by the dorsal pathway is perceptually 
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consistent with foreground. Representation computed by the ventral pathway, on the other 

hand, is a spatially accurate description of mixed foreground and background variations. The 

model includes two types of inhibition, the center-surround inhibition and the early recurrent 

inhibition. They improve the ventral representation by inhibiting responses to background 

pixels. Using a saliency model, we quantitatively evaluated the subtraction performance. 

Results using real scenes clearly indicate that the proposed work is a generally applicable 

process.  

5.3 Fast Scene Recognition 

In view of the enhanced saliency representation, we further hypothesize that early 

recurrence is useful for scene recognition. To test this idea, we applied the modulated ventral 

representation to a back-propagation neural network as a scene classifier. Video clips 

introduced in (Siagian and Itti 2007) were used for our test. They include a variety of 

cluttered scenes and have been widely used in the same type of applications. These clips 

were recorded using a hand-held camera (see Figure 5-7). We wanted to examine how 

spatiotemporal information extracted by the dorsal representation may influence the overall 

scene recognition performance. Furthermore, two other recognition systems were used for 

comparison. They represent different feed-forward recognition strategies. 

We employed a straightforward machine vision strategy for recognition. A holistic 

representation (ER) is implemented following (Siagian and Itti 2007). Visual features 

corresponding to the two visual pathways are computed. Specifically, the dorsal 

representation describes camera motions and coarse scene arrangements. In our 

implementation, there are 12 dorsal feature maps, representing 12 moving directions (with 30 
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degree intervals). The ventral representation catches content details. There are 12 ventral 

feature maps, representing 12 spatial orientations (with 30 degree intervals). Via early 

recurrence, the ventral feature maps are modulated. To construct a holistic representation, 

each modulated ventral feature representation is cut into 5-by-5 non-overlapping blocks. The 

average intensity value of each block is calculated. We then transformed these values into a 

feature vector representation by ordering them from left to right and from top to bottom. 

Thus, each feature vector has 25 elements. Finally, vectors of the ventral features are 

concatenated to form the holistic vector representation, which is then sent to the recognition 

network. 

The other two systems use the same filters to compute visual features, but they employ 

different strategies to construct the holistic representation. The first one (SI) represents the 

feed-forward strategy introduced in (Siagian and Itti 2007), where the holistic representation 

is based on the non-modulated ventral features. We introduced a second feed-forward 

strategy as the benchmark system (BM), which builds the holistic representation by the 

stacking of dorsal features and ventral features. The reason for introducing the benchmark 

system is that it represents another way to handle motion features, similar to the dynamic 

reference in Section 5.1 (Bruce and Tsotsos 2009b). Thus, ER and SI both include 12 features 

in the holistic representation, while BM includes 24 features. The length of vector in the 

holistic representation for ER and SI is 5 × 5 × 12 = 300, and it is 5 × 5 × 24 = 600 for 

BM. 

As shown in Figure 5-8, test sequences include 3 scenarios of a university campus, 

“ACB”, “AnFpark” and “FDFpark”. Each scenario includes 9 different scenes, with each 

scene under varied illuminating conditions. In our experiment, six clips of each scene were 
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used to train the network, with the remaining four clips used to test performance. 

We applied the same one-hidden-layer back-propagation neural network in all systems. To 

further simplify the computation and allow all the learning networks to have the same 

number of input nodes, we reduced the vector length of the holistic representation to 80 using 

principal component analysis available in (Hyvarinen 1999). Therefore, the input layer of the 

network includes 80 nodes. The output layer contains 9 nodes, with each corresponding to a 

scene within a scenario. The neural network contains one hidden layer of 100 nodes. For fair 

comparisons and to exclude the performance gain introduced outside the proposed fast 

recurrent modulation, all tests use the same set of network parameters.  

The proposed computation has been implemented using Matlab. The simulation is 

conducted on a Windows 7 PC. Table 5-1 provides a quantitative comparison of performance 

achieved by the three systems to correctly recognize a scene, as per scenario. Performance is 

measured by recognition correctness, the ratio between the number of true positives and the 

number of all test samples. We see from the table that ER outperforms the other two systems 

for all scenarios. The empirical conclusion drawn in the previous section that early recurrent 

modulation is able to provide a better figure-ground segmentation to facilitate object 

recognition is confirmed in this quantitative study. 
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Figure 5-7 Test sequences in (Siagian and Itti 2007). From left to right: ACB, AnFpark and 

FDFPark. 
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Table 5-1 Comparison of recognition performance. The percentage indicates the correctness 

rate, which is computed as the number of correctly recognized scenes divided by number of 

total test scenes. The proposed method consistently outperforms Siagian and Itti’s method and 

the benchmark system. 

