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Abstract

This thesis explores the orders of Galois representations about torsion subgroups of elliptic

curves. We review the literature on elliptic curves and Serre’s theorem. We describe a field

formed by adjoining torsion subgroup of an elliptic curve. We show that the extension is finite

and algebraic. Next, we construct a Galois group from the extension and use the relationship

with a generalized linear group to find the possible values of the order of the Galois group.

The order depends on the field where an elliptic curve is defined, the reducibility of f(x),

and structure of the torsion subgroup. This approach provides the same insight as Serre’s

theorem that provides an upper bound of the order of Galois representation of an extended

field given by adjoining a subgroup of points of an elliptic curve.
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Chapter1

Introduction

An elliptic curve over a field F is a set of points (x, y) such that y2+sxy+ty = x3+ux2+vx+w

with given coefficients s, t ,u, v, and w ∈ F . There are many applications of elliptic curves to

answer mathematically interesting questions. Several examples of applications are presented

in [7] and [14]. For example, given an area n > 0, elliptic curves can be used to find whether

there is a right triangle whose area is n and its sides have rational lengths. For a given area

n > 0, there are right triangles with rational length sides if and only if y2 = x3 − n2x has a

rational point (x, y) with y ̸= 0. To see this, we use a well-known one-to-one correspondence

between the following two sets

Cn =

{
(a, b, c) : a2 + b2 = c2,

ab

2
= n

}
En =

{
(x, y) : y2 = x3 − n2x, y ̸= 0

}
given by mutually inverse maps f : Cn → En and g : En → Cn defined as

f((a, b, c)) =

(
nb

c− a
,
2n2

c− a

)
, g((x, y)) =

(
x2 − n2

y
,
2nx

y
,
x2 + n2

y

)
.

For instance, there is a right triangle of area 5 (n = 5) if and only if y2 = x3 − 25x has a

rational point. Since the curve passes through a point P = (−4, 6), a rational point, one can

find the corresponding right triangle of area 5 whose sides are (3
2
, 20

3
, 41

6
). Also, y2 = x3−36x
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passes through (12,36). It corresponds to a right triangle of area 6 with sides 3,4, and 5.

Another application of elliptic curved is presented in [14]. We stack cannonballs in a

square pyramid shape. Assuming that we have stacked up to x layers, we try to answer

the question of whether they can be rearranged in a square form in two dimensions. This

is equivalent to answer the question whether there are integers x and y such that y2 =

x(x+1)(2x+1)
6

. We immediately see that (1, 1) and (0, 0) satisfy this equation. Can we find other

integral points on this curve? To answer that, we consider a straight line that connects the two

points y = x and y2 = x(x+1)(2x+1)
6

. We find the intersection of the line y = x and the elliptic

curve y2 = x(x+1)(2x+1)
6

, which is (x, y) = (1
2
, 1
2
). This is another point of y2 = x(x+1)(2x+1)

6
.

Since y2 = x(x+1)(2x+1)
6

is symmetric about x-axis, we can see that (x, y) = (1
2
,−1

2
) is also a

point on y2 = x(x+1)(2x+1)
6

. After that, we find the linear line y = 3x− 2 that passes through

(1
2
,−1

2
) and (1, 1) and y2 = x(x+1)(2x+1)

6
intersect at (24, 70). This is another integer point on

y2 = x(x+1)(2x+1)
6

.

Throughout this paper, we will focus on the case where points on an elliptic curve over

a field F form a group. In particular, we do not consider curves f(x, y) = 0 such that the

partial derivatives fx(P ) and fy(P ) are both zeros at a point P . The reason is that we have

a cusp or a node at such a point and we cannot define the tangent line at the point. Hence,

at such a point, it is impossible to clearly define a tangent line to the curve. We will see

that this would prevent us to understand the algebraic structure of the points on the elliptic

curve.

In the literature, a formal definition of elliptic curves includes the point at infinity, denoted

by O, in addition to the points on them. This point is defined to be the identity of the group

formed by the points on the given elliptic curve. Intuitively, the point at infinity is defined

as the third point that the vertical line that connects a point P on an elliptic curve and

another point symmetric with respect to the x-axis and the elliptic curve intersect. After

introducing backgrounds about elliptic curves, we introduce torsion subgroups of an elliptic

curve over arbitrary fields. The torsion subgroups help understanding of the group structure
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of the set of points on an elliptic curve.

Next, based on [2] and [8], we consider extensions of a field where we add torsion sub-

groups of an elliptic curve. We demonstrate that this extension is algebraic and the Galois

group formed by the extension can be represented by matrices. Using this representation,

we find the possible values of the order of the Galois group if elliptic curves are defined over

a field. We tried to limit the values that the order of a Galois extension can have. Based on

[12], knowing possible values of the orders provide an intuition about how large the order of

the Galois group will be.
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Chapter2

Basic Theory about Elliptic Curves

2.1 Elliptic Curves

2.1.1 Definition about Elliptic Curves

This section begins with a definition of an elliptic curve over a field F .

Definition 1. ([7]) Given a field F and s, t ,u, v, and w ∈ F , elliptic curve over a field F

is the set of the points (x, y) on the curve

y2 + sxy + ty = x3 + ux2 + vx+ w (2.1)

along with a point at infinity O. Denote it as E(F ).

An elliptic curve given by equation (2.1) is called the “generalized Weierstrass equa-

tion” of the curve. There is a simplified form of Generalized Weierstrass equations, which is

determined by the characteristic of the field where the curve is defined.

Theorem 2.1.1. ([15] [10],[13]) The equation (2.1) in the Definition 1 can be transformed

into the following forms, depending on the characteristics of the field F .

1. Let char(F ) = 2. Then,

4



y2 + Ay = x3 +Bx+ C or (2.2)

y2 + xy = x3 + Ax2 +B (2.3)

where A,B,C ∈ F .

2. Let char(F ) = 3. Then,

y2 = x3 + Ax2 +B (2.4)

where A,B ∈ F .

3. Let char(F ) > 3 or char(F ) = 0. Then,

y2 = x3 + Ax+B (2.5)

where A,B ∈ F .

The proof uses a transformation of variables in equation (2.1). Here, the case where

char(F ) > 3 or char(F ) = 0 (part 3 in Theorem 2.1.1) is proved.

Proof: Proof of (3). We start with the Generalized Weierstrass equation from (2.1).

y2 + sxy + ty = x3 + ux2 + vx+ w

5



Since char (F ) ̸= 2, through completing squares, we obtain

y2 + (sx+ t) y = x3 + ux2 + vx+ w

→ y2 + (sx+ t) y +
(
sx+t
2

)2
= x3 + ux2 + vx+ w +

(
sx+t
2

)2
→

(
y + sx+t

2

)2
= x3 + (u+ s2

4
)x2 + (v + ts

2
)x+ w + t2

4

Using the following substitutions, ȳ = y + sx+t
2

, ā = u + s2

4
, b̄ = v + ts

2
, and c̄ = w + t2

4
, we

can rewrite above by

ȳ2 = x3 + āx2 + b̄x+ c̄

Let x̄ = x + ā
3
, Then, it can be shown that ȳ2 = x3 + āx2 + b̄x + c̄ is transformed to

ȳ2 = x̄3 + Ax̄ + B for some A,B ∈ F where A = ā2

3
+ b̄ and B = − ā3

27
+ c̄− āb̄

3
. We get the

form of the equation as desired. ■

2.1.2 Addition of Points on an Elliptic Curve

In Chapter 1, we presented a method of finding different points on the same curve using

existing points on an elliptic curve. Based on this approach, we define in this section the

addition of two points on an elliptic curve. We follow [15].

We start at two points P = (x1, y1) and Q = (x2, y2) of an elliptic curve E(F ). Addition

+E on E(F ) is loosely described geometrically as follows: consider a line L passing through

P and Q. Then, we find another point on E(F ) that is on the line L. Let the point be R̄.

After finding a vertical line passing through R̄, the intersection of that line and E(F ) is

obtained. This gives us a point R and we define R = P +E Q.

Before we give a formal definition of the addition, we provide an example of such an

addition.

Example Let E be an elliptic curve over R and be given by y2 = x3+1. We know (−1, 0) and

(2, 3) are on E. Then, the line connecting the two points is y = x+ 1 and substituting it to

y2 = x3+1 provides a new point (0, 1) on the elliptic curve. Hence, (−1, 0)+E (2, 3) = (0,−1).

6



To study this in detail, let char(F ) > 3 or char(F ) = 0 . Then, by Theorem 2.1.1,

the elliptic curve is y2 = x3 + Ax + B for some A,B ∈ F . Suppose we have two points

on the curve P = (x1, y1) and Q = (x2, y2) where x1 ̸= x2. The line passing through

P = (x1, y1) and Q = (x2, y2) has a slope y2−y1
x2−x1 and hence L is y = y2−y1

x2−x1 (x−x1)+ y1. Then,

substituting y into y2 = x3 +Ax+B will yield the other point on E(F ) where L intersects.

The intersection is (m2 − x1 − x2, y1 −m(2x1 + x2 −m2)). The reflection about x-axis will

yield R = (m2 − x1 − x2,−y1 + m(2x1 + x2 − m2)) and R = P +E Q that we desire (See

Figure 2.1 below for an example of an elliptic curve that is drawn based on SageMath code

from [9]).

Figure 2.1: Example of the addition of two points P = (−1, 0) and Q = (0, 1) (R = P +E Q)
on an elliptic curve y2 = x3 + 1. The vertical line is x = 2 and the other line is y = x+ 1.

Next, we consider the case where x1 = x2 and y1 ̸= y2. That is, they are two distinct

points P and Q with the same x-coordinate. In this case, the line that connects the two

points is a vertical line. Hence, we define P +E Q as the point at infinity.

