
 
 

 
 

The Preparation of Gamma-Arlyated Ketones via 

Palladium-Catalyzed Cross-Coupling of 

Cyclopropanol-Derived Homoenolates with Benzyl 

Chlorides 

 

 Nisha Nithiyananthan 

 

A Thesis submitted to the Faculty of Graduate Studies in 

Partial Fulfillment of the Requirements 

For the Degree of 

Master of Science 

 

Graduate Program in Chemistry 

York University 

Toronto, Ontario  

August 2014 

© Nisha Nithiyananthan, 2014 

 



 
 

ii 
 

Abstract 

The first palladium-catalyzed cross-coupling reaction of cyclopropanol-derived ketone 

homoenolates with benzyl halides, was developed to prepare a variety of γ-arylated ketones. 

One of the major challenges of this cross-coupling reaction was the competing cleavage of the 

cyclopropanol starting material to the ring-opened ketone under the reaction conditions. 

Through systematic optimization studies involving screens of base, ligands, solvents, 

temperature, Pd sources, conditions for the high yielding cross coupling of 1-

phenethylcyclopropanol with 4-methyl benzyl chloride were found. With optimized conditions 

excellent yields were obtained for the cross-coupling of various electron rich and neutral benzyl 

chlorides. Moreover, these conditions were also used to successfully cross couple a variety of 

cyclopropanols to 4-methyl benzyl chloride. This reaction is also shown to work with a low 

catalyst loading of 1 mol % and in gram-scale without any reduction in yie
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Chapter 1: Introduction 

1.1 Palladium Catalyzed Cross-Coupling Reactions  

The formation of carbon-carbon bonds is of critical importance to synthetic organic chemistry. In 

fact, carbon-carbon bond forming reactions are so powerful and their development has been so 

monumental that several Nobel prizes in Chemistry were awarded to this feat. This includes the 

Grignard Reaction in 1912, the Diels-Alder reaction in 1950, the Wittig reaction in 1979 and 

olefin metathesis in 2005. More recently in 2010 the Nobel prize was given jointly to Heck, 

Negishi and Suzuki for their work in Palladium-catalyzed cross-coupling reactions, which has 

revolutionized synthetic chemistry and has led to tremendous advances in the construction of 

organic molecules.1 

Palladium has the remarkable ability to catalyze the formation of carbon-carbon, carbon-

nitrogen and carbon-oxygen bonds. The synthetic utility of palladium arises from its tolerance of 

a wide variety of functional groups. Furthermore, many established palladium catalyzed 

reactions also benefit from stereo- and regioselective control of products in excellent yields. 

Much of the efficacy of palladium is due to its ability to shuttle between states, Pd(0), Pd(II), and 

in some rare cases Pd(IV). 2 In a typical Pd-catalyzed reaction the metal undergoes certain 

elementary steps which make up the general catalytic cycle of a coupling reaction, as shown in 

Scheme 1.3 
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Scheme 1. General catalytic cycle for palladium-catalyzed cross-coupling reactions. 

In most cross-coupling reactions, the catalytic cycle begins with an organohalide or 

pseudohalide oxidatevely adding across a Pd(0) species and converting it to Pd(II). In cases 

where the starting material is an organometallic compound, the second step of the cycle 

involves the transfer of the organic group from the organometallic compound to the Pd(II) 

complex, releasing metal halide in a process known as transmetalation. In reductive elimination, 

the final step of the cycle, the two organic groups are coupled together to give a new carbon-

carbon single bond and consequently reducing Pd(II) back to Pd(0).There are several well-

established cross-coupling reactions based on Pd that have gained widespread use in industry 

and research. These name reactions (what they are commonly referred to), shown in Figure 1, 

vary by the metal and/or activating group found on the coupling partners.4 
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Figure 1. Well-known palladium catalyzed cross-coupling reactions. 

 

There have been significant advances and extensions to these pioneering reactions recently 

reported literature. However, the use of unusual functional groups in the development of new 

palladium-catalyzed reactions has received considerably less attention.  
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1.2. Homoenolates in organic synthesis  

Conventional strategies for organic synthesis exploit complementary reactivities based on 

charge affinity patterns. Consider for example the case of a typical aldol condensation reaction 

whereby the nucleophilic α-carbon (
 of a ketone reacts favorably with the electrophilic 

carbonyl carbon (
 of an aldehyde to yield a β-hydroxy ketone as shown in Figure 2. The 

charge affinity pattern in both reactants is dictated by the carbonyl moiety which imposes an 

alternating distribution of partial charge in the carbon frame work.5  

 

Figure 2. Complementary charge affinity patterns of reactants in aldol and homoaldol reactions. 

The analysis of charge affinity patterns is often used in retrosynthetic planning to identify 

potential disconnections and also to evade functional group incompatibilities. For instance, the 

β-carbon of a ketone is often viewed as electrophilic based on the charge affinity pattern 

imposed by the carbonyl group. Hence achieving a 1,3-relationship between functional groups is 

straight forward, whereas a 1,4-relationship, as in the homoaldol case, is more challenging due 

to the dissonant (non-matching) relationship between the synthons. For this reason, reactions in 

which the normal charge affinity patterns are reversed are of great interest in organic synthesis. 

Homoenolates are a special class of umpolung6 synthons that display a charge affinity pattern 

opposite to that of an α,β-unsaturated ketone (Fig. 3). These synthetic tools exhibit reversed 

polarity owing to a metal (electropositive) bound to the β-carbon. The β-carbon becomes 

nucleophilic and can then serve as unique means to access useful 1,4-homoaldol 

disconnections.  
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Figure 3. Comparison of charge affinity patterns in α,β- unsaturated ketone and homoenolate. 

1.3 Homoenolization via direct deprotonation  

Homoenolates, unlike enolates, are generally difficult to prepare via direct deprotonation at the 

β-carbon. Enolates benefit from resonance stabilization whereby delocalization of a negative 

charge into the neighbouring carbonyl group, lowers the pKa and drives the formation of an α-

anion. The pKa of the β-carbon on the other hand is significantly higher since the distance from 

the carbonyl center prevents delocalization of the negative charge and thus β-anions would not 

be resonance stabilized.  

Deprotonation at the β-position is possible7 but is limited to sterochemicaly constrained systems 

like (+)-camphenoline as reported by Nickon in 1962. 8 As shown in Scheme 2, deprotonation of 

(+)-camphenoline occurs selectively at the β-position leading to a homoenolate that is stabilized 

by the formation of  a meso-cyclopropoxide. α-Enolization is not favorable in these bicyclic 

systems because the α-C-H molecular orbital is not parallel to the π-orbital of the carbonyl 

group, and so the α-anion cannot be resonance stabilized. This method of generating 

homoenolate is quite impractical as it requires really high temperatures and is limited to 

substrates with unique stereochemical requirements that lower the acidity of the α-carbon 

meanwhile favoring enolization at the β-position.  
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Scheme 2. Homoenolate generation through direct deprotonation at the β-carbon. 

1.4 Protecting-group strategies for homoenolate preparations 

Another major challenge in preparing homoenolate synthons is that the carbonyl carbon, being 

electrophilic in nature, remains a potential site for attack complicating the use of the 

homoenolate. To overcome this issue, carbonyl protecting-group strategies have been 

employed in metalation reactions used to generate homoenolates. Bϋchi and Wϋset showed 

that acetal protecting groups can be used in the preparation Grignard reagents that serve as 

homoenolate synthons (Scheme 3A).9 Other protecting methods involve generating silyl enol 

ethers of ketones as homoenolate equivalents (Scheme 3B).10  This approach is disfavored as 

the use of protecting groups leads to longer synthetic protocols and potential complications.  

 

 

Scheme 3. Protecting group strategies for generating homoenolate synthons.  
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1.5 Preparation of homoenolates from NHC 
 

One novel way of circumventing the use of protecting groups is through the use of NHCs to 

generate homoenolates from α,β- unsaturated aldehydes. In 1958, Breslow reported that the 

addition of NHC to an activated carbonyl moiety leads to a polarity reversal of the carbonyl 

species.11 Based on this postulate, Bode and Glorius independently reported the addition of 

NHC to α,β-unsaturated aldehyde to catalytically generate aldehyde homoenolates (Scheme 

4).12, 13 One major complication associated with this approach is the competing 

homodimerization reaction of the enal. Moreover, the scope of NHC- generated homoenolates 

are predominately limited to those generated from addition of NHC to α,β-unsaturated 

aldehydes or as in some cases, dienones.14  

 

Scheme 4. NHC-mediated formation of homoenolate. 

1.6 Homoenolates from ring opening of siloxycyclopropanes 

 

The first reliable method of homoenolate preparation was established by Kuwajima’s seminal 

work in 1977 wherein they reported a TiCl4-mediated reaction of 1-alkoxy-1-siloxy-cyclopropane 

with aldehydes. This reaction was postulated to go through a titanium homoenolate intermediate 

followed by a homoaldol condensation (Scheme 5).15 
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Scheme 5. Generation of homoenolate from titanium mediated ring opening of 

siloxycyclopropane. 

These titanium homoenolates were the first stable metal homoenolates that could be isolated. 

They exhibit significant nucleophilic reactivity towards external electrophiles including carbonyl 

compounds to give 4-hydroxy esters in good yield.16 Since the evolution of titanium 

homoenolates, a host of other metal homoenolates have been prepared via ring opening of 

siloxycylcopropanes with certain metal salts including zinc, mercury, tin, cooper, antimony and 

palladium (Scheme 6).17  

 

 

Scheme 6. Preparation of metal homoenolates from siloxycyclopropanes. 