Scene Siagian and Itti (SI)  Early Recurrence (ER) Benchmark System (BM) 

ACB 90.43% 93.84% 91.25% 

AnFpark 90.62% 91.45% 91.22% 

FDFpark 90.26% 93.16% 92.41% 
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5.4 Discussion 

In this chapter, we applied the model of early recurrence to improve visual saliency. In its 

most simplified form, the model applies results computed by higher-level dorsal areas to 

inhibit the computation of lower-level ventral areas, such that it is the modulated ventral 

representation that is used to construct the saliency map. 

The proposed model uses localized content influence. This is different from the existing 

models involving scene Gist (Oliva 2005, Oliva and Torralba 2007) in many ways. Although 

both models are proposed with the goal of having contextual representation affect object 

processing, their motivations and biological foundations are rudimentarily different. The 

focus of Oliva and colleagues is to use context to prime the input image with regions that are 

most likely to contain targets. Such a process is based on a model involving a contextual 

prior that learns target features and locations from experience. Contextual representation in 

this proposal captures the characteristics of visual inputs in a direct format that reflects the 

function of the neurons. In this manner, our model allows multiple contextual representations 

that correspond to different types of neurons in the dorsal pathway. Second, although both 

context models are integrated to impact image saliency, our model works on saliency 

improvement only to demonstrate its usability. Contextual representations may be of a variety 

of different natures and are computed independently from any specific saliency algorithm. In 

general, the existing approach follows a “whole scene” paradigm. Ours, on the other hand, is 

a multi-scale, image-based approach. The computation formalized in our model is consistent 

with biological vision that different features are computed with different speeds in the early 

visual system and hence can positively affect one another through fast recurrent connections. 
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Chapter 6. Impact of Early Recurrence on Contour 

Representation 

Edge detection is a basic yet challenging component in various image analysis and 

computer vision applications. Numerous edge detection algorithms have been proposed in the 

past decades (Marr and Hildreth 1980, Canny 1986, Mehrotra et al. 1992, Thune et al. 1997, 

Grigorescu et al. 2003, Ren 2008). These models deal with the problem from a number of 

approaches, such as image filtering, statistical analysis, and machine learning. However, the 

problem of edge detection remains only partially solved. Most of these models extract 

reliable edges given simple input (without much scattered content or image noise), but 

merely effective in complicate scenarios.  

Perhaps the most difficult requirement of edge detection is how to localize real edges 

accurately while excluding distracting pixels (fake edges) caused by image noise and fine 

texture. For filter-based edge detection algorithms, two factors determine the performance: 

filter design and discrimination method. A good filter is sensitive to edge (pixel intensity 

discontinuity) with accurate localization. However, the side effect is that false edges may also 

emerge in the computed edge representation. This situation then requires a decision-making 

method to discriminate real edges from false edges. In this direction, statistical analysis 

(Thune et al. 1997), multi-scale analysis and machine learning (Ren 2008) techniques have 
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been investigated to train the model to be more sensitive to real edges. However, learning 

methods have the disadvantage of over-fitting where a trained model may favourably predict 

real edges given similar-to-training images, but drastically lose predictability given new or 

unseen inputs.  

6.1 Early Recurrence Improved Edge Representation 

Inspired by the biological vision, a number of edge detection models have been proposed 

to make use of a non-classical receptive field (RF) to facilitate edge detection. In (Grigorescu 

et al. 2003), the center-surround mechanism observed in visual area V1 is modelled. The 

mechanism manifests itself as self-inhibition that suppresses edge segments surrounding the 

center RF (see Figure 3-7 left drawing). The authors formalized two types of self-inhibition, 

isotropic inhibition (all responses outside the center RF are suppressed in an equal way, 

independently of their preferred orientations) and anisotropic inhibition (only responses 

obtained for the same preferred orientation as a central response are suppressed). 

Experiments using real images confirmed that self-inhibition indeed improves edge 

detection.  

The essence of the center-surround inhibition is that via lateral connections the center 

response suppresses distracting pixels in the surrounding region. If both center and surround 

regions share similar pixel values, it is then unlikely that the center region includes an edge. 

On the other hand, if there is strong center-surround difference, then the center region is 

likely to be on an edge, or at least contains content that is different from its surroundings. In 

the mathematical formulation, the inhibition boosts contrast, which relatively increases the 

center pixel values in the edge representation. Therefore in the final edge map, stronger pixel 
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values more likely posit real edges. 

However, each center-surround filter has a preferred spatial scale. The actual performance 

is thus highly dependent on the spatial scale of the filter. Although self-inhibition has been 

extended with a multi-scale analysis (Papari et al. 2007), it is noted and will be shown in the 

our experiment that in complicated scenes where targets are at different spatial scales, output 

contours are inconsistent. Another disadvantage of this center-surround mechanism is that the 

surrounding region is circular shaped. If there is a real edge in the surrounding region, then 

its pixels values associated with the real edge are suppressed together with distractors, 

leading to false negatives. 

