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Abstract 

 

The most rapid decline in myofiber size and mitochondrial content during denervation, a muscle 

disuse model, occurs during the first week following the onset of the stimulus. In this study, we 

analyzed the expression of Tfam, a critical mitochondrial transcription factor involved in the 

orchestration of mitochondrial biogenesis, at multiple levels during denervation. Tfam 

transcriptional activation was depressed during the early stages of denervation but was 

counteracted by increases in the stability of the Tfam mRNA, an effect which could not be 

accounted for by the protein expression of select RNA-binding proteins. Denervation reduced 

Tfam mitochondrial import, which was associated with reductions in mitochondrial DNA 

transcription. These data highlight that there are multiple factors affecting the expression and 

activity of the Tfam transcript and protein during denervation. This work also emphasizes the 

importance of mitochondrial protein import in the regulation of Tfam function, and subsequently 

mitochondrial content, during muscle disuse.   
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Chapter 1 

REVIEW OF LITERATURE  
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1.0 Skeletal Muscle 

Skeletal muscle, along with cardiac and smooth muscle, are the three main forms of 

muscle present in mammals. As the name suggests, skeletal muscles are responsible primarily for 

the locomotive function of the mammalian skeleton, through their association with bones via 

tendons or apopneuroses. Skeletal muscle is under the exclusive control of the central nervous 

system, which allows for the voluntary recruitment of this tissue for locomotion. Further, skeletal 

muscle is characterized by having ‘striations’ (that is, a striped or banded appearance), and can 

be composed of thousands or more individual myofibers, each spanning the length of the muscle 

itself. Within a muscle, individual fibers are grouped into bundles surrounded by connective 

tissue, which receive vascular and neural input. These inputs provide nutrients and oxygen for 

the production of adenosine triphosphate (ATP) which is required for muscle contraction, as well 

as nervous innervation at the neuromuscular junction (NMJ), which provides the stimulus for 

muscle contraction. In concert with these inputs, contraction of this tissue at the most basic level 

is attributable to the interaction of the myofibrillar actin and myosin proteins in an ATP-

dependent process, known as cross-bridge cycling.  

Skeletal muscle represents approximately 40% of a non-obese individual’s body mass, 

and is capable of responding with astounding plasticity to both environmental and genetic 

stimuli. These cues can result in profound functional and phenotypic alterations. Thus, an 

understanding of the structure and function of skeletal muscle allows for a full appreciation of 

these changes. 

1.1 Skeletal Muscle Fiber Types and Composition 

Skeletal muscle is under direct neural control, and this influence is voluntary. Efferent α-

motor neurons control the release of the neurotransmitter acetylcholine at the NMJ and allow for 
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the entry of extracellular calcium and the release of calcium from intracellular stores in the 

sarcoplasmic reticulum. This calcium release event allows for the ATP-dependent interaction of 

actin and myosin, which is responsible for the shortening of the sarcomere, the smallest 

functional unit within skeletal muscle (94), and a resulting muscle contraction.  

Diversity exists among muscle fibers, in terms of the coupling between the 

neurochemical excitation and mechanical contraction. This diversity is predominantly 

attributable to the differential expression of myosin heavy chain proteins, in addition to the 

extent of neural innervation and the frequency with which the muscle receives neural input (181, 

208) as well as the metabolic pathways employed for the generation of energy require to contract 

muscle. Skeletal muscle can be grouped into three general categories defined by their principle 

fiber type: slow-twitch red (STR), fast-twitch red (FTR) and fast-twitch white (FTW). Slow-

twitch red fibers have the greatest degree of neural innervation for a given muscle fiber area, 

allowing them to be active for long periods of time without undergoing substantial fatigue. These 

fibers are also characterized by their distinct red colouration due to their high mitochondrial 

content, and are highly reliant on oxidative metabolism for the generation of ATP. On the other 

hand, fast-twitch white fibers are the largest in size, and have the least amount of neural 

innervation for a given fiber area. This fiber type has the capacity to contract with great force, 

but as a result, fatigues quite rapidly. This is a consequence of being highly dependent on 

glycolysis for the generation of ATP, lacking the mitochondria of the STR fiber type. Fast-twitch 

red fibers are intermediate to these other types in terms of size, contraction force, fatigability, 

and dependence on oxidative or glycolytic pathways. While these comparisons are true for 

human skeletal muscle, rat skeletal muscle is slightly different. In this mammal, fast-twitch red 

fibers are considered the most oxidative, higher than STR and FTW fibers, respectively (49). 
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This difference is likely owing to the fact that there are inter-species differences in locomotive, 

postural and behavioral patterns. Nonetheless, the heterogeneity observed in the composition and 

source of energy production between these fiber types is suggestive of differential adaptation to 

stimuli, either internal or external.  

Muscle fibers also possess a population of precursor cells, termed “satellite cells”, which 

can proliferate, and either partake in the formation of new muscle fibers, or donate their nuclei to 

the existing muscle fibers when there is an increased requirement for transcriptional activity (84). 

This contributes to the ‘multi-nucleated’ appearance of skeletal muscle fibers, a feature unique to 

this tissue. This trait of skeletal muscle factors greatly into its adaptive plasticity. 

1.2 Skeletal muscle oxidative capacity 

The capacity of a muscle to consume oxygen is dependent on both the supply of oxygen 

to the tissue, and the ability of the tissue to consume that which is delivered to it. Oxygen supply 

is determined by the vascularity of the tissue, which determines the amount of oxygen which can 

be supplied by circulating hemoglobin. A large capillary bed allows for greater amounts of 

oxygen to be delivered. Once supplied to the tissue, a muscle-specific oxygen carrying molecule, 

termed myoglobin, can act as an intermediate to reversibly bind oxygen and facilitate the 

delivery of oxygen to the mitochondria from the surface of the muscle cell. This feature is 

particularly significant in highly oxidative, slow-twitch muscle fibers (35, 251).Once delivered to 

the mitochondrion, oxygen can be consumed at the end of a series of oxidation-reduction 

reactions, to power the synthesis of ATP. There is a positive correlation between the amount of 

mitochondria contained within skeletal muscle and the amount of oxygen that tissue is able to 

consume (210).  
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Knowing this, we often regard “oxidative capacity” and “mitochondrial content” as 

synonymous phrases. Thus, any changes to the mitochondrial content of a muscle, perhaps 

brought about by chronic endurance training or prolonged muscle disuse, should directly 

influence the capacity of that muscle to consume oxygen. Fortunately, many established 

mammalian models exist which recapitulate these alterations and allow for the study of the 

phenotypic and metabolic alterations that are associated with these changes.  

1.3 Muscle Disuse: A model of reduced skeletal muscle contractile activity 

Given that skeletal muscle accounts for almost half of the mass of the human body, it is 

not surprising that the capacity of this tissue to adapt to stimuli is extensive. This is the case in 

muscle atrophy, which can occur as a product of pathology (ie. disease states) or in the absence 

of contractile activity. Alterations to muscle during atrophy range from acute changes in 

molecular signaling to chronic functional, metabolic and morphological adaptations. However, 

the etiology of the atrophy is often a powerful factor in determining the outcome that is 

manifested in terms of these changes.  

Due to the invasive nature of obtaining skeletal muscle samples from humans to study the 

mechanisms of inactivity-induced muscle wasting, multiple animal models that mimic muscle 

disuse in humans can be used. This section will review a few of these models, before exploring 

disuse-induced adaptations to skeletal muscle and the mechanisms by which these occur.  

1.3.1 Experimental models to study disuse-induced skeletal muscle atrophy 

Rodent models of limb immobilization have been utilized to investigate the impact of the 

removal of a weight bearing stimulus to a muscle, specifically that of hindlimb immobilization 

(ie. casting) or the tail suspension technique. These models provide insight into the mechanisms 

through which muscle disuse is brought about, and has direct applications to human 
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circumstances, such as spaceflight or prolonged bed rest. These techniques are non-invasive, and 

are typically cost-effective. In terms of hindlimb suspension, the technique was developed over 

40 years ago by the National Aeronautics and Space Agency for the purpose of weightlessness 

simulation and alterations in musculoskeletal loading, as experienced during prolonged 

spaceflight (156, 157). As the opportunities for microgravity exposures are limited, this model 

provides the best estimate of its effects on muscles. This method utilizes a tail-cast to hang the 

hindlimbs into an unweighted, suspended position, leaving the head tilted downwards and 

affording the animal freedom of forelimb movements (161). This provides for an important intra-

animal control when analyzing the tissues. While not used for the same extent of extrapolation as 

hindlimb suspension affords for spaceflight weightlessness, limb casting immobilization 

provides another paradigm by which non-invasive muscle atrophy can be analyzed and achieved 

in rodent models. This model allows for a plastic or orthopedic cast to be applied to an animal, 

fixing a joint in a particular position and stretching the muscle to a predetermined length (161). 

As these muscles are fixed in a particular position, atrophy and hypertrophy can be achieved in a 

muscle and its antagonist respectively. Both of these techniques are relatively simple to perform 

and sufficient to induce disuse. However, the rapidity by which atrophy is achieved is quite slow, 

and this can act as an obstacle when using these models experimentally. 

In contrast to these non-invasive techniques, denervation provides a surgical method to 

induce muscle disuse. Denervation (or neurotomy) involves the physical interruption of neural 

innervation, through severing the α-motor neuron supply to the muscle. This effectively removes 

the nerve-muscle communication and can rapidly induce atrophy, but may also interrupt neural 

input to vascular beds innervated by the same nerve (161). This technique serves as a model for 

severe spinal cord injury, where there is no possibility of neural regeneration. Nerve crushing is a 
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closely related technique that involves the physical application of force to the nerve with 

adequate pressure to temporarily ablate neural input to the muscle. However, over time this 

model permits regeneration of the nerve and re-innervation to occur. Alternatively, a chemical 

approach to denervation can be taken (161), as physical denervation removes both neuromotor 

and neurotrophic inputs to the muscle. Treatment with the sodium-channel blocker tetrodotoxin 

maintains both axonal continuity and the flow of possible trophic factors, while eliminating 

impulse conduction from the nerve to the muscle (148). This approach removes any confounding 

interruptions to vascular beds supplied by the same nerve during neurotomy. 

In addition to the models mentioned, starvation, aging and various disease states (sepsis, 

cancer cachexia, AIDS, burn injury, heart failure) are all associated with muscle loss. However, 

the intracellular mechanisms between disuse-induce muscle atrophy and the atrophy induced by 

these stimuli is comprehensively different. Although all of these models are valid in their own 

right, conclusions drawn from one model should be applied with caution to the others. 

Ultimately, the model utilized should reflect the goals of the study. 

1.3.2 Mechanisms of disuse-induced skeletal muscle atrophy 

Prolonged inactivity of skeletal muscle results in a net loss of muscle protein content and 

myofiber atrophy. Atrophy is predominantly due to over-activation of the cell’s major proteolytic 

pathways, the ubiquitin-proteasome system (UPS) and the autophagy-lysosome pathway, which 

control the half-life of awide variety of cellular proteins. Although it is clear that these changes 

in myofiber size arise from an reduction in muscle protein synthesis and an increase in protein 

degradation (10, 55, 69, 223, 249), the mechanisms by which this occur as a result of a disuse 

stimulus continue to be elucidated. In this section, a brief outline of the pathways governing 

disuse-induced muscle atrophy will be provided. 
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Muscle mass maintenance and hypertrophy is predominantly controlled through the IGF-

1 (insulin growth factor-1)/PI3K/Akt signaling axis (199). Activation of this pathway by 

circulating IGF allows for Akt to stimulate protein synthesis through its downstream effectors 

(mammalian target of rapamycin) (117). Simultaneously, Akt maintains an inhibitory 

phosphorylation on the forkhead box O (FoxO) transcription factor family (202, 219, 261). 

However, when this inhibitory phosphorylation is removed, FoxO family members can 

translocate to the nucleus and induce muscle atrophy through a subset of genes that are 

commonly up- or down-regulated in response to muscle-disuse stimuli (122, 198). The genes that 

are consistently up-regulated are commonly referred to as atrophy-related genes (“atrogenes”) 

and are transcripts associated with the UPS and autophagy pathways. Thus, Akt appears to be the 

main point of control in determining the balance between protein synthesis and degradation. 

In response to muscle disuse, the UPS is responsible for the removal of muscle 

sarcomeric proteins. It does so through up-regulating the expression of ubiquitin and ubiquitin-

conjugating enzymes, increasing the conjugation of ubiquitin to muscle proteins and the rate of 

removal of these proteins via the proteasome (121). The rate-limiting step in this system is the 

conjugation of ubiquitin to proteins by E3 ligases. There are several E3 ubiquitin ligases 

responsible for this conjugation, which are both muscle-specific and up-regulated during muscle 

atrophy. The E3 ligases first identified were atrogin-1 and muscle RING finger 1 (MuRF1), and 

were found to be induced by denervation (21). Interestingly, while it remains to be confirmed, 

atrogin-1 is suspected to have several muscle proteins as substrates (135). On the other hand, 

MuRF1 has been reported to interact with and contribute to the degradation of many muscle 

structural proteins, including troponin I and myosin heavy and light chains (38, 40, 62, 103). 

Nonetheless, knockout models of both of these ligases are resistant to denervation-induced 
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muscle atrophy, suggesting a strong importance for ubiquitin-conjugation in UPS-mediated 

atrophy  (21).  

In addition to atrogin-1 and MuRF1, knockout of TRAF6 (TNF receptor associated factor 

6), a ubiquitin ligase which mediates the conjugation of polyubiquitin chains to target proteins, 

also provides resistance to denervation-induced muscle loss (113, 152, 178). In a related system, 

the p97/VCP (valosin containing protein) complex assists in the removal of ubiquitinated 

proteins from larger intramuscular structures during denervation. Similarly, over-expression of a 

dominant-negative p97/VCP in skeletal muscle preserves muscle mass and blocks proteolysis 

during denervation-induced disuse (184). 

The autophagy-lysosome system is another pathway which is activated during muscle 

disuse, and similar to the UPS, is under the regulation of FoxO transcription factors (FoxO3a in 

particular) (142, 261). This pathway allows for the bulk degradation of proteins and organelles, 

through sequestration into vacuoles, and delivery of these vacuoles to lysosomes for digestion by 

lysosomal enzymes (85). In fact, Mammucari et el. demonstrated that autophagy is a required 

process for myofiber atrophy to occur (142). Interestingly, autophagy appears to serve a basal 

role in the maintenance of muscle mass, as Atg7-null mice (mice unable to initiate autophagy)  

display several signs of myopathy, including abnormal mitochondria, oxidative stress and a 

buildup of polyubiquitinated proteins (144). 

Apart from activation of the UPS and autophagy-lysosome system, myonuclear apoptosis 

contributes to muscle atrophy, although not to the extent of these other two systems. This form of 

apoptosis is distinct from classical apoptosis, as muscle fibers contain multiple nuclei per cell 

body, each which control a particular domain of cytoplasm. This way, it is possible to undergo a 

loss of myonuclei without cell death in these multi-nucleated fibers during disuse muscle atrophy 
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(203). Indeed, denervated skeletal muscle displays greater mitochondrial-associated apoptotic 

susceptibility, denoted by the increased expression of pro-apoptotic proteins and increased DNA 

fragmentation, alongside reductions in myofiber size (4, 24, 218). This myonuclear loss with 

muscle atrophy may be a strategy to maintain a relatively constant and optimal nucleus-to-

myofiber ratio. 

1.3.3 Disuse-induced adaptations in skeletal muscle 

 With muscle disuse, there are a variety of morphological, functional and metabolic 

adaptations which can occur. These changes appear to be species-, stimulus-, muscle- and muscle 

fiber type-specific, while also sensitive to the duration which the stimulus is applied. 

Accordingly, the analysis of these adaptations must be interpreted with respect to these these 

influencing factors. 

 One of the most evident alterations in skeletal muscle with disuse is the reduction in 

skeletal muscle mass and myofiber cross-sectional area (4, 23). These reductions occur as an 

adaptation to a decreased recruitment of the muscle fibers, and the loss of pro-hypertrophic 

stimuli which basally maintain muscle fiber size. Further, the loss of neural influence by 

denervation or mechanical unloading has been shown to cause a slow-to-fast fiber type 

conversion (37). Preferential atrophy for specific fiber types has been shown to occur, however 

this preference is dependent on the muscle type it is expressed in (177). The exact mechanism of 

this phenomenon is unknown, but may be due to the neural influences which differ between 

muscles, in addition to a wide selection of intrinsic properties of myofiber, such as differential 

gene expression, neural innervation and contractile properties. 

 Early electron microscopy work has demonstrated that ultra-structural alterations, such as 

sarcomeric and myofibrillar disruption, along with changes in the size and shape of mitochondria 
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and the sarcoplasmic reticulum is typical of denervated muscle (72, 86, 138, 179). These ultra-

structural changes manifest in functional changes, the most notable being a reduction in muscle 

contractile strength (63, 246), as myofiber cross-sectional area is directly linked with the 

capacity to generate force. Associated with this is a super-sensitivity of skeletal muscle to 

acetylcholine (ACh), in part due to the spreading of ACh receptors all over the muscle, including 

outside of the NMJ (13). This may be the muscle’s attempt to become more sensitive to ACh in 

response to the fact that ACh is no longer abundant. Muscle capillarization is also impacted by 

denervation, as capillary regression and reduction in the capillary-to-fiber ratio have been 

reported (25, 233, 239). Taken together, the multitude of changes to the ultrastructure of the 

muscle following denervation appears to directly result in functional impairments. 

 In addition to these morphological alterations, there are metabolic changes brought about 

altered gene expression and signaling which occurs with muscle disuse. The next sections will 

address the changes which occur in response to muscle disuse in both the acute (within the first 

week) and chronic stages of following the cessation of contractile activity. 

1.3.3.1 Early disuse-induced alterations to skeletal muscle 

 With respect to muscle characteristics, muscle mass has been shown to be reduced within 

the first week of muscle disuse, however, the rate and magnitude of this reduction is dependent 

on the muscle type studied (4, 69, 79, 92, 246, 249). This is predominantly due to the removal 

myosin heavy chain (MHC) proteins, which are the major component of the contractile 

apparatus, as the mRNA and protein expression of all MHC isoforms has been shown to decrease 

following 3 days of denervation (73, 191). Muscle mitochondrial content has also been shown to 

rapidly decline within the first week of denervation (4, 216, 246). Electron microscopy studies 

confirm this and also reveal an increased amount of “abnormal” mitochondria in denervated 
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muscle during the same time period (45, 86). Markers of a cellular environment laden with 

oxidative stress is also typical in these muscles (19, 205). 

As mentioned previously, muscle disuse is primarily characterized by a shift in the 

balance between protein synthesis and degradation. As early as 3 hours post-denervation, skeletal 

muscle amino acid uptake is reduced (78). This is followed by an increase in the conjugation of 

ubiquitin to proteins and subsequent proteolysis via the UPS within the first 72 hours of 

denervation (69, 81, 223). Increases in the mRNA of atrogin-1 and MuRF1 E3 ligases are also 

evident at 24 hours and 3 days of muscle disuse (198, 212). Interestingly, protein synthesis 

appears to increase as well in response to denervation in a similar time-course, as it is elevated 

between 48 to 72 hours post denervation (10, 190). Argadine et al. speculate that this is due to an 

increase in protein synthesis through an ERK1/2/GSK3β/eIF2β-dependent pathway (11), while 

Quy et al. suggest that this is mediated via an mTORC1/S6K/4E-BP1-dependent mechanism 

(190). Nonetheless, the magnitude of this increase is synthesis does not match the increase in 

degradation, allowing the balance to shift in favour of protein degradation. 

 In addition to these changes in UPS-mediated proteolysis, an up-regulation of a variety of 

genes in the process of autophagy is observed in muscle denervated for 3 or 7 days (261). 

Additionally, fluorescence microscopy of single muscle fiber from a hindlimb denervated for 7 

days reveals the co-localization of mitochondria with LC3, an autophagy related protein (196). 

This suggests the removal of mitochondria by autophagy as early as one week post-denervation. 

As both the UPS and autophagy-lysosome pathways are positively regulated by FoxO 

transcription factors, it is not surprising that these factors are responsive to conditions of muscle 

disuse. Accordingly, expression of FoxO1/3a/4 mRNA is up-regulated in response to hindlimb 

immobilization and denervation, and this is associated with increased FoxO nuclear translocation 
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and activity, which is highest at 3 days following the cessation of contractile activity (18, 211, 

212). 

1.3.3.2 Chronic disuse-induced alterations to skeletal muscle 

 Muscle disuse, denervation in particular, is associated with a rapid reduction in muscle 

mass initially which persists for 7 to 14 days. This is not sustained however, and the muscle 

atrophies at a much lower rate at time points beyond this (4, 198, 246). At several weeks of 

denervation, loss of contractile filaments is apparent and widespread, in addition to sarcomere 

disruption and myofibrillar disorganization. This is accompanied by enlarged lysosomes and loss 

of mitochondria, although the rate of this reduction in mitochondrial content is not as substantial 

as the loss within the first week of denervation (4). Mitochondria that do remain appear to be 

smaller, globular and sparse, in addition to possessing an altered structure, as cristae disappear 

(72, 138, 179, 230, 238). Reductions in the capillary-to-fiber ratio are evident by 3 weeks of 

denervation, and continue to decline beyond this (239).  

Functionally, chronically denervated fibers display a reduction in the rate of ADP-

stimulated respiration, ATP synthesis, ATP consumption and cross-bridge cycling rate (4, 170, 

215), in addition to reductions in the expression and activity of several calcium handling 

proteins, which play a key role in regulating muscular contraction (1, 209). These alterations 

result in impairments to muscle performance, as denervated muscle has a substantially 

progressively lower tension output and poorer endurance capacity beyond 7-8 days of 

denervation (209, 246).  

 Chronically denervated muscle is also associated with elevated levels of apoptosis. 

Reports from Adhihetty et al. and Siu and Alway describe an elevated level of several pro-

apoptotic factors, which was associated with increased mitochondrial apoptotic susceptibility and 
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DNA fragmentation as early as one to two weeks post-denervation (4, 218). It has been 

suggested that this mitochondria-mediated cell death is due to intra-cellular calcium overload 

(44). Further, markers of cellular stress are widespread and mitochondrially-produced reactive 

oxygen species are elevated within the first two weeks of denervation, and remain high for 

several months subsequent to this (1, 4, 170, 216). 

 It is evident that muscle disuse induces a wide variety of alterations in skeletal muscle. Of 

particular interest to this literature review is the regulation of the reduction in mitochondrial 

content that occurs in response to denervation-induced disuse. The next chapter will describe the 

structure and function of the mitochondrion, and the molecular pathways by which the 

biogenesis and degradation of the mitochondrion occurs during basal and disuse-induced 

conditions. 
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2.0 Mitochondria in Skeletal Muscle 

Mitochondria are dynamic organelles that exist in a variety of morphologies and are the 

primary site of energy generation in mammalian cells. Additionally, mitochondria participate in 

apoptosis (5, 187), the generation of oxidative stress (110), calcium signaling (54, 243) and 

thermogenesis (52). Mitochondria do not exist as individual organelles, but rather as a network 

which is in equilibrium between fusion and fission events (which add or subtract from the 

network, respectively). The process by which mitochondrial volume is increased is referred to as 

mitochondrial biogenesis, which involves the coordinated expression of genes encoded within 

both the nucleus and the mitochondrial genome (mitochondrial DNA or mtDNA). Conversely, 

mitochondria can be specifically targeted for degradation and removal from a cell through a 

process called mitochondrial autophagy, or simply ‘mitophagy.’ The balance between these two 

pathways determines the size of the intra-muscular mitochondrial pool, and in turn, reflects the 

oxidative capacity of the muscle (210). 

2.1 Mitochondrial Structure and Function 

 Mitochondria are double membraned organelles, which arose from the engulfment of a 

protobacterium by a pre-existing eukaryote several billion years ago (241). These organelles are 

the site of the aerobic oxidation of metabolic fuels. Mitochondria are separated from the 

cytoplasm by an outer membrane (OMM), which surrounds the entire organelle. Energy 

production via oxidative phosphorylation (OXPHOS) is accomplished by the passage of 

electrons through the multi-protein electron transport chain (ETC), which is embedded in the 

inner membrane of the mitochondrion (IMM). As electrons are transferred from components of 

the ETC proteins, hydrogen ions (H+) are driven into the space between the two membranes, 

termed the intermembrane space (IMS). This buildup of H+ is creates a proton-motive force, and 
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uses chemiosmosis to drive the phosphorylation of ADP to form ATP at the final protein 

complex of the ETC, ATP synthase. Additionally, the IMM is repeatedly folded and convoluted 

(known as the cristae) to increase the surface area so many copies of the ETC can exist within a 

single mitochondrion, increasing the capacity for ATP synthesis. Enclosed within the IMM is the 

mitochondrial matrix, which contains enzymes that participate in the Krebs Cycle. This cycle 

oxidizes pyruvate, a byproduct of glycolysis, which occurs in the cytosol. This reduces 

coenzymes such as NAD+ and FAD+, which transfer their electrons to ETC protein subunits to 

power oxygen consumption and ATP synthesis. 

 Finally, the mitochondrial matrix contains the double-stranded 16.5 kilobase mtDNA, 

which encodes a small, but crucial fraction of the genes required for the proper functioning of the 

ETC (13 proteins, 2 rRNAs and 22 tRNAs) (240). Unlike nuclear DNA, this genome is not 

coated by histones (225) and is located in very close proximity to the IMM, making it highly 

susceptible to oxidative damage (8, 256). Mitochondrial DNA will be addressed in more detail 

later on. 

2.1.1 Mitochondrial subpopulations: subsarcolemmal and intermyofibrillar mitochondria 

 As mentioned above, mitochondria do not exist as individual organelles within striated 

muscle, but rather as a network. This network is a product of a continual cycle of mitochondrial 

fusion and fission events, which confers substantial plasticity and a means of quality control to 

the intra-muscular pool of mitochondria. Mitochondrial fusion can be advantageous as it permits 

sharing and mixing of intra-mitochondrial contents, such as metabolites, enzymes and mtDNA, 

in an effort to promote a homogeneous and healthy mitochondrial population and protect against 

dysfunction. Conversely, mitochondrial fission allows for fragmentation to facilitate the specific 

clearance of dysfunctional portions of the network (60). In essence, mitochondrial networks are 
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maintained through these opposing processes in order to optimize efficiency of the organelle, 

assist in adaptations to cellular stress and reduce the harm associated with damaged or 

dysfunctional components (30).  

