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Abstract

Data integration is the process of extracting information from multiple sources and analyzing

different related data sets simultaneously. The aggregated information can reduce the

sample biases caused by low-quality data, boost the statistical power for joint inference, and

enhance the model prediction. Therefore, this dissertation focuses on the development and

implementation of statistical methods for data integration.

In clinical research, the study outcomes usually consist of various patients’ information

corresponding to the treatment. Since the joint inference across related data sets can provide

more efficient estimates compared with marginal approaches, analyzing multiple clinical

endpoints simultaneously can better understand treatment effects. Meanwhile, the data

from different research are usually heterogeneous with continuous and discrete endpoints.

To alleviate computational difficulties, we apply the pairwise composite likelihood method

to analyze the data. We can show that the estimators are consistent and asymptotically

normally distributed based on the Godambe information.

Under high dimensionality, the joint model needs to select the important features to

analyze the intrinsic relatedness among all data sets. The multi-task feature learning is widely

used to recover this union support through the penalized M-estimation framework. However,

the heterogeneity among different data sets may cause difficulties in formulating the joint

model. Thus, we propose the mixed ℓ2,1 regularized composite quasi-likelihood function to

perform multi-task feature learning. In our framework, we relax the distributional assumption
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of responses, and our result establishes the sign recovery consistency and estimation error

bounds of the penalized estimates.

When data from multiple sources are contaminated by large outliers, the multi-task

learning methods suffer efficiency loss. Next, we propose robust multi-task feature learning by

combining the adaptive Huber regression tasks with mixed regularization. The robustification

parameters can be chosen to adapt to the sample size, model dimension, and error moments

while striking a balance between unbiasedness and robustness. We consider heavy-tailed

distributions for multiple data sets that have bounded (1 + ω)th moment for any ω > 0. Our

method is shown to achieve estimation consistency and sign recovery consistency. In addition,

the robust information criterion can conduct joint inference on related tasks for consistent

model selection.

Keywords: Data Integration, Composite Likelihood, Penalized M-estimation, Robust M-

estimation, Mixed ℓ2,1 Regularization, Adaptive Huber Regression, Outlier Contamination.
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Chapter 1

Introduction

With the advancement of cyberinfrastructure technologies, increasing amounts and types

of databases or data repositories are available for research in science fields. For example,

the Gene Expression Omnibus (GEO) is a public archive for high-throughput microarray,

and next-generation sequence functional genomics data sets [Edgar et al., 2002, Barrett

et al., 2010, 2012]. The study of targeted gene expression profiles can get information based

on the GEO database submitted by different institutions. Collecting related data sets and

aggregating information for statistical learning is defined as a process of data integration

[Council et al., 2010, Gomez-Cabrero et al., 2014]. Some examples of data integration are

illustrated in Figure 1.1. In Type (I) and (III) scenarios, different learning tasks can be

combined due to the similarity between data sets, which can provide the fundamental sparsity

patterns of predictors. The study based on Type (II) data integration is usually used to reveal

the intrinsic relationship between response variables, which can boost statistical power on the

inference of parameters. By applying data integration, the synergy among different learning

tasks can enhance the overall prediction accuracy compared with marginal approaches applied

to the individual data.

Biomedical research usually has experimental outcomes consisting of various information
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Figure 1.1: Examples of data integration. Type (I): Different learning tasks combined with

different data sets; Type (II): Multiple outcomes modeled with shared predictors; Type (III):

Multi-source predictors with the dependent variable (outcome of interest).
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about participants corresponding to the treatment. For example, the study of omics data sets

needs to model transcriptome and proteome profiles with related biological processes together

in microbial biology [Zhang et al., 2010b, Meng et al., 2014, Zhang et al., 2022]. The diversity

of data types indicates that the proposed models have to deal with multiple heterogeneous

data sets [Gomez-Cabrero et al., 2014]. It is a theoretical challenge to formulate the joint

probability density of data sets with different distributions, and the unknown relationship

within and between data sets can increase the model complexity and number of parameters.

Consequently, the estimating algorithm needs intensive computation in the programming.

Therefore, building statistical models that can effectively alleviate the computational difficulty

and provide consistent estimates is of significant interest.
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In addition, the ultra-high dimensionality of multiple data sets brings tremendous infor-

mation to train the learning process, and it also makes the model complicated and overly

fitted for data validation. For instance, the research of gene expression profiles often contains

a large number of biomarkers but has a sample scarcity problem due to the limitation of

budget and participants in the experiment. In this case, data integration can aggregate

information from multiple similar experiments to enhance the selection power [Gao and

Carroll, 2017, Dai et al., 2020]. Different statistical methods, such as multi-task learning and

fusion learning, have been developed for the joint feature selection with a wide implementation.

For example, Liu et al. [2010] examined small interfering RNAs (siRNAs) efficacy across 14

different platforms for gene functional study. The molecular association between different

phenotypic responses was analyzed by Zhang et al. [2010a], and their results showed that the

joint feature selection identified some new biomarkers relevant to the responses. In literature,

most existing procedures deal with the same type of regression or classification problems and

selecting features across tasks of different natures on heterogeneous data sets has not been

fully explored.

Since the data sets are collected from various sources, the data quality can be difficult

to control in retrospective studies. Data integration can reduce the impact of low-quality

data by introducing more reliable data. However, if the integrated data have heavy-tailed

distribution or large outliers contamination, the model performance could suffer efficiency

loss. For example, when modeling microarray datasets, Wang et al. [2015a] observed that the

gene expression levels presented heavy tails even after normalization based on the values of

the marginal kurtosises. It also happens to the data obtained from the study of functional

magnetic resonance imaging (fMRI). Eklund et al. [2016] identified that the major cause

of invalid fMRI inferences is that the spatial data fail to follow the Gaussian distribution.

To accommodate learning tasks with outlier contamination, robust regularization methods

are necessary to ensure that estimation results can be more reliable and robust for data
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integration.

In this dissertation, we focus on the development and implementation of statistical

methods for data integration. In Chapter 2, the joint inference across multiple related data

sets is provided to show the asymptotic properties of the estimates. In addition, we propose

two new methods for high-dimensional data integration. In Chapter 3, the heterogeneous

multi-task feature learning is established to combine different types of learning tasks through

the regularized composite quasi-likelihood. For instance, linear regression, Poisson regression,

logistic regression, and multinomial regression can be jointly analyzed for the feature selection

through this model. In Chapter 4, we propose the robust multi-task feature learning to model

multiple related data sets that have heavy-tailed distributions or outlier contamination. In

this model, the adaptive Huber regressions are combined through mixed regularization to

select important features based on the robust Bayesian information criterion.

Notation

The following general notations will be used in subsequent chapters.

• For any vector v = (v1, v2, · · · , vd)T ∈ Rd, the ℓq norm of v is defined as ∥v∥q =

(
∑d

i=1 |vi|q)
1
q for some q ≥ 1, and with q = ∞, ∥v∥∞ = supi{|vi| : i = 1, 2, · · · , d}.

• The mixed ℓq,r norm of the vector is used for the vector that is evenly partitioned into

groups. For example, for any doubly indexed vector v = (v11, v12, · · · , vij, · · · , vKd)T ,

the ℓq,r norm is defined as

∥v∥q,r =
( d∑
j=1

( K∑
i=1

vqij
) r

q
) 1

r , (1.1)

for i = 1, 2, · · · , K and j = 1, 2, · · · , d. One special case is when r = ∞, ∥v∥q,∞ =

4



maxj{(
∑K

i=1 v
q
ij)

1
q }. The jth block-wise subvector can be defined as follows,

v(j) = (v1j, v2j, · · · , vKj)T (1.2)

for j = 1, 2, · · · , d. In this thesis, the subset of the vector is constructed as vE = {v(j) :

j ∈ E} for E ⊆ {1, 2, · · · , d}, and the cardinality of the subset is denoted by |E|. The

set Br(v∗) with center point v∗ contains all vectors v satisfying ∥v − v∗∥2 ≤ r.

• For any matrix A ∈ Rd×d, the element of the matrix is defined as A[ij] with i, j =

1, 2, · · · , d, and the submatrix AEE ′ consists of all element A[ij] such that i ∈ E and

j ∈ E ′ . The eigenvalues of the matrix A is denoted as Λ(A) = {λ1, λ2, · · · , λd}. The

norm of matrix A is defined as follows:

– The spectral norm: |||A|||2 = Λmax(A), which is the maximum eigenvalue;

– The Frobenius norm: |||A|||F = (
∑d

i=1

∑d
j=1 a

2
ij)

1/2;

– The ℓ1 norm: |||A|||1 = maxj
∑d

i=1 |A[ij]|;

– The ℓ∞ norm: |||A|||∞ = maxi
∑d

j=1 |A[ij]|.

• A random variable X follows a sub-exponential distribution with parameters (ν, α),

such that E(exp{tX}) ≤ exp{t2ν2/2} for all |t| < 1/α, and the ψ1 norm

∥X∥ψ1 = sup
m≥1

m−1(E|X|m)1/m <∞. (1.3)

• A random variable X follows a sub-Gaussian distribution with a parameter σ, such

that E(exp{tX}) ≤ exp{t2σ2/2} for all t ∈ ℜ, and the ψ2 norm is defined as

∥X∥ψ2 = sup
m≥1

m−1/2(E|X|m)1/m <∞. (1.4)
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• Let f(n) ≳ g(n) indicate f(n) ≥ c1g(n) for c1 ∈ (0,∞); let f(n) ≲ g(n) indicate

f(n) ≤ c2g(n) for c2 ∈ (0,∞); and f(n) ≍ g(n) if f(n) ≳ g(n) and f(n) ≲ g(n) hold

simultaneously.
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Chapter 2

Joint Inference with Pairwise Composite

Likelihood Method

This work has been conducted in collaboration with Dr. Bai, Dr. Gao, and Dr. Xu and

published in "Multivariate Mixed Response Model with Pairwise Composite-Likelihood

Method" [Bai et al., 2020]. In this chapter, we provide the implementation of the joint

inference to the parameters of interest based on the pairwise composite likelihood.

2.1 Introduction

Clinical research, such as toxicity studies and laboratory examinations, can provide relevant

information for measuring the effect of various treatments or experiments on patients. In

practice, this type of research needs to jointly analyze multiple experimental data sets, but

the research outcomes collected during the treatment can be correlated and heterogeneous

with different distributions. For example, we are simultaneously studying the efficacy of

treatments along with the toxicity and adverse drug reactions. The severity level could be

measured as discrete or ordinal data, while the clinical examination results, such as the blood
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test measures, are continuous. The experimental outcomes can be analyzed by different linear

models to estimate the effect of the treatment with the relevant clinical and demographic

information, but the relatedness between the data is not considered for the analysis, which

may lose efficiency for the inference. Thus, it is desirable to jointly model multiple clinical

data sets and analyze the treatment with other clinical information.

In the recent literature, there are various methods to model multiple data sets simultane-

ously. When one continuous response variable and one discrete response variable are jointly

analyzed, the conditional Gaussian distribution model (CGDM) can decompose the joint

distribution into a combination of the conditional distribution and the marginal distribution.

In particular, Cox [1972] provided the logistic conditional distribution for binary variables,

and Cox and Wermuth [1992] extended the model with a probit-type function and showed

the potential connection to the latent variable model. Another conditional Gaussian distri-

bution model, referred to as the general location model (GLOM), was proposed by Olkin

and Tate [1961]. They adopted the opposite factorization, which consists of a conditional

normal distribution given the categorical variables and marginal multinomial distribution.

Teixeira-Pinto and Normand [2009] compared this approach with the models proposed by

Sammel et al. [1997, 1999] in a comprehensive review. Yang et al. [2007] extended the model

to mixed Poisson and continuous response variables through a likelihood-based approach.

In addition, the grouped continuous model (GCM) treated the categorical variables as

partitioned continuous latent variables with different non-overlapping intervals, which allows

the latent variables to follow a multivariate Gaussian distribution [Anderson and Pemberton,

1985, Skrondal and Rabe-Hesketh, 2007]. Poon and Lee [1987b] proposed the conditional

grouped continuous model (CGCM), which can jointly model continuous response variables

with categorical ones through the transformation. Catalano and Ryan [1992], Catalano [1997],

and Najita et al. [2009] applied the conditional grouped continuous model to the studies of fetal

toxicity for longitudinal data. Gueorguieva and Agresti [2001] proposed that the estimation
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of correlated mixed response variables can be obtained by the expectation–maximization

(EM) algorithm. Zhang et al. [2018] provided the parameter-expanded EM algorithm to

conduct joint estimation under the full-likelihood approach.

In practice, modeling multiple heterogeneous data sets with different distributions can

be computationally challenging to estimate the joint distribution. The composite likelihood

method offers an alternative solution to the estimation problem based on compounded lower-

dimensional distributions [Lindsay, 1988, Cox and Reid, 2004, Varin, 2008, Xu and Reid,

2011]. Faes et al. [2008] applied the composite likelihood to model multiple longitudinal

data. However, their correlation structure is induced by the random effect, which does not

have a closed-form expression. De Leon [2005] and De Leon and Carriègre [2007] developed

a general mixed-data model to jointly analyze correlated nominal, ordinal, and continuous

data together through the pairwise likelihood. In addition, Ekvall and Molstad [2022] used

the approximate maximum likelihood estimation for the mixed-type multivariate response

regression. The multivariate mixed response model proposed by Bai et al. [2020] can alleviate

the computational difficulties by using three types of bivariate models, which conduct joint

inference based on the pairwise composite likelihood.

Therefore, we can analyze multiple experimental data sets together and jointly estimate the

effect of treatment on each outcome of interest by applying the multivariate mixed response

model [Bai et al., 2020]. The model can estimate the parameters of the mean structure and

the correlation among different outcomes simultaneously. We derive the asymptotic properties

of the composite-likelihood estimates and derive three composite-likelihood test statistics

for joint inference. The hypothesis tests can be applied to a group of parameters related to

all data sets, while the model also includes some nuisance parameters. Simulation studies

were conducted to examine the empirical performance of the method in comparison with

the conventional approaches. In addition, we apply this method to the clinical data from a

colorectal cancer study. We analyze the effect of the treatment and other clinical factors’ on

9



multiple correlated responses of the patients.

2.2 Methodology

2.2.1 Model Setup

Suppose there are n observations y1, y2, . . . , yi, . . . , yn in a clinical dataset, and each observa-

tion contains K multiple outcomes yi = (y1i, y2i, . . . , yki, . . . , yKi)
T , which are correlated and

heterogeneous with continuous and binary variables. Suppose we wish to model the effects

of a collection of covariates, and the generalized linear model can be constructed for each

outcome as

gk(E(yki|xki)) = xTkiβk,

in which the covariate xki with k = 1, 2, . . . , K, and i = 1, 2, . . . , n for different responses can

be the same or different, and gk denotes as the link function used for the kth response. In

particular, if the response variable is continuous, we can use the regression model to fit the

data such that

yki = xTkiβk + εk.

When modeling binary outcomes, we can use the latent variable transformation based on

Dunson [2000], such that with Normal CDF Φ(·),

Φ−1(P (yki = 1|xki)) = xTkiβk.
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To analyze all K outcomes simultaneously, the joint likelihood function can be given by

L(θ) =
n∏
i=1

f(y1i, y2i, . . . , yki, . . . , yKi; θ),

where θ includes all parameters associated with the joint density function f(·). However, this

joint density function f(·) is difficult to formulate for the mixture of continuous and discrete

variables, and it is computationally intensive to estimate the parameters of interest through

this multivariate model. Alternatively, we can set up the pairwise likelihood function for

responses yki and yli as

Lkl(θkl) =
n∏
i=1

fkl(yki, yli; θkl). (2.1)

The set pf parameters θkl contains the coefficients of each linear model (βk, βl), the standard

deviation of the errors (σk, σl), and pairwise correlation ρkl associated with yki and yli. The

joint density function fkl(·) only needs to model three different bivariate structures, such that

outcomes yki, and yli are both continuous variables, outcomes yki, and yli are both binary

variables, and outcomes yki, and yli contain one continuous and one binary variable.

The log-likelihood function is given by ℓkl(θkl) = logLkl(θkl), and the score function is

given by

Ukl(θkl) =
n∑
i=1

fkl(yki, yli; θkl)
−1 ∂

∂θkl
fkl(yki, yli; θkl). (2.2)

The pairwise composite likelihood function of these K response variables is the product of(
K
2

)
paired likelihood functions

CL(θ) =
K−1∏
k=1

K∏
l=k+1

Lkl(θkl),

11



and the composite score function is constructed by differentiating the composite log-likelihood

function

U(θ) =
∂

∂θ
logCL(θ) =

K−1∑
k=1

K∑
l=k+1

Ukl(θkl). (2.3)

By solve U(θ̂) = 0 based on (2.3), we can obtained the maximum composite likelihood

estimator θ̂.

2.2.2 Theoretical Results

As Cox and Hinkley [1974] and Kent [1982] presented the hypothesis testing of the full

likelihood function and its extensions, the composite likelihood function can be treated as the

misspecified likelihood function. Its asymptotic properties were reviewed and discussed by

Varin [2008], Xu and Reid [2011], and Gao and Song [2010]. Following this framework, the

pairwise composite likelihood function implemented in our analysis produces the estimators,

which are consistent and asymptotically normally distributed.

The Godambe information [Godambe, 1960] G of the parameters θ for the log composite

likelihood function involves the sensitivity matrix H and the variability matrix J ,

G(θ) = H(θ)J−1(θ)H(θ),

where the sensitivity matrix and variability matrix are defined as

H(θ) = Eθ{−∇U(θ; yi)} and J(θ) = V arθ{U(θ; yi)}.

where U(θ; yi) denotes the score function of the ith observation and the total score function

U(θ) =
∑n

i=1 U(θ; yi).

12



Assumption 2.1. The parameter space θ ∈ Θ ⊂ Rd is a closed set with fixed d. For any

k, l = 1, 2, · · · , K, each log-likelihood function ℓkl(θkl) is measurable function of (yki, yli) for

any θkl, and is distinct for different values of θkl. Let the true parameter be denoted by θ∗ ∈ Θ.

It is assumed that Eθ∗{Ukl(θkl)} = 0.

Assumption 2.2. The sensitivity matrix H(θ) and variability matrix H(θ) are assumed

with restricted eigenvalues, such that 0 < min{Λ(H(θ∗))} < max{Λ(H(θ∗))} < ∞ and

0 < min{Λ(J(θ∗))} < max{Λ(J(θ∗))} <∞.

Assumption 2.3. The pairwise composite likelihood admits third derivatives for almost all

yi and for all θ ∈ Br(θ∗). The third derivatives denoted as ∇2U(θ) is assumed to satisfy

∣∣∣∣∣∣∇2U(θ)u
∣∣∣∣∣∣

2
≤ W

for some constant W > 0 with unit vector u.

Theorem 2.1. Under Assumptions (2.1) - (2.3), as n → ∞, the maximum composite

likelihood estimator θ̂ ∈ Br(θ∗) is asymptotically normally distributed as

√
n(θ̂ − θ∗)

d−→ Nd(0, G
−1).

Proof. The asymptotic normality of the maximum composite likelihood estimator has been

established in previous works, and we just provide some important steps of the proof.

Since we have U(θ̂) = 0, we can show the second-order Taylor expansion,

0 = U(θ̂) = U(θ∗) +∇U(θ∗)(θ̂ − θ∗) +
1

2
(θ̂ − θ∗)∇2U(θ̃)(θ̂ − θ∗)

(θ̂ − θ∗) =
(
−∇U(θ∗)− 1

2
∇2U(θ̃)(θ̂ − θ∗)

)−1
U(θ∗)

√
n(θ̂ − θ∗) =

(
− 1

n
∇U(θ∗)− 1

2n
∇2U(θ̃)(θ̂ − θ∗)

)−1 1√
n
U(θ∗),
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where the point θ̃ = αθ∗ + (1 − α)θ̂ for some α ∈ (0, 1). We can show that θ̃ ∈ Br(θ∗) for

some r.

Based on the central limit theory, the score function 1√
n
Ukl(θ

∗
kl) is asymptotically normally

distributed. From (2.3), the composite score function can satisfy

1√
n
U(θ∗) =

1√
n

n∑
i=1

U(θ∗; yi)
d−→ Nd(0, J(θ

∗)).

In addition, by applying the law of large numbers,

− 1

n
∇U(θ∗) = − 1

n

n∑
i=1

∇U(θ∗; yi)
P−→ H(θ∗)

Based on Assumption (2.3), we can show that

∣∣∣∣∣∣∣∣∣∣∣∣− 1

n
∇2U(θ̃)(θ̂ − θ∗)

∣∣∣∣∣∣∣∣∣∣∣∣
2

≤ 1

n

∣∣∣∣∣∣∣∣∣∇2U(θ̃)u
∣∣∣∣∣∣∣∣∣

2
∥θ̂ − θ∗∥2 ≤

1

n
W∗r ≲

1

n
.

This implies that any element in the matrix − 1
n
∇2U(θ̃)(θ̂ − θ∗) has order less than 1/n.

Therefore, we can show that as n→ ∞,

√
n(θ̂ − θ∗) =

(
− 1

n
∇U(θ∗)− 1

2n
∇2U(θ̃)(θ̂ − θ∗)

)−1 1√
n
U(θ∗)

≈ H−1(θ∗)
1√
n

n∑
i=1

U(θ∗; yi)
d−→ Nd(0, G

−1).

The sensitivity matrix H(θ) and the variability matrix J(θ) can be evaluated by the empirical

estimates under the maximum composite likelihood estimators,

H(θ̂) = − 1

n

n∑
i=1

∇U(θ; yi)
∣∣
θ̂

and J(θ̂) =
1

n

n∑
i=1

U(θ; yi)U(θ; yi)
T .
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Furthermore, according to Theorem 2.1, the composite Wald statistic, the composite score

statistic, and the composite likelihood ratio statistic for testing null-hypothesis H0: θ̂ = θ∗

are given respectively by

We = n(θ̂ − θ∗)G(θ̂ − θ∗)

Wu = n−1U(θ∗)J−1U(θ∗),

W = 2{logCL(θ̂)− logCL(θ∗)}.

Testing with Nuisance Parameters

Suppose the parameters are partitioned as θ = {ψ, λ} with ψ ∈ Rq, λ ∈ Rr, and d = q + r.

The parameter of interest is ψ, and λ are treated as the nuisance parameters for the hypothesis

testing. In this setting, the Godambe information matrix and its inverse can be partitioned

as

G =

 Gψψ Gψλ

Gλψ Gλλ

 and G−1 =

 Gψψ Gψλ

Gλψ Gλλ

 ,
and the inverse of the submatrix pertaining to ψ is given by Gψψ,λ = (Gψψ)−1 = Gψψ −

GψλG
−1
λλGλψ. According to the asymptotic theorem, the composite Wald statistics under the

null hypothesis H0: ψ = ψ∗ using λ̂(ψ∗) is given by

We(ψ
∗) = n(ψ̂ − ψ∗)Gψψ,λ(ψ̂ − ψ∗),

which has an asymptotic χ2
q distribution. Similarly, we define the composite score statistics

Wu(ψ
∗) = n−1U(ψ∗, λ̂(ψ∗))HψψGψψ,λH

ψψU(ψ∗, λ̂(ψ∗)),
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where the matrix Hψψ can be obtained by partitioning the inverse sensitivity matrix H. Also,

the composite likelihood ratio statistic can be obtained by

W (ψ∗) = 2{logCL(ψ̂, λ̂)− logCL(ψ∗, λ̂(ψ∗))},

with the unrestricted maximum composite likelihood estimate θ̂ = {ψ̂, λ̂}. However, the

asymptotic distribution of the composite likelihood ratio under H0 is given by
∑K

k=1 λkχ
2
1(k),

where χ2
1(k) are independent χ2

1 variates and λ1, λ2 · · · , λK are the eigenvalues of the matrix

Hψψ,λG
ψψ with Hψψ,λ = Hψψ −HψλH

−1
λλHλψ. There are different adjustments to this non-

standard weighted chi-square distribution [Rotnitzky and Jewell, 1990, Geys et al., 1999,

Pace et al., 2011]. For example, we can apply the adjustment by introducing the scaling

factor λ̄ =
∑K

k=1 λk/K, then the adjusted composite likelihood ratio has the same asymptotic

distribution as We(ψ
∗) and Wu(ψ

∗),

W

λ̄

d−→ χ2
q. (2.4)

Therefore, the composite likelihood method can simplify the modeling of correlated

responses with multiple generalized linear models and allow users to conduct statistic inferences

on parameters of interest from different generalized linear models. Moreover, we can select

a subset of the parameters and conduct a further inferential assessment in the presence of

nuisance parameters.

2.3 Simulation

Different simulation studies were implemented to show the validity of the pairwise composite

likelihood method. The estimation results from the proposed model are compared with the

full-likelihood and marginal approaches, respectively.
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2.3.1 Comparison with Maximum Full-Likelihood Estimation

In the multivariate regression with correlated continuous outcomes, the full-likelihood estima-

tion can be conducted without numerical integration. Thus, we can compare the maximum

composite-likelihood estimates with the full-likelihood approach through the simulation study.

The simulated samples contain four continuous response variables y1i, y2i, y3i, and y4i, which

are generated from Equation (2.5):

y1i = αc1 + βc1x11i + γc1x12i + ε1i,

y2i = αc2 + βc2x21i + γc2x22i + ε2i,

y3i = αc3 + βc3x31i + γc3x32i + ε3i,

y4i = αc4 + βc4x41i + γc4x42i + ε4i.

(2.5)

The sets of covariates are independently simulated, such that {x11i, x21i, x31i, x41i} ∼ N(0, 1)

and {x12i, x22i, x32i, x42i} ∼ N(0, 0.5). The errors are correlated and generated from a

multivariate normal distribution N4(0,Σ), and the variance-covariance matrix Σ is given by



σ2
c1

σc1σc2ρc1c2 σc1σc3ρc1c3 σc1σc4ρb1c4

σc1σc2ρc1c2 σ2
c2

σc2σc3ρc2c3 σc2σc4ρc2c4

σc1σc3ρc1c3 σc2σc3ρc2c3 σ2
c3

σc3σc4ρc3c4

σc1σc4ρc1c4 σc2σc4ρc2c4 σc3σc4ρc3c4 σ2
c4


.

In the simulation, the variances are designed as σ2
c1
= 1, σ2

c2
= 1, σ2

c3
= 2.25, and σ2

c4
= 4,

and an identical correlation ρ = 0.3 is applied between the errors in the data generating

process.

The simulation results (Figure 2.1) were obtained through 1000 independent replications.

The maximum composite-likelihood estimators demonstrate similar performance when com-
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pared with the full-likelihood approach. The simulated results also show that the estimates

are close to each other, and the maximum likelihood estimators have slightly higher relative

efficiency.

Figure 2.1: The comparison between the maximum full-likelihood estimation and maximum

composite likelihood estimation for the regression coefficients on the multivariate continuous

outcomes. The ratio of the mean squared error (MSE) was computed using the MSE of the

maximum composite-likelihood estimate (MCLE) over the MSE of the maximum likelihood

estimate (MLE).

2.3.2 Comparison with Marginal Approach

The full-likelihood approach is computationally challenging for the mixed outcome regression,

and marginal regression is often resorted to in order to conduct the analysis. We implemented

simulation studies to evaluate the performance of our proposed method in comparison with
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marginal regression. We first tested the overall performance of the point estimates when the

outcomes had different levels of dependency and covariates. Next, we focused on the test of

composite statistics. The joint inference across related heterogeneous responses can provide

statistical inference with nuisance parameters and attains a higher statistical power in terms

of dealing with joint inference.

Simulation Settings

We generate the sample data consisting of two binary responses y1i and y2i and two continuous

responses y3i and y4i. The binary variables are obtained based on the corresponding latent

normal variables y∗1i and y∗2i through the probit link function,

probit(µ1i) = µ∗
1i,

probit(µ2i) = µ∗
2i.

The simulation studies of the responses are based on equation 2.6 associated with covariates

respectively,

y∗1i = αb1 + βb1x11i + γb1x12i + ε1i,

y∗2i = αb2 + βb2x21i + γb2x22i + ε2i,

y3i = αc3 + βc3x31i + γc3x32i + ε3i,

y4i = αc4 + βc4x41i + γc4x42i + ε4i.

(2.6)

We provide different simulation scenarios of the values of the covariates and three levels

of correlation to analyze the response variables with the proposed model. The regression

parameters are arbitrarily chosen and set to be fixed values in each simulation study. The

errors in equation 2.6 follow a multivariate normal N4(0,Σ), and the variance-covariance
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matrix Σ is given by



σ2
b1

σb1σb2ρb1b2 σb1σc1ρb1c1 σb1σc2ρb1c2

σb1σb2ρb1b2 σ2
b2

σb2σc1ρb2c1 σb2σc2ρb2c2

σb1σc1ρb1c1 σb2σc1ρb2c1 σ2
c1

σc1σc2ρc1c2

σb1σc2ρb1c2 σb2σc2ρb2c2 σc1σc2ρc1c2 σ2
c2


.

In the following data-generating processes, the values of the variance-covariance parameters

are set as σ2
b1
= 1, σ2

b2
= 1, σ2

c1
= 16, and σ2

c2
= 25, and the correlation is designed at the

levels of low (all ρ = 0.3), medium (all ρ = 0.5), and high (all ρ = 0.7) respectively to assess

the underlying model. Since there is no constraint on the sign of the correlation, the negative

correlation can be estimated through our algorithm without further assumptions.

Point estimates

Different simulation scenarios are designed to assess the performance of the underlying model

on the point estimates by 1000 independent replications. There are two different sets of

simulations for the data-generating process, and within each setting, we analyze three levels

of correlation respectively. As shown in table 2.1, the values of the regression parameters and

the standard deviation of the continuous response variables are given across all simulation

studies. In the first simulation setting, we provide 300 samples, and the response variables are

associated with covariates of distinct values. The covariates are identically and independently

simulated in each linear model from a normal distribution N(0, 1), respectively.