The last case is when P = Q. For this, we consider the line L tangent to E at P. Through

implicit differentiation, dy
dx
(x1, y1) =

3x21+A

2y1
. As long as y1 ̸= 0, the slope of the tangent line is

well-defined. The line L will be y =
3x21+A

2y1
(x−x1)+y1 and substituting y into y2 = x3+Ax+B

results in finding 2P , which is (m2 − 2x1,m(3x1 −m2)− y1) where m =
3x21+A

2y1
. If y1 = 0 and

3x21 +A ̸= 0, then the tangent line at (x1, y1) is vertical and 2P is defined to be the point at

infinity O.

7



An implicit assumption behind the operation +E is that an elliptic curve over a field F

is smooth. That is, it is presumed that the curve does not have a cusp or a node at a point,

which is called a singular point. To describe precisely, we define the singularity at a point

and a non-singular curve.

Definition 2. ([7]) Suppose E = {(x, y) ∈ F 2|f(x, y) = 0} is a curve on F 2 and let P ∈ E.

Then, P is called a singular point of E if and only if

∂f

∂x
(P ) = 0 and

∂f

∂y
(P ) = 0 (2.6)

If P is not a singular point, it is called a non-singular point. If none of the points of E are

singular, then the curve is non-singular.

Remark If ∂f
∂x
(P ) = 0 and ∂f

∂y
(P ) = 0, then the curve f(x, y) has a node or cusp at P .

Here, we study the meaning of an elliptic curve singular at a point. Suppose f(x, y) in

the Definition 1 is singular at a point P . Then, note that we cannot identify 2P since it is

impossible to identify a tangent line to the point. Hence, the points on the curve with the

singular points do not form a group in general. Hence, we will only consider an elliptic curve

over a field that does not have a singular point hereafter.

Remark We assume an elliptic curve is defined over a field F whose characteristic is neither

two nor three. The singularity of the elliptic curve is related to whether the right-hand side

of an elliptic curve y2 = f(x) has a repeated root. Suppose the right-hand side of (2.5)

has a repeated root. Then, we can express both of the equations as y2 = (x− α)2(x− β) or

y2 = (x−α)3. If F (x, y) = y2−(x−α)2(x−β), then ∂F
∂x

= −(x−α)(3x−α−2β) and ∂F
∂y

= 2y

by the product rule of differentiation. Then, if we let x = α and y = 0, then (α, 0) ∈ E(F )

and both of the partial derivatives vanishes at (x, y), which implies the curve is singular at

the point. The similar argument applies for the case y2 = (x − α)3. Conversely, we show if

an elliptic curve y2 = x3 +Ax+B is singular, then the right-hand side of y2 = x3 +Ax+B

has a repeated root. If y2 = x3 + Ax + B is singular, then by differentiation of the curve

8



with respect to y and x respectively, we obtain 2y = 0 and 3x2 + A = 0. Then y = 0. Also,

if we let f(x) = x3 + Ax + B = 0 and therefore f ′(x) = 3x2 + A = 0, then f(x) has a

repeated root. Note that we need to assume char(F ) ̸= 2 to make 2y = 0 imply y = 0 and

char(F ) ̸= 3 to ensure f(x) has a repeated root. Hence, our assertion about the relationship

between having a repeated root and singularity of an elliptic curve is proved.

2.1.3 Elliptic Curves over Fields of Characteristic 2 and 3

We need to give a different definition of the operation +E on elliptic curves defined over a

field with characteristic 2 because the elliptic curves in such a field have different forms of

equations from the ones when fields where those curves are defined have characteristics not

equal to two. If a field F has characteristic two and is perfect, then by Theorem 2.1.1, the

generalized Weierstrass equation can be written as as either in (2.2) or (2.3). Before defining

+E, it is necessary to examine the conditions under which Equations (2.2) and (2.3) are

non-singular.

We consider equation (2.2). We find y2+Ay+x3+Bx+C = 0 is non-singular if and only

if A ̸= 0. This is because Fx = 3x2 + B = x2 + B and Fy = 2y + A = A do not both vanish

if the non-singularity holds. Also, we consider elliptic curves of the form (2.3). We claim the

elliptic curve is singular at (0, 0). Let G(x, y) = y2 + xy + x3 + Ax2 + B. Gx = y + x2 and

Gy = x because char(F ) = 2. Hence, Gx = Gy = 0 at P = (0, 0). From this, we point out

that by Definition 2 and the equation (2.3), if B = 0, then P = (0, 0) is a singular point of

the elliptic curve (2.3). If B ̸= 0, we find the point P = (0, 0) is not a singular point on the

curve since it is not on the curve. Hence, we need the condition B ̸= 0 to ensure the curve

is not singular at P = (0, 0).

We provide the doubling formula below.

Theorem 2.1.2. ([15]) Let P be a point on E(F ) where char(F ) = 2 and F is a perfect

field

1) If an elliptic curve E is described by the equation y2+Ay+x3+Bx+C = 0 where A ̸= 0,

9



then

2P = P +E P =

(
x4 +B2

A2
,

[
x2 +B

A

] [
x4 +B2

A2
− x

]
+ A

)
(2.7)

2) If an elliptic curve E is described by the equation y2 + xy + x3 + Ax2 + B = 0 with

B ̸= 0, then

2P = P +E P =

(
x4 +B

x2
,

[
y + x2

x

] [
x4 +B

x2
− x

]
+
x4 +B

x2

)
(2.8)

For x = 0, 2P = O.

Proof: We prove part 1). By implicit differentiation, we find 2yy′+Ay′+3x2+B = 0 Hence,

y′ = x2+B
A

. Then, the tangent line to (x0, y0) is y = x2+B
A

(x − x0) + y0. If we substitute

y = x2+B
A

(x − x0) + y0 into y2 + Ay + x3 + Bx + C = 0, we find the x-coordinate of 2P is

(
x20+B

A
)2. Substituting x = (

x20+B

A
)2 into y2+Ay+x3+Bx+C = 0 and finding the inverse of

the y-coordinate of the resulting coordinate provide the y-coordinate of 2P , which is given

by
[
x20+B

A

] [
x40+B

2

A2 − x0

]
+ A ■

Remark The assumption that a field F must be perfect is needed to make A ̸= 0 is a

sufficient condition for the non-singularity of the elliptic curve in the part 1) in Theorem

2.1.2. More precisely, we know if f(x, y) = y2 + Ax + x3 + Bx + C, the elliptic curve is

singular if fx(x, y) = x2 + B = 0 and fy(x, y) = A = 0. If F is a perfect field, there exists

b ∈ F such that b2 + B = 0. This implies the curve is singular if A = 0. Therefore, A ̸= 0

becomes a sufficient condition for the non-singularity if F is a perfect field.

Also, for the distinct points, we define P +E Q if P ∈ E(F ) and Q ∈ E(F ).

Theorem 2.1.3. ([15]) Let char(F ) = 2 and suppose an elliptic curve over F is given by

y2 + xy = x3 + Ax + B. Then, for a given point P = (x1, y1), −P = (x1, y1 + x1) and if

P = (x1, y1) and Q = (x2, y2) are two distinct points such that P ̸= −Q, then P +E Q =

(m2+m+x1+x2+A,m(x1+x3)+x3+y1) where m = y1+y2
x1+x2

and x3 = m2+m+x1+x2+A

10



Proof: The inverse of a point P = (x1, y1) is −P = (x1, x1 + y1). The reason is that a point

(x, y) is on the curve if y2+x1y = x31+Ax
2
1+B = y21+x1y1 and hence (y+y1)(y+x1+y1) = 0,

which implies y = y1 or y = x1 + y1. This means a vertical line x = x1 intersects with the

elliptic curve at (x1, y1) and (x1, x1 + y1). Hence, for the point P , −P = (x1, x1 + y1).

Suppose P and Q are distinct points such that −P ̸= Q. The slope of a line that

connects P and Q is y = y1+y2
x1+x2

(x− x1) + y1. We substitute y into the elliptic curve and find

P+EQ = (m2+m+x1+x2,m(x1+x3)+x3+y1) wherem = y1+y2
x1+x2

and x3 = m2+m+x1+x2+A

■

Theorem 2.1.4. ([15]) Let char(F ) = 2. Also, suppose an elliptic curve over F is given

by y2 + Ay = x3 + Bx + C.Then, for a given point P = (x1, y1), −P = (x1, A + y1)

and if P = (x1, y1) and Q = (x2, y2) are two distinct points such that P ̸= −Q, then

P +E Q = (m2 + x1 + x2, A+m(x1 + x3) + y1) where m = y1+y2
x1+x2

and x3 = m2 + x1 + x2.

Proof: The proof is analogous to Theorem 2.1.3. ■

Remark In the case of Q = −P , then the line connecting the two points P and Q is a

vertical line and P +E Q is the point at infinity O. If P = Q, then 2P is given in Theorem

2.1.2.

Next, we describe the operation +E on an elliptic curve over a field whose characteristic

is 3. Based on [13], we can write an elliptic curve over such a field as y2 = x3 +Ax2 +B. We

provide conditions on A and B for non-singularity.

Theorem 2.1.5. Let y2 = x3+Ax2+B is an elliptic curve over a field F with characteristic

3. Then, y2 = x3 + Ax2 +B is non-singular if A ̸= 0 and B ̸= 0.

Proof: Let F (x, y) = y2 − x3 −Ax2 −B. Then, Fx = 3x2 + 2Ax = 2Ax and Fy = 2y. Hence,

if the elliptic curve is singular, then A = 0 and y = 0. If x = 0, then B = 0 if the elliptic

curve is singular. This indicates the elliptic curve is non-singular if A ̸= 0 and B ̸= 0. ■

The addition of two points and doubling a point is defined as below:

11



Theorem 2.1.6. ([13]) Let char(F ) = 3 and suppose an elliptic curve over F is given

by y2 = x3 + Ax2 + B. Then, for a given point P = (x1, y1), −P = (x1,−y1) and if

P = (x1, y1) and Q = (x2, y2) are two distinct points such that P ̸= −Q, then P +E Q =

(m2 − A − x1 − x2,m (x1 − x3) − y1) where m = y2−y1
x2−x1 and x3 = m2 − A − x1 − x2. Also,

2P = (m2 − A+ x1,m(x1 − x2)− y1) where m = Ax1
y1

and x2 = m2 − A+ x1.