Electron microscopy work has revealed that mitochondria in striated muscle are divided 

into two general subpopulations that are morphologically, functionally and biochemically 

distinct. These subpopulations are titled by the location of the mitochondria, either beneath the 

sarcolemma, regarded as subsarcolemmal (SS) mitochondria, or dispersed between the 

myofibrils, termed intermyofibrillar (IMF) mitochondria. Subsarcolemmal mitochondria 

comprise 10-15% of the total mitochondrial population, but this varies based on species and 

predominant muscle fiber type (91). Morphologically, these subpopulations differ in both 

organelle shape and cristae structure (183, 194). These differences point to divergent roles in 

striated muscle. It has been postulated that due to their cellular location, SS mitochondria supply 

ATP for membrane transporters and nuclear functions, while IMF mitochondria provide ATP to 

myosin ATPases for muscular contractions. This is supported by reports confirming that ATP 

synthesis differs between these groups, as IMF mitochondria respire at a rate 2-3-times that of 

the SS pool (4, 39, 111, 221) and express greater levels of proteins associated with OXPHOS 

(61). Interestingly, these subpopulations exhibit differences in reactive oxygen species (ROS) 

production, as SS produce approximately 3-times that of the IMF (3). Other functional variances 

include mitochondrial enzyme activity, protein import and synthesis, apoptotic susceptibility and 

membrane structure (3, 39, 41, 221). 

In addition to their inherent functional differences, these groups of mitochondria differ in 

their capacity to adapt to various stimuli. Comparisons have demonstrated that under conditions 

of altered muscle contractile activity, such as during chronic use or disuse, SS mitochondria are 
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consistently more responsive than IMF mitochondria to a common stimulus (2, 4, 20, 90, 109, 

111, 216).  

2.2 Regulation of mitochondrial content 

 Mitochondrial content within skeletal muscle is the product of the balance between 

mitochondrial biogenesis (which increases mitochondrial content) and mitophagy (the specific 

isolation and degradation of mitochondria, which decreases mitochondrial content). As stated 

previously, mitochondrial content reflects the oxidative capacity of the muscle, which in turn, is 

reflective of the muscle’s contractile activity. As muscle is a very plastic tissue, the ability to 

appropriately regulate its mitochondrial content is crucial. In this section, molecular mechanisms 

regulating both mitochondrial biogenesis and mitophagy will be addressed, in addition to 

reviewing known alterations to these processes during muscle disuse. 

2.2.1 Upstream signaling of mitochondrial biogenesis 

 Gene expression which promotes mitochondrial biogenesis is regulated by physiological 

demands that require an increase in energy production. Regulation of this gene expression 

program is predominantly at the transcriptional level. An external stimulus, such as a change in 

contractile activity, can alter the concentration of a variety of contractile-dependent messengers, 

such as AMP, cytosolic calcium, or promote transient ROS production. Alterations in these 

factors can subsequently activate signaling kinases, several of which have been shown to post-

translationally modify transcription factors and promote mitochondrial biogenesis.  These 

messengers and their targets will be briefly discussed. 

 Firstly, muscular contractions are dependent on the hydrolysis of ATP by myosin 

ATPase. This subsequently leads to an increase in the ADP:ATP ratio in the muscle, and 

ultimately an increase in AMP formation (89). The rise in AMP concentration can lead to the 
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allosteric activation of the metabolic sensor, adenosine monophosphate-activated protein kinase 

(AMPK). Studies have demonstrated that AMPK is indeed activated in response to muscle 

activity (235, 247) and this activation is mechanistically linked to enhanced mitochondrial 

biogenesis (17, 100, 248).  

Muscle contractions also lead to rapid increases in cytosolic calcium ion (Ca
2+

) 

concentration from large intracellular stores in the sarcoplasmic reticulum. These Ca
2+

 transients 

can activate the Ca
2+

-dependent phosphatase calcineurin, Ca
2+

/calmodulin dependent kinases 

(CaMK), p38 MAPK and protein kinase C (PKC) (36, 195). These signals can post-

translationally modify transcription factors, such as NFAT, MEF2 or CREB/ATF2, and 

subsequently promote the expression of mitochondrial genes (6, 65, 147, 252). 

Finally, normal aerobic metabolism is associated with a small fraction of the electrons 

being transferred to oxygen molecules, instead of being passed to other protein complexes in the 

ETC. The electrons which escape, termed an “electron leak,” forms the reactive superoxide, 

which is then rapidly transformed into H2O2 by anti-oxidant enzymes, such as the superoxide 

dismutases (67). Under normal physiological conditions, there is a balance between oxidant 

production and antioxidant function. Exercise and muscle contractions also have the capacity to 

encourage the production of moderate amounts of oxidants (48, 146).  However, in pathological 

conditions, oxidant production can exceed the cell’s capacity to buffer them and can damage 

proteins, lipids, DNA and other molecules inside the cell, in addition to activating apoptosis 

(231). Interestingly, reactive oxygen species (ROS) can act as a signaling molecule, as they have 

the capability to activate the transcription of a mitochondria-associated gene in an AMPK-

dependent and independent fashion (98). Other studies have also demonstrated a positive 

association between ROS and increased mitochondrial mass (123, 124) and elongation (108). 
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Conversely, ROS production can result in the fragmentation of mitochondrial networks (58, 260) 

and autophagy (34, 107, 207). While the exact effects of ROS are contentious, they are 

nonetheless very much implicated in mitochondrial morphology and biogenesis. 

2.2.2 Transcription factor activation 

Expression of the ~1500 genes required for mitochondrial biogenesis is under almost 

exclusive control of transcription factors which bind to nuclear DNA, and their co-activating 

factors. The aforementioned cellular messenger signals can converge upon intermediate 

signaling kinases, which in turn can modify certain transcription factors implicated in 

mitochondrial biogenesis. This allows for a cell to respond robustly to varied physiological cues, 

such as changes in muscle activity. Genes such as specificity protein-1 (Sp1) and early growth 

response gene-1 (Egr-1) have been shown to respond with great immediacy to contractile 

activity, and are both known to induce the expression of the mitochondrial protein cytochrome c 

(42, 97, 255).  

However in skeletal muscle, the transcriptional co-activator peroxisome proliferator-

activated receptor-γ co-activator-1α (PGC-1α) is regarded as the most significant regulator of 

mitochondrial biogenesis and function, as well as muscle fiber type (130, 236, 254). As it is a 

transcriptional co-activator, it lacks the capacity to bind to nuclear DNA directly. Instead, it 

greatly enhances the activity of transcription factors, as it can recruit factors to modify histones 

and directly interact with transcription initiation machinery (188, 242). Crucial to its role in 

regulating the expression of nuclear genes encoding mitochondrial proteins (NUGEMPs), PGC-

1α has the capacity to bind to transcription factors such as nuclear respiratory factor (NRF)-1 and 

-2 (254). The activation of these transcription factors is coupled with the transcriptional control 

of other genes involved in mitochondrial function and biogenesis, such as subunits of protein 
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complexes in the ETC and factors involved in their assembly, mtDNA transcription and 

replication machinery, enzymes participating in heme biosynthesis and mitochondrial protein 

import (106). Further, PGC-1α co-activates NRF-1 on the promoter of the critical mitochondrial 

transcription factor Tfam (mitochondrial transcription factor A) (254), which will be addressed 

in more detail later on. Apart from NRF-1/2, PGC-1α has been shown to co-activate other 

transcription factors such as peroxisome proliferator-activated receptors (PPARs), estrogen 

related receptors (ERRs) and ying-yang-1 (YY1), to augment the expression of genes 

participating in mitochondrial fatty acid oxidation, Krebs cycle and oxidative phosphorylation 

(46, 53, 141). 

Regulation of PGC-1α can occur predominantly at transcriptional, post-transcriptional 

and post-translational levels. Notably, PGC-1α expression can be induced by administration of 

pharmacological agents such as 5-Aminoimidazole-4-carboxamide ribonucleotide (AICAR) or 

thyroid hormone (96, 126, 245) or by contractile activity, both in vitro and in vivo (96, 185). 

Metabolic stimuli can also regulate the activity of PGC-1α post-translationally, as it can be 

phosphorylated (100, 189), (de)acetylated (128, 164) and methylated (227). The ability of this 

co-activator to be regulated at multiple levels underscores its role as the master regulator of 

mitochondrial content. 

2.2.3 Expression of the mitochondrial genome 

 While PGC-1α solely participates in the expression of NUGEMPs, we must not forget 

that the proper functioning of the ETC is dependent on expression of genes coded in both the 

nuclear and mitochondrial genomes. In order for coordinated expression of these genomes to 

occur, factors which assist in the expression of the mitochondrial genome must first be 

transcribed from the nuclear genome, and imported into the mitochondrion. Transcription of 
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mtDNA only requires the presence of two transcription factors, mitochondrial transcription 

factors A and B2 (Tfam and Tfb2m), and the mitochondrial RNA polymerase (POLRMT) (132, 

257), which are all nuclear encoded and whose expression is regulated by PGC-1α and the NRFs 

(77, 254). 

 The mitochondrial genome is a circular, enclosed and double-stranded ~16.5kb molecule, 

existing in about 2,700 copies per cell (112), although this likely varies between cell type and 

species. It contains the genetic information for 13 proteins that are essential subunits of protein 

complexes I, III, IV and V. Additionally, it contains the code for 22 tRNAs and 2 rRNAs which 

are required for translation of the these proteins within the mitochondrial matrix. Curiously, the 

only non-coding region of mtDNA, known as the D-loop, contains control elements for the 

initiation of mtDNA transcription, as mtDNA lacks intron regions. The double strands of 

mtDNA are referred to as the heavy (H) and light (L) strands, and are named for the variance in 

the proportion of nucleic acids found in each. 

Transcription of mtDNA can initiate on either strand, as both contain promoter regions 

(154), however the transcriptional product from each site differs. Transcription from heavy-

strand promoter 1 (HSP1) yields a molecule containing information for the coding of both 

rRNAs, while heavy-strand promoter 2 (HSP2) produces a transcript spanning almost the entire 

heavy strand, including 14 of the 22 tRNAs, 12 mRNAs and both rRNAs. Transcription from the 

light-strand promoter (LSP) produces the ND6 mRNA, the remaining 8 tRNAs and primers used 

for replication of the HSPs (12, 206). Regardless of where transcription occurs, nascent 

transcripts are polycistronic, and thus must be processed in order to form mature mRNA 

molecules (171) before being translated. As all 13 proteins coded for by mtDNA are destined for 

the ETC and ATP synthase, a system for the assembly of these proteins into the mitochondrial 
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membranes must exist. Studies in yeast have demonstrated that concomitant with translation, the 

oxidative assembly complex, Oxa1, works to correctly construct and insert membrane proteins 

into the mitochondrial membrane, facilitating the assembly of cytochrome c oxidase and ATP 

synthase (7, 87, 105). 

2.2.4 Tfam and other accessory factors involved in mtDNA transcription 

 As mentioned previously, mtDNA transcription is regulated by a non-coding region, 

referred to as the D-loop, which contains the heavy- and light-strand promoters. Transcription 

initiation from these sites only requires three components, Tfam, Tfb2m and POLRMT, which 

are collectively referred to as the transcriptional core. Following initiation, elongation of the 

transcripts is facilitated by transcription elongation factor of mitochondria (TEFM), which 

interacts with POLRMT and boosts its processivity (149). 

Tfam is a multi-functional protein which, in addition to its absolute requirement for 

transcription initiation (213), plays roles in mitochondrial replication, packaging and 

maintenance. This protein belongs to the high-motility group (HMG) family of proteins, as it has 

tandem HMG-box domains separated by a 27-amino acid linker region. This protein family has 

been characterized by its ability to bend and unwind DNA. Accordingly, Tfam possesses the 

ability to unwind and distort mtDNA promoters in a U-turn like structure (64, 166, 167, 197), 

facilitating access of other core components to the promoter region and stimulating mtDNA 

transcription. Tfb2m and POLRMT interact with each other and Tfam, and participate in 

promoter melting and proper transcription initiation from H- and L-strand promoters (206).  

Tfam also has plays a role in mtDNA replication, as mtDNA transcription from the LSP 

generates the primers for heavy-strand replication. Along with mtDNA polymerase γ (Pol γ), 

23



 

mtDNA helicase Twinkle and a mtDNA single-stranded DNA-binding protein, Tfam forms a 

“replisome” which are the minimal components required for replication (57).  

Additionally, Tfam has the capacity to bind, wrap and bend any DNA without sequence 

specificity (64). Tfam has also been shown to fully coat mtDNA (102), which is supported by 

measurements estimating the ratio of Tfam molecules : mtDNA to be approximately 1000:1 

(112, 118). Experiments have shown that Tfam can cause compaction and twisting of mtDNA, 

storing them in intracellular complexes called ‘nucleoids,’ with each nucleoid containing 2-10 

copies of mtDNA (112, 127, 204). The coating of mtDNA with Tfam has been likened to the role 

of histone coating of nuclear DNA, in that it provides a manner in which mtDNA can be 

protected and maintained (102). This is critical for preservation of the normal expression and 

function of the ETC. Additionally, the compact packaging of mtDNA is important as the size of 

mammalian mtDNA precludes existence in its free (non-compacted) form in the mitochondrial 

matrix. 

Complete ablation of Tfam in a mouse model leads to embryonic lethality, owing to a 

severe mtDNA depletion, whereas heterozygous Tfam knockout mice exhibit an approximate 

40% reduction in mtDNA levels (118). On the other hand, experiments inducing moderately high 

levels of Tfam have been shown to increase the presence of mtDNA transcripts, while excessive 

overexpression of Tfam appears to inhibit mtDNA transcription (68, 143). Additionally, Tfam 

degradation is mediated by the mitochondrial LON protease, which is also expressed within 

mitochondrial nucleoids (22). Intra-mitochondrial phosphorylation of free Tfam prevents Tfam-

mtDNA interactions and facilitates its degradation via LON protease, which allows for fine-

tuning of Tfam abundance inside the mitochondrion (137, 145). It would then appear that 
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titration of Tfam protein levels is manner in which a cell can match mtDNA replication and 

transcription, and consequently respiratory chain expression, with its metabolic requirements.  

Accordingly, Tfam levels have been shown to be modified by metabolic stresses, in 

particular by increases in contractile activity. Williams demonstrated via an in vivo model of 

chronic contractile activity that increases in mtDNA copy number paralleled increases in 

oxidative capacity. This is likely due to increases in the expression of Tfam, which has been 

shown to increase in response to both in vitro (29, 234) and in vivo (82, 115) models of chronic 

contractile activity, as well as in response to acute exercise (185, 200) and endurance training 

(16, 176). Skeletal muscle exposed to chronic contractile activity also demonstrated an increase 

in the amount of Tfam imported into the mitochondrial matrix. This was associated with 

increased Tfam-mtDNA binding, and preceded the increase in mitochondrial content that 

accompanies chronic increases in muscle activity (82). The idea that increased Tfam expression 

precedes changes in mitochondrial content points to a crucial role for Tfam in contractile 

activity-induced mitochondrial biogenesis. Increased Tfam expression and function in response 

to contractile is likely mediated by increased activity of the PGC-1α/ NRF-1/2 axis, although 

recent work by Saleem et al. suggests that increased intra-mitochondrial p53 content is critical 

for Tfam-mediated mtDNA transcription in response to exercise (200). 
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Figure 1. Mitochondrial biogenesis occurs as a result of the complex coordination of 

gene expression at multiple levels. Owing to its ability to respond to upstream signals 

influencing nuclear transcription factors, and its ability to communicate and coordinate 

these with mitochondrial DNA (mtDNA), mitochondrial transcription factor A (Tfam) is 

often regarded as the “link” between the nuclear and mitochondrial genomes. This 

mitochondrial transcription factor is vital for the coordinated expression of these 

genomes during mitochondrial biogenesis. Following transcription and splicing in the 

nucleus and export into the cytoplasm, Tfam has the ability to interact with RNA-binding 

proteins or other factors which can influence its fate depending on the state of the cell: to 

be degraded into its constituent parts or translated into protein. If it is translated, Tfam is 

targeted to the mitochondrion by the matrix targeting sequence (MTS) and is imported 

into the matrix, where it can bind to mtDNA and stimulate transcription, replication and 

compaction this molecule. Tfam can also be phosphorylated in the mitochondrial matrix, 

and degraded by Lon protease. 

 

2.2.5 Mitochondrial protein import 

 Newly synthesized NUGEMPs that are destined for the mitochondrion are translated into 

proteins in the cytoplasm. Less than 1% of all proteins required for mitochondrial function are 

synthesized from genes encoded in the mitochondrial genome. As mitochondrial biogenesis is 

actually the expansion of the existing mitochondrial reticulum and not the de novo synthesis of 
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new mitochondria, precursor proteins (pre-proteins) synthesized by ribosomes in the cytosol 

must be imported into the mitochondrion in order to increase mitochondrial content. 

Mitochondrial protein import thus serves as another site at which mitochondrial content can be 

regulated.  

 As newly synthesized mitochondrial-destined proteins are not in their final conformation, 

cytosolic chaperones such as heat-shock protein (Hsp) 70 and Hsp90 are thought to stabilize 

them and position these pre-proteins in the vicinity of mitochondria (259). Further, in order for 

import into the mitochondrion to be specific for mitochondrially-destined proteins, there must be 

a system which permits mitochondria to distinguish between the vast numbers of proteins present 

in the cytosol. Indeed, mitochondrial matrix destined proteins can be identified by a positively 

charged cleavable N-terminus pre-sequence, called the matrix targeting sequence (MTS). The 

MTS is a 10-80 amino acid residue, which confers specificity for proteins to traverse the 

translocases of the outer and inner mitochondrial membranes (TOM and TIM, respectively) prior 

to entering the matrix. 

 The TOM complex serves as a universal entry gate for cytosolic proteins to translocate 

into the mitochondria, as it recognizes precursor sequences, releases these proteins from their 

cytosolic chaperones and transfers the polypeptide chain across the OMM (165). In short, 

components of the TOM complex, Tom20 and Tom70 are receptors which recognize pre-

proteins and their chaperones, prompting the release of these proteins from the chaperone and 

passage through the TOM pore (the Tom40 protein) in an ATP-dependent process (259).  

Once they have passed through the TOM, pre-proteins are able to engage with the TIM23 

complex, which they must pass through in order to enter the mitochondrial matrix. This process 

is powered by an electrical membrane potential across the inner membrane (Δψmt) and ATP 
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hydrolysis. Tim50, Tim23 and Tim17 are components of this complex which form a channel 

through which proteins can pass through the IMM (165). However further action is required for 

pre-proteins to enter the matrix. This is facilitated by an import “motor,” which is comprised of 

Tim44, Tim14, Tim16 and mitochondrial Hsp70 (mtHsp70). Collectively, these proteins are 

referred to as the presequence translocase-associated motor (PAM), and they assist in the ATP-

dependent translocation of the pre-protein into the matrix, which occurs in a ratchet-lie manner 

(158, 165, 172). Once the pre-protein enters the matrix, the MTS can be proteolytically cleaved 

by the mitochondrial-processing peptidase (MPP) (224), and the protein can be directed to its 

appropriate mitochondrial location. In addition to the TIM23 matrix-associated import pathway, 

pathways for import and insertion of proteins into the IMM and OMM exist (15, 217), but will 

not be discussed in detail here. 

Protein import into the mitochondrion can also vary depending on the cellular stimulus 

imposed. Chronic contractile activity for instance, has been demonstrated to increase the 

expression of protein import machinery components, including cytosolic and mitochondrial 

chaperones (Hsp70, Hsp90 and mtHsp70), as well as components of both TOM and TIM 

complexes (101, 173, 220). Increased expression of these proteins allows for enhanced protein 

import into the mitochondrion and mitochondrial biogenesis (220).  

2.2.6 Mitochondria-specific autophagy 

 Autophagy is the mechanism by which a cell recycles intracellular components as a 

quality control mechanism, as it can selectively eliminate dysfunctional organelles. Mitophagy is 

the specific autophagic removal of mitochondria, and is a process which directly opposes 

mitochondrial biogenesis to determine the size of the intramuscular mitochondrial pool. As 

excessive ROS production from the ETC can be cytotoxic, the removal of these dysfunctional 
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organelles is crucial to maintenance of a healthy cell. In fact, mouse models which are defective 

in the general autophagy pathway display an accumulation of defective mitochondria (253). The 

process of mitophagy is not only responsible for the elimination of damaged mitochondria, but 

also appears to be active under basal conditions, as studies have estimated that the mitochondria 

are turned over every few days (131, 153, 226). 

 The process of general cellular autophagy in general is broken down into three general 

stages: the formation and closure of the membrane surrounding the organelle to be degraded (the 

autophagosome), the delivery and merger of the autophagosome to the lysosome and the 

degradation of the autophagosomal contents by lysosomal enzymes. Autophagy is normally 

suppressed during anabolic conditions, as PI3K/mTOR signaling inhibits autophagy activation. 

However, under catabolic conditions, this inhibition is lost and activation of the ULK1 complex 

can catalyze downstream signaling for bulk cellular autophagy to occur. 

However, the manner in which mitochondria are specifically degraded is mechanistically 

different from general autophagy. As stated previously, mitochondria are not solitary organelles, 

but rather exist in a network. Components of the mitochondrial network which are to be removed 

and recycled must first be separated by mitochondrial fission before undergoing mitophagy. Loss 

of mitochondrial membrane potential for instance (which is associated with mitochondrial 

dysfunction) promotes mitochondrial fission, and appears to be essential for mitophagy (232). In 

addition to mitochondrial fission, depolarization promotes the translocation of the E3 ubiquitin 

ligase Parkin to the mitochondria, to ubiquitinate mitofusins 1/2 (186, 222), targeting their 

removal by the proteasome and subsequently preventing re-fusion of damaged mitochondria into 

the network. Damaged mitochondria also express the PTEN-induced kinase 1 (PINK1) on their 

outer membrane (119), which acts as marker of damaged mitochondrion. PINK1 is capable of 
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recruiting Parkin to the mitochondria (163), to subsequently induce mitophagy (162). Parkin also 

ubiquitinates of other OMM proteins (31), providing a link to autophagic machinery via the 

ubiquitin-binding adaptor p62. This protein has domains which allow it to interact with ubiquitin 

chains on the mitochondrion, as well as LC3, which is the main constituent of the 

autophagosomal membrane. p62 thus provides a physical link between mitochondrial proteins 

that have been tagged for degradation and the autophagosomal membrane (74).  

 Although many questions still remain regarding mitophagy and the proteins involved in 

this process, it is clear that this process is critical to the maintenance of a healthy mitochondrial 

pool, through the elimination of dysfunctional and surplus mitochondria. 

2.3 Muscle-disuse induced mitochondrial alterations 

Apart from the substantial reductions in mass evident in muscle subjected to chronic 

disuse, reductions in mitochondrial content and function are evident. Studies using electron 

microscopy note preferential loss of mitochondria in the subsarcolemmal region of membrane 

(72, 95, 134). Although the mitochondrial loss persists with experimental denervation times up to 

18 months (138), the rate of reduction in mitochondrial content appears to be the most 

considerable within the first week of denervation (4). The remaining pool of mitochondria are 

characterized as being smaller, more fragmented as well as having matrices which are less dense 

(72, 134, 138, 179, 230, 238). Iqbal et al. postulate that fragmentation of the mitochondrial 

network is due to a reduction in the ratio of fusion : fission proteins associated with the 

mitochondria (95). Interestingly, fragmentation of the mitochondrial network, through the over-

expression of pro-fission proteins Fis1 and Drp1, is sufficient to induce muscle atrophy (196).  

Cardiolipin, a key mitochondrial membrane phospholipid which binds ETC complexes to 

ensure proper electron transfer,  is also reduced with denervation (174, 246). This manifests in 
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functional impairments to the mitochondria, as the activity and expression of membrane-

embedded mitochondrial enzymes such as cytochrome c oxidase and succinate dehydrogenase 

are reduced with muscle disuse (26, 191, 216, 246). Citrate synthase, a mitochondrial matrix 

enzyme, exhibits a similar reduction in expression and function (26, 238). Mitochondria that 

have been isolated from denervated muscle also exhibit a reduction in the rate of ATP synthesis, 

in addition to elevated levels of ROS production (4, 160, 170, 216). These factors have been 

suggested to negatively impact mitochondrial protein import, which is also suppressed following 

denervation (216). These studies highlight the notion that with muscle disuse, mitochondria are 

not only less prevalent, but also less efficient.  

Mitochondrial biogenesis appears to be repressed with chronic muscle disuse, as studies 

have reported reductions in PGC-1α mRNA content as rapid as 1 day following denervation 

(198), which persists for weeks following the cessation of muscle activity (88, 198, 201, 238). 

Reductions in the protein content of PGC-1α and Tfam is also reduced with prolonged muscle 

inactivity (4, 26). However, the exact signaling mechanisms regulating the expression of these 

genes during muscle disuse has yet to be determined. Fascinatingly, muscle-specific over-

expression of PGC-1α blocks muscle atrophy during denervation (26, 88, 201). However, it is 

not completely understood whether this is through the preservation of mitochondrial content or 

mitochondrial biogenesis-independent regulatory roles of this transcriptional co-activator.  

On the other hand, mitochondrial degradation appears to be increased with muscle disuse. 