In the second simulation, 1000 independent samples are generated. There is one common

covariate shared across four response variables in equation 2.6, such that x11i = x21i = x31i =

x41i simulated from N(0, 1). In addition, we generate {x12i, x22i, x32i, x42i} from a Bernoulli

(0.5), which are different for each response. This setting represents the scenario in practice
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Table 2.1: The ratio of the mean squared error (MSE) of the composite likelihood method

(CLM) to the marginal model (GLM). Results based on 1000 independent simulations under

two different scenarios and three different levels of correlation.

Simulation I * Simulation II †
Low Med High Low Med High

αb1 = 0.2 1.00 0.99 0.98 0.97 0.92 0.85
βb1 = 0.3 0.93 0.81 0.66 1.00 0.99 0.97
γb1 = 0.3 0.93 0.81 0.66 0.95 0.85 0.71

αb2 = 0.2 1.00 0.98 0.97 0.97 0.92 0.86
βb2 = 0.3 0.94 0.84 0.69 1.00 0.98 0.95
γb2 = 0.5 0.94 0.83 0.70 0.95 0.86 0.71

αc1 = 0.5 1.00 1.00 1.00 0.96 0.89 0.79
βc1 = 8 0.89 0.73 0.50 1.00 1.00 1.00
γc1 = 10 0.90 0.74 0.51 0.93 0.80 0.59
σc1 = 4 1.01 1.01 1.01 1.01 1.01 1.01

αc2 = 0.4 1.00 1.00 1.00 0.97 0.90 0.79
βc2 = 5 0.92 0.77 0.53 1.00 1.00 1.00
γc2 = 8 0.92 0.75 0.50 0.94 0.80 0.57
σc2 = 5 1.01 1.01 1.01 1.01 1.01 1.01

* Simulation I: N = 300, and the four responses have different covariates;
† Simulation II: N= 1000, the responses shared one common set of covariates.

when a common factor is included in all of the response models.

In table 2.1, we provide the ratio of the mean squared error (MSE) of the proposed method

to the marginal approaches. This ratio represents the relative efficiency of the proposed

method in comparison with the marginal method under different settings. In most of the

simulation settings, the ratio rates of the MSE are well below 1. When the responses are

highly correlated and have different covariate sets, our method can reduce MSE by 50%,

which indicates a large efficiency gain.
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Table 2.2: Type 1 error rate and statistical power under different sample sizes (N = 500 and

N = 1000).

Type I Error Statistic Power
N = 500 N = 1000 N = 500 N = 1000

Composite likelihood method
H0 : βb1 = βb2 = βc1 = βc2 = 0

Likelihood ratio 0.054 0.043 0.804 0.988
Wald statistics 0.058 0.043 0.800 0.989
Scoring statistics 0.058 0.042 0.798 0.989

Multiple Test

Bonferroni test 0.051 0.040 0.569 0.902

* The likelihood ratio statistic is adjusted as equation 2.4, which approximates to a χ2
4.

Statistical test

The test of composite likelihood statistics can jointly assess parameters of interest across

different generalized linear models, while the conventional methods cannot achieve this. The

simulation studies are conducted to measure the type I error rate and the statistical power in

comparison with the marginal approaches.

This simulation study is conducted to perform the hypothesis test. The correlated

responses are generated based on equation 2.6 with all correlation ρ = 0.3. The parameters

of interest are the regression coefficients {βb1 , βb2 , βc1 , βc2} of the first covariates across four

generalized linear models, and the first covariates xi are independently simulated from N(0, 1).

The regression coefficients of the second covariates {γb1 , γb2 , γc1 , γc2} and other parameters

are nuisance parameters with {x12i, x22i, x32i, x42i} ∼ N(0, 0.5). In the simulation study to

assess the type 1 error rate, the regression parameters {βb1 , βb2 , βc1 , βc2} are equal to zero in

all generalized linear models, while other parameters have the same values as the previous
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simulation in table 2.1. To assess the statistical power, we fix the values of the regression

parameters as βb1 = βb2 = 0.1 for the binary responses and βc1 = βc2 = 0.3 for the continuous

responses.

Table 2.2 illustrated the results of over 2000 independent replications. Since the proposed

model analyzes all responses simultaneously, the simulated type I error rates are valid and

close to 0.05. Through the test of the joint effect of the covariate of interest on all responses,

the simulated statistical power is enhanced by our proposed model in comparison with the

results from the marginal approaches. As the sample size increases from 500 to 1000, the

composite likelihood statistics produce increased statistical power from 0.800 to 0.989. The

overall performance demonstrates that the composite statistics are more powerful than the

marginal models.

2.4 Data Analysis

In this section, the composite likelihood method is applied to the clinical data from a colorectal

cancer study. The data consist of clinical observations and demographic information on 743

patients, which are mixed with both categorical and continuous data. Our research interest

is to evaluate the effect of treatment and other clinical factors on the toxicity outcomes. We

focus on four common toxicity events that are related to colorectal cancer treatment. First,

we choose nausea and diarrhea as two categoric responses. They are ordinal data measuring

the severity of the toxicity from grades 1 to 4. In our model setting, we only concern with

the occurrence of nausea and diarrhea for each patient. Therefore, these two responses are

designed as binary variables, which are coded as 1 if they occurred and 0 if there is no record

during the treatment. The continuous responses include two blood test measures, namely

the counts of the hemoglobin (HGB) and white blood cell (WBC). Each patient had several

times of blood examinations during the treatment, and we took the highest value for analysis.
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The explanatory variables contain the treatment effect (two different treatment therapies),

demographic information, tumor status, and genetic test results for each patient. In total,

we need to jointly estimate 68 parameters for the coefficients of four linear models and the

correlation between each outcome.

Table 2.3: The difference in treatment effect between two treatment therapies. GLM: the

generalized linear model; CLM: the composite likelihood method.

Regression parameter Models
GLM CLM

yb1 : occurrence of nausea
Interceptαb1 −0.2685± 2.502 −0.2793± 2.582
(p-value) (0.833) (0.832)
Treatment effectβb1 −0.2644± 0.190 −0.2724± 0.193
(p-value) (0.006) (0.006)

yb2 : occurrence of diarrhea
Intercept αb2 0.6631± 2.557 0.6741± 2.605
(p-value) (0.611) (0.612 )
Treatment effect βb2 −0.6231± 0.192 −0.6422± 0.198
(p-value) (< 0.001) (< 0.001)

yc1 : measures of hemoglobin
Intercept αc1 160.3758± 32.989 160.3775± 32.984
(p-value) (< 0.001) (< 0.001)
Treatment effect βc1 −12.492± 2.498 −12.496± 2.454
(p-value) (< 0.001) (< 0.001)

yc2 : measures of white blood cell
Intercept αc2 12.295± 9.331 12.2946± 9.515
(p-value) (0.010) (0.011)
Treatment effect βc2 −0.1591± 0.706 −0.1597± 0.702
(p-value) (0.659) (0.656)

Table 2.3 shows the main result of the treatment effect, and the complete result is

presented in Table 2.5. We can observe that the statistical inference on the treatment effect

through the two models was in agreement. The second treatment therapy results in lower
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Table 2.4: The estimated parameters contain second moments of each outcome

Esimated correlation Estimated standard
deviationNausea Diarrhea HGB WBC

Nausea 1.0000 0.3954 0.0736 0.0899 -
Diarrhea 1.0000 0.0351 -0.0126 -
HGB 1.0000 0.0139 16.796
WBC 1.0000 4.7507

measures of hemoglobin and indicates a negative association with the occurrence of nausea

and diarrhea, whereas the effect difference on the measures of white blood cells is insignificant.

We can use the composite statistics to jointly assess the overall effect of this therapy on

four responses. Table 2.4 provides the standard deviation and the correlation of four clinical

outcomes estimated based on the proposed model.

Using the conventional approach, we cannot make statistical inferences across different

linear models. The proposed model is able to test the hypothesis H0 : βb1 = βb2 = βc1 =

βc2 = 0 based on the asymptotical properties of the composite likelihood function. The

test statistics of the composite Wald statistics under the H0 is approximately 138.5890, the

composite score statistics is 476.975, and the adjusted composite likelihood ratio is 264.3069,

which are all greater than the critical value of χ2
4. Therefore, we can reject the null hypothesis

and conclude that two different treatments have a statistically significant difference in patient

toxicity response. More specifically, in our estimation results, we infer there exists a significant

occurrence difference of nausea and diarrhea and a significant difference in HGB between the

two treatments.
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Chapter 3

Heterogeneous Multi-task Feature

Learning with Mixed ℓ2,1 Regularization

In this chapter, the mixed ℓ2,1 regularized composite quasi-likelihood function is proposed to

perform multi-task feature learning with different types of responses, including continuous

and discrete responses. The theoretical results establish the sign recovery consistency and

estimation error bounds of the penalized estimates under regularity conditions.

3.1 Introduction

Data integration, as a process of analyzing multiple related data sets simultaneously, can

conduct joint inference by aggregating information from different sources. Statistical models,

such as multi-task learning and fusion learning, have been proposed to conduct joint learning

through a structured regularization for grouped parameters [Caruana, 1997, Ando and Zhang,

2005, Gao and Carroll, 2017, Zhang and Yang, 2017, Thung and Wee, 2018]. The mixed

ℓ2,1 norm has been used for the grouped regularization to combine different statistical tasks,

such as multivariate regression models [Liu et al., 2009] and multiple classification problems
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[Obozinski et al., 2010, Zhou et al., 2011]. Rakotomamonjy et al. [2011] generalized the

grouped penalization to a larger class of mixed norm penalties, such as the mixed ℓq,r norm

with q ≥ 1 and 0 ≤ r ≤ 1. Furthermore, a variety of algorithms have been developed for

differently structured mixed regularization [Argyriou et al., 2006, Gong et al., 2013, Jalali

et al., 2010].

Lounici et al. [2011] showed that the regression coefficients estimated from multi-task

learning satisfy the oracle inequality, and the result can be extended to non-Gaussian errors.

The union support recovery of the multi-task feature learning was established by Obozinski

et al. [2011], Negahban and Wainwright [2011], and Wang et al. [2015b] for both deterministic

and random designs. Obozinski et al. [2011] proposed a sparsity-overlap function measuring

the shared sparsities in the regression coefficient vectors for different responses. Multi-task

learning often involves high-dimensional heterogeneous data sets [Gomez-Cabrero et al., 2014].

Most existing procedures focus on the same type of regression or classification problems

across different tasks, where the response variables are either all continuous or all discrete.

To deal with heterogeneous data sets with different types of response variables, Gao and

Carroll [2017] proposed a method of fusion learning which uses the composite likelihood to

combine the marginal likelihoods of different distributions across multiple tasks.

When the joint likelihood of heterogeneous data sets is difficult to formulate, the composite

likelihood is a convenient likelihood-based method to perform joint estimation, inference,

and feature selection. Even though the composite likelihood is not a true likelihood, the

maximum composite likelihood estimates are still consistent and asymptotically normally

distributed [Godambe, 1960, Lindsay, 1988, Cox and Reid, 2004, Varin, 2008, Gao and Song,

2010, Lindsay et al., 2011, Yi, 2014]. When the response variables are correlated across

different tasks, the second Bartlett identity no longer holds. Namely, the covariance matrix

of the composite score vectors is not equal to the negative Hessian matrix of the composite

likelihood. Both matrices need to be separately estimated when we perform joint inference on
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the correlated multiple tasks. Under this framework, different types of tasks, such as linear

regression, Poisson regression, logistic regression, and multinomial regression, can be jointly

analyzed through the multi-task feature learning. The features are shared by multiple tasks,

and the design matrices of different tasks are allowed to be different.

In Gao and Carroll [2017], non-convex penalty functions, such as the group smoothly

clipped absolute deviations (SCAD) penalty, is imposed on the composite likelihood con-

structed from multiple tasks to perform the joint sparse estimation. In this thesis, we propose

to use the mixed ℓ2,1 norms to perform the group penalization on composite likelihood. We

establish the union support recovery consistency and estimation error bounds of the penalized

estimates under regularity conditions. In the composite likelihood approach, a distributional

assumption is required to construct the marginal likelihood. To further relax the distributional

assumptions, we propose to construct the negative quasi-likelihood as the individual loss

function [Wedderburn, 1974] with a much-relaxed condition only on the moments of the

response variables. Thus, the proposed composite quasi-likelihood method can provide robust

joint sparse estimation without specific distributional assumptions.

The organization of the chapter is as follows. First, we set up the model for multi-task

learning with correlated responses in Section 3.2. We provide the main theoretical results

about the non-asymptotic error bound and the feature selection consistency of the proposed

estimates. The method of numerical optimization is discussed in Section 3.3. The simulation

studies are presented to demonstrate the feature selection accuracy and statistical consistency

properties in Section 3.4. We provide two examples of multi-task learning on heterogeneous

data sets in Section 3.5.
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3.2 Methodology

Suppose there are K tasks of related interest, and each task has nk independent responses

Yk = (yk1, · · · , yknk
)T , k = 1, · · · , K (See Table 3.1). In some multi-task learning data

sets, the observations across different tasks can be correlated. For example, there could be

measurements obtained by different techniques from the same set of experimental subjects,

or the observations can be obtained from related subjects. The predictors for different tasks

denoted by (X1, X2, · · · , XK) can be same as the examples shown in Figure 1.1. When the

integrated data sets can have different measurements, we assume the predictors to share some

similarities. For example, the pth predictor Mp = (X1p, X2p, · · · , XKp) in Table 3.1 represents

the same type of feature in all related studies. For the case with X1 = X2 = · · · = XK ,

the predictors are obtained from one research to analyze the association with different

responses. The parameters θ = (θ11, θ12, · · · , θKpn) ∈ RKpn include the regression coefficients

of the predictors across K tasks. The overall effect of each predictor Mp across all tasks is

represented by the grouped coefficients θ(p) = (θ1p, θ2p, · · · , θKp)T for any p = 1, 2, · · · , pn.

The multi-task feature learning aims to select important features whose grouped coefficients

have non-zero ℓ2 norms, i.e., ∥θ(p)∥2 ≠ 0. This is equivalent to the support union recovery, a

practice that selects the features that have non-zero coefficients in at least one of the tasks

[Obozinski et al., 2011, Negahban and Wainwright, 2011, Wang et al., 2015b]. Thus, we

define the true union support of the parameter S := {p : ∥θ(p)∥2 ̸= 0} with |S| = s and its

complement can be denoted as Sc := {p : ∥θ(p)∥2 = 0}.

For individual tasks, generalized linear models (GLM) can be applied to model the

relationship between the responses and the predictors [McCullagh and Nelder, 1989]

gk(E(yki|xk1i, . . . , xkpni)) = ηki = xTkiθk =

pn∑
p=1

xkpiθkp,
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Table 3.1: Multiple tasks with a common set of predictors M1,M2, · · · ,Mpn .

Response Linear Predictors
M1 M2 Mp Mpn

Task 1: Y1 θ11 X11 + θ12 X12 + · · ·+ θ1p X1p + · · ·+ θ1pn X1pn

Task 2: Y2 θ21 X21 + θ22 X22 + · · ·+ θ2p X2p + · · ·+ θ2pn X2pn

· · ·
Task k: Yk θk1 Xk1 + θk2 Xk2 + · · ·+ θkp Xkp + · · ·+ θkpn Xkpn

· · ·
Task K: YK θK1︸︷︷︸

θ(1)

XK1 + θK2︸︷︷︸
θ(2)

XK2 + · · ·+ θKp︸︷︷︸
θ(p)

XKp + · · ·+ θKpn︸︷︷︸
θ(pn)

XKpn

In any kth task, the response Yk consists of nk observations as Yk = (yk1, yk2, · · · , yknk
)T , and the design

matrix Xk = (Xk1, Xk2, · · · , Xkpn
) with the pth column denoted as Xkp = (xkp1, xkp2, · · · , xkpnk

)T and the
ith row denoted as xki = (xk1i, . . . , xkpni)

T .

where each row observation of Xk is denoted by xki = (xk1i, . . . , xkpni)
T ∈ Rpn and the

regression coefficients are θk = (θk1, · · · , θkpn). For each model, a task-specific link function

gk(·) is used.

Under the setting of the high dimensional model, the number of parameters pn can increase

to infinity with the sample size nk. In order to jointly analyze multiple tasks and recover the

correct model for all tasks, the following objective function is proposed:

Q(θ) = L(θ) +R(θ), (3.1)

where the loss function L(θ) measures the fitting of multiple tasks, and the penalty function

R(θ) is a mixed ℓ2,1 grouped penalization on the parameters.

3.2.1 Composite Quasi Log-likelihood

The joint distribution of responses across multiple tasks can be difficult to model, especially

when the responses are correlated across multiple tasks or they are of different types obtained

from heterogeneous tasks. Instead of using the joint likelihood, the overall loss function across
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multiple tasks can be based on the negative composite log-likelihood function [Godambe,

1960, Lindsay, 1988, Cox and Reid, 2004, Varin, 2008, Gao and Song, 2010, Yi, 2014]:

L(θ) = −
K∑
k=1

wkℓk(θk;Yk),

where the positive weights wk can be assigned based on the relative importance of the tasks and

the individual marginal log-likelihood functions ℓk(θk;Yk) model the marginal distributions

of different types of responses. Using this composite likelihood-based loss function, linear

regression, Poisson regression, logistic regression, multinomial regression, and other types of

learning tasks can be analyzed together under the multi-task feature learning framework.

When the response variables are assumed to follow distributions in the exponential family,

the marginal log-likelihood functions are as follows,

ℓk(θk;Yk) =

nk∑
i=1

ℓki(θk; yki) =

nk∑
i=1

ykiβki − bk(βki)

ϕk
+ c(yki), (3.2)

with the natural canonical parameter βki, the dispersion parameter ϕk > 0, and the cumulant

generating functions bk(.) assumed to be twice differentiable [McCullagh and Nelder, 1989].

In addition, the natural canonical parameter is related to the predictor values through the

relationship: ∂bk(βki)/∂βki = E(yki|xk1i, . . . , xkpni) = µki = g−1
k (ηki), and ηki =

∑pn
p=1 xkpiθkp.

In many applications, the response variables may not follow a distribution that belongs to

the exponential family. Without specific distributional assumption, the quasi log-likelihood

function [Wedderburn, 1974] can be used to model the marginal distribution based on the

assumptions of the first two moments:

ℓk(θk;Yk) =

nk∑
i=1

ℓki(θk; yki) =

nk∑
i=1

∫ g−1
k (ηki)

yki

yki − µ

Vk(µ)ϕk
dµ, , (3.3)
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where

E(yki|xk1i, . . . , xkpni) = µki = g−1
k (ηki) = g−1

k (

pn∑
p=1

xkpiθkp),

and

Var(yki|xk1i, . . . , xkpni) = ϕkVk(µki).

The inverse link function g−1
k (η) is a monotone function with respect to the linear predictor

η. The variance function V (u) models the relationship between variance and mean. It can

take a wide variety of forms, including some polynomial forms u, u2, u3, or u(1 − u). In

comparison with the log-likelihood formulation (3.2), the quasi log-likelihood formulation (3.3)

is more general as it does not require knowledge of the specific underlying distribution. The

assumptions are only based on the first two moments. It can be shown that (3.2) is equivalent

to (3.3) when the underlying distribution indeed belongs to the exponential family. So the

quasi-log-likelihood can be applied to a wider range of applications when the exponential

family assumption cannot be verified. Throughout this chapter, the overall loss function will

be based on the composite quasi log-likelihood as in (3.3), which comprises the log-likelihood

(3.2) as a special case.

Assumption 3.1. The individual quasi log-likelihood ℓk(θk;Yk) is a measurable function for

all Yk at any θk. It produces distinct values for different θk and it is twice differentiable as a

function of θk. It is assumed that

Eθ∗{
∂ℓk(θk;Yk)

∂θkp
} = 0,

and

Eθ∗
{∂2ℓk(θk;Yk)
∂θkp∂θkp′

}
= −Eθ∗

{∂ℓk(θk;Yk)
∂θkp

∂ℓk(θk;Yk)

∂θkp′

}
for any p, p′ = 1, 2, · · · , pn, where θ∗ is the true parameter vector.
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Let ∇L(θ) denote the first derivative of the proposed loss function, where ∇L(θ)kp =

−
∑K

k=1wk∂ℓk(θk;Yk)/∂θkp for k = 1, 2, · · · , K and p = 1, 2, · · · , pn, which have the zero

expectation with respect to θ∗ [Yi, 2017]. Let ∇2L(θ) denote the Kpn ×Kpn Hessian matrix

with each element of ∇2L(θ) given by

∇2L(θ)[kp,kp′ ] = −
K∑
k=1

wk
∂2ℓk(θk;Yk)

∂θkp∂θkp′
,

∇2L(θ)[kp,k′p′ ] = −
K∑
k=1

wk
∂2ℓk(θk;Yk)

∂θkp∂θk′p′
= 0

for any p = 1, 2, · · · , pn, k, k
′
= 1, 2, · · · , K and k ̸= k

′ . For simplicity, we set nk = n across

all tasks in the following analysis. The sensitivity matrix and variability matrix are defined as

H(θ) = E{n−1∇2L(θ)} and J(θ) = Cov{n−1∇L(θ)}.

In addition, the second Bartlett identity does not hold, namely, H(θ) ̸= J(θ) for the composite

quasi log-likelihood function due to the correlations across different tasks.

Assumption 3.2. The individual quasi log-likelihood functions admit third derivatives, and

for any θ in the small neighborhood ∥θ − θ∗∥2 ≤ Op(
√
s log(pn)/n),

max
p

Λmax(E(−
K∑
k=1

wk
∂3ℓk(θk;Yk)

∂θ∂θT∂θkp
)) ≤ W∗.

with some constant W∗ > 0.

In addition, we apply the following boundedness condition to the general quasi-likelihood

loss, which is similar to van de Geer and Müller [2012].

Assumption 3.3. For any θ with ∥θ − θ∗∥1 ≤ r, the inverse link function g−1
k (ηki) with ηki
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evaluated at the point θ is twice differentiable and can satisfy

max
k,i

{∣∣g−1
k (ηki)

∣∣, ∣∣∂g−1
k (η)

∂η
|η=ηki

∣∣, ∣∣∂g−1
k (η)

∂η
|η=ηki

∣∣−1
,
∣∣∂2g−1

k (η)

∂η2
|η=ηki

∣∣} = O(1). (3.4)

3.2.2 Mixed Regularization

The objective function (3.1) includes the penalty function to conduct joint feature selection

across all tasks. The proposed penalty function R(θ) uses the mixed ℓ2,1 regularization

R(θ) = nλn∥θ∥2,1 = nλn

pn∑
p=1

∥θ(p)∥2 = nλn

pn∑
p=1

(
K∑
k=1

θ2kp)
1/2,

with the penalty parameter λn. The mixed ℓ2,1 regularization implements feature selection

over pn elements, and each element is the ℓ2 norms of the grouped parameters θ(p) defined

in (1.2) across K tasks [Liu et al., 2009, Obozinski et al., 2010, Zhou et al., 2011]. The

estimation is different from the method to identify the sparse pattern for the individual

feature in each task, in which the LASSO or group LASSO penalty function is commonly

used [Tibshirani, 1996, Yuan and Lin, 2006].

Based on the definition proposed by Negahban et al. [2012], the mixed ℓ2,1 regularization

is decomposable in following form,

∥θ∥2,1 =
pn∑
p=1

∥θ(p)∥2 =
∑
p∈E

∥θ(p)∥2 +
∑
p∈Ec

∥θ(p)∥2 = ∥θE∥2,1 + ∥θEc∥2,1,

where the subset E ⊆ {1, 2, · · · , pn}. This property is essential for feature learning to construct

the grouped norm of θ in different subspaces. In addition, the mixed ℓ2,1 regularization is a

twice-differentiable and convex function with respect to non-zero parameters.
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Let the subdifferential of the mixed ℓ2,1 norm be denoted by z = (z11, . . . , zKpn)
T , where


z(p) = θ(p)

∥θ(p)∥2
, if ∥θ(p)∥2 ̸= 0;

∥z(p)∥2 < 1, if ∥θ(p)∥2 = 0,

for any p = 1, 2, · · · , pn. With any element in the subvector θ(p) not equal to 0, the

subdifferential has ∥θ(p)∥2 ≠ 0, indicating that this group of features can be important for

the learning tasks.

The penalized estimate is the solution of the estimating equation denoted by θ̂, such that

for ∥θ̂ − θ∗∥1 ≤ r̃ with some constant r̃,

1

n
∇Q(θ̂) = 1

n
∇L(θ̂) + λnẑ = 0, (3.5)

where ẑ is the subdifferential of the mixed ℓ2,1 norm at the penalized estimate θ̂.

If θ̂ correctly recovers the true union support with supp(θ̂) = supp(θ∗), then


− 1
n
∇L(θ̂)(p) = λnẑ

(p), for any p ∈ S;

∥ 1
n
∇L(θ̂)(p)∥2 < λn, for any p ∈ Sc.

Assumption 3.4. There exist some constants 0 < 3k1 + k2 < 1, such that s = O(nk1) and

log(pn) = O(nk2). In addition, the true parameter vector ∥θ∗∥1 ≤ R for some constant R > 0.

This assumption about the size of the true model relative to the sample size is commonly

imposed in high dimensional regularized estimation [Ravikumar et al., 2010, Li et al., 2021].

In addition, since we set the number of learning tasks K to be finite, the relation with

sample size n is not specified in this assumption. Based on Obozinski et al. [2010], the data

integration can be improved by increasing the number of related tasks, but it can lead to
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longer running time for the computational programming. If the proposed model needs to

handle the scenario with divergent K, we need further adjustment to Assumption 3.4 that

the number of tasks is proportional to sample size at a polynomial rate.

3.2.3 Sufficient Conditions

In order to obtain the finite sample estimation error bound, we need to assume some

concentration conditions. For example, the multivariate regression models are usually assumed

with the Gaussian error [Lounici et al., 2011]. To analyze other types of response variables,

different methods, such as cumulant boundedness condition or Rademacher complexity

analysis, were used by Gao and Carroll [2017], Yousefi et al. [2018], and Fan et al. [2021].

The sub-Gaussian and sub-exponential conditions were imposed on the linear model errors

[Negahban et al., 2012, Fang et al., 2020] and random design matrix [van de Geer et al.,

2014]. In addition, Ning and Liu [2017] and Li et al. [2021] showed that the concentration

conditions hold for high-dimensional generalized linear models. In the following, we assume

similar concentration conditions for the multi-task learning problem.

Assumption 3.5. For any kth task,

1. The error terms yki−g−1
k (η∗ki) are independent samples from sub-exponential distributions

with ψ1 norm (1.3) bounded by some constant A0;

2. The covariates in the design matrix satisfy supk,p,i{xkpi} ≤ L <∞.

Since we aim to use the quasi-likelihood to model multiple heterogeneous data sets without

specific distributional assumptions, the sub-exponential error terms are mild conditions to

ensure the moments of data sets and tail probabilities are bounded. Thus, the concentration

probabilities can be obtained in the following Lemma.
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Lemma 3.1. Under Assumptions 3.1 - 3.5, the composite score vector and Hessian matrix

have the following concentration results:

∥ 1
n
∇L(θ∗)∥2,∞ =Op

(√K

n
+

√
K log(pn)

n

)
,

∥ 1
n
∇L(θ∗)∥∞ =Op(

√
1

n
+

√
log(pn)

n
), (3.6)

sup
k,p,p′

{ 1
n
∇2L(θ∗)−H(θ∗)}[kp,kp′ ] = Op(

√
log pn
n

),

for any k = 1, 2, · · · , K and p, p′
= 1, 2, · · · , pn, where ℓ2,∞ norm is defined in (1.1).

Proof. First, we need to analyze the distribution of the random variable ∥n−1∇L(θ∗)(p)∥2 for

any p = 1, 2, · · · , pn. In Lemma 3.5, we have

∥ 1√
n

∂ℓk(θ
∗
k;Yk)

∂θkp
∥ψ1 ≤ A1.

with some constant A1, and by the definition of grouped ℓ2 norm, we can show that

∥n−1∇L(θ∗)(p)∥2 =
( K∑
k=1

(
1

n

∂ℓk(θ
∗
k;Yk)

∂θkp
)2
)1/2

=
( K∑
k=1

(
1

n

n∑
i=1

∂ℓki(θ
∗
k; yki)

∂θkp
)2
)1/2

=
( 1
n

K∑
k=1

(
1√
n

n∑
i=1

∂ℓki(θ
∗
k; yki)

∂θkp
)2
)1/2

.

This result can be used to bound the sub-exponential norm of ∥n−1∇L(θ∗)(p)∥2 by applying

Minkowski’s Inequality,

∥∥n−1∇L(θ∗)(p)∥2∥ψ1 = ∥
( 1
n

K∑
k=1

(
1√
n

n∑
i=1

∂ℓki(θ
∗
k; yki)

∂θkp
)2
)1/2∥ψ1
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= sup
m≥1

1

m

(
E(|

( 1
n

K∑
k=1

(
1√
n

n∑
i=1

∂ℓki(θ
∗
k; yki)

∂θkp
)2
)1/2|m))1/m

≤ K√
n
∥ 1√

n

∂ℓk(θ
∗
k;Yk)

∂θkp
∥ψ1 ≤

K√
n
A1 <∞.

Furthermore, we can show that

E(∥n−1∇L(θ∗)(p)∥2) ≤
{ 1
n

K∑
k=1

E[(
1√
n

n∑
i=1

∂ℓki(θ
∗
k; yki)

∂θkp
)2]

}1/2 ≤ A1

√
K

n
,

var(∥n−1∇L(θ∗)(p)∥2) ≤
1

n

K∑
k=1

E[(
1√
n

n∑
i=1

∂ℓki(θ
∗
k; yki)

∂θkp
)2] ≤ 2A2

1

K

n
.

