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The larger research program, of which the present report is a part, involves approaching 

the analysis of world music from the vantage point of perception. With regard to tuning 

and scales, there have been three main approaches: via abstract numbers, via empirical 

measurements, and via perceptual responses.  

 

Since the pioneering work of Alexander Ellis in the 1880s, comparative musicologists, 

ethnomusicologists, acousticians, and music psychologists have measured fundamental 

frequencies and other partials in sonic spectra to characterize tunings empirically. Since 

at least as early as ca. 425 BCE, music theorists have employed abstract numbers to 

prescribe and describe tunings and scales. And since at least as early as ca. 1850 BCE, 

tunings have been prescribed and described in terms of perceptual responses. 

 

Whereas each of these three main approaches can be helpful in making sense of music, 

they are quite distinct. Nonetheless, these three distinct approaches have often been 

conflated and an aim of the present study is to disentangle them with a view to analyzing 

music perceptually. 

 

The present report illustrates this approach by focusing on equipentatonic tunings in 

general and Central Javanese sléndro in particular. Early transcriptions and descriptions 

of music in sléndro tuning, by Raffles, Crawford, and Figée (as reported by Ellis), 

employed European-derived notation and letter names that correspond to the solmization 

syllables doh, re, mi, sol, and la. Such tones correspond to numerical formulations in 

recent music theory: e.g., interval-class set 5-35 in Forte’s listing, the ‘usual pentatonic’ 

in Clough and Douthett’s study of maximally even sets, and in Carey and Clampitt’s 

formulation, an instance of ‘non-degenerate well-formed scales.’ 

 



In contrast, glossaries in the Garland Encyclopedia of World Music employ the term 

‘equipentatonic’ and specify, in a formulation that can be traced to measurements made 

by Ellis, that ‘equipentatonic’ refers to a ‘pitch inventory with five equally spaced pitches 

to the octave.’ In Carey and Clampitt’s numerical formulation, such a pitch inventory 

would be an instance of a ‘degenerate well-formed scale.’ 

 

Whereas glossaries in the Garland Encyclopedia state baldly that equipentatonic 

pitches are equally spaced, other passages in this authoritative reference work, as well 

as corresponding portions of the similarly authoritative Grove Music Online and 

Oxford Music Online, have followed the lead of Klaus Wachsmann’s term ‘pen-

equidistant’ (1967) and qualify the notion of equality by means of such phrases as 

‘nearly equidistant,’ ‘nearly equal,’ ‘almost equal,’ and ‘roughly equal.’  Indeed, 

Grove Music Online’s entry for ‘Interval’ is even more guarded, saying merely that the 

sléndro scale of the Indonesian gamelan ‘sometimes approximates’ to a division of 

the octave into five equal parts.  

Not only have there been three distinct ways of construing such tunings as sléndro. As 

well, Albrecht Schneider has made the strong claim that ‘many of the tone measurements 

carried out on dozens of gamelan instruments … are at odds with the physical and 

psychophysical nature of the sounds gamelan instruments such as gong chimes and other 

metallophones actually produce.’ By way of explanation, he goes on to say that, ‘due to 

inharmonic spectra and non-periodic time functions characteristic of the sounds of 

idiophones,’ the practice of ‘equating the pitch of a tone with a single frequency … will 

not work very well, and may lead to interpretations which seem, at best, problematic if 

not obsolete.’ 

 

I have compared Schneider’s claims with tones one can hear and measure at a readily 

accessible website that documents ‘Kyai Parijata,’ a two-century old Central Javanese 

gamelan that has been housed and played for more than 40 years in Delft. As individual 

tones of this gamelan differ considerably in amplitude, the leftmost columns of Figure 1 

display the ranges of fundamental frequencies for louder and softer tones that have been 

measured by means of software employed by the gamelan’s leader. The rightmost 



columns of Figure 1 display the frequencies and amplitudes of the illustrative tones for 

which the website provides wav files, and which I measured by means of widely 

available inexpensive software, namely, Transcribe!  

