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Abstract

Nonlinear mixed-effects (NLME) models are widely used in the analysis of lon-

gitudinal studies. The parameters in an NLME model typically have meaningful

scientific interpretations, and these parameters may have some natural order re-

strictions such as being strictly positive. The problems of testing parameters with

order restrictions are known as multivariate one-sided hypothesis testing. However,

multivariate one-sided testing problems in NLME models have not been discussed

thoroughly.

In many longitudinal studies, the inter-individual variation can be partially ex-

plained by the time-varying covariates which, however, may be measured with sub-

stantial errors. Moreover, censoring and non-ignorable missingness in response are

very common in practice. Standard testing procedures ignoring covariate measure-

ment errors and/or response censoring/missingness may lead to biased results. We

propose multiple imputation methods to address the foregoing data complication.

The multiple imputation methods allow us to use existing “complete-data” hypoth-
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esis testing procedures for parameters with order restrictions. In this thesis, we

propose testing statistics for the multivariate one-sided testing problems in NLME

models with: (i) mis-measured covariates, (ii) both mis-measured covariates and left-

censored response, and (iii) both mis-measured covariates and non-ignorable missing

response, which are discussed in Chapters 2-4, respectively. Some asymptotic null

distributions of the proposed test statistics are derived. The proposed methods are

illustrated by HIV data examples and evaluated by simulation studies under differ-

ent scenarios. Simulation results have shown the power advantage of the proposed

testing statistics over the commonly used ones.
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1 Introduction

1.1 Background

Some order constraints on the parameters of a statistical model arise frequently

in many practical problems. In hypothesis testing, it is desirable to incorporate such

constraints on the parameters of interest to have a more efficient hypothesis test,

which is a so-called order-restricted hypotheses test. A one-sided hypothesis may be

considered as a special case of order-restricted hypotheses.

We take the clinical trials as an example. A treatment is expected to be at least

as effective as a control. More specifically, we start with a simple example of testing

one parameter. Let µ represent the efficacy of a new drug or a new treatment. And

µ could be ≥ 0,≤ 0, or = 0, indicating that the drug is effective, toxic, or neutral,

respectively. To evaluate the efficacy of the drug or the treatment, we may consider

the following one-sided test,

H0 : µ ≤ 0 v.s. H1 : µ > 0. (1.1)
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Apparently, the above one-sided test is more appropriate than the following two-sided

test,

H0 : µ = 0 v.s. H1 : µ 6= 0. (1.2)

Furthermore, we may even consider the following one-sided test if subject-area knowl-

edge indicates that the drug is unlikely to be toxic,

H0 : µ = 0 v.s. H1 : µ > 0. (1.3)

Now we briefly illustrate the ideas for testing one-parameter problems (1.1),

(1.2) and (1.3). Suppose that X1, X2, · · · , Xn are n independent and identically dis-

tributed observations drawn from N(µ, σ2). Given the realization of (x1, x2, · · · , xn)

of (X1, X2, · · · , Xn), the log-likelihood function is written as

ln(µ, σ2) = −n
2

log σ2 − 1

2σ2

n∑
i=1

(xi − µ)2 . (1.4)

Then we can derive the maximum likelihood estimate (MLE) of the mean parameter

µ under different constraints:

• Without any constraint on µ, the MLE of µ is µ̂ = x̄ =
∑n

i=1 xi
n

.

• Under the one-sided constraint µ ≤ 0, the MLE of µ is µ̂− =


x̄, x̄ ≤ 0

0, x̄ > 0

.

• Under the one-sided constraint µ ≥ 0, the MLE of µ is µ̂+ =


x̄, x̄ ≥ 0

0, x̄ < 0

.
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• Under the constraint µ = 0, the MLE of µ is µ̂0 = 0.

Based on the two-sided hypothesis (1.2), the Wald test statistic is given as

TW =
x̄2

V̂ar(x̄)
=

n2x̄2∑n
i=1 (xi − x̄)2 ,

which has a large sample approximate χ2
1 null distribution (given in Appendix (1.1)).

Rewrite the test statistic as

TW =
x̄√∑n

i=1(xi − x̄)2

n

/√
n

.

Recall that the Student’s test statistics is

T =
x̄√∑n

i=1(xi − x̄)2

n− 1

/√
n

=

√
n− 1√
n

TW ,

which has a Student’s t-distribution with (n− 1) degrees freedom under H0. In this

case, the Wald test is equivalent to the Student’s t-test.

However, the methods cannot be extended to multi-parameter problems directly.

In this case, the Hotelling’s T-square statistic instead of the Student’s t-test is used

for the two-sided hypotheses. And the null distribution of the corresponding Wald

test statistic is not the familiar χ2 distribution anymore since the standard regu-

larity conditions are violated for the likelihood theory when the parameters have

constraints. In the next section, we briefly review the multivariate one-sided or

order-restricted testing problems.
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1.2 Multivariate One-sided Hypothesis Testing

For the multivariate one-sided hypothesis with complete data, various testing

methods such as the likelihood ratio, Wald, and score tests have been proposed

[Silvapulle and Sen, 2005].

In this section, we briefly review the basic results for the multivariate one-sided

or constrained hypothesis testing under multivariate normal populations. Suppose

X1, · · · ,Xn are n independent and identically distributed observations drawn from

the p-dimension multivariate normal distributionNp(µ,Σ) withX i = (Xi1, · · · , Xip)
T ,

i = 1, 2, · · · , n. Let X̄ and S respectively denote the sample mean and sample vari-

ance. We begin with the following two-sided hypothesis

H0 : µ = 0 versus H1 : µ 6= 0. (1.5)

When the covariance matrix Σ is known, the Wald test statistic can be written as

the following form

TW = n(X̄ − µ)TΣ−1(X̄ − µ),

which follows a χ2
p distribution.

When the covariance matrix Σ is unknown, we use the sample covariance S

instead and have the following Hotelling’s T-square statistic

TH = n(X̄ − µ)TS−1(X̄ − µ),

4



with
n− p
p(n− 1)

TH ∼ Fp,n−p under H0.

However, in the case of multivariate one-sided hypotheses, the testing statistics

often involve orthogonal projections of the sample mean onto the one-sided parameter

space, which leads to difficulties in the computation of the test statistics and the

derivation of their null distributions. Consider the following multivariate one-sided

hypothesis

H0 : µ = 0 versus H1 : µ ≥ 0, µ 6= 0. (1.6)

Here µ ≥ 0 means µi ≥ 0 for all i and µ 6= 0 means µi 6= 0 for some i. Figure (1.1)

shows an example of the parameter spaces for hypothesis (1.6) when p = 2 with Qi

denoting the quadrant i in the two-dimension plane, i = 1, 2, 3, 4.

When the covariance matrix Σ is known, the Wald test statistic for the multi-

variate one-sided test (1.6) is written as

T1 =nX̄Σ−1X̄ − min
µ∈O+

n
(
X̄ − µ

)T
Σ−1

(
X̄ − µ

)
=
∣∣∣∣πΣn

(
X̄;O+

)∣∣∣∣2
Σn
,

where Σn = Σ/n, and O+ = {(µ1, · · · , µp)T |µi ≥ 0, i = 1, · · · , p}, and πΣn

(
X̄;O+

)
is the orthogonal projection of X̄ onto O+ with respect to Σn. ||x||2A is the l2-norm

with respect to matrix A which is defined as xTA−1x. The larger value of T1 is, the

stronger evidence against H0.
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µ1

µ2

H1

H0

Q1Q2

Q3 Q4

1

Figure 1.1: Null and alternative parameter spaces in hypothesis (1.6) for p = 2.

To determine critical values or p-values of the above test, we need to find the null

distribution of the test statistic, i.e., the distribution of T1 if the null hypothesis H0

holds. Unlike the univariate case discussed in the previous section, the null distribu-

tion of T1 in the multivariate case is different from that of the “two-sided” Hotelling’s

T-square test statistic, due to the shape of the null and alternative parameter spaces.

In the general case, the null distribution of the Wald statistic T1, when Σ is known,

is a chi-bar-square (χ̄2) distribution [Silvapulle and Sen, 2005]

Pr(T1 ≤ c) =

p∑
i=0

ωi(p,Σn,O+)Fχ2(c; i), for any c ≥ 0, (1.7)

where c is a constant, and Fχ2(c; i) represents a probability that a χ2
i random
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variable is less than or equal to c (i = 1, · · · , p). χ2
0 denotes a distribution of

a random variable that takes value 0 with probability 1. The probability weight

ωi(p,Σn,O+) denotes the probability that πΣn(x;O+) ∈ the i dimensional face of

O+ with
∑p

i=0 ωi(p,Σn,O+) = 1.

A simple example for p = 2 and Σ =
(

1 0
0 1

)
is given to illustrate the basic ideas.

πΣn

(
X̄;O+

)
and T1 take values in four possible regions, depending on which quad-

rant the value of X̄ = (X̄1, X̄2)T falls (see Figure 1.1) as follows

πΣn

(
X̄;O+

)
=



(X̄1, X̄2)T if X̄ ∈ Q1,

(0, X̄2)T if X̄ ∈ Q2,

(0, 0)T if X̄ ∈ Q3,

(X̄1, 0)T if X̄ ∈ Q4,

(1.8)

where Qi is the quadrant i for i = 1, 2, 3, 4 in the two-dimension plane.

Correspondingly, we have

T1 =
∣∣∣∣πΣn

(
X̄;O+

)∣∣∣∣2
Σn

=



n(X̄2
1 + X̄2

2 ) if X̄ ∈ Q1,

nX̄2
2 if X̄ ∈ Q2,

0 if X̄ ∈ Q3,

nX̄2
1 if X̄ ∈ Q4.

(1.9)

Since Σ is a 2 × 2 identity matrix, X̄ are equally likely to fall in any of the four

quadrants, i.e. Pr(X̄ ∈ Qi) = 1
4

for i = 1, 2, 3, 4. Thus, for any positive constant c,
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we have

Pr(T1 ≤ c) =
4∑
i=1

Pr(T1 ≤ c|X̄ ∈ Qi) Pr(X̄ ∈ Qi) =
1

4

4∑
i=1

Pr(T1 ≤ c|X̄ ∈ Qi).

Note that under H0, X̄ =
(
X̄1

X̄2

)
∼ N

((
0
0

)
,
( 1/n 0

0 1/n

))
, then

√
nX̄1 and

√
nX̄2 inde-

pendently follow the standard normal distribution and consequently n(X̄2
1 + X̄2

2 ) has

a χ2
2 distribution. As a result, we have

Pr(T1 ≤ c|X̄ ∈ Q1) = Pr(n(X̄2
1 + X̄2

2 ) ≤ c) = Fχ2(c; 2),

Pr(T1 ≤ c|X̄ ∈ Q2) = Pr(nX̄2
2 ≤ c) = Fχ2(c; 1),

Pr(T1 ≤ c|X̄ ∈ Q3) = Pr(0 ≤ c) = Fχ2(c; 0),

Pr(T1 ≤ c|X̄ ∈ Q4) = Pr(nX̄2
1 ≤ c) = Fχ2(c; 1),

where Fχ2(c; i) denotes the probability that a random variable is less than or equal

to c, following a χ2-distribution with i degrees of freedom, i = 0, 1, 2. Thus we have

the expression as in (1.7)

Pr(T1 ≤ c) =
1

4
Fχ2(c; 0) +

1

2
Fχ2(c; 1) +

1

4
Fχ2(c; 2), for any c ≥ 0, (1.10)

with ω0(2,Σn,O+) = 1/4, ω1(2,Σn,O+) = 1/2, and ω2(2,Σn,O+) = 1/4.

In general, the calculation of chi-bar-weights ωi(p,Σn,O+) (i = 0, 1, · · · , p) could

be difficult, so we can compute them by Monte Carlo simulations. Recall that

X1, · · · ,Xn are n independent and identically distributed observations from the
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p-dimension multivariate normal distribution Np(µ,Σ). Let X̄ =
∑n

i=1X i/n and

Σn = Σ/n. The steps are as follows:

(i) Generate X̄ ∼ N(µ,Σn).

(ii) compute πΣn(X̄;O+) = X̄ − µ̂ , where µ̂ is the solution for arg minµ∈O+(X̄ −

µ)TΣ−1
n (X̄ − µ).

(iii) Repeat the foregoing two steps (i) and (ii) for (say) N = 10000 times.

Then, for i = 0, 1, · · · , p, we have,

ωi(p,Σn,O+) ≈ ni
N
,

where ni is the number of times that πΣn(X̄;O+) has exactly i positive components.

When Σ is unknown, a consistent estimate Σ̂ should be found to replace Σ in

T1. By the Slutsky’s theorem, the asymptotic null distributions of the new testing

statistic obtained this way is the same as the null distributions of T1 for the known

Σ. This method is particularly useful in complicated cases where the exact null

distributions of the test statistics are intractable. However, to obtain a good estimate

of Σ, the sample size needs to be large enough. Moreover, this is an approximate

method, so its performance needs to be evaluated in a case-by-case basis.

The foregoing results can be extended to the regression models, and the asymp-

totic null distribution of the wald test is some chi -bar-square distribution under the

9



regularity conditions, as discussed in Silvapulle and Sen [2005].

1.3 Longitudinal Data and Mixed-effects Models

Compared with cross-sectional data, which have only one observation for a vari-

able of interest for each independent individuals, longitudinal data are characterized

by repeated observations or measurements collected at different time points for each

independent individual. They arise frequently in practice, such as in clinical trials

and epidemiology studies. When the variables are continuous and the number of the

observations of each individual is the same, we may assume the longitudinal data

have a certain multivariate normal structure. Longitudinal data combine elements

of multivariate data and time series data.

Figure 1.2 and 1.3 show a longitudinal dataset in an anti-HIV treatment. In this

study, 46 HIV infected patients received a potent anti-retro viral treatment. The

viral load and some covariates such as CD4 cell count of each patient were repeatedly

measured during a period of 48 weeks after the initiation of the treatment. We can

see that although the trajectories vary a lot among patients, the general trend of

the viral load (as shown in Figure 1.2) seems to decrease over time, which indicates

that the anti-HIV treatment may be effective. Specifically, the overall viral load

decreases rapidly at the beginning of treatment while some decreases slower and

10



some even rebounds later. Figure 1.3 shows the trajectories of the CD4 cell count

are likely to have a quadratic trend during the anti-HIV treatment.