Remark We assume char(F ) = 3 and y2 = x3 + Ax2 + B be an elliptic curve over F. Let

P = (x1, y1) and Q = (x2, y2) be two distinct points. If x1 = x2, then P +E Q will be the

point at infinity. If y1 = 0, 2P will be the point at infinity. For point P = (x1, y1) on the

curve, −P = (x1,−y1) since the y-coordinate where vertical line x = x1 meets the curve is

characterized by y2 + 2x31 + 2Ax21 + 2B = 0.

2.1.4 Group Law

We defined the operation +E over any field. For this operation to be defined on an elliptic

curve, the curve must be non-singular at every point. Otherwise, it is impossible to double

a point at a singular point since a tangent line at such a point cannot be defined. Therefore,

in all subsequent discussions, it is assumed that singular points of the elliptic curve that we

consider do not exist.

The theorem below indicates that the set of points on E(F ) equipped with the operation

+E is an Abelian group.

Theorem 2.1.7. ([15]) The set of the points on a non-singular elliptic curve E over the

field F , denoted by E(F ) is an Abelian group under +E. That is, for all P ,Q, and R on

E(F),

1. P +E Q ∈ E(F )

2. (Associative) (P +E Q) +E R = P +E (Q+E R).

3. There exists the identity element O on E such that P +E O = P .

12



4. There exists an inverse element of P , which is −P such that the P +E (−P ) = O.

5. P +E Q = Q+E P .

We note the first four properties show E(F ) is a group under +E. The last property

indicates E(F ) is an Abelian group.

Proof: 1. This follows from the previous section.

2. We skip the proof for this part and refer to the reader to [15] or [11] for details.

3. If O is the point at infinity, the property follows from the definition.

4. Given that char(F ) ̸= 2, suppose P = (x, y) ̸= O. Then, −P = (x,−y) and P +E (−P ) =

O. In the case of P = O, the same holds since −P = O. The analogous results holds when

char(F ) = 2. For details, refer to Theorem 2.1.3 and 2.1.4.

5. If P = Q, we are done. The statement holds if P ̸= Q since the algebraic expressions

about doubling a point and addition of two points on an elliptic curve from the previous

sections in this chapter do not change regardless of P +E Q or Q+E P . ■

2.1.5 The map αn : E(F ) → E(F )

In this section, following [11] and [15], we study a map that sends a point P on an elliptic

curve to another point on the same curve. In particular, the focus is on the map αn : E[F ] →

E[F ] such that P → nP where n ∈ Z+ is fixed. nP = P +E P +E . . . +E P denotes P is

added n times. By Theorem 2.1.7, nP ∈ E(F ) if P ∈ E(F ).

Finding the smallest n such that nP is the point at infinity for any point P on E(F ) is

an interesting task. This is because if such a (finite) n exists, we find a subgroup of E(F ) of

order n created by P , which allows us to understand better the algebraic structure of E(F ).
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Chapter3

Torsion Subgroups of Elliptic Curves

3.1 Torsion

To examine the algebraic structure of an elliptic curve defined over a field F , it is important

to examine points on the curve with special properties. In particular, we focus on a subgroup

of the group of the points on the curve, defined as n-torsion points.

Definition 3. ([7],[15]) Let P ∈ E(F̄ ) where F̄ is an algebraic closure of a field F . For

n ∈ Z, P is a n-torsion point if nP = O. We denote the set of such points as E[n].

One thing to note among the properties of E[n] is that E[n] is a subgroup of E(F̄ ).

Theorem 3.1.1. ([15]) E[n] is a subgroup of E(F̄ ).

Proof: The proof is explicit since the operation +E is inherited to a subgroup of E(F̄ ).

Hence, the associativity of +E, the existence of identity and inverse elements hold in E[n].

Also if P1 and P2 are in E[n], then n(P1 +E P2) is the point at infinity since n(P1 +E P2) =

nP1 +E nP2 = O +E O = O by Theorem 2.1.7. Hence, E[n] is a subgroup of E(F̄ ). ■

Remark Indeed, for a fixed n ∈ N, the map αn : P → nP is a homomorphism and

ker(αn) = E[n].

Definition 4. ([11]) The smallest subgroup in E(F̄ ) that contains all E[n] for n ≥ 0 is

called torsion subgroup of E(F̄ ) and is denoted by E(F̄ )tor. That is E(F̄ )tor = ∪n∈NE[n].
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3.1.1 2-Torsion Points of an Elliptic Curve

We follow [15]. Suppose an elliptic curve is defined over a field F with char(F ) ̸= 2. 2-torsion

points of an elliptic curve is a point P ∈ E(F̄ ) such that 2P = O. From the definition of

the addition of the points on an elliptic curve in the previous chapter, the y-coordinate of a

point P is zero if and only if P is a 2-torsion point. It is explicit from Theorem 2.1.2 that

if the elliptic curve is defined over a field with char(F ) = 2, then a point P is a 2-torsion

point if its x-coordinate is zero given that the curve is of the form (2.3). If the curve is of

the form (2.2), there are no 2-torsion points if the curve is non-singular.

Let char(F ) = 2. Suppose a non-singular elliptic curve is of the form (2.2) in Theorem

2.1.1, which is y2 + Ay = x3 + Bx + C. where A,B and C are in F . We know P ∈ E(F )

is a 2-torsion point if and only if 2P = O or equivalently, P = −P . This implies y =

y + A therefore A = 0. However, in Theorem 2.1.2, A cannot be zero because of the non-

singularity assumption. Hence, E[2] is trivial in this case. Such an elliptic curve is called a

“supersingular” elliptic curve. For details about a supersingular elliptic curve, refer to [14].

Also, suppose an elliptic curve is of the form (2.3) in Theorem 2.1.1, which is y2 + xy =

x3 + Ax2 + B where A,B ∈ F where F is a perfect field. We recall B ̸= 0 is needed to

non-singularity of the elliptic curve. Then, by the same argument above, y = x+ y so x = 0.

Then, we obtain y2 = B and y =
√
B. Hence, E[2] = {O, (0,

√
B)} and E[2] ∼= Z2. This

elliptic curve is sometimes called an “ordinary curve”. The definition about an ordinary curve

is found in [14].

Let F be a field with characteristic 3. Then, by Theorem 2.1.1, we get the reduced

Weierstrass form of a non-singular elliptic curve y2 = x3 + Ax2 + B. By the definition of 2-

torsion points, the y-coordinate of every 2-torsion point is zero. Also, we find the discriminant

of x3 +Ax2 +B = 0 is 2A3B using SageMath code in [5]. We see 2A3B ̸= 0 since A ̸= 0 and

B ̸= 0 by Theorem 2.1.5. Since the degree of x3+Ax2+B = 0 is three, E[2] consists of three

distinct points on the x-axis together with the point at infinity. Therefore, E[2] ∼= Z2 ⊕ Z2
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since every element has an order of 2, but the order of E[2] is four.

Let char(F ) > 3 or char(F ) = 0. Then, by Theorem 2.1.1, Weierstrass equation can be

written as y2 = x3 + Ax + B where A,B ∈ F . The set of a 2-torsion points of this elliptic

curve E[2] is {O, (x1, 0), (x2, 0), (x3, 0)} where x1, x2, and x3 is such that y2 = x3+Ax+B =

(x−x1)(x−x2)(x−x3). If the curve is non-singular, the discriminant of x3+Ax+B, which

is equal to −4A3− 27B2, is not zero, which implies x3+Ax+B has three distinct roots. We

can find E[2] ∼= Z2 ⊕Z2 since every point of E[2] has an order of at most 2 but the order of

E[2] is four.

3.1.2 n-Torsion points where n > 2

3.1.2.1 3-torsion points

Let char(F ) > 3 or char(F ) = 0 and y2 = x3 + Ax + B is an elliptic curve over F . By the

definition about n-torsion points, a point P = (x, y) ∈ E(F ) is a 3-torsion point if and only

if 2P = −P . From the definition of addition, (m − 2x,m(3x − m2) − y) = (x,−y) where

m = 3x2+A
2y

. We try to find an equation that x must satisfy to make P as a 3-torsion point.

From the expression for y-coordinates of 2P and −P , we obtain

3x2+A
2y

{3x− (3x2+A)2

4y2
} = 0

We expand the numerator of the second term in the curly bracket, and it follows

(3x2+A)(3x4+6Ax2+12Bx−A2)
8y3

= 0

Since y ̸= 0, (otherwise, m is undefined and if y = 0, then Section 3.1.1 says the point is

a 2-torsion point) and 3x2 + A ̸= 0 (otherwise, then a x that satisfies 3x2 + A = 0 will be a

repeated root of x3 + Ax + B = 0 and this indicates the elliptic curve is singular), we find

the x-coordinate of P must satisfy 3x4 + 6Ax2 + 12Bx− A2 = 0.

Remark To determine E[n], in general, we do not attempt to solve nP = 0. This is because

O does not have a coordinate. Instead, we solve (n−1)P = −P which is an equality between

the points that we can solve.

16



Theorem 3.1.2. [15] Let E : y2 = x3 + Ax + B be an elliptic curve over a field with

characteristic 0 or greater than or equal to 5. Then, the x-coordinate of a point in E[3] of

the elliptic curve satisfies 3x4+6Ax2+12Bx−A2 = 0. The equation has four distinct roots.

Proof: By the characterization above, we can prove the the x-coordinate of a point in E[3]

must satisfy 3x4+6Ax2+12Bx−A2 = 0 from the definition about a 3-torsion subgroup above.

Next, we prove 3x4+6Ax2+12Bx−A2 = 0 has four distinct roots. By using Sagemath code

based on [5], we find the discriminant of 3x4 +6Ax2 +12Bx−A2 is (−6912) (4A3 +27B2)2.