Self-inhibition has been recently revisited with a refined center-surround inhibition 

scheme (Zeng et al. 2011). Instead of the circular-shaped region, a butterfly-shaped region is 

proposed. It consists of two adaptive inhibitory end-regions and two non-adaptive inhibitory 

side-regions. This region performs better than (Grigorescu et al. 2003) in preserving real 

edges. However, the filter is mathematically difficult to derive, making it unlikely to fit into a 

real vision system. Further, the biological underpinning to such butterfly-shaped self-

inhibition region is unclear.  

In this work, we proposed to use early recurrent inhibition, in addition to self-inhibition, to 

improve edge calculation. Motivated by the fast-brain hypothesis, we computationally 

formalized the early recurrent processing. The computation simulates the recurrent operation 

from the dorsal area MT to the ventral layers of visual area V1 (ventral V1). An important 

physiological difference between area MT and ventral V1 is that they respond to different 

spatiotemporal image features. Relatively, neurons in area MT are more sensitive to coarse-

level spatial information, which contains a brief content description. Neurons in the ventral 



 

 

200 

 

V1 respond actively to fine spatial variations, which correspond to edges and textures. 

Therefore, the essence of the early recurrent operation is that edges and textures are 

suppressed by the brief content description. As we showed in the previous chapter, the dorsal 

representation has a marked correspondence to image saliency although lacks spatial 

accuracy. In this way, the dorsal representation informs the ventral processing with regions 

that are likely to contain objects of interest. By the modulation, edges and textures that do not 

consistent with the dorsal representation will be inhibited, leading to improved edge 

representation. 

It is proposed that the early recurrent inhibition is a weighted multiplication operation. 

The right figure of Figure 3-7 visualizes the idea of the spatial region surrounding the ventral 

neuron. Compared with self-inhibitions (left and middle figure of Figure 3-7), the shape of 

the surrounding region of early recurrence depends on the dorsal neurons.  

In Chapter 3, we sketched three early recurrent inhibition patterns. In edge detection, we 

implemented two of them, the isotropic inhibition and the anisotropic inhibition. Similar to 

the concept presented in (Grigorescu et al. 2003), the isotropic inhibition causes ventral 

responses to be inhibited by the summation of dorsal responses to all orientations in an equal 

manner. The anisotropic inhibition suppresses ventral V1 responses to a preferred orientation 

by MT responses to the same orientation. 

Our proposal is consistent with the scale-space theory (Witkin 1983) and suggests that 

early recurrence could play a role in enforcing consistency of image structure across scales. 

In our model, we implemented a strategy that computes the dorsal representation using the 

interval-tree technique proposed in (Witkin 1983). In the scale-space, the algorithm 

calculates a coarse-scale representation by searching for the local maximum stability 
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covering. The covering highlights a marked correspondence between the stability of an 

object’s contour and its perceptual salience. Fine-scale representation, on the other hand, is a 

highly-spatially accurate edge map. By inhibiting the fine-scale edge map with the coarse-

scale representation, a substantial number of false edges caused by image noise and texture 

variations may be removed; leaving real edges in line with coarse-scale representation 

remain. 

To investigate the impact of early recurrence, we used refined edge representations 

generated by the two inhibition methods as inputs to a contour operator used in (Grigorescu 

et al. 2003). Using real images, we quantitatively compared contours calculated by our work 

with the contour detector proposed in (Grigorescu et al. 2003). Note that method in 

(Grigorescu et al. 2003) is also a biologically motivated model. In order to compare our 

model with non-biologically motivated works, in another experiment, we applied early 

recurrence to boost existing contour extraction models. Results from both experiments 

clearly demonstrate that early recurrence has a positive and consistent impact on contour 

detection. Further, we showed that coarse edge representation calculated via scale-space 

analysis achieves the best performance. 

6.2 Implementation 

We modelled the two visual pathways to compute different edges. Since the two pathways 

start from area V1, we used the term ventral V1 (V1v) and dorsal V1 (V1d) to refer to layers 

in area V1 that are abstractly associated with the two pathways. Specifically, V1v computes 

fine-scale edges and projects results to higher-level ventral areas to compute object contours. 

V1d is sensitive to coarse-scale edges and sends output to area MT for further integration. 
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Feed-forward formalization of each component has been derived based on Chapter 3.2.  

The result of area MT is sent back to modulate V1v computation (Figure 6-1 left 

drawing). The modulated V1v representation is further inhibited by the center-surround self-

inhibition (Grigorescu et al. 2003). The whole process is defined as: 

𝑅𝑉1𝑣(𝑥, 𝑦) = 𝐻(𝐸𝑉1𝑣(𝑥, 𝑦) ∙ 𝐼𝑛ℎ𝑒𝑟
𝑀𝑇(𝑥, 𝑦) − 𝛼𝐼𝑛ℎ𝑐𝑠

𝑉1𝑣(𝑥, 𝑦)),   (6-1) 

where 𝑅𝑉1𝑣 denotes modulated V1v representation. 𝐻(𝑠) = max (𝑠, 0) is a half-wave 

rectification function. 𝐸𝑉1𝑣 denotes V1v responses to feed-forward image stimuli. 𝐼𝑛ℎ𝑒𝑟
𝑀𝑇  is 

the early recurrent inhibition generated from area MT. 𝐼𝑛ℎ𝑐𝑠
𝑉1𝑣 denotes the center-surround 

self-inhibition, and 𝛼 is a weighting factor. Figure 6-1 shows the overall structure of the 

proposed model. 