In longitudinal data analysis, we need to consider both the within-individual

variation and the between-individual variation. Modeling the within-individual vari-

ation helps us to study the change of each individual over time, while modeling the

between-individual variation allows us to understand the differences between indi-

viduals. In many longitudinal studies, the between-individual variation may be large

and may be partially explained by covariates. There are two types of covariates:

time-invariant covariates such as a patient’s gender and time-varying covariates such

as the blood pressure measured at different time points.

Mixed-effects models are one of the most commonly used approaches to analyze

longitudinal data. A mixed-effects model assumes that the response is linked to

a function of covariates with both fixed-effect coefficients and random-effect coeffi-

cients. In the following, we will review the linear and nonlinear mixed-effects models

in details.

1.3.1 Linear Mixed-effects Models

Linear mixed-effects (LME) models assume the existence of the random effects

and a linear relationship between the response variable and covariates and random

11



effects. Therefore, LME models can be constructed by adding appropriate random

effects to linear regression models.

Suppose that there are n individuals in a study. Let yij be the response value for

individual i (i = 1, 2, · · · , n) at time tij, j = 1, · · · ,mi, and yi = (yi1, · · · , yimi
)T be

the collection of response observations for individual i. A general LME model can

be expressed as [Laird and Ware, 1982, Wu, 2009]

yi = Xiβ + Zibi + ei, i = 1, · · · , n,

bi
i.i.d.∼ N(0, B), ei

i.i.d.∼ N(0, Di),

(1.11)

where Xi and Zi are known as the design matrices with dimensions mi × (p + 1)

and mi × q respectively that may contain observation time and covariates, and Zi is

usually a submatrix of Xi, the vector β = (β0, β1, · · · , βp)T denotes the population

parameters (also called fixed-effects). In LME models, we assume the random-effects

bi
i.i.d.∼ N(0, B) with B being the unstructured variance-covariance matrix, and the

within-individual error vector ei
i.i.d.∼ N(0, Di) with Di being the mi ×mi variance-

covariance matrix. In practice , Di is usually assumed to be equal to σ2Imi×mi
, that

is, the random errors are independent and have the same variance.
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1.3.2 Generalized Linear Mixed-effects Models

Generalized linear mixed-effects (GLME) models extend linear mixed-effects mod-

els by allowing non-normal responses. Let yi = (yi1, · · · , yimi
) be the vector of mi

repeated observations of the response for individual i, i = 1, 2, · · · , n, which is

assumed to follow a distribution from the exponential family including normal, bino-

mial, Poisson, and some other distributions. Let µi = E(yi), and let h(·) be a known

monotone link function. A general GLME model can be written as [Wu, 2009]

h(E(yi)) = Xiβ + Zibi, i = 1, · · · , n.

bi
i.i.d.∼ N(0, B),

(1.12)

where Xi and Zi are known as the design matrices that may contain observation

time and covariates, β denotes population parameters (also called fixed-effects), bi

denotes random-effects, and B is the variance-covariance matrix.

1.3.3 Nonlinear Mixed-effects (NLME) Models

LME models may not truly describe the underlying relationship between the

response and covariates since they are usually empirical models. On the other hand,

NLME models may provide more reliable predictions in the sense that they are

usually based on scientific justifications or underlying data-generating mechanisms.

NLME models can be constructed by introducing appropriate random effects to the
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corresponding nonlinear regression models.

Recall the longitudinal data shown in Figure 1.2. A LME model may not be suit-

able here since the trajectory pattern is quite complicated. Based on the biological

and statistical arguments in Wu [2002], the following bi-exponential NLME model

has been suggested for the HIV viral dynamics

yij = log10(eP1i−λ1ijtij + eP2i−λ2itij) + eij, i = 1, · · · , n, j = 1, · · · ,mi,

P1i =P1 + b1i, λ1ij = λ1 + ξ1CB4ij + b2i,

P2i =P2 + b3i, λ2i = λ2 + b4i,

(1.13)

where yij is the log10-transformation of viral load measurements for patient i at

time tij, CD4ij is the CD4 count for patient i at time tij which can partially explain

the between-patient variation. β = (P1, P2, λ1, λ2, ξ1)T are the fixed-effects, bi =

(b1i, b2i, b3i, b4i)
T are random-effects, and eij is a within-individual random error. We

assume that bi
i.i.d.∼ N(0, B), eij

i.i.d.∼ N(0, σ2), and bi is independent of eij’s. In this

study, the fixed-effect parameters eP1 and eP2 respectively denote the baseline viral

load in the productively infected cells and the long-lived or latently infected cells.

λ1 and λ2 denote initial viral decay rate in in the productively infected cells and the

long-lived or latently infected cells respectively. The initial viral decay rate λ1ij is

an important parameter since it reflects the efficacy of the treatment [Wu and Ding,

1999], which may vary substantially across individuals. Moreover, it is known that
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parameter λ1 is positive during an anti-HIV treatment since the viral load typically

declines at the beginning of the treatment and there is usually a positive association

between CD4 count and initial decay rates; i.e., the higher the CD4 count is, the

faster the decay is.

To evaluate the efficacy of the anti-HIV treatment, Wang and Wu [2011] consid-

ered multivariate one-sided tests based on multiple imputations for nonlinear mixed-

effects models. Zhou et al. [2016] and Zhou and Wu [2021] also considered mul-

tivariate one-sided tests using likelihood-based methods for nonlinear mixed-effects

models with arbitrary missing mechanism and censoring, respectively.

A general NLME form of the above model (1.13) can be written as

yij = g(tij,βij) + eij, eij
i.i.d.∼ N(0, σ2),

βij = d(zij,β,bi), bi
i.i.d.∼ N(0, B), i = 1, 2, · · · , n, j = 1, 2, · · · ,mi,

(1.14)

where g(·) is a known nonlinear function, d(·) is a known multivariate linear function,

βij is a vector of individual-specific and time-varying parameters, β is a vector of

fixed-effects, zij is the covariates value, ei = (ei1, · · · , eimi
)T is a vector of within-

individual random errors, bi is a vector of random-effects, σ2 is a variance parameter,

and B is the variance-covariance matrix of bi. We assume ei and bi are independent.

Note that NLME models are more general and include LME modes as a special case.
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Figure 1.2: Trajectories of viral load in log10 scale in an anti-HIV treatment.
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Figure 1.3: Trajectories of CD4 cell count in an anti-HIV treatment.
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1.4 Complexity in Longitudinal Data and Multiple Imputa-

tion

In practice, longitudinal data often become complicated in the sense that i) lon-

gitudinal data may contain missing values; ii) some time-varying covariates may be

measured with substantial errors; iii) some data may be censored due to a lower or

upper detection limit.

1.4.1 Missingness

In the presence of missing data in longitudinal studies, it is important to un-

derstand the missing mechanism since the methods to handle missing data depend

on the missing data mechanisms. In general, there are three possible missing data

mechanisms [Rubin, 1976] as follows.

• missing complete at random (MCAR): missingness depends neither on the ob-

served data nor on the unobserved data. For example, missing data are due to

the broken of a device, which is irrelevant to the treatment.

• missing at random (MAR): missingness may depend on the observed data but

not on the unobserved data. For example, a patient is too old to visit a clinic

since the missingness only relates to the age which is observed.
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• missing not at random (MNAR): missingness may depend on the observed data

and on the unobserved data. For example, a patient misses a schedule due to

drug intolerance or other drug side-effects during a treatment.

Generally, MCAR and MAR cases are known as the “ignorable” missing since

the probability of observing a data item is independent of the value of that data

item and the missing data mechanism can be safely ignored consequently, whereas

missing data is non-ignorable in the MNAR cases since the missingness depends on

the values of being missing and the missing data mechanism need to be included in

the analysis.

1.4.2 Measurement Error in Time-varying Covariates

In many longitudinal studies, the within-individual variation may be large and

this variation may be partially explained by time-varying covariates. Some covariates,

however, may be measured with substantial errors. For example, it is known that the

CD4 count is usually measured with errors in an HIV study. Ignoring measurement

errors in covariates may lead to biased results [Higgins et al., 1997]. When a variable

is measured with error, the true value of this variable is unknown or “missing”.

Thus, the true values of covariates with measurement errors can be treated as a

special case of “missing data”. Therefore, the measurement errors in covariates need
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to be addressed to perform valid statistical inference.

1.4.3 Censoring Data

Censored or truncated data may arise when the devices used to measure a variable

are subject to a lower and/or an upper detection limit. For example, in HIV/AIDS

studies, HIV viral load typically has a lower detection limit such as 100 (copies/ml),

i.e., viral load values less than 100 copies/ml cannot be measured. In this case, viral

load observations may be left-censored. Although the true values are not observed,

the censored values are known to be less or greater than a known number. Thus,

the censoring is related to the unobserved values (the censored values). So censored

data may be considered as another special case of missing data with missing not at

random mechanism.

A naive way to deal with the left-censoring problem is to substitute them by the

limit of detection(LOD) or some arbitrary values such as LOD/2 or LOD/
√

2. How-

ever, the naive method may lead to biased results when the proportion of censored

data is not trivial [Hughes, 1999, Vaida and Liu, 2009, Wu, 2002, Qiu and Wu, 2010].

biased results [Hughes et al., 1999].
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1.4.4 Multiple Imputation Approach for Incomplete Data

In the presence of missing data, naive methods ignoring incomplete observations

may lead to biased results when the missing data are not MCAR [Little and Rubin,

2002]. After introduced by Rubin [1987], the multiple imputation(MI) technique has

been extensively used to replace the missing value in different ways, including mis-

measured data [Cole et al., 2006] and censoring data [Wei and Tanner, 1991, Grover

and Gupta, 2015]. With the multiple imputations for incomplete data, the existing

standard complete-data methods can be used in the subsequent statistical analysis.

In a MI method, the simulated values can be drawn from a predictive distribu-

tion of the missing data given the observed data. After m “complete datasets” are

obtained, existing standard complete-data methods can be used to analyze each of

the m “complete datasets”. These analysis results are then combined to produce an

overall inference, which takes the missing data uncertainty into account. Moreover,

when the missing data rate is not high, the robustness against the assumed imputa-

tion models is also a main advantage of MI methods. In practice, m = 5, 6, would be

a good choice for various practical concerns [Schafer, 1997, Wu and Wu, 2002]. The

MI methods are also developed to address measurement errors[Cole et al., 2006] and

censoring data [Wei and Tanner, 1991, Grover and Gupta, 2015]. With the multiple

imputations for incomplete data, the existing standard complete-data methods can
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be used in the subsequent statistical analysis.

In this thesis, we mainly focus on the multivariate one-sided hypothesis testing

problems based on m multiple imputations for incomplete data including covariate

measurement errors, left-censoring/non-ignorable missing response. As discussed in

Li et al. [1991] and Meng and Rubin [1992], the statistical inference performs well

with the “equal missing ratio” assumption which requires the fractional loss of infor-

mation is the same for all components of the parameters of interest when m is small,

while the multivariate two-sided test still performs well even when the assumption

is violated. Therefore, we consider the MI method for order-constrained inferences

with incomplete data since the closed-form parameter estimators are available for

complete-data and the subsequent analysis can be conducted by the existing stan-

dard complete-data method. After generating m multiple imputations for incomplete

data, we propose combined testing statistics for multivariate one-sided hypothesis in

NLME models with various data complications.

1.5 Outline

Although some research work on the multivariate one-sided hypothesis testing

problems in NLME models has been done, based on our best knowledge, there is

very limited literature on these problems for complex longitudinal data including
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measurement errors in time-varying covariates, censoring or non-ignorable missing

response, and other complications.

In this thesis, we propose testing statistics for multivariate one-sided hypothesis

in NLME models with: (i) mis-measured time-varying covariates, (ii) both mis-

measured time-varying covariates and the left-censored response, and (iii) both mis-

measured time-varying covariates and the non-ignorable missing response. The gen-

eral approach to deal with the complex data is based on the multiple imputation (MI)

method. We mainly focus on the Wald-type tests since these tests are commonly

used in one-sided or order-restricted inference.

The rest of the thesis is organized as follows. In Chapter 2, we propose two new

testing statistics for multivariate one-sided hypothesis in NLME models with mea-

surement errors in time-varying covariates. In Chapter 3, we consider multivariate

one-sided testing problems in NLME models with measurement errors in time-varying

covariates and the left-censored response. In Chapter 4, we address multivariate one-

sided testing problems in NLME models with the non-ignorable missing response and

measurement errors in time-varying covariates. Chapter 5 presents conclusions with

discussions and plans for the future work.
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2 Multivariate One-sided Hypothesis Tests in

NLME Models with Covariate Measurement

Errors

2.1 Introduction

In the analysis of longitudinal data, nonlinear mixed-effects (NLME) models have

received much attention in the literature, such as HIV viral dynamics and pharma-

cokinetics. NLME models are typically based on scientific justifications or underlying

data-generating mechanisms, so they may provide more reliable predictions for miss-

ing or mis-measured data than empirical models such as linear mixed-effects (LME)

models. Moreover, parameters in a NLME model may have meaningful scientific in-

terpretations, and these parameters may also have some natural restrictions such as

being strictly positive. Hypothesis testing for these parameters should incorporate

the natural restrictions, which leads to more powerful tests than the correspond-
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ing tests ignoring the restrictions [Silvapulle and Sen, 2005]. Since these restrictions

may often be expressed as “one-sided” or “order-constrained”, these tests are usually

called one-sided tests or order-restricted tests. In practice, a common complication

is that some data may be measured with errors, such as CD4 cell count and blood

pressure. The measurement errors need to be addressed in the hypothesis tests in

order to gain powers and avoid biased results [Fuller, 2009]. In this chapter, we

consider the multivariate one-sided tests or order-restricted tests for NLME models

with measurement errors in time-varying covariates.

Recall the motivating HIV viral dynamic model for the trajectories of viral load

during an anti-HIV treatment ((1.13) in Chapter 1)

yij = log10(eP1i−λ1ijtij + eP2i−λ2itij) + eij, i = 1, · · · , n, j = 1, · · · ,mi,

P1i =P1 + b1i, λ1ij = λ1 + ξ1CD4ij + b2i, P2i = P2 + b3i, λ2i = λ2 + b4i,

(2.1)

where yij is the log10-transformation of viral load measurements for patient i at time

tij, CD4ij is the CD4 count for patient i at time tij, β = (P1, P2, λ1, λ2, ξ1)T are the

fixed-effect parameters, bi = (b1i, b2i, b3i, b4i)
T are the random-effects, and eij is a

within-individual random error. We assume that bi
i.i.d.∼ N(0, B), eij

i.i.d.∼ N(0, σ2),

and bi is independent of eij’s.