In response to denervation, the mRNA expression of Parkin, PINK1 and an E3 ubiquitin ligase 

Mul1 is elevated (136). Mul1 appears to mediate mitochondrial fission and subsequent 

mitophagy in response to muscle wasting stimuli. Its exact role in muscle disuse, although 

promising, remains to be determined. However, other evidence exists suggesting an elevation in 

31



 

mitophagy during muscle disuse. O’Leary et al. recently revealed that key proteins mediating the 

removal of mitochondria via autophagy, such as the ubiquitin ligase Parkin, the autophagosomal 

membrane protein LC3 and the ubiquitin-LC3 adaptor protein p62 all show a greater association 

with mitochondria in denervated muscle (168, 169). Although it appears that mitophagy is 

augmented during muscle disuse, more work in this field needs to be done. 
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3.0 Post-Transcriptional Regulation of mRNA 

Gene expression can be regulated at a variety of levels, from the transcription of DNA to 

the translation of protein, and beyond that, with post-translational modifications and control of 

intracellular localization. In particular, mRNA is capable of being regulated following 

transcription, in what are simply referred to as “post-transcriptional events.” Until recently, these 

events have been overlooked, and light has been shed on the function of these events on the gene 

expression. This chapter will briefly summarize these post-transcriptional events, and 

specifically analyze the role of mRNA stability as an avenue of modulating gene expression. 

3.1 mRNA stability 

Messenger RNA (mRNA) is composed of a 5’ untranslated region (5’-UTR), a coding 

region and a 3’ UTR. The coding region provides the information for the protein to be translated 

from, while both untranslated regions serve as regulatory components for the mRNA. Newly 

created mRNAs are also equipped with two inherent stability determinants, the 5’ 7-

methylguanosine (m7G) cap structure, and the 3’ poly(A) tail, a stretch of ~25-200 adenine 

nucleotides on the 3’ end of the transcript. In order for an mRNA to undergo decay, either of 

these two structures must be compromised. Additionally, the 5’ m7G cap affords the transcript 

the ability to interact with the cytoplasmic eukaryotic initiation factor 4E (eIF4E), while the 3’ 

poly(A) tail has the ability to bind the poly(A) binding protein (PABP). Binding of either of 

these factors to a transcript assists in cap-dependent translation initiation (99, 151), but also 

provides stability and protection from exonucleolytic decay. 

Following transcription, the newly formed mRNA is spliced by a multi-protein complex 

called the spliceosome, which removes non-coding intron regions, and unites coding exon 

regions. This mature mRNA is the exported from the nucleus into the cytoplasm, where mRNA 
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decay can occur. Independent of how mRNA degradation is executed, the degradative process is 

usually concentrated in cytoplasmic foci, regarded as processing bodies (P-bodies) (175), as they 

contain many of the proteins involved in the various stages of the process outlined below. 

In mammalian cells, the predominant pathway to the degradation of a nascent mRNA is 

deadenylation-dependent, that is, exonucelolytic activity proceeds from the 3’ end of the 

transcript towards the 5’ end. This first step in the decay of an mRNA is the removal of the 

poly(A) tail (214), which occurs in two phases (258). It is initially trimmed by the ribonuclease 

complex Pan2-Pan3 to <100 adenine nucleotides. Following moderate shortening of the tail, the 

Ccr4-Not complex takes over, and removes the remaining adenines. Deadenylation can also 

occur with the help of poly(A)-specific ribonuclease (PARN), which can bind to the 5’ cap, in 

turn stimulating its poly(A)-ribonuclease activity (70). The method by which poly(A) tail 

removal by these deadenylases proceeds appears to be mRNA specific (80). Following 

deadenylation, 3’ to 5’ decay is executed by the exosome, which is a 10-12 subunit complex 

composed of various enzymes and helicases (93, 159). This complex digests the transcript, until 

only a few 5’ nucleotides remain, after which the 5’ m7G cap is removed by the decapping 

enzyme DcpS (133). 

mRNA degradation can also be mediated by microRNAs (miRNA). These short RNAs 

bind to sequences in the 3’ UTR of a target mRNA, recruit a host of other proteins to form a 

miRNA-loaded RNA-induced silencing complex (miRISC), which can silence the target mRNA 

through triggering deadenlyation of target mRNAs or translational repression (56). 

3.2 Factors involved in mRNA stability 

It must be reinforced that mRNA decay is not a random process, but rather a product of 

coordinated events, involving cis-acting elements contained within the transcript itself, and 
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trans-acting factors which can bind to these cis-elements and influence mRNA stability. These 

trans-acting factors, such as RNA-binding proteins (RBPs) or miRNAs, associate with specific 

sequences in the transcript, largely situated in the 3’-UTR. These sequences have been referred 

to as untranslated sequence elements for regulation (USER) (104), two of which have been 

widely documented: AU-rich elements and GU-rich elements. These USERs and some of the 

proteins that bind to them will be addressed below. 

3.2.1 cis-elements and their role in mRNA stability 

3.2.1.1 AU-Rich Elements 

 Located in the 3’-UTR, adenosine-uridine (AU)-rich elements (AREs) are one of the best 

characterized USERs and are the most commonly found mRNA regulatory elements in mRNAs. 

Depending on the protein that binds to these elements, AREs can modulate mRNA stability, or 

assist in translation, as these RBPs can bring the transcript into the proximity of factors 

controlling stability or tranlastion. AREs are also found in a wide variety of transcripts, as 

estimates by Halees et al. suggest that between 2-11% of the transcriptome contains these 

modulating elements (83). 

 Traditionally, AREs have been grouped into three general categories (33). Class I AREs 

contain between 1-3 instances of the AUUUA pentamer, typically found in regions rich in 

uridylate nucleotides. Class II AREs are characterized by having anywhere between 5-8 

overlying copies of the same AUUUA pentamer motif. Finally, class III AREs lack the AUUUA 

pentamer completely, and instead are simply regions that contain an abundance of uridylate 

nucleotides. Interestingly, even though these classes are relatively similar in nucleotide 

composition, it has been suggested that a greater degree of specificity exists, as the flanking 

sequences to these AREs can impact the overall effect on mRNA transcript stability (71). 
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Furthermore, deadenylation of the mRNAs that contain AREs appears to be required for the 

decay of these transcripts, as disruption of the deadenylase complexes precludes the initiation 

transcript decay by trans-acting factors (262). Nonetheless, ARE-containing mRNAs are almost 

exclusively degraded by the exosome, in a 3’ to 5’ manner following deadenylation (32). 

3.2.1.2 GU-Rich Elements 

 Although ARE-mediated decay has tradtionally been the most studied pathway in mRNA 

degradation, it is not applicable for all transcripts. Guanosine-uridine (GU)-rich elements (GREs) 

are also located in the 3’UTR, however much less focus has been placed on them than AREs. 

Speculation of the existence of alternative, non-ARE regulatory sequences arose when Raghavan 

et al. noted an abundance of transcripts which displayed a rapid decay rate, yet lacked AREs or 

other known regulatory elements (192). Using computational algorithms in a follow-up study, 

this same group uncovered conserved sequences that were enriched in unstable, short-lived 

mRNAs. Furthermore, this consensus 11mer UGUUUGUUUGU sequence is sufficient to induce 

instability when introduced into non-GRE containing mRNAs, suggesting that this element 

participates in mRNA destabilization (237). Apart from this unique 11mer sequence, similar GU-

rich sequences have been discovered, and impart the same destabilizing function (193). Although 

more work needs to be done to elucidate their full role in mRNA decay, GRE sequences appear 

to play a crucial role in mRNA stability. 

3.2.2 trans-acting factors and their role in mRNA stability 

 As mentioned earlier, trans-acting factors, such as proteins, can bind to target cis-

elements in the 3’-UTR of genes to form mRNA-protein (mRNP) complexes which mediate the 

decision to degrade or stabilize the target gene. While dozens of RNA-binding proteins exist, a 

select few with recognized roles in striated muscle tissue will be briefly addressed here. 
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3.2.2.1 Human antigen R (HuR) 

 HuR is one of the best characterized RNA-binding proteins, and it is a ubiquitously 

expressed protein known for targeting mRNAs which contain AREs in their 3’-UTR (139, 140). 

This protein is part of a family of closely related proteins which contain three RNA recognition 

motifs (RRMs). Interestingly, HuR is implicated in a variety of post-transcriptional functions. As 

HuR has been characterized as a protein that can shuttle between the nucleus and the cytoplasm, 

it is not surprising that it participates in both nuclear and cytoplasmic duties such as the splicing 

of nascent mRNAs (120), the export of the mature mRNA into the cytoplasm (116) and 

stabilization of ARE-containing mRNAs in the cytoplasm (59, 180). Furthermore, HuR promotes 

translation of stabilized mRNAs, as it is capable of interacting with the cellular translation 

machinery and its target mRNAs simultaneously (116). It is believed that HuR promotes the 

stabilization of target mRNAs by competing for target binding sites with other RBPs which 

promote mRNA decay, such as ARE/poly(U)-binding/degradation factor-1 and tristetraprolin 

(116, 150).  

 The HuR protein also offers several sites of post-translational modifications which allow 

for shuttling between nuclear and cytoplasmic locations. Numerous signaling kinases, including 

p38 MAPK (250), AMPK (244) and PKC (51), have been implicated in the phosphorylation of 

several residues on HuR. However, the interplay between these and other kinases which can 

phosphorylate HuR is complex, as phosphorylation of different residues can mediate a variety of 

effects, often contradictory in nature. Alternatively, HuR is able to be methylated (129), which 

has been shown to impair the ability of HuR to interact with target mRNAs, and possibly 

affecting its capacity to move between the nucleus and cytoplasm. Although elucidating the 
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exact effects of the multitude of modifications to HuR remains, altering the expression and 

function of this protein appears to play a substantial role in the stability of a host of mRNAs. 

3.2.2.2 K-homology splicing regulator protein (KSRP) 

 KSRP is another protein which plays a key role in modulating the stability of ARE-

containing mRNAs, both in vitro and in vivo (75). It contains four K-homology motifs (50), 

which mediate its ability to recognize and bind to RNA with high affinity, in addition to allowing 

it to simultaneously interact with the both the exosome and PARN (75). The ability for this 

protein to interact with two critical components of deadenylation-mediated decay highlights its 

importance in promoting 3’ to 5’ mRNA decay. 

 Similar to HuR, KSRP function can be modulated through post-translational 

modifications. Work by Amirouche et al. (9) and Briata et al. (27) has demonstrated the ability of 

p38 MAPK to phosphorylate KSRP in murine C2C12 cells. This phosphorylation prevents the 

binding of KSRP to ARE-containing muscle specific mRNAs. Furthermore, phosphorylation 

simultaneously downregulates KSRP protein expression and enhances the sequestration of KSRP 

with 14-3-3 proteins. Other work has highlighted KSRP as a target of the PI3K/Akt signaling 

axis, which is of particular importance during skeletal muscle growth in myogenesis and 

hypertrophy. Interestingly, activation of PI3K/Akt in C2C12 cells causes phosphorylation KSRP, 

which displaces it from mRNA destabilizing complexes and target mRNAs (28, 76). Thus it 

appears that KSRP phosphorylation by multiple upstream kinases is critical in preventing both its 

ability to interact with the machinery which degrades mRNAs and its target mRNAs themselves.  

3.2.2.3 CUG-binding protein 1 (CUGBP1) 

 CUGBP1 is a member of a family of similar RNA-binding proteins, containing 3 RRMs 

(228), allowing it to bind to a variety of 3’-UTR elements, including GC-rich and GU-rich 
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elements, in addition to AREs (155, 193). While studies have described the role of CUGBP1 in 

mRNA splicing (182) and translation control (229), more focus has been placed on the role of 

CUGBP1 as a deadenylation accessory factor, as it recruits PARN deadenylase to target mRNAs, 

and consequently promoting their decay (155). Work by Lee et al. has identified that CUGBP1 

has numerous transcript targets in muscle cells, and principally binds to mRNAs that have 3’-

UTRs enriched with GREs (125). These authors also note that several of the identified target 

sequences of CUGBP1 overlap with sequences bound by the mRNA stabilizing protein HuR. 

This perhaps alludes to the existence of mRNPs containing both stabilizing and destabilizing 

factors, and likely competitive binding for these sites to determine the fate of the target 

transcript. 

 Along with the other RNA binding factors addressed above, the function of CUGBP1 can 

be altered by phosphorylation. Using an animal model of myotonic dystrophy, Kuyumcu-

Martinez et al. demonstrated that CUGBP1 is under the regulatory control of the PKC signaling 

pathway, which hyperphosphorylates CUGBP1 (114). This post-translational modification 

increases the half-life of this protein and nuclear localization, leading to aberrant splicing and 

dysregulated translational control. While an effect of phosphorylation or other post-translational 

modifications on the ability to CUGBP1 to function as an mRNA decay promoting factor was 

not examined, future work should address this interaction. 

3.3 mRNA stability and skeletal muscle  

 Research evaluating changes in gene expression often examines alterations to 

transcriptional networks and protein abundance, however, very little focus has been placed on 

examining events following transcription. While the extent of transcriptional activity provides 

information regarding changes in upstream signaling in gene expression, mRNA stability 
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provides a link to possible changes in gene expression to the steady-state concentration of 

mRNA. In a recent review, Balagopal et al. suggest that while changes in transcription may 

provide insight into the direction of the net response of a gene to a stimulus, regulation of 

transcript stability seems to be an important factor in the kinetics of this response (14). In other 

words, control of transcript stability may be important for a cell to “accelerate” or “brake” while 

adjusting to new steady state conditions.  

An example of this is presented in a study by Freyssenet et al., who examined the role of 

stability in mitochondrial biogenesis in a model of chronic contractile activity (CCA). Following 

CCA, mRNA of the mitochondrial protein cytochrome c was elevated, but this preceded changes 

in transcriptional activation of the cytochrome c promoter. This suggests that in this paradigm, 

augmented stability contributed to the early elevation in mRNA (66). Using the same 

experimental model, Lai et al. examined the effect of CCA on primary regulators of 

mitochondrial biogenesis, namely PGC-1α and Tfam. Interestingly, despite no change in the 

mRNA of these genes with CCA, their stability was markedly decreased. The authors suggested 

that this is a beneficial effect, with a higher turnover rate providing a more favourable, plastic 

environment for the cellular response to contractile activity (115). Considering this, D’Souza et 

al. hypothesized that the stability of these regulators of mitochondrial biogenesis is inversely 

proportional to the mitochondrial content of muscle, that is, higher mitochondrial content was 

correlated to higher transcript turnover rates. By analyzing different striated muscle fiber types 

which have inherently different mitochondrial densities, they surmised that stability of these 

factors, along with RBPs which play a role in the control of transcript decay, is regulated in a 

transcript- and tissue-specific fashion (47). This is not surprising, as divergent tissue-specific 

mechanisms controlling the stability of mitochondrially-associated mRNAs have been previously 
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implied (43). Altogether, it appears that differences in transcript structure, coupled with tissue- 

and stimulus-specific regulation of stability illustrate an increasingly complex picture of post-

transcriptional regulatory mechanisms. Additional examination of the relationship between 

mitochondrial content and mRNA stability is merited in order to clarify previously observed 

relationships. 
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Thesis Objectives 

 

Thus, based on my review of literature, the objectives of my thesis are to: 

 

1. Establish a time course for the reduction of muscle mass and mitochondrial content in response to 

denervation-induced muscle disuse; 

2. Characterize the impact of denervation on various levels of Tfam expression throughout this time course, 

by examining the relationship between the in vivo Tfam promoter activity, steady-state mRNA 

concentration, mRNA stability and intracellular protein distribution;  

3. Examine mechanisms contributing to mRNA stability, by quantifying specific RNA binding proteins in 

denervated skeletal muscle; 

4. Assess activity of upstream signaling kinases pertinent to both mitochondrial biogenesis and RNA binding 

proteins in response to denervation. 

 

Hypotheses 

 

I hypothesized that: 

 

1. In response to denervation, the activity of the Tfam promoter in vivo would be reduced, with a subsequent 

reduction in Tfam mRNA expression; 

2. Tfam mRNA turnover would be unaltered at early denervation time-points, but would be characterized by 

reduced turnover as denervation progressed and mitochondrial content is reduced; 

3. Whole tissue expression of RBPs would be unaltered at early denervation time points, but would favour a 

more “stabilizing” environment as denervation proceeded; 

4. The concentration of intramitochondrial Tfam protein would be reduced with denervation; 

5. Kinase signaling known to promote mitochondrial biogenesis would be reduced prior to the reduction of 

mitochondrial content with denervation.  
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Prefix 

The purpose of this study was to determine how the expression of mitochondrial transcription 

factor A (Tfam), a vital protein which coordinates mitochondrial content by controlling the 

transcription and replication of mitochondrial DNA (mtDNA), is regulated during a state of 

reduced organelle content imposed by muscle disuse. We measured Tfam expression at multiple 

levels following unilateral denervation for 8 hours, 16 hours, 24 hours, 3 days or 7 days, and 

hypothesized that decreases in Tfam expression would precede reductions in mitochondrial 

content. Muscle mass was lowered by 13% and 38% at 3 and 7 days post-denervation, while 

COX activity fell by 33 and 39% at the same time points. Activation of the Tfam promoter in 

vivo was reduced by 30-65% between 8h and 3 days of denervation. mRNA stability assays 

revealed that Tfam mRNA was stabilized during short-term denervation, enhancing its 

transcript’s half-life following 8-24 hours of denervation. Protein expression of RNA-binding 

proteins involved in modulating mRNA decay in skeletal muscle (KSRP and CUGBP1) was 

elevated at 3 and 7 days of denervation. Tfam localization within  subsarcolemmal mitochondria 

was reduced after 3 and 7 days of denervation, and this was associated with a suppression of 

COX I mRNA, suggesting that denervation impairs both Tfam import into mitochondria, as well 

as mtDNA transcription. Finally, AMPK phosphorylation increased 16 hours after denervation 

(p=0.06), and was repressed after 7 days of denervation, providing support for an early pro-

autophagy signal, but an anti-mitochondrial biogenesis signal with more prolonged denervation. 

These data suggest that putative signals regulate the Tfam promoter during the earliest stages 

following denervation, but that these are counteracted by increases in the stability of the Tfam 

transcript. Import of Tfam into the mitochondrion seems to be the most critical point of 

regulation of this protein during denervation, an impairment which is crucial for the loss of 

mitochondria brought about by muscle disuse.  
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Introduction 

 

Chronic muscle disuse, such as that brought about by denervation, is a potent inducer of 

muscle atrophy (2, 46, 51). This phenomenon arises as a result of the shift in the balance between 

protein synthesis and degradation, favouring muscle catabolism (5, 20), in addition to the 

activation of pathways mediating macroautophagy (37, 38, 55). Concomitant with the reduction 

in muscle fiber size, mitochondrial content is also diminished, which likely accounts for 

observed impairments in muscle endurance performance (2, 51).  

The regulation of mitochondrial content has been well documented, and is primarily 

stimulated by the activity of the transcriptional coactivator PPARγ coactivator-1α (PGC-1α) (23, 

44). PGC-1α is capable of controlling the expression of a variety of aspects of mitochondrial 

biogenesis, through the coactivation of key nuclear transcription factors, such as nuclear 

respiratory factors (NRF)-1 and -2 (53), which in turn can promote the expression of 

mitochondrial transcription factor A (Tfam). Mitochondrial biogenesis requires the coordinated 

expression of genes encoded within the nuclear and mitochondrial genomes (mtDNA). In order 

to properly orchestrate mitochondrial biogenesis, factors which promote the transcription and 

expression of mtDNA must be transcribed from the nuclear genome, and imported into 

mitochondria. Tfam is a required component of the mitochondrial transcription machinery, along 

with mitochondrial transcription actor B2 (Tfb2m) and mitochondrial RNA polymerase 

(POLRMT) (45, 54). Tfam is unique in that is has the ability to bind to mtDNA and distort it into 

a U-turn like structure, facilitating access of other accessory components to promote mtDNA 

transcription (36, 41). Beyond this, Tfam also has essential roles in the replication and 

compaction of mtDNA  into nucleoid structures (17, 27) 

45



The necessity of Tfam has been highlighted by Larsson et al., who demonstrated that 

whole body homozygous Tfam ablation results in embryonic lethality, whereas viable 

heterozygous Tfam knockout mice display reductions in mtDNA levels and compromised 

electron transport chain function (31). Muscle-specific knockouts of Tfam display similar 

mitochondrial impairments (52). Conversely, the transient overexpression of Tfam is sufficient 

to induce mtDNA expression and mitochondrial mRNAs (34). Furthermore, increases in the 

expression and mitochondrial import of Tfam in response to contractile activity have been shown 

to precede increases in mitochondrial content, suggesting a crucial role for this protein in the 

regulation of  contractile activity-induced mitochondrial biogenesis (22). These reports 

underscore the vital role of Tfam in mtDNA expression and content, as well as mitochondrial 

function.  

However, the significance of regulating Tfam expression during denervation-induced 

atrophy has not been fully explored. Previous work has documented that denervation-induced 

disuse reduces mitochondrial content quite rapidly, depleting the mitochondrial pool by 

approximately 40% following five days of denervation (2). This is associated with considerable 

reductions in the expression of factors regulating mitochondrial biogenesis (2, 42, 43, 49), 

including PGC-1α and Tfam, along with an impairment in protein import into the mitochondrial 

matrix (46).  

Thus, the purpose of this study was to investigate the relationship between the expression 

of Tfam and mitochondrial content during denervation-induced disuse. We examined the 

expression of Tfam at the transcriptional and post-transcriptional levels during the first week of 

denervation, as this is the time frame in which the most substantial loss of mitochondrial content 

occurs. We hypothesized that a decline in Tfam content would precede reductions in 
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mitochondrial content, as a result of a diminished drive for mitochondrial biogenesis. Moreover, 

consistent with earlier work from our laboratory in mRNA stability, we hypothesized that a 

decline in mitochondrial content would favour a more stabilizing environment for Tfam mRNA. 

  

47



Methods 

 

Animals and Experimental Design. Animal care and experimental procedures were approved by 

the York Animal Care Committee, and were in accordance with the Canadian Council of Animal 

Care. Male Sprague-Dawley rats (300-400g, Charles River, St. Constant, QC, Canada) were 

randomly assigned to one of five time-course groups: 8 hours, 16 hours, 24 hours, 3 days or 7 

days. Prior to denervation in a subset of animals, the tibialis anterior (TA) of both hindlimbs was 

electrotransfected with the rTfam-pGL3 vector. Four days following electrotransfection, rats 

underwent surgery to induce unilateral hindlimb denervation, while the contralateral hindlimb 

was sham-operated. At each of these time points, animals were sacrificed and the TA muscles 

were excised from the denervated and contralateral, sham-operated limb. TA muscles from both 

limbs of these animals were used for a selection of biochemical analyses. In a separate set of 

experiments, a subset of male Sprague-Dawley rats was randomly assigned to one of three time-

course groups: 24 hours, 3 days or 7 days. These animals were denervated as described below, 

and at each time point, animals were sacrificed. The TA muscles from these animals were used 

to isolate subsarcolemmal mitochondria from freshly excised tissue, while the extensor digitorum 

longus (EDL) was fixed and frozen for cross-sectional area analyses. 

Denervation surgery protocol. Rats were anesthetized using gaseous isofluorane. The fast-twitch 

tibialis anterior and extensor digitorum longus muscles were denervated by exposing the left 

common peroneal nerve and transecting a 5-mm section. The contralateral hindlimb underwent 

the exact same procedure, whereby the right common peroneal nerve was exposed, but no 

transection was performed. Following the administration of sterile ampicillin, the incision was 

sutured and closed with metal clips. The day of surgery represented day 0 of the time course. 

Animals were given amoxicillin in their drinking water following the surgery (0.025% wt/vol). 
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At the conclusion of the time-course for each group, animals were anesthetized with an 

intraperitoneal injection of ketamine-xylazine (0.2ml/100g of body weight) and both sham-

operated and denervated TA muscles were excised, clamped frozen in liquid nitrogen and stored 

at -80°C. Muscle samples used for biochemical analyses were then pulverized at the temperature 

of liquid nitrogen, while samples used for cross-sectional analyses were prepared as described 

below. 

Intramuscular DNA injection and electroporation in vivo. Male Sprague Dawley rats (300-400g) 

were anesthetized as described above. Electrotransfection experiments were performed as 

previously described (12, 14). The lower hindlimbs were shaved and sterilized, prior to the 

injection of a Tfam promoter-firefly luciferase reporter containing plasmid (rTfam1-pGL3 

vector, ref. (12)). TA muscles were injected from the distal portion of the leg, with the syringe 

being inserted so that its orientation paralleled that of fiber orientation. Approximately 30µl of 

the plasmid solution (containing 50µg of the rTfam1-pGL3 and 1µg of pRL-CMV to normalize 

for electrotransfection efficiency in 0.9% sterile saline solution) was injected into the TA of both 

hindlimbs using a short 29-gauge insulin syringe (BD Ultra-Fine). Immediately after the DNA 

injection, transcutaneous electrical pulses were applied using the ECM 830 Electroporation 

system (BTX Harvard Apparatus). The muscle was held on either side of the injection site by the 

tweezertrodes (BTX Harvard Apparatus) at the level of the skin, and a total of eight pulses was 

delivered with anode and cathode electrode orientation being reversed after four pulses (100 

V/cm, 20ms, 1Hz per pulse). Four days after treatment, the animals were subject to the 

denervation protocol as described below. At the conclusion of the denervation time-course, 

muscles were excised, clamped frozen and stored. All muscles were then powdered at the 

temperature of liquid N2 until further molecular analyses were performed. 
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pGL3 and pRL-CMV luciferase reporter assay. Muscle powders from the denervated and sham-

operated hindlimbs (30-50 mg) were diluted seven-fold (wt/vol) in 1x passive lysis buffer. 

Homogenates were sonicated on ice (3 X 10 seconds) and subsequently centrifuged at 16,100 g 

for 5 minutes at 4°C. After centrifugation, 20µl of the supernate were used to assess pGL3 

luciferase activity using an EG&G Berthold Luminometer (Lumat LB9507). pGL3 firefly 

luciferase values were corrected for electrotransfection efficiency by simultaneously assessing 

pRL renilla luciferase activity. 