This implies that ∥n−1∇L(θ∗)(p)∥2 satisfies the sub-exponential property, such that with

small δ,

P (∥n−1∇L(θ∗)(p)∥2 ≥ E(∥n−1∇L(θ∗)(p)∥2) + δ) ≤ 2 exp{−α δ2

2KA2
1

n}.

Next, we take the supremum of ∥n−1∇L(θ∗)(p)∥2 over p = 1, 2, · · · , pn,

P (sup
p

∥n−1∇L(θ∗)(p)∥2 ≥ E(∥n−1∇L(θ∗)(p)∥2) + δ) ≤ 2pn exp{−α
δ2n

2KA2
1

}.

By combining all the results above, with δ = A1

√
2K(1 + d) log(pn)/(αn) for some

constant d > 1, we show that with a probability at least 1− 2p−dn ,

sup
p

∥ 1
n
∇L(θ∗)(p)∥2 ≤ A1

(√K

n
+

√
2K(1 + d) log(pn)

αn

)
.

In addition, we showed that the score function can hold the sub-exponential condition from
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Lemma 3.5. Therefore, we have

P (∥ 1
n
∇L(θ∗)∥∞ ≥ ε) ≤ Kpnmax

p
P (

1

n

∂ℓk(θ
∗
k;Yk)

∂θkp
≥ ε) ≤ 2Kpn exp{−

ε2

A2
1

n},

which can imply

∥ 1
n
∇L(θ∗)∥∞ ≤ A1

(√ 1

n
+

√
2(d+ 1) log(pn)

(αn)

)
,

with a probability at least 1− 2 exp{−d log(pn) + log(K)} as claimed in (3.6).

The second part of Lemma 3.1 shows that the difference between the random Hessian

and its expectation is bounded. When the tasks are modeled by the canonical link and the

response variables are from the exponential family, the Hessian matrix is deterministic, and

n−1∇L(θ∗) = H(θ∗). For general cases, the entries of the random Hessian of the composite

quasi-likelihood are

1

n

∂2

∂θkp∂θkp′
L(θ∗) = 1

n

K∑
k=1

n∑
i=1

1

ϕkV (g−1
k (η∗ki))

{
∂g−1

k (ηki)

∂ηki

∂ηki
∂θkp

}{
∂g−1

k (ηki)

∂ηki

∂ηki
∂θkp′

}
︸ ︷︷ ︸

I1

− 1

n

K∑
k=1

n∑
i=1

(
yki − g−1

k (η∗ki)

)
︸ ︷︷ ︸

I2

∂

∂θkp′

{
1

ϕkV (g−1
k (η∗ki))

∂g−1
k (ηki)

∂ηki

∂ηki
∂θkp

}
︸ ︷︷ ︸

I3

.

The component I1 is equal to the corresponding element in the sensitivity matrix H(θ∗).

With some special link functions, the component I3 can be equal to zero. For the models with

the general quasi-likelihood settings, we can show that the component I3 can be bounded by

universal constant K > 0 across all tasks with similar derivation as Lemma 3.6. Based on

Assumption 3.5, the variables n−1∇2L(θ∗)[kp,kp′ ] −H(θ∗)[kp,kp′ ] satisfy the sub-exponential

condition with mean zero and the ψ1 norm bounded by KA0 < A1 for some universal constant
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A1. Therefore, we have the concentration result of the random Hessian matrix

sup
k,p,p′

{ 1
n
∇2L(θ∗)−H(θ∗)}[kp,kp′ ] = Op(

√
log pn
n

),

for any k = 1, 2, · · · , K and p, p′
= 1, 2, · · · , pn.

Next, we introduce the restricted eigenvalue (RE) condition for the design matrix, which

was commonly used for regularized regression models [Bickel et al., 2009, van de Geer and

Bühlmann, 2009, Meinshausen and Yu, 2009].

Assumption 3.6. Define Sn,k = n−1
∑n

i=1 xkix
T
ki for the kth task. There exist m = c0Ks for

some c0 > 0 and some positive constants γ, ρ− and ρ+, such that the restricted minimum and

maximum eigenvalues of the design matrix

ρ−(m, γ) = inf
k

{
uTSn,ku : u ∈ C(m, γ)

}
, and

ρ+(m, γ) = sup
k

{
uTSn,ku : u ∈ C(m, γ)

}

are bounded by

0 < ρ− ≤ ρ−(m, γ) < ρ+(m, γ) ≤ ρ+ <∞,

where C(m, γ) := {u : S ⊂ J , |J | < m, ∥uJ c∥1 ≤ γ∥uJ ∥1}.

Since the Hessian matrix of the proposed loss function depends on the parameter θ, we

need to show that the restricted eigenvalue condition holds for the Hessian matrix under the

model assumptions.

41



Lemma 3.2. Under Assumptions 3.1 - 3.5, there exist positive constants γ, κ−, κ+, and m

such that the expected Hessian matrix of the composite quasi-likelihood loss function H(θ)

satisfies the restricted eigenvalue (RE) condition

0 < κ− ≤ κ−(m, γ) < κ+(m, γ) ≤ κ+ <∞,

where

κ+(m, γ) = sup
u,θ

{uTH(θ)u : u ∈ C(m, γ)};

κ−(m, γ) = inf
u,θ

{uTH(θ)u : u ∈ C(m, γ)},

with C(m, γ) ≡ {u : S ⊂ J , |J | ≤ m, ∥uJ c∥1 ≤ γ∥uJ ∥1}. Furthermore, there exists some

r̃ > 0, for any point θ with ∥θ−θ∗∥1 ≤ r̃, the observed Hessian of the composite quasi-likelihood

loss function n−1∇2L(θ) satisfies the restricted eigenvalue condition with a probability tending

to 1.

Proof. Based on Lemma 3.6, the Hessian matrix of the composite quasi-likelihood is given by

1

n
∇2L(θ) =1

n

K∑
k=1

n∑
i=1

{f1(ηki)− (yki − g−1
k (η∗ki))f2(ηki)}xkixTki,

and there exist some positive constants α0, α1, and α2, such that α0 < f1(ηki) < α1 and

|f2(ηki)| < α2.

When the parameters are partitioned into subsets of different tasks, the Hessian matrix is

in the form of a diagonal block matrix. We show that the minimum and maximum eigenvalues
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of the Hessian matrix are given by

minΛ(
1

n
∇2L(θ)) = inf

k

{
uT

1

n

n∑
i=1

{
f1(ηki)− (yki − g−1

k (η∗ki))f2(ηki)
}
xkix

T
kiu

}
;

maxΛ(
1

n
∇2L(θ)) = sup

k

{
uT

1

n

n∑
i=1

{
f1(ηki)− (yki − g−1

k (η∗ki))f2(ηki)
}
xkix

T
kiu

}
.

We have

uT
{
1

n

n∑
i=1

f1(ηki)xkix
T
ki

}
u =

1

n

n∑
i=1

f1(ηki)u
Txkix

T
kiu ≥ α0ρ−.

We apply Hölder’s inequality and get

uT
{
1

n

n∑
i=1

(yki−g−1
k (η∗ki))f2(ηki)xkix

T
ki

}
u ≤ max

k,i
{(xTkiu)2}

1

n

n∑
i=1

|(yki − g−1
k (η∗ki))f2(ηki)|.

Based on Assumption 3.5, ∥xki∥∞ ≤ L across all tasks and ∥uJ c∥1 ≤ γ∥uJ ∥1 with |J | ≤

m = c0Ks, we have

xTkiu ≤ ∥xki∥∞∥u∥1≤(1 + γ)∥xki∥∞∥uJ ∥1 ≤ (1 + γ)
√
|J |L.

In addition, the variables yki − g−1
k (η∗ki) follow sub-exponential distributions based on As-

sumption 3.5. We obtain that with a probability at least 1 − 2 exp{−c log(pn)} for some

constant c = (α2A0)
−2 > 0,

1

n

n∑
i=1

|yki − g−1
k (η∗ki)|f2(ηki) ≤

√
2 log pn
n

.

Therefore, there exists some κ− < α0ρ−. If the sample size is sufficiently large

n ≥
(
c0(1 + γ)2L2K

α0ρ− − κ−

)2

2s2 log pn,
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then we obtain the lower bound for the minimum eigenvalue of the Hessian matrix

uT
1

n
∇2L(θ)u ≥ α0ρ− − c0(1 + γ)2L2Ks

√
2 log(pn)

n
≥ κ− > 0.

Similarly, the upper bound can be obtained using a similar approach

uT
1

n
∇2L(θ)u ≤ α1ρ+ + c0(1 + γ)2L2Ks

√
2 log(pn)

n
≤ κ+ <∞.

Combining the results above, the random Hessian matrix satisfies the restricted eigenvalue

condition with high probability.

Lemma 3.2 guarantees that with a probability tending to 1,

(
1

n
∇L(θ +∆)− 1

n
∇L(θ))T∆ ≥ κ−∥∆∥22, with ∆ ∈ C(m, γ).

This implies that with high probability, the optimization problem has a stationary point

which satisfies the sparsity requirement [Loh and Wainwright, 2015, Fan et al., 2018, Sun

et al., 2020].

The mutual incoherence condition is used to control the dependency between the predictors

in the true model and the other unimportant predictors, which is a necessary condition to

ensure the true support recovery with ℓ1 regularization [Zhao and Yu, 2006, van de Geer and

Bühlmann, 2009, Loh and Wainwright, 2017, Jalali et al., 2010]. For high dimensional models

with mixed regularization, the block-wise mutual incoherence was proposed to ensure the

group selection consistency [Bach, 2008, Eldar et al., 2010, Hebiri and van de Geer, 2011].

Assumption 3.7. Let the sub-matrices of the expected Hessian matrix be denoted by H∗
SS =

Eθ∗ [n
−1∇2L(θ∗)SS ] and H∗

ScS = Eθ∗ [n
−1∇2L(θ∗)ScS ], where S is the support of non-zero
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parameters. For some constant ξ ∈ (0, 1), the inequality holds

√
K
∣∣∣∣∣∣H∗

ScS [H
∗
SS ]

−1
∣∣∣∣∣∣

∞ ≤ 1− ξ.

When the expected Hessian matrix satisfies the mutual incoherence condition above, it

can be shown that the observed Hessian matrix holds a similar condition with a probability

tending to one.

Lemma 3.3. Under Assumptions 3.1 - 3.7, let ξ ∈ (0, 1), the following condition

√
K

∣∣∣∣∣∣∣∣∣∣∣∣ 1n∇2L(θ∗)ScS(
1

n
∇2L(θ∗)SS)−1

∣∣∣∣∣∣∣∣∣∣∣∣
∞
< 1− ξ

2

holds with a probability at least 1−4K exp{−C0ξ
2n/s3+2 log(pn)} for some universal constant

C0 > 0.

Proof. The proof of lemma 3.3 is analogous to previous work in Ravikumar et al. [2010]. For

simplicity, let the sub-matrix of random Hessian n−1∇2L(θ∗)SS = H∗
SS , and let the difference

of the matrices be denoted by ∆H∗
SS = H∗

SS −H(θ∗)SS . Because the sub-matrices of random

Hessian are diagonal block matrices, we show that

H∗
SS = diag(kH∗

SS)
K
k=1,

where the sub-matrix kH
∗
SS ∈ Rs×s represents the kth block in H∗

SS . The difference between

sub-matrices is denoted as ∆kH
∗
SS = [kH∗

SS −k H(θ∗)SS ].

We need to obtain the concentration result of the inverse matrix difference [H∗
SS ]

−1 −

[H∗
SS ]

−1. Based on Lemma 3.9, we show that the diagonal block matrix

∣∣∣∣∣∣[H∗
SS ]

−1 − [H∗
SS ]

−1
∣∣∣∣∣∣

∞ = sup
k

∣∣∣∣∣∣[kH∗
SS ]

−1 − [kH
∗
SS ]

−1
∣∣∣∣∣∣

∞,
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so that

∣∣∣∣∣∣[kH∗
SS ]

−1 − [kH
∗
SS ]

−1
∣∣∣∣∣∣

∞ =
∣∣∣∣∣∣[kH∗

SS ]
−1∆kH

∗
SS [kH∗

SS ]
−1
∣∣∣∣∣∣

∞

(i)

≤
√
s
∣∣∣∣∣∣[kH∗

SS ]
−1
∣∣∣∣∣∣

2
|||∆kH

∗
SS |||2

∣∣∣∣∣∣[kH∗
SS ]

−1
∣∣∣∣∣∣

2

≤
√
s

κ−
|||∆kH

∗
SS |||2

∣∣∣∣∣∣[kH∗
SS ]

−1
∣∣∣∣∣∣

2
.

In step (i), we apply the inequality between matrix norms and the Cauchy–Schwarz inequality.

We have

P (
∣∣∣∣∣∣[H∗

SS ]
−1 − [H∗

SS ]
−1
∣∣∣∣∣∣

∞ ≥ ε) ≤ K sup
k
P (

√
s

κ−
|||∆kH

∗
SS |||2

∣∣∣∣∣∣[kH∗
SS ]

−1
∣∣∣∣∣∣

2
≥ ε)

(i)

≤ K sup
k
P ({|||∆kH

∗
SS |||2 ≥

εκ2−√
s
} ∪ {|||∆kH

∗
SS |||2 > ε}

≤ 2K exp
{
−
ακ4−ε

2

A2
1s

3
n+ 2 log(s)

}
.

The step (i) can be obtained based on the derivation 3.18 and 3.20. This probability is

exponentially small as n > cs3 log(pn) with some constant c.

We combine all the concentration results and obtain

H∗
ScS(H∗

SS)
−1 = [H∗

ScS +∆H∗
ScS ][[H

∗
SS ]

−1 + [H∗
SS ]

−1 − [H∗
SS ]

−1]

= H∗
ScS(H

∗
SS)

−1︸ ︷︷ ︸
I1

+H∗
ScS([H∗

SS ]
−1 − [H∗

SS ]
−1)︸ ︷︷ ︸

I2

+∆H∗
ScS(H

∗
SS)

−1︸ ︷︷ ︸
I3

+∆H∗
ScS([H∗

SS ]
−1 − [H∗

SS ]
−1)︸ ︷︷ ︸

I4

.

We have the component
√
K|||I1|||∞ ≤ (1−ξ) based on Assumption 3.7. For the second compo-

nent I2, we apply Lemma 3.7 to obtain that with a probability at least 1−2K exp{−ακ2−ε
2

A2
1s

3 n+
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2 log(s)},

|||I2|||∞ ≤
∣∣∣∣∣∣H∗

ScS(H
∗
SS)

−1
∣∣∣∣∣∣

∞

∣∣∣∣∣∣∆H∗
SS(H∗

SS)
−1
∣∣∣∣∣∣

∞

≤
∣∣∣∣∣∣H∗

ScS(H
∗
SS)

−1
∣∣∣∣∣∣

∞ sup
k
{|||∆kH

∗
SS |||∞

∣∣∣∣∣∣(kH∗
SS)

−1
∣∣∣∣∣∣

∞}

<
1− ξ√
K

×
{
κ−ε√
s

}
×
{√

s

κ−

}
=

1− ξ√
K

× ε
′
.

Based on Lemmas 3.7 and 3.8, the concentration result of the component I3 and I4 can be

obtained with a probability at least 1− 2K exp
{
− ακ4−ε

′2

A2
1s

3 n+2 log(s)
}
− 2K exp

{
− ακ2−ε

2

A2
1s

3 n+

log(s) + log(pn − s)
}
,

|||I3|||∞ ≤ |||∆H∗
ScS |||∞ sup

k
{
√
s
∣∣∣∣∣∣(kH∗

SS)
−1
∣∣∣∣∣∣

2
} ≤

{
εκ−√
s

}{√
s

κ−

}
= ε

|||I4|||∞ ≤ |||∆H∗
ScS |||∞

∣∣∣∣∣∣∆[H∗
SS ]

−1
∣∣∣∣∣∣

∞ ≤ ε× ε
′
.

We set ε ≤ ξ/(4
√
K) and ε′ ≤ ξ that leads to

√
K
∣∣∣∣∣∣H∗

ScS(H∗
SS)

−1
∣∣∣∣∣∣

∞ < 1− ξ +
√
Kε× ε

′
+ (1− ξ)ε+

√
Kε

< (1− ξ) +
ξ2

4
+
ξ − ξ2

4
+
ξ

4
< 1− 1

2
ξ

with a probability 1− 4K exp
{
−C0ξ

2n/s3 + 2 log(pn)
}

for a universal constant C0 > 0.

3.2.4 Selection Consistency and Estimation Error Bound

This section establishes the finite sample estimation error bound and model selection consis-

tency for the penalized estimate.

Lemma 3.4. Let E be a subset of {1, . . . , pn} such that S ⊆ E and |E| = c1s with some

positive constant c1. Under Assumptions 3.1 - 3.6, suppose with constants α > 0 and d > 1,
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the penalty parameter satisfies

λn ≥ 4A1

ξ

(√K

n
+

√
2(d+ 1)K log(pn)

αn

)
(3.7)

where A1 ≥ KA0 for some K > 0, and the composite score vector satisfies the inequality

∥n−1∇L(θ∗)∥∞ ≤ λn/(2
√
K), then there exist a optimal solution θ̂ of the the estimating

equation (3.5) such that ∥θ̂ − θ∗∥1 ≤ r̃, and

∥(θ̂ − θ∗)Ec∥1 ≤ (2
√
K + 1)∥(θ̂ − θ∗)E∥1. (3.8)

Proof. The first-order partial derivative of the objective function can be expanded by applying

the mean value theorem,

0 = ∇Q(θ̂) = ∇L(θ∗) +∇2L(θ̃)(θ̂ − θ∗) + nλnẑ,

where θ̃ = αθ∗ + (1− α)θ̂ for some α ∈ (0, 1). This entails

∇Q(θ̂)T (θ̂ − θ∗) = (∇L(θ∗) + nλnẑ)
T (θ̂ − θ∗) + (θ̂ − θ∗)T∇2L(θ̃)(θ̂ − θ∗). (3.9)

Based on Lemma 3.6, we can show that with a probability tending to 1,

(θ̂ − θ∗)T
1

n
∇2L(θ̃)(θ̂ − θ∗) ≥ 0.

Thus, we can construct the inequality from 3.9 as follows,

∇Q(θ̂)T (θ̂ − θ∗)︸ ︷︷ ︸
I1

−∇L(θ∗)(θ̂ − θ∗)︸ ︷︷ ︸
I2

−nλn ẑT (θ̂ − θ∗)︸ ︷︷ ︸
I3

≥ 0. (3.10)
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For the exact solution θ̂, all elements in ∇Q(θ̂) are zero so that the component I1 = 0. The

elements in the vector (θ̂ − θ∗) ∈ RKpn can be decomposed into two subsets E and Ec. By

applying Hölder’s inequality, the components I2 from the equation 3.10 can be bounded

above as follows

I2 : −∇L(θ∗)T (θ̂ − θ∗) ≤∥∇L(θ∗)∥∞∥θ̂ − θ∗∥1 (3.11)

=∥∇L(θ∗)∥∞(∥(θ̂ − θ∗)E∥1 + ∥(θ̂ − θ∗)Ec∥1).

By the definition, if θ̂(p) ̸= 0, ẑ(p) = θ̂(p)/∥θ̂(p)∥2, and if θ̂(p) = 0, ∥ẑ(p)∥2 < 1. Since

S ∩Ec = ∅, we have θ∗Ec = 0. First, we decompose the term I3 into two subsets. In the subset

E ,

−ẑTE (θ̂ − θ∗)E ≤ ∥ẑTE ∥∞∥(θ̂ − θ∗)E∥1 ≤ ∥(θ̂ − θ∗)E∥1.

In the complement set Ec,

ẑTEc(θ̂ − θ∗)Ec = ẑTEc θ̂Ec
(i)
=

∑
θ̂(p) ̸=0;
p⊆Ec

∥θ̂(p)∥22
∥θ̂(p)∥2

+
∑
θ̂(p)=0;
p⊆Ec

(ẑ(p))T θ̂(p)

(ii)

≥
∑
θ̂(p) ̸=0;
p⊆Ec

1√
K

∥θ̂(p)∥1 +
∑
θ̂(p)=0;
p⊆Ec

0 =
1√
K

∥(θ̂ − θ∗)Ec∥1.

In the step (i), We divide the estimator θ̂Ec into nonzero and zero subsets. In step (ii), we

apply the Cauchy–Schwarz inequality to obtain the result.

From the above derivations, the inequality 3.10 can be expanded as

(λn + ∥ 1
n
∇L(θ∗)∥∞)∥(θ̂ − θ∗)E∥1 ≥ (λn

1√
K

− ∥ 1
n
∇L(θ∗)∥∞)∥(θ̂ − θ∗)Ec∥1. (3.12)
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Because ∥n−1∇L(θ∗)∥∞ ≤ λn/(2
√
K) with high probability, we have

∥(θ̂ − θ∗)Ec∥1 ≤
λn + ∥n−1∇L(θ∗)∥∞

λn/
√
K − ∥n−1∇L(θ∗)∥∞

∥(θ̂ − θ∗)E∥1.

In addition, if we plug in the maximum value λn/(2
√
K) of ∥n−1∇L(θ∗)∥∞, we obtain

∥(θ̂ − θ∗)Ec∥1 ≤ (2
√
K + 1)∥(θ̂ − θ∗)E∥1.

For the special case of K = 1, this inequality coincides with the conventional result on

the LASSO estimator. Inequality (3.8) is essential to set a bound for the overall estimation

error of the penalized estimate.

Theorem 3.1. Based on Assumptions 3.1 - 3.6, suppose the composite score vector satisfies

∥n−1∇L(θ∗)∥∞ ≤ λn/(2
√
K) with the penalty parameter chosen as (3.7), there exists a

penalized estimator θ̂ of (3.5), and

∥θ̂ − θ∗∥2 ≤
3λn

√
s

2κ−
;

∥θ̂ − θ∗∥1 ≤
3
√
K(

√
K + 1)

κ−
λns;

(
1

n
∇L(θ̂)− 1

n
∇L(θ∗))T (θ̂ − θ∗) ≤ 3(

√
K + 1)(2

√
K + 1)

2κ−
λ2ns

with a probability at least 1− 2 exp{−C log(pn)} for some constant C.

Proof. Lemma 3.4 shows that for the solution θ̂ of the estimating equation (3.5), (θ̂ − θ∗) ∈

C(m, γ) with m = c0Ks and γ = 2
√
K +1. Using the results from Lemma 3.2, we can obtain
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the following inequality with probability tending to 1,

1

n
∇Q(θ̂)T (θ̂ − θ∗)− (

1

n
∇L(θ∗) + λnẑ)

T (θ̂ − θ∗) ≥ κ−∥θ̂ − θ∗∥22. (3.13)

We decompose (3.13) into two components and apply Hölder’s inequality:

−∇L(θ∗)(θ̂ − θ∗) ≤ ∥∇L(θ∗)E∥2∥(θ̂ − θ∗)E∥2 + ∥∇L(θ∗)Ec∥∞∥(θ̂ − θ∗)Ec∥1;

−ẑT (θ̂ − θ∗) ≤ ∥ẑE∥2∥(θ̂ − θ∗)E∥2 −
1√
K

∥(θ̂ − θ∗)Ec∥1.

Plugging back into (3.13), we have

κ−∥θ̂ − θ∗∥22 ≤ ∥ 1
n
∇L(θ∗)E∥2∥(θ̂ − θ∗)E∥2 + ∥ 1

n
∇L(θ∗)Ec∥∞∥(θ̂ − θ∗)Ec∥1

+ λn∥ẑE∥2∥(θ̂ − θ∗)E∥2 − λn
1√
K

∥(θ̂ − θ∗)Ec∥1.

According to Lemma 3.1, ∥n−1∇L(θ∗)∥∞ ≤ λn/2
√
K with a probability tending to 1. There-

fore, the component (∥ 1
n
∇L(θ∗)Ec∥∞ − λn/

√
K)∥(θ̂− θ∗)Ec∥1 ≤ 0. We simplify the inequality

above as follows,

κ−∥θ̂ − θ∗∥22 ≤ (∥ 1
n
∇L(θ∗)E∥2 + λn∥ẑE∥2)∥(θ̂ − θ∗)E∥2.

Based on the Cauchy–Schwarz inequality, ∥∇L(θ∗)E∥2 ≤
√
K|E|∥∇L(θ∗)E∥∞. According to

the property of mixed ℓ2,1 norm, ∥ẑE∥2 =
√

|E|. Because of the assumption that |E| = c1|S| =

c1s with some constant c1 ≥ 1, the following inequality can be obtained

κ−∥θ̂ − θ∗∥22 ≤ (λn
√
c1s+

√
K|E|∥ 1

n
∇L(θ∗)E∥∞)∥(θ̂ − θ∗)E∥2,

≤ (λn
√
c1s+

λn

2
√
K

√
c1Ks)∥(θ̂ − θ∗)E∥2 ≤

3λn
√
c1s

2
∥(θ̂ − θ∗)∥2.
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Therefore, taking the constant c1 = 1, we have

∥θ̂ − θ∗∥2 ≤
3λn

√
s

2κ−
= Op(λn

√
s).

In addition, we derive the following error bounds:

∥θ̂ − θ∗∥1 ≤(2
√
K + 2)∥(θ̂ − θ∗)E∥1

≤(2
√
K + 2)

√
sK∥(θ̂ − θ∗)∥2

≤3
√
K(

√
K + 1)

κ−
λns;

1

n
(∇L(θ̂)−∇L(θ∗))T (θ̂ − θ∗) ≤ 1

n
∥∇L(θ̂)−∇L(θ∗)∥∞∥θ̂ − θ∗∥1

≤(∥ 1
n
∇L(θ̂) + λnẑ∥∞ + ∥ 1

n
∇L(θ∗)∥∞

+∥λnẑ∥∞)∥θ̂ − θ∗∥1

=(∥ 1
n
∇L(θ∗)∥∞ + λn)∥θ̂ − θ∗∥1

≤3(
√
K + 1)(2

√
K + 1)

2κ−
λ2ns.

As the size of the penalty parameter is O(
√
log(pn)/n), Theorem 3.1 implies ∥θ̂ − θ∗∥2 =

Op(
√

s log(pn)
n

).

Theorem 3.2. Under Assumptions 3.1 - 3.7, suppose the penalty parameter λn is chosen as

(3.7) and the minimum non-zero parameter

min
k;p∈S

|θkp| ≥
(1 + 2

√
K)

√
s

κ−
√
K

λn,

then there exists a penalized estimator θ̂ of program (3.5) satisfies sign(θ̂) = sign(θ∗) with a

probability at least 1− 2p−dn − 4K exp{−C0n/s
3 + log(pn)} for the universal constants d > 1

52



and C0 > 0.

Proof. The derivative equation (3.5) can be partitioned into two sets of equations based on

the two subspaces of parameters S and Sc:

− 1

n
∇L(θ̂)S = λnẑS , (3.14a)

− 1

n
∇L(θ̂)Sc = λnẑSc . (3.14b)

Based on the definition of sub-differential, the sub-differential ẑS contains grouped subsets

ẑ(p) = θ̂(p)/∥θ̂(p)∥2 with p ∈ S, and maxp∈Sc ∥ẑ(p)∥2 < 1.

According to Lemma 3.2, θ̂ is the optima of the objective function with high probability.

Consider an estimator with θ̂S,0 = (θ̂S ,0), where

θ̂S,0 = argmin
θ=(θS ,0)

{L(θ) + nλn∥θ∥2,1}.

If the estimator θ̂S,0 satisfies the conditions (3.14a) and (3.14b), then with high probability,

θ̂S,0 is the local optimal solution θ̂ to Equation (3.5).

We expand the score function Using the mean value theorem as follows

1

n
∇L(θ̂S,0) =

1

n
∇L(θ∗) + 1

n
∇L(θ̂S,0)−

1

n
∇L(θ∗) = 1

n
∇L(θ∗) + 1

n
∇2L(θ̃)∆̂

=
1

n
∇L(θ∗) + 1

n
∇2L(θ∗)∆̂ + (

1

n
∇2L(θ̃)− 1

n
∇2L(θ∗))∆̂︸ ︷︷ ︸

R

,

where ∆̂ = (θ̂S,0 − θ∗), θ̃ = αθ∗ + (1− α)θ̂S for some α ∈ [0, 1].

Thus, we write the equations (3.14a) and (3.14b) in block format with solution θ̂S,0

1

n

∇2L(θ∗)SS ∇2L(θ∗)SSc

∇2L(θ∗)ScS ∇2L(θ∗)ScSc


∆̂S

0

+
1

n

∇L(θ∗)S

∇L(θ∗)Sc

+

 RS + λnẑS

RSc + λnẑSc

 = 0.
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According to Lemma 3.8, the sub-matrix n−1∇2L(θ∗)SS is invertible with high probability.

Thus, we obtain the difference block ∆S by solving

∆S = θ̂S − θ∗S = −(
1

n
∇2L(θ∗)SS)−1(

1

n
∇L(θ∗)S + λnẑS +RS).

Next, we show that the elements of the remainder vector R can be expanded as follow

Rkp =
(∂2ℓk(θ̃;Yk)
∂θ∂θT∂θkp

− ∂2ℓk(θ
∗;Yk)

∂θ∂θT∂θkp

)
∆̂ = ∆̃T

(∂3ℓk(θ∗;Yk)
∂θ∂θT∂θkp

)
∆̂,

with ∆̃ = (θ̃ − θ∗) = (1 − α)∆̂. Let ∇kpH∗ = ∂3ℓk(θ
∗;Yk)/∂θ∂θ

T∂θkp, where ∇kpH∗ is a

Kpn ×Kpn matrix. With similar derivation as in the proof of Lemma 3.6, all elements of

∇kpH∗ are from sub-exponential distributions. Thus, we show that for any k = 1, 2, · · · , K

and p = 1, 2, · · · , pn,

Rkp = (1− α)∆̂T
S∇kpH∗

SS∆̂S ≤ (1− α)∥∆̂S∥22|||∇kpH∗
SS |||2

(i)

≤ W∗∥∆̂S∥22
(ii)

≤ 9(W∗ + δ)

4κ2−
λ2ns.