The initial viral decay rate λ1ij is an important parameter since it reflects the

efficacy of the treatment [Wu and Ding, 1999], but it may vary substantially across
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individuals. An important question is that if the large between-individual variation

in the viral decay rate λ1ij may be partially explained by the variation in CD4 count.

Based on many studies, it is known that parameter λ1 is positive during an

anti-HIV treatment since the viral load typically declines at the beginning of the

treatment. Moreover, it is also known that there is usually a positive association

between CD4 count and the initial decay rate; i.e., the higher the CD4 count is,

the faster the decay is. In other words, these parameters should have the following

restrictions: λ1 ≥ 0, ξ1 ≥ 0. When evaluating and comparing different treatments,

we wish to test the following multivariate one-sided hypothesis

H0 : λ1 = 0, ξ1 = 0 versus H1 : λ1 ≥ 0, ξ1 ≥ 0, (2.2)

where at least one inequality strictly holds in H1.

In addition, it is known that CD4 count is typically measured with substantial

errors. Ignoring these measurement errors in statistical inference may under-estimate

the association between CD4 count and the initial decay rate. Therefore, the above

testing problem is further complicated by the measurement errors in CD4 count.

To address measurement errors in time-varying covariates, we may treat the re-

peated measurements of the covariates as “replicates” and model the covariate pro-

cess to estimate the magnitude of the measurement errors. Statistical inference can

then be based on the joint covariate model and response model using (say) a Monte-
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Carlo expectation maximization (EM) algorithm for simultaneous inference [Liu and

Wu, 2007]. However, such an approach can be computationally very intensive in the

current context. In this chapter, we propose to use a multiple imputation method to

address covariate measurement errors in NLME models, treating measurement errors

as “missing data”. An advantage of using a multiple imputation method to address

covariate measurement errors is that many existing methods for “complete-data”

one-sided tests may be readily to use. This advantage is particularly important here

since the multivariate one-sided tests for NLME models are already challenging, even

without measurement errors.

Treating measurement errors as a “missing data” problem has appeared in the

literature [Cole et al., 2006, Blackwell et al., 2017]. The intuition is that, when a

variable is measured with errors, the true values of this variable are unknown or

“missing”. However, the error-prone observed values of this variable may be used

to help “predicting” the (unobserved) true values, based on a model fitted to the

observed data. The missing data here may be viewed as missing at random since the

“missingness” may depend on the observed data but not the unobserved true values

[Rubin, 1976].

To perform one-sided tests for NLME models with covariate measurement errors

based on a multiple imputation method, a key issue is how to combine the results
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from multiply imputed datasets. We propose two approaches: (i) combine individual

sufficient statistics from imputed data; and (ii) combine individual test statistics from

imputed data. In either case, it is not straightforward to combine these statistics to

make an overall (combined) and valid inference, and it can be challenging to derive

the null distributions of the overall test statistics. Following Li et al. [1991], Meng and

Rubin [1992], and Wang and Wu [2011], we propose two methods to appropriately

combine individual sufficient statistics and individual test statistics. These methods

will be evaluated based on a simulation study.

The chapter is organized as follows. In Section 2.2, we propose a multiple im-

putation method for NLME models with covariate measurement errors. In Section

2.3, we propose the two approaches to combine individual sufficient statistics or test

statistics based on imputed datasets. We illustrate the methods in a real dataset in

Section 2.4. In Section 2.5, we conduct a simulation study to evaluate the proposed

methods. We conclude the chapter in Section 2.6 with some discussions.

2.2 A Multiple Imputation Method for NLME Models with

Covariate Measurement Errors

Let yij be the response value for individual i at time tij, and let zqij be the

q-th possibly error-prone and time-varying covariate for individual i at time tij,
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q = 1, · · · , s, i = 1, · · · , n, j = 1, · · · ,mi. Some of the covariates may be error-

free and thus suppressed. Let yi = (yi1, · · · , yimi
)T and zi = (zTi1, · · · , zTimi

)T with

zij = (z1ij, · · · , zsij)T , where T denotes a transpose. We consider the following

general NLME model

yij = g(tij,βij) + eij, eij
i.i.d.∼ N(0, σ2), i = 1, 2, · · · , n, j = 1, 2, · · · ,mi,

βij = d(z∗ij,β, bi), bi
i.i.d.∼ N(0, B),

(2.3)

where g(·) is a known nonlinear function, d(·) is a known multivariate linear function,

βij is a vector of individual-specific and time-varying parameters and β is a vector of

fixed-effect, z∗ij is the (unobserved) true covariate value corresponding to the observed

and possibly mis-measured zij, ei = (ei1, · · · , eimi
)T is a vector of within-individual

random errors, bi is a vector of random-effect, σ2 is a variance parameter, and B is

the variance-covariance matrix of bi. We assume ei and bi are independent.

In NLME model (2.3), we assume that the individual-specific parameters βij

depend on the true (unobservable) covariate z∗ij rather than the observed but possibly

contaminated covariate zij. To address the measurement errors in time-varying

covariates, we consider the following classical measurement error model [Carroll et al.,

2006]

zij = Uijα+ Vijai + εij
(
≡ z∗ij + εij

)
, i = 1, · · · , n, j = 1, · · · ,mi, (2.4)

where Uij and Vij are known design matrices including time, α and ai are the
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fixed-effect vector and random-effect vector, respectively, and εij are the random

measurement errors for individual i at time tij. Here ai is assumed to i.i.d. (in-

dependently and identically distributed) follow N(0, A), and εij = (ε1ij, · · · , εsij)T

is assumed to i.i.d. follow N(0, D). For example, if zij is the error-prone CD4

count for individual i at time tij, we may consider a measurement error model

zij = (α0 +a0i)+(α1 +a1i)tij +(α2 +a2i)t
2
ij + εij(≡ z∗ij + εij), where α = (α0, α1, α2)T

are the fixed-effect parameters and ai = (a0i, a1i, a2i)
T are the random-effects. That

is, we assume that CD4 count follows a smooth quadratic trajectory and use the

repeated measurements as “replicates” to address measurement errors. More gen-

erally, we may also assume a nonparametric mixed-effects model for zij and then

approximate it by an LME model using a basis-based approach [Liu and Wu, 2007].

Since the true covariate z∗i is not observed (or “missing”), we propose to use

the observed data D = {(zi,yi), i = 1, · · · , n} from the covariates and the response

to create imputations for the unobserved z∗i , incorporating imputation uncertainty.

Specifically, by conditioning on D, we may create multiple imputations for z∗i by

generating random samples from an assumed predictive distribution f(z∗i |D), where

f(·|·) denotes a generic conditional density function. To ensure that the multiple

imputations are “proper” in the sense of Rubin [1976], we generate imputations

under Bayesian framework.
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Let Ψ = (α,Φ) ≡ (α,β, σ,D,A,B) be the collection of all unknown parameters

in the model (2.3) and (2.4), where Φ = (β, σ,D,A,B). Denote the collection of the

random-effects ai’s in the covariate model (2.4) and bi’s in the response model (2.3)

by a and b, respectively. Let π(·) denote a prior density function for Ψ. Note that, in

the covariate model (2.4), the unobserved “true” covariate values z∗ij = Uijα+ Vijai

are completely determined by the mean parameters α and the random-effects ai

since the design matrices Uij and Vij are known. Therefore, to generate multiple

imputations for z∗ij’s, it is sufficient to generate multiple imputations for (α,a) from

the distribution f(α,a|D).

Under the Bayesian framework, we need to specify a prior distribution for the

parameter Ψ. In practice, the prior information may be obtained from previous stud-

ies or reference literature. For some of the parameters with reliable prior informa-

tion, we may use strong priors with small variances, while for the other parameters

without enough prior information, non-informative prior distributions (with large

variances) may be employed [Liu and Li, 2015, Huang et al., 2006]. We assume

that the parameters α,β, σ,D,A and B are independent, i.e. π(α,β, σ,D,A,B) =

π(α)π(β)π(σ)π(D)π(A)π(B). Normal prior distributions are assigned to the mean

parameters α and β, while the Inverse Gamma or Inverse Wishart prior distributions
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are assigned to the variance-covariance parameters σ2, D,A and B as follows.

α ∼ N(0,Σα), β ∼ N(0,Σβ),

σ2 ∼ G−1(γ, δ), D ∼ W−1(ΣD, κ),

A ∼ W−1(ΣA, ρ), B ∼ W−1(ΣB, τ),

where G−1 and W−1 respectively denote the Inverse Gamma distribution and the

Inverse Wishart distribution, and the hyper-parameters γ, δ, κ, ρ, τ,Σα,Σβ,ΣD,ΣA

and ΣB are known.

With the prior distributions for the unknown model parameters, the multiple

imputations for (α,a) can be generated by using the data augmentation method

and the following Gibbs sampling method. Specifically, we sample from the full

conditional distributions in turn, at iteration t (t = 1, 2, · · · ),

Step I : Draw a value (α(t),a(t)) of (α,a) in the following order

i. Draw a value of α(t) of the mean parameter α in the covariate model from

f(α|D,a(t−1), b(t−1);β(t−1), σ2(t−1), R(t−1))

∝
n∏
i=1

[
f(yi|a

(t−1)
i , b

(t−1)
i ;α,β(t−1), σ2(t−1))× f(zi|a(t−1)

i ;α, R(t−1))
]
· π(α).

ii. Draw a value a
(t)
i of the random-effect ai in the covariate model from

f(ai|zi,yi,α(t), b
(t−1)
i ,Φ(t−1))

∝f(yi|ai, b
(t−1)
i ;α(t),β(t−1), σ2(t−1))× f(zi|ai;α(t), R(t−1))f(ai;A

(t−1)), i = 1, · · · , n.
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Step II : Draw a value (b(t),Φ(t)) of (b,Φ) in the following order

i Draw a value b
(t)
i of the random-effect bi in the response model from

f(bi|yi,a
(t)
i ;α(t),β(t−1), σ2(t−1), D(t−1))

∝ f(yi|a
(t)
i , bi;α

(t),β(t−1), σ2(t−1))f(bi;D
(t−1)), i = 1, · · · , n.

ii Draw a value β(t) of the mean parameter β in the response model from

f(β|D,α(t),a(t), b(t), σ2(t−1)) ∝
n∏
i=1

f(yi|a
(t)
i , b

(t)
i ;α(t),β, σ2(t−1)) · π(β).

iii Draw a value (σ2(t), D(t), A(t), B(t)) of the variance-covariance parameters (σ2, D,A,B)

in the models from the corresponding full conditional distributions.

σ2|D,a(t), b(t),α(t),β(t), B(t−1), A(t−1), D(t−1)

∼ G−1

γ +
1

2

n∑
i=1

mi,

[
1

δ
+

1

2

n∑
i=1

mi∑
j=1

(
yij − g(tij,β

(t)
ij )
)2
]−1
 ,

D|D,a(t), b(t),α(t),β(t), σ(t), A(t−1), B(t−1)

∼ W−1

[Σ−1
D +

n∑
i=1

mi∑
j=1

(
zij − Uijα(t) − Vija(t)

i

)(
zij − Uijα(t) − Vija(t)

i

)T]−1

, κ+
n∑
i=1

mi

 ,

A|D,a(t), b(t),α(t),β(t), σ(t), D(t), B(t−1)

∼ W−1

[Σ−1
A +

n∑
i=1

a
(t)
i a

(t)T
i

]−1

, ρ+ n

 ,

B|D,a(t), b(t),α(t),β(t), σ(t), D(t), A(t)

∼ W−1

[Σ−1
B +

n∑
i=1

b
(t)
i b

(t)T
i

]−1

, τ + n

 .
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The starting values Ψ(0) can be obtained from the two-step method. Beginning

with Ψ(0), we iterate the foregoing procedures for a burn-in period until the result-

ing Markov Chain converges to its stationary distribution. In order to determine

the number of “burn-in” iterations and to check the convergence of the Markov

Chain, we start multiple Markov Chains from dispersed initial values and graph-

ically compare the within and between variation of the simulated samples. Note

that a proper multiple imputation method needs independent imputations [Rubin,

1987]. We may save every Mth (M is a large integer) simulation samples after the

burn-in period such that the retained samples are approximately independent. At

convergence, we obtain m value of (α,a) from f(α,a|D), and thus a value of z∗i

from f(z∗i |D) since z∗ij = Uijα+ Vijai. Repeating the above procedure m times, we

obtain m imputations of z∗i from f(z∗i |D). Thus, we obtain m “complete datasets”{(
yi, z

∗(l)
i

)
, i = 1, 2, · · · , n

}
, l = 1, 2, · · · ,m. Based on each of the m “complete

datasets”, we can conduct inference for the NLME model (2.3) with covariate mea-

surement errors being addressed, and then we combine the m results to obtain an

overall conclusion. A common choice for m is m = 5 or 6.

In the next section, we consider the one-sided hypothesis testing for parameters

in the NLME models based on multiply imputed datasets and show how to combine

the results.
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2.3 Multivariate One-sided Tests for NLME Models with

Multiply Imputed Covariates

We first discuss the multivariate one-sided hypothesis tests concerning the pa-

rameters in general NLME models.

2.3.1 The Multivariate One-sided Tests in NLME Models

Let θ denote the k×1 parameter vector of a NLME model and Ω = { θ : θ ∈ Rk,

Rθ ≥ 0 } denote the parameter space. The multivariate one-sided hypothesis of

interest is given as

H0 : Rθ = 0 versus H1 : Rθ ≥ 0, Rθ 6= 0, (2.5)

where R is a known r × k (r ≤ k) full rank matrix with elements of 1’s and 0’s.

Suppose there are n observations. Let li(θ) denote the observed-data log-likelihood

based on the ith observation (i = 1, · · · , n) and lobs(θ) denote the observed-data log-

likelihood based on n observations. Then lobs(θ) =
∑n

i=1 li(θ). Let θ̂ = arg max
θ∈Ω

lobs(θ)

denote the unconstrained MLE, θ̃ = arg max
θ∈{θ:Rθ≥0}

lobs(θ) denote the MLE under H1

and θ̄ = arg max
θ∈{θ:Rθ=0}

lobs(θ) denote the MLE under H0.

To develop the Wald test for hypothesis (2.5), we need the following two assump-
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tions,

A1 : − 1

n
∇2lobs(θ)

a.s.−→ Hθ,

A2 : n−1/2∇lobs(θ)
d−→ N(0, Hθ),

where ∇ = ∂/∂θ,∇2 = ∂2/∂θ∂θT , and Hθ is the finite and positive definite Fisher

information matrix. We assume the following regularity conditions hold.