We immediately find if y2 = x3 + Ax + B is non-singular, which means −4A3 − 27B2 ̸= 0,

then the discriminant is non-zero. This implies 3x4+6Ax2+12Bx−A2 = 0 has four distinct

roots if y2 = x3 + Ax+B is non-singular. ■

Therefore, there are a total of nine 3-torsion points including the point at infinity since

y2 = x3 + Ax + B is symmetric about the x-axis such that each non-zero x coordinate

corresponds to two y-coordinates on the curve. Also, E[3] ∼= Z3 ⊕ Z3. The reason why

E[3] ∼= Z9 does not hold is that every point in E[3] has an order that is at most 3.

Next, we consider a field F with char(F ) = 2. Suppose an elliptic curve is given by

E : y2 + Ay + x3 + Bx + C = 0 over F . We know P = (x, y) ∈ E(F ) is a 3-torsion point if

and only if 2P = −P .

Theorem 3.1.3. ([15]) Let E : y2 + Ay + x3 + Bx + C be a non-singular elliptic curve

(A ̸= 0) over a field F of characteristic 2. Then, the x-coordinate of a 3-torsion point

satisfies x4 − A2x+B = 0 and it has four distinct roots.

Proof: By definition of 3-torsion points and Theorem 2.1.2 , x-coordinate must satisfy x4 −

A2x + B = 0. Specifically, from Theorem 2.1.2, we find 2P = −P implies x4+B2

A2 = x. This

implies x4 −A2x+B = 0. Also, with SageMath code based on [5], we find the discriminant

of x4 − A2x + B is −27A8 + 256B3 = A8 since char(F ) = 2. Since A ̸= 0 because of the

non-singularity assumption, the discriminant is non-zero, which implies x4 − A2x + B = 0

has four distinct roots. ■
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We claim E[3] ∼= Z3 ⊕ Z3. For each x that satisfies x4 − A2x + B = 0, we find the

corresponding y-coordinates by finding zeros of h(y) = y2 + Ay + x3 + Bx + C. Since

h′(y) = 2y+A ≡ A in a field of characteristic 2 and A ̸= 0 by the non-singularity assumption,

h′(y) ̸= 0 for all y. This implies h(y) does not have a repeated root. Hence, we find for each

x that satisfies x4 − A2x + B = 0, there are two distinct corresponding y-coordinates that

make y2 + Ay + x3 + Bx + C hold. Hence, there are 8 coordinates that belongs to E[3].

Hence, we find there are nine 3-torsion points if we additionally include O. Also, by the same

argument for char(F ) = 0 and char(F ) > 3 cases, E[3] ∼= Z3 ⊕ Z3.

When an elliptic curve is alternatively given by y2 + xy = x3 + Ax2 + B, the similar

argument shows the x-coordinate of a 3-torsion point P must satisfy x4 + x3 + B = 0 since

any 3-torsion point P must satisfy 2P = −P .

Theorem 3.1.4. Let E : y2+xy = x3+Ax2+B be a non-singular elliptic curve (or B ̸= 0)

over a field F of characteristic 2. Then, the x-coordinate of E[3] must satisfy x4+x3+B = 0

and it has four distinct roots.

Proof: We find from Theorem 2.1.2 that 2P = −P implies x4+B
x2

= x. It follows x4 + x3 +

B = 0. Through SageMath code based on [5], we find the determinant of x4 + x3 + B is

(256B − 27)B2 = B2 since char(F ) = 2. B ̸= 0 implies the discriminant is non-zero and

x4 + x3 +B = 0 has four distinct roots. ■

Therefore, E[3] ∼= Z3⊕Z3 as in the case where the elliptic curve is given by E : y2+xy =

x3 +Ax2 +B. We claim this is because for each x that satisfies x4 + x3 +B = 0, there exist

two distinct y-coordinates. We see this from the fact that if we take the first-order derivative

of g(y) = y2 + xy + x3 + Ax2 + B, we get g′(y) = x and x ̸= 0 (x = 0 implies the point P

is a 2-torsion point) by the non-singularity assumption, g′(y) ̸= 0 for all y. Hence, g(y) does

not have a repeated root and this proves our claim.

Before we go into the next section, we consider an elliptic curve defined over a field F

of characteristic 3. By Theorem 2.1.1, the curve is of the form y2 = x3 + Ax2 + B where A

and B are constants in the field F . From Theorem 2.1.6, P = (x, y) is a 3-torsion point if
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m2 − A+ x = x where m = Ax
y
. Hence,

Ax3 + AB = 0 (3.1)

Note that A ̸= 0 is equivalent to the the non-singularity by Theorem 2.1.5. Hence, we

can deduce the following theorem.

Theorem 3.1.5. Let E : y2 = x3 + Ax2 + B be a non-singular elliptic curve over a field of

characteristic 3 that is perfect. Then, E[3] ∼= Z3.

Proof: We have to assume here that the field where E is defined is a perfect field. If P =

(x, y) ∈ E[3], then 2P = −P by definition. By Theorem 2.1.6, we find m2−A+x = x where

m = Ax
y
. We can rewrite m2−A+x = x to Ax3+AB = 0. Since A ̸= 0 by non-singularity of

the elliptic curve, we get x3 +B = 0. Indeed, it has a single root with multiplicity 3 because

the Frobenius map α : F → F such that α → αp where F is a field and p is a prime number

is an isomorphism for perfect fields, hence surjective. That is, there exists b ∈ F such that

x3 +B = x3 + b3 = (x+ b)3. This implies x = −b is the single root. Hence, E[3] ∼= Z3 ■

In summary, the following theorem summarizes E[2] and E[3] of a non-singular elliptic

curve over a field F that is perfect.

Theorem 3.1.6. Let F be a field (or a perfect field when char(F ) = 2 or 3) and E(F ) is a

non-singular elliptic curve over the field F . Then,

1. Let char(F ) ̸= 2. Then, E[2] ∼= Z2 ⊕ Z2.

2. Let char(F ) = 2. Then, E[2] ∼= Z2 or {O}.

3. Let char(F ) ̸= 3. Then, E[3] ∼= Z3 ⊕ Z3.

4. Let char(F ) = 3. Then, E[3] ∼= Z3.
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3.1.2.2 4 and higher torsion points

A point P ∈ E(F ) where E(F ) is an elliptic curve over a field F is a 4-torsion point if and

only if 4P = O. 4P = O is equivalent to 2P = −2P . This implies y coordinate of the point

2P must be zero (in a field of char(F ) ̸= 2.

Let char(F ) ̸= 2, 3 and y2 = x3 + Ax + B where A,B are some constants in F . Let

P = (x, y) ∈ E(F ). From the addition of the points on an elliptic curve as we have defined,

the y coordinate of 2P is m(3x−m2)− y where m = 3x2+A
2y

. Hence, we get

2y − 2(3x
2+A
2y

){3x− (3x
2+A
2y

)2} = 0.

Since 2y = 0 when P is a 4-torsion point by definition 2P = −2P , we obtain

3x2+A
2y

{3x− 9x4+6Ax2+A2

4y2
} = 0

Substituting y2 = x3 + Ax+B results in

(3x2+A){12x(x3+Ax+B)−9x4−6Ax−12}−8(x3+Ax+3)
2

8y3
= 0

Hence, y-coordinate of 2P is zero if and only if x6 + 5Ax4 + 20Bx3 − 5A2x2 − 4BAx −

8B2 − A3 = 0.

Theorem 3.1.7. f(x) = x6+5Ax4+20Bx3−5A2x2−4BAx−8B2−A3 = 0 has six distinct

roots. Hence, E[4] ∼= Z4 ⊕ Z4.

Proof: By the computation through SageMath code based on [5], the discriminant ∆f(x) of

f(x) = x6+5Ax4+20Bx3−5A2x2−4BAx−8B2−A3 = 0 is (262144) · (4A3+27B2)5. Since

the elliptic curve y2 = x3 + Ax + B is non-singular, −4A3 − 27B2 ̸= 0. Hence, ∆f(x) is not

zero if −4A3 − 27B2 ̸= 0, which proves f(x) has six distinct roots. By the similar argument

made in Section 3.1.1, E[4] ∼= Z4 ⊕ Z4. ■

Remark We find the equations that characterize x-coordinates of 2,3, and 4 torsion sub-

groups of elliptic curves over a field F . We can see that whether such equations have repeated

roots is closely related to whether the elliptic curve is singular.

Example Let E : y2 = x3 − 1 over R. Then, if P ∈ E is a 4-torsion point, then by Theorem

3.1.7, x3 = 10 + 6
√
3 or x3 = 10 − 6

√
3. We can see that each of x3 = 10 + 6

√
3 and
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x3 = 10− 6
√
3 yields 6 4-torsion points and adding three 2-torsion points and the point at

infinity O result in E[4] ∼= Z4 ⊕ Z4.

Here, we can infer a general outcome.

Theorem 3.1.8 ([11]). Let F be a field such that char(F ) = 0. Then, E[n] ∼= Zn ⊕ Zn.

Here, following [15] and [8], we prove Theorem 3.1.8 for an elliptic curve defined over Q.

For this, we need the following definitions.

Definition 5. ([15]) Suppose z1 and z2 is linearly independent complex numbers over R.

Then, a set L = {a1z1 + a2z2|a1 and a2 ∈ Z} is called a Lattice generated by z1 and z2.

We use the notation L = ⟨z1, z2⟩. The set L is a normal subgroup of C under the addition

since it is a subgroup of an Abelian group, closed under the operation, and the inverse of an

element exists in L.

Consider a quotient group C/L. By definition, an element in the group is of the form

z + a1z1 + a2z2 where z ∈ C. We define an equivalent class in C with an entity called as a

Fundamental Domain.

Definition 6. ([7]) Let L be a lattice generated by z1 and z2 (L = ⟨z1, z2⟩). The region

D = {λz1 + µz2|0 ≤ λ, µ < 1} is called as the Fundamental Domain of L.