We proposed 𝐼𝑛ℎ𝑒𝑟
𝑀𝑇 inhibits V1v via multiplication. Further, 𝐼𝑛ℎ𝑐𝑠

𝑉1𝑣 is defined as 

isotropic non-classical RF inhibition (Grigorescu et al. 2003). Note that although self-

inhibition is generated within area V1v, the temporal aspects of the asynchronous signal 

projection properties between the dorsal and the ventral pathways make it possible that the 

recurrent inhibition from area MT impacts ventral V1v prior to its self-inhibition (see the 

temporal requirement study in Chapter 3.1). 

To simplify the work, the 3-dimensional scale-space is separated into two 2-dimensional 

scenarios, 𝑥 − 𝑞 and 𝑦 − 𝑞. They are analyzed separately. To reduce computation, only two 

gradients of Gaussian (0° and 90°) are used. They are defined as: 

∇𝑥𝑔𝑀𝑇(𝑥, 𝑦, 𝜎𝑔𝑥) = (−
𝑥

𝜋𝜎𝑔𝑥
2 ) 𝑒−(𝑥2+𝑟2𝑦2)/(2𝜎𝑔𝑥

2 ),   (6-2) 

∇𝑦𝑔𝑀𝑇(𝑥, 𝑦, 𝜎𝑔𝑦) = (−
𝑥

𝜋𝜎𝑔𝑦
2 ) 𝑒−(𝑥2+𝑟2𝑦2)/(2𝜎𝑔𝑦

2 ),   (6-3) 
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Figure 6-1 General structure of the proposed model. Left: simplified biological hierarchy and 

connections. The double arrow line from MT to V1v denotes early recurrence. Right: an 

example of using the proposed computational model to compute object contours. 
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To simplify the work, the 3-dimensional scale-space is separated into two 2-dimensional 

scenarios, 𝑥 − 𝑞 and 𝑦 − 𝑞. They are analyzed separately. To reduce computation, only two 

gradients of Gaussian (0° and 90°) are used. They are defined as: 

By increasing 𝜎𝑔𝑥 and 𝜎𝑔𝑦, scale-space representations 𝑥 − 𝑞 and 𝑦 − 𝑞 are constructed 

respectively. As shown in Figure 6-2, given a 𝑥 − 𝑞 representation, an interval-tree is built. It 

is observed that scales of real object contours have a marked correspondence with stability 

(vertical axis) in the scale-space. Therefore, the algorithm searches for a covering of the 

space (a set of gray blocks), which includes the most stable blocks across all intervals 

(horizontal axis). Here, stability is indicated by the scale spans. It is such that the larger the 

scale in each block, the more stable that scale. The algorithm then selects the largest scale 

𝜎̂𝑔𝑥 that crosses the most stable blocks in the covering as the output scale at each spatial 

location, and the output of MT of 0° is formalized as: 

𝑟𝑀𝑇(𝑥, 𝑦, 0) =  ∇𝑥𝑔𝑀𝑇(𝑥, 𝑦, 𝜎̂𝑔𝑥),     (6-4) 

The same operation also applies to the 𝑦 − 𝑞 space. 

Early Recurrence 

We proposed that the early recurrent inhibition between area MT and ventral V1 can be 

represented as a weighted multiplicative process. The inhibition representation is defined as: 

𝐼𝑛ℎ𝑒𝑟
𝑀𝑇(𝑥, 𝑦, 0) =

∑ 𝜔(𝛿,𝜃)𝑟𝑀𝑇(𝑥,𝑦,𝜃)𝛿∈∆

‖∑ 𝜔(𝛿,𝜃)𝑟𝑀𝑇(𝑥,𝑦,𝜃)𝛿∈∆ ‖
1

,    (6-5) 

where 𝜔(𝛿, 𝜃) is the weighting factor, denoting the strength of connection between MT 

neuron of orientation 𝛿 and ventral V1 neuron of orientation 𝜃. Σ denotes the summation of 

MT neurons for all orientations 𝛿 ∈ ∆. ‖. ‖1 is the L1 norm. By setting 𝜔(𝛿, 𝜃), two special 

types of early recurrent inhibition scheme are derived and investigated separately. 
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Figure 6-2 Scale-Space Analysis. Given an input image, the scale-space representation is 

computed coarse-to-fine. To simplify the work, the three-dimensional scale-space x-y-q is 

separated into x-q and y-q respectively. An interval tree is built following (Witkin 1983), based 

on which the best coarse-scale representation is determined via searching for a covering of the 

space (gray blocks). 
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R1. Isotropic inhibition causes fine-scale edges of an orientation to be inhibited by MT 

with all orientations in an equal manner. To do this, we fixed 𝜔(𝛿, 𝜃) = 1 for all orientations. 