C1. For each θ ∈ Ω, li(θ) = log(f(yi|θ)) is third-order differentiable with respect to

θ.

C2. There exist real-valued functions gi(yi) such that
∫
gi(yi)<∞ and the absolute

value of the first two derivatives of li(θ) are bounded by gi(yi), i = 1, · · · , n.

C3. For each θ ∈ Ω, H
(i)
θ = (H

(i)
θ (j1, j2))k×k = E{∇li(θ|yi)[∇li(θ|yi)]T} is positive

definite and has finite entries.

C4. For each θ ∈ Ω, lim
n→∞

1
n

∑n
i=1H

(i)
θ = Hθ exists and is positive definite.

C5. For each θ ∈ Ω, there exists a δ > 0 and a finite M such that for gi(yi) in

C2, Eθ

[(
gi(yi) +H

(i)
θ (j1, j2)

)1+δ
]
≤ M with Eθ(·) denoting an expectation

evaluated under distributions corresponding to the parameter values θ.

C6. The Linderberg condition is satisfied if 1
n

∑n
i=1 E{||∇li(θ|yi)||

2}1{||∇li(θ|yi)|| >

ε
√
n} p−→ 0 for all ε > 0, where 1{·} is the indicator function and ||·|| denotes

the Euclidean norm.
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C7. There exists a function l(θ) such that sup
θ∈Ω

∣∣∣ 1
n
lobs(θ) − l(θ)

∣∣∣ p→ 0 as n → ∞,

and sup
θ:||θ−θ0||≥ε

l(θ) < l(θ0) for any ε > 0. Moreover, lobs(θ) has a unique local

maximizer. For θ on the boundary of Ω, “local” is in a one-sided sense.

In the above regularity conditions, C1 ensures that the observed-data log-likelihood

function has a Taylor expansion as a function of θ. C2 ensures that the observed-

data log-likelihood function is differentiable with respect to θ under the integral sign,

which leads to E{∇li(θ|yi)} = 0 and E{∇2li(θ|yi)} = −E{∇li(θ|yi)[∇li(θ|yi)]T}

for each θ ∈ Ω.

By Markov’s strong law of large numbers, if {x1, x2, · · · } is a sequence of inde-

pendent random variables with E(xi) = µi <∞ and if for some δ > 0,
∑∞

i=1 E[|xi −

µi|1+δ]/i1+δ < ∞, then x̄n − µ̄n
a.s.−→ 0 where x̄n = 1

n

∑n
i=1 xi and µ̄n = 1

n

∑n
i=1 µi.

Therefore, when xi is the (j1, j2) entry of − 1
n
∇2li(θ), for δ in C5, we have by C2

∣∣∣xi −H(i)
θ (j1, j2)

∣∣∣1+δ

≤
∣∣∣gi(yi) +H

(i)
θ (j1, j2)

∣∣∣1+δ

.

As a result, Eθ

[∣∣∣xi −H(i)
θ (j1, j2)

∣∣∣1+δ
]

is uniformly bounded by a finite M by C5,

which leads to

∞∑
i=1

Eθ

[∣∣∣xi −H(i)
θ (j1, j2)

∣∣∣1+δ/
i1+δ

]
≤M

∞∑
i=1

1/i1+δ <∞.

The (j1, j2) entry of − 1
n
∇2lobs(θ) converges almost surely to the (j1, j2) entry of Hθ
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consequently. Then, we have by C4

− 1

n
∇2lobs(θ)

a.s.−→ Hθ. (2.6)

The Lindbergh-Feller central limit theorem states that for each n, let Yn,1, · · · ,Yn,kn

be independent random vectors with finite variances such that
∑kn

i=iE||Yn,i||21{||Yn,i|| >

ε} → 0, i = 1, · · · , kn,∀ε > 0, and
∑kn

i=1 CovYn,i → Σ, then the sequence
∑kn

i=1(Yn,i−

E(Yn,i))
d−→ N(0,Σ). With C4, C6, and equation (2.6), we have the following result

n−1/2∇lobs(θ)
d−→ N(0, Hθ). (2.7)

Based on the above arguments, the Wald statistic for testing (2.5) is given by

TW = n
(
Rθ̃
)T (

RĤ−1
θ RT

)−1 (
Rθ̃
)
,

where Ĥθ is an estimator of Hθ under H1 : Rθ ≥ 0; thus, Ĥθ can be Ĥθ̃ or Ĥθ̂. How-

ever, the explicit form of the Wald test usually does not exist due to the complexity

of the observed-data likelihood function. We will derive the asymptotic distribution

for the above Wald test.

Theorem 2.3.1 With the regularity conditions C1-C7 and the assumptions A1 and

A2, the asymptotic null distribution of the Wald test for one-sided hypothesis (2.5)

is given by the following χ̄2- distribution.

lim
n→∞

Pr(TW ≤ c|Rθ = 0) =
r∑
i=0

ωi(r, RH
−1
θ0
RT ,O+) Pr(χ2

i ≤ c), for any c ≥ 0,

(2.8)
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where θ0 denotes the true value of θ, O+ = {Rθ|Riθ ≥ 0, i = 1, · · · , r} with Ri

being the row elements of R, ωi(r, RH
−1
θ0
RT ,O+) is the probability weight as given in

section 1.2, i.e. the probability that πRH−1
θ0
RT (x;O+) ∈ the i dimensional face of O+

with
∑r

i=0 ωi(r,Σn,O+) = 1, χ2
i is the chi-square distribution with i degree of freedom

and χ2
0 denotes the distribution that takes the value zero with probability one.

The proof of Theorem 2.3.1 is given in Appendix (A.2.1).

Although we have derived the null distribution for the Wald test statistic, the

limiting variance covariance matrix Hθ0 in (2.8) is unknown. In order to actually

implement the χ̄2 test in practice, we can either substitute Hθ0 by the observed

information matrix − 1
n
∇2lobs(θ) under H0 and use a simulation method to obtain

the cut-off values, or use the upper bound and the lower bound of the null probability

to do a conservative test. These ideas are stated in the following theorem and the

proof is given in Appendix (A.2.2).

Theorem 2.3.2 With the regularity conditions C1-C7 and the assumptions A1 and

A2, the asymptotic null distribution of TW can be estimated by

P̂r(TW ≤ c|Rθ = 0) =
r∑
i=0

ωi(r, RĤ
−1
θ RT ,O+) Pr(χ2

i ≤ c), for any c ≥ 0,

where Ĥθ = − 1
n
∇2lobs(θ̃). Moreover, we have the lower and upper bound

Pr(χ2
0 ≥ c) + Pr(χ2

1 ≥ c)

2
≤ Pr(TW ≥ c|Rθ = 0) ≤

Pr(χ2
r−1 ≥ c) + Pr(χ2

r ≥ c)

2
.
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In the following, we develop two Wald type tests for the hypothesis testing prob-

lem (2.9) in NLME models with measurement errors based on the above results. In

the previous section, we create m imputations for the unobserved true covariate value

z∗i and obtain m “complete datasets”
{(
yi, z

∗(l)
i

)
, i = 1, · · · , n

}
, l = 1, · · · ,m. For

each of the m datasets, we can conduct the one-sided hypothesis testing using ex-

isting complete-data methods and then we combine the results to obtain an overall

conclusion. Here, a key question is how to combine the results from the m hypoth-

esis tests. Following Meng and Rubin [1992] and Wang and Wu [2011], we propose

two approaches: (i) combine the m sufficient statistics for the parameters of interest

from the m “complete datasets”, and then construct a single test statistic such as a

Wald-type test statistic; (ii) combine the m test statistics based on the m “complete

datasets” to obtain a single test statistic. For either case, another important ques-

tion is how to derive the null distribution or p-value for the single test statistic. The

details are discussed below.

Under the NLME model (2.3), the hypothesis (2.2) can be written in a more

general form as the hypothesis (2.5), i.e.

H0 : Rθ = 0 versus H1 : Rθ ≥ 0, Rθ 6= 0, (2.9)

where θ = (β, σ, vec(B))T ⊂ Rk denote the collection of all parameters in a NLME

model with vec(·) being the vectorization of a matrix, k denotes the number of
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distinct parameters and R is a known r × k (r ≤ k) full rank matrix with elements

of 1’s and 0’s. We consider the anti-HIV treatment (2.1) as a simple example to

illustrate the hypothesis (2.9). Here B is assumed to be diagonal for simplicity, i.e.,

vec(B) = diag(B11, B22, B33, B44), then θ = (P1, P2, λ1, λ2, ξ1, σ, B11, B22, B33, B44)T .

So the matrix R is given by

R =

0 0 1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0


2×10

,

with r = 2.

Let y = (y1,y2, · · · ,yn)T be the response data, and let z∗(l) = (z
∗(l)
1 , z

∗(l)
2 , · · · , z∗(l)n )

be the l-th imputed covariate data. Then we havem “complete datasets” {
(
y, z∗(l)

)
, l =

1, · · · ,m}. For the l-th “complete dataset” {y, z∗(l)}, let θ̃∗l be the maximum like-

lihood estimate (MLE) of θ under the parameter space {θ : Rθ ≥ 0}, Ĥn∗l be

the corresponding observed information matrix − 1
n
∇2lobs(θ) evaluated at θ̃, hence

Ĥ−1
n∗l is an estimate of variance covariance matrix H−1

n . We consider the following

combined statistics

θ̄m =
1

m

m∑
l=1

θ̃∗l,

H̄m =
1

m

m∑
l=1

Ĥn∗l,

B̄m =
1

m− 1

m∑
l=1

(θ̃∗l − θ̄m)(θ̃∗l − θ̄m)T ,
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where θ̄m is an estimator of θ, H̄−1
m estimates the within-imputation variance-

covariance matrix (denoted by H−1
n ), and B̄m estimates the unknown between-

imputation variance-covariance matrix Bn of θ̃∗l. Following Rubin [1987], when

n is large, approximately we have

θ̄m ∼ N(θ,Σn,m),

where Σn,m = H−1
n + (1 + 1/m)Bn. Thus, approximately we have

Rθ̄m ∼ N(Rθ,Σ∗n,m),

where Σ∗n,m = RH−1
n RT + (1 + 1/m)RBnR

T . In the context of multivariate normal

data with missing values, Li et al. [1991] and Meng and Rubin [1992] assumed equal

ratios of missing to observed information for small m, i.e. Bn ∝ H−1
n . This assump-

tion suggests that all eigenvalues λi of matrix HnBn are equal to λ̄ = 1
k

∑k
i=1 λi,

which leads to Bn = λ̄H−1
n . Thus, Σn,m = H−1

n +(1+1/m)λ̄H−1
n . Following Johnson

et al. [1995], we have
∑k

i=1 λi = tr(HnBn). Therefore, Σn,m can be estimated by

Σ̂n,m = H̄−1
m + rmH̄

−1
m , with rm = (1 + 1

m
) 1
k
tr(H̄mB̄m).

For measurement errors in time-varying covariates, the assumption of equal ratios

of missing to observed information is modified as the assumption of equal measure-

ment errors at each time point, i.e., RBnR
T ∝ RH−1

n RT . This assumption seems
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reasonable in the current context. The estimate of Σ∗n,m is correspondingly given by

Σ̂∗n,m = RH̄−1
m RT + r∗mRH̄

−1
m RT ,

where r∗m = (1 + 1
m

)1
r
tr
(
RB̄mR

T
(
RH̄−1

m RT
)−1
)
.

Now we propose an overall Wald-type test statistic T ∗W for testing hypothesis

(2.9) based on the combined “sufficient statistic” θ̄m as follows.

T ∗W = n(Rθ̄m)T Σ̂∗−1
n,m(Rθ̄m)

= n(1 + r∗m)−1(Rθ̄m)T
(
RH̄−1

m RT
)−1

(Rθ̄m).

(2.10)

Note that the test statistic T ∗W measures the distance from the estimate Rθ̄m to the

null parameter space H0 : Rθ = 0. Thus, the larger this distance, the stronger the

evidence against H0.

Alternatively, we also propose to obtain an overall test statistic by combining the

individual test statistics based on each of the m “complete datasets”. Specifically,

for each of the m “complete datasets”
{(
y, z∗(l)

)
, l = 1, · · · ,m

}
, the Wald-type test

statistic for testing hypothesis (2.9) is given by

W∗l =n(Rθ̃∗l)
T
(
RĤ−1

n∗lR
T
)−1

(Rθ̃∗l), l = 1, 2, · · · ,m. (2.11)

We might tend to consider combining the above test statistics with a simple average

Wm =
∑m

l=1W∗l/m. However, this may lead to difficulties in computing the null

distribution and thus difficulties in making inference [Wang and Wu, 2011]. We
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propose to combine the individual test statistics as follows.

T ∗CW =
Wm − (m−1)r

m+1
r∗m

1 + r∗m
.

The next step is to derive the asymptotic null distributions for the proposed test

statistics T ∗W and T ∗CW . We have the following results, with the proofs given in the

Appendix (A.2).

Theorem 2.3.3 For the multivariate one-sided hypothesis (2.9) H0 : Rθ = 0 versus

H1 : Rθ ≥ 0, Rθ 6= 0, the following result holds for the proposed test statistic T ∗W .

P̂r(T ∗W ≤ c|Rθ = 0) =
r∑
i=0

ωi(r, Σ̂
∗
n,m,O+) Pr(χ2

i ≤ c), for any c ≥ 0. (2.12)

where O+ = {Rθ|RT
i θ ≥ 0, i = 1, · · · , r} with Ri being the ith row vector of R,

ωi(r, Σ̂
∗
n,m,O+) is the probability that πΣ̂∗

n,m
(x;O+) ∈ the i dimensional face of O+

with
∑r

i=0 ωi(r, Σ̂
∗
n,m,O+) = 1, χ2

i is the chi-square distribution with i degrees of

freedom, and χ2
0 denotes the distribution that takes the value zero with probability

one.

Moreover, the asymptotic null distribution of T ∗W has the lower and upper bound:

Pr(χ2
0 ≥ c) + Pr(χ2

1 ≥ c)

2
≤ Pr(T ∗W ≥ c|Rθ = 0)

≤
Pr(χ2

r−1 ≥ c) + Pr(χ2
r ≥ c)

2
.