 

1.7 Transmetalation of pre-formed homoenolates to palladium. 

Given the advent of palladium chemistry in carbon-carbon bond formation through cross-

coupling reactions, the generation of palladium homoenolates has gained interest as a more 

practical method of incorporating homoenolates into organic synthesis. The most direct route to 

palladium homoenolates is through transmetalation of pre-formed metal homoenolates. Zinc 

ester homoenolates, which are prepared from Zn/Cu treatment of β-iodoesters, can be 

transmetalated to palladium and subsequently cross-coupled to aryl and alkenyl iodides (Fig. 
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4a).18 Potassium trifluoroborato homoenolates can be generated from copper-catalyzed 

conjugate addition of bis(pinacolato)diboron followed by treatment with KHF2.
19  These boron 

homoenolates can be cross-coupled to aryl bromides via palladium catalytic cycle (Fig. 4b).20 

Indium ketone homoenolates which are prepared by treatment of α,β-unsaturated ketones with 

In/InCl3, are remarkably stable due to lone pair interactions between two ketone units and the 

indium atome. These can be cross-coupled with a variety of acid chlorides, with both 

homoenolate units participating in the reaction (Fig. 4c).21  

 

a. Zinc  

 
 

b. Boron 

 
 

c. Indium   

 
 

Figure 4. Generation of palladium homoenolates via transmetalation with pre-formed metal 

homoenolates   

1.8 Generation of homoenolates via palladium-catalyzed C-H activation 

 

Palladium-catalyzed C-H functionalization at the β-position of a carbonyl group is a strategy 

used to generate homoenolates that circumvents the need for pre-formed homoenolates. The 

functionalization of C(sp3)–H often relies on the use of directing groups to guide the metal to a 
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particular site. In this fashion, the carbonyl group of acids and amides have been shown to 

direct C–H functionalization leading to homoenolate equivalents. Notable work by Yu and co-

workers demonstrate the participation of palladium in directed insertion into β-C(sp3)-H bonds of 

carboxylic acids22 and O-methyl hydroxamic acids23 to generate homoenolates that were 

subsequently cross-coupled with boronic esters or acids (Scheme 7). This cross-coupling 

reaction is largely confined to the use of substrates that are incapable of β-hydride elimination, 

thus bearing an all-carbon quaternary center at the α-position. Another directing group strategy 

used for selective β-C(sp3)-H functionalization is the use of auxiliaries like 8-aminoquinoline 

which can be used for direct arylation at the β-position of aliphatic amides. 24 

 

 

Scheme 7.  Generation of homoenolate via palladium catalyzed β- C (sp3)-H functionalization  

 

1.9 Homoenolate generation by palladium-catalyzed isomerization of enolates 

 

Baudoin, Clot and co-workers showed that under forceful conditions, hindered α-tertiary 

carboxylic ester-derived palladium enolates can rearrange to form less-hindered palladium 
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homoenolates, which can be cross-coupled with a range of aryl and heteroaryl bromides and 

chlorides to yield β-arylated esters (Scheme 8).25 A strong non-nucleophillic base (Cy2NLi) is 

needed to generate a lithium ester enolate, that coordinates to palladium. Mechanistic studies of 

this reaction suggest that β-hydride elimination occurs upon coordination, followed by rotation of 

the metal adduct to a less hindered side and then reinsertion of the palladium to the β-carbon, 

generating the homoenolate.  

  

Scheme 8. Purposed mechanism of palladium homoenolate generation via. enolate-

homenolate isomerization 

 

1.10 Palladium homoenolates via ring cleavage of cyclopropanol derivatives  

 

Kuwajima and Nakumara’s work in 1988 used the siloxycyclopropane ring cleavage approach to 

generate palladium homoenolates, which were then shown to cross-couple to aryl and alkenyl 

triflates26 and acid chlorides27 (Scheme 9). This chemistry was later expanded by Nakumara to 

include carbonylative cross-coupling reactions of cyclopropane acetals.28   
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Scheme 9. Catalytic generation of palladium homoenolates from cyclopropane acetals and 

cross-coupling with aryl triflates and acid chlorides 

 

The first cross-coupling reaction between unprotected cyclopropanol-derived ketone 

homoenolates (deprotected in situ) and aryl halides was reported by the Orellana group in 2011 

(Scheme 11a).29 These reactions employed substrates with quaternary β carbons to avoid the 

competing β-hydride elimination reaction, which posed a problem. The ring opening of these 

cyclopropanols is thought to occur via the formation of a palladium alkoxide intermediate 

followed by a β-carbon elimination step, as suggested by Cha based on studies of palladium-

catalyzed oxidative reaarangement of cyclopropanols to α,β-unsaturated ketones (Scheme 

10).30 

 

 

 

Scheme 10. Generation of ketone palladium homoenolates from cyclopropanols 

 

The scope of this reaction was later expanded to include unprotected cyclopropanols bearing β-

hydrogens (Scheme 11b).31 Notably, β-hydride elimination was not observed with the use of 

bidentate phosphine ligands, such as dppb. Cyclopropanol-derived palladium homoenolates of 

aldehydes have also been prepared and their cross-coupling reactions with aryl bromides has 

been reported by Walsh (Scheme 11c).32 
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Scheme 11. Palladium catalyzed cross-coupling of cyclopropanol derived ketone and aldehyde 

homoenolates with aryl halides 

 

1.11 Ring strain in cyclopropanes 

As discussed above, our group has reported on the use of cyclopropanol-derived palladium 

homoenolates to produce ketones functionalized at the α position (Scheme 10 a & b). These 

reactions rely on strain release as a driving force to generate the homoenolates. Cyclopropane 

moieties are used in particular because they exhibit high strain energy of  27.5 kcal/mol when 

compared to other small ring molecules. This strain energy of cyclopropanes has been 

attributed to both the angle strain; caused by a huge deviation from the ideal 109.5° of sp3 

hybridized orbitals, and also to torsional strain caused by having all hydrogens eclipsing on both 

the top and bottom of the ring plane (Fig. 5).33  
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Figure 5. Representation of angle and torsional strain in cyclopropanes 

 

1.12 Palladium-catalyzed preparations of gamma-arylated ketones 

A review of literature on the preparation of gamma-arylated ketones gives few examples of 

palladium catalyzed methods. The first example that employed palladium catalyzed cross-

coupling to generate these ketones was reported by Nomura (Scheme 14) wherein they showed 

regioselective arylation at the gamma position of α,β-unsaturated carbonyl compounds with aryl 

bromides by palladium catalysis.34 This reaction was though to occur via a direct catalytic 

arylative substitution of allylic hydrogens, involving dienolate anions as principle intermediates. 

Similarly, the Buchwald group reported on the palladium-catalyzed gamma-arylation of cyclic 

α,β-unsaturated ketones that proceeds through dienolate intermediates.35 In both Nomura’s and 

Buchwald’s methods the enal or enone functionality is retained in the gamma-arylated ketone 

product.  
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Scheme 14. Palladium-catalyzed routes to γ-arylated ketones  

In recent years work by Martin36 showed a more general approach to γ-arylated ketones through 

the strain-releasing reactions of cyclobutanols via a palladium-catalyzed arylation that involves 

β-carbon elimination of deprotonated cyclobutanol and cross-coupling to aryl chlorides. In our 

study we propose to take an alternate approach using cyclopropanol derived homoenolate 

ketones with benzyl halides as cross-coupling partners. One of the major practical advantages 

of this route is that cyclopropanols can be prepared readily by several well-established reactions 

including those developed by Kulinkovich37 and Simmons-Smith38. 
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1.13 Coordination of benzyl halides to metal centers  

The benzyl halides are remarkable cross-coupling partners since they exhibit a fascinating 

metal binding pattern. Like the bonding in metal-allyl complexes, the metal-benzyl coordination 

can exist as either a σ-(ɳ1) complex or a π-(ɳ3) complex (Scheme 15).40 The formation of the π 

(ɳ3) complex is thought to lead to a loss in aromaticity in the ring. King and Frongzaglia were the 

first to show evidence for the π-(ɳ3) binding mode of benzyl systems through NMR studies of an 

isolated molybdenum-benzyl complex.41 X-ray studies on the benzyl complex revealed bonding 

between Mo and all three carbons that make the ɳ3-coordination. NMR studies also showed a 

fluxional behavior characteristic of a π-σ-π isomerization of the benzyl ligand. Although not as 

prevalent as aryl and vinyl halides, benzyl halides have also been successfully exploited in a 

number of known palladium name reactions such as Heck, Suzuki, Stille, Negishi, Sonagashira 

and Tsuji-Trost.42  

 

Scheme 15. Metal ɳ3-benzyl complex 

Given the differences in metal-benzyl coordination and benzyl halide reactivities, we anticipated 

that cross-coupling of cyclopropanol-derived palladium homoenolates with benzyl halides will be 



17 
 

governed by a significantly different mechanism from the previously reported cross-coupling 

reaction using aryl bromides, and therefore necessitate a new set of conditions. 

1.14 Plan of study 

We are interested in extending the chemistry of cyclopropanol-derived homoenolates as 

synthons to access unique synthetic disconnections. The goal of this work is to furnish γ- 

arylated ketones via palladium-catalyzed cross-coupling of cyclopropanol-derived palladium 

homoenolates to benzyl halides (Scheme 12).  

 

 

 

Scheme 12. Proposed cross-coupling of cyclopropanol-derived ketone homoenolates with 

benzyl bromides 

 

The traditional approach to access gamma-arylated ketones would be through an enolate 

alkylation approach that involves an electrophillic addition of phenyl ethyl halide to the terminal 

enolate generated from the ketone shown in Scheme 13a. This approach can suffer from poor 

enolization regioselectivity due to competing pKa profiles at the terminal and benzyl position 

(24.8 and 19.9 in DMSO, respectively), that can lead to the formation of the undesired enolate. 

Moreover, the phenethyl halide reagent required is prone to E2 elimination reactions in the 

presence of strong base, making its use difficult. In striking contrast, the use of a homoenolate 

as the nucleophile avoids these competing enolization and elimination reactions (Scheme 13b).  
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Scheme 13. Traditional enolate disconnection (top) vs. homoenolate disconnection (bottom) of 

γ-arylated ketones 

A plausible reaction mechanism (Scheme 16) for our proposed transformation would involve 

oxidative addition to the benzyl halide (Step I) followed by coordination and deprotonation of 

cyclopropanol onto the Pd(II) complex (Step II and III). β-Carbon elimination to generate the 

homoenolate (Step IV) followed by reductive elimination would yield the desired ketone (Step 

V).  
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Scheme 16. Plausible catalytic cycle for the cross-coupling of benzyl halides with cyclopropanol 

derived ketone homoenolates. 

 

Chapter 2: Results and Discussion 

2.1 Initial findings and challenges  

We began our study using the model substrate cyclopropanol 1 as was used by Orellana and 

Rosa in their cross-coupling reactions with aryl bromides.31 Substrate 1 was prepared according 

to previously reported procedure using the Kulinkovich reaction (Eq. 1).37 

  

In our initial reaction, benzyl cyclopropanol 1 was coupled with p-methyl benzyl bromide (Eq.2) 

in 27% yield of the coupled product 2 using Pd2dba3 as the palladium (0) source and Xphos as 

the ligand.  
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 (2) 

This result however was not reproducible and subsequent trials with the exact same reaction 

conditions did not yield any coupled product but instead yielded the ketone from the ring 

opening of cyclopropanol. It was also noted that the ketone 3 and the coupled product 2 had the 

same Rf by thin layer chromatography, and were not easily separated with various solvent 

mixtures using traditional silica gel column chromatography.  