The step (i) is obtained based on the sub-exponential condition for the elements of ∇kpH∗.

For some small δ and a universal constant C,

P (|||∇kpH∗
SS |||2 ≥ |||E(∇kpH∗

SS)|||2 + δ) ≤ 2K exp{−C δ2n

Ks2
+ 2 log(s)}.

According to Assumption 3.2, W∗ ≥ |||E(∇kpH∗
SS)|||2. Thus, |||∇kpH∗

SS |||2 ≤ (W ∗ + δ) with

high probability. According to Theorem 3.1, ∥∆̂∥22 ≤ 9λ2ns/(2κ−)
2. This leads to the result

in step (ii).

Combining the results above, we show that with a probability larger than 1 − 2p−dn −
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4K exp{−C0
n
s3
+ log(pn)},

∥∆S∥∞ = ∥( 1
n
∇2L(θ∗)SS)−1(

1

n
∇L(θ∗)S + λnẑS +RS)∥∞

≤
√
s

κ−

(
∥ 1
n
∇L(θ∗)S∥∞ + λn∥ẑS∥∞ + ∥RS∥∞

)
≤ (1 + 2

√
K)

√
s

κ−
√
K

λn ≤ |θ∗min|,

for some constant C0 > 0. This implies sign(θ̂S) = sign(θ∗S).

Next, we show that maxp⊂Sc ∥ẑ(p)∥2 < 1, which satisfies the KKT conditions. The

sub-differential ẑSc can be calculated from the block equation above,

ẑSc = − 1

λn
(
1

n
∇L(θ∗)Sc+RSc − 1

n
∇2L(θ∗)ScS(

1

n
∇2L(θ∗)SS)−1

(
1

n
∇L(θ∗)S + λnẑS +RS)).

(3.15)

The sub-differential zSc from (3.15) can be decomposed into three components

ẑSc =
1

λn
(
1

n
∇2L(θ∗)ScS(

1

n
∇2L(θ∗)SS)−1 1

n
∇L(θ∗)S − 1

n
∇L(θ∗)Sc︸ ︷︷ ︸

I1

+
1

n
∇2L(θ∗)ScS(

1

n
∇2L(θ∗)SS)−1RS −RSc︸ ︷︷ ︸

I2

(3.16)

+ λn
1

n
∇2L(θ∗)ScS(

1

n
∇2L(θ∗)SS)−1ẑS︸ ︷︷ ︸

I3

).

The sub-differential can be grouped as ẑ(p) with p ⊂ Sc.

Based on Lemma 3.3 and Corollary 3.1, the following upper bound can be obtained with

a probability at least 1− 2 exp{−d log(pn)} for some constant d > 1,

max
p⊂Sc

∥∥I(p)
1 ∥2 ≤max

p⊂Sc
∥ 1
n
∇L(θ∗)(p)

∥∥
2

+max
p⊂Sc

∥∥{ 1
n
∇2L(θ∗)ScS(

1

n
∇2L(θ∗)SS)−1 1

n
∇L(θ∗)S

}(p)∥∥
2
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≤max
p⊂Sc

∥ 1
n
∇L(θ∗)(p)

∥∥
2

+
√
K

∣∣∣∣∣∣∣∣∣∣∣∣ 1n∇2L(θ∗)ScS(
1

n
∇2L(θ∗)SS)−1

∣∣∣∣∣∣∣∣∣∣∣∣
∞
∥ 1
n
∇L(θ∗)S

∥∥
∞

≤ξ
4
λn +

ξ

4
(1− ξ

2
)λn <

ξ

2
λn.

For the remainder component, we have

max
p⊂Sc

∥I(p)
2 ∥2 ≤

√
K∥I2∥∞

≤
√
K(∥RSc∥∞ + ∥RS∥∞

∣∣∣∣∣∣∣∣∣∣∣∣ 1n∇2L(θ∗)ScS(
1

n
∇2L(θ∗)SS)−1

∣∣∣∣∣∣∣∣∣∣∣∣
∞
)

≤9W∗

4κ2−
λ2ns

√
K = O(

s log(pn)

n
) → o(1).

Similarly, we show that the mixed norm of I3 can be bounded,

max
p⊂Sc

∥I(p)
3 ∥2 =max

p⊂Sc
λn

∥∥{ 1
n
∇2L(θ∗)ScS(

1

n
∇2L(θ∗)SS)−1ẑS

}(p)∥∥
2
≤ λn(1−

1

2
ξ).

By adding the three components, we show that

max
p⊂Sc

∥ẑ(p)∥2 ≤max
p⊂Sc

1

λn
(∥I(p)

1 ∥2 + ∥I(p)
2 ∥2 + ∥I(p)

3 ∥2) < 1− ξ

2
+
ξ

2
< 1.

Combining the results above, we have sign(θ̂) = sign(θ∗) with a probability tending to 1.

Theorem 3.2 indicates that the proposed penalized estimate for multi-task learning achieves

sign consistency and recovers the union support across multiple tasks. To measure the

performance of selected features for all tasks, we can apply the pseudo-Bayesian information

criterion proposed by Gao and Carroll [2017]. This information criterion evaluates the joint

model complexity, which also considers the correlation between different related tasks.

56



3.3 Optimization

From the computational perspective, an iterative algorithm can be developed to solve the

optimization problem in (3.5). We set multiple steps of optimization labeled as step t,

t = 1, . . . , T . The parameters updated at the jth iteration of the tth step are denoted by θ[t,j]

with θ(p),[t,j] representing the pth grouped parameters. In each step, we apply the composite

gradient descent (CGD) algorithm [Nesterov, 2013] to update subsequent iterations, which is

widely used in high dimensional data analysis [Agarwal et al., 2012a, Loh and Wainwright,

2015]. For simplicity, we use θj to denote the update θ[t,j] and θ(p),j to denote the grouped

parameters θ(p)[t,j] in step t. To approximate the objective function Q(θ), we apply the

majorize-minimization (MM) method by introducing an isotropic quadratic function

Q(θ|θj) = 1

n
L(θj) + 1

n
∇L(θj)(θ − θj) +

γt
2
∥θ − θj∥22 + λn∥θ∥2,1,

where the conventional value of the quadratic coefficient γt is chosen as the largest eigenvalue

of the Hessian matrix. Based on the property of the majorize-minimization (MM) algorithm,

we have

Q(θj+1) ≤ Q(θj+1|θj) and Q(θj|θj) = Q(θj).

Therefore, we solve each subsequent optimization sub-problems by minimizing the function

Q(θ|θj)

θj+1 = argmin
θ
{Q(θ|θj)} = argmin

θ
{ 1
n
∇L(θj)θ + γt

2
∥θ − θj∥22 + λn∥θ∥2,1}.
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In addition, we simplify the solution of the optimization problem by completing the square as

θj+1 = argmin
θ
{1
2
∥θ − (θj −

1
n
∇L(θj)
γt

)∥22 +
λn
γt

∥θ∥2,1}.

We define the thresholding operator Sλn/η on grouped parameters as

Sλn/η(θ
(p)) = (∥θ(p)∥2 −

λn
η
)+z

(p),

where the subdifferential is defined as z(p) = ∂∥θ(p)∥2/∂θ(p). The subsequent update from the

jth to the j + 1th step can be obtained as

θ(p),j+1 = Sλn/η(θ
(p),j − 1

n

∇L(θj)(p)

η
), (3.17)

where the value of the step size η can be set equal or proportional to the coefficient γt,

which can be updated in each step. Within each step, we apply the fast iterative shrinkage

thresholding algorithm (FISTA) framework [Beck and Teboulle, 2009] to further accelerate

the inner loop updates. Under this setting, we can show that the iterations within each step

enjoy a geometric rate of convergence.

3.4 Simulation

In this section, we present the simulation studies to show the empirical performance of the

proposed multi-task feature learning algorithm. In section 3.4.1, the joint feature selection

is examined for correlated tasks under different scenarios. In section 3.4.2, we evaluate the

prediction errors with increasing dimensions of parameters and sample size.
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Algorithm 1: The iterative algorithm for the multi-task feature learning
Data: K different platforms of data sets {Yk, Xk1, Xk2, · · · , Xkpn}Kk=1;
Input: the initial parameter {θ[1,1], λn, ϵc};
Output: the optimal estimator θ̂.
while ∥θ[t] − θ[t−1]∥2 > ϵc do

α1 = 1
u1 = θ[t]

ηt = maxΛ( 1
n
∇2L(θ[t]))

while convergence is not reached do
hj = uj − 1

n
∇L(uj)
ηt

θ[t,j] = Sλn/ηt(h
j − 1

n
∇L(hj)
ηt

)

αj+1 =
1
2
(1 +

√
1 + 4α2

j )

uj+1 = θ[t,j] +
αj−1

αj+1
(θ[t,j] − θ[t,j−1])

end
end

Table 3.2: Coefficients generating process in four tasks with different types of effects

Coefficient Type Sampling distribution
Task 1 Large variance θ∗1 ∼ N(1, 3)
Task 2 Small variance θ∗2 ∼ N(1, 1)
Task 3 Strictly positive θ∗3 ∼Uniform(1, 2)
Task 4 No sign constraint θ∗4 ∼Uniform(−1, 1)

3.4.1 Joint Feature Selection

We simulate four different tasks and each task has 200 or 500 observations with 200, 500, and

1000 predictors. The covariates are generated from a multivariate normal distribution with

means zero and variances one. The number of non-zero coefficients is equal to s = ⌊p1/2n ⌋.

Since the heterogeneous data sets may possess different relationships between the response

variables and the predictors, we generate four different types of coefficients for different tasks

shown in Table 3.2.
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Case 1: Correlated Multivariate Regressions

We consider the case where multiple tasks have correlated responses. We generate the response

variables for four different tasks from linear models yki = ηki+ εki, where the error terms from

different tasks are correlated. The error terms (ε1i, . . . , ε4i)
T follow a multivariate Gaussian

distribution or a heaty-tailed multivariate t distribution with 10 degrees of freedom with all

means equal to zero, and a 4× 4 covariance matrix Σ is given by

Σ =



σ2
1 ρ12σ1σ2 ρ13σ1σ3 ρ14σ1σ4

ρ12σ1σ2 σ2
2 ρ23σ2σ3 ρ24σ2σ4

ρ13σ1σ3 ρ23σ2σ3 σ2
3 ρ34σ3σ4

ρ14σ1σ4 ρ24σ2σ4 ρ34σ3σ4 σ2
4


.

The variances of error terms in different platforms are designed as σ2
1 = 9, σ2

2 = 4, σ2
3 = 4,

and σ2
4 = 1. The correlation ρkl’s are generated from a uniform distribution Unif(0.4, 0.6) for

any k, l = 1, 2, 3, 4 and k ̸= l.

The simulation results in Table 3.3 contain the specificity and sensitivity of feature

selection obtained from 500 independent replications. In each case, we set the penalty

parameter λn = 5
√

log(pn)/n based on the asymptotic rate from theoretical results. The

results in Table 3.3 show that for Gaussian errors and heavy-tailed errors, the proposed

feature learning achieves high specificity and low sensitivity.

Case 2: Mixture of Regression and Classification Tasks

In the Case 2 simulation study, we combine two regression tasks and two classification tasks.

For continuous response variables, the generating process is identical to the first two tasks in

Case 1. The categorical responses are obtained by dichotomizing the continuous responses
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Table 3.3: Specificity (SPE %) and sensitivity (SEN %) of the multi-task feature learning

(MTL) compared with single-task analysis (SA) for multivariate linear models. The standard

errors (%) are provided in parenthesis.

n = 200 pn = 200 n = 200 pn = 500 n = 500 pn = 500 n = 500 pn = 1000
Model SPE SEN SPE SEN SPE SEN SPE SEN

Simulation I: Gaussian Error
MTL 98 (1) 100 (0) 99 (0) 100 (1) 100 (0) 100 (0) 100 (0) 100 (0)
SA 1 81 (8) 92 (8) 86 (4) 90 (7) 87 (4) 94 (5) 89 (3) 94 (4)
SA 2 83 (6) 89 (9) 87 (5) 86 (9) 87 (4) 96 (6) 90 (3) 92 (5)
SA 3 80 (7) 100 (0) 85 (4) 100 (0) 86 (5) 100 (0) 88 (3) 100 (0)
SA 4 83 (7) 88 (9) 87 (4) 86 (7) 88 (4) 92 (6) 89 (3) 92 (5)

Simulation II: Heavy-tailed Error
MTL 97 (1) 100 (0) 99 (1) 100 (0) 100 (0) 100 (0) 100 (0) 100 (0)
SA 1 82 (8) 91 (8) 87 (5) 89 (7) 87 (4) 94 (5) 89 (3) 93 (5)
SA 2 83 (7) 88 (9) 87 (5) 85 (8) 87 (4) 93 (6) 89 (3) 91 (6)
SA 3 80 (8) 100 (0) 84 (6) 100 (0) 85 (4) 100 (0) 88 (3) 100 (0)
SA 4 82 (8) 88 (10) 87 (5) 84 (9) 88 (4) 91 (6) 89 (3) 91 (6)

[Poon and Lee, 1987a] as follows,


yki = 1, if ηki + εki ≥ 0,

yki = 0, if ηki + εki < 0.

The error terms εki are jointly generated across all tasks from the multivariate distribution

same as the simulation in Case 1.

The results in Table 3.4 show that the overall model selection performance of learning

from heterogeneous types of tasks is enhanced in comparison with the single task analysis.

Case 3: Mixed Types of Tasks with High Correlation

The proposed multi-task learning algorithm is designed to deal with correlated tasks. We

modify the simulation in Case 1 with high correlation errors. An exchangeable correlation
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Table 3.4: Specificity (SPE %) and sensitivity (SEN %) of the multi-task feature learning

(MTL) compared with single-task analysis (SA) for a mixture of regression and classification

tasks. The standard errors (%) are provided in parenthesis.

n = 200 pn = 200 n = 200 pn = 500 n = 500 pn = 500 n = 500 pn = 1000
Model SPE SEN SPE SEN SPE SEN SPE SEN

Simulation I: Gaussian Error
MTL 98 (1) 97 (4) 99 (1) 94 (5) 100 (0) 98 (3) 100 (0) 96 (3)
SA 1 81 (8) 92 (8) 86 (4) 90 (7) 87 (4) 94 (5) 89 (3) 94 (4)
SA 2 83 (6) 89 (9) 87 (5) 86 (9) 87 (4) 94 (6) 90 (3) 92 (5)
SA 3 79 (5) 98 (4) 90 (3) 82 (12) 80 (4) 100 (0) 87 (2) 99 (2)
SA 4 82 (6) 78 (9) 91 (3) 65 (9) 83 (4) 85 (8) 88 (3) 80 (7)

Simulation II: Heavy-tailed Error
MTL 97 (1) 97 (4) 99 (1) 93 (5) 100 (0) 98 (3) 100 (0) 96 (3)
SA 1 82 (8) 91 (8) 87 (5) 89 (7) 87 (4) 94 (5) 89 (3) 93 (5)
SA 2 83 (7) 88 (9) 87 (4) 85 (8) 87 (4) 93 (6) 89 (3) 91 (6)
SA 3 81 (5) 98 (4) 91 (3) 80 (10) 81 (3) 100 (1) 87 (2) 98 (2)
SA 4 84 (6) 77 (11) 91 (3) 64 (9) 84 (4) 83 (8) 89 (2) 79 (7)

structure is used with ρkl = 0.9 for k, l = 1, 2, 3, 4 and k ̸= l, and other settings remain the

same as the simulation in Case 2. As demonstrated by the simulation result in Table 3.5, the

proposed method provides higher Specificity and lower sensitivity than single-task analysis in

the presence of high correlation.

Case 4: Tasks with Unbalanced Samples

In this simulation, we examine the performance of the algorithm by analyzing multiple tasks

with unbalanced sample sizes across different tasks. The data-generating procedure follows

the design in Case 2 with 500 replications, but we randomly delete 50% to 80% of observations

in the last three tasks. Thus, the sample sizes are different across the tasks. The multi-task

analysis provides high accuracy with unbalanced samples as shown in Table 3.6. For the

single-task analysis, the sensitivity rates are much higher in the tasks with smaller sample

sizes.
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Table 3.5: Specificity (SPE %) and sensitivity (SEN %) of the multi-task feature learning

(MTL) compared with single-task analysis (SA) for highly correlated tasks. The standard

errors (%) are provided in parenthesis.

n = 200 pn = 200 n = 200 pn = 500 n = 500 pn = 500 n = 500 pn = 1000
Model SPE SEN SPE SEN SPE SEN SPE SEN

Simulation I: Gaussian Error
MTL 99 (1) 96 (5) 97 (1) 96 (4) 98 (1) 99 (2) 99 (0) 98 (3)
SA 1 81 (8) 92 (8) 87 (4) 90 (7) 87 (4) 94 (5) 89 (3) 94 (4)
SA 2 82 (7) 89 (9) 87 (5) 86 (8) 87 (4) 92 (6) 89 (3) 92 (5)
SA 3 79 (5) 98 (4) 90 (3) 81 (10) 80 (3) 100 (0) 87 (2) 99 (2)
SA 4 83 (6) 77 (12) 91 (3) 64 (10) 83 (4) 85 (8) 88 (2) 79 (7)

Simulation II: Heavy-tail Error
MTL 98 (1) 95 (5) 97 (1) 96 (4) 98 (1) 99 (2) 99 (0) 98 (3)
SA 1 81 (8) 92 (8) 87 (4) 90 (7) 87 (4) 94 (5) 89 (3) 94 (4)
SA 2 82 (7) 90 (8) 87 (5) 86 (8) 87 (4) 92 (6) 89 (3) 92 (5)
SA 3 80 (5) 98 (4) 90 (3) 81 (10) 80 (3) 100 (0) 87 (2) 99 (2)
SA 4 83 (6) 76 (11) 91 (3) 64 (10) 83 (4) 85 (8) 88 (2) 79 (7)

3.4.2 Estimation Consistency

In this section, we conduct simulations to investigate the statistical consistency property of

the proposed penalized estimates. In four tasks, the number of predictors is designed with

two levels, such that pn = 200 and 1600. The covariates are simulated from the multivariate

Gaussian distribution with means equal to zero and variances equal to one. For important

features, the corresponding non-zero coefficients θ∗ are generated from uniform distribution

Unif(0.05, 0.5) for all tasks. The true support s is chosen as ⌊p1/3⌋. We set sample size

satisfying n = αs log(pn) for some constant α, where α ranges from 1 to 8. The response

variables are generated through a similar process as Case 2. In the first two tasks, the response

variables are generated based on the linear predictors ηki + εki. The response variables in the

last two tasks are obtained through dichotomization. The error terms are jointly simulated

from a multivariate t distribution with 10 degrees of freedom, which are moderately correlated.
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Table 3.6: Specificity (SPE %) and sensitivity (SEN %) of the multi-task feature learning

(MTL) compared with single-task analysis (SA) for multiple tasks with unbalanced sample

sizes. The standard errors (%) are provided in parenthesis.

pn = 500 pn = 1000 pn = 2000
Model Sample SPE SEN SPE SEN SPE SEN

Simulation I: Gaussian Error
MTL 99 (0) 99 (2) 100 (0) 97 (3) 99 (0) 96 (4)
SA 1 n = 500 87 (4) 97 (4) 89 (3) 98 (3) 91 (2) 92 (4)
SA 2 n = 250 87 (4) 88 (5) 89 (3) 85 (6) 92 (2) 77 (6)
SA 3 n = 100 97 (3) 27 (17) 99 (1) 10 (10) 100(1) 4 (5)
SA 4 n = 100 98 (2) 9 (14) 99 (1) 5 (6) 99 (1) 5 (5)

Simulation II: Heavy-tail Error
MTL 97 (1) 98 (3) 98 (1) 97 (3) 99 (0) 95 (4)
SA 1 n = 500 87 (4) 93 (6) 89 (3) 93 (5) 91 (2) 91 (4)
SA 2 n = 250 87 (4) 87 (8) 90 (3) 84 (7) 93 (2) 75 (6)
SA 3 n = 100 97 (3) 26 (17) 99 (1) 10 (9) 100(1) 4 (4)
SA 4 n = 100 97 (3) 28 (15) 99 (1) 12 (10) 99 (1) 5 (5)

An unstructured correlation matrix is used for the simulation with ρkl ∼ Unif(0.4, 0.6) for

any k, l = 1, 2, 3, 4 and k ̸= l as previous examples. We conduct 50 independent replications

to measure the prediction errors evaluated as n−1(∇L(θ̂)−∇L(θ∗))T (θ̂ − θ∗) according to

Theorem 3.1. The curves shown in Figure 3.1 demonstrate that the prediction error decreases

toward zero as the sample size increases.

3.5 Data analysis

3.5.1 Breast Cancer Study

In the first example, we apply the multi-task feature learning on a collection of breast cancer

studies from the NCBI (National Centre for Biotechnology Information) database [Hatzis

et al., 2011, Itoh et al., 2014, Ivshina et al., 2006, Schmidt et al., 2008, Cadenas et al., 2014,

Hellwig et al., 2010, Heimes et al., 2020, Rody et al., 2011, Karn et al., 2014, Gao and Zhong,
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Figure 3.1: The prediction error of the multi-tasks feature learning estimator for four correlated

tasks.
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2019]. The Affymetrix microarray technique was used to provide the gene expression profiles

of thousands of genes for the patients. The joint feature selection is applied to obtain the list

of genetic biomarkers that are associated with breast cancer disease status. The microarray

datasets include 22,283 biomarkers, and we apply the rank aggregation method to obtain 1300

candidate biomarkers for the joint feature selection. In the data sets, there are three levels of

histologic grades representing the stages of cancer. However, in some studies, the first and

second grades are classified together as the group of early-stage cancer, and the third grade

is the group of high risk. Therefore, some studies have binary outcomes, while others contain
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Table 3.7: Breast cancer multi-task studies. The performance of the logistic regression models

is measured by AUC; the performance of the multinomial regression models is measured by

the percentage of correct classification.

Tasks Logistic regression Multinomial regression
(AUC) (% Classification)

Data GSE11121 GSE4922 GSE31519 GSE25055 GSE25066
(n) (151) (188) (46) (217) (358)
MTL 0.81 0.81 0.77 66 66
SA 0.74 0.83 0.65 66 64

multinomial outcomes. We perform the five-fold cross-validation 50 times. The multi-task

feature learning is applied to the training sets. The selection criterion in the training process

is based on the area under the ROC curve (AUC) for binary responses and the percentage

of accurate classification for multinomial responses. Based on the selected biomarkers, the

logistic models and multinomial regressions are used for prediction in the testing sets. The

model performance of AUC and the classification accuracy for the test sets are shown in

Table 3.7. The overall classification accuracy is improved by the multi-task feature learning

compared to the single-task learning. Especially when the studies have unequal sample sizes,

the studies with smaller samples enjoy great improvement by learning from other studies

with larger samples.

3.5.2 Community Health Status Research

In the second example, multiple community health status indicators (CHSI) were collected

across different counties of the U.S. in 2010 [U.S. Department of Health and Human Services].

There are 428 observations with complete response variables and predictor values in the

data set. This research uses the average number of unhealthy days, the death counts, the

average life expectancy, and the self-rated health status together to reflect the community
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Table 3.8: Community health status results based on five-fold cross-validation

Tasks Linear Regression Logistic Regression
(MSE) (AUC)

Responses Unhealthy Days Death Counts Life Expectancy Health Status
MTL 0.501 0.103 0.963 0.935
SA 0.517 0.196 0.958 0.935

health status. Among these four response variables, the average life expectancy and self-rated

health status are dichotomized into two levels based on the median values of all counties.

Thus, the responses of interest are mixed with two continuous variables and two categorical

variables. To select predictors associated with the responses of interest, we apply the multi-

task feature learning method to conduct joint feature selection over 70 predictors. These

predictors include overall demographic information, counts of different diseases, different

causes of death, environmental conditions, and health-related risk factors. We perform five-

fold cross-validation 30 times. For the training set, we apply the multi-task feature learning

to combine two linear regression models and two logistic regression models together. The

model selection criterion for the linear regression model is the mean squared error between

the fitted values and observed values. For the logistic regression, AUC is used to measure

classification accuracy. Based on the selected predictors, we fit the model on the testing sets

and measure the mean squared errors, and AUCs are shown in Table 3.8. In comparison with

the single-task analysis, multi-task feature learning produces smaller prediction errors and

higher classification accuracy.

3.6 Technical Lemmas

This section provides some technical Lemmas used in the proofs of Lemmas and Theorem in

Section 3.2.

The score function is the first-order derivative of the log quasi-likelihood function for each
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task. We can show that the score functions follow the sub-exponential distribution and have

a finite ψ1 norm.

Lemma 3.5. Based on Assumptions 3.3 - 3.5, the individual score function satisfies the

sub-exponential condition (1.3) such that for some universal constant A1 > 0,

∥ 1√
n

∂ℓk(θ
∗
k;Yk)

∂θkp
∥ψ1 ≤ A1.

for any k = 1, 2, · · · , K and p = 1, 2, · · · , pn.

Proof. For each task, the quasi-log-likelihood score function is given by

∂ℓk(θ
∗
k;Yk)

∂θkp
=

n∑
i=1

∂ℓki(θ
∗
k; yki)

∂θkp
=

n∑
i=1

(yki − g−1
k (η∗ki))︸ ︷︷ ︸

I1

1

ϕkV (g−1
k (η∗ki))

∂g−1
k (ηki)

∂ηki︸ ︷︷ ︸
I2

∂ηki
∂θkp︸︷︷︸
I3

,

for k = 1, 2, · · · , K and p = 1, 2, · · · , pn.

From Assumption 3.3, the inverse link functions g−1
k (ηki) and its derivatives are well-

defined and bounded. In addition, the variance function as the polynomial form of g−1
k (ηki)

is also positive and bounded. Thus, we show that the second component I2 is bounded by

some constant. In addition, the derivatives of the linear predictor are ∂ηki/θkp = xkpi, and

supk,p,i{xkpi} ≤ L <∞ based on Assumption 3.5. Thus, the component I3 is bounded by L.

Based on Assumption 3.5, I1 = yki − g−1
k (η∗ki) is from a sub-exponential distribution with

zero mean and ψ1 norm bounded above by A0. Let Kki = I2 × I3. The individual score

function is given by

∂ℓki(θ
∗
k; yki)

∂θkp
= (yki − g−1

k (η∗ki))Kki,

where we have Kki < K <∞ for a universal constant K across all tasks. We obtain that the
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ψ1 norm of the individual score function is as follows

∥∂ℓki(θ
∗
k; yki)

∂θkp
∥ψ1 = sup

m≥1

1

m
(E|∂ℓki(θ

∗
k; yki)

∂θkp
|m)1/m

≤ sup
m≥1

Kki
1

m
(E|g−1

k (η∗ki)− yki|m)1/m

≤ sup
p

K∥g−1
k (ηki)− yki∥ψ1 ≤ KA0.

Based on the property of sub-exponential distribution [Wainwright, 2019], the ψ1 norm of

n−1/2∂ℓk(θ
∗
k;Yk)/∂θkp can be bounded by some constant A1 ≥ KA0, such that

∥ 1√
n

∂ℓk(θ
∗
k;Yk)

∂θkp
∥ψ1 = sup

m≥1

1

m
(E[(

1√
n

∂ℓk(θ
∗
k;Yk)

∂θkp
)m])1/m ≤ A1.

Based on Lemma 3.1, we can choose the value of the penalty parameter λn, which is used

in the proof of sign consistency.

Corollary 3.1. Under Assumptions 3.3 - 3.7, if the penalty parameter is chosen as

λn ≥ 4A1

ξ

(√K

n
+

√
2(d+ 1)K log(pn)

αn

)
,

then

1

λn
sup
p

∥ 1
n
∇L(θ∗)(p)∥2 ≤

ξ

4

with a probability at least 1− 2 exp{−d log(pn)} for constant d > 0.

When the quasi log-likelihood is built based on the canonical link with corresponding

variance function, the observed Hessian matrix is semi-positive definite under Assumption 3.6
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with probability tending to one. However, the general quasi-likelihood can have a variance

function set as a polynomial function of the mean. Therefore, we need to analyze the observed

Hessian within a local neighborhood.

Lemma 3.6. Based on Assumption 3.3 and 3.5, let wk = 1, and there exists some r̃, for any

∥θ − θ∗∥1 ≤ r̃, the observed Hessian can be formulated as follows,

1

n
∇2L(θ) = 1

n

K∑
k=1

n∑
i=1

{f1(ηki)− (yki − g−1
k (η∗ki))f2(ηki)}xkixTki.

with ηki =
∑pn

p=1 xkpiθkp and η∗ki =
∑pn

p=1 xkpiθ
∗
kp, and the functions of linear predictors f1(ηki)

and f2(ηki) are both bounded. Furthermore, the function f1(ηki) > 0.

Proof. First, the observed Hessian can be constructed as follow

1

n
∇2L(θ) =1

n

K∑
k=1

n∑
i=1

1

ϕkV (g−1
k (ηki))

{(∂g−1
k (ηki)

∂ηki

)2
−(g−1

k (η∗ki)− g−1
k (ηki))×

(∂2g−1
k (ηki)

∂η2ki
− V

′
(g−1
k (ηki))

V (g−1
k (ηki))

(∂g−1
k (ηki)

∂ηki

)2)}
xkix

T
ki

− 1

n

K∑
k=1

n∑
i=1

yki − g−1
k (η∗ki)

ϕkV (g−1
k (ηki))

(∂2g−1
k (ηki)

∂η2ki
− V

′
(g−1
k (ηki))

V (g−1
k (ηki))

(∂g−1
k (ηki)

∂ηki

)2)
xkix

T
ki.