(2.13)
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Theorem 2.3.4 For the multivariate one-sided hypothesis (2.9) H0 : Rθ = 0 ver-

sus H1 : Rθ ≥ 0, Rθ 6= 0, the proposed overall test statistics T ∗W and T ∗CW are

asymptotically equivalent

T ∗CW = T ∗W + op(1).

To calculate the p-values of proposed test statistics, we may consider two ap-

proaches: (a) substitution method : as shown in (2.12), substitute Σ∗n,m by its esti-

mate Σ̂∗n,m, and compute the weights ωi(r, Σ̂
∗
n,m,O+) by a simulation-based method;

(b) bound method: we can use the lower and the upper bound in (2.13) to compute

conservative p-values.

2.4 A Real Data Example

In this section, we apply the proposed tests T ∗W and T ∗CW to a real dataset for

testing hypothesis (2.9) in NLME model (2.1) based on the MI method. For compar-

ison purpose, we also consider a naive method which ignores covariate measurement

errors, as well as a simple two-step method which first estimates the “true” covariate

from the assumed covariate model and then fit the model (2.1) as if the estimated

covariates were true values. And a two-sided alternative hypothesis H1 : λ1 6= 0, or

ξ1 6= 0 is considered based on the naive method and the two-step method.

The dataset is from an HIV/AIDS study which evaluates an anti-HIV treatment.
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In this study, viral load of 46 HIV infected patients were repeatedly measured on

days 0, 2, 7, 10, 14, 21, 28 and weeks 8, 12, 24, and 48 after the initiation of the

treatment. The number of repeated measurements for each individual varies from

4 to 10. Various covariates such as CD4 count were also recorded throughout the

study. Some values of viral load were below a detection limit of 100 copies/ml,

and these values were imputed by half the detection limit for simplicity. Viral load

values were log10-transformed to make their values more normally distributed and

more stabilized variances over time. To avoid very small estimates, which may be

unstable, we also standardize the CD4 count values and re-scale the original time

t (in days) so that the new time scale is between 0 and 1. Figure 2.1 shows the

trajectories of viral load and CD4 count of four randomly selected patients. We can

see that, in most cases, the viral load declines during the treatment, while CD4 count

shows a quadratic trend.

We fit the NLME model (2.1) to the viral load data, with CD4 count being

an error-prone time-varying covariate. To address the measurement errors in CD4

count, we consider several empirical polynomial LME models for the CD4 process,

and choose the best model based on AIC and BIC values. Specifically, we consider

the covariate model (2.4) with Uij = Vij = (1, tij, . . . , t
d−1
ij ), where tij’s are CD4

measurement times, and focus on linear (d = 2), quadratic (d = 3), and cubic
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(d = 4) polynomials, whose AIC (BIC) values are 796.17 (819.50), 703.19 (761.52),

and 742.12 (781.01), respectively. So the following quadratic polynomial LME model

fits the observed CD4 data reasonably well

CD4ij = (α1 + ai1) + (α2 + ai2)tij + (α3 + ai3)t2ij + εij ≡ CD4∗ij + εij, (2.14)

where α = (α1, α2, α3) are the fixed-effects and a = (a1, a2, a3) are the random-

effects. As discussed in Section 2.1, we are interested in testing the multivariate

one-sided hypothesis H0 : λ = 0 versus H1 : λ ≥ 0,λ 6= 0, where λ = (λ1, ξ1).
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Figure 2.1: Trajectories of viral load in log10 scale and CD4 count for four randomly

selected patients.

We consider m = 5 multiple imputations to address the measurement errors
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Table 2.1: Parameter estimates of the viral load model (2.3) based on m = 5 multiple

imputations

Response model

Fixed-effect Covariance matrix

P1 11.71 B σ

λ1 66.36



1.10 0.63 1.49 −2.38

69.71 0.84 −1.21

2.01 −4.96

22.93


0.35

ξ1 1.51

P2 6.85

λ2 -2.81
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in CD4 cell count. For sensitivity analysis, we take two different values of hyper-

parameters representing noninformative and strong priors and find out that the traces

of the Markov chains with the different values of hyper-parameters almost overlap

each other, which indicates that the Markov chain is not sensitive to the values

of hyper-parameters. Here, we use noninformative prior distributions for model

parameters as follows:

β ∼ N(0, diag(100, 100, 100, 100, 100)),

α ∼ N(0, diag(100, 100, 100)),

σ2 ∼ G−1(0.01, 100), D ∼ W−1(1, 1),

A ∼ W−1(I, 3), B ∼ W−1(I, 4),

where the I’s are appropriate identity matrices and W (1, 1) (i.e., the chi-square

distribution with degree of freedom 1) is a prior Wishart distribution for the scale

parameter D.

In order to determine the number of “burn-in” iterations and to check the con-

vergence of the Markov Chain, we start three Markov Chains from dispersed initial

values. Based on these Markov Chains, we suggest that, after an initial number

of 2000 burn-in iterations, every 500th MCMC sample is retained from the next

2500 samples for m = 5 independent multiple imputations. The Markov sampling is

conducted by the software WinBUGS through R package R2WinBUGS.
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The parameter estimates in model (2.1) and model (2.14) are listed in Table 1.

The 5 estimates of λ1 and ξ1 based on the 5 “complete datasets” are (66.57, 1.53),

(66.70, 1.55), (66.13, 1.50), (65.87, 1.50), (66.52, 1.47) respectively. Thus, we have

λ̄m = (66.36, 1.51). The overall test statistics are calculated as T ∗W = 494.27 and

T ∗CW = 488.54. Both the substitution method and the bound method are used to

calculate the p-values, and both p-values are close to 0. Therefore, we have strong

evidence to reject H0 and conclude that the viral load declines significantly during the

anti-HIV treatment and the CD4 count has a significantly positive association with

the initial viral decay rate. That is, the higher the CD4 count, the faster the viral

load declines during the initial period of the treatment. The testing statistics based

on the naive and the two-step method are 306.49 and 359.45, respectively, which

are substantially smaller than T ∗W and T ∗CW , and thus they provide weaker evidence

against H0. In other words, the proposed new tests provide stronger evidence about

the efficacy of the treatment and its association with CD4 count than those tests

based on the naive and the two-step method.

2.5 Simulation Study

In this section, we perform a simulation study to evaluate the performance of

the proposed tests and compare them with those two-sided tests based on the naive
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and the two-step method. We evaluate the methods in terms of both type I error

probabilities and powers. The significance level α = 0.05 is chosen. The simulation

design uses the same NLME response model and the same covariate model as those

in the real data example, but with different choices of the true parameters of λ1 and

ξ1 values in order to evaluate the tests under different settings. The different true

values of the parameters λ1 and ξ1 are listed in Tables 2.2 –2.3. The true values of

the other fixed-effect parameters are chosen to be similar to those estimated from the

real data example in the previous section. Specifically, (P1, P2, λ2) = (12, 7,−3), α =

(α0, α1, α2) = (−0.5, 4,−4), Diag(A) = (0.5, 2, 1), D = 0.5, Diag(B) = (1, 10, 2, 5),

and σ = 0.2, where the covariance matrices A and B are chosen to be diagonal

matrices.

We generate 1000 datasets with the two different sample sizes n = 46 and n = 100,

respectively. The number of the within-individual repeated measurements are with

the same measurement times mi = 8. Both the substitution method and the bound

method are used to calculate the approximate p-values, together with the naive and

the two-step method described in the previous section.

The simulation results are reported in Table 2.2–2.3. We see that all tests ap-

proximately attain the nominal significant level α = 5% in most of the cases, except

for the substitution method when sample size n = 46. This might be due to the
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fact that the substitution method may not estimate the covariance matrix Σ∗n,m well

for the small sample size (n = 46). This problem disappears for large sample sizes

(n = 100) since in this scenario the covariance matrix can be better estimated. We

can see that our proposed new tests T ∗W and T ∗CW have somewhat lower type I errors

than the naive and the two-step method in most cases, and in the meantime they

are more powerful in all scenarios. These results clearly show the better performance

of the proposed methods than the naive and the two-step method. Note that the

bound method is more conservative because it uses the upper and lower bound of

the null probabilities to compute the p-values, i.e., the substitution method produces

higher powers than the bound method for both n = 46 and n = 100. However, the

substitution method relies on a good estimation of the covariance matrix Σ∗n,m, so it

might not perform very well when the sample size is small.
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Table 2.2: Type I error probabilities and powers when n=46.

(λ1, ξ1) T
∗(b)
W

u T
∗(b)
CW

u T
∗(s)
W

u T
∗(s)
CW

u Naive Two-step

Type I error probability

(0,0) 3.4 3.7 4.4 5.6 4.4 4.2

Power

(0.008,0) 10.9 12.0 13.4 14.5 6.1 7.6

(0,0.02) 38.7 40.1 43.3 44.5 11.0 13.3

(0.05,0.01) 53.5 53.3 55.7 55.6 35.0 38.1

u T ∗(b) and T ∗(s) denote test statistics based on the bound and the

substitution method, respectively.
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Table 2.3: Type I error probabilities and powers when n=100.

(λ1, ξ1) T
∗(b)
W T

∗(b)
CW T

∗(s)
W T

∗(s)
CW Naive Two-step

Type I error probability

(0,0) 3.1 3.6 4.0 4.8 3.3 4.1

Power

(0.008,0) 12.3 13.9 15.2 15.3 6.7 8.3

(0,0.02) 59.3 61.5 65.2 65.7 27.9 30.4

(0.05,0.01) 77.8 77.2 80.1 80.0 55.5 56.8

2.6 Discussions

In this chapter, we have proposed a multiple imputation method for time-varying

covariate measurement errors in NLME models in the context of multivariate one-

sided tests. A main advantage of multiple imputation methods is that existing

complete-data methods for multivariate one-sided tests can be used with the imputed

datasets. We have focused on the error-prone time-varying covariates in NLME mod-

els. The repeated measurements of the covariates allow us to model the covariate

process to estimate measurement errors. Simulation results show that the proposed

methods perform better than the naive and the two-step method in the sense that
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they offer higher powers while maintaining nominal type I errors.

Multiple imputation methods are typically used to address missing data problems.

Here we use them for measurement error problems. A good imputation model is

important to generate “good imputations” in the sense that the imputed values

are close to the unobserved true values while incorporating prediction uncertainty.

To obtain a good imputation, we should use as much observed data as possible

to “predict” the unobserved true values while maintaining the underlying model

structures. This can be challenging for NLME models with “missing” covariates. In

this chapter, we use both the observed covariate data and the response data to help

generating the imputations. Another advantage of the proposed method is that the

imputations are generated in the individual levels, so the method is very useful when

there are large variations between individuals in the dataset. Simulation results show

that the proposed approach works well.

For the problem under consideration, an alternative approach would be based on

the likelihood method. A (joint) likelihood can be specified based on the assumed

models. An (Monte Carlo) EM algorithm may then be used for parameter estima-

tion and inference. While the likelihood method may be conceptually straightfor-

ward, such an approach may be computationally very intensive in the current model

settings, especially convergence issues. Moreover, the existing methods for the mul-
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tivariate one-sided hypothesis testing may not be readily used. In some sense, the

likelihood method may be viewed as a multiple imputation method with infinite many

imputations. On the other hand, it is known that a multiple imputation method can

produce good results with only 5 or 6 imputations, saving much computation time

[Rubin, 1987, Schafer, 1997].

There is a large literature on multivariate one-sided hypothesis testing, though

most of the tests appear to be only of theoretical interest. It is well known that

such tests are more powerful than those ignoring the restrictions on the parameter

space. We hope that such tests can be more commonly used to analyze real datasets.

In this chapter, we consider the multivariate one-sided tests in NLME models with

time-varying covariate measurement errors. The proposed methods can also be used

for missing covariates in NLME models when the missingness is missing at random.

Moreover, the proposed methods may also be extended to generalized linear mixed-

effects models or semi-parametric mixed-effects models with measurement errors in

time-varying covariates.
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3 Multivariate One-sided Hypothesis Tests for

NLME Models with Covariate Measurement

Errors and Response Left-censoring

3.1 Introduction

HIV dynamic models have been developed to help study HIV parthenogenesis

and treatment strategies for AIDS patients. In practice, the viral load in a HIV

study is are usually left-censored at the lower detection limit due to the technology

constraints. The “fill-in” method is commonly used to deal with the left-censoring

problem which substitutes the censoring data by the limit of detection(LOD) or some

arbitrary values such as LOD/2 or LOD/
√

2. However, the “fill-in” method may lead

to biased results [Wu, 2002, Vaida and Liu, 2009].

Note that the censoring is related to the unobserved values (the censored values)

since the censored values are known to be less or greater than a known number. So
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censored data can be considered as a special case of missing data with missing not

at random mechanism. There are two main formal methods to deal with missing

data problems, i.e. multiple imputation (MI) methods and expectation maximiza-

tion (EM) algorithms. The EM algorithm needs to compute the expectation of the

complete log-likelihood function with respect to missing data distribution at cur-

rent estimates in the E-step, then maximize the expected log-likelihood function

to update unknown parameters in the M-step. Compared with EM algorithm, the

multiple imputation methods are more computationally efficient and the existing

standard complete methods can be used in the subsequent statistical analysis.

In this chapter, we consider the MI method to address both covariate measure-

ment errors and response left-censoring in NLME models. We proposed two Wald-

type test statistics for the multivariate one-sided hypothesis for testing parameters

in NLME models. This chapter is organized as follows. In Section 3.2, we describe

a multiple imputation method to address both the left-censored response and the

mis-measured time-varying covariates. In Section 3.3, we propose two Wald-type

testing statistics for the multivariate one-sided hypothesis of parameters in NLME

models based on multiple imputations of mis-measured covariates and left-censored

response. In Sections 3.4, we illustrate the proposed approaches in a real data exam-

ple. In section 3.5, a simulation study is conducted to evaluate the performance of
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the proposed tests. We conclude this chapter in Section 3.6 with some discussions.

3.2 A Multiple Imputation for NLME Models with Response

Left-censoring and Covariate Measurement Errors

Let yij be the response value for individual i at time tij subject to the left-

censoring due to a known limit d of detection, i = 1, 2, · · · , n, j = 1, 2, · · · ,mi. In

the presence of left-censored response, we denote yi = (yi1, · · · , yimi
) = (yci ,y

o
i ) be

the collection of the response values for individual i, where yci and yoi are the censored

and the observed component of yi, respectively. So for individual i, some of yij’s are

observed while the other may be left-censored. To indicate the response left-censoring

for individual i, we denote the censoring indicator vector by ci = (ci1, · · · , cimi
) such

that cij = 1 if yij is left-censored, i.e. yij ≤ d and 0 otherwise. Let zqij and z∗qij be

the observed and the corresponding unobservable “true” value of the qth error-prone

covariate for individual i at time tij, q = 1, · · · , s, i = 1, · · · , n, j = 1, · · · ,mi, then

we have zi = (zTi1, · · · , zTimi
)T , zij = (z1ij, · · · , zsij)T , where T denotes a transpose.