 
Instruments: Measurements by van Oldenborgh: Lowest Peaks in     
    minima maxima      Transcribe! Software  
    in Hz  in Hz       in Hz  dB     
Saron   1084.88 1084.91      1084.91 -29.3 
Barung  938.41  938.42       938.47  -21.5 

820.12  820.34       819.31  -22.4 
710.38  710.44       710.37  -21.2 
614.79  615.35       614.50  -21.9 
535.21  535.46       534.02  -15.8 
462.72  462.89       463.01  -16.3 

 
Saron   535.66  535.70       536.48  -6.9  
Demung   463.24  463.27       463.01  -9.6   

402.80  402.81       403.30  -10.2 
351.56  351.68       351.28  -10.8 
302.28  302.37       301.78  -15.7 
264.10  264.24       264.08  -10.7 
230.55  230.68       230.55  -5.5 

 
Slenthem   264.53  264.54       264.08  -9.2 

231.08  231.09       231.08  -14.5 
199.56  199.57       199.43  -14.1  
174.70  174.74       174.51  -13.5 
151.06  151.09       151.31  -14.6   
129.42  129.43       129.39  -14.9   
115.02  115.02       115.33  -14.9   
   

Figure 1.a. Comparison of fundamental frequencies slenthem, saron demung, and 
saron barung keys of gamelan Kyai Parijata of Delft, as measured by Geert Jan van 
Oldenborgh and by means of Transcribe! software.   

For the tones measured by van Oldenborgh, ‘The frequency was measured by 
taking a 2^16 sample FFT (1.4s) starting at the beginning of the sound.  This FFT was 
fitted over 10 bins by a Bessel function with undetermined amplitude, frequency and 
width, plus constant background,’ and for repeated measurements, the error is ‘normally 
around 0.1Hz,’ i.e., < 0.2 cents. (http://www.marsudiraras.org/gamelan/Delft.notes) 

For the lowest peak frequencies measured by means of Transcribe! software, the 
measurement gradations for slenthem, saron demung, and saron barung tones are 
uniformly ± 0.46%, i.e., ± 8 cents.  
 The accompanying audio example comprises the saron barung, saron demung, and 
slenthem tones, in that order, from highest to lowest: 
http://yorkspace.library.yorku.ca/xmlui/handle/10315/28322  



 
 
Instruments: Measurements by van Oldenborgh:  Lowest Peaks in 
    minima maxima      Transcribe! Software:  
    in Hz  in Hz       in Hz  dB      
  
Bonang  2492.30 2498.90      n.a.*  -6.3 
Panerus   2130.30 2130.70      n.a.*  -10.2 

606.77  1862.90      1858.87 -12.7  
1621.30 1626.80      1626.60 -16.6 
1422.50 1423.80      1423.86 -12.5  
1240.00 1246.00      1245.51 -16.6 
1086.60 1087.60      1084.88 -15.2 
939.95  941.00       940.63  -14.9 
815.80  819.16       819.31  -21.7 
709.77  710.29       707.11  -10.6  
615.79  620.30       617.33  -8.1 
534.06  536.23       536.48  -5.8  

 
Bonang  1239.70 1240.60      1239.79 -8.8 
Barung  1083.99 1084.90      1084.88 -19.3   

935.23  937.43       936.31  -25.0   
820.52  820.96       821.20  -23.6   
702.47  706.70       710.37  -18.3 
610.72  624.01       618.76  -5.4   
535.46  535.85       536.48  -6.7   
460.62  470.23       469.45  -8.9 
403.39  409.71       408.90  -1.8  
352.27  352.30       352.90  -7.3 
300.53  300.90       300.40  -11.3 
264.26  264.89       264.08  -6.7   

     
   
Figure 1.b. Comparison of fundamental frequencies of bonang barung and bonang 
panerus keys of gamelan Kyai Parijata of Delft, as measured by Geert Jan van 
Oldenborgh and by means of Transcribe! software.   

Concerning van Oldenborgh’s frequency measurements, see Figure 2.a (above).  
For the lowest peak frequencies measured by means of Transcribe! software, the 
measurement gradations for bonang  barung and bonang panerus tones are uniformly  
± 0.46%, i.e., ± 8 cents. Note also (*, above) that Transcribe! software measures 
frequencies only up to ca. 2000 Hz. 
 Also note the anomalous measurement of the third highest bonang panerus tone 
(highlighted above). 

The accompanying audio example comprises the boning panerus and bonang 
barung tones, in that order, from highest to lowest: 
http://yorkspace.library.yorku.ca/xmlui/handle/10315/28321  



 
 
As Figure 1 shows, there is very little difference between the frequencies measured by 

both methods. In order to compare these measurements with what one hears, I have 

employed Audacity freeware to generate sine tones having the same fundamental 

frequencies as those that resulted from the Transcribe! measurements and juxtaposed the 

website’s illustrative sound files with the respective sine tones.  