Therefore, we can set

f1(ηki) =
1

ϕkV (g−1
k (ηki))

{(∂g−1
k (ηki)

∂ηki

)2
−(g−1

k (η∗ki)− g−1
k (ηki))×

(∂2g−1
k (ηki)

∂η2ki
− V

′
(g−1
k (ηki))

V (g−1
k (ηki))

(∂g−1
k (ηki)

∂ηki

)2)}

and by applying the approximation,

g−1
k (η∗ki)− g−1

k (ηki) =
∂g−1

k (ηki)

∂ηki
(η∗ki − ηki).
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We can further show that

f1(ηki) =
1

ϕkV (g−1
k (ηki))

{(∂g−1
k (ηki)

∂ηki

)2
−∂g

−1
k (ηki)

∂ηki
(η∗ki − ηki)×

(∂2g−1
k (ηki)

∂η2ki
− V

′
(g−1
k (ηki))

V (g−1
k (ηki))

(∂g−1
k (ηki)

∂ηki

)2)}
.

Based on Assumption 3.3, we can set that there exists some positive constants K1, K2, K3,

K4, K5, and K6,

K1 ≤ max
k,i

|∂g
−1
k (η)

∂η
|η=ηki| ≤ K2, and max

k,i
|∂

2g−1
k (η)

∂η2
|η=ηki| ≤ K3.

Since the variance function has a polynomial form of mean, then

K4 ≤ Vk(g
−1
k (ηki)) ≤ K5 and V ′

k(g
−1
k (ηki)) ≤ K6.

Therefore, the function f1(ηki) is bounded by

f1(ηki) ≥
1

ϕkV (g−1
k (ηki))

(
K2

1 −K2(K3 +K2
2K6/K4)|η∗ki − ηki|

)
≥ 1

ϕkV (g−1
k (ηki))

(
K2

1 −K2(K3 +K2
2K6/K4)L∥θ − θ∗∥1

)
Therefore, as ∥θ − θ∗∥1 ≤ r and ∥xki∥∞ ≤ L, we can set r̃ = min{r,K ′K2

3} with constant

K ′ = 1/(LK2(K3 +K2
2K6/K4)), and we can show that 0 < f1(ηki) <∞. In addition, we can

also set

f2(ηki) =
1

ϕkV (g−1
k (ηki))

(∂2g−1
k (ηki)

∂η2ki
− V

′
(g−1
k (ηki))

V (g−1
k (ηki))

(∂g−1
k (ηki)

∂ηki

)2)
,

which is a bounded function based on Assumption 3.3.
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Next, we can show the concentration of the observed Hessian to the expected value.

Lemma 3.7. Under Assumptions 3.3 - 3.5, for some positive constants α and ε,

P

(∣∣∣∣∣∣∣∣∣∣∣∣ 1n∇2L(θ)SS −H(θ∗)SS

∣∣∣∣∣∣∣∣∣∣∣∣
∞

≤ ε

)
≥1− 2K exp

{
− α

ε2

(A1s)2
n+ 2 log(s)

}
,

P

(∣∣∣∣∣∣∣∣∣∣∣∣ 1n∇2L(θ)SSc −H(θ∗)SSc

∣∣∣∣∣∣∣∣∣∣∣∣
∞

≤ ε

)
≥1− 2K exp

{
− α

ε2

(A1s)2
n+ log(s(pn − s))

}
.

Proof. With the same notation as in the proof of Lemma 3.3, we can show that ∆H∗
SS =

diag(∆kH
∗
SS)

K
k=1. For any ε > 0,

P (|||∆H∗
SS |||∞ > ε)

(i)
= P (sup

k
|||∆kH

∗
SS |||∞ > ε)

≤ Ks2 sup
k,p,p′

P (|∆kH
∗
[p,p′ ]

| > ε

s
)

(ii)

≤ 2K exp
{
− αmin{ ε2

(A1s)2
,
ε

A1s
}n+ 2 log(s)

}
.

In step (i), we apply the result in Lemma 3.9. In step (ii), we apply the concentration result

of the Hessian matrix based on Lemma 3.1. Using the same method, we derive that

P (|||∆H∗
SSc |||∞ > ε) ≤ K sup

k
P (|||∆kH

∗
SSc |||∞ > ε)

≤ 2K exp
{
− αmin{ ε2

(A1s)2
,
ε

A1s
}n+ log(pn − s) + log(s)

}
.

Under Assumptions, we can show that the observed Hessian is invertible on the subspace

S with probability tending to one. The proof of Lemma 3.8 is similar to Ravikumar et al.

[2010].

Lemma 3.8. Under Assumptions 3.3 - 3.6, there exist some positive constants α and ε with
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ε < κ−,

P

(∣∣∣∣∣∣∣∣∣∣∣∣ 1n∇2L(θ∗)SS
∣∣∣∣∣∣∣∣∣∣∣∣

2

≥ κ− ε

)
≤ 1− 2K exp{− αε2

(A1s)2
n+ 2 log(s)}.

Proof. With the same notation as in the proofs of Lemmas 3.3 and 3.7, we have the sub-matrix

of Hessian denoted by kH
∗
SS . Lemma 3.2 shows that with high probability, the eigenvalues of

H(θ∗) are bounded and positive. Therefore, for any sub-matrix of Hessian, we have

κ− ≤ minΛ(kH
∗
SS). (3.18)

Based on Courant–Fischer variational representation [Ravikumar et al., 2010], we have

minΛ(kH
∗
SS) = minΛ(kH∗

SS + kH
∗
SS − kH∗

SS)

= min
∥x∥2=1

xT (kH∗
SS + kH

∗
SS − kH∗

SS)x

≤ yT kH∗
SSy + yT (kH

∗
SS − kH∗

SS)y,

where y is the unit-norm eigenvector of H∗
SS . Using condition 3.18, we can show that

yT kH∗
SSy ≥ minΛ(kH∗

SS) ≥minΛ(kH
∗
SS)− yT (kH

∗
SS − kH∗

SS)y

≥κ− − |||kH∗
SS − kH∗

SS |||2.

Next, we have

P (|||∆kH
∗
SS |||2 > ε) ≤ P (|||∆kH

∗
SS |||F > ε)

≤ s2 sup
k,p,p′

P (|∆kH
∗
[pp′ ]

| > ε/s)

≤ 2 exp
{
− αmin{ ε2

(A1s)2
,
ε

A1s
}n+ 2 log(s)

}
.
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As a result, we can show that with a probability at least 1− 2K exp{− αε2

(A1s)2
n+ 2 log(s)},

Λ(kH∗
SS) ≥ κ− − ε. (3.19)

Furthermore, for ε < κ− in 3.19, we set the constant δ = κ− − ε > 0, such that

P (Λ(kH∗
SS) ≤ δ) = P (Λ([kH∗

SS ]
−1) ≥ δ−1). (3.20)

When the matrix is built by diagonal blocks of multiple submatrices, its ℓ1 and ℓ∞ norms

are also the maximum value among all submatrices.

Lemma 3.9. Suppose a matrix A ∈ RKd×Kd consists of diagonal blocks such that A =

diag(Ak)Kk=1, and each block matrix has the same dimension that Ak ∈ Rd×d. Then,

|||A|||1 ≤ sup
k

|||Ak|||1 and |||A|||∞ ≤ sup
k

|||Ak|||∞

Lemma 3.10. (Bernstein Inequality) Let X1, · · · , Xn be independent zero-mean sub-exponential

random variables and A1 = maxi ∥Xi∥ψ1. Then, for any ε > 0, we have

P (
∣∣ 1
n

n∑
i=1

Xi

∣∣ ≥ ε) ≤ 2 exp{−αmin{ ε
2

A2
1

,
ε

A1

}}

with a universal constant α > 0.
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Chapter 4

Robust Multi-task Feature Learning

4.1 Introduction

The multi-task learning utilizes the intrinsic relatedness among the data sets sharing common

features [Caruana, 1997, Zhang and Yang, 2017, Thung and Wee, 2018]. When modeling

high-dimensional data sets, the approach of combining multiple tasks can alleviate the data

scarcity problem. Mixed regularization can be used to recover the union support, which is the

set of important features for at least one of the tasks [Liu et al., 2009, Obozinski et al., 2010,

Zhou et al., 2011, Rakotomamonjy et al., 2011]. To analyze the estimators obtained from

multiple regularized regression tasks, Lounici et al. [2011], Obozinski et al. [2011], and Wang

et al. [2015b] established the statistical consistency and the estimation error bounds under

regularity conditions. To jointly model different types of learning tasks, Gao and Carroll

[2017] used the pseudo log-likelihood to integrate multiple data sets that are correlated and

have different types of distributions. In addition, a pseudo log-likelihood based Bayesian

information criterion was proposed by Gao and Carroll [2017] to perform model selection on

multi-task learning, which can balance the goodness-of-fit and the complexity of the joint

model. Maity et al. [2019] extended the high-dimensional data integration approach to jointly
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model survival time data and binary data through a Bayesian approach. Existing multi-task

learning methods are built under distributional assumptions. For example, the regression

models require the data to be normally distributed, and the generalized linear models assume

the response variables follow distributions from exponential families. To address this issue,

the heterogeneous multi-task feature learning in Chapter 3 was proposed to model multiple

data sets without distributional assumptions. Instead, the method requires that the second

and higher moments of the error variables are bounded. In practice, the high-dimensional

data sets collected from different sources often contain heavy-tailed data and contain large

outliers in the measurements. The least squares method or likelihood-based method often

performs poorly under this scenario [Catoni, 2012]. To accommodate heavy-tailed distribution

and outlier contamination, we propose a robust estimation method for multi-task feature

learning.

For single-task learning, the robust regularization methods are extensively studied. The

Huber regression proposed by Huber [1964] is widely implemented for the robust M-estimation,

and the asymptotic properties have been well established in many studies [Huber, 1964, Yohai

and Maronna, 1979, Portnoy, 1985, Mammen, 1989, He and Shao, 1996]. Fan et al. [2017]

proposed a penalized Huber loss to deal with heavy-tailed errors in ultra-high dimensional

settings, which can provide consistent estimators with a similar optimal rate as the estima-

tors obtained under the normality assumption. Pan et al. [2021] further investigated the

optimization property and the asymptotic rate of convergence for estimators using Huber loss

with both ℓ1 regularization and non-convex penalty functions. Wang et al. [2021] proposed

a data-driven method to determine the value of the robustification parameters for Huber

regression that can be chosen based on the sample size, the dimension of parameters, and the

moments of the error terms. To accommodate large outliers with heavy-tailed distribution,

Sun et al. [2020] established the theoretical framework based on the adaptive Huber regression

with relaxed moments condition for the error variables, such that the errors only need to have
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a bounded (1 + ω)th moment for any ω > 0. Instead of using the Huber loss function, Bradic

et al. [2011] proposed a weighted linear combination of ℓ1 and ℓ2 loss functions with a weighted

LASSO penalty for robust estimation and feature selection. For the robust M-estimation

with folded concave regularization, Loh [2017] showed that the local optimal estimator is a

unique stationary point, which coincides with the oracle estimator with a probability tending

to one.

Motivated by previous studies, we propose a robust multi-task feature learning by a

composite Huber loss function with the mixed ℓ2,1 regularization. For each Huber regression

task, we apply the adaptive method [Sun et al., 2020] to choose the robustification parameter,

which can effectively balance the robustness and unbiasedness of the estimator. The non-

asymptotic deviation bounds are established based on more relaxed conditions, where the

error variables have finite (1+ω)th moment for any ω > 0, and the covariates are independent

samples from sub-Gaussian distributions. With ω ≥ 1, the estimation properties are similar to

those obtained by existing multi-task learning method [Gao and Carroll, 2017]. For ω ∈ (0, 1),

we obtain a slower convergence rate for the estimator. Based on the notion of the restricted

strong convexity (RSC) condition in Agarwal et al. [2012b], Meinshausen and Yu [2009], Loh

[2017], we provide a modified RSC condition for the composite Huber loss function that can

be used with the mixed regularization. Thus, the proposed loss function is not required to be

strongly convex under high dimensional settings. The distributional assumptions required

in this thesis are more general and weaker in comparison with existing multi-task learning

methods.

In this chapter, we establish the statistical consistency and the asymptotic properties of

the estimators obtained by robust multi-task feature learning. The ℓ2 and ℓ1 error bounds of

the penalized estimates are evaluated, which are in line with the adaptive Huber regression in

Sun et al. [2020]. In addition, we show that the regularized estimator can recover the union

support correctly, with probability tending to one. The proposed robust multi-task feature
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learning method can be regarded as a special group-wise variable selection procedure using the

adaptive Huber loss function. To our best knowledge, the properties of the adaptive Huber

loss for the multi-task problem have not been explored in the literature. For the optimization

algorithm, Liu et al. [2014] proposed to use the block coordinates descent method for the

group LASSO-based robust estimation. Li and Sherwood [2021] provided an R package to

select group-wise variables for both quantile and robust mean regression. In comparison

with previous algorithmic works, we propose to use the composite gradient descent algorithm

[Nesterov, 2013], and we prove that the updated iterations converge to the optimal solution

at a geometric rate.

To evaluate the model performance based on the selected features, the pseudo Bayesian

information criterion [Gao and Carroll, 2017] was developed based on the composite likelihood

losses with a model complexity penalty, which was applied to multiple correlated data sets.

Dai et al. [2020] extended the information criterion to model multiple quantile regressions

and proposed a modified version of the Bayesian information criterion through pooled check

loss functions. We treat the Huber loss function as a hybrid of least square loss and Least

Absolute Deviation (LAD) and construct the robust Bayesian information criterion with the

composite Huber loss based on Gao and Carroll [2017], Wu et al. [2023], and Dai et al. [2020].

The organization of this chapter is as follows. In Section 4.2, we first set up the model

for the robust multi-task feature learning with the Huber loss function and the mixed ℓ2,1

regularization. The main theoretical results are provided in Section 4.3. We establish the

non-asymptotic error bounds and the sign recovery consistency of the proposed estimates

under the regularity conditions. In Section 4.3.3, the optimization method is provided, and

the convergence rate of the optimization algorithm is discussed. The numerical studies are

given in Section 4.4 and 4.5 to examine the performance of the proposed method.
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4.2 Model Setup

Suppose there are multiple statistical tasks that are used to modelK different data sets. In any

kth task, there are nk independent and continuous responses Yk = (yk1, · · · , yki, · · · , yknk
)T ,

k = 1, 2, · · · , K. To model the relationship between the response yki and the covariates xki,

we construct the linear regression model,

yki = xTkiθ
∗
k + u∗ki, (4.1)

where xki = (xki1, . . . , xkipn)
T is the vector of covariates for the ith observation in the kth

task, θ∗k denotes the vector of true regression coefficients, and u∗ki is the random error. This

proposed model is aimed at dealing with heavy-tailed error distribution and large outliers.

Therefore, we do not require a specific distributional assumption on error term u∗ki. Instead,

we make the following assumptions.

Assumption 4.1. In any kth task,

1. The random errors u∗ki’s are independent for i = 1, 2, · · · , nk, which satisfies E(u∗ki|xki) =

0 and E(|u∗ki|1+ω|xki) = vki <∞ for some ω > 0;

2. We consider a random design matrix and the covariates xki’s are i.i.d vectors from

sub-Gaussian distribution such that P (|xTkiu| ≥ ε) ≤ 2 exp{−ε2/A2
0} for any ε > 0 and

any unit vector u ∈ Rpn. The covariance matrix Cov(xki) = Σk has eigenvalues bounded

such that 0 < αl ≤ Λmin(Σk) ≤ Λmax(Σk) ≤ αu <∞.

When the second moment of u∗ki is bounded with ω ≥ 1, we have the standard ordinary

regression setting. If ω ∈ (0, 1), the second moment of u∗ki is not guaranteed to be bounded.

Thus, the model can be used for data with heavy-tailed error distributions or large outliers.

In addition, E(|u∗ki|1+ω|xki) = vki can be dependent on xki, which can be used to model
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heteroscedastic regression tasks. For example, we can let the error term u∗ki = ∥θ∗k∥−1
2 (xTkiθ

∗
k)εki,

where εki satisfies E(εki) = 0 and E(|ε∗ki|1+ω) <∞.

4.2.1 Huber Loss Function

The multi-task feature learning can combine different types of statistical tasks and implement

support union recovery for the high-dimensional problem by penalized M-estimation. The

objective function usually contains the loss function and the penalty function as follows,

Q(θ) = L(θ) +R(θ).

The proposed loss function L(θ) can combine individual loss functions from different tasks,

L(θ) = −
K∑
k=1

nk∑
i=1

wkℓki(θk; yki, xki). (4.2)

According to the relative importance of the task, users can assign positive weights wk to each

individual loss function [??]. In literature, the individual loss function ℓki(θk; yki, xki) can be

the square loss function [Lounici et al., 2011, Obozinski et al., 2010, 2011], the log-likelihood

function [Gao and Carroll, 2017], or quasi log-likelihood function in Chapter 3, which are

all sensitive to heavy-tailed error distributions or large outliers in the measurements. In our

approach, the individual loss can be modeled by the Huber loss function [Huber, 1964],

ℓki(θk; yki, xki) =


u2ki/2 if |uki| ≤ τk,

τk|uki| − τ 2/2 if |uki| > τk,

where uki = yki − xTkiθk. For each task, the Huber loss uses the robustification parameter τk

to control the behavior of the loss function. When the error term uki is smaller than the
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value of τk, the loss function has a quadratic form, and for large errors, the function becomes

linear with respect to uki. If we let τk → ∞, the loss function becomes the least square loss,

and if τk = 0, the model is reduced to a Least Absolute Deviation (LAD) regression model.

Thus, the balance of the unbiasedness and robustness can be controlled based on the choice

of the parameters τk.

The adaptive method is commonly used for high-dimension scaling, in which the parameter

can be chosen based on the sample size, the dimension of parameters, and the moments of

error term [Lepskii, 1992, Sun et al., 2020, Wang et al., 2021]. Without loss of generality,

we define n = nk for all tasks, vk = n−1
∑n

i=1 vki, and vmax = maxk{vk}. For ω ∈ (0, 1), the

range of the parameter τk can be set as

(vk)
1/2 ≲ τk ≲

( n

log(pn)

)max{1/2,1/(1+ω)}
. (4.3)

Since the relationship between different data sets is unknown, the individual loss functions

ℓki(θk; yki, xki) can be correlated across K different tasks. Let ∇L(θ) denote the first derivative

of the proposed loss, and ∇2L(θ) denote the observed Hessian matrix. The sensitivity and

variability matrix are given by

H(θ) = E(n−1∇2L(θ)) and J(θ) = Cov(n−1∇L(θ)).

With correlated data sets across different tasks, the second Bartlett identity no longer holds,

i.e., H(θ) ̸= J(θ). We need to estimate both matrices to perform joint inference on correlated

tasks.
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4.2.2 Mixed Regularization

The support union recovery under high dimensionality can be achieved by the mixed reg-

ularization (1.1) [Obozinski et al., 2010, Gao and Carroll, 2017, Gong et al., 2013]. Let S

denote the true union support S := {p : ∥θ(p)∥2 ̸= 0}, and |S| = s. The sample size and

the dimension of the parameters are assumed to satisfy the following condition, which is

commonly used in the literature of penalized M-estimation Ravikumar et al. [2010], Loh and

Wainwright [2017], Li et al. [2021].

Assumption 4.2. It is assumed that n ≳ s2 log(pn). In addition, the true parameter vector

∥θ∗∥1 ≤ R for some R > 0.

The penalty function R(θ) in the mixed ℓ2,1 regularization is proposed as [Tibshirani,

1996, Yuan and Lin, 2006].

R(θ) = nλn∥θ∥2,1,

with the penalty parameter λn. The subdifferential of the mixed ℓ2,1 norm is defined as

z(p) = ∂∥θ(p)∥2/∂θ(p), such that


z(p) = θ(p)

∥θ(p)∥2
, if ∥θ(p)∥2 ̸= 0,

∥z(p)∥2 < 1, if ∥θ(p)∥2 = 0,

for any p = 1, 2, · · · , pn.

The mixed ℓ2,1 norm has the following properties:

1. For any subset E ∈ {1, 2, · · · , pn}, the mixed norm can be decomposed as ∥θ∥2,1 =

∥θE∥2,1 + ∥θEc∥2,1;

2. For any two vectors θ1 and θ2, ∥θ1∥2,1 − ∥θ2∥2,1 − yT2 (θ1 − θ2) ≥ 0 with y2 as the
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subdifferential of ∥θ2∥2,1.

The first decomposition property of the penalty function can be applied to calculate the

estimation error bounds, which is discussed in Negahban et al. [2012]. The second property

comes from the definition of subdifferential.

The optimal estimator of the robust multi-task feature learning can be obtained by

θ̃ ∈ arg min
∥θ∥1≤R

{L(θ) +R(θ)}. (4.4)

The constraint ∥θ∥1 ≤ R is used to ensure the existence of the global optima θ̃ [Loh and

Wainwright, 2015]. In addition, Assumption 4.2 with ∥θ∗∥1 ≤ R can also make the true

parameter θ∗ a feasible point for the program 4.4.

If the penalized estimate θ̂ satisfies

(n−1∇L(θ̂) + λnẑ)
T (θ − θ̂) ≥ 0, (4.5)

with ẑ denoting the subdifferential of ∥θ̂∥2,1, and θ̂ denoting stationary point of the program

(4.4) [Bertsekas, 1999]. When θ̂ is an interior point of the constraint set, the equality in (4.5)

holds. The set of stationary points includes the optimal estimator θ̃ defined by (4.4).

4.3 Methodology

4.3.1 Theoretical Conditions

The restricted strong convexity (RSC) condition introduced by Agarwal et al. [2012b] and

Negahban et al. [2012] can be used to analyze the statistical and optimization properties of

penalized M-estimators. Loh and Wainwright [2015] and Loh [2017] imposed the condition

on the objective function with non-convex loss functions and regularization. The Huber loss
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function with the LASSO penalty can satisfy the RSC condition under both deterministic

and random design [Fan et al., 2017, 2018, Sun et al., 2020]. As we use grouped penalty in

our model, we introduce a modified version of the RSC condition as follows.

Assumption 4.1. (Local RSC Condition) There exist constants κl > 0, τl ≥ 0, and r > 0,

for all θ1, θ2 ∈ Br(θ∗), such that the first-order Taylor error of the loss function satisfies

T (θ1, θ2) = (n−1∇L(θ1)− n−1∇L(θ2))T (θ1 − θ2)

≥ κl∥θ1 − θ2∥22 − τl
log(pn)

n
∥θ1 − θ2∥22,1.

(4.6)

Under high dimensionality, we assume the loss functions satisfy the RSC condition locally

in the ℓ2 ball Br(θ∗) around θ∗. When κl > 0 and τl = 0, T (θ1, θ2) is bounded below by a

positive quadratic term, which implies the loss function is strongly convex. In addition, due

to the relation ∥v∥2,1 ≤ ∥v∥1 ≤
√
K∥v∥2,1, the term ∥θ1 − θ2∥22,1 in (4.6) can be replaced by

∥θ1 − θ2∥21, which is the term appeared in the RSC condition defined by Loh [2017].

The irrepresentable condition introduced by Zhao and Yu [2006] is required for the LASSO

estimator to recover the correct support, which constrains the strength of dependency between

the predictors in the true model and the other unimportant predictors. In addition, van de

Geer and Bühlmann [2009] provided a comprehensive analysis for more general conditions

imposed to the design matrix.

Assumption 4.2. The expected Hessian matrix of the proposed loss function is defined

as Σ = diagk{Σk}. Let S be denoted as the support of the true parameters and Sc be the

complement. There exists a parameter ξ < 1 such that

√
K
∣∣∣∣∣∣ΣScSΣ

−1
SS
∣∣∣∣∣∣

∞ ≤ 1− ξ.

In the multi-task problem, Assumption 4.2 is needed to recover the union support, which
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can be considered as a special case of the block-wise mutual incoherence condition for group

LASSO estimation [Bach, 2008, Eldar et al., 2010, Jalali et al., 2010, Hebiri and van de Geer,

2011].

4.3.2 Statistical Consistency

Next, we establish the finite sample error bounds for the proposed estimator. Lemma 4.1

provides the large deviation bound for the ℓ2-norm of the grouped score functions.

Lemma 4.1. Based on Assumptions 4.1-4.2,

∥ 1
n
∇L(θ∗)∥2,∞ ≤ (4Kτmax{1−ω,0}

max A2
0vmax)

1/2(

√
log(pn)

n
+

√
1

n
) + 2τmaxA0

K log(pn)

n
, (4.7)

with probability at least 1− C1 exp{−C2 log(pn)} for some positive constants C1 and C2.

Proof. We let the score function in the kth task be denoted by

Un(θkp) =
n∑
i=1

Ui(θkp) =
n∑
i=1

∂ℓki(θk; yki, xki)

∂θkp
,

for any p = 1, 2, · · · , pn. Lemma 4.2 shows that with fixed p,

P (| 1
n
Un(θkp)| ≥ 2νk

√
log(pn) + 2αk log(pn)) ≤ 2 exp{−2 log(pn)}, (4.8)

where

νk = 2τ
max{(1−ω)/2,0}
k A0(

vk
n
)1/2, and αk =

τkA0

n
.

We have ∥n−1∇L(θ∗)(p) − E(n−1∇L(θ∗)(p))∥2 = {
∑K

k=1(
1
n
Un(θkp) − E[ 1

n
Un(θkp)])

2}1/2.
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Thus,

P (∥n−1∇L(θ∗)(p) − E(n−1∇L(θ∗)(p))∥2 ≥ ε) ≤
K∑
k=1

P (| 1
n
Un(θkp)| ≥

ε√
K

).

If we apply the concentration inequality (4.8), we can show that with τmax = maxk{τk} and

vmax = maxk{vk},

∥ 1
n
(∇L(θ∗)(p) − E(∇L(θ∗)(p)))∥2 ≤ 4τmax{(1−ω)/2,0}

max A0v
1/2
max

√
K log(pn)

n
+ 2τmaxA0

K log(pn)

n

with probability at least 1− 2K exp{−2 log(pn)}.

Furthermore, the expectation of ∥n−1∇L(θ∗)(p)∥2 can be bounded by

E(∥n−1∇L(θ∗)(p)∥2) ≤
{ K∑
k=1

E
[
(n−1Un(θ

∗
kp))

2
]}1/2 ≤

(
4τ 1−ωmaxA

2
0

Kvmax

n

)1/2
.

We can conclude that for any p,

sup
p

∥n−1∇L(θ∗)(p)∥2 ≤ (4Kτmax{1−ω,0}
max A2

0vk)
1/2(

√
log(pn)

n
+

√
1

n
) + 2τmaxA0

K log(pn)

n
,

with probability at least 1− C1 exp{−C2 log(pn)} for some constants C1 and C2.

Theorem 4.1. Based on Assumptions 4.1-4.1, if r, R, and λn can satisfy

max{4∥ 1
n
∇L(θ∗)∥2,∞, 8τlR

log(pn)

n
} ≤ λn ≲ r/

√
s, (4.9)

then there exists a stationary point θ̂ obtained from (4.5) such that ∥θ̂− θ∗∥2 ≤ r. In addition,

∥θ̂ − θ∗∥2 ≤
3λn

√
s

2κl
and ∥θ̂ − θ∗∥1 ≤

6λn
√
Ks

κl
.
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Proof. We assume that there exists a stationary point θ̂ ∈ Br(θ∗), which can satisfy

0 ≥ 1

n
∇Q(θ̂)T (θ̂ − θ∗) = (

1

n
∇L(θ̂) + λnẑ)

T (θ̂ − θ∗).

We can show that

0 ≥(
1

n
∇L(θ∗) + 1

n
(∇L(θ̂)−∇L(θ∗)) + λnẑ)

T (θ̂ − θ∗)

=(
1

n
∇L(θ∗) + λnẑ)

T (θ̂ − θ∗) + T (θ̂, θ∗).

Based on Assumption 4.1, we have

−(
1

n
∇L(θ∗) + λnẑ)

T (θ̂ − θ∗) ≥ κl∥θ̂ − θ∗∥22 − τl
log(pn)

n
∥θ̂ − θ∗∥22,1. (4.10)

First, we can use (4.10) to obtain

τl
log(pn)

n
∥θ̂ − θ∗∥22,1︸ ︷︷ ︸
I1

− 1

n
∇L(θ∗)T (θ̂ − θ∗)︸ ︷︷ ︸

I2

−λnẑ
T (θ̂ − θ∗)︸ ︷︷ ︸

I3

≥ 0. (4.11)

We define subspace E , such that S ⊆ E and |E| = cs for some c. The first component I1 can

be bounded by the condition 4.9 for ∥θ̂ − θ∗∥1 ≤ 2R,

I1 : τl
log(pn)

n
∥θ̂ − θ∗∥22,1 ≤

λn
4
∥θ̂ − θ∗∥2,1 =

λn
4
(∥(θ̂ − θ∗)E∥2,1 + ∥(θ̂ − θ∗)Ec∥2,1). (4.12)

According to the condition (4.9) that the score function satisfies ∥n−1∇L(θ∗)∥2,∞ ≤ λn/4, we

can apply Lemma 4.10 to obtain

I2 : −∇L(θ∗)T (θ̂ − θ∗) ≤ λn
4
∥θ̂ − θ∗∥2,1 =

λn
4
(∥(θ̂ − θ∗)E∥2,1 + ∥(θ̂ − θ∗)Ec∥2,1). (4.13)
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In addition,

I3 : λnẑ
T (θ̂ − θ∗) = λnẑ

T
E (θ̂ − θ∗)E + λnẑ

T
Ec(θ̂ − θ∗)Ec .

In the subspace E , we can apply Lemma 4.10 and get

−λnẑTE (θ̂ − θ∗)E ≤ λn∥ẑTE ∥2,∞∥(θ̂ − θ∗)E∥2,1 = λn∥(θ̂ − θ∗)E∥2,1.

For the components in the subspace Ec, the true parameters θ∗E are all zero. Therefore,

λnẑ
T
Ec(θ̂ − θ∗)Ec = λnẑ

T
Ec θ̂Ec = λn∥(θ̂ − θ∗)Ec∥2,1.