Cytochrome c oxidase (COX) activity. Pulverized frozen TA muscle was diluted in muscle 

extraction buffer (100mM KH2PO4, 100mM Na2HPO4, 2mM EDTA, pH 7.2) and sonicated 3 x 5 

seconds on ice. Supernates were added to a solution containing fully reduced cytochrome c. This 

reaction was performed in a 96-well plate at 30°C using a Synergy-HT microplate reader. COX 

activity was determined by the maximal rate of cytochrome c reduction, assessed by measuring 

the change in absorbance at 550nm. Data were compiled with KC4 software. 

In vitro cytosolic protein extraction. Frozen powders (50mg) from sham-operated and denervated 

TA muscles were homogenized separately in 500μl sterile homogenization buffer (25% glycerol, 

0.42M NaCl, 1.5mM MgCl2, 0,2mM EDTA, 20mM HEPES pH 7.9, 0.5mM 1,4-DTT, 0.5mM 

PMSF and RNase-free water) at 30% power output for 3x10s. Homogenates were subsequently 

centrifuged at 5000 g for 15 minutes at 4°C. The supernate was transferred to a sterile Eppendorf 

tube, and further centrifuged at 15,000 g for 15 minutes at 4°C to produce mitochondria-free 

(S15) crude cytosolic fractions. Protein concentrations were determined by the Bradford 

colorimetric protein assay. 

In vitro RNA isolation. Total RNA was isolated using TRIzol reagent (Life Technologies), 

whereby muscle tissue powders were derived from TA of either the sham-operated or denervated 
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animals (approximately 100mg tissue/ml TRI-reagent). RNA isolation was performed as 

previously described (12, 29). Briefly, RNA was precipitated overnight at -20°C with 

isopropanol, and subsequently pelleted, washed, dried and resuspended in sterile water. RNA 

concentration and purity were assessed using spectrophotometry, while RNA quality was 

affirmed through separation on a 1% agarose-formaldehyde gel to visualize 28S and 18S rRNA. 

In vitro mRNA decay assay. Total RNA (35µg) derived from the TA muscle of the Sprague-

Dawley rats of SD rats was combined with 20µg of S15 cytosolic extracts derived from either 

the denervated or control TA of animals subjected to the time-course denervation protocol. To 

allow for assessment of the degradation of RNA within the incubated tubes as a percentage of the 

original RNA content, a tube containing 35µg of RNA and 5µl of sterile homogenization buffer 

in a 100µl reaction volume served as a baseline measure at the zero time-point. This sample does 

not contain the cytosolic proteins, and it allowed us to determine the amount of RNA present in 

the sample without the influence of cytosolic factors. Reaction volumes were set at 100µl, and 

samples were incubated at 37°C for 15 or 45 minutes. At the completion of each incubation time-

point, phenol was added to each sample and it was shaken vigorously. Total RNA was then 

reisolated using a phenol-chloroform-isoamyl alcohol extraction procedure as previously 

described (29). The reisolated RNA was pelleted, washed, dried and resuspended in sterile water. 

RNA concentration and purity were determined via spectrophotometry, and RNA quality was 

assessed by examining the separation and intensity of 28S and 18S rRNAs on a 1% agarose-

formaldehyde gel. 

Reverse transcription-polymerase chain reaction (RT-PCR). For the purpose of assessment of 

mRNA decay kinetics, cDNA was reverse transcribed from 1.5µg of total RNA, which was 

isolated following the in vitro decay assay, using SuperScript III reverse transcriptase in a 20µl 
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reaction. Subsequently, cDNA was amplified by semi-quantitative polymerase chain reaction 

(PCR) using GoTaq Flexi DNA polymerase (Promega) with the required reagents and sequence- 

specific sense and anti-sense primers in a 50µl reaction. Primer sequences and PCR cycle count 

for Tfam and ribosomal protein S12 (Rps12) are listed in Table 1. PCR products (40µl) were 

visualized on ethidium bromide-stained 1.8% agarose gels under UV light, and quantified using 

Sigma Scan Pro (v.5) software. For usage in real-time PCR, oligonucleotide primers were 

designed using sequences from GenBank using Primer3 (v.0.4.0) software (MIT, Cambridge, 

MA) and primer specificity was confirmed using OligoAnalyzer 3.1 (Integrated DNA 

Technologies). Real-time PCR primer sequences for Tfam, COX I, ribosomal protein S12 and 

cytoskeletal protein B-actin (Actb) are also listed in Table 1. 

Real-Time PCR. Gene expression was quantified in a 96-well plate using the StepOnePlus® 

Real-Time PCR System (Applied Biosystems), along with SYBR® Green chemistry (PerfeCTa 

SYBR® Green SuperMix, ROX, Quanta BioSciences). Each well contained: SYBR® Green 

SuperMix, forward and reverse primers (20 µM), 2 µg of cDNA diluted 30-fold in DEPC-treated 

water, resulting in a final reaction volume of 25 µL per well. The PCR program consisted of a 

holding stage (95°C for 10 min), followed by 40 cycles of annealing (60°C for 1 min) and 

extension (95°C for 15 s), then by a final melting stage (95°C for 15 s, 60°C for 1 min, 95°C for 

15 s). Samples were tested in duplicates to ensure accuracy. Analyses of melt curves generated 

by the instrument were used to determine the presence of non-specific amplification and primer 

dimers. Negative control wells contained DEPC-treated water in place of cDNA. 

Real-time PCR quantification. The threshold cycle (CT) number for the endogenous control 

genes were averaged, in lieu of a single reference gene. The average CT values for these genes, 

Rps12 and Actb, did not change between sham-operated and denervated muscles within time 
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points, as well as between time points. This average was subtracted from the CT number of the 

gene of interest (∆CT=CT(target gene)-CT(endogenous control)). The ∆CT value of the sham-

operated  tissue  was then subtracted  from  the  ∆CT  value  of  the  denervated  tissue 

(∆∆CT=∆CT(denervated)-∆CT(sham-operated)). Results were reported as fold-changes using 

the ∆∆CT method, calculated as 2
-∆∆CT

.  

Subsarcolemmal mitochondrial isolation. Animals were anesthetized, and both denervated and 

sham-operated contralateral TA muscles were excised, minced and briefly homogenized using an 

Ultra-Turrax polytron at 40% power output. The subsarcolemmal (SS) mitochondria were 

isolated using differential centrifugation as previously described (10), and resuspended in 

medium (100 mM KCl, 10 mM MOPS, 0.2% BSA). Further, cytosolic fractions of these same 

muscles were isolated via centrifugation. The concentrations of isolated mitochondria and 

cytosolic fractions were determined by Bradford colorimetric protein assay, prior to 

immunoblotting. 

Protein Extraction and Immunoblotting. For whole muscle protein extraction, twenty 

micrograms of powdered tissue were added to Sakamoto buffer (20mM HEPES, 2 mM EGTA, 

1% Triton X-100, 10% glycerol, 50mM beta-glycerolphosphates, 1 mM 

phenylmethanesulphonylflouride, 1 mM dithiothreitol, 1 mM sodium orthovanadate, 10 µm 

leupeptin, 5 µm pepstatin A, 10 mg/ml aprotinin) and were subject to a 20-fold dilution. Samples 

were rotated for one hour, sonicated (3 x 3 seconds, 30% power) and centrifuged for 10 mins at 

12,000 x g. Supernates were recovered and protein concentration was determined by Bradford 

protein assay. Whole muscle or isolated SS mitochondrial and cytosolic extracts were separated 

by SDS-PAGE and subsequently electrotransferred onto nitrocellulose membranes. Membranes 

were then blocked for one hour in 1X TBST [Tris-buffered saline-Tween 20, 25 mM Tris∙HCl 
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(pH 7.5), 1 mM NaCl, 0.1% Tween 20] containing 5% skim milk, before being incubated at 4°C 

overnight in blocking buffer with antibodies directed towards Tfam (1:3000; manufactured in 

house, ref. (22)), GAPDH (1:100,000; ab9485), Porin (1:1000; MitoSciences MSA03), HuR 

(1:2000; sc5261), CUGBP1 (1:1000; sc20003), KSRP (1 ml prediluted antibody serum), total 

AMPK (1:500; Cell Signaling #2532), phosphorylated AMPK (Thr172) (1:3000; Cell Signaling 

#2535S), total p38 (1:1000; Cell Signaling #9212) and phosphorylated p38 (Thr180/Tyr182) 

(1:500; Cell Signaling #9211S). The KSRP antibody was a generous gift from Dr. Bernard 

Jasmin (University of Ottawa). Following incubation, blots were washed in 1X TBST (3 x 5 

minutes) to remove excess primary antibody, and incubated with the appropriate secondary 

antibody coupled to horseradish peroxidase at room temperature for 1 hour. After this, 

membranes were washed with 1X TBST again to remove excess secondary antibody, and 

antibody-bound protein was revealed by the enhanced chemiluminescence method. Films were 

scanned and analyzed using Carestream Molecular Imaging Software Standard Edition v.5.4.2. 

To control for loading, protein quantifications were corrected either with GAPDH or Porin 

immunoblotting or Ponceau staining where noted. There was no effect of time or denervation on 

the loading controls utilized.  

Cross-sectional analyses and succinate dehydrogenase (SDH) Staining. EDL muscles from the 

sham-operated and denervated hindlimb were excised from the animal, mounted in Cryomatrix 

(Thermo Scientific) and frozen in isopentane at the temperature of liquid nitrogen. These 

muscles were then cryo-sectioned into 10µm sections, transferred to glass slides and were 

incubated with an SDH staining solution (0.2M sodium succinate, 0.2M phosphate buffer pH 7.4, 

nitroblue tetrazolium) at 37°C for 20 minutes. Slides were then rinsed in distilled water, after 

which a microscope cover glass was mounted on slides using DPX Mountant for histology 
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(Fluka BioChemika no. 44581). Photos of muscle sections were taken using a Nikon Eclipse 90i 

camera and QCapture software. Muscle cross-sectional areas were determined using ImageJ 

software. 

Statistical Analyses. Data were produced and analyzed with GraphPad 4.0 Software, and values 

(where indicated) are reported as ± SE. Student’s paired t-test was employed to assess 

differences between conditions. The nonlinear regression equation 50 = 100e
(-kx)

 was used to 

calculate mRNA half-lives. A two-way ANOVA was performed to determine differences in 

Tfam half-life. 
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Results 

 

Effect of denervation on muscle mass, muscle fiber cross-sectional area and mitochondrial 

content. Denervation of the tibialis anterior (TA) muscle did not influence muscles within the 

first 24 hours, however significant reductions of muscle mass of 13% and 38% were observed 

following 3 and 7 days of denervation, when compared to the contralateral, sham-operated 

hindlimb (p < 0.05; Fig. 1A). To ensure that the lack of change in muscle mass within the first 24 

hours of denervation was not masked by local tissue inflammation and edema, we compared the 

wet and dry tissue masses of the TA muscle within this time period. There was no difference in 

the ratio of wet mass to dry mass of this muscle within this time period, confirming that tissue 

edema did not confound our measures of muscle mass during the period immediately following 

denervation (Fig. 1B). Cytochrome c oxidase activity, a common marker indicative of the 

mitochondrial content of a tissue, declined by 33 and 39% after 3 and 7 days of denervation, 

respectively (Fig. 1C). We also assessed the effect of denervation on the muscle mass and cross-

sectional area of the extensor digitorum longus. Denervation reduced the mass of the EDL by 4 

and 30% after 3 and 7 days, respectively (Fig 2A). Individual fiber cross-sectional area of the 

EDL was decreased by 20, 22 and 50% following 24 hours, 3 days or 7 days of denervation (Fig. 

2B, 2C). The frequency distribution of fiber sizes measured in these cross-sections, illustrates the 

left-ward shift in the distributions with continued denervation (Fig 2D). These data verify that 

our denervation paradigm was sufficient to induce a reduction in muscle mass, cross-sectional 

area and mitochondrial content.  

Effect of denervation on Tfam transcriptional activation, mRNA content and stability. We 

assessed the transcriptional activity of the Tfam promoter by electrotransfecting a 1.1kb rat Tfam 

promoter-luciferase reporter into the TA prior to denervation. Activity of the promoter was 
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reduced by 30-65% between 8h and 3 days of denervation, but was not significantly different 

from the contralateral, sham-operated TA after 7 days of denervation (Fig 2A). Tfam mRNA was 

not different between denervated and sham-operated muscles between 8h and 3 days of 

denervation, but was increased 1.9-fold after 7 days of denervation (Fig. 2B). We also measured 

the stability of Tfam mRNA using an established in vitro cell free mRNA decay assay (12, 29). 

Tfam mRNA was stabilized during short-term denervation, as transcript half-life (t½) was 

enhanced 1.8-fold following 8 hours (p < 0.05), and 3-fold after 24 hours of denervation (p = 

0.08) (Fig. 3C). However, after 7 days of denervation Tfam transcript stability was decreased by 

~40% when compared to its half-life in the sham-operated muscle (p < 0.05) (Fig. 3C). Thus, 

despite the early reduction in Tfam transcriptional activity following denervation, mRNA content 

is maintained at a constant level as stability is increased during the same time period.  

Expression of RNA-binding proteins during denervation. To gain further insight into the 

mechanisms mediating Tfam mRNA half-life during denervation, we measured the expression of 

several RNA binding proteins that have been implicated in the regulation of mRNA stability. In 

whole muscle protein extracts, no effect of denervation was observed on the expression of HuR, 

a protein which promotes the stability and translation of target mRNAs (30) (Fig 4A). 

Expression of CUGBP1, an mRNA destabilizing protein which can interact with GC-, GU- and 

AU-rich elements (35, 40), was elevated 1.4-, 1.9- and 4.3-fold by 24 hours, 3 days and 7 days 

following denervation, respectively. KSRP, a protein which has role in the modulation of ARE-

containing mRNAs (21), was increased by 2.1- and 2.8-fold at 3 and 7 days post-denervation 

(Fig. 4C). 

Abundance of Tfam subsarcolemmal (SS) mitochondria and function following denervation. We 

have previously shown that the import of the mitochondrial matrix-destined protein OCT is 

57



diminished in response to denervation (46). To evaluate the idea that denervation reduces global 

matrix-destined protein import, we measured the protein abundance of Tfam in isolated SS 

mitochondria, as well as in the cytosolic fractions of the same muscles (Fig. 5A). Our Tfam 

antibody detects two bands, a 27 kDa, full-length precursor Tfam which was present exclusively 

in the cytosol, and a 24 kDa mature Tfam which was localized in mitochondria. The difference in 

molecular weight is accounted for by the proteolytic removal of the mitochondrial targeting 

sequence during protein import (47). In line with our previous measurements, SS mitochondrial 

Tfam content was reduced by 63 and 67% after 3 and 7 days of denervation (p < 0.05, Fig 5A). 

To determine whether this had an impact of mtDNA transcription, we measured the mRNA 

content of the mtDNA-encoded cytochrome c oxidase subunit 1 (COX I), as an indirect index of 

Tfam function inside the mitochondria. Denervation significantly reduced COX I mRNA by 36 

and 25% after 3 and 7 days of denervation (p < 0.05, Fig 5B). 

Activation of kinases associated in mitochondrial biogenesis. We wanted to assess the impact of 

denervation on the signaling of kinases implicated in promoting the maintenance of muscle 

mitochondria. Following 16 hours of denervation, phosphorylation of AMPK on the Thr172 

residue was increased (p = 0.06) 2.3-fold. However, after 3 and 7 days of denervation, 

phosphorylation of AMPK at the Thr172 residue was reduced by 35 (p = 0.09) and 74% 

respectively (Fig. 6A). No significant differences in the phosphorylation of p38 on its 

Thr170/Tyr172 residues were detected in response to denervation (Fig. 6B). Denervation did not 

alter the total protein content of either AMPK or p38 over the 7 day period.  
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Discussion 

 

It is well documented that chronic denervation-induced muscle atrophy is associated with 

a concomitant reduction in muscle mitochondrial content (2, 46, 51). Interestingly, this decrease 

in mitochondrial content appears to proceed in two phases, starting with a rapid, substantial 

reduction which occurs during the first week subsequent to denervation, and followed by a 

slower, more gradual decline in the weeks which follow (2, 51). Previous work has highlighted 

the reduction in the expression of factors implicated in mitochondrial biogenesis with prolonged 

muscle denervation (2, 42, 50). However, given the extensive decrease in muscle mitochondrial 

content during the early stages, we wished to determine if this was a by-product of a diminished 

drive for mitochondrial biogenesis. To do so, we examined the impact of denervation on the 

expression of mitochondrial transcription factor A (Tfam), an essential nuclear-encoded 

mitochondrial transcription factor noted for its role in controlling mitochondrial DNA copy 

number, transcription and compaction (16, 28, 34, 52). Thus, the primary purposes of this study 

were to investigate the influence of short term denervation-induced disuse on the control of 

various levels of Tfam expression, and to determine if the large reduction in mitochondrial 

content could be attributed to alterations in the regulation of this transcription factor. We 

hypothesized that Tfam transcriptional activity, mRNA and intra-mitochondrial protein content 

would decline, and that these changes would precede the lessening of mitochondrial content. 

Our first goal was to determine how rapidly and to what extent muscle mass and 

mitochondrial content were reduced during the very early stages of denervation. Our data 

illustrate that muscle mass of both the tibialis anterior (TA) (Fig. 1A, 2A) and extensor digitorum 

longus were reduced as soon as 3 days following denervation, and declined further thereafter. 

This was paralleled by a reduction in COX activity, an index of mitochondrial content (Fig. 1C) 
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after 3 and 7 days of denervation. To ensure that muscle atrophy at the earliest time points 

following denervation was not masked by inflammation and edema, we determined that there 

were no differences in the water content of the muscles from either the sham-operated or 

denervated hindlimbs (Fig. 1B). Furthermore, we confirmed that the reduction in muscle mass 

was indeed a consequence of the reduction in muscle fiber size, a hallmark of atrophy, by 

quantifying fiber cross-sectional area (Fig, 2C). The leftward shift in the fiber size distribution 

(Fig. 2C) with increasing time of denervation indicates that this was certainly the case. 

Consistent with our hypothesis, Tfam transcription in the TA muscle was reduced as 

early as 8 hours following the denervation surgery, and remained depressed for up to 3 days after 

the removal of the neural stimulus (Fig. 3A). This provides evidence that factor(s) interacting 

with the 1.1kb proximal rat promoter of this gene are either less active in the induction, or more 

active in the repression of the transcription of this gene, and that this occurs well before the 

reduction of mitochondrial content is observed. Unexpectedly, the mRNA content of Tfam was 

unaltered during this same time period (Fig. 3B), which exposed a dissociation between 

transcription and steady state mRNA levels. 

Previous work in our labortatory has utilized a cell-free in vitro decay assay (12, 19, 29) 

to determine relative mRNA degradation rates between multiple divergent skeletal muscles. In 

this case, we sought to compare the degradation rate of Tfam mRNA between skeletal muscle 

that had been either sham-operated or denervated. Our observations indicate that Tfam mRNA 

decay was attenuated at the early time points following denervation (Fig. 3C). This suggests that 

the lack of change in the steady state Tfam mRNA could be accounted for by concomitant 

decreases in mRNA transcription, along with increases in mRNA stability. We have previously 

documented that tissue-specific mechanisms exist which control the stability of mitochondrially-
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associated mRNAs (11, 12, 29). The current work highlights the notion that in addition tissue-

specific mechanisms, mRNA stability is also reliant on time-dependent factors following the 

onset of an adaptive stimulus (Fig 3C). Interestingly, we have previously documented an 

opposing change, that is, a reduction in mRNA stability in response to chronic muscle use (29), 

indicating that the influence of mRNA stability is also stimulus-dependent. 

In an attempt to reveal possible mechanisms accounting for the different half-lives 

between sham-operated and denervated muscles, we investigated possible factors contributing to 

the change Tfam transcript stability. The stability of mRNAs is mediated primarily by sequence 

elements found in the 3’-untranslated regions (UTRs) of transcripts, most notably those rich in 

adenosine and uridine (AU-rich elements – AREs) and guanosine and uridine (GU-rich elements 

– GREs) (9, 48). RNA binding proteins (RBPs) bind to these elements, and promote either the 

stabilization or the degradation of the target mRNAs. We chose to measure several RBPs which 

have been characterized in skeletal muscle to have a role either in facilitating transcript 

stabilization, as is the case with human antigen R (HuR) (18, 32), or  in promoting transcript 

destabilization, such as  CUG binding protein 1 (CUGBP1) (32) and K homology splicing 

regulator protein (KSRP) (4, 8).  

Our results indicate that HuR expression remained unaltered over the denervation time-

course (Fig. 4A), while whole cell protein expression of CUGBP1 and KSRP was elevated with 

progressive denervation (Fig. 4B, C). This suggests that the overall cellular expression of these 

factors may not control the alterations in stability at the early denervation time points. While not 

examined in this study, alterations in the activity or intracellular localization of these proteins 

may also contribute the observed changes in Tfam stability. Furthermore, other proteins or non-

coding RNAs (micro-RNAs) may also play a role in explaining our data. Nonetheless, it remains 
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possible that the increased expression of both of the measured destabilizing RBPs contributes to 

the reduction in Tfam transcript stability after 7 days of denervation. We have identified multiple 

putative sequence elements in the 3’-UTR of the rat Tfam gene (data not shown), which, based 

on sequence specificity of the above mentioned RBPs, may represent binding sites for these 

proteins. Future work will examine possible interactions between RBPs and these elements in the 

Tfam 3’-UTR. 

We have previously shown that with six weeks of denervation, Tfam protein levels are 

reduced by 60% (2). Additionally, the import of ornithine carbamoyltransferase, a mitochondrial 

matrix-destined protein, was decreased as early as 3 days following denervation (46). Thus, we 

hypothesized that denervation would result in a reduction of Tfam within mitochondria. To test 

this, we examined the protein content of Tfam in isolated subsarcolemmal (SS) mitochondria, as 

import into the mitochondrial matrix is required for it to interact with mtDNA. We chose to 

specifically investigate SS mitochondria, as this mitochondrial subpopulation has been shown to 

adapt to physiological stimuli with greater rapidity when compared to the intermyofibrillar 

population (2, 7, 26, 46). In line with previous data, our current work reveals that intra-

mitochondrial Tfam content was reduced as early as 3 days of denervation (Fig. 5A), 

concomitant with a reduction in COX I transcript (Fig. 5B). We interpret the reduction in COX I 

transcript to be an indirect indication that transcription of mtDNA is reduced, and that this is due 

to the decrease in Tfam imported and localized within this subset of mitochondria. 

Finally, we analyzed the phosphorylation of p38 MAPK and AMP-activated protein 

kinase (AMPK) to initiate the study of signaling kinase activation which may be implicated in 

the reduction in mitochondrial biogenesis observed (3, 6, 24). We were unable to detect changes 

in the phosphorylation of p38 on the Thr180 and Tyr182 residues (Fig. 6B), the phosphorylation 
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of which has been implicated in the induction of the PGC-1α gene and mitochondrial biogenesis 

through the activation of ATF2 and MEF2 (3), as well as the activation E3 ubiquitin ligases 

atrogin1/muscle atrophy F-box (MAFbx) and muscle ring finger protein 1 (MuRF1) (1, 33). 

Phosphorylation of p38 has been previously shown to occur in response to muscle disuse in 

rodents (13, 39), however, our inability to detect alterations in our current model may be due to 

differences in the species studied or in the length of the treatment.  

On the other hand, the activation of AMPK by phosphorylation on its Thr172 residue 

followed an interesting pattern during the denervation time course (Fig. 6A). We observed an 

increase in AMPK phosphorylation at 16 hours following denervation (p = 0.06). As activation 

of AMPK has been implicated in the induction of macroautophagy and mitophagy (15, 25), our 

data suggest that AMPK-signaling to induce autophagy may be involved in the very immediate 

response to denervation. Interestingly, we observed a reduction in the phosphorylation of AMPK 

by 3 days (p = 0.09) and 7 days after denervation, likely contributing to the diminution in the 

drive for mitochondrial biogenesis with sustained muscle disuse. Although AMPK 

phosphorylation stimulates mitochondrial biogenesis through PGC-1α and NRF-1 (6, 24), we did 

not detect a reduction in the transcriptional control of Tfam, a known target of NRF-1 following 

seven days of denervation. This suggests either that other mechanisms, independent of AMPK 

activation of the PGC-1α/NRF-1 pathways, are involved in the regulation of Tfam transcription 

at this point in time, or that the effect of AMPK activity on the Tfam promoter during 

denervation was not captured by the 1.1kb proximal promoter construct we utilized. Nonetheless, 

monitoring and modulating the activity of AMPK during denervation may be an interesting 

avenue for future research. 
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In sum, it appears that there are factors, albeit unknown at this time, regulating the Tfam 

promoter during the earliest stages following denervation. These effects are counteracted by 

alterations in the stability of the Tfam transcript. Ultimately, import of Tfam into the 

mitochondrion appears to be a crucial point in the regulation of Tfam activity during 

denervation. Reductions in Tfam import occurred in concert with the decline in mitochondrial 

content, suggesting that Tfam import is critically involved in the loss of mitochondria during 

muscle disuse. Indeed, we have previously shown that COX activity is positively correlated with 

the rate of mitochondrial protein import (46). Future studies should strive to determine the 

upstream signals regulating the Tfam promoter during denervation, and could seek to further 

elucidate the processes which contribute to the reduction in mitochondrial content within the first 

72 hours of denervation. 
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Usage Transcript Forward Reverse Product 

Size (bp) 

PCR 

Cycle 

Count 

Semi-

quantitative 

PCR 

Tfam 5’-

ATGGCGCTG

TTCCGGGGA

ATGTGG-3’ 

5’-

TTAATTCTC

AGAGATGT

CTCCCGGG-

3’ 

735 34 

 

S12 5’-

GGAAGGCAT

AGCTGCTGG

-3’ 

5’-

CCTCGATG

ACATCCTT

GG-3’ 

638 26 

 

Real-time 

PCR 

Tfam 5’-

CGCCTGTCA

GCCTTATCT

GTA-3’ 

5’-

TGCATCTG

GGTGTTTA

GCTTA-3’ 

131 n/a 

COX I 5’-

GCCAGTATT

AGCAGCAG

GTAT-3’ 

5’-

TGTTGATA

AAGGATTG

GGTCT-3’ 

102 n/a 

S12 5’-

ATGGACGTC

AACACTGCT

CT-3’ 

5’-

ATCTCTGC

GTGCTTGC

AT-3’ 

127 n/a 

B-actin 5’-

CCCCATTGA

ACACGGCAT

-3’ 

5’-

GCCAACCG

TGAAAAGA

TGACC-3’ 

154 n/a 

Table 1. PCR primers 

Tfam, mitochondrial transcription factor A; S12, ribosomal protein 12 

(Rps12); COX I, cytochrome c oxidase subunit 1; B-actin, cytoskeletal protein 

beta-actin; bp, base pairs 
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Future Work 

 

1. We noted that the in vivo transcription of the Tfam gene from the 1.1kb promoter was 

repressed as early as 8 hours following the removal of a neural stimulus, and remained 

repressed up to 3 days following denervation. We have mapped the 1.1kb promoter and have 

identified putative binding sites for numerous transcription factors. The Foxo3a transcription 

factor is well characterized as having a role in the activation of autophagy, mitophagy and the 

ubiquitin-proteasome system during muscle atrophy. Interestingly, the 1.1kb proximal 

promoter region of Tfam we utilized in this study contains 4 putative Foxo3a binding motifs. 