Then the observed data can be denoted by D1 = (yoi , ci, zi), i = 1, · · · , n.

For completeness, we describe the general response NLME models with covariate
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measurement errors as follows.

yij = g(tij,βij) + eij, eij
i.i.d.∼ N(0, σ2),

βij = d(z∗ij,β,bi), bi
i.i.d.∼ N(0, B), i = 1, 2, · · · , n, j = 1, 2, · · · ,mi

(3.1)

where g(·) is a known nonlinear function, d(·) is a known multivariate linear function,

βij is a vector of individual-specific and time-varying parameters and β is a vector of

fixed-effect, z∗ij is the (unobserved) true covariate value corresponding to the observed

and possibly mis-measured zij, ei = (ei1, · · · , eimi
)T is a vector of within-individual

random errors, bi is a vector of random-effects, σ2 is a variance parameter, and B is

the variance-covariance matrix of bi. We assume ei and bi are independent.

In the presence of measurement errors in time-varying covariates, the following

classical measurement error model is considered to model the true (unobservable)

covariate z∗ij in NLME model (3.1).

zij = Uijα+ Vijai + εij
(
≡ z∗ij + εij

)
, i = 1, · · · , n, j = 1, · · · ,mi, (3.2)

where Uij and Vij are known design matrices including time, and α and ai are the

fixed-effect vector and random-effect, vector respectively, εij are the random w terrors

for individual i at time tij.

We propose a MI method to address the left-censored response and the mis-

measured covariate in NLME models. Specifically, we can generate m proper mul-

tiple imputations for {(yci , z∗i ), i = 1, · · · , n} under the Bayesian framework. As
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discussed in section 2.2, the unobserved “true” covariate values z∗ij = Uijα + Vijai

are completely determined by its mean parameters α and its random-effects ai since

the design matrices Uij and Vij are known. Therefore, it is sufficient to generate

multiple imputations for (yc,α,a) from the predictive distribution f(yc,α,a|D1),

where yc = {yci , i = 1, · · · , n} and a = {ai, i = 1, · · · , n}.

Let Ψ = (α,Φ) ≡ (α,β, σ2, D,A,B) be the collection of all unknown parame-

ters in models (3.1) and (3.2), where Φ = (β, σ2, D,A,B), b denotes the collection

of the random-effects bi’s in the response model (3.1). Under the Bayesian frame-

work, we need to specify prior distributions for the parameter Ψ. We assume that

the parameters α,β, σ,D,A and B are independent, i.e. π(α,β, σ2, D,A,B) =

π(α)π(β)π(σ2)π(D)π(A)π(B). Normal prior distributions are assigned to the mean

parameters α and β, while the Inverse Gamma or Inverse Wishart prior distributions

are assigned to the variance-covariance parameters σ2, D,A and B.

However, the analytical computation convenience associated with the conjugate

prior does not hold for the censored data. Thus, the data augmentation method

is applied to handle the censoring problems within the Gibbs sampling framework

[Chib, 1992, Wei and Tanner, 1990]. In particular, for the censored response yci , we

will sample the imputations successively from the conditional distribution f(yci |D1),

which is a truncated multivariate normal distribution. Based on the model (3.1) and
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(3.2), we have yij|ai, bi
i.i.d.∼ N(g(tij, d(Uijα + Vijai,β, bi), σ

2). Then the multiple

imputations for (yc,α,a) can be generated through sampling the full conditionals

in turn at iteration t (t = 1, 2, · · · ),

Step I : Draw a value (α(t),a(t)) of (α,a) in the following order

i Draw a value of α(t) of the mean parameter α in the covariate model (3.2)

from

f(α|yc(t−1),D1,a
(t−1), b(t−1);β(t−1), σ2(t−1), D(t−1))

∝
n∏
i=1

[
f(y

c(t−1)
i ,yoi |a

(t−1)
i , b

(t−1)
i ;α,β(t−1), σ2(t−1))

× f(zi|a(t−1)
i ;α, D(t−1))

]
· π(α).

ii Draw a value a
(t)
i of the random-effect ai in the covariate model (3.2) from

f(ai|yc(t−1)
i ,yoi , zi, b

(t−1)
i ;α(t),Φ(t−1))

∝f(y
c(t−1)
i ,yoi |ai, b

(t−1)
i ;α(t),β(t−1), σ2(t−1))

× f(zi|ai;α(t), D(t−1))f(ai|A(t−1)), i = 1, · · · , n.

Step II : Draw a value (b(t),Φ(t)) of (b,Φ) in the following order

i Draw a value b
(t)
i of the random-effect bi in the response model (3.1) from

f(bi|yc(t−1)
i ,yoi ,a

(t)
i ;α(t),β(t−1), σ2(t−1), B(t−1))

∝f(y
c(t−1)
i ,yoi |a

(t)
i , bi;α

(t),β(t−1), σ2(t−1))

× f(bi|B(t−1)), i = 1, · · · , n.
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ii Draw a value β(t) of the mean parameter β in the response model (3.1) from

f(β|yc(t−1)
i ,D1,a

(t), b(t);α(t), σ2(t−1))

∝
n∏
i=1

[
f(y

c(t−1)
i ,yoi |a

(t)
i , b

(t)
i ;α(t),β, σ2(t−1))

]
· π(β).

Step III : If cij = 1, i = 1, · · · , n, j = 1, · · · ,mi, draw a value y
c(t)
ij of the censored

response ycij successively from

ycij|cij = 1,a
(t)
i , b

(t)
i ;α(t), σ2(t) ∼ TruncNormal(−∞,d]

(
µ

(t)
ij , σ

2(t)
)
, j = 1, · · · ,mi,

with µ
(t)
ij = g(tij, d(Uijα

(t) + Vija
(t)
i ,β

(t), b
(t)
i ), truncNormal(a,b)(µ, σ

2) denoting the

normal distribution density N(µ, σ2) truncated on the interval (a, b) as illustrated in

Gelfand and Smith [1990], Lee et al. [2012].

Step VI : Draw a value (σ2(t), D(t), A(t), B(t)) of the precision parameters σ2, D,A, and

B in the models (3.1) and (3.2) from the corresponding full conditional distributions

in similar ways as discussed in Chapter 2.

Beginning with the starting value Ψ(0) obtained from the two-step method, we

iterate the foregoing procedures for a burn-in period until the resulting Markov

Chain converges to its stationary distribution. At convergence, we obtain a value of

(yci ,α,ai) from f (yci ,α,ai|D1). Repeating the above procedure m times, we obtain

m imputations of
(
y
c(l)
i , z

∗(l)
i

)
from f(yc, z∗|D1). Thus, we obtain m “complete

datasets”
{(
y

(l)
i , z

∗(l)
i

)
, i = 1, 2, · · · , n

}
, l = 1, 2, · · · ,m with y

(l)
i =

(
y
c(l)
i ,yoi

)
.
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Based on each of the m “complete datasets”, we can conduct inference for the NLME

model (3.1) with both response left-censoring and covariate measurement errors being

addressed, and then we combine the m results to obtain an overall conclusion.

In the next section, we consider the multivariate one-sided hypothesis testing for

parameters in the NLME models based on multiply imputed datasets and show how

to combine the results.

3.3 Multivariate One-sided Tests Based on Multiple Impu-

tations in NLME Models with Response Censoring and

Covariate Measurement Errors

In the previous section, we create m imputations for the left-censored response

yci and the unobserved true covariate value z∗i and obtain m “complete datasets”{(
y

(l)
i , z

∗(l)
i

)
, i = 1, 2, · · · ,m

}
, l = 1, 2, · · · ,m with y

(l)
i =

(
y
c(l)
i ,yoi

)
being the l-

th imputed response data for individual i. For each of the m “complete datasets”,

we can conduct the multivariate one-sided hypothesis testing for parameters in the

NLME model (3.1) using existing complete-data methods and then we combine the

results to draw an overall conclusion.

As in Section 2.3, we propose two approaches to combine the results from the m

hypothesis tests, (i) combine the m “complete data” parameter estimates and then
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construct an overall single test statistic; (ii) combine the m sufficient statistics based

on each of the m “complete datasets” to obtain an overall test statistic [Meng and

Rubin, 1992, Wang and Wu, 2011]. For either case, it is important to derive the null

distribution or calculate the p-value for the test statistics.

We consider the following multivariate one-sided hypothesis test of interest

H0 : Rθ = 0 versus H1 : Rθ ≥ 0, Rθ 6= 0. (3.3)

where θ is a k-dimension parameter vector in NLME models and R is a r×k (r ≤ k)

full rank matrix with elements of 1’s and 0’s indicating the parameters of interest.

For the l-th “complete dataset”
{
y

(l)
i , z

∗(l)
i , i = 1, · · · , n

}
, let θ̃∗l be the maximum

likelihood estimate (MLE) of θ under the parameter space {θ : Rθ ≥ 0}, Ĥn∗l be

the corresponding observed information matrix − 1
n
∇2lobs(θ) evaluated at θ̃, which

is an estimate of variance covariance matrix H−1
n . Consider the following combined

statistics

θ̄m =
1

m

m∑
l=1

θ̃∗l,

H̄m =
1

m

m∑
l=1

Ĥn∗l,

B̄m =
1

m− 1

m∑
l=1

(θ̃∗l − θ̄m)(θ̃∗l − θ̄m)T ,

where θ̄m is an estimator of θ, H̄−1
m estimates the within-imputation variance-

covariance matrix of θ (denoted by H−1
n ), and B̄m estimates the between-imputation

65



variance-covariance Bn of θ̃∗l. When n is large, we have θ̄m
approx.∼ N(θ,Σn,m)

with Σn,m = H−1
n + (1 + 1/m)Bn [Rubin, 1987]. Therefore, we have Rθ̄m

approx.∼

N(Rθ,Σ∗n,m) with Σ∗n,m = RH−1
n RT + (1 + 1/m)RBnR

T .

Bn can not be well estimated by Bm unless m is large enough, thereby leading

to substantially intensive computations. Alternatively, we have Bn proportional to

H−1
n under the assumption of equal missing fractions, that is, the fractional loss of

information is the same for all components of θ. Specifically, all eigenvalues λi of

matrix HnBn are equal to λ̄ = 1
k

∑k
i=1 λi and Bn = λ̄H−1

n . Following Johnson et al.

[1995], we have

Σ̂n,m = H̄−1
m + rmH̄

−1
m , with rm = (1 +

1

m
)
1

k
tr(H̄mB̄m).

Besides, even though the equal missing assumption is violated when m ≥ 3, Σ̂n,m

would be asymptotically calibrated and suffer only modest loss of power [Li et al.,

1991]. Therefore, for the case with left-censored response and measurement errors in

time-varying covariates, the estimate of Σ∗n,m can be correspondingly given by

Σ̂∗n,m = RH̄−1
m RT + r∗mRH̄

−1
m RT ,

where r∗m = (1 + 1
m

)1
r
tr
((
RH̄−1

m RT
)−1

RB̄mR
T
)

.

Then we can propose an overall Wald-type test statistic for hypothesis (3.3) based
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on the combined parameter estimates θ̄m as follows,

T ∗W = n(Rθ̄m)T Σ̂∗−1
n,m(Rθ̄m). (3.4)

Alternatively, we also propose to obtain an overall test statistic by combining the

individual test statistics based on each of the m “complete datasets”. The Wald-type

test statistic for each of the m “complete datasets”
{
y

(l)
i , z

∗(l)
i , i = 1, · · · , n

}
, l =

1, · · · ,m of hypothesis (3.3) is given by

W∗l = n(Rθ̃∗l)
T
(
RĤ−1

∗l R
T
)−1

(Rθ̃∗l), l = 1, 2, · · · ,m. (3.5)

We propose to combine the individual test statistics as follows.

T ∗CW =
Wm − (m−1)r

m+1
r∗m

1 + r∗m
. (3.6)

The asymptotic null distributions for the proposed test statistics T ∗W and T ∗CW

are given in the following theorem, which can be proved in a same way as in Theorem

2.3.3 and Theorem 2.3.4.

Theorem 3.3.1 For the multivariate one-sided hypothesis (3.3) H0 : Rθ = 0 versus

H1 : Rθ ≥ 0, Rθ 6= 0, the following results hold for the proposed test statistics T ∗W

and T ∗CW .

(i) The asymptotic null distribution of T ∗W is estimated by the following χ̄2 distribu-
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tion.

P̂r(T ∗W ≤ c|Rθ = 0) =
r∑
i=0

ωi(r, Σ̂
∗
n,m,O+) Pr(χ2

i ≤ c), for any c ≥ 0,

where O+ = {Rθ|RT
i θ ≥ 0, i = 1, · · · , r} with Ri being the ith row vector of

R, ωi(r, Σ̂
∗
n,m,O+) is the probability that πΣ̂∗

n,m
(x;O+) ∈ the i dimensional face

of O+ with
∑r

i=0 ωi(r, Σ̂
∗
n,m,O+) = 1, χ2

i is the chi-square distribution with i

degrees of freedom, and χ2
0 denotes the distribution that takes the value zero

with probability one.

(ii) The asymptotic null distribution of T ∗W has the lower and the upper bound:

Pr(χ2
0 ≥ c) + Pr(χ2

1 ≥ c)

2
≤ Pr(T ∗W ≥ c|Rθ = 0)

≤
Pr(χ2

r−1 ≥ c) + Pr(χ2
r ≥ c)

2
.

(iii) The proposed overall test statistics T ∗W and T ∗CW are asymptotically equivalent

T ∗CW = T ∗W + op(1).

Similar to Chapter 2, we may either use the substitution method in Theorem 3.3.1

(i) or the bound method in Theorem 3.3.1 (ii) to approximate the null distribution.

The substitution method would substitute Σ∗n,m by its estimate Σ̂∗n,m, and compute

the weights ωi(p, Σ̂
∗
n,m,O+) by a simulation-based method [Silvapulle and Sen, 2005].