Thus, we have

I3 : −λnẑT (θ̂ − θ∗) ≤ λn(∥(θ̂ − θ∗)E∥2,1 − ∥(θ̂ − θ∗)Ec∥2,1). (4.14)

By combining (4.12), (4.13), and (4.14), (4.10) can be used to derive

∥(θ̂ − θ∗)Ec∥2,1 ≤ 3∥(θ̂ − θ∗)E∥2,1. (4.15)

Next, we can apply the results above and obtain

κl∥θ̂ − θ∗∥22 ≤
3

2
λn∥(θ̂ − θ∗)E∥2,1 −

1

2
λn∥(θ̂ − θ∗)Ec∥2,1

≤ 3

2
λn

√
|E|∥θ̂ − θ∗∥2

=
3

2
λn

√
s∥θ̂ − θ∗∥2,
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where c = 1 without loss of generality. Furthermore, we can conclude

∥θ̂ − θ∗∥2 ≤
3λn

√
s

2κl
.

For the ℓ1 norm estimation error, we can show that

∥θ̂ − θ∗∥1 ≤ 4
√
K∥(θ̂ − θ∗)E∥2,1 ≤ 4

√
Ks∥(θ̂ − θ∗)E∥2 ≤

6λn
√
Ks

κl
.

Since we have λn ≲ r/
√
s, the ℓ2 norm of the estimation error satisfies ∥θ̂ − θ∗∥2 ≤ r.

Therefore, θ̂ is the interior point of the sphere of radius r around θ∗, which ensures the

existence of such local stationary point.

Theorem 4.1 shows that there exists a local stationary point θ̂ obtained from (4.5) that

has estimation error bounds similar to the results in literature Fan et al. [2017], Sun et al.

[2020]. From Lemma 4.1, if ω ≥ 1, the grouped score function satisfies ∥n−1∇L(θ∗)∥2,∞ ≲

(log(pn)/n)
1/2 + τmaxlog(pn)/n with probability tending to 1. We set the robustification

parameters τk ≲ (n/ log(pn))
1/2 for any kth task and choose the penalty parameter λn ≍

(log(pn)/n)
1/2 to satisfy the condition (4.9). In this way, the error bounds are identical to

those of the group LASSO estimators,

∥θ̂ − θ∗∥2 ≲
(
s
log(pn)

n

)1/2 and ∥θ̂ − θ∗∥1 ≲ s
( log(pn)

n

)1/2
.

For the cases ω ∈ (0, 1), we have

∥ 1
n
∇L(θ∗)∥2,∞ ≲ (τ 1−ωmax

log(pn)

n
)1/2 + τmax

log(pn)

n
,

with probability tending to one. We can set τk ≲ (n/ log(pn))
1/(1+ω) based on (4.3) and
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choose λn ≍ (log(pn)/n)
ω/(1+ω). Then, the convergence rates are as follows

∥θ̂ − θ∗∥2 ≲s1/2
( log(pn)

n

)ω/(1+ω) and ∥θ̂ − θ∗∥1 ≲ s
( log(pn)

n

)ω/(1+ω)
.

Furthermore, as we choose the penalty λn ≍ (log(pn)/n)
min{1/2,ω/(1+ω)}, then for R ≲ s, the

condition R ≲ nλn/ log(pn) in (4.9) can be satisfied based on the sample scaling n ≳ s2 log(pn)

from Assumption 4.2.

Theorem 4.2. Based on Assumptions 4.1-4.2, if the condition (4.9) holds and the penalty

parameter λn is chosen as

λn ≥ 4

ξ
{(4Kτmax{1−ω,0}

max A2
0vmax)

1/2(

√
log(pn)

n
+

√
1

n
) + 2τmaxA0

K log(pn)

n
}, (4.16)

and the parameters satisfy

min
k,p∈S

|θkp| ≥
5
√
sλn

4αl
,

then there exists a stationary point θ̂ ∈ Br(θ∗) obtained from (4.5) that satisfies sign(θ̂) =

sign(θ∗) with probability at least 1−C3 exp{−C4min{s, log(pn)}} for some positive constants

C3 and C4.

Proof. The proof follows the primal-dual witness construction. We consider a local point

θ̂S,0 = (θ̂S ,0) ∈ Br(θ
∗) satisfying

θ̂S,0 = argmin
θ∈RKs:∥θ∥1≤R

{n−1L(θ) + λn∥θ∥2,1}. (4.17)

We can apply Theorem 4.1 to this restricted program (4.17), so that θ̂S,0 can satisfy

∥θ̂S,0 − θ∗∥2 ≤
3λn

√
s

2κl
and ∥θ̂S,0 − θ∗∥1 ≤

6λns

κl
.
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Therefore, θ̂S,0 is an interior point of the restricted program (4.17), and we have the zero-

subgradient condition

1

n
∇L(θ̂S,0) + λnẑ = 0 (4.18)

with ẑ denoting the subdifferential of ∥θ̂S,0∥2,1. The equations (4.18) can be partitioned into

two sets S and Sc:

− 1

n
∇L(θ̂S,0)S = λnẑS , (4.19a)

− 1

n
∇L(θ̂S,0)Sc = λnẑSc , (4.19b)

with maxp∈Sc ∥ẑ(p)∥2 < 1.

Next, we expand the estimating equation (4.18) as follows

0 =
1

n
∇L(θ̂S,0) + λnẑ =

1

n
∇L(θ∗) + 1

n
∇L(θ̂S,0)−

1

n
∇L(θ∗) + λnẑ

=
1

n
∇L(θ∗) + XTX

n
∆̂ +R+ λnẑ. (4.20)

Let ∆̂ = θ̂S,0 − θ∗ and ũki = yki − xTki(θ
∗
k + t∆̂k) = u∗ki − txTki∆̂k. Equation (4.20) is obtained

by

1

n
(∇L(θ̂S,0)−∇L(θ∗)) =

∫ 1

0

1

n
∇2L(θ∗ + t∆̂)∆̂dt

=
XTX

n
∆̂− 1

n

K∑
k=1

n∑
i=1

∫ 1

0

xkix
T
ki∆̂k1(|ũki| > τk)dt,

where

R = − 1

n

K∑
k=1

n∑
i=1

∫ 1

0

xkix
T
ki∆̂k1(|ũki| > τk)dt.
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For simplicity, we define

Σ̂ = XTX/n and
1

n
∇L(θ∗) = XT ϵ∗/n

with ϵ∗ = (ϵ∗11, · · · , ϵ∗ki, · · · , ϵ∗Kn) and ϵ∗ki = min{|u∗ki|, τk}sign(u∗ki) for k = 1, 2, · · · , K and

i = 1, 2, · · · , n .

Therefore, the equations (4.19a) and (4.19b) can be rearranged in block format based on

(4.20) as follows,

 Σ̂SS Σ̂SSc

Σ̂ScS Σ̂ScSc


∆̂S

0

+

XT
S ϵ

∗/n

XT
Scϵ∗/n

+

 RS + λnẑS

RSc + λnẑSc

 = 0. (4.21)

Next, we need to show that ∥∆̂S∥∞ is bounded and ∥ẑSc∥2,∞ < 1. The difference ∆̂S can

be obtained by solving equation (4.21)

∆̂S = −Σ̂−1
SS(X

T
S ϵ

∗/n+ λnẑS +RS).

We can show that

∥∆̂S∥∞ = ∥Σ̂−1
SS(X

T
S ϵ

∗/n+ λnẑS +RS)∥∞

≤
∣∣∣∣∣∣∣∣∣(Σ̂SS)

−1
∣∣∣∣∣∣∣∣∣

∞
(∥XT

S ϵ
∗/n∥∞ + ∥RS∥∞ + λn)

≤
√
s
∣∣∣∣∣∣∣∣∣(Σ̂SS)

−1
∣∣∣∣∣∣∣∣∣

2
(∥XT

S ϵ
∗/n∥2,∞ + ∥RS∥∞ + λn). (4.22)

In addition,

ẑSc =− 1

λn
(XT

Scϵ∗/n+RSc − Σ̂ScSΣ̂
−1
SS(X

T
S ϵ

∗/n+ λnẑS +RS)))

=Σ̂ScSΣ̂
−1
SS ẑS − 1

λn
(XT

Sc(I −XT
S Σ̂

−1
SSXS)X

T
Scϵ∗/n+RSc − Σ̂ScSΣ̂

−1
SSRS).
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Furthermore, maxp∈Sc ∥ẑ(p)∥2 can be bounded as follows,

max
p∈Sc

∥ẑ(p)∥2 ≤max
p∈Sc

{∥(Σ̂ScSΣ̂
−1
SS ẑS)

(p)∥2 +
1

λn
(∥(XT

ScΠϵ∗/n)(p)∥2 + ∥R(p)
Sc ∥2

+∥(Σ̂ScSΣ̂
−1
SSRS)

(p)∥2)},

with an orthogonal projection matrix Π = I −XT
S Σ̂

−1
SSXS .

Next, we need to analyze the upper bound of each element in both ∆̂S and ẑSc . From

Lemma 4.1, we have

∥X
T ϵ∗

n
∥2,∞ ≤ ξλn

4
, (4.23)

with probability at least 1− C1 exp{−C2 log(pn)}.

By applying (4.50) from Lemma 4.6, we can show that with probability 1− c1 exp{−c2s}

for some constants c1, c2, and c3,

αu
−1 − c3

√
s

n
≤

∣∣∣∣∣∣Σ−1
SS
∣∣∣∣∣∣

2
− c3

√
s

n
≤

∣∣∣∣∣∣∣∣∣Σ̂−1
SS

∣∣∣∣∣∣∣∣∣
2
≤

∣∣∣∣∣∣Σ−1
SS
∣∣∣∣∣∣

2
+ c3

√
s

n
≤ αl

−1 + c3

√
s

n
. (4.24)

Thus, the sub-matrix Σ̂SS is invertible with high probability, and the loss function is strongly

convex on the subspace S.

In addition, by fixing p and k, we can apply Cauchy-Schwarz inequality to each element

in the vector R as follows,

Rkp =−
∫ 1

0

1

n

n∑
i=1

(xkix
T
ki∆̂k)p1(|ũki| > τk)dt

≤
∫ 1

0

{ 1
n

n∑
i=1

((xkix
T
ki∆̂k)p)

2}1/2{ 1
n

n∑
i=1

1(|ũki| > τk)}1/2dt.

Since xki’s are independent sub-Gaussian variables, we can show that with probability
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1− 2 exp{− log(pn)},

1

n

n∑
i=1

(vTxkix
T
kiu)

2 ≤ 1

n

n∑
i=1

1

2
((xTkiv)

4 + (xTkiu)
4) ≲ A4

0,

for any unit vector v and u. We can apply Hoeffding’s inequality to obtain that with

probability at least 1− exp{−2nx2},

1

n

n∑
i=1

1(|ũki| > τk) ≤
1

n

n∑
i=1

P (|ũki| > τk) + x

≤ 1

n

n∑
i=1

P (|ũ∗ki| >
τk
2
) + P (|txTki∆k| >

τk
2
) + x

≤vk
( 2
τk

)1+ω
+ c

(A0t

τk

)1+ω∥∆k∥1+ω2 + x.

Based on Theorem 4.1, ∥∆∥2 ≲
√
sλn ≤ r, and τk ≲ (n/ log(pn))

max{1/2,1/(1+ω)}. For

n ≳ s2 log(pn), we can take x =
√

log(pn)/n to show that with probability at least 1 −

exp{−2 log(s)},

1

n

n∑
i=1

1(|ũki| > τk) ≲
( log(pn)

n

)max{(1+ω)/2,1}
+
( log(pn)

n

)1/2
≲

√
log(pn)

n
.

Thus, the ℓ∞ norm of the component R can be bounded with probability at least

1− exp{−2 log(pn)},

∥R∥∞ ≤max
kp

{ 1
n

n∑
i=1

((xkix
T
ki∆̂k)p)

2}1/2
∫ 1

0

{ 1
n

n∑
i=1

1(|ũki| > τk)}1/2dt

≲
(s2 log(pn)

n

)1/4
λn. (4.25)

Therefore, from results above in (4.23), (4.24), and (4.25), (4.22) can be bounded as
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follows

∥∆̂S∥∞ ≤
√
s

αl
(
ξ

4
λn +

(s2 log(pn)
n

)1/4
λn + λn) =

√
s

αl
(
5λn
4

)

with probability 1− 2 exp{− log(pn)}. By taking mink,p∈S |θ∗kp| ≥ α−1
l

√
s(5λn/4), we have

P (∥∆̂S∥∞ ≤ min
k,p∈S

|θ∗kp|) ≥1− 2 exp{− log(pn)},

which provides the sign consistency sign(θ̂S,0) = sign(θ∗).

In the last part, we can apply (4.51) from Lemma 4.6 to obtain

max
p∈Sc

∥ẑ(p)∥2 ≤max
p∈Sc

{∥(Σ̂ScSΣ̂
−1
SSu)

(p)ẑ
(p)
S ∥2 +

1

λn
(∥L(θ∗)(p)∥2

+∥R(p)∥2 + ∥(Σ̂ScSΣ̂
−1
SSu)

(p)∥2∥RS)
(p)∥2)}

≤(1− ξ

2
) +

1

λn
(
ξ

4
λn +

(s2 log(pn)
n

)1/4
λn)

<(1− ξ

2
) +

ξ

4
+ o(1) < 1− ξ

4
(4.26)

with probability at least 1− C3 exp{−C4min{s, log(pn)}}.

The following Theorem 4.2 establishes that the robust multi-task learning method can

recover the union support with probability tending to one.

Corollary 4.1. Based on Assumptions 4.1 - 4.2, if the penalty parameter λn is cho-

sen as (4.16) and 16Rτl log(pn)/n ≤ ξλn, then the estimator θ̂ ∈ Br(θ∗) is the unique

optimal solution of the program (4.4) that has sign consistency with probability at least

1− C3 exp{−C4min{s, log(pn)}} for some constants C3 and C4.

Proof. From Theorem 4.2, there exists stationary points θ̂S,0 that is a local minimum and has

sign consistency. Suppose there exists another stationary point θ̃, such that ∥θ̃ − θ∗∥2 ≤ r.
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For simplicity, let θ̂S,0 in the proof of Theorem 4.2 be denoted by θ̂, and by Assumption 4.1,

n−1(∇L(θ̃)−∇L(θ̂))T (θ̃ − θ̂) ≥ κl∥θ̃ − θ̂∥22 − τl
log(pn)

n
∥θ̃ − θ̂∥22,1.

The stationary point θ̃ of program (4.4) can satisfy

(n−1∇L(θ̃) + λnz̃)
T (θ̃ − θ̂) ≤ 0,

with z̃ denoting the subdifferential of ∥θ̃∥2,1. In addition, θ̂ is an interior point satisfying

(n−1∇L(θ̂) + λnẑ)
T (θ̃ − θ̂) = 0.

Therefore, we obtain

λn(ẑ − z̃)T (θ̃ − θ̂) ≥ κl∥θ̃ − θ̂∥22 − τl
log(pn)

n
∥θ̃ − θ̂∥22,1. (4.27)

Based on (4.26) in the proof of Theorem 4.2, we have ∥ẑSc∥2,∞ ≤ 1 − ξ/4, such that

∥θ̂Sc∥2,1 = 0, and then

ẑT (θ̃ − θ̂) =∥ẑS∥2,∞∥(θ̃ − θ̂)S∥2,1 + ∥ẑSc∥2,∞∥(θ̃ − θ̂)Sc∥2,1

≤∥(θ̃ − θ̂)S∥2,1 + (1− ξ

4
)∥(θ̃ − θ̂)Sc∥2,1,

and

−z̃T (θ̃ − θ̂) = z̃T θ̂ − ∥θ̃∥2,1 ≤∥θ̂∥2,1 − ∥θ̃∥2,1 = ∥θ̂S∥2,1 − ∥θ̃S∥2,1 − ∥θ̃Sc∥2,1

≤∥(θ̃ − θ̂)S∥2,1 − ∥(θ̃ − θ̂)Sc∥2,1.
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Thus,

λn(2∥(θ̃ − θ̂)S∥2,1 −
ξ

4
∥(θ̃ − θ̂)Sc∥2,1) ≥κl∥θ̃ − θ̂∥22 − τl

log(pn)

n
∥θ̃ − θ̂∥22,1

≥− τl
log(pn)

n
∥θ̃ − θ̂∥22,1.

With condition 16Rτl log(pn)/n ≤ ξλn, we can show that

τl
log(pn)

n
∥θ̃ − θ̂∥2,1 ≤ τl

log(pn)

n
(∥θ̃∥1 + ∥θ̂∥1) ≤ 2Rτl

log(pn)

n
≤ ξ

8
λn,

which can imply the following inequalities

λn(2∥(θ̃ − θ̂)S∥2,1 −
ξ

4
∥(θ̃ − θ̂)Sc∥2,1) ≥− ξ

8
λn∥θ̃ − θ̂∥2,1

(2 +
ξ

8
)∥(θ̃ − θ̂)S∥2,1 ≥

ξ

8
∥(θ̃ − θ̂)Sc∥2,1

(
16

ξ
+ 1)∥(θ̃ − θ̂)S∥2,1 ≥∥(θ̃ − θ̂)Sc∥2,1

(
16

ξ
+ 2)

√
s∥θ̃ − θ̂∥2 ≥∥θ̃ − θ̂∥2,1.

Based on (4.27), we can show that

λn(ẑ − z̃)T (θ̃ − θ̂) ≥
(
κl − (

16

ξ
+ 2)2τl

s log(pn)

n

)
∥θ̃ − θ̂∥22.

Based on Assumption 4.2 that n ≳ s2 log(pn), the right-hand side is bounded below by 0. In

addition,

(ẑ − z̃)T (θ̃ − θ̂) = ẑT θ̃ − ∥θ̂∥2,1 − ∥θ̃∥2,1 + z̃T θ̂ ≤ ẑT θ̃ − ∥θ̃∥2,1 ≤ 0,

with both z̃T θ̂ ≤ ∥z̃∥2,∞∥θ̂∥2,1 ≤ ∥θ̂∥2,1 and ẑT θ̃ ≤ ∥ẑ∥2,∞∥θ̃∥2,1 ≤ ∥θ̃∥2,1.
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Therefore, since positive constants κl, ξ, and τl are not dependent on n, pn, and s,

0 ≤
(
κl − (

16

ξ
+ 2)2τl

s log(pn)

n

)
∥θ̃ − θ̂∥22 = (κl + o(1))∥θ̃ − θ̂∥22 ≤ 0

which implies θ̃ = θ̂.

4.3.3 Optimization Property

We propose to apply the composite gradient descent algorithm [Nesterov, 2013] to optimize

the objective function (4.4). First, we can use an isotropic quadratic function as the majorizer

to approximate the objective function Q(θ),

1

n
Q(θ|θt) = 1

n
L(θt) + 1

n
∇L(θt)(θ − θt) +

γ

2
∥θ − θt∥22 + λn∥θ∥2,1,

and the quadratic coefficient γ is chosen as the largest eigenvalue of the Hessian matrix

n−1∇2L(θ). The optimization procedure produces a sequence of updated points {θt}∞t=0,

θt+1 = arg min
∥θ−θ∗∥1≤R

{1
2
∥θ − (θt −

1
n
∇L(θt)
γ

)∥22 +
λn
γ
∥θ∥2,1}.

The thresholding operator Sλn/η on the grouped parameters is defined as

Sλn/η(θ
(p)) = (∥θ(p)∥2 −

λn
η
)+z

(p).

We use θ(p),t to represent the pth grouped parameter in the tth update. We can show the

subsequent update as follow

θ(p),t+1 = Sλn/η(θ
(p),t − 1

n

∇L(θt)(p)

η
), (4.28)
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where the step size η can be equal or proportional to γ.

The following theorem shows that the optimization procedure enjoys a geometric rate of

convergence.

Theorem 4.3. Based on Assumptions 4.1 - 4.1, suppose the condition (4.9) holds and the

initial point θ0 ∈ B2(r), then the optimization procedure can yield n−1(Q(θt) − Q(θ̂)) ≤ δ2

with δ2 = C5ε
2 log(pn)/n for some C5, and

∥θt − θ̂∥22 ≤ κ−1
l (δ2 + 16τlδ

4 + 4τl
log(pn)

n
ε2), for t ≥ T = C6

log(1/δ2)

log(1/κ)

with some κ ∈ (0, 1) and some constant C6, where ε = 8
√
s∥θ̂ − θ∗∥2.

Proof. Our proof is analogous with Loh and Wainwright [2015]. The iterations t can be

divided into different epochs t ∈ [Tj, Tj+1) with different tolerance levels, which can be

denoted as {η̄j}∞j=0. From Lemmas 4.8 and 4.9, we have

1

n
Q(θt)− 1

n
Q(θ̂) ≤ κt−T (

1

n
Q(θT )− 1

n
Q(θ̂)) +

β

1− κ
(ε+ ϵ)2,

where ε = 8
√
s∥θ̂−θ∗∥2 and ϵ = min{λ−1

n 2η̄, R}. In the following iterations, for t ∈ [Tj, Tj+1),

we can set n−1Q(θt)−n−1Q(θ̂) ≤ η̄j and let ϵ be replaced by ϵj = min{λ−1
n 2η̄j, R}. Therefore,

we can show the first epoch t ∈ [T0, T1) with T0 = 0,

1

n
Q(θt)− 1

n
Q(θ̂) ≤κt( 1

n
Q(θT0)− 1

n
Q(θ̂)) +

4β

1− κ
max{ε2, ϵ20}.

Here, we can set the next precision level as η̄1 := 8βmax{ε2, ϵ20}/(1− κ),

1

n
Q(θt)− 1

n
Q(θ̂) ≤η̄1 ≤ κtη̄0 +

4β

1− κ
max{ε2, ϵ20}, ∀t ≥ T1,

with T1 = ⌈log(2η̄0/η̄1)/ log(1/κ)⌉. In the following epochs, the value of η̄j for j ≥ 1 will
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decrease as the contraction factor κ < 1, and ϵj also decreases, which provides the recursive

relation

1

n
Q(θt)− 1

n
Q(θ̂) ≤ κt−Tj η̄j +

4β

1− κ
max{ε2, ϵ2j},∀t ≥ Tj.

Through a similar setting, we can show that

η̄j+1 :=
8β

1− κ
max{ε2, ϵ2j} and Tj+1 = ⌈ log(2η̄j/η̄j+1)

log(1/κ)
⌉+ Tj.

For the last epoch, we can set the ultimate tolerance level η̄ = δ2 = C5ε
2 log(pn)/n for

some constant C5 > 0, such that n−1Q(θt)− n−1Q(θ̂) ≤ δ2 for t ≥ T . The total number of

iterations can be calculated based on the results above as T = C6 log(1/δ
2)/ log(1/κ).

Based on Lemma 4.7, if we set the initial point satisfies ∥θ0 − θ̂∥2 ≤ d, any following

updated point also sits in the neighborhood. We can apply Lemma 4.9 to show that the

optimization can obtain the ℓ2-bound of estimators θt

∥θT − θ̂∥22 ≤(κl − 32τl
s log(pn)

n
)−1(δ2 + 2τl

log(pn)

n
(ε+ ϵ)2)

≤κ−1
l (δ2 + 16τl

log(pn)

n

δ4

λ2n
+ 4τl

log(pn)

n
ϵ2)

≤κ−1
l (δ2 + 16τlδ

4 + 4τl
log(pn)

n
ε2)

with n ≳ s2 log(pn) and λn ≍ (log(pn)/n)
min{1/2,ω/(1+ω)}.

4.3.4 Robust Information Criterion

The joint feature selection can be based on the aggregation of the information from different

tasks. Gao and Carroll [2017] proposed the pseudo Bayesian information criterion by

aggregating the pseudo log-likelihoods from different tasks. Dai et al. [2020] proposed the
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multiple quantile Bayesian information criterion and replaced the loss function with the

pooled check function. Since the Huber loss function is a combination of squared loss and

Least Absolute Deviation, we propose the robust version of the information criterion for the

multi-task feature learning,

robust-BIC = 2L(θ̂J ) + d∗J γn. (4.29)

The first component in (4.29) is used to measure the goodness-of-fit of the composite Huber

loss function for a given union support J across all related tasks, and the second component

is the penalty to control the complexity of the selected model. Following Gao and Carroll

[2017], we set the penalty term γn = c log(pn) with some constant c. The effective degrees

of freedom d∗J is defined as tr(H−1(θ̂J )J(θ̂J )). The formulation (4.29) is an extension of

the robust information criterion applied to a single learning task with robust loss function

[Tharmaratnam and Claeskens, 2013].

4.4 Simulation

In this section, simulation studies are implemented to examine the empirical performance of

the robust multi-task feature learning method, which is compared with the multi-task feature

learning method without robust loss function and the robust single-task learning method.

We use the positive selection rates (PSR), false discovery rates (FDR), and squared ℓ2 norm

estimation error to measure the model performance. The positive selection rate is defined as

PSR =

∑
p 1(θ̂

(p) ̸= 0)1(θ∗(p) ̸= 0)∑
p 1(θ

∗(p) ̸= 0)
,

which measures the proportion of true features that are accurately identified by the model.

The false discovery rate (FDR) is used to demonstrate the proportion of unimportant features
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selected by the model, which is defined as

FDR ==

∑
p 1(θ̂

(p) ̸= 0)1(θ∗(p) = 0)∑
p 1(θ̂

(p) ̸= 0)
.

Since we compare the multi-task feature learning with the single-task analysis, the squared

ℓ2 norm estimation error is set as K−1∥θ̂ − θ∗∥22.

The penalty parameters are set as λn ≍
√

log(pn)/n, and we use the robust Bayesian

information criterion to determine the value of the penalty parameter. The robustification

parameters are updated based on the method proposed by Wang et al. [2021], such that

τ tk = σ̂tk
√
n/ log(pn)/4, and the algorithm iteratively estimates the standard deviation of the

error terms σ̂tk =
√
n−1

∑n
i=1(yki − xTkiθ

t
k)

2.

4.4.1 Multiple data sets with 10% outliers

In the first simulation, we consider the case that a small portion of data is generated with

outliers or heavy-tailed errors for all tasks. The response variables are simulated as follows,

yki = xTkiθ
∗
k + u∗ki, and u∗ki = ζkiεki. (4.30)

For each task, we generate n = 500 observation, and the dimensions of the parameter are set

as pn = 500, 1000, and 1500. The true regression parameters are simulated from uniform

distribution Unif(0.05, 0.5), and the size of true support in each task is ⌈p1/2⌉.

The predictors for the true model S are generated from multivariate normal distribution

MVN(0,Σk), and the s × s covariance matrix Σk is designed with variances σ2
p = 2 and

correlation ρpq = 0.3 for any p, q ∈ S. Other unimportant predictors are generated from

a different zero-mean multivariate normal distribution, which has variances σ2
p = 0.2 and

correlations ρpq = 0.05 for any p, q ∈ Sc.

102



The error terms across all tasks are correlated. We consider two cases, where the errors

(ε1i, ε2i, ε3i, ε4i) are generated from

1. Gaussian Mixture Error: Mixture of multivariate Gaussian distribution 0.5MVN(1,Σ)+

0.5MVN(−1,Σ);

2. Heavy-tailed Error: Multivariate t distribution with 10 degrees of freedom t10(Σ).

For both cases, the 4× 4 covariance matrix Σ is set with the variances equal to one and the

correlations generated from Unif(0.4, 0.65). In addition, we randomly introduce 50 outliers

among all error terms. For each observation, the error term εki multiplies with the scalar ζki.

Let the vector ζk = (ζk1, ζk2, · · · , ζkn)T . There are 50 randomly selected elements of ζk set

equal to
√
n and the remaining elements set to be one.

Table 4.1: Comparison of the robust multi-task learning (RMTL) compared with the multi-

task learning without a robust loss (MTL) and the robust single-task analysis (STA) for

multiple data sets with 10% outliers. The standard errors (%) are provided in parentheses.

pn = 500 pn = 1000 pn = 1500
Model PSR FDR ℓ2 Err PSR FDR ℓ2 Err PSR FDR ℓ2 Err

Simulation I: Gaussian Mixture Error
RMTL 100 (0) 0 (1) 0.14 100 (0) 0 (1) 0.22 100 (0) 0 (0) 0.30
MTL 98 (3) 0 (1) 0.66 99 (2) 0 (1) 0.83 98 (2) 0 (1) 1.45
STA1 98 (3) 0 (1) 0.14 100 (1) 1 (3) 0.20 100 (1) 7 (12) 0.28
STA2 99 (2) 0 (1) 0.14 100 (1) 2 (3) 0.21 100 (1) 7 (11) 0.28
STA3 99 (2) 0 (1) 0.14 100 (1) 1 (3) 0.21 100 (1) 8 (12) 0.27
STA4 99 (2) 0 (2) 0.14 100 (1) 1 (3) 0.21 100 (1) 7 (11) 0.26

Simulation II: Heavy-tailed Error
RMTL 100 (0) 0 (2) 0.12 100 (0) 1 (2) 0.20 100 (0) 1 (4) 0.29
MTL 98 (3) 0 (1) 0.66 99 (2) 0 (1) 0.83 99 (1) 0 (0) 0.93
STA1 100 (1) 0 (1) 0.11 100 (0) 2 (9) 0.17 100 (0) 5 (10) 0.26
STA2 99 (2) 0 (1) 0.11 100 (0) 2 (8) 0.18 100 (0) 5 (11) 0.25
STA3 100 (1) 0 (1) 0.10 100 (0) 1 (3) 0.18 100 (0) 5 (12) 0.25
STA4 100 (1) 0 (0) 0.11 100 (0) 2 (8) 0.18 100 (0) 5 (11) 0.25

We conduct 50 independent simulations under each simulation setting. From Table 4.1, we
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observe that the proposed model yields high positive selection rates, low false discovery rates,

and relatively smaller estimation error K−1∥θ̂ − θ∗∥22. In contrast, the multi-task feature

learning method without robust loss is largely affected by the outliers and yields bigger

estimation errors. Compared to the robust multi-task method, the robust single-task method

yields higher FDR.