Previous studies have suggested a role for Foxo3a in the reducing of Tfam mRNA content in 

vitro. Furthermore, work analyzing the kinetics of Foxo3a nuclear-cytoplasmic shuttling 

during denervation notes that Foxo3a is localized in the nucleus to the greatest degree 3 days 

following denervation, while it is excluded from the nucleus after 7 days of denervation. 

Future work should utilize chromatin immunoprecipitation (ChIP) assays to determine if 

Foxo3a does indeed interact with its putative binding motifs on the Tfam promoter in vivo, 

and to evaluate the dynamics of this interaction during denervation. 

2. In the current study, we have only evaluated two upstream signaling kinases involved 

mitochondrial biogenesis, p38 MAPK and AMP-activated protein kinase. Numerous other 

factors (either kinases or transcription factors) are involved in promoting or inhibiting either 

mitochondrial biogenesis or mitochondrial degradation via mitophagy. Future work should 

evaluate the activation or de-activation of other signaling kinases, or the nuclear-cytoplasmic 

shuttling dynamics of transcription factors involved in the control of mitochondrial content. 

Emphasis should be placed on the first 72 hours following denervation, as mitochondrial 

content is reduced to almost two-thirds of control levels during this time-frame. 
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3. We noted an increase in the stability of Tfam mRNA at two distinct time-points during the 

first 24 hours following denervation. While we noted that there was an increase in the 

expression of KSRP and CUGBP1 proteins in whole cell fractions primarily at 3 and 7 days 

following denervation, there was no difference in the expression of these proteins (or HuR) at 

the earliest time points following denervation. These proteins have been described to have 

the capacity to shuttle between the nucleus and the cytoplasm, and their intracellular 

compartmentalization, rather than overall expression may be more crucial to their function at 

the onset of a stimulus. Future work should evaluate the intracellular localization of these or 

other RBPs during denervation. 

4. We have measured three RBPs that have well-described roles in promoting transcript 

stability or instability in skeletal muscle in this study. However, whether or not HuR, 

CUGBP1 or KSRP are actually capable of binding directly to the 3’-UTR of the Tfam 

transcript, and thus directly impacting the stability of this transcript, is unknown. It is of 

interest to determine if these or other RBPs physically interact with the Tfam transcript, 

which can be ascertained through RNA-immunoprecipitation (RIP) assays. Once it is known 

which RBPs bind to the 3’-UTR of the Tfam transcript, the specific influence of these 

proteins on Tfam stability can be determined through knockdown or overexpression 

expressions. Furthermore, it is well known that non-coding RNAs (specifically microRNAs) 

are capable of affecting mRNA stability. Monitoring the expression pattern of microRNAs 

known to alter Tfam expression may also shed light on how Tfam stability is modulated. 

5. Tfam localization within the subsarcolemmal mitochondria was decreased at 3 and 7 days 

following denervation. While we have previously shown that import into subsarcolemmal 

mitochondria is impaired following denervation, it is also known that Tfam is proteolytically 
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degraded inside the mitochondrial matrix by Lon protease. While mitochondrial localization 

of Tfam appears to be critical in the reduction of mitochondrial content during denervation, 

the reduction in this localization may be solely a product of reduced import, or may be 

coupled with an increased rate of intramitochondrial degradation. Assessment of the protein 

content or proteolytic activity of Lon protease during denervation may provide a more 

thorough depiction of how intramitochondrial Tfam protein content is reduced with muscle 

disuse.  

6. We observed a reduction in COX I mRNA expression, indicating a reduction in overall 

mtDNA transcription with denervation. As Tfam is vital for transcription of mtDNA, we 

interpret the reduction in COX I mRNA as a reduction in the interaction between Tfam and 

mtDNA. This can be assessed through an electrophoretic mobility shift assay (EMSA), and 

would affirm our interpretation of the data. 
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Figure 1. Effect of denervation on tibialis anterior (TA) muscle mass and 

mitochondrial content. A. TA muscle mass corrected for body mass (n = 5 -7 

per time point). B. TA wet weight corrected for dry weight (n = 3 per time 

point). C. TA Cytochrome c oxidase (COX) activity in response to different 

durations of denervation (n = 5 per time point). * p < 0.05 DEN vs. SHAM of 

the same time point. Values are ± SEM. 

8h 16h 24h 
0 

1 

2 

3 

4 

5 

Time of Denervation 

SHAM 
DEN 

T
A

 W
et

 W
ei

g
h

t 
(m

g
) 

/ 
 

T
A

 D
ry

 W
ei

g
h

t 
(m

g
) 

69



SHAM 24h 3d 7d 
0 

0.25 

0.50 

0.75 

1.00 

1.25 

E
D

L
 m

y
o
fi

b
er

 C
S

A
 

(d
en

er
v

a
te

d
 /

 c
o

n
tr

o
l)

 

Time of Denervation 

* 

* 

* 

SHAM 

DENERVATED 

24 hours 3 days 7 days 

<500 500- 

1000 

1001- 

1500 

1501- 

2000 

2001- 

2500 

2501- 

3000 

3001- 

3500 

3501- 

4000 

4001- 

4500 

4501- 

5000 

5001- 

5500 

5501- 

6000 

6001- 

6500 

6501- 

7000 

7001- 

7500 

7501- 

8000 

8001- 

8500 

0 

5 

10 

15 

20 

25 

30 

35 

SHAM 
DEN 3 Day 
DEN 7 Day 

Fiber Size (µm2) 

F
ib

er
s 

co
u

n
te

d
 

(%
 o

f 
to

ta
l)

 

A B 

C 

D 

Figure 2. Effect of denervation on extensor digitorum longus (EDL) 

muscle mass and myofiber cross-sectional area. A. EDL muscle mass 

corrected for body mass (n = 4 per time point). B. Fold-change in EDL 

myofiber cross-sectional area in response to different time points of 

denervation (n = 4 per time point). C. Succinate dehydrogenase (SDH) 

staining of sham-operated and denervated EDL muscles for different lengths 

of denervation. D. Fiber size distributions from sham-operated, 3 day or 7 day 

denervated EDL muscles. Cross sections for the sham-operated hindlimbs are 

the pooled results of all sham-operated muscles analyzed. (n = 4 per time 

point). * p < 0.05 DEN vs SHAM of the same time point. Values are ± SEM. 
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Tfam 
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C 

Figure 3. Effect of denervation on Tfam transcription, steady-state mRNA 

content and mRNA stability. A. Tfam transcriptional activity in response to 

different lengths of denervation, determined using a 1.1kb proximal Tfam 

promoter-luciferase reporter construct in TA muscle (n = 4-7 per time point). B. 

Tfam mRNA content in response to denervation was measured using qPCR (n 

= 6 per group). C. Degradation of Tfam mRNA in sham-operated (SHAM) or 

denervated (DEN) TA muscle, either 8 hours, 24 hours or 7 days post-surgery. 

A representative EtBr gel is shown, as well as a graphical representation of the 

slopes used to calculate the half-life of Tfam at a given time-point. Half-lives 

were calculated as described in the methods section (n = 5 per time point). * p 

< 0.05 DEN vs. SHAM at the same time point, α p < 0.05 main effect of 

treatment. Values are ± SEM. 
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Figure 4. HuR, CUGBP1 and KSRP protein expression in denervated 

muscle. A representative western blot and graphical representation of  (A) 

HuR, (B) CUGBP1 and (C) KSRP protein expression in sham-operated and 

denervated muscle. Aciculin was used as a loading control for HuR 

measurements, while ponceau stains served as loading control for CUGBP1 

and KSRP measurements. (n = 4 per time point for all experiments) * p < 

0.05 DEN vs. SHAM of the same time point. Values are ± SEM. 
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A 

B 

Figure 5. Effect of denervation on Tfam subsarcolemmal (SS) 

mitochondria content and mtDNA transcription. A. SS mitochondria were 

and cytosols were isolated from TA muscle denervated for different lengths of 

time. A representative western blot is shown, highlighting both the cytosolic 

form of Tfam (“pre-Tfam”) and the cleaved mitochondrial Tfam, along with 

a graphical representation of this data (n = 3-4 per time point). B. As an 

indirect index of mtDNA transcriptional activity and Tfam function in 

response to denervation, mRNA content of the mtDNA-encoded COX I was 

measured using qPCR (n = 6 per time point). * p < 0.05 DEN vs. SHAM of 

the same time point. Values are ± SEM. 
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B 

Figure 6. Effect of denervation on intracellular kinase signaling. A. A 

representative western blot and graphical representation of phosphorylated 

(Threonine 172) and total AMP kinase in response to different durations of 

denervation (n = 5-6 per time point). B. A representative western blot and 

graphical representation of phosphorylated (Threonine 180 and Tyrosine 182) 

and total p38 MAPK (n = 4 per time point). For both experiments, the 

phosphorylated form of each protein was divided by the total protein content 

of that same protein, as both total AMPK and total p38 were shown not to be 

altered in response to this duration of denervation. Values are ± SEM. 
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Sample 

Set
SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

1 1.85 1.85 1.00 1.95 1.93 0.99 1.90 1.75 0.92 1.80 1.60 0.89 1.79 1.07 0.60

2 1.76 1.75 0.99 1.65 1.59 0.97 1.94 1.95 1.00 1.94 1.73 0.89 1.76 1.11 0.63

3 1.90 1.85 0.97 1.70 1.70 1.00 1.83 1.82 0.99 1.91 1.62 0.85 1.81 1.10 0.61

4 1.91 1.61 0.84 1.82 1.87 1.03 1.76 1.75 0.99 2.14 1.82 0.85 1.79 1.15 0.64

5 1.73 1.78 1.02 1.80 1.81 1.00 1.64 1.63 0.99 1.75 1.53 0.87 1.73 1.08 0.62

6 1.85 1.78 0.96 1.88 1.87 0.99 1.81 1.62 0.89 1.77 1.13 0.64

7 1.71 1.71 1.00 1.67 1.62 0.97 1.68 0.96 0.57

Average 1.86 1.76 0.95 1.78 1.77 1.00 1.86 1.82 0.98 1.95 1.69 0.87 1.79 1.11 0.62

SEM 0.04 0.04 0.03 0.04 0.04 0.01 0.05 0.05 0.01 0.06 0.04 0.02 0.02 0.02 0.01

Paired T-

Test
0.331 0.495 0.228 0.001 0.001

Tibialis Anterior Mass (mg) / Body Mass (g)

Time of Denervation

8 hours     16 hours     24 hours       3 days      7 days
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Sample 

Set
SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

1 60.5 159.3 2.63 42.7 71.6 1.68 57.3 60.9 1.06

2 53.4 221.6 4.15 72.9 80.8 1.11 77.8 94.5 1.21

3 49.8 69.2 1.39 26.5 47.8 1.80 84.2 75.5 0.90

Sample 

Set
SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

1 15.2 41.2 2.71 9.9 17.5 1.77 13.4 14.6 1.09

2 13.5 56.9 4.21 18.6 20.3 1.09 19.4 23.9 1.23

3 12.5 17 1.36 6.4 13 2.03 20.6 18.6 0.90

Sample 

Set
SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

1 3.98 3.87 0.97 4.31 4.09 0.95 4.28 4.17 0.98

2 3.96 3.89 0.98 3.92 3.98 1.02 4.01 3.95 0.99

3 3.98 4.07 1.02 4.14 3.68 0.89 4.09 4.06 0.99

Average 3.97 3.94 0.99 4.12 3.92 0.95 4.12 4.06 0.98

SEM 0.01 0.06 0.02 0.11 0.12 0.04 0.08 0.06 0.01

Paired T-

Test
0.672 0.303

Tibialis Anterior Dry Mass (mg)

Tibialis Anterior Wet Mass (mg)

Time of Denervation

         8 hours 16 hours 24 hours

8 hours 16 hours 24 hours

Time of Denervation

8 hours 16 hours 24 hours

Tibialis Anterior Wet Mass / Dry Mass

Time of Denervation
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Sample 

Set
SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

1 13.06 13.37 1.024 11.74 15.13 1.289 12.40 12.63 1.019 13.65 7.69 0.564 14.69 8.39 0.571

2 16.98 15.20 0.895 16.37 14.83 0.906 11.55 18.21 1.577 13.42 12.01 0.895 13.96 5.23 0.374

3 17.93 17.95 1.001 20.36 18.21 0.894 19.13 19.08 0.997 17.71 11.92 0.673 15.71 11.70 0.745

4 11.50 10.74 0.934 12.53 11.00 0.878 13.47 12.26 0.910 10.78 5.72 0.531 7.32 7.34 1.003

5 20.73 19.00 0.916 21.81 18.14 0.832 20.60 21.21 1.029 15.18 5.62 0.370 22.68 15.07 0.665

Average 16.04 15.25 0.95 16.56 15.46 0.96 15.43 16.68 1.11 14.15 8.59 0.61 14.87 9.54 0.67

SEM 1.67 1.50 0.02 2.02 1.33 0.08 1.85 1.80 0.12 1.14 1.43 0.09 2.45 1.73 0.10

Paired T-

Test
0.142 0.407 0.420 0.013 0.026

COX Activity (20 Second Vmax)

Time of Denervation

8 hours     16 hours     24 hours       3 days      7 days
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Sample 

Set
SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

1 0.411 0.401 0.977 0.470 0.467 0.994 0.436 0.304 0.698

2 0.576 0.522 0.907 0.508 0.495 0.973 0.410 0.313 0.763

3 0.491 0.479 0.977 0.493 0.470 0.952 0.444 0.302 0.680

4 0.519 0.516 0.994 0.495 0.477 0.962 0.443 0.285 0.643

Average 0.499 0.480 0.964 0.492 0.477 0.970 0.433 0.301 0.696

SEM 0.03 0.03 0.02 0.01 0.01 0.01 0.01 0.01 0.02

Paired T-

Test
0.192 0.044 0.002

EDL Mass (mg) / Body Mass (g)

24 hours 3 days 7 days

Time of Denervation
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SHAM 

(combined) 

24 hours of 

denervation

3 days of  

denervation

7 days of 

denervation

Fiber Size 

Range (µm
2
)

<500 0 0.11 0 0.27 Sample Set SHAM DEN Fold-Change SHAM DEN Fold-Change SHAM DEN Fold-Change

500-1000 0.42 2.90 1.61 12.26 1 9.75 6.77 0.694 8.98 6.10 0.679 9.08 3.93 0.433

1001-1500 4.75 17.09 11.75 28.83 2 11.25 8.74 0.777 10.12 9.33 0.922 10.52 4.39 0.417

1501-2000 16.25 22.86 18.74 26.49 3 9.78 8.65 0.885 9.75 7.80 0.800 10.56 5.25 0.497

2001-2500 15.81 19.15 15.76 15.69 4 9.30 7.92 0.851 10.53 7.75 0.736 9.71 6.34 0.653

2501-3000 12.67 13.72 15.04 9.43 Average 10.02 8.02 0.80 9.85 7.75 0.78 9.97 4.98 0.50

3001-3500 11.41 11.32 12.05 5.12 Paired T-test 0.020 0.023 0.003

3501-4000 12.00 7.38 9.30 1.34

4001-4500 9.11 3.46 7.67 0.37

4501-5000 6.87 1.38 4.54 0.14

5001-5500 5.26 0.50 1.88 0.03

5501-6000 2.99 0.13 1.09 0.03

6001-6500 1.18 0.00 0.47 0.00 24 hours 3 days 7 days

6501-7000 0.71 0.00 0.00 0.00 Sample Set SHAM SHAM SHAM

7001-7500 0.40 0.00 0.11 0.00 1 9.75 8.98 9.08

7501-8000 0.11 0.00 0.00 0.00 2 11.25 10.12 10.52

8001-8500 0.05 0.00 0.00 0.00 3 9.78 9.75 10.56

4 9.30 10.53 9.71

ANOVA

Source of Variation SS df MS F P-value F crit

Between Groups 0.064 2 0.032 0.058 0.944 4.256

Within Groups 4.974 9 0.553

Total 5.038 11

All presented values for % of total fibers counted are the 

average values calculated from four sample sets. As the 

cross-sectional areas of the sham operated hind limbs from 

all time points were shown to be not different, the values for 

the % of total fibers counted for all of the sham operated 

hind limbs were combined for the purpose of display in the 

fiber size distribution graph.

Distribution of fiber sizes from sham operated and denervated hind limbs

Time of Denervation Fiber Cross-Sectional Area (µm
2
)  / Animal Body Mass (g)

Time of Denervation

% of total fibers counted (average)     24 hours 3 days 7 days

One-way ANOVA (between 

SHAM muscles)

0.944                                    

(F < F-Crit)

Fiber Cross-Sectional Area (µm
2
)  / Animal Body Mass (g)

Time of Denervation

As F < F crit, there is no difference in the cross-sectional areas between sham-operated hindlimbs at the 

measured time-points.
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SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

0.310 0.163 0.526 8.57 5.286 0.617 2.573 0.738 0.287 1.417 1.289 0.910 9.405 1.035 0.110

1.135 0.408 0.359 8.281 3.94 0.476 1.354 1.650 1.219 1.171 0.529 0.452 3.535 6.623 1.874

1.772 0.337 0.190 3.877 2.263 0.584 0.365 0.193 0.529 1.369 0.295 0.215 1.917 5.551 2.896

0.782 0.105 0.134 3.289 2.192 0.666 3.055 0.401 0.131 1.138 0.347 0.305 1.649 1.422 0.862

1.681 0.258 0.153 4.392 1.684 0.383 5.712 2.580 0.452 0.880 0.562 0.639

1.098 0.779 0.709 3.278 1.787 0.545 3.101 1.449 0.467 1.590 0.771 0.485

0.13 0.184 1.415 2.339 6.025 2.575

Average 1.130 0.342 0.345 4.545 2.477 0.670 2.693 1.168 0.541 1.274 0.615 0.470 3.045 3.141 1.349

SEM 0.22 0.10 0.10 1.22 0.68 0.13 0.69 0.34 0.20 0.06 0.19 0.15 1.81 1.42 0.41

Paired T-

Test
0.02 0.01 0.04 0.04 0.95

1.1kb proximal rat Tfam promoter activity

Time of Denervation

8 hours     16 hours     24 hours       3 days      7 days
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Percent of Tfam mRNA remaining at each time point following decay assay

Sample 

Set
Gene

Treatment & Length 

of Incubation for 

Decay Assay

Band 

Intensity

% of 

initial 

Treatment & Length 

of Incubation for 

Decay Assay

Band 

Intensity

% of 

initial

Treatment & Length 

of Incubation for 

Decay Assay

Band 

Intensity

% of 

initial

0 449606 100.00 0 449606 100.00 0 449606 100.00

SHAM 15 330460 73.50 SHAM 15 432442 96.18 SHAM 15 414374 92.16

SHAM 45 86754 19.30 SHAM 45 93782 20.86 SHAM 45 327291 72.80

DEN 15 378632 84.21 DEN 15 426480 94.86 DEN 15 284282 63.23

DEN 45 230217 51.20 DEN 45 347032 77.19 DEN 45 264045 58.73

0 277923 100.00 0 277923 100.00 0 277923 100.00

SHAM 15 221542 79.71 SHAM 15 227863 81.99 SHAM 15 224563 80.80

SHAM 45 170358 61.30 SHAM 45 221850 79.82 SHAM 45 181062 65.15

DEN 15 265952 95.69 DEN 15 244139 87.84 DEN 15 231546 83.31

DEN 45 190159 68.42 DEN 45 236230 85.00 DEN 45 155088 55.80

0 16051161 100.00 0 16051161 100.00 0 16051161 100.00

SHAM 15 11341597 70.66 SHAM 15 12522490 78.02 SHAM 15 13686862 85.27

SHAM 45 4482983 27.93 SHAM 45 5000622 31.15 SHAM 45 11814331 73.60

DEN 15 14200173 88.47 DEN 15 14811241 92.28 DEN 15 12808387 79.80

DEN 45 8272214 51.54 DEN 45 14162324 88.23 DEN 45 9031082 56.26

0 15723066 100.00 0 15723066 100.00 0 15723066 100.00

SHAM 15 12569118 79.94 SHAM 15 15402924 97.96 SHAM 15 14214074 90.40

SHAM 45 9839869 62.58 SHAM 45 13714359 87.22 SHAM 45 11655313 74.13

DEN 15 15483792 98.48 DEN 15 17418422 110.78 DEN 15 14007916 89.09

DEN 45 12008884 76.38 DEN 45 12592899 80.09 DEN 45 8463635 53.83

0 263537 100.00 0 263537 100.00 0 263537 100.00

SHAM 15 138679 52.62 SHAM 15 251254 95.34 SHAM 15 184881 70.15

SHAM 45 42020 15.94 SHAM 45 46066 17.48 SHAM 45 144724 54.92

DEN 15 189242 71.81 DEN 15 195022 74.00 DEN 15 146040 55.42

DEN 45 96133 36.48 DEN 45 166695 63.25 DEN 45 143744 54.54

Time of Denervation

8 hours 24 hours 7 days

1 Tfam

5 Tfam

2 Tfam

3 Tfam

4 Tfam
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Sample 

Set

SHAM 

Values 

of Best 

Fit (k)

Half-Life 

(minutes)

DEN 

Values 

of Best 

Fit (k)

Half-Life 

(minutes)

Fold Change in 

Half-Life 

(DEN/SHAM)

SHAM 

Values 

of Best 

Fit (k)

Half-Life 

(minutes)

DEN 

Values 

of Best 

Fit (k)

Half-Life 

(minutes)

Fold Change in 

Half-Life 

(DEN/SHAM)

SHAM 

Values 

of Best 

Fit (k)

Half-Life 

(minutes)

DEN 

Values 

of Best 

Fit (k)

Half-Life 

(minutes)

Fold Change in 

Half-Life 

(DEN/SHAM)

1 0.0306 22.65 0.0146 47.48 2.10 0.0250 27.74 0.0058 119.55 4.31 0.0071 97.56 0.0156 44.40 0.46

2 0.0119 58.30 0.0084 82.61 1.42 0.0063 110.06 0.0045 155.48 1.41 0.0106 65.64 0.0131 52.87 0.81

3 0.0269 25.75 0.0142 48.78 1.89 0.0238 29.15 0.0033 207.96 7.13 0.0076 91.06 0.0135 51.34 0.56

4 0.0115 60.48 0.0061 114.14 1.89 0.0264 26.22 0.0121 57.28 2.19 0.0069 99.91 0.0134 51.88 0.52

5 0.0424 16.35 0.0227 30.60 1.87 0.0156 44.32 0.0190 36.46 0.82

Average 36.71 64.72 1.83 48.29 135.07 3.76 79.70 47.39 0.63

SEM 9.4 15.0 0.1 20.6 31.7 1.3 10.7 3.1 0.1

Paired       

T-Test of 

Half-Lives

0.014 0.08 0.025

ANOVA

SS df MS F P-value F crit

Interaction 15840 2 7922 6.741 0.005 4.300

Time 7645 2 3823 3.253 0.058

Treatment 5235 1 5235 4.454 0.046

Residual 25850 22 1175

Half-lives were calculated using the formula                                                               

t1/2=(ln(0.5))/-(rate of decay), where the "rate of 

decay" is the value of best fit (k ). The value of best fit 

was obtained by plotting a graph of the % of initial 

band intensity for each condition (sham-operated or 

denervated) and each length of denervation (8 hours, 

24 hours or 7days), and a line of best fit was fit to 

these points.

As F > F crit for both interaction and treatment sources of variation, this 

denotes an interaction effect of the between treatment and time. This also 

indicates a main effect of the treatment at all time points.