D is a parallelogram and each edge is equivalent to the opposite edge. An example of a

Fundamental Domain is given below.

Here, we can use this equivalence relationship above C to define a meromorphic function

called an elliptic function.

Definition 7. ([7]) An elliptic function (relative to a lattice L ⊂ C ) is a meromorphic

function f(z) : C → C which satisfies f(z + w) = f(z) for all z ∈ C and all w ∈ L. The set

of all elliptic functions for L is denoted by E(L)

L is created with z1 and z2. Hence, f is a double periodic function. In other words,

f(z + z1) = f(z) = f(z + z2).
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The most important example of an elliptic function is the Weierstrass ℘-function.

Definition 8 ([8]). Let L be a lattice. The Weierstrass ℘-function relative to L is the function

℘(z, L) =
1

z2
+

∑
0̸=w∈L

(
1

(z − w)2
− 1

w2

)

℘ is a meromorphic function on C − L. Also, it is known that it is a double-periodic

function. This follows from the series expansion.

Theorem 3.1.9 ([8],[15]). Suppose E be an elliptic curve over Q. Define a map ϕ : C/L→

E(C) such that

ϕ(u) =


(℘(u, L), ℘

′
(u, L)) if u /∈ L

O if u ∈ L

Then, there exists a lattice L =< z1, z2 > such that ϕ is a group isomorphism.

Proof: Based on [15] and [14], we sketch a proof for showing ϕ is a group homomorphism

such that ϕ(u+ v) = ϕ(u) +E ϕ(v) for all u, v ∈ C/L for some lattice L.

The proof starts from the theorem that Weierstrass ℘(z) function satisfies ℘
′
(z) =

4℘(z)3 + A℘(z) + B. By solving this differential equation, we can find L. From this, we

know ℘(z) function is described by an elliptic curve of the form y2 = 4x3 + Ax + B. For

details, see [15]. Since the elliptic curves that we study is such that the coefficient of x3 is

one, we transform y2 = 4x3+Ax+B into an isomorphic curve E1 : y
2 = x3+A

′
x+B

′
using

a map (x, y) → (x, y
2
). Then, it suffices to prove that there is an isomorphism (therefore

homomorphism) between E1 and C/L through a map ϕ∗ : C/L→ E1

To ease the notation, u+ L ∈ C/L is denoted as u. We consider four cases, which are i)

u = v = 0, ii) u = 0 and v ̸= 0, iii) u ̸= 0 and v = 0, and iv) u ̸= 0 and v ̸= 0. We find

ϕ∗(u+ v) = ϕ∗(u) +E ϕ
∗(v) holds for every case. For details, see [15].

We show ϕ∗ is onto. Let (x, y) ∈ E1. Since ℘(z)− x has double poles from the definition,

there exists z ∈ C/L such that ℘(z) = x because of Fundamental Theorem of Algebra. For
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detailed argument, see [14]. Also, [15] finds (℘
′(z)
2

)2 = y2. Hence,℘
′(z)
2

= y or −y. If ℘′(z)
2

= y,

we are done. Now suppose ℘′(z)
2

= −y. From definition 8, we find ℘(z) = ℘(−z). Then,

℘′(z) = −℘′(−z). From this, if −y = ℘′(z)
2

, then y = −℘′(z)
2

= −℘′(z)
2

= ℘′(−z)
2

.

Also, ker(ϕ∗) = L by definition. Hence, ϕ∗ is isomorphism. ■

Now, we can prove Theorem 3.1.8 using Theorem 3.1.9.

Proof of Theorem 3.1.8 We follow [8]. By Theorem 3.1.9, there exists a lattice L = ⟨z1, z2⟩

such that C/L ∼= E(C). Define a map f : Zn⊕Zn → E[n] such that f(a1, a2) = ϕ∗(a1z1+a2z2
n

)

where ϕ∗ is a map defined in the proof of the Theorem 3.1.9. We note all possible n-torsion

points are in E(C) since E[n] ↪→ E(Q̄) ↪→ E(C).

The map f is injective since ϕ is an isomorphism. Also, f is also surjective since there is

a pre-image in Zn ⊕ Zn of each Q ∈ E[n]. Hence, f is an isomorphism. Since w = a1z1+a2z2
n

for some a1 ∈ Zn and a2 ∈ Zn, w is associated with (a1, a2) ∈ Zn ⊕ Zn. This implies

E[n] ∼= Zn ⊕ Zn. ■

For the case where char(F ) ̸= 0, we get similar results.

Theorem 3.1.10 ([11]). Let n be a positive integer. If gcd(n, char(F )) = 1, then E[n] ∼=

Zn⊕Zn. In addition, if char(F ) = q where q is a prime, then E[qλ] ∼= {O} or E[qλ] ∼= Z/qλZ

where λ ∈ N.

Proof of the Theorem 3.1.10 uses fundamental Theorem of finitely generated Abelian

groups For details, see [14] and [15].
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Chapter4

Galois Representation on Elliptic Curves

4.1 Galois Representation on Elliptic Curves

The main points presented in the previous sections are summarized as follows. We demon-

strated that points on an elliptic curve E defined over a field F form an Abelian group under

an operation +E. In addition, we defined the torsion subgroup of an elliptic curve E(F̄ ). We

pointed out cases where n-torsion subgroup is isomorphic to a cyclic group or a direct sum

of two cyclic groups.

As in [2], a mathematically interesting question is what extension field K will be formed

when n-torsion points are adjoined to the field F . We present the case when we adjoin a

n-torsion subgroup to the base field of the elliptic curve. Then the resulting extension field

is finite and algebraic. Based on this, we analyze the possible orders of the Galois group

Gal(K/F ) through its relationship to a generalized linear group. Also, assuming an elliptic

curve is defined over Q, we find the degrees of polynomials that characterize x-coordinates

of n-torsion subgroups. This provides an alternative approach to finding the possible orders

of Galois group Gal(K/Q).

Knowing possible values of the orders provides a similar insight to Serre’s Theorem that

says the representations of Gal(K/F ) are subgroups of generalized linear group, therefore

the order of Gal(K/F ) divides the order of GL2(Zn).
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4.1.1 Galois Theory and Backgrounds

Galois theory provides a tool for examining the algebraic structure of an elliptic curve. This

is because when the coordinates of n-torsion points on the elliptic curve are adjoined to

the field where the curve is defined, an algebraic extension field is formed. To see this, we

introduce the definition of a Galois extension of a field F .

Definition 9. A field extension K of a field F is Galois (extension) if and only if the degree

of extension [K : F ] = |Aut(K/F )| where Aut(K/F ) is the set of automorphisms on K that

fix F .

From Definition 9, we find an extension K of a field F is Galois if |Aut(K/F )| attains its

maximum, which is [K : F ].

Example Let K = Q( 3
√
2) be a field extension of Q. [K : Q] = 3 since 3

√
2 is a root

of an irreducible polynomial x3 − 2 = 0 in Q with degree 3. Aut(K/Q) is trivial since

any automorphism f in Aut(K/Q) must map 1 to 1 and 3
√
2 to 3

√
2, ξ 3

√
2 or ξ2 3

√
2 where

ξ = −1+i
√
3

2
. However, ξ 3

√
2 and ξ2 3

√
2 are not in K. Hence, |Aut(K/Q)| = 1 ̸= [K : Q] = 3.

Hence, K is not a Galois extension of Q.

Example Let K = Q(
√
2) is a Galois extension of Q since Aut(K/Q) = {id, σ} where id

denotes the identity map and σ : 1 → 1 and
√
2 → −

√
2. Also, [K : Q] = 2 since

√
2 is a

root of an irreducible polynomial x2 − 2. Hence, |Aut(K/Q)| = [K : Q] = 2.

We find an extension field K of a field F is a Galois extension if the number of automor-

phisms on K that fix F is equal to the degree of extension [K : F ].

Theorem 4.1.1. ([2]) Let E be an elliptic curve over a field F .

Also, let E[n] = {O, (x1, y1), (x2, y2), · · · , (xk, yk)}. Then, F (E[n]) = F (x1, y1, x2, y2, · · · , xk, yk)

is an algebraic extension of F .

Proof: Based on [2], we know each of x1, . . . , xk is a solution to a polynomial over F . This

implies x1, . . . , xk are algebraic. Also, each yj is determined by xj where j ∈ {1, . . . , k}. This

indicates y1, . . . , yk are also algebraic. Hence, F (E[n]) is algebraic. ■
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Remark In the Lemma 4.1.14, we will find that the x-coordinates of E[n] is a root of poly-

nomial over a field F , which demonstrates the extension F (E[n]) is an algebraic extension.

Based on [2], we will show that the above mentioned F (E[n]) is a Galois extension of a

field F .

Lemma 4.1.2 ([2]). Let K = F (E[n]) and define σ : K → K̄ be a field homomorphism that

fixes F such that for all P = (x, y) ∈ E(K)

σ(P ) =


(σ(x), σ(y)) if (x, y) ̸= O,

O, otherwise

(4.1)

Then, σ preserves the order of a point P ∈ E(K), σ(P ) ∈ E(K), and σ(P +E Q) =

σ(P ) +E σ(Q) for P,Q ∈ E(K)

Proof: We first show that if P = (x1, y1) ∈ E(F̄ ), then σ(P ) ∈ E(F̄ ). P = (x1, y1) ∈ E(F̄ )

implies the point satisfies the equation of the elliptic curve. Applying σ to the equation yields

the same curve. In particular, it results in the evaluation of the curve at σ(P ). Therefore,

the assertion is proved.

We use the definition of σ in (4.1). Let P = (x1, y1) and Q = (x2, y2) with x1 ̸= x2

on E(K). From section 2.1.2, P +E Q = (m2 − x1 − x2,−y1 + m(2x1 + x2 − m2) where

m = y2−y1
x2−x1 . Then, x-coordinate of σ(P +E Q)) is σ(m

2−x1−x2) = σ(m2)−σ(x1)−σ(x2) =

σ(m)2 − σ(x1)− σ(x2) = x(σ(P ) +E σ(Q)) where σ(m) = σ(y(Q))−σ(y(P ))
σ(x(Q))−σ(x(P ))

.