The isotropic representation is a summation of MT. It highlights regions corresponding to 

low spatial frequency variations to all orientations and is insensitive to variations caused by 

high spatial frequency stimuli (i.e., noise and textures). 

R2. Anisotropic inhibition suppresses fine-scale edges to by MT responses of the same 

orientation: 

𝜔(𝛿, 𝜃) = {
1, 𝑖𝑓 𝛿 = 𝜃    
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

,     (6-6) 

Each MT representation contains information of low-spatial frequency variations to only 

one orientation. It then modulates V1 responses to the same orientation. 

Center-Surround Self-inhibition 

Center-surround isotropic self-inhibition, 𝐼𝑛ℎ𝑐𝑠
𝑉1𝑣(𝑥, 𝑦) is formalized following [1] as a 

convolution of the maximum energy map ÊV1(x, y) with a weighting function as: 

𝐼𝑛ℎ𝑐𝑠
𝑉1𝑣(𝑥, 𝑦) = 𝐸̂𝑉1(𝑥, 𝑦) ∗ 𝜔𝑉1𝑣(𝑥, 𝑦),     (6-7) 

where the maximum energy map is calculated by finding the maximized filter responses 

among N orientations.: 

𝐸̂𝑉1(𝑥, 𝑦) = max{𝐸𝑉1(𝑥, 𝑦, 𝜃𝑖) | 𝑖 = 1. . 𝑁},     (6-8) 

And the weighting function is defined as a Difference of Gaussian function: 

𝜔𝑉1𝑣(𝑥, 𝑦) =
𝐻(𝐷𝑜𝐺(𝑥,𝑦))

‖𝐻(𝐷𝑜𝐺(𝑥,𝑦))‖1
,      (6-9) 
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6.3 Experiment 

The proposed computation has been implemented using Matlab. The simulation is 

conducted on a Windows 7 PC. We implemented the proposed model in three forms: (fI) 

isotropic inhibition based on single-scale recurrence, (fA) anisotropic inhibition based on 

single-scale recurrence, and (ssI) isotropic inhibition based on scale-space recurrence.  

A dataset of 40 images with ground truth contours are used for evaluation. This dataset has 

been widely used in the literature of contour detection. Although there are other datasets for 

edge detection, images presented in the selected one cover a broad range of spatial frequency 

variations, different types of textures, and different types of artifacts. 

In the first experiment, we compared our model with the self-inhibition edge detector 

(Grigorescu et al. 2003). For this purpose, their method of isotropic center-surround self-

inhibition (S) has been implemented. Detected contours are compared against ground-truth 

contours. For a given ground truth map (𝐺) and a detected contour map (𝐷), true positive 

(𝑇𝑃) pixels, false positive (𝐹𝑃) pixels, and false negative (𝐹𝑁) pixels are those marked. The 

performance measurement introduced in (Grigorescu et al. 2003) is employed. The three 

criteria are specified as follows: 

1) False Positive Rate: 

𝑒𝐹𝑃 =  
𝑐𝑎𝑟𝑑(𝐹𝑃)

𝑐𝑎𝑟𝑑(𝐷)
,      (6-10) 

2) False Negative Rate:  

𝑒𝐹𝑁 =  
𝑐𝑎𝑟𝑑(𝐹𝑁)

𝑐𝑎𝑟𝑑(𝐺)
,      (6-11) 

3) Performance score:  

𝑃 =  
𝑐𝑎𝑟𝑑(𝐷)

𝑐𝑎𝑟𝑑(𝐷)+𝑐𝑎𝑟𝑑(𝐹𝑃)+𝑐𝑎𝑟𝑑(𝐹𝑁)
,     (6-12) 
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where 𝑐𝑎𝑟𝑑(𝑠) denotes number of elements in set 𝑠. A lower score of 𝑒𝐹𝑃 represents a better 

suppression of false edges, while a lower score of 𝑒𝐹𝑁 denotes a better preservation of true 

edges. A higher overall score 𝑃 corresponds to a better overall performance. Each edge 

detector is tested with different combinations of parameters to investigate performance. 

Figure 6-3 compares the best contours of four selected images. These images contain 

objects of different types. For example, gnu contains multiple objects of different scales. rino 

and elephant_2 include single object with rigid contours, and the background consists of 

high-frequency edges. The target in bear has hairy contours. From the comparisons of 

contour continuity, edge detail and background texture inhibition, it is clear that the contour 

maps computed by the proposed detectors achieve better performance than method from 

(Grigorescu et al. 2003). Contours generated by ssI are in the best agreement with ground 

truth. 

Table 6-1 lists parameters used that lead to the best performance for images shown in 

Figure 6-3. It also summaries the false positive rate and false negative rate associated with 

the best performance scores.  