Values of Best Fit (k) for Tfam SHAM and DEN muscle

Time of Denervation

8 hours 24 hours 7 days

Source of Variation
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Sample 

Set
SHAM DEN

Fold 

Change 

(DEN / 

SHAM)

SHAM DEN

Fold 

Change 

(DEN / 

SHAM)

SHAM DEN

Fold 

Change 

(DEN / 

SHAM)

SHAM DEN

Fold 

Change 

(DEN / 

SHAM)

SHAM DEN

Fold 

Change 

(DEN / 

SHAM)

1 88.8 91.7 1.03 78.7 60.3 0.77 69.8 73.4 1.05 81.9 76.2 0.93 47.5 86.4 1.82

2 83.2 63.6 0.76 67.5 59.2 0.88 49.0 63.8 1.30 67.2 81.3 1.21 33.4 64.2 1.92

3 48.8 41.6 0.85 41.1 40.5 0.99 31.2 52.1 1.67 60.1 66.9 1.11 32.0 71.2 2.22

4 51.0 40.8 0.80 30.0 39.8 1.32 48.6 46.7 0.96 53.8 46.6 0.87 25.0 60.1 2.40

5 49.1 36.7 0.75 38.1 50.0 1.31 55.1 50.4 0.91 54.3 79.5 1.46 35.2 74.4 2.11

6 51.0 49.5 0.97 60.6 64.3 1.06 52.2 59.8 1.15 59.8 68.3 1.14 48.5 71.4 1.47

Average 61.98 53.98 0.86 52.68 52.35 1.05 50.99 57.70 1.17 62.86 69.81 1.12 36.93 71.28 1.99

SEM 7.6 8.5 0.0 7.8 4.3 0.1 5.1 4.1 0.1 4.3 5.2 0.1 3.8 3.7 0.1

Paired T-

Test
0.058 0.947 0.154 0.222 0.001

Sample 

Set
SHAM DEN

Fold 

Change 

(DEN / 

SHAM)

SHAM DEN

Fold 

Change 

(DEN / 

SHAM)

SHAM DEN

Fold 

Change 

(DEN / 

SHAM)

SHAM DEN

Fold 

Change 

(DEN / 

SHAM)

SHAM DEN

Fold 

Change 

(DEN / 

SHAM)

1 853.6 1068.0 1.25 755.3 602.0 0.80 553.2 610.2 1.10 1629.7 823.7 0.51 688.0 452.3 0.66

2 977.1 763.5 0.78 491.9 438.0 0.89 990.1 1204.6 1.22 1070.7 796.6 0.74 864.1 799.3 0.93

3 300.7 170.2 0.57 237.6 173.3 0.73 141.9 309.6 2.18 331.0 171.0 0.52 787.3 592.2 0.75

4 424.1 280.3 0.66 597.0 658.2 1.10 832.8 519.9 0.62 1028.2 753.6 0.73 722.6 568.5 0.79

5 351.2 291.1 0.83 346.8 334.8 0.97 476.0 395.5 0.83 1199.4 718.6 0.60 907.7 582.5 0.64

6 325.0 351.9 1.08 1143.0 846.3 0.74 394.9 358.8 0.91 859.0 633.1 0.74 754.1 558.5 0.74

Average 538.61 487.49 0.86 595.27 508.76 0.87 564.81 566.43 1.14 1019.65 649.44 0.64 787.31 592.23 0.75

SEM 121.4 143.0 0.1 132.4 98.8 0.1 125.0 135.4 173.9 99.5 0.0 34.4 46.3 0.0

Paired T-

Test
0.452 0.150 0.984 0.013 0.003

qPCR - Tfam 

Time of Denervation

8 hours     16 hours     24 hours       3 days      7 days

qPCR - COX I mRNA

Time of Denervation

8 hours     16 hours     24 hours       3 days      7 days
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Sample 

Set
SHAM DEN

Fold 

Change 

(DEN / 

SHAM)

SHAM DEN

Fold 

Change 

(DEN / 

SHAM)

SHAM DEN

Fold 

Change 

(DEN / 

SHAM)

SHAM DEN

Fold 

Change 

(DEN / 

SHAM)

SHAM DEN

Fold 

Change 

(DEN / 

SHAM)

1 23.0 22.8 0.99 22.8 23.5 1.03 22.6 23.0 1.01 22.7 22.1 0.97 22.7 21.8 0.96

2 19.0 23.4 1.23 21.9 23.3 1.06 24.8 23.0 0.93 23.5 21.9 0.93 22.6 21.1 0.93

3 23.8 23.7 1.00 23.8 23.8 1.00 24.6 23.6 0.96 23.0 22.9 1.00 23.8 22.6 0.95

4 22.8 25.7 1.13 24.6 23.6 0.96 23.7 24.3 1.02 24.5 24.2 0.99 24.6 22.9 0.93

5 23.3 23.5 1.01 23.4 23.3 1.00 23.7 23.6 0.99 23.8 22.0 0.92 23.4 22.4 0.96

6 21.9 22.7 1.04 22.1 22.5 1.02 22.9 22.9 1.00 22.9 19.9 0.87 22.8 21.8 0.96

Average 22.28 23.63 1.07 23.10 23.33 1.01 23.73 23.37 0.99 23.40 22.14 0.95 23.31 22.10 0.95

SEM 0.71 0.45 0.04 0.41 0.18 0.01 0.35 0.22 0.01 0.29 0.58 0.02 0.32 0.26 0.01

Paired T-

Test
0.140 0.502 0.361 0.039 0.0003

Sample 

Set
SHAM DEN

Fold 

Change 

(DEN / 

SHAM)

SHAM DEN

Fold 

Change 

(DEN / 

SHAM)

SHAM DEN

Fold 

Change 

(DEN / 

SHAM)

SHAM DEN

Fold 

Change 

(DEN / 

SHAM)

SHAM DEN

Fold 

Change 

(DEN / 

SHAM)

1 23.0 22.5 0.98 22.3 22.2 1.00 22.4 22.7 1.02 22.5 23.2 1.03 21.5 23.0 1.07

2 18.2 22.4 1.24 21.3 22.3 1.05 23.0 22.2 0.97 22.4 22.6 1.01 20.4 22.0 1.08

3 22.6 22.6 1.00 22.5 22.4 1.00 22.7 22.6 1.00 21.9 23.4 1.07 22.0 23.6 1.07

4 22.8 25.3 1.11 23.5 23.0 0.98 23.1 23.6 1.02 23.2 24.7 1.07 22.5 23.3 1.03

5 22.8 22.5 0.99 22.6 22.6 1.00 22.9 22.8 0.99 22.5 22.4 1.00 21.9 22.9 1.05

6 22.0 22.3 1.02 22.0 22.7 1.03 22.1 22.3 1.01 22.0 20.4 0.93 21.1 22.2 1.05

Average 21.86 22.93 1.05 22.37 22.55 1.01 22.68 22.70 1.00 22.42 22.77 1.02 21.56 22.83 1.06

SEM 0.75 0.47 0.04 0.31 0.11 0.01 0.16 0.21 0.19 0.59 0.02 0.31 0.25 0.01

Paired T-

Test
0.228 0.499 0.924 0.496 0.0004

Sample 

Set
SHAM DEN

Fold 

Change 

(DEN / 

SHAM)

SHAM DEN

Fold 

Change 

(DEN / 

SHAM)

SHAM DEN

Fold 

Change 

(DEN / 

SHAM)

SHAM DEN

Fold 

Change 

(DEN / 

SHAM)

SHAM DEN

Fold 

Change 

(DEN / 

SHAM)

1 23.0 22.7 0.99 22.6 22.9 1.01 22.5 22.8 1.01 22.6 22.6 1.00 22.1 22.4 1.02

2 18.6 22.9 1.23 21.6 22.8 1.06 23.9 22.6 0.95 23.0 22.2 0.97 21.5 21.6 1.00

3 23.2 23.2 1.00 23.1 23.1 1.00 23.6 23.1 0.98 22.4 23.1 1.03 22.9 23.1 1.01

4 22.8 25.5 1.12 24.1 23.3 0.97 23.4 23.9 1.02 23.9 24.5 1.02 23.6 23.1 0.98

5 23.0 23.0 1.00 23.0 23.0 1.00 23.3 23.2 0.99 23.1 22.2 0.96 22.7 22.7 1.00

6 21.9 22.5 1.03 22.1 22.6 1.02 22.5 22.6 1.00 22.4 20.1 0.90 21.9 22.0 1.00

Average 22.07 23.28 1.06 22.74 22.94 1.01 23.21 23.03 0.99 22.91 22.46 0.98 22.43 22.46 1.00

SEM 0.73 0.45 0.04 0.35 0.09 0.01 0.24 0.21 0.01 0.23 0.58 0.02 0.31 0.24 0.01

Paired T-

Test
0.178 0.486 0.551 0.369 0.808

qPCR - S12 

Time of Denervation

8 hours     16 hours     24 hours       3 days      7 days

qPCR - B-actin mRNA

Time of Denervation

8 hours     16 hours     24 hours       3 days      7 days

qPCR - average of S12 + B-actin 

Time of Denervation

8 hours     16 hours     24 hours       3 days      7 days
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HuR

Sample 

Set
SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

1 402246 476883 1.19 348487 660833 1.90 687771 765739 1.11 765345 830543 1.09 697598 817584 1.17

2 512004 611997 1.20 728884 721814 0.99 698749 712471 1.02 631812 973757 1.54 695496 940573 1.35

3 421109 386993 0.92 356603 400923 1.12 521149 467611 0.90 436898 533537 1.22 617320 850745 1.38

4 678047 567274 0.84 502709 545308 1.08 638814 741250 1.16 683947 826169 1.21 993878 1366484 1.37

Average 503352 510786 1.01 484170 582219 1.20 636621 671768 1.06 629501 791001 1.26 751073 993847 1.32

SEM 62968 49924 0.09 88934 70650 0.21 40635 68917 0.06 69833 92416 0.10 83063 126900 0.05

Aciculin

Sample 

Set
SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

1 487692 559028 1.15 498205 466701 0.94 599759 577097 0.96 569912 579224 1.02 651140 630608 0.97

2 618885 537030 0.87 456741 490939 1.07 238580 650468 2.73 634437 851658 1.34 784276 904263 1.15

3 456737 532417 1.17 469852 521493 1.11 529828 484565 0.91 517856 559830 1.08 647237 823342 1.27

4 303831 489258 1.61 408416 523728 1.28 425184 488062 1.15 513087 517663 1.01 602763 620591 1.03

Average 466786 529433 1.13 458303 500715 1.09 448338 550048 1.23 558823 627094 1.12 671354 744701 1.11

SEM 64696 14596 0.15 18745 13583 0.07 78583 39735 0.43 28300 75950 0.08 39207 70749 0.07

Sample 

Set
SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

1 0.82 0.85 1.03 0.70 1.42 2.02 1.15 1.33 1.16 1.34 1.43 1.07 1.07 1.30 1.21

2 0.83 1.14 1.38 1.60 1.47 0.92 2.93 1.10 0.37 1.00 1.14 1.15 0.89 1.04 1.17

3 0.92 0.73 0.79 0.76 0.77 1.01 0.98 0.97 0.98 0.84 0.95 1.13 0.95 1.03 1.08

4 2.23 1.16 0.52 1.23 1.04 0.85 1.50 1.52 1.01 1.33 1.60 1.20 1.65 2.20 1.34

Average 1.20 0.97 0.81 1.07 1.17 1.10 1.64 1.23 0.75 1.13 1.28 1.14 1.14 1.39 1.22

SEM 0.34 0.11 0.18 0.21 0.17 0.28 0.44 0.12 0.17 0.12 0.14 0.03 0.17 0.28 0.05

Paired T-

Test
0.495 0.656 0.448 0.029 0.094

Time of Denervation

8 hours     16 hours     24 hours       3 days      7 days

Time of Denervation

8 hours     16 hours     24 hours       3 days      7 days

HuR corrected for aciculin

Time of Denervation

8 hours     16 hours     24 hours       3 days      7 days
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Sample 

Set
SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

1 350318 367902 1.05 386637 346324 0.90 323056 377199 1.17 266456 411731 1.55 224835 774268 3.44

2 290398 337212 1.16 283265 310097 1.09 287425 371358 1.29 373714 470423 1.26 489869 925766 1.89

3 187958 239995 1.28 214132 178192 0.83 243457 280204 1.15 280015 368529 1.32 222376 540653 2.43

4 223594 314053 1.40 335556 313986 0.94 306162 313483 1.02 306728 631009 2.06 293010 856383 2.92

Average 263067 314791 1.20 304897 287150 0.94 290025 335561 1.16 306728 470423 1.53 307523 774268 2.52

SEM 36008 27262 0.08 36887 37216 0.06 17144 23393 0.05 23844 57456 0.18 62947 83801 0.33

Sample 

Set
SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

1 280947 243974 0.87 187207 232219 1.24 201932 204996 1.02 285857 205592 0.72 203480 117121 0.58

2 303407 297516 0.98 215298 284518 1.32 284652 202831 0.71 140089 145499 1.04 145134 75943 0.52

3 208874 254820 1.22 148979 140825 0.95 143384 114682 0.80 121683 74621 0.61 86961 39060 0.45

4 272797 246138 0.90 208431 191410 0.92 221863 164030 0.74 185841 143945 0.77 177301 186381 1.05

Average 266506 260612 0.98 189979 212243 1.12 212957 171635 0.81 183367 142414 0.78 153219 104626 0.68

SEM 20272 12523 0.08 14917 30492 0.10 29128 21189 0.07 36729 26769 0.09 25103 31572 0.14

Sample 

Set
SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

1 1.25 1.51 1.21 2.07 1.49 0.72 1.60 1.84 1.15 0.93 2.00 2.15 1.10 6.61 5.98

2 0.96 1.13 1.18 1.32 1.09 0.83 1.01 1.83 1.81 2.67 3.23 1.21 3.38 12.19 3.61

3 0.90 0.94 1.05 1.44 1.27 0.88 1.70 2.44 1.44 2.30 4.94 2.15 2.56 13.84 5.41

4 0.82 1.28 1.56 1.61 1.64 1.02 1.38 1.91 1.38 1.65 4.38 2.66 1.65 4.59 2.78

Average 0.98 1.21 1.24 1.61 1.37 0.85 1.42 2.01 1.41 1.89 3.64 1.93 2.17 9.31 4.29

SEM 0.09 0.12 0.11 0.16 0.12 0.06 0.15 0.15 0.14 0.38 0.65 0.30 0.50 2.21 0.75

Paired T-

Test
0.074 0.158 0.021 0.050 0.030

CUGBP1

Time of Denervation

8 hours     16 hours     24 hours       3 days      7 days

Ponceau

Time of Denervation

8 hours     16 hours     24 hours       3 days      7 days

CUGBP1 corrected for ponceau

Time of Denervation

8 hours     16 hours     24 hours       3 days      7 days
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KSRP

Sample 

Set
SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

1 60705 39895 0.66 43822 127342 2.91 106899 88290 0.83 107202 103896 0.97 169020 254854 1.51

2 48211 77060 1.60 106081 150116 1.42 81977 179587 2.19 119964 275811 2.30 175407 288129 1.64

3 163591 187904 1.15 266399 231155 0.87 236399 148808 0.63 175729 231667 1.32 159854 238250 1.49

4 115188 63547 0.55 78444 110568 1.41 148533 208567 1.40 125298 233319 1.86 116866 489581 4.19

Average 96924 92101 0.95 123686 154795 1.25 143452 156313 1.09 132048 211173 1.60 155287 317704 2.05

SEM 26556 32845 0.24 49246 26712 0.44 33887 25748 0.35 15047 37190 0.29 13199 58223 0.66

Sample 

Set
SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

1 157212 141917 0.90 132676 148317 1.12 142483 163179 1.15 197506 138207 0.70 155913 82703 0.53

2 172309 170320 0.99 162729 170103 1.05 184334 187664 1.02 152793 157889 1.03 112779 102224 0.91

3 208874 254820 1.22 148979 140825 0.95 143384 114682 0.80 121683 74621 0.61 86961 39060 0.45

4 272797 246138 0.90 208431 191410 0.92 221863 164030 0.74 185841 143945 0.77 177301 186381 1.05

Average 202798 203299 1.00 163204 162664 1.00 173016 157389 0.91 164456 128665 0.78 133239 102592 0.77

SEM 25730 27906 0.07 16279 11418 0.05 18983 15325 0.09 17115 18483 0.09 20445 30893 0.15

Sample 

Set
SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

1 0.386 0.281 0.73 0.330 0.859 2.60 0.750 0.541 0.72 0.543 0.752 1.38 1.084 3.082 2.84

2 0.280 0.452 1.62 0.652 0.883 1.35 0.445 0.957 2.15 0.785 1.747 2.22 1.555 2.819 1.81

3 0.783 0.737 0.94 1.788 1.641 0.92 1.649 1.298 0.79 1.444 3.105 2.15 1.838 6.100 3.32

4 0.422 0.258 0.61 0.376 0.578 1.53 0.669 1.272 1.90 0.674 1.621 2.40 0.659 2.627 3.99

Average 0.47 0.43 0.92 0.79 0.99 1.26 0.88 1.02 1.16 0.86 1.81 2.10 1.28 3.66 2.85

SEM 0.11 0.11 0.22 0.34 0.23 0.36 0.26 0.18 0.37 0.20 0.49 0.23 0.26 0.82 0.46

Paired T-

Test
0.662 0.237 0.610 0.050 0.036

Time of Denervation

8 hours     16 hours     24 hours       3 days      7 days

Ponceau

Time of Denervation

8 hours     16 hours     24 hours       3 days      7 days

KSRP corrected for ponceau

Time of Denervation

8 hours     16 hours     24 hours       3 days      7 days
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Tfam (subsarcolemmal mitochondria)

Sample 

Set
SHAM DEN SHAM DEN SHAM DEN

1 389728 449855 254765 119012 427172 320633

2 466357 721282 278644 94211 768982 538805

3 222791 146403 138146 10759 533397 23584

4 961264 995391 818749 472594 498814 56361

Average 510035 578233 372576 174144 557091 234846

SEM 158771 181989 151858 102142 74013 121188

Porin

Sample 

Set
SHAM DEN SHAM DEN SHAM DEN

1 1096883 1096883 417691 417691 505767 365841

2 1271382 1271382 1119369 1119369 977419 977419

3 1562228 1562228 1255156 1219237 1475704 989613

4 1638261 1638261 1424313 1424313 1365097 1365097

Average 1392188 1392188 1054132 1045152 1080997 924492

SEM 126249 126249 221125 218572 219493 206814

Tfam corrected for Porin

Sample 

Set
SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN

1 35.53 41.01 1.15 30.50 14.25 0.47

2 36.68 56.73 1.55 24.89 8.42 0.34 78.67 55.13 0.70

3 14.26 9.37 0.66 11.01 0.88 0.08 36.15 2.38 0.07

4 58.68 60.76 1.04 57.48 33.18 0.58 36.54 4.13 0.11

Average 36.29 41.97 1.10 30.97 14.18 0.37 50.45 20.55 0.29

SEM 9.07 11.67 0.18 9.74 6.90 0.11 14.11 17.30 0.20

Paired T-

Test
0.359 0.010 0.011

Time of Denervation

      24 hr       3 days      7 days

Time of Denervation

      24 hr       3 days      7 days

Time of Denervation

      24 hr       3 days      7 days

89



Sample 

Set
SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

1 164907 56019 0.34 59657 122998 2.06 424 33148 78.18 171017 128123 0.75 139001 46595 0.34

2 16410 22827 1.39 17261 43098 2.50 47606 2657 0.06 18360 2386 0.13 348 32571 93.59

3 18892 59464 3.15 11846 90811 7.67 335158 276349 0.82 225114 41432 0.18 167974 39807 0.24

4 21899 237863 10.86 187408 7530 0.04 261529 68038 0.26 133810 2676 0.02 340737 203424 0.60

5 405675 28492 0.07 23294 76341 3.28 16166 75596 4.68 131256 32040 0.24 26555 11642 0.44

6 65102 9107 0.14 14140 12064 0.85 5980 36979 6.18 27726 50496 1.82 61644 24189 0.39

7 48134 991 0.02 21297 34751 1.63 91825 27593 0.30 65926 67586 1.03 55216 91470 1.66

Average 105860 59252 2.28 47843 55370 2.58 108384 74337 12.93 110458 46391 0.60 113068 64242 13.89

SEM 53671 30897 1.49 24050 16190 0.94 51059 34937 10.91 28909 16348 0.25 44105 25069 13.28

Sample 

Set
SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

1 165804 192543 1.16 598320 705848 1.18 518162 481967 0.93 511243 488141 0.95 433720 591925 1.36

2 244254 180520 0.74 291469 477921 1.64 683779 673734 0.99 683142 561613 0.82 463990 547389 1.18

3 182276 198066 1.09 108797 196581 1.81 155607 88925 0.57 160566 186199 1.16 259308 392586 1.51

4 243532 209090 0.86 263105 206784 0.79 230400 309572 1.34 225662 148149 0.66 68675 171611 2.50

5 350011 308481 0.88 322220 320068 0.99 355155 340953 0.96 266101 205116 0.77 302722 315678 1.04

6 476656 584473 1.23 383058 576412 1.50 503018 637411 1.27 591334 605022 1.02 444634 701891 1.58

7 23343 24305 1.04 27751 31284 1.13 36427 54758 1.50 30873 39684 1.29 49246 66576 1.35

Average 240839 242497 1.00 284960 359271 1.29 354650 369617 1.04 352703 319132 0.95 288899 398237 1.50

SEM 54316 65162 0.07 70190 89997 0.14 86382 92476 0.12 91989 85508 0.08 65987 87311 0.18

Sample 

Set
SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

1 0.99 0.29 0.29 1.00 1.74 1.75 0.33 0.26 0.78 0.32 0.08 0.25

2 0.67 1.26 1.88 0.59 0.90 1.52 0.27 0.04 0.16

3 0.10 0.30 2.90 0.11 0.46 4.24 2.15 3.11 1.44 1.40 0.22 0.16 0.65 0.10 0.16

4 1.14 0.22 0.19 0.50 0.12 0.24

5 1.16 0.09 0.08 0.72 2.39 3.30 0.46 2.22 4.87 0.49 0.16 0.32 0.88 0.37 0.42

6 1.37 0.16 0.11 0.12 0.58 4.88 0.05 0.08 1.78 1.39 0.34 0.25

7 2.06 0.04 0.02 0.77 1.11 1.45 2.52 0.50 0.20 2.14 1.70 0.80

Average 1.06 0.36 0.88 0.64 1.32 2.45 1.28 1.33 2.32 0.78 0.41 0.67 0.75 0.20 0.26

SEM 0.27 0.19 0.50 0.15 0.34 0.56 0.47 0.57 1.07 0.33 0.26 0.25 0.18 0.06 0.04

Paired T-

Test
0.133 0.057 0.946 0.091 0.016

Phophorylated AMPK (Thr172)

Time of Denervation

8 hours     16 hours     24 hours       3 days      7 days

Total AMPK 

Time of Denervation

8 hours     16 hours     24 hours       3 days      7 days

p-AMPK (Thr172) / T-AMPK

Time of Denervation

8 hours     16 hours     24 hours       3 days      7 days
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Sample 

Set
SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

1 116329 89223 0.77 218450 91003 0.42 115530 144314 1.25 329137 227239 0.69 97708 44237 0.45

2 114830 120096 1.05 169923 173177 1.02 259424 162845 0.63 207780 186865 0.90 284593 233037 0.82

3 213859 273629 1.28 425102 316769 0.75 560981 300126 0.54 417288 452184 1.08 435784 391389 0.90

4 460573 482463 1.05 1483501 1192825 0.80 440280 761404 1.73 828375 952027 1.15 642576 931349 1.45

Average 226398 241353 1.03 574244 443444 0.75 344054 342172 1.04 445645 454579 0.96 365165 400003 0.90

SEM 81424 89918 0.10 308093 254112 0.12 98193 143999 0.28 134611 175787 0.10 115459 190799 0.21

Sample 

Set
SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

1 117338 107801 0.92 199139 154175 0.77 173689 237931 1.37 267444 407413 1.52 496558 283815 0.57

2 110319 125688 1.14 134258 92952 0.69 107255 130532 1.22 156260 162248 1.04 165733 60083 0.36

3 85921 51426 0.60 42153 60497 1.44 43274 47092 1.09 36179 78005 2.16 28117 76580 2.72

4 179278 149433 0.83 184049 215246 1.17 149528 249928 1.67 248022 188564 0.76 315606 337752 1.07

Average 123214 108587 0.87 139900 130717 1.02 118436 166371 1.34 176976 209058 1.37 251503 189558 1.18

SEM 19864 20874 0.11 35408 34220 0.17 28569 47971 0.13 52824 70197 0.31 100589 70931 0.53

Sample 

Set
SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

1 0.99 0.83 0.83 1.10 0.59 0.54 0.67 0.61 0.91 1.23 0.56 0.45 0.20 0.16 0.79

2 1.04 0.96 0.92 1.27 1.86 1.47 2.42 1.25 0.52 1.33 1.15 0.87 1.72 3.88 2.26

3 2.49 5.32 2.14 10.08 5.24 0.52 12.96 6.37 0.49 11.53 5.80 0.50 15.50 5.11 0.33

4 2.57 3.23 1.26 8.06 5.54 0.69 2.94 3.05 1.03 3.34 5.05 1.51 2.04 2.76 1.35

Average 1.77 2.58 1.29 5.13 3.31 0.80 4.75 2.82 0.74 4.36 3.14 0.83 4.86 2.98 1.18

SEM 0.44 1.07 0.30 2.32 1.23 0.23 2.78 1.29 0.14 2.44 1.33 0.24 3.57 1.06 0.42

Paired T-

Test
0.33 0.23 0.31 0.50 0.56

Phosphorylated p38 (Thr180 / Tyr182)

Time of Denervation

8 hours     16 hours     24 hours       3 days      7 days

Total p38

Time of Denervation

8 hours     16 hours     24 hours       3 days      7 days

p-p38 (Thr180 / Tyr182) / T-p38

Time of Denervation

8 hours     16 hours     24 hours       3 days      7 days
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Rat Tfam 3’-UTR: 

 

GAUUGAAGACAGAGUUGUCAUUGGGAUUGGGCACAAGAAGCUGG

UUAAGUCUCAAAGCCUUAAGUUGUCAAACUUGAAAGGAUAAAGG

GGUUAACCUUUGACACUCAGUUCAUUUUUCUGUAGCCCAUGGACU

UCUGCCCACUGAAUGCAUUUCUGUUGACCUUUUGAGCCUUGACAG

UAGAUCAUGACGAGUUCUGCCGUUUGCUUAAGAACUGGAAUCAA

GACUGUGCGUGCAUCUGCAUGCAGUGGUGAAUUGUUCUGCAUUU

GAUGGUGUAGACAGACUGAAGUGACUUUCACACUGGUGACAGUU

UCGUGCGGGUUUGUGAAGUUCUUACACUGAUGGCCAUUACAUGU

GGGUGCCCCCUUGUCCCAGGCCCAGAGCUGCUCACAGCUGUGGCA

GAGCCAUUGCAGUUUCUAAGAACCUUCCGGGCUUUACUAGAUGAC

GUGGUUUCUAGACAUAAUCAUGUGUAGAGUUGAUGUUUGUACAC

AAUAAGUGAUCAUCGAUGUCCUAACAGCAUUUUAUAGUAGGAGA

GAUUUACAAGUCUUUCUCAAAUUAAGAAAUUAUGUACCAGGUCU

AUGCAUAUGUUUUUAUUGCAUAGAAUAAAAACUCUAAUUUUCCA

AAC   

 

AUUUA : putative AU-rich element 

UGUUUGU & UUUUU : putative GU-rich elements 

Supplementary Figure 1. Identification of cis-elements mediating mRNA 

decay 

Putative elements which serve as binding sites for RBPs in the 3’-UTR of the 

Tfam transcript are highlighted. 
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Supplementary Figure 2. Identification of putative transcription factor binding 

sites in the 1.1kb proximal Tfam promoter in rat. 