2.2 Optimization studies  

To overcome separation issues we switched to cyclopropanol 4 (Eq. 3). We hypothesized that 

by replacing the t-butyl group with a more polar substituent on the benzyl cyclopropanol, the 

coupled product 5 and the ring-opened product 6, would have a significant difference in polarity 

and thus could be more readily separated.  

Keeping the Pd(0) source consistent, a ligand screen with substrate 4 was carried out using the 

monodentate ligands; PPh3, HP+(Bu)3BF4
-, Sphos and Davephos and the bidentate ligands 

dppe and dppp. None of these ligands however yielded the desired coupled product. When the 

monodentate Buchwald phosphine ligand Xphos was used, the coupled product was observed 

(eq. 4). Purification of this product by silica gel column chromatography yielded the coupled 

product 5 plus ketone 6 as a minor impurity that could not be separated. Contrary to our 

rationale, the difference in polarities between the coupled product the ketone resulting from the 
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ring opening of the cyclopropanol, did not change significantly with substrate 4 and both 

products still had the same Rf. We were able to determine the ratio of the coupled product to the 

ring-opened ketone through NMR analysis. Our initial reaction with Xphos gave a 50%:17% 

yield ratio of the coupled to the side product.  

  

In order to avoid the base mediated ring opening of the cyclopropanol to the corresponding 

ketone, a base screen was carried out to qualitatively asses the stability of the cyclopropanol 

under different bases (Table 1). Cyclopropanol 1 was subjected to two equivalence of base in 

toluene at 80°C and the time it took until the first appearance of ring cleavage to form the 

ketone, was monitored through TLC analysis. Potassium t-butoxide cleaved the cyclopropanol 

within five minutes. With both phosphate and acetate bases the cyclopropanol remained stable 

for several hours longer (up to 6 hours) but the ring cleavage starts to occur within 16 hours. 

The organic base pyridine was also included in the study since, unlike salt bases, it is soluble in 

organic solvents. The ketone was not observed until 22 hours in the reaction pot with pyridine. 

Among the carbonate bases silver carbonate mediated the ring opening in 40 minutes, whereas 

cesium carbonate and potassium carbonate did not cleave the ring even after 25 hours.  

 

 

 

 



22 
 

Table 1. Qualitative assessment of cyclopropanol stability under various bases through TLC 

analysis of the first appearance of the ketone derived from ring opening.  

 

Entry   Base Time 

1 Cs2CO3 >25 hours 

2 Ag2CO3 40 minutes 

3 K2CO3 >25 hours  

4 KOAc <16 hours 

5 CsOAc <16 hours 

6 K3PO4 <16 hours  

7 KOtBu  5 minutes 

8 Pyridine  22 hours 

 

The use K2CO3 and Ag2CO3 as the base in this coupling reaction (Table 2) was compared to 

Cs2CO3 (eq. 4) and it was found that using Cs2CO3 as the base gave the best yield of the 

coupled product. Yields higher than 50% were not obtained using these reaction conditions with 

substrate cyclopropanol 4, so further optimization strategies were needed. 

Table 2. Base effects on cross coupling reaction of 4-methoxybenzyl cyclopropanol with 4-

methyl benzyl chloride. 

 

Entry Base NMR conversion 5 :6 

1 K2CO3 23%: 10% 

2 Ag2CO3 7%: 16% 

3 Cs2CO3 50%: 17% 
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At this point we decided to switch the cyclopropanol substrate from a benzyl cyclopropanol 4, to 

a phenylethyl cyclopropanol. It was reasoned that ketones with benzyl groups attached may be 

prone to enolization under basic conditions via deprotonation at the benzyl position (pKa =19.9 

in DMSO). The enolization pathway may in turn be leading to decreased yield of the coupled 

product. To avoid this possible interference we switched to phenylethyl cyclopropanol 7, which 

would have relatively low alpha aciditiy.  

This idea was investigated by subjecting cyclopropanol 7 and benzyl bromide to our previous 

catalyst system. Remarkably, a 90% yield of the desired coupled product was obtained (Eq. 4). 

Again, we observed ketone 9 as a minor impurity that could not be separated from the coupled 

product by silica gel coloumn chromatography despite multiple efforts using different solvent 

systems. NMR analysis of the product yield ratio showed that the yield of 9 was approximately 

6%.  

 

Although a high yield of the coupled product was obtained, we were interested in further 

suppressing the formation of ketone 9.  

Our next consideration was the role of the solvent in mediating the formation of the ketone from 

ring opening. Solvents can affect basicity via solubility and coordination. Since cyclopropanols 

are known to ring open under basic conditions43, fine tuning the basic environment through 

solvent selection can have a profound effect on the yields of the desired product. 

Thus a solvent screen was carried out using solvents of varying polarities (Table 3). Toluene, 

which was used in the initial reaction conditions, gave better yield of cross-coupled product 

(90%) than any of the other solvents screened. Using toluene, the effect of temperature on the 

yield of coupled product was studied. When the temperature was lowered (Table 3, entry 1) the 
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ratio of coupled product to 9 decreased. When the temperature was increased all of the 

cyclopropanol had converted to the ring opened ketone 9 within 2 hours 

Table 3. Effect of solvent on yield of coupled product. 

 

Entry Solvent Temperaturea Time  NMR conversions 

1 Toluene 65-70°C 17 hours 55%: 11% 

2 Toluene 80-85°C 21 hours 90%: 6% 

3 Toluene 90-105°C 2 hours 0%: 41% 

4 THF 60°C 44 hours 35%: 17% 

5 DME 80°C 44 hours 34%: 13% 

6 CH3CN 80°C 16 hours 20%: 6% 

a Indicates the temperature of the oil bath. Fluctuation in temperature is recorded as a range.  

Remarkably, when the benzyl halide used was changed from benzyl bromide to benzyl chloride 

(Scheme 17, entry 1), keeping the catalyst system consistent, the reaction gave exclusively the 

coupled product in high yield with no ketone side-product. Furthermore the reaction time 

dropped significantly from 21 hours to 1 hour.  

 

Scheme 17. Cross-coupling of benzyl chlorides to cyclopropanol 7 using different catalyst 

loading.  
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Moreover, decreasing the catalyst loading from 10% to 5% Pd (scheme 17, entry 2) increased 

reaction time (overnight) and led to a low yield of a mixture of the coupled product and the ring 

opened side product. 

Using a 10% catalyst loading, the generality of these reaction conditions was tested using 

various benzyl chlorides (Table 4) with both electron-donating, electron-withdrawing and 

electron-neutral substituents on the aryl ring. With our current set of conditions the yields of the 

coupled products for these reactions were generally low and reduced by the competing base-

mediated ring opening of the cyclopropanol. Moreover, there was no trend between electronic 

nature of the substrates and their relative yields. For example, the substrates benzyl chloride 

and 4-methyl benzyl chloride have similar electronic properties, however the former coupled 

with a yield of 93%, while the latter gave 26% of the coupled product. This data suggested that 

there may be confounding factors at play that are leading to inconsistent results. In light of these 

findings from our initial substrate scope run, we continued on with optimization and reaction 

studies to achieve decent yields of product. 

Table 4. Cross-coupling reactions using various benzyl chlorides.  
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2.3 Optimization of cross-coupling reactions with electron-rich benzyl chlorides 

Having previously explored the effect of bases and ligands and finding optimal activity 

with Xphos and cesium carbonate,  these reagents were kept constant while the effect of 

solvent, temperature and palladium source was studied (Table 5). The focus here was to find 

conditions that circumvent the ring opening of the cyclopropanol since this not only reduces the 

yield of the final product but makes purification difficult. Test reactions were carried out using 4-

methyl benzyl chloride and benzyl chloride. Since these two substrates previously gave 

unpredicted, contradictory results we used them in optimization studies to find a system that 

produced consistent results. 

Table 5. Reaction development through varying catalyst, solvent and temperature  

 
 

Entry  Benzyl 
chloride  

Pd source Catalyst 
load 

solvent Temperaturea  Yield/ 
Result  

1 R=CH3 Pd2dba3 5 mol% THF 60 ⁰C 82% 
2 R=H Pd2dba3 5 mol% THF 60 °C 89%,  
3 R=CH3 Pd(OAc)2 5 mol% THF 60 °C 82% 
4 R=CH3 Pd(OAc)2 1 mol% THF 60 °C 80% 
5 R=CH3 

 

1 mol% THF 60 °C No 
reaction 
after 3 
days  

6 R=CH3 

 

1 mol% THF:toluene, 
1:1 

80 °C 75% 

7 R=CH3 Pd(OAc)2 1 mol% THF: toluene 
1:1 

80 °C 87% 

8 R=H Pd(OAc)2 1 mol% THF: toluene 
1:1 

80 °C 94% 

aIndicates the temperature of the oil bath. 

The first insightful finding was seen when THF was used in place of toluene as the solvent. We 

chose THF because it is more polar and so it may assist in increased solubility of the base. 

Using THF at 60°C (entries 1 & 2) we found that the yield of p-methyl benzyl chloride was lower 
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than the previous condition (82% vs. 93%). However, the yield of cross-coupling the benzyl 

chloride substrate increased (89% vs. 26%). More notably, no side product was observed, 

suggesting that the coordinating solvent plays a significant role in modulating the rates of cross 

coupling versus ring opening of the cyclopropanol. 

Meanwhile, robust Pd(II) catalysts were also explored as starting points in place of the sensitive 

Pd2dba3 catalyst. We chose to try the  first generation Xphos palladacycle pre-catalyst (entry 5) 

since this Pd(II) source is pre-coordinated to XPhos and can be reduced to Pd (0) under basic 

conditions through a reductive elimination that releases the adjoining tetrahydroquinoline group. 

Our results show that this pre-catalyst showed no activity at 60⁰C (entry 5). The first generation 

pre-catalyst are known to require thermal activation in order for the reductive elimination step to 

occur especially under mild basic conditions. Hence we increased the temperature of the 

reaction to 80°C. In order to prevent the complete evaporation of THF at 80°C we used a 1:1 

mixture of THF and toluene. A yield of 75% was obtained under these conditions (entry 6). 

Since this is not an excellent yield and because the catalyst is rather expensive, further use of 

this catalyst was abandoned for our purpose. The most favorable result was obtained using 

Pd(OAc)2 (entry 7 & 8) whereby using a low catalyst load of 1 mol%  under an equimolar 

THF:toluene solution at 80 °C yielded 94% of coupled product and none of the ring opened 

cylclopropanol. We chose to use a mixture of THF/ toluene in order to retain the increased 

polarity and coordinating ability of THF and the high boiling point of toluene, which allows us to 

carry out the reactions at a high temperature. Thus these conditions were then used to test 

substrate scope of various benzyl chlorides (Table 6). 
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Table 6. Scope of benzyl chloride cross-coupling reactions with the improved set of reaction 

conditions. 