4.4.2 Heteroscedastic regression

In the second example, the true regression coefficients and predictors are generated by the

same process as the previous example. The random errors are also simulated from asymmetric

and heavy-tailed random errors. The data-generating process uses the heteroscedastic model

to simulate the response variables,

yki = xTkiθ
∗
k + u∗ki, and u∗ki = ζkiεki, (4.31)

where the constant ζki = ∥θ∗k∥−1
2 (xTkiθ

∗
k) can control the noise level of error component u∗ki.

The results in Table 4.2 are summarized from 50 independent simulations. We observe

that the overall performance of the multi-task learning is better than that of the single-task

analysis. In comparison with the multi-task feature learning method without robust loss, the

proposed method produces smaller ℓ2-norm estimation errors.

4.5 Data Analysis

In this section, we apply the robust multi-task feature learning method to analyze multiple

community health status indicators (CHSI), which were collected across different counties of

the U.S. in 2010 [U.S. Department of Health and Human Services]. There are 428 observations

in the data sets. Four response variables of interest were measured to reflect the community
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Table 4.2: Comparison of the robust multi-task learning (RMTL) compared with the multi-

task learning without a robust loss (MTL) and the robust single-task analysis (STA) for

multiple heteroscedastic regression. The standard errors (%) are provided in parentheses.

pn = 500 pn = 1000 pn = 1500
Model PSR FDR ℓ2 Err PSR FDR ℓ2 Err PSR FDR ℓ2 Err

Simulation I: Asymmetric Error
RMTL 100 (0) 0 (0) 0.29 100 (0) 0 (1) 0.42 100 (1) 0 (0) 0.54
MTL 100 (1) 0 (0) 0.32 100 (1) 0 (0) 0.53 99 (1) 0 (1) 0.69
STA1 97 (4) 0 (1) 0.33 98 (2) 2 (5) 0.47 99 (2) 5 (10) 0.56
STA2 97 (4) 0 (1) 0.31 99 (2) 2 (4) 0.45 99 (2) 5 (9) 0.56
STA3 97 (3) 0 (1) 0.32 99 (2) 2 (4) 0.46 99 (2) 5 (9) 0.56
STA4 98 (3) 0 (1) 0.31 98 (3) 2 (2) 0.44 99 (2) 6 (10) 0.55

Simulation II: Heavy-tailed Error
RMTL 100 (0) 0 (0) 0.23 100 (0) 0 (2) 0.34 100 (1) 0 (0) 0.47
MTL 100 (0) 0 (1) 0.25 100 (0) 0 (0) 0.39 100 (0) 0 (0) 0.52
STA1 99 (2) 0 (0) 0.23 100 (1) 2 (4) 0.34 100 (0) 11 (15) 0.46
STA2 100 (2) 0 (1) 0.23 100 (0) 2 (4) 0.34 100 (0) 10 (13) 0.45
STA3 99 (1) 0 (1) 0.22 100 (0) 2 (3) 0.34 100 (0) 10 (13) 0.45
STA4 100 (1) 0 (0) 0.22 100 (1) 2 (5) 0.34 100 (0) 10 (13) 0.45

health status, including the average number of unhealthy days, the death counts, the average

life expectancy, and the self-rated health status. By jointly analyzing the four response

variables, we select important features from 70 candidate predictors, which include overall

demographic information, counts of different diseases, different causes of death, environmental

conditions, and health-related risk factors.

To show the performance of the robust regularization method, we randomly select 10%

samples and introduce some large outliers. These contaminated samples are the original

response variables added with additional terms εki = cki|uki| with cki ∼Unif(0,
√
n) and

uki ∼ N(0, 1). We model each response variable with all predictors by the ordinary regression

model, and the QQ plot in Figure 4.1 shows that the standardized residuals have a heavy

right tail and skewed distribution.

We conduct a five-fold cross-validation to examine the model prediction accuracy through
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Figure 4.1: QQ plots of the standardized residuals for each regression model.
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100 independent replications. The training set containing 80% of randomly selected observa-

tions is applied to the robust multi-task feature learning. The robustification parameters are

chosen based on the adaptive method [Sun et al., 2020, Wang et al., 2021]. We use different

values of the penalty parameters to conduct joint feature selection. The robust Bayesian

information criterion is evaluated with the selected features, and we choose the joint model

with the smallest value of the robust Bayesian information criterion. Then, we fit the adaptive

Huber regression on the remaining 20% validation data sets with selected features and use

the mean absolute error (MAE) to show the prediction accuracy, where the mean absolute

error (MAE) is defined as

MAE(θ̂k) =
1

n

n∑
i=1

|ytest
ki − xtest

ki θ̂k|.

We use ytest
ki and xtest

ki to denote the observations of the response and covariates in the validation

data for each task, and θ̂k is the estimated regression coefficients for the selected features in

the validation data.

From Figure 4.2, the results demonstrate that the proposed method provides much smaller
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Figure 4.2: The mean absolute error (MAE) of validation data sets for the community

health status based on the robust multi-task learning (RMTL), compared with the multi-task

learning without a robust loss (MTL) and the robust single-task analysis (STA).
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mean absolute errors (MAE) than the other two comparison methods. The multi-task feature

learning method without robust loss is very sensitive to outlier contamination. It has the

highest mean absolute errors than the other two methods for three out of the four response

variables. For the last response variable, the mean absolute errors from the single-task learning

are the highest. We can infer that the data integration process can effectively enhance the

model fitting and reduce estimation errors.

4.6 Technical Lemmas

This section provides some technical Lemmas used in the proofs of Lemmas and Theorem

in Section 4.3. For each task, we can show the distribution property of the score function,

which is similar to the large deviation bound in Sun et al. [2020].
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Lemma 4.2. Based on Assumption 4.1, let the score function of the kth task be denoted by

Un(θkp) =
n∑
i=1

Ui(θkp) =
n∑
i=1

∂ℓki(θk; yki, xki)

∂θkp
,

for any p = 1, 2, · · · , pn. We can show that

n∑
i=1

E([Ui(θkp)]
2) ≤ 2τ

max{1−ω,0}
k A2

0vkn, (4.32)

and for any m ≥ 3

n∑
i=1

E([Ui(θkp)]
m) ≤ mΓ(

m

2
)τ

max{1−ω,0}
k A2

0vkn(τkA0)
m−2. (4.33)

Furthermore, for some x > 0

P (| 1
n
Un(θkp)| ≥ νk

√
2x+ αkx) ≤ 2 exp{−x}, (4.34)

where

νk = 2τ
max{(1−ω)/2,0}
k A0(

vk
n
)1/2, and αk =

τkA0

n
.

Proof. Define new function ψτ (u) = sign(u)min(|u|, τ) with E(u) = 0 and E(|u|1+ω) = v <

∞. We first analyze the cases for ω ∈ (0, 1). We can derive the expectation of ψτ as follows,

E(ψτ (u)) =E(sign(u)min(|u|, τ))

=E(sign(u)min(|u|, τ))− E(u)

=− E(sign(u)max(0, |u| − τ))

=− E(sign(u)(|u| − τ)1(|u| > τ)),
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which can imply that

|E(ψτ (θ∗;u))| ≤ E((|u| − τ)×
( |u|
τ

)ω
1(|u| > τ)) ≤ vτ−ω.

This result shows that the expectation of function ψτ (u) is bounded, and the boundedness is

dependent on the parameters τ and v. We can apply this result to the absolute expectation

of individual score function, such that

|E(Ui(θ∗kp))| =|E(sign(u∗ki)min(|u∗ki|, τk)xkpi)|

=|E(E(sign(u∗ki)min(|u∗ki|, τk)|xkpi)xkpi)|

<vkiτ
−ω
k A0.

In addition, since we assume xki’s are zero-mean Sub-Gaussian variables, E(Ui(θkp)) = 0.

Next, we consider higher moments of function ψτ (u) for m ≥ 2,

|E(ψτ (u)m)| = E(min (|u|m, τm))

= E(|u|m1(|u| ≤ τ)) + E(τm1(|u| > τ))

≤ E(|u|m
( τ
|u|

)m−1−ω1(|u| ≤ τ)) + E(τm
( |u|
τ
)1+ω1(|u| > τ))

≤ E(|u|1+ωτm−1−ω1(|u| ≤ τ)) + E(|u|1+ωτm−1−ω1(|u| > τ))

≤ vτm−1−ω.

Based on Assumption 4.1, we can show that E((xTkiu)m) ≤ mΓ(m/2)Am0 . Thus, the mth

moment of the individual score function can be given by

E[(Ui(θ
∗
kp))

m] =E[(sign(u∗ki)min(|u∗ki|, τk)xkpi)m] ≤ mΓ(
m

2
)τm−1−ω
k Am0 vki.
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For cases ω ≥ 1, E(|u|2) ≤ v <∞. Therefore, we can derive that

|E(ψτ (u)m)| =E(min(|u|m, τm))

=E(|u|m1(|u| ≤ τ)) + E(τm1(|u| > τ))

≤E(|u|m
( τ
|u|

)m−21(|u| ≤ τ)) + E(τm
( |u|
τ
)21(|u| > τ))

≤vτm−2.

Thus, the mth moment of the individual score function can be given by

E[(Ui(θ
∗
kp))

m] =E[(sign(u∗ki)min(|u∗ki|, τk)xkpi)m] ≤ mΓ(
m

2
)τm−2
k Am0 vki,

and we combine all results to obtain Conditions (4.32) and (4.33) in the theorem.

Next, we can apply the Bernstein’s inequality [Massart and Picard, 2007] to show that

for some x > 0

P (| 1
n
Un(θkp)| ≥ νk

√
2x+ αkx) ≤ 2 exp{−x}, (4.35)

where

νk = 2τ
max{(1−ω)/2,0}
k A0(

vk
n
)1/2, and αk =

τkA0

n
.

Assumption 4.1 is important to establish the estimation error bound and sign consistency.

Thus, we need to show that this condition can be satisfied for the adaptive Huber regression

under the high-dimensional random design.

Lemma 4.3. Based on Assumptions 4.1-4.2, suppose the robustification parameters τk’s
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satisfy

τk ≥ (4vk)
1/1+ω + τ0, for some τ 20 ≥ 32A2

0r
2 log(16A2

0/αl).

If R ≲
√
s, then, with probability at least 1− C

′
exp{−C ′′

n} for some constant C, C ′, and

C
′′, the proposed loss function L(θ) satisfies (4.6) with

κl =
αl
8

and τl =
CKA2

0τ
2
0

αlr2
,

uniformly over all pairs (θ1, θ2), where

(θ1, θ2) ∈ {θ1, θ2 ∈ Br(θ∗) : ∥θ1 − θ∗∥1 ≤ R,∥θ2 − θ∗∥1 ≤ R,

and
∥θ1 − θ2∥2,1
∥θ1 − θ2∥2

≤ cαlr

A0τ0

√
n

K log(pn)
}.

Proof. The proof is based on a similar approach in Fan et al. [2017], Loh and Wainwright

[2015], Loh [2017], Sun et al. [2020]. We first define a new function ψτ (u) = sign(u)min(|u|, τ).

The first-order Taylor error T (θ1, θ2) can be given by

T (θ1, θ2) = (n−1∇L(θ1)− n−1∇L(θ2))T (θ1 − θ2)

=
1

n

K∑
k=1

n∑
i=1

(ψτk(yki − xTkiθ2k)− ψτk(yki − xTkiθ1k))x
T
ki(θ1k − θ2k),

where θ1k and θ2k denote the subsets of the parameters θ1 and θ2 in the kth task.

We define an event Aki:

Aki := {|u∗ki| ≤ τk − τ0} ∩ {|xTki(θ2k − θ∗k)| ≤
τ0
2
} ∩ {|xTki(θ1k − θ2k)| ≤

τ0
4r

∥θ1 − θ2∥2},

with some constant τ0 < τk. Given the event Aki, we can show that for ∥θ1 − θ∗∥2 ≤ D and
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∥θ2 − θ∗∥2 ≤ D,

|yki − xTkiθ2k| ≤ |u∗ki|+ |xTki(θ∗k − θ2k)| ≤ τk − τ0 +
τ0
2
< τk

|yki − xTkiθ1k| ≤ |u∗ki|+ |xTki(θ∗k − θ2k)|+ |xTki(θ1k − θ2k)|

≤ τk − τ0 +
τ0
2
+
τ0
4r

(∥θ1 − θ∗∥2 + ∥θ2 − θ∗∥2) ≤ τk.

Since ψ′
τ (u) = 1 if |u| ≤ τ , the first-order Taylor error T (θ1, θ2) can be bounded below as

follow,

T (θ1, θ2) ≥
1

n

K∑
k=1

n∑
i=1

(xTki(θ1k − θ2k))
21{Aki}. (4.36)

This lower bound in (4.36) is modeled by a non-smooth function. We introduce the

following truncation functions to deal with this problem,

ϕT (x) =


x2 if |x| ≤ T

2

(T − |x|)2 if T
2
< |x| ≤ T

0 if |x| > T

and φt(x) =


1− (x

t
)2 if |x| ≤ t

0 if |x| > t,

where the function ϕT (x) is T -Lipschitz and φt(x) is 2/t-Lipschitz. In addition, the proposed

functions are bounded above as

ϕT (x) ≤ x21(|x| ≤ T ) and φt(x) ≤ 1(|x| ≤ t). (4.37)

Next, we define δ = θ1 − θ2 and ∆ = θ2 − θ∗. For the kth task, δk = θ1k − θ2k and

∆k = θ2k − θ∗k. As a result, the inequality (4.36) can be rearranged with the proposed

112



truncation functions,

T (θ1, θ2) ≥ g(δ,∆) :=
1

n

K∑
k=1

n∑
i=1

ϕτ0∥δ∥2/4r(x
T
kiδk)φτ0/2(x

T
ki∆k)φτk−τ0(u

∗
ki)

≥ E(g(δ,∆))− sup
δ,∆∈B(γ)

|g(δ,∆)− E(g(δ,∆))|, (4.38)

where the restricted set is defined as follows,

B(γ) := {(δ,∆) : ∥∆∥2 ≤ r, ∥∆∥1 ≤ R, and
∥δ∥2,1
∥δ∥2

≤ γ}

for 1 ≤ γ ≤ cαlr

A0τ0

√
n

K log(pn)
.

We can first analyze E(g(δ,∆)) and obtain the lower bound by applying the properties

(4.37) as follows,

E(g(δ,∆)) ≥ 1

n

K∑
k=1

n∑
i=1

{E((xTkiδk)2)− E((xTkiδk)
21{|u∗ki| > τk − τ0})

−E((xTkiδk)21{|xTki∆k| >
τ0
2
})− E((xTkiδk)

21{|xTkiδk| >
τ0
4r

∥δ∥2})}.

Based on Assumption 4.1, we have E((xTkiδk)
2) = δTk Σkδk ≥ αl. For the remaining

components, we can apply conditional expectation to show that

1

n

n∑
i=1

E((xTkiδk)
21{|u∗ki| > τk − τ0}) =

1

n

n∑
i=1

E((xTkiδk)
2)P (|u∗ki| > τk − τ0)

≤ vk(τk − τ0)
−1−ωδTk Σkδk,

and we can apply Cauchy-Schwarz inequality as follows,

1

n

n∑
i=1

E((xTkiδk)
21{|xTki∆k| >

τ0
2
}) ≤ 1

n

n∑
i=1

√
E((xTkiδk)

4)

√
P (|xTki∆k| >

τ0
2
)
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≤
(
4A4

0∥δk∥42
)1/2(

exp{− τ 20
4A2

0∥∆k∥22
}
)1/2

≤ 2A2
0∥δk∥22 exp{−

τ 20
8A2

0∥∆k∥22
},

and

1

n

n∑
i=1

E((xTkiδk)
21{|xTkiδk| >

τ0
4r

∥δ∥2}) ≤
1

n

n∑
i=1

√
E((xTkiδk)

4)

√
P (|xTkiδk| >

τ0
4r

∥δ∥2)

≤
(
4A4

0∥δk∥42
)1/2(

exp{− τ 20 ∥δ∥22
16A2

0r
2∥δk∥22

}
)1/2

≤ 2A2
0∥δk∥22 exp{−

τ 20
32A2

0r
2
}.

Combining all the inequalities together, we can show that for any unit vector u,

E(
g(δ,∆)

∥δ∥22
) ≥ inf

k
{uTΣku(1−

vk
(τk − τ0)1+ω

)

−2A2
0(exp{−

τ 20
8A2

0∥∆k∥22
}+ exp{− τ 20

32A2
0r

2
})}.

We set τk ≥ (4vk)
1+ω + τ0 and τ 20 ≥ 32A2

0r
2 log(16A2

0/αl), and then the expectation

E(g(δ,∆)/∥δ∥22) is further bounded below by

E(
g(δ,∆)

∥δ∥22
) ≥ αl/2.

Next, let the second component in (4.38) be denoted by the random variable G(δ,∆):

G(δ,∆) := sup
(δ,∆)∈B(γ)

|g(δ,∆)− E(g(δ,∆))|
∥δ∥22

.
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We first introduce a new random variable Z(δ,∆) as

Z(δ,∆) :=
1

n

K∑
k=1

n∑
i=1

yki
∥δ∥22

ϕτ0∥δ∥2/4r(x
T
kiδk)φτ0/2(x

T
ki∆k)φτk−τ0(u

∗
ki),

and yki’s are i.i.d standard normal random variables, which are independent of xki and u∗ki

across all K tasks. Therefore, given xki’s and u∗ki’s, {Z(δ,∆)} is a conditional Gaussian

process. We apply the inequalities of Gaussian complexity, and Rademacher complexity in

Lemmas 12 and 13 from Loh and Wainwright [2015] to the expectation E(G(δ,∆)), which

provides that for any (δ,∆) ∈ B(γ),

E(G(δ,∆)) ≤
√
2πE( sup

(δ,∆)∈B(γ)
|Z(δ,∆)|). (4.39)

Based on the results from Ledoux and Talagrand. [1991] and Loh [2017], the right hand

side component in (4.39) can be bounded above as follows,

E( sup
(δ,∆)∈B(γ)

|Z(δ,∆)|) ≤ E(|Z(δ
′
,∆

′
)|) + 2E( sup

(δ,∆)∈B(γ)
Z(δ,∆)), (4.40)

with distinct pairs (δ,∆) and (δ
′
,∆

′
) ∈ B(γ). Therefore, we can combine (4.39) and (4.40) to

obtain that

E(G(δ,∆)) ≤
√
2πE(|Z(δ

′
,∆

′
)|) + 2

√
2πE( sup

(δ,∆)∈B(γ)
Z(δ,∆)).

Let the conditional expectation given xki’s and u∗ki be denoted by E∗. We can show that

since yki’s are i.i.d. standard normal variables, the conditional expectation of |Z(δ
′
,∆

′
)| can

be bounded as follows,

E∗(|Z(δ
′
,∆

′
)|) ≤

{
2

π∥δ′∥42
1

n2

K∑
k=1

n∑
i=1

ϕ2
τ0∥δ

′
k∥2/4r

(xTkiδ
′

k)φ
2
τ0/2

(xTki∆
′

k)φ
2
τk−τ0(u

∗
ki)})

}1/2

,
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and this inequality can be obtained based on E(|z|) ≤
√

2var(z)/π for any zero-mean normal

variable z. Furthermore, the expectation of |Z(δ
′
,∆

′
)| can be derived based on the properties

(4.37), such that

E(|Z(δ
′
,∆

′
)|) ≤E

(
{ 2

π∥δ′∥42
1

n2

K∑
k=1

n∑
i=1

ϕ2
τ0∥δ′∥2/4r(x

T
kiδ

′

k)}1/2
)

≤ 1

n∥δ′∥22

{ 2
π
E(

K∑
k=1

n∑
i=1

ϕ2
τ0∥δ

′
k∥2/4r

(xTkiδ
′

k))
}1/2

≤ 1

n∥δ′∥22

{ 2
π
E(

K∑
k=1

n∑
i=1

(xTkiδ
′

k)
4)
}1/2 ≤

√
8

nπ
A2

0.

In order to find the upper bound for the component E(sup(δ,∆)∈B(γ) Z(δ,∆)), we can

apply Sudakov–Fernique Theorem [Ledoux and Talagrand., 1991] to construct a new random

variable Y(δ,∆), such that,

E((Z(δ,∆)−Z(δ
′
,∆

′
))2) ≤ E((Y(δ,∆)− Y(δ

′
,∆

′
))2). (4.41)

Then we can apply the Gaussian comparison inequality based on (4.41) to derive that

E(sup(δ,∆)∈B(γ) Z(δ,∆)) ≤ 2E(sup(δ,∆)∈B(γ) Y(δ,∆)). With E(Z(δ,∆)) = 0, we can show that

E((Z(δ,∆)−Z(δ
′
,∆

′
))2) = var(Z(δ,∆)−Z(δ

′
,∆

′
)). Therefore, we can analyze the second

moment through the variance such that

var(Z(δ,∆)−Z(δ
′
,∆

′
)) ≤ 2var(Z(δ,∆)−Z(δ

′
,∆)) + 2var(Z(δ

′
,∆)−Z(δ

′
,∆

′
))

Let the conditional variance given xki’s and u∗ki be denoted by var∗. Conditioned on xki’s

and u∗ki’s, we can show that the variance of Z(δ,∆)−Z(δ
′
,∆) and Z(δ

′
,∆)−Z(δ

′
,∆

′
) can
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be bounded above based on the Lipschitz continuity,

var∗(Z(δ,∆)−Z(δ
′
,∆)) =

1

n2

K∑
k=1

n∑
i=1

φ2
τ0/2

(xTki∆k)φ
2
τk−τ0(u

∗
ki)

{
ϕτ0∥δ∥2/4r(x

T
kiδk)

∥δ∥22
−
ϕτ0∥δ′∥2/4r(x

T
kiδ

′

k)

∥δ′∥22

}2

(i)

≤ 1

n2

K∑
k=1

n∑
i=1

{
ϕτ0/4r(x

T
ki

δk
∥δ∥2

)− ϕτ0/4r(x
T
ki

δ
′

k

∥δ′∥2
)

}2

≤ 1

n2

K∑
k=1

n∑
i=1

τ 20
16r2

{
xTki

δk
∥δ∥2

− xTki
δ
′

k

∥δ′∥2

}2

,

and

var∗(Z(δ
′
,∆)−Z(δ

′
,∆

′
)) =

1

n2

K∑
k=1

n∑
i=1

ϕ2
τ0∥δ

′
k∥2/4r

(xTkiδ
′

k)

∥δ′∥42
φ2
τk−τ0(u

∗
ki)

{
φτ0/2(x

T
ki∆k)− φτ0/2(x

T
ki∆

′

k)

}2

(ii)

≤ 1

n2

K∑
k=1

n∑
i=1

[
τ0
8r

]4{
4

τk
xTki(∆k −∆

′

k)

}2

=
1

n2

K∑
k=1

n∑
i=1

( τ0
16r2

)2{
xTki(∆k −∆

′

k)

}2

,

where both steps (i) and (ii) apply the homogeneity property of function ϕT (x) that c2ϕT (x) =

ϕcT (cx).

Based on the results above, we can construct a random variable Y(δ,∆):

Y(δ,∆) =
1

n

K∑
k=1

n∑
i=1

1

2r
τ0y

′

kix
T
ki

δk
∥δ∥2

+
1

n

K∑
k=1

n∑
i=1

1

8r2
τ0y

′′

kix
T
ki∆k, (4.42)

where y′

ki and y′′

ki are i.i.d. standard normal random variables. Therefore, we can show that

var(Z(δ,∆)−Z(δ
′
,∆

′
)) ≤ var(Y(δ,∆)− Y(δ

′
,∆

′
)),

which implies E(sup(δ,∆)∈B(γ) Z(δ,∆)) ≤ 2E(sup(δ,∆)∈B(γ) Y(δ,∆)). By plugging (4.42), we
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can show that

E( sup
(δ,∆)∈B(γ)

Z(δ,∆)) ≤1

r
E( sup

(δ,∆)∈B(γ)

1

n

K∑
k=1

n∑
i=1

τ0y
′

kix
T
ki

δk
∥δ∥2

) +
1

4r2
E( sup

(δ,∆)∈B(γ)

1

n

K∑
k=1

n∑
i=1

τ0y
′′

kix
T
ki∆k)

(i)

≤τ0
r

∥δ∥2,1
∥δ∥2

E(
√
K sup

k
∥ 1
n

n∑
i=1

y
′

kixki∥∞) +
τ0∥∆∥1
4r2

E(sup
k

∥ 1
n

n∑
i=1

y
′′

kixki∥∞)

(ii)

≤
(√

Kγ +
R

4r

)
2A0τ0
r

√
2 log(pn)

n
.

The step (i) is obtained based on Hölder’s inequality in Lemma 4.10. In step (ii), we derive

the upper bound based on Lemma 4.5.

By combining (4.39) and (4.40) with results above, we can show that with 1/
√
n = o(1),

E(G(δ,∆)) ≤4A2
0√
n

+
2
√
πRA0τ0
r2

√
log(pn)

n
+ 8

√
Kπ

A0τ0γ

r

√
log(pn)

n

=
2
√
πRA0τ0
r2

√
log(pn)

n
+ 8

√
Kπ

A0τ0γ

r

√
log(pn)

n
+ o(1). (4.43)

Next, we analyze the concentration inequality for G(δ,∆) by a similar method from Sun

et al. [2020] and Pan et al. [2021]. Let g(δ,∆) = n−1
∑n

i=1 gi(δ,∆), where

gi(δ,∆) :=
K∑
k=1

ϕτ0∥δ∥2/4r(x
T
kiδk)φτ0/2(x

T
ki∆k)φτk−τ0(u

∗
ki),

so the random variable G(δ,∆) can be given by

G(δ,∆) = sup
(δ,∆)∈B(γ)

|n−1
∑n

i=1 gi(δ,∆)− E(gi(δ,∆))|
∥δ∥22

.

Based on the properties (4.37), the function |ϕT (x)φt(x)| ≤ T 2/4 for all pairs (T, t). All

|gi(δ,∆)− E(gi(δ,∆))|’s are uniformly bounded and measurable for all (δ,∆) ∈ B(γ). There-

fore, we can apply Bousquet’s version of Talagrand’s inequality to G(δ,∆) based on Bousquet
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[2003] and Massart and Picard [2007], such that,

G(δ,∆)− E(G(δ,∆)) ≤ E(G(δ,∆)) + σn

√
2 log(pn)

n
+
( τ0
8r

)24K log(pn)

3n
, (4.44)

with probability as least 1− exp{− log(pn)}, where σn is defined as

σ2
n := sup

(δ,∆)∈B(γ)

n∑
i=1

E[(
gi(δ,∆)− E(gi(δ,∆))

∥δ∥22
)2]

≤ sup
(δ,∆)∈B(γ)

n∑
i=1

E[(
K∑
k=1

(xTki
δk

∥δ∥2
)2)2]

≤ sup
(δ,∆)∈B(γ)

n∑
i=1

E[
K∑
k=1

K∑
k′=1

(xTki
δk

∥δ∥2
)2(xT

k′ i

δk′

∥δ∥2
)2] ≤ 4KA4

0n.

Based on the assumptions that n ≳ s2 log(pn) and R ≲ s, we can combine (4.43) and

(4.44) to show that with probability at least 1− exp{− log(pn)},

G(δ,∆) ≤4
√
πRA0τ0
r2

√
log(pn)

n
+ 16

√
π
A0τ0γ

r

√
K log(pn)

n

+
( τ0
8r

)24K log(pn)

3n
+ 2

√
2A2

0

√
K log(pn)

n
(i)

≤αl
4

+ 16
√
π
A0τ0γ

r

√
K log(pn)

n
+ o(1). (4.45)

The step (i) is obtained by applying n ≳ s log(pn), which leads to log(pn)/n = o(1), and

4
√
πRA0τ0
r2

√
log(pn)

n
≲

√
s log(pn)

n
≤ α

4
.

Combining (4.38) and (4.45), we can show that the first order-Taylor error can satisfy

T (θ1, θ2)

∥δ∥22
≥ αl

4
− C0A0τ0γ

r

√
K log(pn)

n
(4.46)
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with probability at least 1− exp{− log(pn)} and C0 = 16
√
π,.

The last step is to extend the result above to be bounded uniformly over the ratio

∥δ∥2,1/∥δ∥2, and we apply a peeling argument similar to Loh [2017]. Define the functions

h(θ1, θ2) :=
αl
4

− T (θ1, θ2)

∥δ∥22
,g(γ) :=

C0A0τmax

2r
γ

√
K log(pn)

n
,

and Γ(θ1, θ2) =
∥θ1 − θ2∥2,1
∥θ1 − θ2∥2

,

and the event

E =
{T (θ1, θ2)

∥δ∥22
≥ αl

4
− C0A0τ0

r

∥δ∥2,1
∥δ∥2

√
K log(pn)

n
,∀(δ,∆) ∈ B(γ)

}
for 1 ≤ γ ≤C0

αlr

A0τ0

√
n

K log(pn)
.

Based on (4.46), we can derive

P ( sup
(δ,∆)∈B(γ)

h(θ1, θ2) ≥2g(γ)) = P ( sup
(δ,∆)∈B(γ)

αl
4

− T (θ1, θ2)

∥δ∥22
≥ C0A0τ0

r
γ

√
K log(pn)

n
)

≤P ( sup
(δ,∆)∈B(γ)

|g(δ,∆)− E(g(δ,∆))|
∥δ∥22

− E(g(δ,∆))

∥δ∥22
+
αl
4

≥ C0A0τ0
r

γ

√
K log(pn)

n
)

≤P (G(δ,∆) ≥ C0A0τ0
r

γ

√
K log(pn)

n
− αl

4
) ≤ exp{− log(pn)}.

Then define the set for integer m ≥ 1,

Vm := {(θ1, θ2) : 2m−1µ ≤ g(Γ(θ1, θ2)) ≤ 2mµ} ∩ B(γ), with µ = C0
A0τ0
r

√
K log(pn)

n
.