The y-coordinate of P +E Q can be expressed in terms of x-coordinates. Hence, σ(P +E

Q) = σ(P ) +E σ(Q).

Let P = (x1, y1) and Q = (x1, y2). That is, suppose P and Q have the same x-coordinate

with the different y coordinates. Then, by Section 2.1.2, P +E Q = O where O is the point

at infinity. σ(P +E Q) = σ(O) = O. The last equality holds by the definition of σ. Also,
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σ(P ) +E σ(Q) is (m
2 − σ(x1)− σ(x1),−y1 +m(2σ(x1) + σ(x2)−m2) where m = σ(y2)−σ(y1)

σ(x1)−σ(x1) ,

which is undefined. That is, σ(P ) +E σ(Q) is the point at infinity O.

Hence, σ(P )+E σ(Q) = O. Therefore, σ(P +EQ) = σ(P )+E σ(Q) holds if the two points

P and Q share the same x-coordinate with different y-coordinates.

Let P = Q. Then, σ(P +E Q) = σ(2P ) = (σ(m2)− 2σ(x), σ(m)(3σ(x1)− σ(m2)− σ(y))

where m = 3σ(x2)+A
2σ(y)

. We can check σ(P )+E σ(P ) = σ(2P ). Hence, the operation is preserved

under σ when we double a point P . If P = O or Q = O, we can easily find the statement of

the Lemma holds. ■

K contains F and E[n] = {O, (x1, y1), (x2, y2), · · · , (xk, yk)}. Then, if P ∈ E(K), then

σ(P ) is also in E[n] since nσ(P ) = σ(nP ) = σ(O) = O. Hence, σ(P ) ∈ K2. That is,

σ(xj) and σ(yj) ∈ K for all j ∈ {1, 2, · · · , k}. Since P is an arbitrary point in K2, σ(K2) ⊂

K2. Also, σ(F 2) = F 2. Hence, we find K=F (E[n]) using [K : F ] = |{σ : K → K̄|σ|F =

IdF} = |Aut(K/F )| is a Galois extension of F by definition.

Corollary 4.1.3. ([8]) K=F (E[n]) is a Galois extension over F .

Remark We find the Corollary 4.1.3 holds from the following observation. From Lemma

4.1.14 later in this chapter, there exists a polynomial whose roots are exactly the x-coordinates

of the points in E[n]. We find the splitting field of such a polynomial is Galois and adjoining

the y-coordinates is just a set of quadratic extensions which are always Galois if char(F ) ̸= 2.

Now, assume F = Q. Then, by Theorem 3.1.8, the set of n-torsion points of an elliptic

curve E on F E[n] is isomoprhic to Zn ⊕ Zn. Since Zn ⊕ Zn is generated by two elements

in it, for example, by (1, 0) and (0, 1), we can conclude there are two generators of E[n]. If

E[n] =< P1, P2 >, the representation of the Galois group K over F can be made using a

matrix notation.

Definition 10. ([8]) A representation of a group G on a vector space V over a field F is a

group homomorphism from G to the general linear group on V , denoted GL(V ) :

ρ : G→ GLd(V )
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for some d ≥ 0.

The definition below is that when F is a rational field, an arbitrary automorphism σ ∈

Gal(Q(E[n])/Q) is represented in terms of P1 and P2 with d = 2 in Definition 10.

Definition 11 ([8]). Let E be a rational elliptic curve and fix P1 and P2 as the generators

of E[n]. Then for all σ ∈ Gal(Q(E[n])/Q), the constants ασ, βσ, γσ, δσ are determined by

σ (P1) = ασP1 + γσP2

σ (P2) = βσP1 + δσP2

ρn : Gal(Q(E[n])/Q) → GL2(Zn) is represented as ρn(σ) =

ασ βσ

γσ δσ

 . Here, Zn⊕Zn is not

a vector space but a Zn-module since Zn⊕Zn is not a vector space. The map ρn is the Galois

representation of Gal(Q(E[n])/Q).

Theorem 4.1.4. ([8]) Let E be a non-singular rational elliptic curve and take n ≥ 2.

Fix P1 and P2 as generators for E[n]. Then the map ρn from Definition 11 is an injective

homomorphism.

Proof: We need to show ρn(τσ) = ρn(τ)ρn(σ). Let ρn(τ) =

aτ bτ

cτ dτ

 and ρn(σ) =

aσ bσ

cσ dσ

.
Then, ρn(τ)ρn(σ) =

aτaσ + bτcσ aτbσ + bτdσ

cτaσ + dτcσ cτbσ + dτdσ

. On the other hand,

τσ(P1) = τ(σ(P1)) = τ(aσP1 + bσP2) = aστ(P1)+ bστ(P2) = aσ(aτP1 + bτP2)+ bσ(cτP1 +

dτP2) = (aσaτ + bσcτ )P1 + (aσbτ + bσdτ )P2.

The same argument holds for (τσ)(P2) = (cτaσ + dτcσ)P1 + (cτbσ + dτdσ)P2.

Hence, ρn(τσ) = ρn(τ)ρn(σ).

Now, we show ρn is a one-to-one map. Let σ ∈ ker(ρn) and E[n] be generated by the

two points P1 and P2. Then, σ(P1) = P1 and σ(P2) = P2, which implies σ(P ) = P for

all P ∈ E[n]. By the definition σ(P ) = (x(P ), y(P )), σ fixes the coordinates of a point in
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Q(E[n]) including the generators. Hence, σ must be the identity map and ρn is a one-to-one

map. ■

Remark The condition about non-singularity in Theorem 4.1.4 is essential for defining E[n].

This theorem shows that there is a one-to-one homomorphism between the Galois group

Gal(Q(E[n])/Q) and GL2(Zn). Since ρn is a homomorphic map, the image of ρn is a subgroup

of GL2(Zn). A natural task here is to figure out the size of the image ρn(Q(E[n])/Q). Serre’s

Theorem provides an upper bound of the number of (left) cosets of im(ρn) in GL2(Zn).

Theorem 4.1.5 (Serre’s Theorem,[2]). Let E be an elliptic curve of the form E(Q) : y2 =

x3 + Ax+B, with coefficients in Q. Then,

∃N ≥ 1 depending on E, such that for all n ≥ 1 with the property gcd(n,N) = 1,

ρn : Gal(Q(E[n])/Q) −→ GL2(Z/nZ)

is an isomorphism.

Serre’s Theorem gives a condition where the size of Gal(Q(E[n])/Q) and GL2(Zn) is the

same. We find an upper bound of |Gal(Q(E[n])/Q)| is |GL2(Z/nZ)|.

4.1.2 Examples

Examples are given to demonstrate what has been described above.

Example 1 Let E : y2 = x3 − 1 over F = Q. Then, E[2] = {(x, 0) ∈ E|x3 − 1 = 0} ∪ {O} =

{O, (1, 0), (−1+
√
3i

2
, 0), (−1−

√
3i

2
, 0))}. Hence, Q(E[2]) = Q(

√
−3). From these, we find the

group of automorphisms that fix Q is Gal(Q(E[2])/Q = {id, σ} where id is the identity map

and σ is the complex conjugation. Note P1 = (1, 0) and P2 = (ξ, 0) where ξ = −1+
√
3i

2
are

generators of E[2]. Then,
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id(P1) = P1 σ(P1) = P1 (4.2)

id(P2) = P2 σ(P2) = P3 = (
−1−

√
3i

2
, 0) = P1 + P2 (4.3)

Remark This gives an example where σ(P +E Q) = σ(P ) +E σ(Q) for P,Q ∈ E(K) holds

in Lemma 4.1.2. Here, P1 +E P2 = (−1−i
√
3

2
, 0). Then, id(P1 +E P2) = (id(−1−i

√
3

2
), id(0)) =

(−1−i
√
3

2
, 0) = id(P1) + id(P2) = (id(−1+i

√
3

2
, id(0)) +E (id(1), id(0)). Also, σ(P1 +E P2) =

(σ(−1−i
√
3

2
), σ(0)) = (−1+i

√
3

2
, 0) = σ(P1) + σ(P2) = (σ(−1+i

√
3

2
, σ(0)) +E (σ(1), σ(0)).

The isomorphism σ in the Galois group in the above remark can be represented by a 2

by 2 matrix. In fact, ρ2(σ) is given by

 1 1

0 1


Hence, the image of ρ2 in Theorem 4.1.5 has order 2 that divides |GL2(Z/2Z)| = 6.

Example 2 [8] LetE : y2 = x3−p overQ where p is a prime number. E[2] = O, (β, 0), (βξ, 0), (βξ2, 0)

where β = p
1
3 and ξ is the third root of unity. We find Q(β, ξ) is a splitting field of x3 − p.

We find there are six homomorphisms in Gal(Q(β, ξ)/Q) = {id, σ, τ, σ2τ, σ2, στ}. We define

σ(β) = ξβ τ(β) = β (4.4)

σ(ξ) = ξ τ(ξ) = ξ2 (4.5)

Also, P1 = (β, 0) and P2 = (βξ, 0) can be regarded as two generators of E[2]. From these

information, we find

ρ2(σ) =

0 1

1 1

, ρ2(τ) =
1 0

1 1

, ρ2(σ2τ) =

1 1

0 1

 ,ρ2(στ) =
0 1

1 0

,
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ρ2(σ
2) =

1 1

1 0

,ρ2(id) =
1 0

0 1


Hence, we find the order of Gal(Q(E[2])/Q is 6 that divides GL2(Z/2Z) = 6.

However, representation in example 1 is not surjective. However, for E : y2 = x3 − p

where p is a prime, then, Galois representation ρ2 is surjective.

Therefore, we can see that the map presented in Theorem 4.1.5 is not always surjective.

Hence, we find the possible orders of a Galois representation by finding divisors of |GL2(Zn)|.