 

 

 
 

 

 
  

 

             

                                   

 

 
 
                            

 
 

 

 

To test the robustness of the optimized conditions, the reaction was run using 1.0 gram of 

phenylethyl cyclopropanol (eq. 5). We were able to obtain an excellent yield of 93% hence 

demonstrating a large-scale potential for this method.  

 

2.4 Optimization of cross-coupling reactions with electron poor benzyl chlorides  

Although yields obtained were good to moderate for electron- rich systems,  it became 

apparent that the new set of optimized conditions did not fare well with all types of benzyl 
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chlorides. The reactivity of the developed catalyst system diminishes as the benzyl chlorides 

become electron deficient; substrates 13, 18 and 19 had low yields whereas substrate 20 and 

the strongly withdrawing nitro group substrates failed to cross-couple at all. It is likely that 

oxidative addition across these electron-poor benzyl halides is difficult and is the root of the low 

reactivity. The following electron-rich ligands were screened with Pd(OAc)2 to find a system that 

would favour oxidative addition of the p-nitro benzyl chloride: 

 

None of these ligands yielded positive results as no cross-coupled product was attained in any 

of the reactions. Since the 4-trifluoromethyl benzyl chloride showed some potential (46% 

coupled product; Table 6), as opposed to no coupled product, we chose this as the model 

substrate to optimize conditions for electron-poor systems. Changes in yields with varying 

temperatures and solvents were monitored (Table 7).  
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Table 7. Optimization study on the electron poor substrate 4-triflouromethyl benzyl chloride , 

with varying temperature and solvent 

 
Entry  Solvent Temperaturea Yield/ Result  

1 THF 65°C 12% 
2 Toluene 60°C 0%  
3 Toluene 80°C 36% 
4 Toluene 100°C 31% 
5 THF: toluene 

(1:1) 
75°C 9% 

6 1,4-dioxane 80°C 54% 
7 1,4-dioxane 95°C 0%  
8 DMF 80°C 0% 
9 DMA 80°C 0% 
10 DMI 80°C 0% 
11 1.4-dioxane/DMI 

(1:1) 
80°C 22% 

 a Indicated the temperature of the oil bath. 

 

The data from the solvent/temperature study using toluene as the solvent suggested that 80 °C 

was the ideal temperature range for this reaction. Knowing from previous results that a 

coordinating solvent like THF helps to minimize the side reaction leading to ring opening of 

cyclopropanol, the high boiling ether solvent 1,4-Dioxane was tested at 80 °C (entry 6). 

Although not ideal, dioxane gave the best result thus far with a 54% yield of coupled product. 

We hypothesized that it may be the polarity of dioxane that may be contributing to increased 

yields via stabilization of the transition state leading to oxidative addition. We investigated this 

idea with the use of alternate polar solvents: DMF, DMA, and DMI, however none of these 

conditions yielded any cross-coupled product. Moreover the starting materials were not 

consumed within the usual reaction time and Pd black was observed, indicating catalyst 

decomposition. When a mixture of DMI and dioxane was used as the solvent, a 22% yield of the 

product is obtained. This suggests that dioxane was solely responsible for increasing the 
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reactivity, while the other polar solvents interfered with catalyst reactivity. We then proceeded to 

use dioxane as the solvent in combination with electron-rich phosphine ligands; tri-t-butyl 

phosphine, dppe, dppp, and dppb to optimize the yield of 13. These ligands failed completely 

and in each case the reaction mixture turned black within 5 minutes with the starting materials 

remaining unreacted over 24 hours.  

Having explored the effect of solvent, temperature and ligands on the cross-coupling of 

electron-poor benzyl halide, we proceeded to survey the capacity of cross-coupling the 

previously unreactive benzyl chlorides using the best conditions found from the optimization 

study (Table 8). 

Table 8:  Substrate scope of electron poor benzyl chlorides with re-optimized conditions 

 

 

 
 

 

 

Although the yields improved with dioxane, they are still poor. Strongly electron-withdrawing 

substituents are not suitable substrates for this cross-coupling reaction. This is evident in the 

reaction with the most deactivated substrate p-nitrobenzyl chloride that did not couple at all 

under the above set of conditions. On the contrary, for the electron-rich substrate 4-methyl 

benzyl chloride, the yield exceeded the previously optimized yield when the solvent was 

switched to dioxane (Eq. 8). 
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2.5 Investigation of benzyl halide tolerance in cross-coupling reactions  

After investigating tolerance of functionalities on the benzyl halide, we turned our attention to the 

effect of the halide on the reaction outcome (table 9).  

Table 9: Investigation of  benzyl halide tolerance  

 
Benzyl Halide Results 

 

86% 

 

67% 
*note this reaction turned black within 30 min 

 

72% 
This reaction also blacks out within 30 min 

After 24 hours of reaction 18% of 
cyclopropanol starting material remained.  

 

Using the developed conditions benzyl chloride gave the best results, producing 86% of the 

coupled product within 8 hours. In contrast the reactions using benzyl bromide and benzyl 

iodide led to catalyst decomposition within 30 minutes and as result, low yields of the coupled 

product were attained. Although it is not an ideal correlation, it is apparent from the data that as 

the coordinating ability of the halide decreases the reaction starts to break down. In addition to 

their reactivity, benzyl chlorides are also widely available and cost effective, which makes them 

preferable as coupling partners.  
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2.6 Cyclopropanol substrate scope 

 

After exploring conditions to expand the scope of benzyl chlorides, we then moved on to study 

the tolerance of the cyclopropanol partner to form catalytically-generated ketone homoenolates 

and subsequently cross-couple them with the electrophile. Table 10 shows the diverse set of 

cyclopropanols with various aliphatic or aromatic groups that were successfully cross-coupled to 

give ɣ-arylated ketones in good-to-excellent yields. Cyclopropanols were prepared either by the 

Kulinkovich method37 or by the Simmons-Smith38 reaction using the corresponding silyl enol 

ether, as reported in literature.31  
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Table 10. Cross-coupling of various cyclopropanols with 4-methyl benzyl chloride 
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2.7. Heterocyclic substrate scope limitation 

Heterocycles are important motifs in molecules of biological and medicinal interest and hence 

attractive substrates for expanding the reaction’s scope. Naturally, we attempted to cross-

couple several benzylic chlorides with heterocyclic functionalities that were readily available. 

The following heterocycles were screened using the optimized conditions with phenyl ethyl 

cyclopropanol. 

 

These heterocyclic partners, however did not yield the corresponding desired coupled products. 

In all cases, a portion of the cyclopropanol starting material was converted to the corresponding 

ketone. It was speculated that the heterocycles themselves may be coordinating to the metal 

and suppressing ideal metal-ligand interactions required for the cross-coupling reaction to take 

place. To test this hypothesis we carried out a method developed by Collins and Glorius44 on a 

robust screen for the rapid assessment of chemical reactions. By this approach we carried out a 

standard successful cross-coupling reaction and added an equimolar heterocycle additive to the 

reaction pot to test whether there would be any changes in reactivities caused by the additive 

(Eq. 9). We used pyridinium chloride as the additive and found that the heterocycle motif did not 

poison the catalyst as we hypothesized, since there was no significant deviation in the yield 

compared to the standard reaction.  In light of these findings we surmise that the low reactivity 

of these heterocycles is due to the electron withdrawing nature of the pyridine and oxazole 

moieties.
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2.8. Conclusion 

In conclusion, a new methodology to access γ-arylated ketones using the palladium-catalyzed 

cross-coupling of cyclopropanol derived homoenolates with benzyl chlorides, has been 

developed. This methodology works well with electron-rich benzyl chloride rendering excellent 

product yields. Thorough systematic optimization, we found reaction conditions to supress 

competing ring opening of cyclopropanol starting materials. Moreover, we have shown that the 

reactions work well with a low catalyst loading of 1 mol% and can be carried out on a 1 g scale 

without sacrificing yield. Cross-coupling of electron-poor benzyl chlorides remains a challenge. 

We have done our best to optimize reaction conditions to render moderate to poor yields of 

coupled product using the benzyl chlorides with electron-withdrawing substituents.  

 

 

 

 

 

 

 

 

 

 

 



37 
 

References 

1 Royal Swedish Academy of Sciences. Palladium- Catalyzed Cross Coupling in Organic 

Synthesis. http://www.nobelprize.org/nobel_prizes/chemistry/laureates/2010/advanced-

chemistryprize2010 (Accessed July 21, 2014). 

2 Zeni, G; Larock, R.C. Synthesis of Heterocycles via Palladium- Catalyzed Oxidative Addition, 

Chem. Rev. 2006, 106, 4644-4680. 

3 Bates, R. Organic Synthesis Using Transition Metals; Sheffield Academic Press: England, 

2000. 

4 Arpad, M. Palladium-Catalyzed Coupling Reactions: Practical Aspects and Future 

Developments; Wiley-VCH: Weinheim, Germany, 2013.   

5 Evans, D. A. An Organizational Format for the Classification of Functional Groups. Application 

to the Construction of Difunctional Realtionships. Unpublished Manuscript.  

6 Seebach, D. Methods of Reactivity Umpolung, Angew. Chem. Int. Ed. 1979, 18, 239-258. 

7 Nickon, A.; Lambert,  J. L. Homoenolate Anions, J. Am. Chem. Soc. 1962, 84, 4604- 4605. 

8 Nickon, A; Lambert, J. L. Homoenolization and Related Phenomena. IV. Evidence for 

Homoenolate Anions, J. Am. Chem. Soc. 1966, 88, 1905- 1910. 

9 Buchi, G.; Wuest, H. Synthesis of (+-)-nuciferal, J. Org. Chem. 1969, 34, 1122-1123. 

10 Kuwajima, I.; Kato, M. 1-Trimethylsilylallyic Alcohols as Homoenolate Precursors. Stero- and 

Regio-Specific Synthesis of Silyl Enol Ethers, J. Chem. Soc., Chem. Commun., 1979, 708-709  

11 Breslow, R. On the Mechanism of Thiamine Action. IV. Evidence from Studies on Model 

Systems, J. Am. Chem. Soc. 1958, 80, 3719- 3726. 

12 Sohn, S.S.; Rosen, E. L.; Bode, J. W. N-Heterocyclic Carbene- Catalyzed Generation of 

Homoenolates: γ-Butyrolactones by Direct Annulations of Enals and Aldehydes. J. Am. Chem. 

Soc. 2004, 126, 14370-14371. 

13 Burstein, C.; Glorius, F. Organocatalyzed Conjugate Umpolung of α,β-Unsaturated Aldehydes 

for the Synthesis of γ-Butyrolactones, Angew. Chem. Int. Ed. 2004, 43, 6205-6208. 