Our proposed methods surpass the competitor in most performance measurements. The 

enhancements over self-inhibition detector can be as much as 167%. The proposed isotropic 

inhibition achieves the lowest false positive rate, indicating a better suppression of false 

edges. The proposed anisotropic inhibition has the lowest false negative rate, which further 

confirms it with a superior ability to retain real object contours. The best ratio between coarse 

level and fine level varies for different test images. Coarse-scale representation in ssI 

automatically selected by scale-space analysis achieves the most robust performance in all 

cases. In some cases, the best performance is achieved without self-inhibition. 
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Using box-and-whisker plots, Figure 6-4 illustrates the P scores. Note that the best 

performance (top bar) and median performance (red line in box) of the proposed three 

detectors are consistently higher than S. Due to the single coarse scale, early recurrent 

inhibition of fA and fI are not as stable as ssI that is based on scale-space analysis. ssI 

detector does not perform the best in all tests. We suspect this is caused by using gradient of 

Gaussian, where only horizontal and vertical orientations are considered, as opposed to other 

filters, e.g., Gabor filter. 

To further investigate whether the proposed early recurrent model is a generally applicable 

process, we incorporated the scale-space analysis version of recurrent representation into two 

popular edge detectors. In particular, Canny edge detector (Canny 1986) is chosen because it 

is currently the most widely used edge detector, and the multi-scale Brightness/Texture 

Gradients (BTG) detector proposed in (Martin et al. 2004) is selected because it represents 

the state-of-the-art. Although Malik and his colleagues have extended the work (Ren 2008, 

Arbelaez et al. 2011), the goals of these were from learning perspectives to detect contours, 

and thus they do not relate to the current purpose. We use the original model implementations 

to provide baseline performance. The proposed recurrent operation fits itself into these 

models easily by modulating the original edge responses. One can then evaluate the effects of 

early recurrence by comparing results using modulated edge responses and using the original 

edge responses. 
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Figure 6-3 Contours comparison from top to bottom, input image, ground truth, computed 

contours by (Grigorescu et al. 2003) and scale-space analysis ssI. 
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Table 6-1 Experiment parameters and performance for the images presented in Figure 6-3. Last 

row highlights P score improvements over (Grigorescu et al. 2003). 
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Figure 6-4 Box-and-whistler plot of all images. The proposed detectors outperform S in most 

cases, with ssI provideing the most reliable contours. 
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We tested these methods using the same dataset (Figure 6-5). Modulated by early 

recurrence, edges detected by both methods are more focused on the real contours, leading to 

much more cleaned edge representations. ROC curves and precision-recall curves are 

generated based on ground truth.From the comparison, we observed that curves produced 

from the modulated edges augment the original detectors in most cases. These results, 

together with the results of the first experiment, consistently indicate that early recurrence is 

important to lower-level feature extraction. The proposed computational model consistently 

improves edge detections in real scenes. 

6.4 Discussion 

In this chapter, we applied the proposed computational model of early recurrence to 

improve edge detection, which is an important application in computer vision. The essence of 

the computation is to use dorsal (coarse) edges to inhibit ventral (fine) edges by 

multiplicative inhibition.The proposed recurrent inhibition is fundamentally different from 

the center-surround self-inhibition. The center-surround self-inhibition is a mechanism within 

area V1, which works in an additive manner. Alternatively, the proposed early recurrent 

inhibition uses information generated from the dorsal area MT to inhibit the ventral edge 

representations.Experiments using real images indicate that contour maps generated by the 

proposed method consistently surpass self-inhibition, with respect to suppressing noise and 

distracting image textures, and preserving smooth contours. The isotropic and the anisotropic 

inhibitions are two weighting schemes studied. They facilitate edge detection differently. The 

anisotropic inhibition provides better output for most test images. Additional experiments are 

required to further explore these schemes as well as other weighting methods. 
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Figure 6-5 Improved contour detectors. Contours detected by early recurrent modulation 

(Canny+ER and BTG+ER) are significantly improved, indicating the proposed work is a 

general approach to boost edge detection. 
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Chapter 7. General Conclusions and Discussion 

7.1 General Conclusions 

In this dissertation, we presented a computational model to investigate lower-level 

recurrent mechanisms in the primate visual system. The main motivation is from recent 

biological studies, which indicate visual processing within the early visual hierarchy does not 

confine to the feed-forward hierarchy proposed by Hubel and Wiesel during the 1960s 

(Hubel 1963). The recent literature suggests that lower-level recurrence exists and impacts 

visual processing with very short temporal delays (Bullier 2001).  

To answer the question of what is required for early recurrence to be at play, we 

conducted a literature survey to find clues. We identified two requirements. First, it requires 

the existence of feedback connectivity from a dorsal area to a ventral area. Based on the 

literature, such recurrent connections have been found among multiple visual areas (Felleman 

and Van Essen 1991, Lienhart and Maydt 2002).  