The bound method uses the lower and upper bound in Theorem 3.3.1 to compute

p-values which is computationally simple, but somehow conservative.
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3.4 A Real Data Example

In this section, we apply the proposed tests T ∗W and T ∗CW to a real data example

for the multivariate one-sided hypothesis test (3.3). For comparison purpose, we

also consider a two-sided alternative hypothesis H1 : λ1 6= 0, or ξ1 6= 0 based on the

commonly-used estimation methods: the naive method and the two-step method.

The naive method ignores the covariate measurement errors and simply imputes

the left-censoring response values with half of the detection limit, while the two-step

method first estimates the “true” mis-measured covariate values based on an assumed

covariate model and then incorporates the estimated ”true” covariate values into the

response model with the censored response values imputed by half of the detection

limit.

We use the same dataset as in Chapter 2. The data are from an anti-HIV treat-

ment study which includes the viral load, CD4 count and other variables for 46 HIV

infected patients measured over a period of 48 weeks after the initiation of the treat-

ment. 40 out of 361 viral load observations are below a detection limit of 100, and

they are simply imputed by half of the detection limit. Figure 3.1 (a) shows the

trajectories of viral load in log10 scale for six randomly selected patients with the

red dashed line representing the censoring threshold. We can see that the long-term

viral load trajectories can be very complex after the initial phase viral decay. It may
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continue to decay, fluctuate or even start to rise(rebound). And the left-censored

viral load is demonstrated by a solid lines below the red dashed line whose value is

equal to the half of the detection limit 100. The CD4 count trajectories for six ran-

domly selected patients plotted in Fig 3.1 (b) show large inter-individual variation

but a quadratic trend overall, suggesting a mixed-effects model. To avoid very small

estimates, which may be unstable, we standardize the CD4 count values and re-scale

the original time t (in days) so that the new time scale is between 0 and 1.
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Figure 3.1: Trajectories of viral load in log10 scale and CD4 count for six randomly

selected patients with the dashed red horizontal line indicating the limit of detection

100 units.
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Based on biological arguments, we consider the following NLME model [Wu, 2002]

yij = log10(eP1i−λ1ijtij + eP2i−λ2itij) + eij,

P1i = P1 + b1i, λ1ij = λ1 + ξ1CD4∗ij + b2i,

P2i = P2 + b3i, λ2i = λ2 + b4i,

i = 1, 2, · · · , n, j = 1, 2, · · · ,mi.

(3.7)

where yij is the log10-transformation of viral load measurements for patient i at

time tij, CD4ij is the CD4 count for patient i at time tij, P1i and P2i are baseline

viral load, λ1ij and λ2i are the first (initial) and the second phases of viral decay

rates, respectively. β = (P1, P2, λ1, λ2, ξ1)T are the fixed-effect parameters, bi =

(b1i, b2i, b3i, b4i)
T are random-effects, and eij is a within-individual random error. We

assume that bi
i.i.d.∼ N(0, B), eij

i.i.d.∼ N(0, σ2), and bi is independent of eij’s.

To address the measurement errors, we consider a linear mixed-effects model for

CD4 count [Wu, 2002]

CD4ij = (α1 + ai1) + (α2 + ai2)tij + (α3 + ai3)t2ij + εij (3.8)

where α = (α1, α2, α3)T are the fixed-effects and a = (a1, a2, a3)T are the random-

effects. We assume the unobservable true CD4∗ij = (α1 + ai1) + (α2 + ai2)tij + (α3 +

ai3)t2ij.

We use the same noninformative prior distributions as we used in Chapter 2. After

an initial number of 2000 burn-in iterations, every 500th MCMC sample is retained
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Table 3.1: Parameter estimates of the viral load model (3.7) based on m = 5 multiple

imputations

Response model

Fixed effect Covariance matrix

P1 11.32 B σ

λ1 67.08



1.09 0.61 1.49 −2.38

70.62 0.85 −1.20

2.00 −4.93

19.81


0.35

ξ1 1.48

P2 6.88

λ2 -1.98

from the next 2500 samples for m = 5 independent multiple imputations. The

estimates of λ1 and ξ1 based on the 5 generated “ complete datasets” are (67.43, 1.42),

(67.03, 1.44), (66.82, 1.49), (66.97, 1.50), and (67.16, 1.57) respectively. Therefore,

λ̄m = (67.08, 1.48). The other parameter estimates of the model (3.7) based on the

multiple imputations are listed in Table 3.4. To evaluate the efficacy of the treatment,

we are interested in testing the one-sided hypothesis H0 : λ = 0 v.s. H1 : λ ≥ 0,λ 6=

0, where λ = (λ1, ξ1). The statistics T ∗W and T ∗CW for testing H0 versus H1 using

the substitution method are calculated as T ∗W = 532.19 and T ∗CW = 507.25. The

bound method is also used to compute the p-values. All the p-values of these tests
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are close to 0. Note that the statistics in Chapter 2 are calculated as T ∗W = 494.27

and T ∗CW = 488.54, which is smaller than their counterparts in Chapter 3, since we

only address the covariate measurement errors in Chapter 2. Thus, it is important

to take the response left-censoring into consideration.

Therefore, we have strong evidence to reject H0, and we may conclude that the

CD4 count increases significantly and the viral load declines significantly in the initial

period of the anti-HIV treatment. The two-sided testing statistics based on the naive

and the two-step method are 307.01 and 360.14, respectively. They reject H0 too

but with weaker evidence than the newly proposed testing statistics T ∗W and T ∗CW .

3.5 Simulation Study

In this section, we conduct a simulation study to evaluate the performance of

the proposed test statistics T ∗W and T ∗CW for the multivariate one-sided hypothesis

testing problem in NLME models with response left-censoring and covariate measure-

ment errors simultaneously under different scenarios. The corresponding two-sided

hypothesis tests based on the naive and the two step method are considered for the

comparison purpose. The significance level α = 0.05 is chosen.

The simulation design uses the same NLME response model (3.7) and the same

covariate model (3.8) as that in the real data example, but with different choices of
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true parameter values in order to evaluate the tests under different settings. The

sample size n are set to be 46 and 100 respectively, and the number of repeated

measurements is mi = 8.

The true values of the parameters λ1 and ξ1 are listed in Table 3.2. The true values

of the other fixed-effect parameters are: (P1, P2, λ2) = (10, 5,−1), α = (α0, α1, α2) =

(−0.5, 4,−4), Diag(A) = (0.5, 2, 1), D = 0.5, Diag(B) = (1, 10, 2, 5), σ = 0.5, where

the covariance matrices A amd B are set to be diagonal matrices. Besides, the

censoring threshold for response is set to be d100 = log10(100) = 2 which is the

detection limits of commonly used HIV viral load measurement devices [Wu, 2009].

All the simulations are repeated 1000 times. And the censoring rate is the average

censoring rate over the 1000 simulated datasets.

The multivariate one-sided hypothesis test of interest in the simulation is H0 :

λ1 = ξ1 = 0 versus H1 : λ1 ≥ 0, ξ1 ≥ 0 (with at least one strict inequality). As a

comparison, the two-sided hypothesis H0 : λ1 = ξ1 = 0 versus H1 : λ1 6= 0 or ξ1 6= 0

using the naive method and two-step method would be considered.

The simulation results are shown in Table 3.2. We can see that all the tests

attain the significant level α = 5% except for the substitution method when sample

size n = 46. The exception may be due to that the substitution method cannot

estimate the covariance matrix Σ∗n,m well for the small sample size (n = 46). Overall,
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the type I error rates of each testing procedures are close to the nominal level 5%.

Power is an important performance measure of the hypothesis tests. The proposed

multivariate one-sided tests consistently show higher powers than the two-sided tests

based on the commonly-used naive and two-step method, especially for the scenarios

with the smaller sample size (n = 46) and the higher censoring rates. We can see

that the proposed new tests T ∗W and T ∗CW have higher powers than those based on

the naive and the two-step method all scenarios while maintaining the nominal level,

which demonstrate the better ability to detect the true difference.

Regarding the two p-value calculation methods, the bound method has smaller

type I errors and lower powers in both n = 46 and n = 100 cases since it uses the

upper and lower bound of the null probabilities and produce conservative results. The

substitution method relies on the estimation of the covariance matrix Σ∗n,m. It may

not perform well when the sample size is small. In summary, the simulation results

show that the proposed multivariate one-sided tests based on multiple imputations

for NLME models with left-censored response and mis-measured covariates are more

powerful than the usual two-sided tests based on the naive or the two-step method

for testing parameters with natural restrictions since the multivariate one-sided tests

incorporate the restrictions in the hypothesis.
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Table 3.2: Type I error probabilities and powers with detection limit = 100 at 5%

significance level

Sample size Censoring rate (λ1, ξ1) T
∗(b)
W T

∗(s)
W T

∗(b)
CW T

∗(s)
CW Naive Two-step

Type I error in %

46 13% (0,0) 2.9 5.2 3.4 5.6 4.0 4.3

100 13% (0,0) 2.6 4.0 3.1 4.4 3.6 3.8

Power comparison in %

46 18% (0.08,0) 30.3 38.5 31.2 38.6 16.2 18.3

100 18% (0.08,0) 39.9 45.7 40.0 46.2 20.4 22.2

46 17% (0,0.02) 43.9 50.0 43.9 51.7 14.1 15.4

100 17% (0,0.02) 60.8 65.1 64.5 66.2 25.8 27.9

46 23% (0.05,0.01) 75.4 79.3 75.6 79.6 63.5 68.2

100 23% (0.05,0.01) 87.8 89.5 88.2 90.0 65.6 70.4
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3.6 Discussions

In this chapter, we have proposed the two Wald-type multivariate one-sided tests

for testing parameters in NLME models with measurement errors in time-varying

covariates and left-censored response. Before we conduct multivariate one-sided hy-

pothesis tests, a multiple imputation method is applied to deal with the left-censored

response and mis-measured covariates since both of them can be treated as a special

case of missing data. We use both the observed covariate data and the observed re-

sponse data to help generating the multiple imputations for the true but unobserved

covariate values and the left-censored responses. Then we propose the two Wald-type

test statistics by either combining the m “complete data” parameter estimates and

then construct an overall single test statistic or combing the m sufficient statistics

based on each of the m “complete datasets” to obtain an overall test statistic.

We illustrate the proposed tests using a real HIV study dataset and evaluate their

performances via a simulation study. The simulation results show that the proposed

tests based on multiple imputations perform better than the two-sided tests based

on the naive and the two-step method in the sense that they offer higher powers

while maintaining nominal type I errors.
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4 Multivariate One-sided Hypothesis Tests in

NLME Models with Covariate Measurement

Errors and Non-ignorable Missing Response

4.1 Introduction

In longitudinal studies, the between-individual variation may be large and can be

partially explained by covariates. However, some covariates may be measured with

substantial errors and may be measured at different time points from the response

measurement schedule, which leads to missing data in the covariates and the miss-

ingness in covariates is usually missing at random. Moreover, some individuals may

drop out of the study or miss scheduled visits due to drug intolerance and other prob-

lems and they may possibly return at a later time, which leads to the intermittent

missingness in response. Here the missingness in response is non-ignorable, i.e. the

missingness depends on the values of being missing, so the missing data mechanism
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needs to be included in the analysis.

In this chapter, we consider the multivariate one-sided hypothesis testing prob-

lem of the parameters in NLME models simultaneously with non-ignorable missing

response and measurement errors in time-varying covariates. We propose to use a

multiple imputation (MI) method to address both non-ignorable response missing-

ness and measurement errors and missingness in time-varying covariates. Based on

multiple imputations, we proposed two Wald-type test statistics for the multivariate

one-sided hypothesis parameters in NLME models.

The remainder of chapter is organized as follows. In section 4.2, the non-ignorable

missing mechanism, the covariate process, and the response process are modeled re-

spectively. Then a multiple imputation method for NLME models with non-ignorable

missing response and covariate measurement errors is described in section 4.3. In

section 4.4, two approaches are proposed to combine individual sufficient statistics

or test statistics based on multiple imputations. In sections 4.5, we illustrate the

proposed approaches in a real data example. In section 4.6, a simulation study

is conducted to evaluate the performance of the proposed tests. We conclude this

chapter in section 4.7 with some discussions.
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4.2 NLME Models with Non-ignorable Missing Response

and Covariate Measurement Errors

Let yij be the response value for individual i at time tij, subject to non-ignorable

missingness, i = 1, 2, · · · , n, j = 1, 2, · · · ,mi. In the presence of non-ignorable

missing response, we denote yi = (yi1, · · · , yimi
) = (ymis,i,yobs,i) be the collection

of the response values for individual i, where ymis,i and yobs,i are the missing and

the observed component of yi, respectively. Let ri = (ri1, · · · , rimi
) be the missing

indicator vector such that rij = 1 if yij is missing and 0 otherwise. Note that rij = 1

does not necessarily imply that ri,j+1 = 1, i.e. intermittent missing. Let zqit and z∗qit

be the observed and the corresponding unobservable “true” value of the qth error-

prone covariate for individual i at time uit, q = 1, · · · , s, i = 1, · · · , n, t = 1, · · · , ni.

Here the covariate measurement time uit may differ from the response measurement

time tij, that is, missing data may exist in the covariates. Let zi = (zTi1, · · · , zTini
)T ,

where zit = (z1it, · · · , zsit)T , t = 1, · · · , ni, and T denotes a transpose. Thus, we

have the observed data D2 = {(yobs,i, zi, ri), i = 1, 2, · · · , n}.
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4.2.1 NLME Response Models with Covariate Measurement Errors

For the response process, we consider the following general NLME model to

incorporate possibly mis-measured time-varying covariates

yij = g(tij,βij) + eij, eij
i.i.d.∼ N(0, σ2), i = 1, 2, · · · , n, j = 1, 2, · · · ,mi,

βij = d(z∗ij,β,bi), bi
i.i.d.∼ N(0, B),

(4.1)

where g(·) is a known nonlinear function, d(·) is a known multivariate linear function,

βij is a vector of individual-specific and time-varying parameters and β is a vector

of fixed-effects, z∗ij is the (unobserved) true covariate value corresponding to the

observed and possibly mis-measured zij, ei = (ei1, · · · , eimi
)T is a vector of within-

individual random errors, bi is a vector of random-effects, σ2 is a variance parameter,

and B is the variance-covariance matrix of bi. We assume ei and bi are independent.

In NLME model (4.1), we assume that the individual-specific parameters βij

depend on the true (unobservable) covariate z∗ij rather than the observed but possibly

contaminated covariate zij.