14 Nair, V.; Menon, R. S.; Sreekanth, A. R.; Abhilah, N.; Biju, A. T. Engaging Zwitterions in 

Carbon-Carbon and Carbon-Nitrogen Bond-Forming Reactions: A Promising Synthetic Strategy, 

Acc. Chem. Res. 2006, 39, 520-530. 

15 Nakamura, E.; Kuwajima, I. Homoenolate Anion Precursor. Reaction of Ester Homoenol Silyl 

Ether with Carbonyl Compounds, J. Am. Chem. Soc. 1977, 99, 7360-7362. 

16  Nakamura, E.; Kuwajima, I. Metal Homoenolate Chemistry. Isolation and Reactions of 

Titanium Homoenolates of Esters, J. Am. Chem. Soc. 1983, 105, 651-652. 



38 
 

17 DeMeijere, A. (Ed.). Small Ring Compounds in Organic Synthesis IV; Springer Berlin 

Heidelberg, 1990; Vol. 155; pp. 1-39. 

18 Nakamura, E.; Kuwajima, I. Palladium catalyzed reactions of propionate homoenolate. 

Arylation, Vinylation, and Acylation. Tetrahedron Lett. 1986, 27, 83. 

19 Mun, S.; Lee, J. E.; Yun, J. Cooper-Catalyzed β-Boration of α,β- Unsaturated Carbonyl 

Compounds: Rate Acceleration by Alcohol Additives, Org. Lett. 2006, 8, 4887. 

20 Molander, G. A.; Jean-Gerard, L. Scope of the Suzuki-Miyaura Cross-Coupling Reaction of 

Potassium Trifluoroboraketohomoenolates, J. Org. Chem. 2009, 74, 1297- 1303. 

21 Shen, Z.-L.; Goh, K. K. K.; Cheong, H.-L.; Wong, C. C. A.; Lai, Y.-C.; Yang, Y.-S.; Loh, T.-P. 
Synthesis of Water-Tolerant Indium Homoenolate in Aqueous Media and Its Application in the 
Synthesis of 1,4-Dicarbonyl Compounds via Palladium-Catalyzed Coupling with Acid Chloride, 
J. Am. Chem. Soc. 2010, 132, 15852. 
 
22 Giri, R.; Maugel, N.; Li, J.-J.; Wang, D.-H.; Breazzano, S. P.; Saunders, L. B.; Yu, J.-Q. 
Palladium-Catalyzed Methylation and Arylation of sp2 and sp3 C−H Bonds in Simple Carboxylic 
Acids, J. Am. Chem. Soc. 2007, 129, 3510. 
 
23  Wang, D.-H.; Wasa, M.; Giri, R.; Yu, J.-Q. Pd(II)-Catalyzed Cross-Coupling of sp3 C−H Bonds 
with sp2 and sp3 Boronic Acids Using Air as the Oxidant, J. Am. Chem. Soc. 2008, 130, 7190. 
 
24 Zaitsev, G. V.; Shabashov, D.; Daugulis, O. Highly Regioselective Arylation of sp3 C−H Bonds 
Catalyzed by Palladium Acetate, . J. Am. Chem. Soc. 2005, 127, 13154. 
 
25 Renaudat, A.; Jean-Gérard, L.; Jazzar, R.; Kefalidis, C. E.; Clot, E.; Baudoin, O. Palladium-
Catalyzed β Arylation of Carboxylic Esters, Angew. Chem. Int. Ed. 2010, 49, 7261. 
 
26 Aoki, S.; Fujimura, T.; Nakamura, E.; Kuwajima, I. Palladium-catalyzed arylation of 
siloxycyclopropanes with aryl triflates. Carbon chain elongation via catalytic carbon-carbon bond 
cleavage, J. Am. Chem. Soc. 1988, 110, 3296. 
 
27 Aoki, S.; Fujimura, T.; Nakamura, E.; Kuwajima, I. Synthesis of 1,4-keto Esters and 1,4-
diketones via Palladium- Catalyzed Acylation of Siloxycyclopropanes. Synthesis and 
Mechanistic Studies, J. Org. Chem. 1991, 56, 2809-2821. 
 
28 Aoki, S.; Nakamura, E. Synthesis of 1,4-Dicarbonyl Compounds by Palladium- Catalyzed 
Carbonylative Arylation of Siloxycyclopropanes, Synlett, 1990, 741-742. 
 
29 Rosa, D.; Orellana, A. Palladium-Catalyzed Cross-Coupling of Cyclopropanols with Aryl 
Halides Under 
Mild Conditions, Org. Lett. 2011, 13, 110-113. 
 
30 Park, S.-B.; Cha, J. K. Palladium-Mediated ring Opening of Hydroxycyclopropanes, Org. Lett. 
2000, 2, 147-149. 
 
31 Rosa, D.; Orellana, A. Palladium-Catalyzed Cross-Coupling of Cyclopropanol-Derived Ketone 
Homoenolates with Aryl Bromides, Chem. Commun. 2013, 49, 5420-5422. 

http://pubs.acs.org/doi/abs/10.1021/ja106925f
http://pubs.acs.org/doi/abs/10.1021/ja106925f
http://pubs.acs.org/doi/abs/10.1021/ja0701614
http://pubs.acs.org/doi/abs/10.1021/ja0701614
http://pubs.acs.org/doi/abs/10.1021/ja801355s
http://pubs.acs.org/doi/abs/10.1021/ja801355s
http://pubs.acs.org/doi/abs/10.1021/ja054549f
http://pubs.acs.org/doi/abs/10.1021/ja054549f
http://pubs.acs.org/doi/abs/10.1021/ja00218a048
http://pubs.acs.org/doi/abs/10.1021/ja00218a048
http://pubs.acs.org/doi/abs/10.1021/ja00218a048


39 
 

32 Cheng, K.; Walsh, P. J. Arylation of Aldehyde Homoenolates with Aryl Bromides,  Org. Lett. 
2013, 15, 2298. 
 
33 Wiberg, K. The Concept of Strain in Organic Chemistry, Angew. Chem. Int. Ed. 1986, 98, 
312-322.  
 
34 Terao, Y.; Satoh, T.; Miura, M.; Nomura, M. Regioselective arylation on the γ-position of α,β-
unsaturated carbonyl compounds with aryl bromides by palladium catalysis, Tetrahedron Lett. 
1998, 39, 6203 
 
35 Hyde, A. M.; Buchwald, S. L. Palladium-Catalyzed γ-Arylation of β,γ-Unsaturated Ketones: 
Application to a One-Pot Synthesis of Tricyclic Indolines, Angew. Chem., Int. Ed. 2008, 47, 177. 
 
36 Ziadi, A.; Martı´n, R. Ligand-Accelerated Pd-Catalyzed Ketone γ-Arylation via C–C Cleavage 

with Aryl Chlorides, Org. Lett. 2012, 14, 1266. 

37 Kulinkovich, O.G.; Sviridov, S. V.; D. A. Vasilevski, S. V. Titanium(IV) Isopropoxide-Catalyzed 

Formation of 1-Substituted Cyclopropanols in the Reaction of Ethylmagnesium Bromide with 

Methyl Alkanecarboxylates, Synthesis, 1991, 234. 

38 Simmons, H. E.; Smith, R. D. A New Synthesis of Cyclopropanes From Olefins, J. Am. Chem. 

Soc., 1958, 80, 5323–5324. 

39 Cheng, K.; Carroll, P.J.; Walsh, P.J. Diasteroselective Preparation of Cyclopropanols Using 

Methylene Bis(iodozinc), Org. Lett., 2011, 13, 2346-2349. 

40 Trost, B. M.; Czabaniuk, L.C. Structure and Reactivity of Late Transition Metal ɳ3-Benzyl 

Complexes, Angew. Chem. Int. Ed. 2014, 53, 2826 – 2851 

41 King, R.B.; Fronzaglia, A. Organometallic Chemistry of the Transition Metals. XIII. Aπ-Benzyl 

Derivative of Molybdenum with a Temperature-Dependent Proton Nuclear Magnetic Resonance 

Spectrum, J. Am. Chem. Soc. 1966, 88, 709 – 712. 

42 Lie´gault, B.; Renaud, J.; Bruneau, C. Activation and functionalization of benzylic derivatives 

by palladium catalysts, Chem. Soc. Rev., 2008, 37, 290–299.  

43 Depuy, C.H. The chemistry of cyclopropanols, Acc. Chem. Res., 1968, 1, 33-41. 

44 Collins, D. K.; Glorius, F. A robustness screen for the rapid assessment of chemical reactions, Nat. 

Chem., 2013, 5, 597. 

45 Still, W.C.; Kahn, M.; Mitra, A. Rapid chromatographic technique for preparative separations 

with moderate resolution. J. Org. Chem. 1978, 43, 2993-2995 

46 Too, P.C.; Tnay. Y. L,; Chiba, S.  Copper-catalyzed aerobic aliphatic C–H oxygenation with 

hydroperoxides. Beilstein J. Org. Chem. 2013, 9, 1217-1225 

  

http://pubs.acs.org/doi/abs/10.1021/ol4008876
http://pubs.acs.org/action/doSearch?action=search&author=Simmons%2C+Howard+E.&qsSearchArea=author
http://pubs.acs.org/action/doSearch?action=search&author=Smith%2C+Ronald+D.&qsSearchArea=author
http://pubs.acs.org/doi/abs/10.1021/jo00408a041
http://pubs.acs.org/doi/abs/10.1021/jo00408a041


40 
 

Appendices   

Appendix A: General experimental  

Reactions were conducted in flame- or oven-dried glassware under an atmosphere of 

argon using freshly distilled solvents unless specified otherwise. Commercial reagents were 

used as received. Toluene was distilled from CaH2 prior to use. Tetrahydrofuran (THF) was 

distilled from sodium/benzophenone. 1,4-dioxane (reagent grade) was used as received. 

Thin-layer chromatography was performed on Merck silica gel 60 F254 plates. 

Visualisation was carried out using UV light and/or KMnO4, anisaldehyde or (NH4)2Ce(NO3)6 

solutions. Hexanes (ACS grade) and ethyl acetate (ACS grade) were used as received. Flash 

column chromatography was carried out using Aldrich silica gel (60 Å, 230-400 mesh).  

1H-NMR and 13C-NMR spectra were recorded on a Bruker 400 AV or Bruker 300 AV 

spectrometer in chloroform-d (99.8% deuterated), or dichloromethane-d2 (99.9% deutrated). 