4.1.3 Y 2 = X3 + AX +B with Rational Coefficients

In this section, the above tasks are performed for the elliptic curve defined in the rational

field whose characteristic is zero. First, we study 2-torsion points. Recall that a point P

on an elliptic curve over Q is a 2-torsion point if and only if P = −P , which implies the

y-coordinate of such a point is zero.

Theorem 4.1.6. Let y2 = x3 + Ax + B be a non-singular elliptic curve over Q. Assume

f(x) = x3 + Ax+B is irreducible over Q[x]. Then, |Gal(Q(E[2]/Q)| = 3 or 6.

Proof: Assume f(x) is irreducible over Q. Depending on the value of the discriminant of

f(x), we know that f(x) can have 3 real roots (not rational) or 1 real root (not rational) and

2 complex conjugate roots. If ∆ = −4A3 − 27B2 > 0, there are three non-rational distinct

real roots. Suppose α is a root of f(x). Then,[Q(α) : Q] = 3 since deg(f(x)) = 3. Suppose

now that ∆ < 0 and β satisfies β3 + Aβ + B = 0. Then, [Q(β) : Q] = 3. Since two roots of

this equation are complex conjugates, Gal(Q(E[2])/Q) has an element of order 2. Therefore,

6 divides the order of Gal(Q(E[2])/Q) by Lagrange’s theorem. Also, it is explicit to see

|Gal(Q(E[2])/Q)| ≤ 6. Hence, we find |Gal(Q(E[2])/Q)| = 6. Therefore, by the definition

about a Galois extension, |Gal(Q(E[2]/Q)| = 3 or 6. ■

Remark We do not need to consider the case where ∆ = 0 since the curve is non-singular.
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Example Let E : y2 = x3 − 2 over Q. By Eisenstein’s criteria, x3 − 2 is not reducible over

Q. However, Q(2
1
3 , i) is an algebraic extension of Q such that it has all of the roots of x3−2.

[Q(2
1
3 , i) : Q] = 6 and |Gal(Q(E[2]/Q)| = 6 since Q(E[2])/Q is a Galois extension.

Theorem 4.1.7. Let y2 = x3 +Ax+B = f(x) be an elliptic curve over Q. Assume f(x) =

x3 + Ax+B is reducible over Q[x]. Then, |Gal(Q(E[2]/Q)| = 1 or 2.

Proof: If f(x) is reducible over Q[x], then one of the possibilities is having one rational root

and two complex conjugate roots. Then, a splitting field will be E = Q(
√
−d) with d > 0.

Then, by the similar argument as in Theorem 4.1.6, |Gal(Q(E[2]/Q)| = 2. If the roots of

f(x) are all rational numbers, then we find |Gal(Q(E[2]/Q)| = 1. Furthermore, if f(x) has

one rational root q and two real roots in R − Q, then [Q(α) : Q] = 2 where α =
√
d with

d > 0 is a non-rational root of f(x). This is because f(x) = (x− q)g(x) with g(α) = 0 and

deg(g(x)) = 2. Hence, |Gal(Q(E[2]/Q)| = 2 in this case. ■

Here, the discussion is naturally extended to the Galois group formed by n-torsion points

where n > 2. These points are often difficult to calculate through group law[8]. It is necessary

to consider the order of GL2(V ), which is the maximal range of ρ map in definition 10.

Theorem 4.1.8. Let q be a prime. |Gal(Q(E[q])/Q)| divides |GL2(Zq)| = (q2 − 1)(q2 − q).

Proof: By Theorem 4.1.4, we know a map ρn : Gal(Q(E[n])/Q) → GL2(Zn) is an injective

homomorphism (or an embedding) and we have seen the examples where the map is not

surjective in general. Hence, im(ρn) is a subgroup ofGL2(Zn) and |im(ρn)| divides |GL2(Zn)|.

Hence, the Theorem follows. ■

Example In example 1 in section 4.1.2, I2 and

 1 1

0 1


represent the group of automorphisms on Q(E[2])/Q that fixes Q. Since |GL2(Z2)| = 6 and

|im(ρ2)| = 2 divides 6.
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We can extend Theorem 4.1.6 and 4.1.7 to |Gal(Q(E[n])/Q)| where n ∈ Z+ which is not

a necessarily prime number.

Lemma 4.1.9. Let n = mq where gcd(m, q) = 1. Then, GL2(Zn) ∼= GL2(Zm)⊕GL2(Zq).

Proof: Let n = mq where gcd(m, q) = 1. Then, Zn ∼= Zm ⊕ Zq by the basic group theory.

This implies Zn⊕Zn ∼= (Zm⊕Zq)⊕(Zm⊕Zq) ∼= (Zm⊕Zm)⊕(Zq⊕Zq). The first congruence

relationship holds due to gcd(m, q) = 1. Therefore, GL(2, Zn) = Aut(Zm ⊕ Zm)⊕Aut(Zq ⊕

Zq) = GL(2, Zm)⊕GL(2, Zq). ■

Once we know what is the cardinality of any GL(2, Zpk) for prime p’s, then the cardinality

of GL(2, n) is the product of the |GL(2, Zpk)| where k is the maximum power of the prime

p in n.

Lemma 4.1.10. [17] |GL(2, Zpk)| = (p2− 1)(p2− p) ∗ p4k−4 where k ∈ Z+ and p is a prime.

Proof: We follow [17]. Zpk where k > 1 is a local ring and by definition it has the unique

maximal ideal of the form (m). Hence, Zpk/(m) is a field and it is equal to Zp. Consider a

canonical map ϕ : GL2(Zpk) → GL2(Zp). We find ker(ϕ) = I2+A where A ∈M2(m) and ϕ is

surjective since the map ψ : Zpk → Zp is surjective. Hence, |GL2(Zpk)| = |GL2(Zp)||M2(m)|.

The first term of this multiplication is (p2−p)(p2−1) by Theorem 4.1.8. Also, |M2(m)| = p4k−4

since m = Zpk−1 and each entry in M2(m) can take a value in {0, 1, · · · , pk−1}. ■

By the Lemmas 4.1.9 and 4.1.10, we can prove the following theorem.

Theorem 4.1.11. Let n > 2 be an integer and suppose n = pk11 p
k2
2 · · · pknn where pis are

distinct primes. Then, |Gal(Q(E[n])/Q)| divides
∏n

i=1(p
2
i − 1)(p2i − pi) ∗ p4ki−4

i .

Proof: Note that Zn = ⊕n
i=1Zpkii

Hence, GL(2, Zn) = Aut(⊕n
i=1(Zpkii

⊕Z
p
ki
i
) ∼= ⊕n

i=1Aut(Zpkii
⊕

Z
p
ki
i
) ∼=

∑n
i=1GL(2, Zpkii

). By Lemma 4.1.10, |Gal(Q(E[n])/Q)| divides
∏n

i=1(p
2
i − 1)(p2i −

pi) ∗ p4ki−4
i ■

Remark Since gcd(pkii , p
kj
j ) = 1 if pi and pj is distinct primes, we can apply Lemma 4.1.9 in

the proof of Theorem 4.1.11.
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4.1.4 Y 2 = X3 + AX +B with Coefficients over a Finite Field

The elliptic curve group on a finite field Fq has several important differences from the elliptic

curve group defined on the continuous field. An elliptic curve on Fq consists of a finite number

of elements, which is a desirable property for cryptography applications.

Example Let E(F4) : y
2 = x3 + 1 where F4 = {0, 1, ω, ω2} and ω satisfies ω2 + ω + 1 = 0.

• If x = 0, then y = 1. We get (0, 1).

• If x = 1, then y2 = 1 + 1 = 0 since char(F4) = 2. We get (1, 0).

• If x = ω, then y2 = ω3 + 1 = ω2ω + 1 = −ω2 − ω + 1 = 1 + 1 = 0. We get (ω, 0).

• If x = ω2, then y2 = ω6 + 1 = (ω3)2 + 1 = 0 since w3 = 1. We get (ω2, 0)

Hence, we get 5 points including the point at infinity O.

Example Let E(F19) : y2 = x3 − x + 1. Then, O,(0,1),(0,18),(1,1),(1,18),(2,8),(2,11),

(3,5),(3,14),(4,2) (4,17) (5,8) (5,11) (8,7) (8,12) (12,8) (12,11) (13,0) (15,6) (15,13) (18,1)

and (18,18) are the 22 points of E(F19). These points are illustrated as below based on

SageMath codes in [9] and [4].

Figure 4.1: E(F19) : y
2 = x3 − x+ 1

The question to be studied here is under which conditions the points of an elliptic curve

over a field form a group.
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If an elliptic curve over Fq is non-singular, then the group law in Section 2.1.4 is applied

to perform the operation +E. One can refer to Chapter 2 for the definitions of the +E in a

field of the characteristic of zero, 2, 3, and greater than 3.

It is possible to better understand the algebraic structure of E[n] through its Galois

group.

Lemma 4.1.12. Let q = pk where p ≥ 5 is a prime and y2 = x3+Ax+B be a non-singular

elliptic curve over Fq. Then,

|Gal(Fq(E[2])/Fq)| = 1, 2, 3 or 6 (4.6)

Proof: By definition E[2] = {(x, 0)|y2 = x3 + Ax + B}. Because of non-singularity of y2 =

x3 + Ax + B, we find there are three distinct roots to f(x) = x3 + Ax + B = 0. Suppose

x3 + Ax + B is irreducible over Fq and r1 is a root of the equation x3 + Ax + B=0. Then,

[Fq(r1) : Fq] = 3. If r2 is another root, then it is a root of a degree at most 2 polynomial. Since

r1 is a root of x
3+Ax+B = 0, we can find f(x) = (x−r1)h(x) over Fq(r1). If h(x) is irreducible

over Fq(r1), then [Fq(r1, r2) : Fq] = 6 since deg(h(x)) = 2 implies [Fq(r1, r2) : Fq(r1)] = 2.