Putative binding sites for a selection of transcription factors relevant to mitochondrial 

biogenesis and muscle atrophy are highlighted. Foxo3a has 3 overlapping, putative 

binding sites 

Rat 1.1kilobase proximal Tfam promoter: 

ACTCCCAAGAGAGAATGAAACCGGAAGCGGTGCTAAGCCTGTGCTAAGGAGTGG

GCTTAGAGGAGTGGGCGTGGTACTCTGCGGCTTGAAGGAGACAATGTTTCAAAGC

TGCAGAAAGGAAGTAGACTCTCGGTTCAGTGTTACACTATTAAGATTTTGCTTTCT

TTCCGGTAAAAAAAAAAAGTACAGGTATGCAACAGAAGAGGCTGTTGTTGTTAGG

ATCTCACTATGTTAACTCTGGCCAACATGGAACTTGTATATAGACCAAACTCTAAT

TCACAGAGCTCTACCTGCCTCTTGCCTCCAGAGTGCTGGGAGTAAAAGCATCCACT

ACCAAGCCGGATGAATGAGACGGTTGTTTTAAATGTTATTTATTTATTAATTTAGT

TTACTTTTGAAACAAGGTCTCTAGCCTGACTGTTTGAATGCCTGGCACCACCTCCA

AATGCTGTAATTACAGGTTTGCACCACCAACCTGGGTTCAGTCTATTTATTTTTGT

GACATGTTTTCTTTTGTGTACATGTTTGTGTGTGTATGTCAAAGTTAGACAGCAAC

TTGCTTGAGTTGGTTCACTCTTACAATCATGTAGGTCCTGGGGATTGCAAGGCTCT

GGGCCATCCTGGAAACTCCTATTCCTTTCTATTAATTTTTAAAGATTAGATAAACA

AAGCGATACATTTCATGACCACTCCTCTCTATCTCTTCCACCCCTCAGTTGCCCCGT

GTGTTTTCCTTCGGACTCAGATGAAACAGGCAGTTTGCTGCTGGGTCATCAGCAGT

ACCACTGATCGCTGATTTCAAGAGCCACGCACTGTGACACGAGCCGCAGAACCGG

CGTCACGAAGCTGAGCTGGCAGAGGAGGACCCTGGCCCAGCAACAGCCTGCAGG

CCTTCCAGCAGAATACTCAGAGGGGCCTGCGGCTATGGCGCGGCTCAGCAACACC

CTTGCCAAACTAAACCGGCTCTGCCTAGCCGCAGGCTCCGCCCCCACTCAGCCCCG

CCCACTGAACGGTGGGGGACACACTCCGCCTCCCGTTTGCCCCGCCTCCTGCTGCA

GACCGGAAGTCTGGGCCTCCCACAGTGCCCCGCGCGCGCGGCG 

NRF-2 

PPARα 

Foxo3a 

PPARα 

PPARα Foxo3a 

PPARα NF-κβ 

IL-6 RE-BP 

NF-κβ PPARδ 

PPARα 

IL-6 RE-BP 

NRF-2 

NRF-2 

-1100bp 

Transcription 

start site 
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Tfam 

GAPDH 

8h 16h 24h 3d 7d 

S   D S   D S   D S   D S   D 

Supplementary Figure 3. Tfam protein expression in denervated muscle. 

A. A representative western blot and graphical representation of Tfam protein 

expression in denervated muscle, using whole muscle cell extracts. GAPDH 

served as a loading control (n = 4 per time point).  Values are 
 

 SEM. 

8h 16h 24h 3d 7d 
0 

0.25 

0.50 

0.75 

1.00 

1.25 

Time of Denervation 

T
fa

m
 p

ro
te

in
 

(d
en

er
v

a
te

d
 /

 s
h

a
m

) 

95



Glycolytic 

SHAM 24h 3d 7d 
0 

0.25 

0.50 

0.75 

1.00 

1.25 

%
 c

h
a
n

g
e 

in
  

m
y
o
fi

b
er

 a
re

a
 

Days Denervated 

* 

* 

Oxidative 

SHAM 
0 

0.25 

0.50 

0.75 

1.00 

1.25 

%
 c

h
a
n

g
e 

in
  

m
y
o
fi

b
er

 a
re

a
 

Days Denervated 

* 
* 

0 

5 

10 

15 

C
S

A
 /

 B
o
d

y
 M

a
ss

 

SHAM DEN SHAM DEN SHAM DEN 

1 Day 3 Day 7 Day 

Glycolytic Oxidative Overall 
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Supplementary Figure 4. EDL cross-sectional area in denervated muscle. 

Quantification of (A) glycolytic and (B) oxidative myofiber cross-sectional 

areas from the same sham-operated and denervated EDL muscle, expressed 

as a percentage change from the sham-operated hind-limb, the cross-

sectional area of which was shown to not change. (C) Absolute cross-

sectional areas of sham-operated and denervated EDL muscle, corrected for 

animal body mass. (n = 4 per time point for all experiments) * p < 0.05 DEN 

vs. SHAM of the same time point. Values are 
 

 SEM. 
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Supplementary Figure 5. Autophagy-related protein expression in 

denervated muscle. A representative western blot and graphical 

representation of A) LC3-II, (B) p62, (C) Beclin-1 and (D) Atg7 protein 

expression in sham-operated and denervated muscle. GAPDH was used as a 

loading control for both measurements. (n = 4 per time point for experiments 

A and B, n = 1 per time point for experiments C and D) * p < 0.05 DEN vs. 

SHAM of the same time point. Values are 
 

 SEM. 
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Supplementary Figure 6. COX activity in sham-operated and denervated 

muscle. A graphical representation of COX activity in sham-operated and 

denervated muscle. (n = 5 per time point). One-way ANOVA analyses 

revealed that there were no differences in the COX activity of the sham-

operated hindlimbs at all time points. * p < 0.05 DEN vs. SHAM of the same 

time point. Values are 
 

 SEM. 
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* 
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Supplementary Figure 7. Total AMPK and p38 protein expression in 

denervated muscle. A representative western blot and graphical 

representation of A) Total AMPK alpha and (B) total p38 protein expression in 

sham-operated and denervated muscle. (n = 7 per time point for experiment A, 

n = 4 per time point for experiment B). Two-way ANOVA analyses revealed 

no effect of treatment or time in either experiment. Values are 
 

 SEM. 
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Tfam

Sample 

Set
SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

1 153 153 1.00 157 153 0.97 151 149 0.98 145 139 0.96 138 141 1.02

2 167 173 1.03 173 176 1.01 168 171 1.02 172 172 1.00 171 171 1.00

3 125 128 1.03 148 143 0.97 144 127 0.88 129 152 1.18 134 150 1.13

4 144 153 1.06 159 162 1.02 162 158 0.97 158 163 1.03 158 153 0.97

Average 147 151 1.03 159 158 0.99 156 151 0.97 151 156 1.04 150 154 1.02

SEM 9 9 0.01 5 7 0.01 5 9 0.03 9 7 0.05 9 6 0.03

GAPDH

Sample 

Set
SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

1 144 153 1.06 150 142 0.95 144 138 0.96 138 134 0.97 136 133 0.98

2 140 144 1.03 149 151 1.02 157 157 1.00 159 154 0.97 152 159 1.05

3 86 87 1.01 92 106 1.15 112 102 0.91 95 94 0.99 96 99 1.03

4 92 93 1.02 94 102 1.08 107 96 0.90 84 93 1.11 96 89 0.92

Average 116 119 1.03 121 125 1.03 130 123 0.95 119 119 1.00 120 120 1.00

SEM 15 17 0.01 16 13 0.04 12 15 0.02 18 15 0.03 14 16 0.03

Paired T-

Test
0.127 0.445 0.073 0.894 0.982

Sample 

Set
SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

1 1.06 1.00 0.94 1.04 1.07 1.03 1.05 1.07 1.02 1.05 1.04 0.99 1.02 1.06 1.04

2 1.19 1.19 1.00 1.17 1.17 1.00 1.07 1.09 1.02 1.08 1.12 1.04 1.13 1.08 0.95

3 1.45 1.47 1.02 1.62 1.36 0.84 1.28 1.25 0.97 1.35 1.61 1.19 1.39 1.52 1.10

4 1.58 1.63 1.04 1.69 1.59 0.94 1.51 1.64 1.09 1.88 1.74 0.93 1.64 1.72 1.05

Average 1.32 1.33 1.01 1.38 1.30 0.94 1.23 1.26 1.03 1.34 1.38 1.03 1.29 1.34 1.04

SEM 0.12 0.14 0.02 0.16 0.11 0.04 0.11 0.13 0.02 0.19 0.18 0.06 0.14 0.17 0.03

Paired T-

Test
0.787 0.294 0.396 0.676 0.285

Tfam corrected for GAPDH

Time of Denervation

8 hours     16 hours     24 hours       3 days      7 days

Time of Denervation

8 hours     16 hours     24 hours       3 days      7 days

Time of Denervation

8 hours     16 hours     24 hours       3 days      7 days
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Glycolytic Fiber CSA (um
2
) / Body Mass (g)

3 days

Sample Set CTRL DEN

Fold-

Change 

(DEN / 

SHAM)

CTRL DEN

Fold-

Change 

(DEN / 

SHAM)

CTRL DEN

Fold-

Change 

(DEN / 

SHAM)

1 11.79 7.97 0.68 12.00 11.13 0.93 11.98 4.65 0.39

2 13.85 10.11 0.73 12.21 11.02 0.90 12.72 5.35 0.42

3 11.90 10.73 0.90 11.74 9.39 0.80 12.21 6.01 0.49

4 11.15 9.81 0.88 13.90 9.95 0.72 11.75 7.25 0.62

Average 12.17 9.66 0.80 12.46 10.37 0.84 12.16 5.82 0.48

Paired T-

test
0.041 0.057 0.003

Oxidative Fiber CSA (um
2
)

 
/ Body Mass (g)

3 days

Sample Set CTRL DEN

Fold-

Change 

(DEN / 

SHAM)

CTRL DEN

Fold-

Change 

(DEN / 

SHAM)

CTRL DEN

Fold-

Change 

(DEN / 

SHAM)

1 6.75 4.99 0.74 6.10 5.77 0.95 5.29 3.15 0.60

2 7.56 5.56 0.73 7.77 5.91 0.76 6.17 2.69 0.44

3 6.88 6.00 0.87 5.96 5.16 0.87 6.62 3.84 0.58

4 6.20 5.32 0.86 7.58 5.33 0.70 6.51 4.63 0.71

Average 6.85 5.46 0.80 6.85 5.54 0.82 6.15 3.58 0.58

Paired T-

test
0.018 0.062 0.006

Time of Denervation

24 hours 7 days

24 hours 7 days

Time of Denervation
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p62

Sample 

Set
SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

1 134 141 1.06 133 133 1.00 137 141 1.03 125 148 1.18 129 141 1.09

2 167 171 1.02 171 175 1.02 180 180 1.00 173 192 1.11 175 174 1.00

3 123 122 0.99 130 138 1.06 121 123 1.01 132 144 1.09 120 133 1.10

4 136 141 1.03 151 151 1.00 142 148 1.04 151 163 1.08 142 151 1.06

Average 140 144 1.03 146 149 1.02 145 148 1.02 145 162 1.11 142 150 1.06

SEM 10 10 0.01 9 9 0.02 12 12 0.01 11 11 0.02 12 9 0.02

GAPDH

Sample 

Set
SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

1 144 153 1.06 150 142 0.95 144 138 0.96 138 134 0.97 136 133 0.98

2 140 144 1.03 149 151 1.02 157 157 1.00 159 154 0.97 152 159 1.05

3 86 87 1.01 92 106 1.15 112 102 0.91 95 94 0.99 96 99 1.03

4 92 93 1.02 94 102 1.08 107 96 0.90 84 93 1.11 96 89 0.92

Average 116 119 1.03 121 125 1.03 130 123 0.95 119 119 1.00 120 120 1.00

SEM 15 17 0.01 16 13 0.04 12 15 0.02 18 15 0.03 14 16 0.03

Sample 

Set
SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

1 0.93 0.92 1.00 0.89 0.93 1.05 0.95 1.02 1.07 0.90 1.11 1.22 0.95 1.05 1.11

2 1.19 1.18 0.99 1.15 1.16 1.01 1.14 1.15 1.00 1.09 1.25 1.15 1.15 1.10 0.95

3 1.43 1.41 0.99 1.42 1.31 0.92 1.08 1.21 1.12 1.38 1.53 1.11 1.25 1.34 1.07

4 1.49 1.51 1.01 1.60 1.49 0.93 1.32 1.54 1.16 1.80 1.75 0.98 1.48 1.70 1.15

Average 1.26 1.26 1.00 1.26 1.22 0.97 1.13 1.23 1.09 1.29 1.41 1.09 1.21 1.30 1.08

SEM 0.13 0.13 0.01 0.16 0.12 0.03 0.08 0.11 0.03 0.19 0.14 0.05 0.11 0.15 0.04

Paired T-

Test
0.766 0.382 0.105 0.123 0.215

p62 corrected for GAPDH

Time of Denervation

8 hours     16 hours     24 hours       3 days      7 days

Time of Denervation

8 hours     16 hours     24 hours       3 days      7 days

Time of Denervation

8 hours     16 hours     24 hours       3 days      7 days
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LC3-II

Sample Set SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

1 77 76 0.99 68 64 0.93 68 68 1.01 76 85 1.11 80 113 1.40

2 115 125 1.08 120 122 1.02 128 123 0.97 116 140 1.21 116 140 1.21

3 103 103 1.00 98 101 1.03 117 101 0.87 98 134 1.37 113 154 1.37

4 110 99 0.90 102 108 1.06 100 88 0.89 97 136 1.41 114 154 1.34

Average 101 101 0.99 97 99 1.02 103 95 0.93 97 124 1.28 106 140 1.33

SEM 9 10 0.04 11 13 0.03 13 12 0.03 8 13 0.07 8 10 0.04

GAPDH

Sample Set SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

1 144 153 1.06 150 142 0.95 144 138 0.96 138 134 0.97 136 133 0.98

2 140 144 1.03 149 151 1.02 157 157 1.00 159 154 0.97 152 159 1.05

3 86 87 1.01 92 106 1.15 112 102 0.91 95 94 0.99 96 99 1.03

4 92 93 1.02 94 102 1.08 107 96 0.90 84 93 1.11 96 89 0.92

Average 116 119 1.03 121 125 1.03 130 123 0.95 119 119 1.00 120 120 1.00

SEM 15 17 0.01 16 13 0.04 12 15 0.02 18 15 0.03 14 16 0.03

Sample Set SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN

Fold-

Change 

(DEN / 

SHAM)
1 0.53 0.50 0.93 0.46 0.45 0.98 0.47 0.49 1.05 0.55 0.63 1.15 0.59 0.85 1.43

2 0.82 0.86 1.05 0.81 0.81 1.01 0.81 0.79 0.97 0.73 0.91 1.25 0.76 0.88 1.16

3 1.20 1.19 0.99 1.07 0.96 0.89 1.04 0.99 0.95 1.02 1.42 1.39 1.17 1.56 1.33

4 1.20 1.06 0.88 1.09 1.07 0.98 0.93 0.92 0.99 1.15 1.46 1.27 1.19 1.73 1.46

Average 0.94 0.90 0.96 0.86 0.82 0.96 0.81 0.80 0.98 0.86 1.11 1.28 0.93 1.25 1.35

SEM 0.16 0.15 0.04 0.15 0.14 0.02 0.12 0.11 0.02 0.14 0.20 0.05 0.15 0.23 0.07

Paired T-

Test
0.430 0.291 0.348 0.039 0.036

LC3-II corrected for GAPDH

Time of Denervation

8 hours     16 hours     24 hours       3 days      7 days

Time of Denervation

8 hours     16 hours     24 hours       3 days      7 days

Time of Denervation

8 hours     16 hours     24 hours       3 days      7 days
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Beclin-1

Sample 

Set
SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

1 33152 50677 1.53 64656 123425 1.91 35929 127862 3.56 36746 133488 3.63

Atg7

Sample 

Set
SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

1 91971 96401 1.05 89671 80873 0.90 70126 83449 1.19 69534 106613 1.53

GAPDH

Sample 

Set
SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

1 293768 264021 0.90 248103 240189 0.97 212035 202700 0.96 244576 213993 0.87

Beclin-1 corrected for GAPDH

Sample 

Set
SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

1 0.11 0.19 1.70 0.26 0.51 1.97 0.17 0.63 3.72 0.15 0.62 4.15

Atg7 corrected for GAPDH

Sample 

Set
SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

SHAM DEN

Fold-

Change 

(DEN / 

SHAM)

1 0.31 0.37 1.17 0.36 0.34 0.93 0.33 0.41 1.24 0.28 0.50 1.75

24 hours 3 days 5 days      7 days

Time of Denervation

24 hours 3 days 5 days      7 days

Time of Denervation

24 hours 3 days 5 days      7 days

Time of Denervation

Time of Denervation

24 hours 3 days 5 days      7 days

24 hours 3 days 5 days      7 days

Time of Denervation
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Appendix D 

Protocols and Extended Methods 
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Procedure for the denervation of the tibialis anterior (TA) and extensor digitorum longus 

(EDL) muscles of the rat 

Materials: 

Animal 

Heating pad 

1 pair each of sharp surgical scissors and blunt scissors. 

Sterile ampicillin (dissolved in sterile saline) 

Isoflourane anesthetic machine 

Surgical forceps (multiple pairs) 

Surgical needle driver (to aid in the wound suturing) 

Surgical stapler and staples 

Iodine 

95% ethanol 

Braided surgical silk 5-0 (Ethicon) 

Tear gel (Novartis) 

Surgical blade (Feather Safety Razor Co.) and scalpel  

 

Procedure: 

1. Sterilize surgical instruments in autoclave machine for 20 minutes. 

2. Anaesthetize rat with gaseous isoflourane, keep animal on a warm heating pad throughout the 

duration of the surgery. 

3. Shave both of the animal’s hindlimbs, removing as much of the hair as possible.  

4. Wipe the shaved areas with 1% topical iodine antiseptic solution, and then again with 95% 

ethanol solution. 

5. Make a 2 cm incision in the skin approximately 1 cm posterior and 1 cm inferior to the knee. 

6. Carefully blunt dissect through the exposed superficial muscle until the common peroneal 

nerve is visualized. This nerve innervates the TA and EDL muscles. 

7. Cut out a small 5mm section of the nerve. This ensures that the nerve endings will not 

regenerate during the experiment and thus effectively remove any neural innervation to the TA 

and EDL muscles. 

8. Inject a small volume (~0.1mls) of sterile ampicillin in the local incision site. 

9. Using the 5.0 surgical silk, suture close the superficial muscle tear. Seal the overlying skin on 

the hindlimb using surgical staples. 

10. Turn the animal over, and repeat the surgical procedure. However, when the nerve is 

encountered, simply expose it, without neurotomy. Suture the wound and treat with ampicillin as 

above. 

11. While still under anaesthetic, the animal is given the analgesic meloxicam (stock solution of 

5 mg/ml is diluted 10-fold in sterile saline to a concentration of 0.5mg/ml) in a subcutaneous 

injection. Post-surgery, the animal is given 2 mg/kg body weight, and is given 1.5 mg/kg and 1 

mg/kg body weight at 24 hours and 48 hours (respectively) post-surgery, should the animal be 

kept for a denervation length of that time. 

12. Monitor the animal (at minimum) over the next 72 hours to ensure recovery (shorter, if the 

length of denervation is less than 72 hours). The animal is free to move about the cage and 

feed/drink ad libitum. 

13. Recovering animals are given amoxicillin in their drinking water (0.025% w/v) for up to one 

week post-surgery. 
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DNA injection and electroporation into rat hindlimb muscles 

References: 

Wolff JA, Malone RW, Williams P, Chong W, Ascadi G, Jani A, Felgner PL. Direct gene 

transfer into mouse muscle in vivo. Science 247(4949 Pt 1):1465-8, 1990. 

Wolff JA, Williams P, Ascadi G, Jiao S,  Jani A, Chong W. Conditions affecting direct gene 

transfer  into rodent muscle in vivo. Biotechniques 11(4): 474-85, 1991.  

Davis HL, Whalen RG, Demeneix BA. Direct gene transfer into skeletal muscle in vivo: factors 

affecting efficiency of transfer and stability of expression. Hum Gen Ther 4(2):151-9, 1993.  

Materials: 

29 gauge insulin syringe, ½” needle (Ultrafine, Becton Dickson) 

Forceps (sterile) 

Plasmid DNA: 50µg plasmid of interest + 1µg of pRL-CMV plasmid (use spectrophotometer to 

determine DNA concentration) 

ECM 830 Electroporation system (BTX) 

0.7cm tweezertrodes (BTX) 

 

DNA preparation: 

DNA is prepared using the alkaline lysis plasmid DNA preparation to produce plasmids inserted 

with the promoter of interest upstream of the luciferase gene, which can be used to both in vivo 

and in vitro transfections. DNA is stored in stab cultures, in glycerol at -80°C for long-term 

storage. Follow the manufacturer’s instructions to isolate DNA from these stores, using a 

MaxiPrep isolation kit (Sigma-Aldrich, GenElute HP Plasmid Maxiprep kit). Transfection 

efficiency is determined through the co-transfection of the pRL-CMV (renilla luciferase) 

plasmid, as it is assumed that the cells transfected with the plasmids containing the promoter of 

interest have also been transfected with the pRL-CMV plasmid. 

 

Sample calculation: 

[1.1kb Tfam + pGL3] = 3.13µg/µl  

(arbitrary concentration, measured by spectrophotometry after DNA isolation)  

∴ 50µg of [1.1kb Tfam + pGL3] = 50/3.13=15.79µl of plasmid DNA 

 

[pRL-CMV]=1.00µg/µl (measured by spectrophotometry, and solution is kept at this 

concentration)  

∴ 1µg of [pRL-CMV] = 1/1 = 1µl of plasmid DNA 

 

Volume up to 30µl (3 units on the syringe) with 0.9% sterile saline.  

15.79ul of plasmid DNA [1.1kb Tfam+pGL3] + 1µl of plasmid DNA [pRL-CMV] +13.21µl 

sterile saline = 30µl to be injected into muscle 
 

*NOTE: to fill syringes, fill a 1.5ml sterile Eppendorf with a solution of all plasmid DNA and 

sterile saline sufficient for all injections to be performed in a single day. Insert the needle into the 

Eppendorf, and slowly withdraw fluid from the Eppendorf, ensure that no air bubbles are 

present in the syringe. Do not store syringes in the fridge after filling, but rather use them 

immediately. 
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Injection procedure: 

1. Animals are anesthetized using isoflourane. 

2. Set the appropriate parameters on the electroporator (100 V/cm, 20ms pulse duration, 200ms 

interval, 4 pulses, unipolarity). 

3. The lower part of the limb in shaved, providing a clear view of the outline of the tibialis 

anterior muscle. 

4. The injection site is sterilized by applying iodine (Providine solution) and subsequently 

ethanol to the shaved area.  

5. The animal is turned slightly on its side to provide clear access to the injection site at the 

tibialis anterior (TA) muscle.  

6. Take a prefilled syringe (containing 50µg of plasmid DNA of the gene of interest, 1µg of 

plasmid DNA of the control plasmid in a 30µl solution with 0.9% sterile saline) and perform the 

injection into the muscle. Take time to perform the injection (up to 30 seconds per injection), and 

maintain a very small angle between the muscle and the syringe. Do not insert the needle of the 

syringe more than 1-3mm into the muscle, and ensure injection takes places into the belly of the 

muscle.  

7. Remove the needle from the muscle very slowly (take 10-15 seconds to do so). If the injection 

has been successfully completed, no leak from the site of injection will be visible to the eye.  

8. Adjust the width of the tweezertrodes according to the size of the muscle. Tweezertrodes are 

positioned over the skin, and on either side of the muscle in a direction parallel to the muscle 

fiber orientation. Pulse the muscle, and observe contraction of the muscle. Repeat this if no 

contraction is observed. Switch the polarity by reversing the orientation of the electrodes and 

pulse the muscle again. 

9. Repeat steps 6-9 on the contralateral hindlimb, 

10. Remove the isoflourance anesthetic, and allow the animal to recover for 4 days without any 

further handling. Do not massage or put any pressure on the injected muscle, as this has been 

shown to markedly reduce expression of the reporter gene (Davis HL et al, Hum Gen Ther). 

Antibiotic water should be given to the animal during recovery. 

11. Perform the denervation surgery after the animal has been left to recover for 4 days, and 

remove the TA muscle for analysis of promoter activity using a luciferase assay. 

 

Whole muscle tissue preparation for luciferase assay 

1. Add 1ml of 5X passive lysis buffer (PLB) into 4ml sterile water to dilute 5-fold. Add 100µl of 

this now diluted 1X PLB into 1.5ml eppendorfs.  

2. Pound the tibialis anterior muscle tissue at the temperature of liquid nitrogen into a fine 

powder using a mortar and pestle. Weigh 30-50mg of this powdered tissue into the 1.5ml 

eppendorfs already containing 100µl of 1X PLB. 

3. Dilute this 7-fold in more 1X PLB. 

4. Mix samples by flicking the eppendorfs briefly, and sonicate samples 3 X 10 seconds on ice. 

5. Centrifuge at max speed on a tabletop centrifuge for 5 minutes at 4°C. 

6. Retain supernates and transfer them to new 1.5ml eppendorfs. Use these supernates for a 

luciferase assay on the same day. 
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RNA Isolation 

Procedure: 

Day 1 

1. Homogenize tissues (100 mg, frozen and powdered) in 1 ml TRIzol reagent in a sterile 13 

ml Sarstedt tube (approximately 3 x 10 seconds @ 30% power); 

Note: The homogenizer must be sterilized in 0.1M NaOH and rinsed in sterile water prior 

to use. Rinse homogenizer in sterile water between samples. 