Spectra using chloroform was calibrated to 7.26 ppm 1H and 77.23 ppm 13C. Chemical shifts (δ) 

are reported in ppm and multiplicities are indicated by s (singlet), d (doublet), q (quartet), t 

(triplet) m (multiplet), br (broad). Coupling constants are reported in Hertz (Hz). Infrared (IR) 

spectra were recorded as thin films (neat) using Alpha-Platinum ATR, Bruker, diamond crystal 

FT-IR instrument. Melting points were recorded using a Fisher Johns melting point apparatus. 

Mass Spectrometry was conducted at the Mass Spectrometry Facility of Queen’s University on 

either a Waters/Micromass GC-TOF instrument with an EI source or an Applied 

Biosystems/MDS SCiex QStar XL QqTOF instrument with an ESI source.  
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Experimental Procedure and Data 

General Procedure 1. Cross-Coupling of Cyclopropanols with Benzyl Chlorides.  

Ketone 10  

 

 An oven dried reaction vial equipped with a stir bar was charged with palladium 

diacetate (0.004 g, 0.018 mmol, 0.01 equiv.), 2-dicyclohexylphosphino-2′,4′,6′-

triisopropylbiphenyl (Xphos) (0.019 g, 0.037 mmol, 0.02 equiv.), cesium carbonate (1.20 g, 3.70 

mmol, 2 equiv.) and 4-methylbenzyl chloride (0.261 g, 1.85 mmol, 1 equiv.). The reaction vessel 

was capped with a rubber septum and flushed with argon for 10 minutes prior to the addition of 

a 1:1 THF/toluene mixture (15 mL). The resulting reaction mixture was stirred at ambient 

temperature for 5 min and a solution cyclopropanol 1 (0.309 g, 1.85 mmol, 1 equiv.) in 3 mL of 

solvent, was added a via syringe. The reaction mixture was heated to 80 °C in an oil bath. 

reaction progress was monitored using TLC. Once complete, the crude reaction mixture was 

diluted with ethyl acetate, filtered through a plug of Celite and concentrated to dryness. Flash 

column chromatography45 of the crude product using a 10% solution of ethyl acetate in hexanes 

(Rf = 0.33) afforded ketone 10 as a yellow oil (0.42 g, 1.61 mmol) in 87% yield.  

1H NMR (300 MHz, CDCl3) 

  7.30-7.26 (m, 2 H), 7.25-7.16 (m, 3 H), 7.11 (d, J = 7.9 Hz, 2H ), 7.05 (d, J = 7.9 
Hz, 2H ), 2.91(t, J = 7.2 Hz, 2 H), 2.72 (t, J = 7.2 Hz, 2 H), 2.58 (t, J = 7.5 Hz, 2H), 
2.41 (t, J = 7.5 Hz, 2 H), 2.38 (s, 3 H), 1.90 (tt, J = 7.5, 7.5Hz, 2H) 
 

13C NMR (75 MHz, CDCl3) 

  209.9, 141.2, 138.5, 135.4, 129.1, 128.4, 126.1, 44.3, 42.1, 34.6, 29.8, 25.3, 21.1 
 

IR Alpha-Platinum ATR, Bruker, diamond crystal 

  = 3029, 2918, 1708, 1512, 1445, 1374, 1258, 1094, 800, 742 cm−1 

HRMS TOF EI 

 Calculated for [C19H22O]+ = 266.1671, found = 266.1665 
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Ketone 2 

 

Following General Procedure 1 cyclopropanol A (0.1 g, 0.49 mmol, 1 equiv.) was coupled to 4-

methly benzyl chloride (0.07 g, 0.49 mmol, 1 equiv.). Purification by flash column 

chromatography using 10% solution of EtOAc in hexanes (Rf = 0.33) afforded ketone 2 (0.11 g, 

0.37 mmol) as yellow oil in 76% yield. 

1H NMR (400 MHz, CDCl3) 

 7.34 (d, J = 8 Hz, 2H), 7.11 (d, 8.0 Hz, 2H), 7.09 (d, 8.0 Hz, 2H), 6.99 (d, 8.0 Hz, 
2H), 3.62 (s, 2 H), 2.52 (t, J = 7.2 Hz,  2 H), 2.46 (t, J = 7.6 Hz, 2 H), 2.33 (s, 3 H), 
1.85 (tt, J = 7.2 Hz, 7.6 Hz, 2 H), 1.31 (s, 9 H) 
 

  

13C NMR (75 MHz, CDCl3) 

 208.5, 149.8, 138.4, 135.3, 131.6, 129.0, 129.0, 128.3, 125.6, 49.6, 41.1, 34.5, 
31.3, 25.3, 20.99 

  

IR Alpha-Platinum ATR, Bruker, diamond crystal 

 = 2960, 2868, 1698, 1607, 1514, 1412, 1268, 1176, 1108, 805, 702, 546 cm−1 

HRMS TOF EI 

 Calculated for [C22H28O]+ = 308.2140, found = 308.2151 
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Ketone 5 

 

Following General Procedure 1 cyclopropanol B (0.10 g, 0.56 mmol, 1 equiv.) was coupled to 4-

methyl benzyl chloride (0.08 g, 0.56 mmol, 1 equiv.). Purification by flash column 

chromatography using 10% solution of EtOAc in hexanes (Rf = 0.34) afforded ketone 5 (0.13 g, 

0.47 mmol) as yellow oil in 84% yield. 

1H NMR (400 MHz, CDCl3) 

 7.08 (t, J = 8.4 Hz, 2 H), 6.99 (d, J = 7.6 Hz, 2 H), 6.88 (d, J = 8.4 Hz, 2 H), 3.80 
(s, 3 H), 3.59 (s, 2 H), 2.52 (t, J = 7.6 Hz,  2 H), 2.44 (t, J = 7.2 Hz, 2H), 2.31 (s, 
3H), 1.85 (tt, J = 7.2 Hz, 7.6 Hz, 2 H) 
 

  

13C NMR (75 MHz, CDCl3) 

 208.7, 158.6, 138.4, 132.3, 130.4, 129.9, 128.3, 126.3, 114.1, 55.2, 49.2, 40.9, 
34.5, 25.3, 20.97 

  

IR Alpha-Platinum ATR, Bruker, diamond crystal 

 = 29933, 1706, 1600, 1510, 1456, 1245, 1177, 1031, 805, 541 cm−1 

HRMS TOF EI 

 Calculated for [C19H22O]+ = 282.1620, found = 282.1611 
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Ketone 8 

 

 

Following General Procedure 1 cyclopropanol 1 (0.15g, 0.925 mmol, 1 equiv.) was coupled to 

benzyl chloride (0.12 g, 0.925 mmol, 1 equiv.). Purification by flash column chromatography 

using 10% solution of EtOAc in hexanes (Rf = 0.33) afforded ketone 8 (0.22 g, 0.872 mmol) as 

yellow oil in 94% yield. Spectral data for this compound is consistent with that reported by Too 

and coworkers46 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



45 
 

Ketone 11 

 

Following General Procedure 1 cyclopropanol 1 (0.15 g, 0.925 mmol, 1 equiv.) was coupled to 

4-methoxy benzyl chloride (0.14 g, 0.925 mmol, 1 equiv.). Purification by flash column 

chromatography using 10% solution of EtOAc in hexanes (Rf = 0.42) afforded ketone 11 (0.22 g, 

0.78 mmol) as yellow oil in 84% yield. 

1H NMR (300 MHz, CDCl3) 

  7.32- 7.27 (m, 2H), 7.23-7.17 (m, 3H), 7.08 (d, J = 8.5 Hz, 2H), 6.84 (d, J = 8.5 
Hz, 2H), 3.81 (s, 3 H), 2.90 (t, J = 7.2 Hz, 2 H), 2.72 (t, J = 7.8 Hz,  2 H), 2.56 (t, J 
= 7.2 Hz, 2H), 2.40 (t, J = 7.5 Hz, 2 H),1.88 (tt, J = 7.5, 7.5 Hz, 2 H) 
 
 

13C NMR (75 MHz, CDCl3) 

 209.9, 157.8, 141.1, 129.3, 128.5, 128.3, 126.1, 113.7, 55.2, 44.3, 42.0, 34.1, 
29.7, 25.4  
 

IR Alpha-Platinum ATR, Bruker, diamond crystal 

  = 2936, 1712, 1605, 1503, 1445, 1294, 1241, 1174, 1085, 1031, 822, 742, 689,  

502 cm−1 

 

HRMS TOF EI 

 Calculated for [C19H22O2]
+ = 282.1620, found = 282.1615 
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Ketone 12 

 

Following General Procedure 1 cyclopropanol 1 (0.15 g, 0.92 mmol, 1 equiv.) was coupled to 

ethyl 3-(chloromethyl)benzoate (0.18 g, 0.92 mmol, 1 equiv.). Purification by flash column 

chromatography using 10% solution of EtOAc in hexanes (Rf = 0.40) afforded ketone 12 (0.23 g, 

0.70 mmol) as yellow oil in 76% yield. 

1H NMR (400 MHz, CD2Cl3) 

 7.87- 7.79 (m, 2H), 7.38-7.32 (m, 2 H),  7.26- 7.22 (m, 2H), 7.18-7.12 (m, 3H), 
4.31 (q, J = 7.2 Hz, 2H), 2.83 (t, J = 7.6 Hz, 2H), 2.68 (t, J = 7.6 Hz,  2 H), 2.61 (t, J 
= 7.2 Hz, 2H), 2.38 (t, J = 7.2 Hz, 2H),1.91 (tt, J = 7.6, 7.6 Hz, 2 H), 1.35 (t, J = 7.2 
Hz, 3 H) 

  
 

13C NMR (75 MHz, CDCl3) 

  209.6, 166.7, 141.8, 141.0, 132.96, 130.5, 129.4, 128.45, 128.38, 128.28, 127.2, 

126.1, 60.9, 44.3, 41.96, 34.8, 29.7, 24.99, 14.3 

 

IR Alpha-Platinum ATR, Bruker, diamond crystal 

  = 2927, 1712, 1597, 1441, 1370, 1276, 1187, 1103, 1018, 747, 684, 506 cm−1 

 

HRMS TOF EI 

 Calculated for [C21H24O3]
+ = 324.1725, found = 324.1715  
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Ketone 13 

 

Following General Procedure 1 cyclopropanol 1 (0.15 g, 0.92 mmol, 1 equiv.) was coupled to 4-

trifluoromethyl benzyl chloride (0.18 g, 0.92 mmol, 1 equiv.) using dioxane as the solvent. 

Purification by flash column chromatography using 10% solution of EtOAc in hexanes (Rf = 

0.36) afforded ketone 13 (0.16 g, 0.50 mmol) as a white solid in 54% yield. 