Otherwise, [Fq(r1, r2) : Fq] = 3 since [Fq(r1, r2) : Fq(r1)] = 1. Hence, |Gal(Fq(E[2])/Fq)| = 3

or 6.

If x3 + Ax + B is reducible over Fq, then at least one of the roots of the equation is in

Fq. We denote it as s1. Then, [Fq(s1) : Fq] = 1. If s2 is another root, then [Fq(s1, s2) : Fq(s1)]

is 1 or 2 since s2 is a root of a degree 2 polynomial. Using the same argument above, we

find [Fq(E[2]) : Fq] = 1 or 2. Since Fq(E[2]) is a finite normal extension of Fq, we find

|Gal(Fq(E[2])/Fq)| = 1, 2, 3 or 6. ■

Example We study an example about Lemma 4.1.12 when F2 is the field where an el-

liptic curve is defined. By Theorem 2.1.1, there are six possible characterizations about

x-coordinates of 2-torsion subgroups of an elliptic curve over characteristic 2.
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0 = x3 (4.7)

0 = x3 + 1 (4.8)

0 = x3 + x (4.9)

0 = x3 + x+ 1 (4.10)

0 = x3 + x2 (4.11)

0 = x3 + x2 + 1 (4.12)

We focus on non-singular curves, which are (4.8),(4.9),(4.10), and (4.12). For E[2] on

(4.10) and (4.12), there are no roots in F2. However, a direct calculation through SageMath

code based on [16] finds that Gal(F2(E[2])/F2) = 6. We can see this from a direct computa-

tion with SageMath code based on [1] because a splitting field of (4.10) and (4.12) is F2(i, r)

where r = k
1
3 where k is not a cubic number. For (4.8) and (4.9), they have one root in F2

and the other two roots are in F̄2 − F2. Hence, Gal(F2(E[2])/F2) = 2.

For higher torsion subgroups of elliptic curves over Fq, there is an analogous result as

Theorem 4.1.11.

Theorem 4.1.13. Let n > 2 be an integer and suppose n = pk11 p
k2
2 · · · pknn where pis are

distinct primes. Then, |Gal(Fq(E[n])/Fq)| divides
∏n

i=1(p
2
i − 1)(p2i − pi) ∗ p4ki−4

i .

So far, for a given elliptic curve over a field F , we studied the possible values of the

order of a Galois representation presented in Serre’s Theorem. We investigated the possible

values of |Gal(F (E[n])/F | in Definition 10 by paying attention to the fact that the order

|Gal(F (E[n])/F | must divide |GL2(Zn)|. In this section, focusing on the fact that we can

express the x-coordinates of the n-torsion subgroup of an elliptic curve over a field through

a polynomial, we find out the possible values |Gal(F (E[n])/F |. We deal with this aspect in

the next section.
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4.1.5 Alternative Methods

Lemma 4.1.14. ([15]) Let E(Q) : y2 = x3+Ax+B be a non-singular elliptic curve over Q.

Then, for n > 2, there exists a polynomial fn(x) such that E[n] = {(x, y)|fn(x) = 0 and y =

±
√
x3 + Ax+B and n(x, y) = O}∪{O} has degree less than or equal to n2−1

2
if n is an odd

number and less than or equal n
2

2
+ 1 if n is an even number.

Proof: We follow [14] to prove this theorem. By definition about a n-torsion point, a point

P ∈ E[n] if and only if nP = O. Also, we find an endomorphism αn : E(Q̄) → E(Q̄) defined

by P → nP is given by αn(x, y) = n(x, y) = (ϕn(x)
ψ2
n(x)

, ωn(x,y)
ψ3
n(x,y)

) where ϕn ∈ Z[x, y2, A,B]. Also,

ψn ∈ Z[x, y2, A,B] if n is an odd number and ψn ∈ 2yZ[x, y2, A,B] if n is an even number,

and ωn ∈ Z[x, y2, A,B]. [15] presents the detailed derivations of the endomorphism. [14] finds

this endomorphism is separable and hence the size of ker(αn) is equal to the degree of αn

where the degree of αn is defined by max{deg(ϕn), deg(ψ2
n)}. We find ker(αn) = E[n] and if

(x, y) ∈ ker(αn), then ψ
2
n(x) = 0 by the definition about a n-torsion point. We claim ψ2

n(x) =

0 must have n2− 1 distinct roots. This is because deg(αn) = max{deg(ϕn), deg(ψ2
n)} = n2 =

|ker(αn)| due to the fact that αn is separable and deg(ψ2
n) = n2 − 1 based on [14]. Here, the

point at infinity O ∈ ker(αn) is obviously not a root of ψ2
n(x) because it does not have a

coordinate.

We now consider the degree of fn(x) in the statement of this Lemma. Suppose n is an

even number. Then, E[n] includes the subgroup E[2] which is of the from (x, 0) together with

the identity O that does not have a coordinate. Also, the elliptic curve E(Q) is symmetric

about x-axis. Hence, deg(fn(x)) =
n2−4
2

+ 3 = n2

2
+ 1. If n is an odd number, then there are

no points in E[n] whose y-coordinate is zero, deg(fn(x)) =
n2−1
2

using the similar argument

above. ■

The next theorem is an immediate result of Lemma 4.1.14.

Theorem 4.1.15. Suppose E(Q) : y2 = x3 + Ax + B be a non-singular elliptic curve over

Q with characteristic 0. Then, for n > 2, |Gal(Q(E[n])/Q)| divides 2k(n
2−1
2

)! if n is an odd
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number for some k ≥ 0 and 2k(n
2

2
+ 1)! if n is an even number for some k ≥ 0.

RemarkWe need the factor 2k for some k ≥ 0 in the numbers that is divisible by |Gal(Q(E[n])/Q)|

in the Theorem 4.1.15. This is because we need to find the y-coordinate once we find x-

coordinate of a n-torsion point and square root of each x3 + Ax + B may be in a different

extension.

From Theorem 4.1.5, we know im(ρ) is a subgroup of GL2(Zn) and hence, |im(ρ)| di-

vides |GL2(Zn)|. This led to the calculation of possible values that |Gal(F (E[n))]/F | can

take. However, when n is a large number, it is difficult to pinpoint the exact value of

|Gal(F (E[n))]/F |.

Rather, for various elliptic curves over Q, we consider a measure such that the overall

surjectivity of the Galois expressions ρn can be expected and compared across elliptic curves.

It requires the following proposition.

Proposition 4.1.16. ([3]) There is a map r(E) : G→ GL2(Ẑ) where E is an elliptic curve

over Q, G = Gal(Q̄/Q) and Ẑ is the profinite completion of integer.

Proof: We know Q(E[n]) ⊂ Q̄ and Gal(Q(E[n])/Q) acts on the generators of E[n], say P1

and P2. This can be extended to the absolute Galois group G = Gal(Q̄/Q). It is clear that

Gal(Q(E[n])/Q) ⊂ G. Conversely, let g ∈ G. Then, if g ∈ Gal(Q(E[n])/Q), then g permutes

the generators P1 and P2. If g ∈ Gal(Q(E[m])/Q with gcd(n,m) = 1, then g acts on Q(E[n])

as an identity map.

To define r(E) from this observation, we also need to see how the representations patch

together. We observe that if n = pk11 p
k2
2 · · · pknn where pis are distinct primes and ki ≥ 1 for all

i ∈ {k1, . . . , kn}, E[n] is the product of E[pkii ] and GL2(Zn) is also the product of GL2(Z
ki
pi
).

Hence, it suffices to consider a map from E[pkii ] into GL2(Zpi) where Zpi is the ring of pi-adic

integers to patch the pi-power torsions together.

Since E[pkii ] is a subset of E[pki+1
i ], the image in GL2(Zpkii

) of the action of Galois on

E[pkii ] can be connected to the image in GL2(Zpki+1
i

) based on the action on E[pki+1
i ]. Hence,
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maps from G to GL2(Zpkii
) are patched as ki → ∞. Hence, r(E) in the theorem is defined

across pi for i ∈ {k1, . . . , kn}. ■

We consider an index [GL2(Ẑ) : im(r(E))] where im(r(E)) is the image of r(E). We find

from the definition of an index that as [GL2(Ẑ) : im(r(E))] increases (decreases), then more

of ρn’s are not surjective (surjective, respectively). There is a special type of elliptic curves

called a “Serre’s Curve”.

Definition 12 ([3]). An elliptic curve E(F ) is called a Serre’s curve if [GL2(Ẑ) : im(r(E))] =

2.

Jones points out in [6] that almost every elliptic curve is Serre’s curve.

Remark [GL2(Ẑ) : im(r(E))] indicates the expectation that we have a surjective map

r(E). In particular, if [GL2(Ẑ) : im(r(E))] = 2, we find the chance that we will have a

surjective map ρn for a randomly chosen n ∈ {1, 2, . . .} is greater compared to the case

where [GL2(Ẑ) : im(r(E))] > 2.
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Chapter5

Conclusion

We focused on the algebraic structure of an elliptic curve defined on a field throughout this

paper. The significance of this study is an attempt to find possible values of the order of

the Galois representations based on the fact that the Galois representation of n−torsion

subgroup is injective into a generalized linear group.

However, this approach has limitations in its application to higher torsion subgroups. This

is because the size of the generalized linear group in Serre’s theorem grows as n increases

and the degree of the polynomial that characterizes the x-coordinate of n torsion subgroup

explodes. Therefore, it is necessary to pay attention to the surjectivity across n ∈ N of the

Galois representation. When an elliptic curve is a Serre’s Curve, relatively more surjectivity

is established than other types of elliptic curves.

Subsequent studies will focus on finding other methods for measuring the surjectiveness

of Galois representation r(E). The index [GL2(Ẑ) : im(r(E))] itself is not a measure of the

surjectiveness of a given Galois representation. Rather, the larger the index is, the smaller

expectation that we will have a surjective representation. The next research task will be

to think of an alternative index that overcomes this limitation and to find variables that

determine the expectation for the surjectivity.
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