We can derive a union bound with the index m ranging up to M = ⌈log(c
√
n/ log(pn))⌉
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for some c,

P (Ec) ≤
M∑
m=1

P (∃(θ1, θ2) ∈ Vm : h(θ1, θ2) ≥ 2g(Γ(θ1, θ2)))

≤
M∑
m=1

P ( sup
(δ,∆)∈B(γ)

∥δ∥1
∥δ∥2

≤g−1(2mµ)

h(θ1, θ2) ≥ 2mµ)

≤C1 exp{−C2 log(pn) + C3 log log(
n

log(pn)
)}

for some positive constant C1, C2, and C3.

Therefore, we can show that with probability at least 1− C
′
exp{−C ′′

log(pn)} for some

constant C, C ′ , and C ′′

T (θ1, θ2) ≥
αl
4
∥θ1 − θ2∥22 −

C0A0τ0
r

∥θ1 − θ2∥2,1∥θ1 − θ2∥2

√
K log(pn)

n
(i)

≥αl
8
∥θ1 − θ2∥22 −

CKA2
0τ

2
0

αlr2
log(pn)

n
∥θ1 − θ2∥22,1,

where the step (i) is obtained by

C0A0τ0
r

∥θ1 − θ2∥2,1∥θ1 − θ2∥2

√
K log(pn)

n
≤ αl

8
∥θ1 − θ2∥22

+
C

αl

(A0τ0
r

)2K log(pn)

n
∥θ1 − θ2∥22,1.

Lemma 4.4. Based on Assumptions 4.1-4.2, the proposed loss function L(θ) satisfies the

restricted smoothness (RSM) condition, such that with probability at least 1−2 exp{− log(pn)},

n−1(L(θ1)− L(θ2)−∇L(θ1)T (θ1 − θ2)) ≤ κu∥θ1 − θ2∥22 + τu
log(pn)

n
∥θ1 − θ2∥22,1, (4.47)
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where κu = Kαu and τu = 4KA2
0.

Proof. We can show that the proposed loss L(θ) satisfies the restricted smoothness (RSM)

based on a similar approach from some previous works [Agarwal et al., 2012a, Loh and

Wainwright, 2015, Fan et al., 2017], which can be used to analyze the optimization properties

in section 4.3.3. We can apply Taylor expansion with θ̃ = αθ1 + (1− α)θ2 for α ∈ (0, 1),

n−1L(θ1)− n−1L(θ2)− n−1∇L(θ1)T (θ1 − θ2) ≤
1

n

K∑
k=1

n∑
i=1

(xTki(θk1 − θk2))
2

=
1

n

K∑
k=1

n∑
i=1

E((xTki(θk1 − θk2))
2)

+|xTki(θk1 − θk2))
2 − E((xTki(θk1 − θk2))

2|

≤Kαu∥θ1 − θ2∥22 + 4KA2
0

log(pn)

n
∥θ1 − θ2∥2,1.

The last step is obtained by applying the concentration probability of the sub-exponential

variable (xTkiu)
2, which holds with probability at least 1− 2 exp{− log(pn)}.

Lemma 4.5. Let {yi}ni be i.i.d standard Gaussian variables and {Xi}ni=1 be i.i.d sub-Gaussian

vectors with Xi = (xi1, xi2, · · · , xip, · · · , xipn)T . For some m ≥ 1, E(xmip) ≤ mAm0 Γ(m/2).

Then with n > log(pn),

E(∥n−1

n∑
i=1

yiXi∥∞) ≤ 2
√
2A0

√
log(pn)

n
.

Proof. We set variable Z = ∥n−1
∑n

i=1 yiXi∥∞, and use Jensen’s inequality to show that for

some 0 < t < n/A0,

exp{tE(Z)} ≤E(exp{tZ})

=E(sup
p

exp{tn−1

n∑
i=1

yixip})

122



≤
pn∑
p=1

n∏
i=1

E(exp{n−1tyixip}). (4.48)

Next, we can derive an upper bound for E(exp{tn−1yixip}), such that

E(exp{n−1tyixip}) =E(E(exp{n−1tyixip}|xip))

≤E(exp{t2x2ip/(2n2)})

≤1 + 2
∞∑
m=1

( t2
2n2

)m
A2m

0

≤ exp{ (tA0)
2/(n2)

1− (t2A2
0/(2n

2))
}

≤ exp{2
(tA0

n

)2}. (4.49)

We combine (4.48) and (4.49) to show that with 0 < t ≤ n/A0,

exp{tE(Z)} ≤ pn exp{t2
2A2

0

n
},

E(Z) ≤ log(pn)

t
+ t

2A2
0

n
,

which can be minimized at t =
√
n log(pn)/(2A2

0), such that

E(Z) ≤ log(pn)√
n log(pn)/(2A2

0)
+
√
n log(pn)/(2A2

0)
2A2

0

n
≤ 2

√
2A0

√
log(pn)

n
.

Lemma 4.6. Let the sample covariance be denoted as Σ̂ = XTX/n. Based on Assumptions

4.1 - 4.2, there exist some positive constant sets {cj}3j=1 such that

P
(∣∣∣∣∣∣∣∣∣Σ̂−1

SS − Σ−1
SS

∣∣∣∣∣∣∣∣∣
2
≥ c3(

Ks

n
+

√
Ks

n
)
)
≤ c1 exp{−c2ns}}. (4.50)
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Furthermore, if the parameter ξ from Assumption 4.2 satisfies ξ ∈ (0, 1), then for some vector

e ∈ RKs and ∥e∥2,∞ ≤ 1,

P
(
sup
p∈Sc

∥((Σ̂ScSΣ̂
−1
SS − ΣScSΣ

−1
SS)e

T )(p)∥2 ≥
ξ

2

)
≤ C3 exp{−C4min{s, log(pn)}}, (4.51)

with some constants C3 > 0 and C4 > 0.

Proof. Based on Assumption 4.1, each row of covariates X is sampled from a sub-Gaussian

vector with parameter A0. We can apply Lemma 4.11 to show that with probability 1 −

c1 exp{−c2s}

∣∣∣∣∣∣∣∣∣Σ̂SS − ΣSS

∣∣∣∣∣∣∣∣∣
2
≤ c0(

√
Ks

n
+
Ks

n
)

for a set of constants {cj}2j=0. According to Lemma 11 from Loh and Wainwright [2017],

if
∣∣∣∣∣∣Σ−1

SS
∣∣∣∣∣∣

2

∣∣∣∣∣∣∣∣∣Σ̂SS − ΣSS

∣∣∣∣∣∣∣∣∣ ≤ 1/2, then
∣∣∣∣∣∣∣∣∣Σ̂−1

SS − Σ−1
SS

∣∣∣∣∣∣∣∣∣
2
= O(

∣∣∣∣∣∣Σ−1
SS
∣∣∣∣∣∣2

2

∣∣∣∣∣∣∣∣∣Σ̂SS − ΣSS

∣∣∣∣∣∣∣∣∣
2
). Since∣∣∣∣∣∣Σ−1

SS
∣∣∣∣∣∣

2
≤ α−1

l , we can further derive that for c3,

P
(∣∣∣∣∣∣∣∣∣Σ̂−1

SS − Σ−1
SS

∣∣∣∣∣∣∣∣∣
2
≥ c3(

Ks

n
+

√
Ks

n
)
)
≤ c1 exp{−c2s}.

Next, we need to analyze the sub-matrix Σ̂ScS . Based the argument from Loh and

Wainwright [2017],

sup
p∈Sc

∥uTp (Σ̂ScS − ΣScS)∥2 ≲ max{
√
Ks

n
,

√
log(Kpn)

n
},

with probability at least 1 − b1 exp{−b2min{s, log(pn)}} for some constants b1 and b2. In

addition,

∥((Σ̂ScSΣ̂
−1
SS − ΣScSΣ

−1
SS)e)∥∞ ≤∥(Σ̂ScS − ΣScS)(Σ̂

−1
SS − Σ−1

SS)e∥∞
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+∥(Σ̂ScS − ΣScS)Σ
−1
SS)e∥∞ + ∥ΣScS(Σ̂

−1
SS − Σ−1

SS)e∥∞.

Each component can be bounded as

∥(Σ̂ScS − ΣScS)(Σ̂
−1
SS − Σ−1

SS)e∥∞ ≤ sup
p∈Sc

∥uTp (Σ̂ScS − ΣScS)∥2
∣∣∣∣∣∣∣∣∣Σ̂−1

SS − Σ−1
SS

∣∣∣∣∣∣∣∣∣
2
∥e∥2

≲ max{
√
Ks

n
,

√
K log(pn)

n
}(Ks

n
+

√
Ks

n
)
√
s

≲ max{
√
s3

n2
,

√
s2 log(pn)

n2
},

∥(Σ̂ScS − ΣScS)Σ
−1
SS)e∥∞ ≤ sup

p∈Sc

∥uTp (Σ̂ScS − ΣScS)∥2
∣∣∣∣∣∣Σ−1

SS
∣∣∣∣∣∣

2
∥e∥2

≲ max{
√
s2

n
,

√
s log(pn)

n
},

∥ΣScS(Σ̂
−1
SS − Σ−1

SS)e∥∞ ≤ ∥ΣScSΣ
−1
SS∥∞

∣∣∣∣∣∣∣∣∣Σ̂SS − ΣSS

∣∣∣∣∣∣∣∣∣
2

∣∣∣∣∣∣∣∣∣Σ̂−1
SS

∣∣∣∣∣∣∣∣∣
2
∥e∥2

≲

√
s2

n
+

√
s3

n2
.

Also, we can apply the relationship between ℓ∞ norm and ℓ2 norm as follows,

sup
p∈Sc

∥(Σ̂ScSΣ̂
−1
SSe)

(p)∥2 ≤
√
K∥Σ̂ScSΣ̂

−1
SSe∥∞.

Thus, with n ≳ s2 log(pn), we can combine the results above to show that

sup
p∈Sc

∥(Σ̂ScSΣ̂
−1
SSe)

(p)∥2 ≤
√
K{∥ΣScSΣ

−1
SSe∥∞ + ∥(Σ̂ScSΣ̂

−1
SS − ΣScSΣ

−1
SS)e∥∞}

≲
√
K
∣∣∣∣∣∣ΣScSΣ

−1
SS
∣∣∣∣∣∣

∞∥e∥∞ +max{
√
s3

n2

√
s2 log(pn)

n2
}

+max{
√
s2

n
,

√
s log(pn)

n
}

≲(1− ξ) + o(1) < 1− ξ

2
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with probability at least 1− C3 exp{−C4min{s, log(pn)}} for some constant C3 and C4,

Lemma 4.7. Based on Assumptions 4.1 - 4.2, let the initial precision level be set as d ≤ r,

then we have

∥θt − θ̂∥2 ≤ d,∀t ≥ 1.

Proof. The proof of Lemma 4.7 can be shown by induction. Suppose ∥θt − θ̂∥2 ≤ d, we

need to obtain that ∥θt+1 − θ̂∥2 ≤ d. Let the distance be denoted by ∆̂t = θt − θ̂. Since

Q(θt+1|θt) ≥ Q(θt+1),

1

n
Q(θt+1)− 1

n
Q(θ̂) ≤ 1

n
Q(θt+1|θt)− 1

n
Q(θ̂)

=
1

n
L(θt) + 1

n
∇L(θt)T (θt+1 − θt)− 1

n
L(θ̂) + γ

2
∥θt+1 − θt∥22 + λn∥θt+1∥2,1 − λn∥θ̂∥2,1

(i)

≤ 1

n
L(θt) + 1

n
∇L(θt)T (θt+1 − θt) +

1

n
L(θt) + τl

log(pn)

n
∥∆̂t∥22,1 + λn(∥θt+1∥2,1 − ∥θ̂∥2,1)

− 1

n
∇L(θt)T (θ̂ − θt) +

γ

2
∥θt+1 − θt∥22 − κl∥∆̂t∥22

≤ 1

n
∇L(θt)T ∆̂t+1 +

γ

2
∥θt+1 − θt∥22 − κl∥∆̂t∥22 + τl

log(pn)

n
∥∆̂t∥22,1 + λn(∥θt+1∥2,1 − ∥θ̂∥2,1)

(ii)

≤ (
1

n
∇L(θt) + λnz

t+1)T ∆̂t+1 +
γ

2
∥θt+1 − θt∥22 − κl∥∆̂t∥22 + τl

log(pn)

n
∥∆̂t∥22,1

(iii)
= − γ(θt+1 − θt)T ∆̂t+1 +

γ

2
∥θt+1 − θt∥22 − κl∥∆̂t∥22 + τl

log(pn)

n
∥∆̂t∥22,1

=
γ − 2κl

2
∥∆̂t∥22 −

γ

2
∥∆̂t+1∥22 + τl

log(pn)

n
∥∆̂t∥22,1.

Based on the argument from Loh [2017], the following term in the step (i) of the above

derivation can also satisfy the RSC condition through similar derivation as the proof of

Lemma 4.3,

1

n
L(θ̂)− 1

n
L(θt)− 1

n
∇L(θt)T (θ̂ − θt) ≥ κl∥∆̂t∥22 − τl

log(pn)

n
∥∆̂t∥22,1.
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In step (ii), we apply the property of the subdifferential to obtain

∥θ̂∥2,1 − ∥θt+1∥2,1 ≥ −(ẑt+1)T ∆̂t+1.

The step (iii) applies the optimization θt+1 = argminQ(θ|θt), such that

1

n
∇L(θt) + γ(θt+1 − θt) + λnz

t+1 = 0.

In addition, we can show that

1

n
Q(θt+1)− 1

n
Q(θ̂) =

1

n
L(θt+1)− 1

n
L(θ̂) + λn(∥θt+1∥2,1 − ∥θ̂∥2,1)

≥κl∥∆̂t∥22 − τl
log(pn)

n
∥∆̂t∥22,1 + (

1

n
∇L(θ̂)T + λnẑ)

T ∆̂t+1

≥κl∥∆̂t∥22 − τl
log(pn)

n
∥∆̂t∥22,1

with ∇Q(θ̂) = ∇L(θ̂)T + nλnẑ = 0.

By combining the results above, we can show that

2κl∥∆̂t+1∥22 − 2τl
log(pn)

n
∥∆̂t+1∥22,1 ≤(γ − 2κl)∥∆̂t∥22 − γ∥∆̂t+1∥22 + 2τl

log(pn)

n
∥∆̂t∥22,1

(2κl + γ)∥∆̂t+1∥22 ≤(γ − 2κl)∥∆̂t∥22 + 8τlR
2 log(pn)

n

∥∆̂t+1∥22 ≤
γ − 2κl
γ + 2κl

∥∆̂t∥22 +
8τlR

2

γ + κl

log(pn)

n
,

which leads to ∥∆̂t+1∥2 ≤ d based on the sample size assumption n ≳ s2 log(pn).

Lemma 4.8. Based on Assumptions 4.1-4.2, suppose

max{4∥ 1
n
∇L(θ∗)∥2,∞, 8τlR

log(pn)

n
} ≤ λn, (4.52)
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and then there exists a pair (η̄, T ) such that

1

n
Q(θt)− 1

n
Q(θ̂) ≤ η̄,∀t ≥ T. (4.53)

Furthermore, for any t ≥ T , we can show that

∥θt − θ̂∥2,1 ≤ 4
√
s∥θt − θ̂∥2 + 8

√
s∥θ̂ − θ∗∥2 +min(2

η̄

λn
, R).

Proof. Suppose there exists a pair (η̄ , T ) such that the algorithm reaches the precision level

η̄ after T iterations,

1

n
Q(θt)− 1

n
Q(θ̂) ≤ η̄,∀t ≥ T. (4.54)

In addition, based on the optimality of θ̂ analyzed in Theorem 4.2, n−1Q(θ̂) ≤ n−1Q(θ∗).

Therefore, we have

1

n
Q(θt)− 1

n
Q(θ∗) ≤ η̄,∀t ≥ T. (4.55)

Next, we can use (4.55) to show that,

1

n
L(θt) + λn∥θt∥2,1 ≤

1

n
L(θ∗) + λn∥θ∗∥2,1 + η̄

1

n
L(θt)− 1

n
L(θ∗)− 1

n
∇L(θ∗)T (θt − θ∗)+λn∥θt∥2,1 − λn∥θ∗∥2,1 ≤ − 1

n
∇L(θ∗)T (θt − θ∗) + η̄

κl∥θt − θ∗∥22 − τl
log(pn)

n
∥θt − θ∗∥22,1+λn∥θt∥2,1 − λn∥θ∗∥2,1 ≤

1

4
λn∥θt − θ∗∥2,1 + η̄

λn∥θt∥2,1 − λn∥θ∗∥2,1 ≤
1

2
λn∥θt − θ∗∥2,1 + η̄.

By the decomposition property of the mixed norm, we can further derive that for subspace
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|E| ≤ s,

∥θtEc∥2,1 = ∥(θt − θ∗)Ec∥2,1 ≤ 3∥(θt − θ∗)E∥2,1 + 2
η̄

λn
.

If we replace θ̂ to θt, we have the identical result in Theorem 4.1,

∥(θ̂ − θ∗)Ec∥2,1 ≤ 3∥(θ̂ − θ∗)E∥2,1.

By applying the inequality of the mixed ℓ2,1 norm and ℓ2 norm, we can show that

∥θt − θ∗∥2,1 ≤ 4∥(θt − θ∗)E∥2,1 + 2
η̄

λn
≤ 4

√
s∥(θt − θ∗)E∥2 +min(2

η̄

λn
, R),

where we have ∥θt − θ∗∥2,1 ≤ R.

Therefore, we can show that

∥θt − θ̂∥2,1 ≤ 4
√
s∥θt − θ̂∥2 + 8

√
s∥θ̂ − θ∗∥2 +min(2

η̄

λn
, R).

In general, we can show that the difference n−1Q(θt) − n−1Q(θ∗) is bounded above as

follows,

1

n
Q(θt)− 1

n
Q(θ∗) =

1

n
L(θt)− 1

n
L(θ∗) + λn∥θt∥2,1 − λn∥θ∗∥2,1

=
1

n
L(θt)− 1

n
L(θ∗)− 1

n
∇L(θ∗)T (θt − θ∗)

+
1

n
∇L(θ∗)T (θt − θ∗) + λn∥θt∥2,1 − λn∥θ∗∥2,1

(i)

≤κu∥θt − θ∗∥22 + τu
log(pn)

n
∥θt − θ∗∥22,1 +

5

4
λn∥θt − θ∗∥2,1

≤κur2 + 4τu
log(pn)

n
R2 +

5

4
λnR.
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The step (i) can be obtained based on Lemma 4.4 as θt ∈ Br(θ∗) and condition 4.52. Based

on n−1Q(θ̂) ≤ n−1Q(θ∗), we can choose η̄ ≥ κur
2 + 4τulog(pn)R

2/n + 5λnR/4, such that

n−1Q(θt)− n−1Q(θ̂) ≤ η̄.

Lemma 4.9. Define parameters κ and β,

κ = 1− κl
2γ

+ 16τl
s log(pn)

γn
and β = (2 + κl + 32τl

s log(pn)

n
)
τl
γ

log(pn)

n
,

with γ > 2κl, and the estimation error ε = 8
√
s∥θ̂−θ∗∥2 with precision level ϵ = min(λ−1

n 2η̄, R).

Based on Assumptions 4.1-4.2, for any t ∈ [Tj, Tj+1), we have

1

n
Q(θt)− 1

n
Q(θ̂) ≤ κt−Tj(

1

n
Q(θTj)− 1

n
Q(θ̂)) +

β

1− κ
(ε+ ϵ)2,

and

∥θt − θ̂∥22 ≤(κl − 32
τls log(pn)

n
)−1(

1

n
Q(θt)− 1

n
Q(θ̂) + 2τl

log(pn)

n
(ε+ ϵ)2).

Proof. Let the distance be denoted by ∆̂t = θt − θ̂. First, we apply the RSC condition and

the property of subdifferential,

κl∥∆̂t∥22 − τl
log(pn)

n
∥∆̂t∥22,1 ≤

1

n
L(θt)− 1

n
L(θ̂)− 1

n
∇L(θ̂)T ∆̂t

=
1

n
Q(θt)− 1

n
Q(θ̂)− λn∥θt∥2,1 + λn∥θ̂∥2,1 −

1

n
∇L(θ̂)T ∆̂t

≤ 1

n
Q(θt)− 1

n
Q(θ̂)− (

1

n
∇L(θ̂) + λnẑ)

T ∆̂t =
1

n
Q(θt)− 1

n
Q(θ̂).
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From Lemma 4.8, the upper bound of ∥∆̂t∥2,1 can be applied as follows,

κl∥∆̂t∥22 − τl
log(pn)

n
(32s∥∆̂t∥22 + 2(ε+ ϵ)2) ≤ 1

n
Q(θt)− 1

n
Q(θ̂)

(κl − 32τl
s log(pn)

n
)∥∆̂t∥22 ≤

1

n
Q(θt)− 1

n
Q(θ̂) + 2τl

log(pn)

n
(ε+ ϵ)2

∥∆̂t∥22 ≤κ−1
0 (

1

n
Q(θt)− 1

n
Q(θ̂) + 2τl

log(pn)

n
(ε+ ϵ)2),

with κ0 = κl − 32τls log(pn)/n.

Given θ
′
= αθ̂ + (1 − α)θt for some α ∈ (0, 1), the optimization function can hold the

following inequality based on the MM method,

1

n
Q(θt+1) ≤ 1

n
Q(θt+1|θt) ≤ 1

n
Q(θ

′|θt)

=
1

n
L(θt) + 1

n
∇L(θt)T (θ′ − θt) +

γ

2
∥θ′ − θt∥22 + λ∥θ′∥22,1

≤ 1

n
L(θt) + α

1

n
∇L(θt)T ∆̂t +

γα2

2
∥∆̂t∥22 + λn(α∥θ̂∥2,1 + (1− α)∥θt∥2,1)

≤ 1

n
L(θt) + α(

1

n
L(θ̂)− 1

n
L(θt) + τl

log(pn)

n
∥∆̂t∥22,1) +

γα2

2
∥∆̂t∥22 + λn(α∥θ̂∥2,1 + (1− α)∥θt∥2,1)

=(1− α)(
1

n
Q(θt)− 1

n
Q(θ̂)) +

1

n
Q(θ̂) +

γα2

2
∥∆̂t∥22 + ατl

log(pn)

n
∥∆̂t∥22,1

≤(1− α)(
1

n
Q(θt)− 1

n
Q(θ̂)) +

1

n
Q(θ̂) +

γα2

2
∥∆̂t∥22 + ατl

log(pn)

n
(32s∥∆̂t∥22 + 2(ε+ ϵ)2)

≤(1− α)(
1

n
Q(θt)− 1

n
Q(θ̂)) +

1

n
Q(θ̂) + (

γα2

2
+ 32ατl

s log(pn)

n
)∥∆̂t∥22

+2ατl
log(pn)

n
(ε+ ϵ)2.

We set the difference to be denoted by η̄t = n−1(Q(θt) − Q(θ̂)) and combine previous

inequalities to obtain the recursive relation as follows,

η̄t+1 ≤(1− α)η̄t + κ−1
0 (

γα2

2
+ 32ατl

s log(pn)

n
)(η̄t + 2τl

log(pn)

n
(ε+ ϵ)2) + 2ατl

log(pn)

n
(ε+ ϵ)2

=(1− α +
γα2

2κ0
+ 32ατl

s log(pn)

κ0n
)η̄t + κ−1

0 (2α + γα2 + 64ατl
s log(pn)

n
)τl

log(pn)

n
(ε+ ϵ)2.
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Since γ > 2κl, we can take

α =
κ0
γ
(1− 32τl

s log(pn)

κ0n
) ∈ (0, 1), and 1− 32τl

s log(pn)

κ0n
= 1− o(1),

then

η̄t+1 ≤(1− κl
2γ

+ 16τl
s log(pn)

γn
)η̄t + (2 + κl + 32τl

s log(pn)

n
)
τl
γ

log(pn)

n
(ε+ ϵ)2,

with

κ = 1− κl
2γ

+ 16τl
s log(pn)

γn
and β = (2 + κl + 32τl

s log(pn)

n
)
τl
γ

log(pn)

n
.

we can conclude that

η̄t+1 ≤ κη̄t + β(ε+ ϵ)2.

Since γ > 2κl and n ≳ s2 log(pn), the coefficient κ ∈ (0, 1). Therefore, if the iterative

algorithm set steps t ∈ [Tj, Tj+1), we can show that

η̄j+1 ≤κt−Tj η̄j +
β

1− κ
(ε+ ϵ)2

as claimed.

Lemma 4.10. Consider vectors u and v ∈ RKpn double-indexed as u = (u11, · · · , ukp, · · · , uKpn)

and v = (v11, · · · , vkp, · · · , vKpn) for k = 1, 2, · · · , K and p = 1, 2, · · · , pn. Then

uv ≤ ∥u∥2,1∥v∥2,∞.
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Proof. We apply Hölder’s inequality to show that

uv ≤
pn∑
p=1

K∑
k=1

ukpvkp ≤
pn∑
p=1

∥u(p)∥2∥v(p)∥2 ≤ ∥u∥2,1∥v∥2,∞.

Lemma 4.11. (Theorem 6.5 Wainwright 2019) There exist universal constants {cj}2j=0 such

that for any row-wise sub-Gaussian random matrix X ∈ Rn×p with parameter A0, the sample

covariance matrix Σ̂ = XTX/n satisfies that

P
(
A−1

0

∣∣∣∣∣∣∣∣∣Σ̂− Σ
∣∣∣∣∣∣∣∣∣

2
≥ c0

(√p

n
+
p

n

)
+ ε

)
≤ c1 exp{−c2nmin(ε, ε2)}.
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Chapter 5

Discussions and Future Work

In this thesis, we focus on the development and implementation of statistical methods for

data integration. To improve the performance of data integration in biomedical research, we

apply the pairwise composite likelihood to conduct the joint inference for multiple correlated

data sets, which have responses mixed with continuous and discrete variables. We show that

the maximum composite likelihood estimators are consistent and asymptotically normally

distributed, and the composite statistics provide increased statistical power for joint hypothesis

testing.

Multi-task feature learning is commonly used to recover the union support when integrated

data sets have divergent dimensionality. Since the existing multi-task learning methods are

built under distributional assumptions, we propose to use the composite quasi log-likelihood

with mixed ℓ2,1 regularization to combine tasks of different natures and perform joint learning

on multiple correlated heterogeneous tasks. In chapter 3, the method is shown to achieve

estimation consistency and model selection consistency in high-dimensional settings.

In chapter 4, we propose the adaptive Huber regression with group-wise feature selection

to solve the multi-task learning problem with heavy-tailed error distribution and outlier

contamination. The model is different from previous work proposed by Gong et al. [2012].
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They focused on the scenario that among the multiple tasks, some outlier tasks possess

different sparsity patterns than the other tasks. Besides the mixed ℓ2,1-norm penalty across

all tasks, their objective function includes an additional LASSO penalty to select features

in each task. To accommodate outlier tasks in addition to outlier contamination, we can

combine the adaptive Huber loss function with the penalty functions used in Gong et al.

[2012].

In this thesis, the theoretical conditions for the data are similar to previous high-dimension

M-estimation for single-task analysis. In real applications, distinctive measurement methods

can produce data with much more complex patterns. From the computational perspective,

the proposed multi-task feature learning can apply standardization to the data and improve

the selection accuracy. Obozinski et al. [2011] proposed to use a sparsity-overlap function to

reflect the sample complexity for the multivariate regression learning, which can be extended

to the proposed methods in this thesis. In addition, the data structure can also be more

complicated than the settings considered in the chapters above. For example, some predictors

can be collected from some but not all tasks. Consequently, the learning tasks have some

features not shared by all the tasks. Based on Jalali et al. [2010], Yang et al. [2017], we can

use different penalty functions to conduct both group-wise and element-wise feature selection

simultaneously. Gao and Carroll [2017] proposed to modify the penalty function by scaling

the grouped norm based on the cardinality of the grouped parameters such that

R(θ) = nλn

pn∑
p=1

{ K
Kp

Kp∑
k=1

θ2kp}
1
2 ,

where Kp is the number of tasks from which the pth predictor was collected. When the

predictor is only collected in one task, the mixed ℓ2,1 norm is reduced to an ℓ1 norm.

Since we relax the assumptions of the distribution and moments for the data, the proposed

model can be theoretically suitable for a wide variety of real applications, and the integration
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is achieved through the composite form of weighted marginal loss functions across all related

tasks. With some adjustments to the theoretical conditions, the loss functions can be further

extended to estimate the correlation between learning tasks, such that a composite form of

generalized estimating equations (GEE) or the pairwise composite form as shown in Chapter

2. In future research, we can extend the multi-task learning to model repeated measurements

collected from different biomedical experiments. As a result, the learning tasks need to analyze

multiple longitudinal data simultaneously. In addition, when the data are zero-inflated or

have a mixture distribution, we can extend the group-wise structure of the parameters based

on the research design.

Furthermore, the proposed methods are established based on locally strong convexity or

restricted strong convexity. Based on the folded concave regularization framework proposed

by [Loh and Wainwright, 2017, Loh, 2017], we can apply mixed regularization to other types

of non-convex penalty functions. For example, Gao and Carroll [2017] proposed the group

smoothly clipped absolute deviations (SCAD) to perform the joint sparse estimation. In this

case, the objective function may not hold the strong convexity condition, which can lead to

further investigation.

The multi-task learning algorithm that is publicly available can solve multi-task problems

with different types of penalty functions. For example, the R package called Regularized

Multi-Task Learning was established by Cao and Schwarz [2022]. However, the heterogeneous

tasks are not handled by the existing multi-task learning algorithm, and the robust estimation

function is not available for multivariate analysis. Our next step is to develop an R package

based on the proposed data integration methods, which can provide an efficient estimation

algorithm to solve both heterogeneous and data-contaminated tasks.
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