1H NMR (400 MHz, CD2Cl2) 

 7.52 (d, J = 8.0 Hz, 2H), 7.27 (d, J = 8.0 Hz, 2H), 7.23 (d, J = 7.6 Hz, 2H), 7.20- 
7.12 (m, 2H), 2.84 (t, J =7.6 Hz, 2H), 2.68 (t, J = 7.6 Hz, 2H) 2.62 (t, J = 7.2 Hz, 
2H), 2.38 (t, J = 7.2 Hz, 2H), 1.85 (tt, J = 7.2, 7.6 Hz, 2H) 

  

13C NMR (100 MHz, CDCl3) 

209.4, 145.7, 140.9, 128.67, 128.41, 128.24, 128.14, 126.0, 125.2, 123.98 (q, 
1JC-F = 270.1 Hz), 44.4, 41.9, 34.7. 29.7, 24.7  

  

19F NMR (300 MHz, CDCl3) 

 –62.4 

IR Alpha-Platinum ATR, Bruker, diamond crystal 

  = 2927, 1717, 1619, 1321, 1156, 1116, 1063, 1014, 849, 751, 698, 511 cm−1 

m.p. 49 °C 

 

HRMS TOF EI 

 Calculated for [C19H19OF3]
+ = 320.1388, found = 320.1395 
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Ketone 15 

 

Following General Procedure 1 cyclopropanol 1 (0.15 g, 0.92 mmol, 1 equiv.) was coupled to 3-

methoxy benzyl chloride (0.14 g, 0.92 mmol, 1 equiv.). Purification by flash column 

chromatography using 10% solution of EtOAc in hexanes (Rf = 0.42) afforded ketone 15 (0.23 g, 

0.80 mmol) as yellow oil in 87% yield. 

1H NMR (400 MHz, CD2Cl2) 

  7.26-7.22 (m, 2H), 7.18-7.14 (m, 4H), 6.73-6.68 (m, 3H), 3.75 (s, 3H), 2.85 (t, J = 
7.2 Hz, 2H), 2.67 (t, J = 7.6 Hz, 2 H), 2.53 (t, J = 7.2 Hz, 2H), 2.37 (t, J = 7.2 Hz, 
2H), 1.83 (tt, J = 7.2, 7.6 Hz, 2H) 
 
 

13C NMR (75 MHz, CDCl3) 

  209.8, 159.6, 143.2, 141.1, 129.3, 128.5, 128.3, 126.1, 120.85, 114.2, 111.2, 

55.1, 44.3, 42.1, 35.1, 29.7, 24.99 

 

IR Alpha-Platinum ATR, Bruker, diamond crystal 

  = 2940, 1708, 1605, 1579, 1490, 1450, 1263, 1169, 1045, 773, 742, 689 cm−1 

 

HRMS TOF EI 

 Calculated for [C19H22O2]
+ = 282.1620, found = 282.1629 
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Ketone 16 

 

Following General Procedure 1 cyclopropanol 1 (0.15 g, 0.92 mmol, 1 equiv.) was coupled to 3-

nitro benzyl chloride (0.16 g, 0.92 mmol, 1 equiv.) using dioxane as the solvent. Purification by 

flash column chromatography using 13% solution of EtOAc in hexanes afforded (Rf = 0.35) 

ketone 16 (0.12 g, 0.42 mmol) as yellow oil in 45% yield. 

1H NMR (400 MHz, CDCl3) 

 8.05 (d, J = 7.6 Hz, 2H), 8.01 (s, 1H), 7.47- 7.41 (m, 2H), 7.28- 7.27 (m, 2H), 
7.20- 7.15 (m, 3H), 2.89 (t, J = 7.2 Hz, 2H), 2.72 (t, J = 7.6 Hz, 2H), 2.68 (t, J = 8.0 
Hz, 2H), 2.41 (t, J = 7.2 Hz, 2H), 1.95 (tt, J = 7.2, 8.0 Hz, 2H) 
 

  

13C NMR (75 MHz, CDCl3) 

 209.2, 148.3, 143.6, 140.9, 134.7, 129.2, 128.48, 128.28, 126.1, 123.2, 121.2, 
44.3, 41.8, 34.6, 29.7, 24.7  

  

IR Alpha-Platinum ATR, Bruker, diamond crystal 

  = 3023, 2914, 1710, 1590, 1520, 1493, 1450, 1410, 1340, 1362, 1088, 1025, 

860, 740, 702 cm−1 

 

HRMS TOF EI 

 Calculated for [C18H19O3N]+ = 297.1365, found = 297.1360 
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Ketone 17 

 

Following General Procedure 1 cyclopropanol 1 (0.15 g, 0.925 mmol, 1 equiv.) was coupled to 

3,4-dimethyl benzyl chloride  (0.14 g, 0.925 mmol, 1 equiv.). Purification by flash column 

chromatography using 10% solution of EtOAc in hexanes (Rf = 0.30) afforded ketone 17 (0.21 g, 

0.76 mmol) as yellow oil in 82% yield. 

1H NMR (400 MHz, CD2Cl2) 

  7.26 (t, J = 7.6 Hz, 1H), 7.20-7.30 (m, 4H), 7.01 (d, J = 7.4 Hz, 1H), 6.92 (s, 1H), 
6.85 (d, J = 7.4 Hz, 1H), 2.84 (t, J = 7.6 Hz, 2H), 2.69 (t, J = 7.6 Hz, 2H), 2.49 (t, J 
= 7.2 Hz, 2H),  2.36 (t, J = 7.2 Hz, 2H), 2.21 (s, 3H), 2.20 (s, 3H), 1.81 (tt, J = 7.2, 
7.2 Hz, 2H) 
 

13C NMR (75 MHz, CDCl3) 

  209.8, 141.3,139.1, 136.5, 134.1, 130.0,129.8, 128.6, 128.5, 126.2, 126.0, 44.4, 

42.2, 34.8, 29.9, 25.5, 19.3, 19.5 

 

IR Alpha-Platinum ATR, Bruker, diamond crystal 

  = 2918, 1703, 1490, 1450, 1401, 1356, 1249, 1094, 1009, 809, 742, 689, 560  
cm−1 

HRMS TOF EI 

 Calculated for [C20H24O]+ = 280.1827, found = 280.1823 
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Ketone 18 

 

Following General Procedure 1 cyclopropanol 1 (0.15 g, 0.92 mmol, 1 equiv.) was coupled to 4-

fluoro benzyl chloride (0.13 g, 0.92 mmol, 1 equiv.) using dioxane as the solvent. Purification by 

flash column chromatography using 10% solution of EtOAc in hexanes (Rf = 0.37) afforded 

ketone 18 (0.17 g, 0.63 mmol) as yellow oil in 68% yield. 

1H NMR (300 MHz, CDCl3) 

 7.36-7.31 (m, 2H), 7.26-7.22 (m, 3H), 7.14 (dd, 3JH-H = 8.4 Hz, 4JH-F = 5.7 Hz, 
2H), 7.01 (dd, 3JH-H = 8.4 Hz, 3JH-F = 9.0 Hz, 2H), 2.95 (t, J = 7.2 Hz, 2H), 2.75 (t, J 
= 7.5 Hz,  2 H), 2.61 (t, J = 7.5 Hz, 2H), 2.42 (t, J = 7.2 Hz, 2H),1.92 (tt, J = 7.5, 7.5 
Hz, 2H) 

  

13C NMR (75 MHz, CDCl3) 

 209.6, 161.3 (d, 1JC-F =242.3 Hz), 141.1, 137.2 (d, 4JC-F = 3.0 Hz), 129.8 (d, 3JC-F 

=7.5 Hz), 128.3, 126.1, 115.1 (d, 2JC-F =20.3 Hz), 44.3, 41.9, 34.2, 29.8, 25.2  

  

19F NMR (300 MHz, CDCl3) 

 –116.9 

IR Alpha-Platinum ATR, Bruker, diamond crystal 

  = 2914, 1717, 1597, 1503, 1445, 1401, 1365, 1214, 1152, 1080, 822, 751, 693,  

546 cm−1 

 

HRMS TOF EI 

 Calculated for [C18H19OF]+ = 270.1420, found = 270.1431 
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Ketone 19 

 

Following General Procedure 1 cyclopropanol 1 (0.15g, 0.92 mmol, 1 equiv.) was coupled to 2-

trifluoromethyl benzyl chloride (0.18 g, 0.92 mmol, 1 equiv.) using dioxane as the solvent. 

Purification by flash column chromatography using 10% solution of EtOAc in hexanes (Rf = 

0.36) afforded ketone 19 (0.08 g, 0.24 mmol) as yellow oil in 26% yield. 

1H NMR (300 MHz, CDCl3) 

 7.52 (d, J = 7.8 Hz, 1H), 7.34-7.14 (m, 8H), 2.85 (t, J =7.5 Hz, 2H), 2.69 (t, J = 
7.5 Hz,  2 H), 2.63 (t, J = 7.5 Hz, 2H), 2.38 (t, J = 7.2 Hz, 2H),1.86 (tt, J = 7.5, 7.5 
Hz, 2H) 
 

  

13C NMR (100 MHz, CDCl3) 

  209.4, 142.5, 140.9, 130.5 (q, 2JC-F =  31.7 Hz), 128.41, 128.24, 127.4 (q, 1JC-F = 
305.5 Hz), 125.0, 44.2, 41.8, 34.7, 29.7, 24.8  

  

19F NMR (300 MHz, CDCl3) 

 –62.1 

 

IR Alpha-Platinum ATR, Bruker, diamond crystal 

  = 2927, 1717, 1619, 1321, 1156, 1116, 1063, 1014, 849, 751, 698, 511 cm–1 

HRMS TOF EI 

 Calculated for [C19H19OF3]
+ = 320.188, found = 320.1395 
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Ketone 20 

 

 

Following General Procedure 1 cyclopropanol 1 (0.15 g, 0.92 mmol, 1 equiv.) was coupled to 

2,4-di-trifluoromethyl benzyl chloride (0.24 g, 0.92 mmol, 1 equiv.) using dioxane as the solvent. 

Purification by flash column chromatography using 8% solution of EtOAc in hexanes (Rf = 0.35) 

afforded ketone 20 (0.11 g, 0.28 mmol) as yellow oil in 30% yield. 