 

In the audio examples that accompany Figure 1, each gamelan tone is immediately 

followed by its respective sine tone. Unless my ears deceive me, each sine tone is heard 

as matching quite closely in pitch the immediately preceding gamelan tone. To be sure, 

within the gamelan tones one can also hear partials higher than the fundamental: as 

Schneider says, some occur during the onset and others are audible during the gamelan 

tones’ relatively ‘steady state.’ However, within each gamelan tone, there is a most 

salient partial that corresponds in pitch to the sine tone. 

 

 

 
 
Figure 2. Graphic display produced by Transcribe! Software for Frequencies (x-
axis) and their Amplitudes (y-axis) in the Fourth Lowest Bonang Barung tone of 
Figure 1(b).  The keyboard portion of the graphic ranges from F4 to B-flat6 (i.e., ~349-
2000 Hz). 
 
 



Significantly, according to the graphic displays provided by Transcribe! software, the 

partial of each tone that matches in pitch the sine tone corresponds to the lowest peak 

frequency and this lowest peak frequency is also the peak frequency of greatest amplitude 

E.g., in the Transcribe! graphic display of Figure 2, a frequency near G#4 corresponds to 

the fourth lowest of the bonang barung tones in Figure 1.b and clearly has the greatest 

amplitude. This observation validates studies that, since the 1930s, have employed 

stroboscopic tuners to measure fundamental frequencies, for stroboscopic tuners are best 

at specifying the peak frequency of greatest amplitude for an individual tone and the 

perceptual comparisons just demonstrated show that what one would consider ‘the pitch’ 

of an individual tone on the basis of its lowest peak frequency of greatest amplitude 

corresponds quite closely to ‘the pitch’ of a sine tone having the same frequency.  

 

Conversely, this comparison also validates studies that, since the 1880s, have employed 

tuning forks or well calibrated monochords to measure fundamental frequencies. For the 

latter involve comparing an individual tone with a tone produced by a tuning fork or a 

monochord and determining by perception whether the two tones match in pitch. 

Whether an electronically generated sine tone, or a tone produced by a tuning fork or a 

monochord is the perceptual comparator, its fundamental frequency serves as a surrogate 

for what one terms ‘the pitch’ of a tone. Here one should emphasize that apart from the 

highly problematic case of so-called ‘absolute pitch,’ one cannot speak properly of ‘the 

pitch’ of a tone. More properly, two tones—or more generally two parts of tones—are 

heard as matching, or not matching, in pitch.  

 

In general, if a sine tone and the lowest peak frequency of such a gamelan tone have the 

same fundamental frequency they are heard as matching in pitch. That is, having the 

same fundamental frequency is a sufficient condition for their being heard as the same in 

pitch. However, having the same fundamental frequency is not a necessary condition. 

Otherwise, there would be no reason to specify the acoustically measured conditions for a 

so-called ‘just noticeable difference’ (jnd) in frequency. Moreover, as considerable 

research in psychology has shown, jnd’s for pitch, as for other perceptual variables, are a 

matter of individual differences, which can be considerable.  



 

Similarly, if the fundamental frequencies of two such tones constitute the same ratio as 

the fundamental frequencies of another pair of such tones, the two pairs of tones are 

generally heard as matching pitch-intervallically. As with pitch, constituting the same 

fundamental-frequency ratio is a sufficient, but not a necessary, condition for hearing two 

tone-pairs as matching pitch-intervallically. Are sléndro tones, then, ‘equally spaced’? 

 

Figure 3 displays the ranges of values of the fundamental-frequency ratios formed by the 

pairs of tones in Kyai Parijata that span 0, 1, 2, 3, …, 20 steps, i.e., successive keys and 

pots. In Figure 3, one can see that, as calculated in cents, i.e., hundredths of an equally 

tempered semitone, the fundamental-frequency ratio of the largest so-called ‘unison,’ 

i.e., the largest 0-step interval (or ‘prime’), is 184 cents smaller than the fundamental-

frequency ratio of the smallest so-called 2nd, i.e., the smallest 1-step interval, and 

similarly for the largest 1-step interval and the smallest 2-step interval, and so forth. 

Among all the intervals, i.e., from 0 to 20 steps, the more steps an interval spans, the 

larger all of its instances are.  

 
number of steps:  
  
0  1  2  3  4  5  6  7  8  9  10  

min [0]  199  454  693  932  1179 1414 1657 1904 2151 2382 

max 24  271  518  749  1000 1235 1474 1729 1968 2215 2454  

difference  175  183  175  183  179  179  183  175  183  167  

 

  (10) 11  12  13  14  15  16  17  18  19  20 

min  (2382) 2622 2877 3139 3378 3610 3865 4096 4343 4582 4813 

max (2454) 2697 2940 3195 3426 3681 3912 4152 4382 4614 4813 

difference  168  180  199  183  184  184  184  191  200  199  

 

Figure 3. Minimum (min) and maximum (max) fundamental-frequency ratios, in 
cents, of pairs of tones comprising 0 to 20 steps in Kyai Parijata.  