 

2. Transfer homogenized solution to a sterile 1.5ml Eppendorf, and let stand for 5 min at 

room temperature; 

 

3. Add 400µ chloroform and shake vigorously for 15 sec, let stand for 2-3 min at room 

temperature; 

 

4. Spin at 16100 g for 15 min at 4°C; 

 

5. Transfer aqueous phase to a new sterile 1.5ml Eppendorf; 

 

6. Add 500µl isopropanol, shake vigorously for 15 seconds and place in -20°C freezer to 

allow for RNA precipitation overnight,  

Day 2 

7. Allow RNA to thaw for 10 min at room temperature; 

 

8. Spin at 16000 g for 10 min at 4°C; 

 

9. Remove supernatant and add 700µl 75% ethanol, washing and resuspending the RNA 

pellet; 

 

10. Spin again at 16,000 g for 10 min at 4°C; 

 

11. Remove supernatant, and allow for pellet to air-dry for 40-45 minutes (or until all ethanol 

has evaporated); 

 

12. Dissolve pellet in 30-40μl sterile distilled water and measure absorbance at 260 nm and 

280 nm to determine RNA purity and concentration. 

 

REAGENTS: 

 

 75% ethanol in sterile H2O  

(75 ml 100% ethanol + 25 ml dH2O) 
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Reverse Transcription 

First-strand cDNA synthesis is performed following the manufacturer's recommendations that 

are outlined below: 

 

Reagents: 

Total RNA (isolated as described above) 

Oligo(dT)20 

10 mM each dATP, dTTP, dCTP, dGTP (diluted in sterile DEPC treated water) 

Sterile DEPC treated ddH20  

RNAse OUT  

0.1M Dithiothreitol (DTT) 

5X First-strand Buffer 

SuperScript III RT 

 

Procedure: 

1. Add following components to a nuclease/ RNA-free 500 µl eppendorf: 

Oligo(dT)20     1µl 

1.5 µg of RNA     x µl 

dNTP mix       1 µl 

Sterile ddH20     to 20 µl 

 

2. Employ a thermal cycler to heat mixture to 65°C for 5 minutes.  Collect the contents with 

a quick spin in a tabletop microcentrifuge and then add: 

5X First-strand buffer    4 µl 

0.1 M DTT     2 µl 

RNAse OUT     1 µl 

SuperScript III Reverse Transcriptase  1 µl 

 

3. Using a thermal cycler, incubate at 55°C for 50 minutes, and then inactivate the reaction 

by heating at 70°C for 15 minutes. 

4. cDNA is ready for use in PCR amplification.  
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Polymerase chain reaction (PCR) 

The following protocol for semi-quantitative PCR uses GoTaq polymerases from Promega. 

 

Reagents: 

5X PCR buffer 

25mM MgCl2 

10mM dNTPs (dATP, dTTP, dGTP, dCTP) 

Forward primer 

Reverse primer 

Taq DNA polymerase 

cDNA from Reverse Transcription reaction 

Sterile double distilled water 

 

Procedure: 
The following procedure is only a starting point when using first-strand cDNA in PCR with 

GoTaq DNA polymerase. MgCl2 will vary depending on the primer pair. 

 

1. Combine the following into a 700µl Eppendorf, for each reaction: 

 

5X PCR buffer       10µl 

25mM MgCl2        x µl 

10mM dNTPs (dATP, dTTP, dGTP, dCTP)    1 µl 

Forward primer (30µM)      1 µl 

Reverse primer (30µM)      1 µl 

cDNA from Reverse Transcription reaction    2 µl 

sterile double distilled water      x µl 

Taq DNA polymerase       1 µl 

TOTAL REACTION VOLUME              50 µl 

 

2. Mix gently by pipetting up and down, and layer 1-2 drops of mineral oil on top of the reaction 

to prevent evaporation during PCR. 

3. Heat the samples to 94°C to dentaure the cDNA.  

4. Perform 15-40 cycles of PCR using the recommended annealing and extension parameters for 

your chosen primers. 

5. Optimize PCR conditions for your primers of interest (ie. MgCl2 concentrations, cycle 

number, primer concentrations, annealing temperature).  
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in vitro mRNA Decay Assay 

Preparation of cytosolic extracts: 

1. In a 13ml Sardtedt tube, homogenize skeletal muscle powders (50-100mg) 3 x 10 seconds 

(10mm probe, 40% maximum power) in 1 ml homogenization buffer*. 

2. Transfer to a 1.5ml sterile eppendorf. Centrifuge the homogenates at 4°C for 15 minutes at 

5000 g. Transfer the supernates to a sterile 1.5ml Eppendorf. 

3. Centrifuge the supernates at 4°C for 15 minutes at 15000 g and transfer the resulting post-

mitochondrial supernates (S15) to a sterile 1.5ml eppendorf. 

4. Determine the protein concentration of the S15 fractions using the Braford total protein assay. 

These extracts can be used immediately in the assay, or store at -20°C. 

 

in vitro decay reaction: 

1. Incubate total RNA (35µg) and S15 extract (20µg) in a sterile 700µl eppendorf. Volume up 

the reaction to a 100µl with sterile water, and incubate in a water bath set to 37°C. A baseline 

control must also be made, which allows for an estimation of the amount of RNA present in the 

sample not exposed to the S15 extract. This sample consists of total RNA (35µg) and 

homogenization buffer. Add 100µl phenol to his reaction immediately, and set aside on ice. 

2. Remove aliquots after selected time points (15 and 45 minutes) and add 100µl of phenol to 

stop the decay of the mRNA substrate. Shake vigorously (~15 seconds) and place on ice. 

3. Once all samples have been collected at all time points, spin in a table top centrifuge at max 

speed for 30 seconds. 

4. Transfer the aqueous phase to a sterile 700µl Eppendorf. Add 100µl of 

phenol/chloroform/isoamyl alcohol (P:C:I) in a 25:24:1 ratio, and shake vigorously. 

5. Spin in a table top centrifuge at max speed for 30 seconds. 

6. Transfer the aqueous phase to a sterile 700µl Eppendorf . Add 100µl of chloroform/isoamyl 

alcohol (C:I) in a 24:1 ratio, and shake vigorously. 

7. Spin in a table top centrifuge at max speed for 30 seconds. 

8. Transfer the aqueous phase to a sterile 700µl Eppendorf. Add 10µl of 3M sodium acetate (pH 

5.2) and 300µl of 100% anhydrous ethyl alcohol. Shake vigourously, precipitate at -20°C 

overnight . 

7. Spin in a table top centrifuge at max speed for 15 minutes, at 4°C. 

8. Wash and resuspend the pellet with 750µl of 75% ethanol and spin in a table top centrifuge at 

max speed for 5 minutes at 4°C. 

9. Pour off the supernates, and air dry the pellets.  

10. Resuspend the pellet in 20µl of sterile water. Use 5µl of RNA and combine this with 2.25µl 

of 0.5mg/ml EtBr and 9µl of RNA sample buffer. Volume up to 20µl with sterile water. Run on 

a 1% agarose-formaldehyde gel to determine RNA quality. Use 5µl to determine concentration 

of the RNA on the spectrophotometer. Utilize the remaining RNA for reverse transcription and 

semi-quantitative PCR to determine the relative quantity of mRNA remaining after the decay 

assay.  
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*Homogenization buffer (autoclave solution prior to use – this recipe makes 100ml): 

25% glycerol      25ml of sterile 100% stock solution 

0.42M NaCl      10ml of a 4.2M stock solution 

1.5mM MgCl2      1ml of a 150mM stock solution 

20mM HEPES (pH 7.9)    5ml of a 400mM stock solution 

0.2mM EDTA      40µl of a 0.5M stock solution 

0.5mM DTT      100µl of a 0.5M stock solution 

0.5mM PMSF      100µl of a 0.5M stock solution 

Sterile water      58.76ml 
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Bradford Protein Assay 

Reference: Bradford MM. A rapid and sensitive method for the quantitation of microgram 

quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 72:248-254, 

1976. 

Reagents: 

- Extraction buffer 

 100 mM Na/K PO4 

 2 mM EDTA 

 pH to 7.2 

- 5 X Bradford dye 

 250 ml 85% Phosphoric acid 

 250 ml 100% Ethanol 

 500 ml ddH2O 

 0.235 g Comassie Brilliant Blue G250 

- Bovine Serum Albumin (BSA) 

 2 mg/ml in ddH2O 

 

Procedure: 

1. Prepare the test tubes allowing for duplicates of each sample. 

2. Add 95 µl of extraction buffer to each tube. 

3. Add 5 µl of sample to each tube containing the extraction buffer. 

4. To generate the standard curve, add the following volumes (in µl) of extraction buffer: 

BSA, each in separate tubes – 100:0, 95:5, 90:10, 85:15, 80:20, 75:25. 

5. Dispense 5 ml of 1 X Bradford reagent into each tube and mix by gentle vortexing. 

6. In duplicate, add 0.2 ml of each test tube to 96 well plate wells. 

7. Measure absorbance of wells at 595 nm using a microplate reader; ensure that coefficient 

of determination (R
2
) for standard curve is >0.99. 

8. Calculate the protein concentration of each sample using the standard curve.   
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Cytochrome c oxidase (COX) assay for microplate reader 

Cell extract containing cytochrome c oxidase is added to the test solution containing fully 

reduced cytochrome c. The rate of cytochrome c oxidation is measured over time as a reduction 

in absorbance at 550 nm. The reaction is carried out at 30
o
 C. 

 

Reagents: 

Horse Heart Cytochrome c (Sigma, C-2506) 

Sodium Dithionite 

100 mM K-Phosphate Buffer (KPO4; pH to 7.0) 

-make and mix equal proportions of 0.1 M KH2PO4 and 0.1 M K2HPO4.3H2O 

10 mM K-Phosphate Buffer 

-dilute 100 mM K-Phosphate Buffer 1:10 with ddH2O 

 

Procedure: 

1. Immediately following the completion of the enzyme extraction protocol from cells, 

proceed to making Test Solution.  Add the following to a scintillation vial: 

 

- weigh out 20 mg of horses heart cytochrome c 

- add 1 ml of 10 mM KPO4 buffer and fully dissolve cytochrome c 

- make up a small volume of 10 mg/ ml sodium dithionite- 10 mM KPO4 stock 

solution (Note: make fresh each experiment and use within 20 minutes) 

- add 40 µl of dithionite stock solution to the Test Solution and observe the red to 

orange colour change 

- add 8 ml of ddH2O 

- add 1 ml of 100 mM KPO4 buffer (Note: the Test Solution becomes light sensitive 

at this step; make sure to the cover vial with aluminum foil). 

 

2. Add 300 µl of Test Solution into 4-8 wells of a 96-well microplate and incubate at 30°C 

for 10 minutes to stabilize the temperature and absorbance. 

3. Open KC4 plate reader program. Select CONTROL icon, then PRE-HEATING tab, enter 

30°C and select ON  (Do not run assay until KC4 temperature has reached 30°C). 

4. Set-up COX activity protocol on computer. 

5. Select WIZARD icon, then READING PARAMETERS icon. 

 

 Select Kinetic for Reading Type. 

 Select Absorbance for Reader and 550 nm for wavelength (drop-down). 

 Select Sweep for Read Mode. 

 Select 96 Well Plate (default) for Plate Type. 

 Enter first and last well to be read (eg. A1 and A4 if reading 4 samples 

simultaneously). 

 Select Yes and Pre-heating and enter 30 for Temperature Control. 

 For Shaking enter 0 for both intensity and duration (shaking is not necessary and 

it will delay the first reading).  

 Do not select either of the two options for Pre-reading. 

 Click on the KINETIC… rectangular tile to open the Kinetic window. 

 Enter run time (1 minute is recommended) and select MINIMUM for Interval 
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time (under these conditions the minimum Interval time should be 3 seconds). 

 Select Allow Well Zoom During Read to see data in real time (optional). 

 Under Scales, checkmarks should appear for both Auto check boxes.  Do not 

select Individual Well Auto Scaling. 

 Press OK to return to Reading Parameters window.  Press OK to return to Wizard 

window.  Press OK.  Do not save the protocol. 

 

6. Set the micropipette to 225 µl and secure 4-8 tips on the white projections (make sure 

they are on tight and all the same height). 

7. In a second, clean 96 well plate, pipette samples into 4-8 empty wells (start with A1).  

Recommended volumes: 65 µl of enzyme extract from C2C12 cells. 

8. Remove microplate with Test Solution from the incubator (as long as it has been 

incubating for 10 minutes).  Place this plate beside the plate with the sample extracts in it. 

9. On KC4 program, select the READ icon and press the START READING icon, then 

press the READ PLATE button.  A box will appear that says, “Insert plate and start 

reading”.  Do not press OK yet, but move the mouse so that the cursor hovers over the 

OK button. 

10. Using the micropipette (set to 225 µl) carefully draw up the Test Solution.  Make sure the 

volume is equal in all the pipette tips, and that no significant air bubbles have entered any 

of the tips. 

11. Pipette the Test Solution into the wells with the sample extracts (the second plate).  As 

soon as all the Test Solution has been expelled from the tips (do not wait for the second 

push from the multipipette), place the plate onto the tray of the plate reader and with the 

other hand on the mouse, press the OK button.  (Speed at this point is paramount, as there 

is an unavoidable latency period between the time of pressing the OK button and the time 

of the first reading.)  

12. Once reading is complete, hold the CTRL key on the keyboard, and use the mouse to 

click once on each of the squares corresponding to a well that had sample in it.  Once all 

the desired wells have been highlighted by a black square (up to a maximum of 8 wells), 

let go of the CTRL key and a large graph will appear with lines on it representing each 

sample.   

13. To obtain the rate of change of absorbance over different time periods, select Options and 

enter the amount of time for which you would like a rate of change of absorbance to be 

calculated.  The graph, along with one rate (at whichever time interval is selected) for 

each sample can be printed on a single sheet of paper, and the results can be saved. 

14. The delta absorbance will appear in units of mOD/min and the number given will be 

negative.  Convert this to OD/min by dividing by 1000 and omit the negative sign in the 

calculation.  (eg. if Mean V: -394.8 mOD/mn, then use 0.395 OD/min) 
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Calculation: 
 

CYTOX activity =  mean dealta absorbance/ minute x total volume (ml) x 1000 

        18.5 (µmol/ml extinction coeff.) x sample volume (ml) x total µg/ well 

 

Example Calculation:  

 

55 µl of enzyme extraction   COX activity = (0.5843)(0.285)(1000) 

230 µl of Test Solution                (18.5)(0.055)(3.023 x 55) 

Mean V: -584.30 mOD/mn 

Protein concentration: 3.023 µg/ µl  COX activity = 0.967 nmol/min/µg protein 

Total µg/ well: 151.15 
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Mitochondrial Isolation Protocol 

Reagents: 

All buffers are set to pH 7.4 and stored at 4 °C. 

 

Buffer 1      Buffer 1 + ATP 

100 mM KCl      Add 1 mM ATP to Buffer 1 

5 mM MgSO4 

5 mM EDTA 

50 mM Tris base 

 

Resuspension medium 

100 mM KCl 

10 mM MOPS 

0.2% BSA 

 

Procedure: 

1. Remove the tibialis anterior (TA) muscle from the rat, and put it in a beaker containing 5 ml of 

Buffer 1(on ice) immediately. 

2. Place TA on a watch glass (that is also on ice) and trim away fat and connective tissue.  

Proceed to thoroughly mince the muscle sample with forceps and scissors, until no large pieces 

are remaining.  

3. Place the minced tissue in a plastic centrifuge tube and record the exact weight of tissue. 

4. Add a 10-fold dilution of Buffer 1 + ATP to the tube. 

5. Homogenize the samples using the Ultra-Turrax polytron with 40% power output and 10 s 

exposure time.  Rinse the shaft with 0.5 ml of Buffer 1 + ATP (with a 1 ml pipette) to help 

minimize sample loss. 

6. Using a Beckman JA 25.50 rotor, spin the homogenate at a centrifuge setting of 800 g for 10 

min. This step divides the IMF and SS mitochondrial subfractions.  The supernate will contain 

the SS mitochondria and the pellet will contain the IMF mitochondria. 

 

 Subsarcolemmal Mitochondria Isolation: 

7. Filter the supernate through a single layer of cheesecloth into a second set of 50 ml plastic 

centrifuge tubes. 

8. Spin tubes at 9000 g for 10 min.  Upon completion of the spin, set aside the supernate (as the 

cytosols will can be recovered from these) and gently resuspend the pellet in 3.5 ml of Buffer 1 + 

ATP.  Since the mitochondria are easily damaged, it is important that the resuspension of the 

pellet is done carefully. 

9. Repeat the centifugation of the previous step (9000 g for 10 min) and discard the supernate. 

10. Resuspend the pellet in 200 µl of Resuspension medium, being gentle so as to prevent 

damage to the SS mitochondria. Some extra time is needed during this final resuspension to 

ensure the SS pellet is completely resuspended. 

11. Keep the SS samples on ice while proceeding to recover cytosols from these samples. 

 

 Cytosolic Fraction Recovery: 

12. Using the supernate set aside in step 8, fill a centrifuge tube (Beckman Optiseal Polyallomer 

8.9ml) using a Pasteur pipette and top up to the brim with Buffer 1 + ATP.  
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13. Place these tubes in a TI 70.1 rotor, and using an ultracentrifuge, spin for one hour at 100,000 

x g. 

14. Following centrifugation, transfer the supernate to a sterile 13 ml sample tube.  

15. Transfer the entire contents of the recovered supernate to the chamber of the stirred filtration 

system (Millipore/Amicon Stirred Ultracell Filtration System Model 8010). At 4 °C, use 

compressed nitrogen to filter the supernate through the apparatus and ultrafiltration discs 

(Millipore Ultracell 10 kDa, 25mm diameter), which have been soaked in 10% ethanol.  

16. The remaining concentrate can be assayed (along with the subsarcolemmal mitochondria) to 

determine protein concentration using the Bradford protein assay. 
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SDS polyacrylamide gel electrophoresis (SDS-PAGE) 

Reagents: 

- Polyacrylamide solution   - Under Tris buffer 

 30% (w/v) Acrylamide   1 M Tris•HCl 

 0.8% (w/v) Bisacrylamide   pH to 8.8, store at 4 °C 

 Filter and store at 4 °C 

 

- Ammonium Persulfate (APS)  - Sodium Dodecyl Sulfate (SDS) 

 10% (w/v) in ddH2O    10% (w/v) in ddH2O 

 Store at 4 °C 

 

- Over Tris buffer    - TEMED (Sigma, T-9281) 

 1 M Tris•HCl     Store at 4 °C 

 Spatula tip of Bromophenol Blue 

 pH to 6.8, store at 4 °C 

 

- 15% Acrylamide separating gel  - Electrophoresis buffer 

 5 ml 30% acrylamide    25 mM Tris  

 1.8 ml ddH2O     192 mM Glycine 

 3 ml Under Tris    0.1% (w/v) SDS 

 0.1 ml SDS     pH to 8.3 

 0.1 ml APS 

 0.01 ml TEMED 

 

- 3% Acrylamide stacking gel   - Lysis buffer 

 0.5 ml 30% Acrylamide   10% (w/v) glycerol 

 3.75 ml ddH2O    2.3% (w/v) SDS 

 0.625 ml Over Tris    62.5 mM Tris•HCl 

 0.05 ml SDS     pH to 6.8 

 0.05 ml APS     add 5% β-mercaptoethanol  

 7.5 µl TEMED 

 

- Sample dye 

 40% (w/v) sucrose in electrophoresis buffer 

 spatula tip of Bromophenol Blue 

 (store at -20 °C) 

 

Procedure: 

1. Prepare the separating gel solution and pour it between the glass plates of a gel apparatus 

assembly. 

2. Add 100 µl of 2-butanol alcohol overlay and allow 30 min for gel polymerization. 

3. Prepare the stacking gel. 

4. Once the separating gel has polymerized, pour off the 2-butanol alcohol and wash with 

distilled water. Pour stacking gel on top of separating gel, and insert the lane comb. Allow 30 

min for the stacking gel to polymerize. 

5. Turn on the block heater to 95 °C. 
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6. Mix each sample with a 1:1 volume of 1 x lysis buffer. 

7. Add 7 µl of sample dye to each sample and mix by vortexing. 

8. Denature the samples at 95 °C for 5 min, followed by a quick cool on ice and a brief spin.  

9. Remove the comb and place the gel in the electrophoresis chamber.  Fill the chamber with 

electrophoresis buffer. 

10. Add 10 µl of protein molecular weight marker to the first lane. 

11. Load the samples into the remaining lanes by slowly ejecting the entire sample volume at the 

bottom of the lane. 

12. Run the gel for the desired time at 120 V. 

13. Once the Bromophenol Blue band has reached the bottom of the gel, turn off the power 

supply and remove the gel.  The gel slab is ready for electroblotting (see Western Blot) 
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Western Blot 

Reagents 

- Transfer buffer    - Wash buffer 

 0.025 M Tris•HCl    10 mM Tris•HCl 

 0.15 M Glycine    100 mM NaCl 

 20% Methanol     0.1% TWEEN 

 pH to 8.3     pH to 7.5 

- Ponceau stain (Sigma)   - Blocking buffer 

 Dilute with 150 ml ddH2O   % skim milk powder in wash buffer 

-  Enhanced chemiluminescence (ECL) fluid (Santa Cruz) 

 Store at 4 °C 

 

Procedure: 

1. Remove the gel from the electrophoresis chamber, and separate the glass plates from the gel 

slab, keeping the gel moist at all times with transfer buffer. 

2. Place three sheets of Whatman paper soaked in transfer buffer onto the plastic cassette, with a 

cloth.  These sheets must be cut to the exact dimensions of the gel slab (8.5 x 6 cm). 

3. Carefully place the gel on top of the Whatman paper. 

4. Cut a piece of nitrocellulose membrane to the exact dimensions of the gel, soak it in transfer 

buffer, and place it on top of the gel slab. 

5. Stack three more sheets of transfer buffer-soaked Whatman paper (same dimensions as gel) on 

top of membrane.  Roll out any air bubbles with a glass test tube. 

6. Secure the top of the sandwich with another cloth soaked in transfer buffer. 

7. Transfer the proteins from the gel to the membrane for 1.5 hours at 120V.   

8. Once the transfer is complete, place the membrane in Ponceau stain and gently agitate on a 

shaker plate.  Pour off the stain and rinse with ddH2O until the protein bands on the blot are 

revealed. 

9. Wrap the membrane in plastic saran wrap and scan. 

10. Remove the membrane from the wrap and rinse off the Ponceau stain with wash buffer. 

11. Pour off the wash buffer and block the membrane in blocking solution (5% skim milk 

powder) on a shaker plate for 1 hour at room temperature. 

12. Incubate the membrane with primary antibody diluted in blocking buffer (unless 

recommended otherwise by the antibody manufacturer) overnight at 4°C.  This is done by laying 

the membrane face-up and pipetting the primary antibody solution on top of it. 

13. The following morning, wash the membrane with rotation 3 x 5 min in wash buffer using a 

shaker plate. 

14. Incubate the membrane with the appropriate secondary antibody for 1 hr at room 

temperature.  This is done by laying the membrane face-up and pipetting the secondary antibody 

solution on top of it. 

15. Wash the membrane with rotation 3 x 5 min in wash buffer using a shaker plate. 

16. In the dark room, apply ECL fluids (1:1) to the membrane for 1 min. 

17. Remove the membrane from the ECL fluid, wrap the membrane in plastic wrap, turn off the 

lights, and expose the blot to film. 

18. Immerse in developing fluid until bands are visible and place the film into fixer fluid for 2 

min. 
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Succinate Dehydrogenase Staining of Muscle Sections Protocol 

Reagents: 

0.2M Sodium Succinate Solution 

Sodium Succiante: 5.4 g 

Distilled Water: 100ml 

0.2M Phosphate Buffer, pH 7.4 

Na2HPO4 (mol wt. 141.98): 11.36 g/400ml distilled water 

KH2PO4 (mol wt. 136.90): 2.72 g/100ml distilled water 

Add Na2HPO4 to distilled water, otherwise a hard mass will form at the bottom of the 

beaker and will be difficult to dissolve. Dissolve each of the reagents separately, and then 

add them together to make a solution 500ml. pH solution to 7.4 and refrigerate at 4⁰C to 

preserve. 

SDH Stock Solution (make fresh every two weeks) 

 0.2M Sodium Succinate: 100ml 

 0.2M Phosphate Buffer, pH 7.4: 100ml 

SDH Incubating Solution (pH 7.2-7.6; adjust solution using 0.1N HCl or NaOH) 

 Nitroblue tetrazolium (NBT): 10mg 

 SDH Stock Solution: 10ml 

 *Cover jar containing solution in aluminum foil as the solution is light sensitive. 

 

Procedure: 

1. Preheat SDH incubating solution to 37⁰C in oven before staining in opaque plastic 

chamber. 

2. Remove muscle sections (10µm) on slide from -20⁰C freezer and let thaw for 5-10 

minutes. 

3. Place slides in slide rack, and into opaque plastic chamber containing SDH incubating 

solution. Place cover on chamber and incubate at 37⁰C in oven for 30 minutes. 

4. Remove chamber from oven, and inspect sections to ensure adequately stained. Place 

back in oven if they are not. Otherwise, remove slide rack and place in plastic chamber 

containing distilled water to rinse slides (put on shaker plate for 3 x 5 minutes, ~30-

40rpm, change water after each 5 minute period). 

5. After washing, place on kimwipe in fume hood to air dry. 

6. Once dry, mount cover glass (FisherBrand microscope cover glass) on slides using DPX 

Mountant for histology (Fluka BioChemika no. 44581). Use a cut pipette tip to pipette 

mountant as it is highly viscous. Ensure no bubbles are formed when placing the cover 

glass on the slide. Allow to dry overnight. 
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