1H NMR (300 MHz, CDCl3) 

 7.74 (s, 1H), 7.62 (s, 2H), 7.30- 7.28 (m, 1H), 7.23- 7.19 (m, 4H), 2.91 (t, J = 7.5 
Hz, 2H), 2.76 (t, J = 7.5 Hz, 2H), 2.72 (t, J = 7.5 Hz, 2H), 2.45 (t, J = 7.2 Hz, 2H), 
1.94 (tt, J = 7.2, 7.5 Hz, 2H) 
 

  

13C NMR (100 MHz, CDCl3) 

 209.1, 143.97, 140.8, 131.5 (q, 2JC-F = 32.9Hz), 128.41, 128.20, 126.1, 123.3 (q, 
1JC-F  =  270.8 Hz), 120.0, 120.0, 44.3, 41.7, 34.6, 29.7, 24.6 

  

19F NMR (300 MHz, CDCl3) 

 –62.8 

IR Alpha-Platinum ATR, Bruker, diamond crystal 

  = 2930, 1714, 1379, 1274, 1167, 1123, 924, 843, 748, 699, 681 cm–1 

HRMS TOF EI  

 Calculated for [C20H18OF6]
+ = 388.1262, found = 388.1270           
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Ketone 23 

 

Following General Procedure 1 cyclopropanol 2F (0.05 g, 0.65 mmol, 1 equiv.) was coupled to 

benzyl chloride (0.05 g, 0.65 mmol, 1 equiv.). Purification by flash column chromatography 

using 10% solution of EtOAc in hexanes (Rf = 0.34) afforded Ketone 23 (0.11 g, 0.42 mmol) as 

a white solid in 65% yield. 

1H NMR (300 MHz, CDCl3) 

 7.13 (d, J = 8.2 Hz, 2 H), 7.09 (d, J = 8.2 Hz, 2 H), 2.61 (t, J = 7.2 Hz, 2 H), 2.41 
(t, J = 7.2 Hz, 2 H), 2.30 (s, 3H), 2.30 (d, J = 6.9 Hz, 2 H), 1.91 (tt, J = 7.2, 7.2 Hz, 
2 H), 1.84 (m, 1H), 1.70 (m, 5H), 1.69 (m, 3H), 1.28 (m, 2H) 

  

13C NMR (75 MHz, CDCl3) 

210.78, 138.56, 135. 30, 129.02, 128.32, 50.56, 42.57, 34.66, 33.85, 33.22, 

26.20, 26.07, 25.28, 20.97 

IR Alpha-Platinum ATR, Bruker, diamond crystal 

 = 2918, 2849, 1713, 1511,1447,1375,1283, 1081, 1010, 808, 540, 482 cm−1 

m.p. 34 oC 

HRMS TOF EI 

 Calculated for [C18H26O]+ = 258.1984, found = 258.1978 
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Ketone 25 

 

 

 

 

Following General Procedure 1 cyclopropanol C (0.1 g, 0.45 mmol, 1 equiv.) was coupled to 4-

methyl benzyl chloride (0.06 g, 0.45 mmol, 1 equiv.). Purification by flash column 

chromatography using 8% solution of EtOAc in hexanes (Rf = 0.34) afforded ketone 25 (0.10 g, 

0.31 mmol) as yellow oil in 70% yield. 

1H NMR (400 MHz, CD2Cl2) 

 7.34- 7.18 (m, 10 H), 7.02 (d, J = 7.6 Hz, 2 H), 6.94 (d, J = 7.6 Hz, 2 H), 5.08 (s, 
1H), 2.52 (t, J = 7.2 Hz, 2 H), 2.47 (t, J = 7.2 Hz, 2 H), 2.26 (s, 3H), 1.83 (tt, J = 
7.2, 7.2 Hz, 2 H) 

  

13C NMR (75 MHz, CDCl3) 

 208.35, 135.33, 132.44, 130.09, 129.05, 128.97, 128.70, 128.35, 127.21, 64.14, 

42.12, 34.50, 25.55, 21.03  

  

IR Alpha-Platinum ATR, Bruker, diamond crystal 

 = 2923, 1715, 1657, 1494, 1276, 745, 696, 638, 545, 483 cm−1 

HRMS TOF EI 

 Calculated for [C24H24O]+ = 328.1827, found = 328.1815  
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Ketone 27 

 

Following General Procedure 1 cyclopropanol D (0.10 g, 0.66 mmol, 1 equiv.) was coupled to 4-

methyl benzyl chloride (0.09 g, 0.66 mmol, 1 equiv.). Purification by flash column 

chromatography using 10% solution of EtOAc in hexanes (Rf = 0.41) afforded ketone 27 (0.12 g, 

0.49 mmol) as yellow oil in 74% yield. 

1H NMR (300 MHz, CDCl3) 

7.12 (d, J = 8.1 Hz, 2H), 7.08 (d, J = 8.1 Hz, 2H), 5.54 (s, 1H), 3.00 (s, 2H), 2.59 
(t, J = 7.8Hz, 2H), 2.46 (t, J = 7.5Hz, 2H), 2.34 (s, 3H), 1.941 (s, 2H), 1.94-1.89 (m, 
2H), 1.89 (tt, J = 7.5, 7.8 Hz, 2H), 1.62-1.60 (m, 4H) 
 

  

13C NMR (75 MHz, CDCl3) 

209.51, 138.56, 135.29, 131.72, 128.99, 126.11, 52.50, 43.63, 40.83, 38.05, 

34.59, 28.61, 25.35, 22.72, 21.97, 20.96 

  

IR Alpha-Platinum ATR, Bruker, diamond crystal 

 = 3022, 2932, 2837, 2658, 1713, 1511,1437,1375,1137, 1036, 1010, 916, 876, 

718, 639, 540, 482 cm−1 

HRMS TOF EI 

 Calculated for [C17H22O]+ = 256.1827, found = 256.1836  
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Ketone 29 

 

Following General Procedure 1 cyclopropanol E (0.10 g, 0.39 mmol, 1 equiv.) was coupled to 4-

methyl benzyl chloride (0.05 g, 0.39 mmol, 1 equiv.). Purification by flash column 

chromatography using 6% solution of EtOAc in hexanes (Rf = 0.40) afforded Ketone 29 (0.10 g, 

0.28 mmol) as yellow oil in 72% yield. 

1H NMR (300 MHz, CDCl3) 

 7.12 (d, J = 8.2 Hz, 2H), 7.08 (d, J = 8.2 Hz, 2H), 3.62 (t, J = 6.6 Hz, 2H), 2.60 (t, 
J = 7.5 Hz, 2H), 2.42 (t, J = 7.2 Hz, 2H), 2.40 (t, J = 7.5 Hz, 2H), 2.34 (s, 3H), 1.91 
(tt, J = 7.2, 7.5 Hz, 2H), 1.62- 1.51 (m, 4H), 1.37- 1.31 (m, 2H), 0.91 (s, 9H), 0.07 
(s, 6H) 

  

13C NMR (75 MHz, CDCl3) 

 210.91, 138.51, 135.29, 129.01, 128.31, 62.94, 42.78, 41.88, 34.65, 32.59, 

25.95, 25.48, 25.32, 23.59, 20.96, 18.32, -5.31 

 

IR Alpha-Platinum ATR, Bruker, diamond crystal 

 = 2928, 2856, 1714, 1515, 1471, 1253, 1096, 833, 809, 773 cm−1 

HRMS TOF EI 

 Calculated for [C22H38O2Si]+H+ = 363.27138, found = 363.27153 
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Ketone 31 

 

 

Following General Procedure 1 cyclopropanol H (0.10 g, 1.0 mmol, 1 equiv.) was coupled to 4-

methyl benzyl chloride (0.14 g, 1.0 mmol, 1 equiv.). Purification by flash column 

chromatography using 8% solution of EtOAc in hexanes (Rf = 0.35) afforded ketone 31 (0.16 g, 

0.81 mmol) as yellow oil in 79% yield. 

1H NMR (400 MHz, CDCl3) 

 7.11 (s, 4H), 2.73- 2.56 (m, 2H), 2.31 (S, 3H), 2.28- 2.22 (m, 2H), 2.16- 1.99 (m, 
4H), 1.79- 1.74 (m, 1H), 1.57- 1.53 (m, 2H) 

  

13C NMR (75 MHz, CDCl3) 

 221.28, 138.49, 135.33, 129.02, 128.27, 48.31, 38.15, 33.15, 31.45, 29.68, 

20.96, 20.69 

IR Alpha-Platinum ATR, Bruker, diamond crystal 

 = 2922, 2859, 1733, 1514, 1453, 1405, 1152, 805, 547, 488 462 cm−1 

HRMS TOF EI 

 Calculated for [C14H18O]+ = 202.1358, found = 202.1365 
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Ketone 33 

 

Following General Procedure 1 cyclopropanol G (0.07g, 0.62 mmol, 1 equiv.) was coupled to 4-

methyl benzyl chloride (0.09 g, 0.624 mmol, 1 equiv.). Purification by flash column 

chromatography using 8% solution of EtOAc in hexanes (Rf = 0.35) afforded ketone 33 (0.09 g, 

0.41 mmol) as yellow oil in 66% yield. 

1H NMR (300 MHz, CDCl3) 

7.09 (s, 4H), 2.60 (t, J = 7.9 Hz, 2H), 2.42-2.28 (m, 6H), 2.19- 2.03 (m, 3H), 1.88- 
1.82 (m, 1H), 1.75- 1.61 (m, 2H), 1.54- 1.40 (m, 2H)  

  

13C NMR (75 MHz, CDCl3) 

213.23, 139.06, 135.16, 128.99, 128.26, 49.78, 42.09, 33.99, 32.72, 31.26, 

28.05, 24.88, 20.97 

IR Alpha-Platinum ATR, Bruker, diamond crystal 

 = 2930, 2862, 1730, 1515, 1457, 1412, 1153, 807, 542, 493, 454 cm−1 

HRMS TOF EI  

 Calculated for [C15H20O]+ = 216.1514, found = 216.1506 
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Appendix B:  1H and 13C-NMR Spectra 

1H and 13C-NMR spectra of Ketone 10 
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1H and 13C-NMR spectra of Ketone 17 
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1H and 13C-NMR spectra of Ketone 11 
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1H and 13C-NMR spectra of Ketone 15 
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1H and 13C-NMR spectra of Ketone 12 
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1H, 13C and 19F-NMR spectra of Ketone 18 
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1H, 13C and 19F-NMR spectra of Ketone 13 
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1H, 13C and 19F-NMR spectra of Ketone 19 
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1H, 13C and 19F-NMR spectra of Ketone 20 
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1H and 13C- NMR spectra of Ketone 16 
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1H and 13C- NMR spectra of Ketone 2 
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1H and 13C- NMR spectra of Ketone 5 
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1H and 13C- NMR spectra of Ketone 25 
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1H and 13C- NMR spectra of Ketone 27 
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1H and 13C- NMR spectra of Ketone 29 
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1H and 13C- NMR spectra of Ketone 23 
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1H and 13C- NMR spectra of Ketone 33 
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1H and 13C- NMR spectra of Ketone 31 