Cents measurements are based on the fundamental frequencies measured by 
Transcribe! software. 



The lowest rows specify the difference between the maximum values of intervals that 
span n = 0, 1, 2, …, 19 steps and the respective minimum values of intervals spanning 
n+1 = 1, 2, 3, …, 20 steps. (The smallest difference is 167 cents.) 

Values for the 5-step (‘octave’) intervals of and their supplementary intervals of 10, 
15, and 20 steps are highlighted. 
 

To employ David Rothenberg’s and Norman Carey’s terms, Kyai Parijata’s sléndro 

tuning is, respectively, ‘strictly proper’ or ‘generically ordered.’ Indeed, if one relativizes 

the notion of generic ordering, as Carey’s study of scale candidacy does implicitly, Kyai 

Parijata’s sléndro tuning can be considered ‘mensurably generically ordered.’ With 

regard to measurement, the steps in Kyai Parijata’s sléndro tuning are definitely not 

‘equally spaced.’ However, an assessment of generic ordering bypasses problematic 

issues of equality with regard to measurement and substitutes the notion that, as 

measured, Kyai Parijata’s sléndro tuning is generically ordered.  

 

As mentioned above, an equally spaced tuning is a degenerate well-formed tuning. In 

such a tuning there are 5 classes of intervals. One of the classes spans 0 steps and its 

specific magnitude is 0, another spans 1 step and its specific magnitude is 1/5 the 

magnitude of the modulus, i.e., 1/5 of the so-called ‘octave,’ and so on. Such a tuning is 

highly unified insofar as the number of steps an interval spans varies directly, in a one-to-

one manner, with its specific magnitude. However, such a tuning’s degenerate well-

formed structure is purely numerical, i.e., abstract, and, in principle, no measurement 

can verify it.  

 

Kyai Parijata’s sléndro tuning is highly unified in another way: For each number of steps 

there is a group of intervals that are ‘the same’ in that all intervals that span that number 

of steps are smaller in specific magnitude than all the intervals that span more steps. 

Moreover, for such a mensurably generically ordered tuning, specific magnitudes are 

assessed by measurement. Further, whereas measured sameness is in general, a sufficient, 

but not a necessary, condition for perceptual sameness, measured difference is a 

necessary, but not a sufficient condition for perceptual difference. However, as Figure 3 

shows, to deny that Kyai Parijata’s sléndro tuning is not only mensurably generically 

ordered but also perceptibly generically ordered would be to claim that persons do not 



hear pairs of tones whose measured fundamental-frequency ratios differ by at least 167 

cents as differing pitch-intervallically.  

 

For purposes of musical analysis and relative to such a 167-cent difference, all intervals 

in Kyai Parijata that span a particular number of steps can be considered to instances of a 

grouping that is unified by analogical relationships between numbers of steps and 

auditory magnitudes. As well, there is room in an analysis for the possibility that any 

interval that spans a particular number of steps is heard as larger than one or more 

intervals that span the same number of steps—just as in the European-derived distinction 

between a C-sharp and a ‘sharp C’ or between a minor 3rd and a small major 3rd.  

 

If no such difference is heard, all intervals that span a particular number of steps are 

heard as the same and Kyai Parijata’s tuning can be regarded as degenerate well-

formed—albeit in a non-numerical sense of perceived same-as relationships, or more 

precisely, perceptible analogical relationships, rather than abstract numbers.  

 

If, however, such differences are heard, they can be considered nuances within 

analogical groups of intervals spanning the same number of degrees. To judge from 

previous studies of tuning perception, such differences or their absence would be a matter 

of differences among individual persons. And as Figure 3 shows, one would anticipate 

such differences in individual responses to Kyai Parijata’s tones to correspond to 

differences of less than 167 cents.  

 

Finally, if such differences occur among corresponding steps in all registers, they might 

be considered instances of sub-generic ordering, as in the case of the usual pentatonic, 

which is generically ordered and where, in each register, 3 of the 1-step intervals are 

heard as smaller than the other 2, 1 of the 2-step intervals is heard as smaller than the 

other 4, and so forth.   
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