The second requirement is that the timing of information processing must allow the 

feedback signals to reach the ventral neuron before the ventral neuron receives feed-forward 

signals from its lower-level visual area. For a long time, only cell-recording experiments had 

the temporal accuracy to measure latencies of visual processing from one area to another. In 

recent years, developments of imaging and magnetic techniques provide us non-invasive 
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methods to learn about vision. They have provided us great insights into the asynchronized 

information pathways.  

In Chapter 3, we followed (Schmolesky et al. 1998, Bullier 2001) to study the temporal 

relationships along the visual pathways, and concluded recurrent connections satisfying the 

above two requirements. In this work, we focused on two recurrent paths: early recurrence 

between the dorsal area MT and the ventral layers of area V1/V2, and early recurrence 

between the dorsal area MST and the ventral layers of area V2.  

To answer the question of how early recurrence facilitates the ventral processing, we 

proposed that the essence of early recurrence is a surround suppression mechanism. It utilizes 

results from the dorsal pathway to improve the ventral visual representation. This is 

consistent with the theory of Selective Tuning (Tsotsos et al. 1995, Tsotsos 2011). Although 

Selective Tuning was proposed for visual attention, the model’s motivation to include 

surround suppression and its core concept in formalizing computation are in line with early 

recurrence. From this aspect, the proposed early recurrent model may be seen as an 

additional element to the big picture of Selective Tuning. 

Specifically, we proposed that the early recurrent modulation operates in a non-linear, 

weighted and multiplicative fashion. The non-linearity comes from both neural saturation and 

the fact that recurrence cannot cause neural response to change without feed-forward 

activations. Note that the current work does not intend to characterize the full scope of neural 

behaviours. Instead, we explored the potential ways in what the modulation might operate, 

and investigated their impacts on computer vision algorithms. 

We proposed that the weighting depends on the actual recurrent connectivity. In our 

representation, each ventral neuron is connected with multiple dorsal neurons. These dorsal 
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neurons may respond to different types of visual characteristics. If one type of visual 

characteristics dominates the recurrent strength where other types are negligible, then we 

termed this kind of recurrence as anisotropic recurrence. Alternatively, if all types of visual 

characteristics equally contribute to the recurrent strength, then we termed this kind of 

recurrence as isotropic recurrence. A more generalized case is that different types of visual 

characteristics contribute proportionally. However, it is not clear to us from the literature 

what the optimal way to describe this generalized case is.  

Based on the simplified two-pathway visual hierarchy, we formalized the necessary 

computational components to implement early recurrence. We followed the filter-based 

approach to model a set of related subcortical and cortical visual areas. Filter parameters are 

determined in ways to be consistent with the receptive field properties surveyed in the 

literature. As such, we put forth a complete computational hierarchy. Using a synthetic 

image, we demonstrated that the dorsal pathway has an output representation of object 

motion in coarse spatial-scales, and the ventral pathway has an output representation of static 

edge, corner and end-stopped features in fine spatial-scales. 

To investigate whether the proposed recurrent operation is biologically consistent, we 

simulated two well-known experiments that support early recurrence: a figure-background 

segregation experiment (Hupé et al. 1998) and a Kanisza illusory rectangle experiment 

(Seghier et al. 2000b). Our results correlate to these studies, which give us confidence that 

the proposed computation is capable of realizing early recurrence. 

An important goal of this study is to show that early recurrence is, in general, beneficial to 

computer vision. To do this, we used visual saliency and contour detection as two examples 

to highlight the impacts. By comparing with the state-of-the-art proposals, we concluded that 
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early recurrence can effectively improve early visual representations, which is the foundation 

of classic computer vision approaches. In addition, we showed that combining the proposed 

computation with existing algorithms is straightforward, which requires very limited 

implementation efforts. 

7.2 Connections to Other Context Model 

We stated that the early recurrent representation from the dorsal pathway takes form as 

localized context. It provides the ventral processing with spatiotemporal (motion) context 

information that is not computable in the ventral pathway.  

Of course, we are not the first to attribute the dorsal representation as context. In one 

related model (Bar 2004, Oliva and Torralba 2007), the fast magnocellular processing is the 

key to generate a global view to describe the scene with objects likely within it. This global 

context then forms predictions to facilitate object recognition.  

We have compared this global context model with the proposed early recurrence in 

Chapter 3. Although the two models have fundamental differences, the asynchronized visual 

processing of the primate visual system is a common motivation to both. This perhaps 

initiates a clear direction to improve existing computer vision systems. 

7.3 Connections and Implications to Computer Vision 

Classic computer vision systems usually start from extracting visual features from visual 

input, which shares many commonalities with the early stage processing of the primate visual 

system. This biological consistency inspires us to apply the early recurrent mechanism to 

improve computer vision systems. To those systems that do not begin with feature extraction, 
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it would be difficult to directly apply early recurrence. 

The current work suggests an approach to improve feature representations. To this aspect, 

early recurrence is closely related to the scale-space analysis in computer vision. The 

proposed visual hierarchy is analogous to the scale-space hierarchy to some degree. 

However, in our model, the layered representations do not require visual features to be the 

same type. Our goal is a robust scale-invariant visual representation. The biological evolution 

over millions of years has shaped the primate visual system with many specified 

mechanisms. An important goal is to attend to the most important (relevant) spatiotemporal 

scale from scattered world with minimal effort. We believe there is a good chance that early 

recurrence is one of these mechanisms that play an active role from very early and lower-

level stages of the visual processing.  

Early recurrence from the dorsal pathway is the key ingredient to achieve scale adaptation. 

Specifically, as we showed in Chapter 5 and Chapter 6, the dorsal representation has a 

marked correspondence with perceptually salient regions. Via recurrent inhibition, ventral 

neural responses not correlating to the dorsal representation are suppressed. In other words, 

only signals of scales that are relevant to the salient regions remain in the modulated ventral 

representation. Although the dorsal representation lacks spatial accuracy, it is sufficient to 

facilitate the ventral processing. 

Compared to representations in the scale-space analysis, the proposed visual hierarchy is 

formalized to support different of visual features. Since the dorsal pathway has a 

spatiotemporal response profile, its representation naturally contains motion information. 

This property hints at a strategy of applying motion cues to facilitate edge response different 

from traditional ways. Take the scene recognition in Chapter 5 for example, where we 
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showed that motion feature plays a positive and consistent role that influences scene 

recognition performance. In the comparison, the benchmark system represents a traditional 

way to use motion cues, as a regular feature. Firstly, we showed that this traditional way 

indeed has its validity to improve recognition performance. Secondly, we compared it with 

our strategy that uses motion as the early recurrent representation. Experiments suggested 

that our strategy yielded even better performance. The same idea has also been expressed in 

the spatiotemporal saliency experiment in Chapter 5.  

In Chapter 6 we focused on the spatial aspect of the dorsal pathway. To many computer 

vision systems, edge detection is a fundamental task. We showed that early recurrence is 

capable of strengthening existing edge detection methods in complicated and scattered 

scenes.  

From the two examples, we hypothesize that early recurrence may benefit other computer 

vision applications in similar ways. We showed that early recurrence is conceptually 

straightforward and easy to implement. More importantly, the computational cost of early 

recurrence is lightweight, compared with massive learning algorithms that have been widely 

discussed in the literature. 

7.4 Future Research 

The current work is motivated by the fast-brain hypothesis. Its original manuscript 

(Bullier 2001) describes the lower-level ventral areas (i.e., areas V1 and V2) as “active 

blackboards” that receive retro-injected information from the dorsal pathway to support 

visual processing in the higher-level ventral areas. In this work, our first intention is to 

implement such recurrent mechanisms with a set of principled computational components. 
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We further tested that our work is consistent with Bullier’s initial thoughts, by simulating the 

bar-moving experiment (Hupé et al. 1998) and the Kanisza illusion experiment (Seghier et al. 

2000a). We followed such a path to build a biologically inspired computational model. In this 

dissertation, we demonstrated that early recurrence is capable of improving early visual 

representation.  

No model is without limitations. The current work has only focused on the most 

straightforward early recurrent connections, their properties and related inhibitions. It may be 

improved in many ways, and its potential usability must be explored.  

One possible research direction is the inhibition mechanism. Although we have shown the 

impact of early recurrence, we believe the inhibition strength to refine the ventral 

representation may come from mechanisms other than the modelled early recurrence. For 

example, lateral connection is a candidate to cause similar surround suppression results. In 

order to distinguish a lateral mechanism from a recurrent mechanism, we may start from the 

timing of connection and the spatiotemporal properties of the inhibition representation. 

Following this hint, a comparative study would be considered beneficial to provide 

quantitative and qualitative differentiations between the two mechanisms.  

The current work hypothesizes that early recurrence operates in a multiplicative manner. 

We have conducted an experiment to compare the multiplicative inhibition and an additive 

inhibition operation. Results seemed to support that the multiplicative operation is more 

consistent with the existing biological observations. This, however, may be challenged by 

other forms of operations, or challenged by other experiment configurations. For example, 

we have shown in Chapter 4 that the additive operation may also suffice to represent early 

recurrence in some cases. 
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Another interesting topic is the weighting strategy. In Chapter 3, three weighting strategies 

have been discussed: isotropic modulation, anisotropic modulation, and a general form. 

Isotropic modulation and anisotropic modulation are two extreme cases: isotropic modulation 

is that the ventral neuron is modulated by dorsal neurons in an equal manner, and anisotropic 

modulation is that each ventral neuron is modulated by dorsal neurons of the same 

spatiotemporal preference. Simulations and applications have been discussed in this work 

regarding these two cases. Future work may also explore the formulation of the general form.  

Last but not least, there are many promising research topics that are closely related to the 

current research, including exploring more possibilities to use early recurrence in computer 

vision and machine vision, and bringing more insights from computational neuroscience, 

psychophysics and neurobiology to strengthen our understanding of early recurrence. 
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