4.2.2 Models for Time-varying Covariates with Missingness and Mea-

surement Errors

We consider a classical measurement error model to address both missingness and

measurement errors in the time-varying covariates. To incorporate possible difference
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between the response measurement time tij and the covariate measurement time uit,

we consider the following continuous form which is similar to the model (2.4)

zi(t) = Ui(t)α+ Vi(t)ai + εi(t), i = 1, · · · , n, (4.2)

where zi(t), Ui(t), Vi(t) and εi(t) are the covariate value, design matrices, and mea-

surement error at time t, respectively. Then the unobserved “true” covariate values

at time tij is z∗ij = zi(tij) = Ui(tij)α + Vi(tij)ai. Note that the missing data in

time-varying covariates are ignorable since the missingness is led by the different

measurement schedules for the response and the covariates.

4.2.3 Models for Non-ignorable Missingness

To address the non-ignorable missingness in response, we need to model the non-

ignorable missing response mechanism, that is, we need to assume a distribution

for the missing indicator vector ri. In general, the non-ignorable missingness may

depend on the responses values, and the covariate value zi or the individual random-

effects ai and bi. Little [1995] defined two types of the non-ignorable missing response

mechanism:

• outcome-based non-ignorable missing if the distribution for ri depends on the

response yi and the covariate zi.
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• random-effect-based non-ignorable missing if the distribution for ri depends on

the random-effects ai and bi.

We consider the outcome-based missing mechanism in this chapter. Since rij is

binary, we can use a logistic regression model for rij:

logit [Pr (rij = 1|yi, zi;η)] = log
Pr (rij = 1|yi, zi;η)

1− Pr (rij = 1|yi, zi;η)
= h(yi, zi;η), (4.3)

where η are the unknown nuisance parameters, h(·) is usually chosen to be a linear

function of yi, zi. Following Little [1995] and Liu and Wu [2007], we may assume

that, for example, rij’s are independent with logit[Pr(rij = 1|yi, zi;η)] = η1+η2z1ij+

· · ·+ηs+1zsij+ηs+2yij. Other missing data models can be specified in a similar way. It

is important to carry out the sensitivity analysis based on different plausible missing

data models since the assumed missing data models are not testable based on the

observed data. If the parameter estimates are not sensitive to the assumed missing

data models, the statistical inference is reliable.
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4.3 A Multiple Imputation Method for NLME Models with

Non-ignorable Response Missingness and Covariate Mea-

surement Errors

We consider a MI method for the “missing” values ymis,i’s and z∗i ’s based on the

model (4.1), model (4.2) and model (4.3). Under the Bayesian framework, we can

generate m proper multiple imputations for {(ymis,i, z∗i ), i = 1, · · · , n} to obtain m

complete datasets to which the existing hypothesis testing approaches are applicable.

Specifically, these multiple imputations for (ymis,i, z
∗
i ) can be generated from the

assumed predictive distribution f(ymis,i, z
∗
i |D2), i = 1, · · · , n.

Let Ψ = (α,Φ) ≡ (α,β,η, σ,D,A,B), a = (a1, · · · ,an) and b = (b1, · · · , bn)

be the collection of all unknown parameters and random-effects in models (4.1),

(4.2) and (4.3) respectively, where Φ = (β,η, σ,D,A,B). Let π(·) denote a prior

density function for Ψ, and we assume the parameters are independent, i.e., π(Ψ) =

π(α)π(β)π(η)π(σ)π(D)π(A)π(B). Here the prior distribution is assumed as follows.

α ∼ N(0,Σα), β ∼ N(0,Σβ), η ∼ N(0,Ση),

σ2 ∼ G−1(γ, δ), D ∼ W−1(ΣD, κ),

A ∼ W−1(ΣA, ρ), B ∼ W−1(ΣB, τ),

where G−1 and W−1 respectively denote the Inverse Gamma distribution and the In-
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verse Wishart distribution, and the hyper-parameters γ, δ, κ, ρ, τ , Σα,Σβ,Ση, ΣD,ΣA

and ΣB are known. Note that, in the covariate model (4.2), the unobserved “true”

covariate values z∗ij = Ui(tij)α+ Vi(tij)ai is completely determined by its mean pa-

rameters α and its random-effects ai since the design matrices Ui(tij) and Vi(tij) are

known. Therefore, to generate multiple imputations for z∗ij, it is sufficient to generate

multiple imputations for (α,a). Thus, we need to generate multiple imputations for

(ymis,α,a) from the distribution f(ymis,α,a|D2) by using the data augmentation

method and the Gibbs sampling method. The MI procedure can be accomplished

by the following Gibbs sampling through the full conditionals in turn: at iteration

t (t = 1, 2, · · · ),

Step I : Draw a value y
(t)
mis,i of ymis,i from

f(ymis,i|yobs,i, zi, ri,a
(t−1)
i , b

(t−1)
i ; Ψ(t))

∝f(yi|a
(t−1)
i , b

(t−1)
i ;α(t−1),β(t−1), σ2(t−1))

× f(ri|yi, zi;η(t−1)), i = 1, · · · , n.

Step II : Draw a value (α(t),a(t)) of (α,a) in the following order
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i Draw a value of α(t) of the mean parameter α in the covariate model from

f(α|y(t)
mis,D2,a

(t−1), b(t−1); Φ(t−1))

∝
n∏
i=1

[
f(yobs,i|a

(t−1)
i , b

(t−1)
i ;α,β(t−1), σ2(t−1))

× f(ymis,|a
(t−1)
i , b

(t−1)
i ;α,β(t−1), σ2(t−1))

× f(zi|a(t−1)
i ;α, D(t−1))

]
· π(α).

ii Draw a value a
(t)
i of the random-effect ai in the covariate model from

f(ai|y(t)
mis,i,D2,α

(t), b
(t−1)
i ; Φ(t−1))

∝f(yobs,i|ai, b
(t−1)
i ;α(t),β(t−1), σ2(t−1))

× f(ymis,i|ai, b
(t−1)
i ;α(t),β(t−1), σ2(t−1))

× f(zi|ai;α(t), D(t−1))f(ai|A(t−1)), i = 1, · · · , n.

Step III : Draw a value (b(t),Φ(t)) of (b,Φ) in the following order

i Draw a value b
(t)
i of the random-effect bi in the response model from

f(bi|y(t)
mis,i,D2,a

(t)
i ;α(t),β(t−1), σ2(t−1), B(t−1))

∝f(yobs,i|a
(t)
i , bi;α

(t),β(t−1), σ2(t−1))

× f(ymis,i|a
(t)
i , bi;α

(t),β(t−1), σ2(t−1))

× f(bi|B(t−1)), i = 1, · · · , n.
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ii Draw a value β(t) of the mean parameters β in the response model from

f(β|D2,a
(t)
i , b

(t)
i ;α(t), σ2(t−1)) ∝

n∏
i=1

f(yobs,i|a
(t)
i , b

(t)
i ;α(t),β, σ2(t−1))

× f(y
(t)
mis,i|a

(t)
i , b

(t)
i ;α(t),β, σ2(t−1)) · π(β)

iii Draw a value (η(t), σ2(t), D(t), A(t), B(t)) of the variance-covariance parameters

η, σ2, D,A, and B in the models from the corresponding full conditional dis-

tributions in similar ways as discussed in Chapter 2.

In the above proposed multiple imputation method under a Bayesian framework,

the starting values are obtained as follows. (α(0),β(0), σ2(0), D(0), A(0), B(0)) are cal-

culated from two-step method. η(0) is calculated from the non-ignorable missing

model with ymis,i equal to the average on yobs,i. And (a
(0)
i , b

(0)
i ) is set to be (0,0).

Then we iterate the foregoing procedures for a burn-in period until the resulting

Markov Chain converges to its stationary distribution. At convergence, we obtain

a value of (ymis,i,α,a) from f(ymis,i,α,a|D2). Repeating the above procedure m

times, we obtain m “complete datasets” {(y(l)
i , z

∗(l)
i ), i = 1, · · · , n}, l = 1, 2, · · · ,m

with y
(l)
i =

(
y

(l)
mis,i,yobs,i

)
and z

∗(l)
i =

(
z

(l)
i1 , · · · , z

(l)
imi

)
. Based on each of the m

“complete datasets”, we can conduct statistical inference for the NLME model (4.1)

with non-ignorable missingness in response and measurement errors in time-varying

covariates being addressed simultaneously, and then we combine the m results to

obtain an overall conclusion.
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In the next section, we consider the multivariate one-sided hypothesis testing

for parameters in the NLME model (4.1) and propose the test statistics based on

multiply imputed datasets.

4.4 Multivariate One-sided Tests for NLME Models with

Multiply Imputed Response and Covariates

In the previous section, we create m imputations for the non-ignorable missing

response ymis,i and the unobserved true covariate value z∗i to obtain m “complete

datasets”
{(
y

(l)
i , z

∗(l)
i

)
, i = 1, 2, · · · , n

}
, l = 1, 2, · · · ,m. For each of the m imputed

datasets, we can conduct the multivariate one-sided hypothesis testing using exist-

ing complete-data methods and then we combine the results to obtain an overall

conclusion.

We consider the following hypothesis

H0 : Rθ = 0 versus H1 : Rθ ≥ 0, Rθ 6= 0, (4.4)

where θ ∈ Rk is the collection of parameters in the NLME model (4.1), and R is a

r × k (r ≤ k) full rank matrix of 0’s and 1’s, indicating the parameters of interest

to be tested. For the l-th “complete dataset” {y(l)
i , z

∗(l)
i , i = 1, · · · , n}, l = 1, · · · ,m,

let θ̃∗l be the maximum likelihood estimate (MLE) of θ under the parameter space
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{θ : Rθ ≥ 0}, Ĥn∗l be the corresponding observed information matrix − 1
n
∇2lobs(θ)

evaluated at θ̃, hence Ĥ−1
n∗l is an estimate of variance covariance matrix H−1

n . Then

we define

θ̄m =
1

m

m∑
l=1

θ̃∗l,

H̄m =
1

m

m∑
l=1

Ĥn∗l,

B̄m =
1

m− 1

m∑
l=1

(θ̃∗l − θ̄m)(θ̃∗l − θ̄m)T ,

where θ̄m is an estimator of θ, H̄−1
m estimates the within-imputation variance-

covariance matrix H−1
n of θ, and B̄m estimates the between-imputation variance-

covariance Bn of θ̃∗l. When n is large enough, θ̄m ∼ N(θ,Σn,m) with Σn,m =

H−1
n + (1 + 1/m)Bn [Rubin, 1976].

Note that B̄m may be an inefficient estimator of Bn when m is small since the

dimension of θ may be larger than the number of the multiple imputations. With

the equal ratios of missing to observed information assumption for small m [Li et al.,

1991, Meng and Rubin, 1992], we have Bn ∝ H−1
n . This assumption suggests that all

eigenvalues λi of matrix HnBn are equal to λ̄ = 1
k

∑k
i=1 λi, which leads to Bn = λ̄H−1

n .

Following Johnson et al. [1995], we have
∑k

i=1 λi = tr(HnBn). Therefore, Σn,m can

be estimated by Σ̂n,m = H̄−1
m + rmH̄

−1
m , with rm = (1 + 1

m
) 1
k
tr(H̄mB̄m). In fact, the

estimation of Bn based on H̄m would be asymptotically calibrated and suffers only

modest loss of power even though the equal missing assumption is violated when

89



m ≥ 3 [Li et al., 1991]. Therefore, for the parameter Rθ of interest, we have

Rθ̄m ∼ N(Rθ,Σ∗n,m),

where Σ∗n,m = RH−1
n RT + (1 + 1/m)RBnR

T . Then we utilize RBnR
T ∝ RH−1

n RT to

have an estimate of Σ∗n,m

Σ̂∗n,m = RH̄−1
m RT + r∗mRH̄

−1
m RT ,

where r∗m = (1 + 1
m

)1
r
tr
((
RH̄−1

m RT
)−1

RB̄mR
T
)

.

Now we propose an overall Wald-type test statistic for hypothesis (4.4) based on

the combined “sufficient statistic” θ̄m as follows

T ∗W = n(Rθ̄m)T Σ̂∗−1
n,m(Rθ̄m). (4.5)

We also propose an overall test statistic by combining the individual test statistics

based on each of the m “complete datasets” rather than the parameter estimates.

Specifically, for each of the m “complete datasets”
{(
y

(l)
i , z

∗(l)
i

)
, i = 1, · · · , n

}
, l =

1, · · · ,m, the individual Wald-type test statistic for testing hypothesis (4.4) is given

by

W∗l = n(Rθ̃∗l)
T
(
RĤ−1

n∗lR
T
)−1

(Rθ̃∗l), l = 1, 2, · · · ,m. (4.6)

The simple average Wm =
∑m

i=1W∗l/m of the above test statistics in (4.6) may

lead to difficulties in computing the null distribution and thus difficulties in making
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inference [Wang and Wu, 2011]. Following Wang and Wu [2011], we combine the

individual test statistics as follows.

T ∗CW =
Wm − (m−1)r

m+1
r∗m

1 + r∗m
.

We derive the asymptotic null distributions for the proposed test statistics T ∗W

and T ∗CW in the following Theorem 4.4.1 whose proof is similar to those of Theorem

2.3.3 and Theorem 2.3.4.

Theorem 4.4.1 For the multivariate one-sided hypothesis test H0 : Rθ = 0 versus

H1 : Rθ ≥ 0, Rθ 6= 0, the following results hold for the proposed test statistics T ∗W

and T ∗CW .

(i) The asymptotic null distribution of T ∗W is estimated by the following χ̄2 distribu-

tion.

P̂r(T ∗W ≤ c|Rθ = 0) =

p∑
i=0

ωi(r, Σ̂
∗
n,m,O+) Pr(χ2

i ≤ c), for any c ≥ 0,

where O+ = {Rθ|RT
i θ ≥ 0, i = 1, · · · , r} with Ri being the ith row vector of

R, ωi(r, Σ̂
∗
n,m,O+) is the probability that πΣ̂∗

n,m
(x;O+) ∈ the i dimensional face

of O+ with
∑r

i=0 ωi(r, Σ̂
∗
n,m,O+) = 1, χ2

i is the chi-square distribution with i

degrees of freedom, and χ2
0 denotes the distribution that takes the value zero

with probability one.
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(ii) The above null distribution has thelower and upper bound:

Pr(χ2
0 ≥ c) + Pr(χ2

1 ≥ c)

2
≤ Pr(T ∗W ≥ c|Rθ = 0)

≤
Pr(χ2

r−1 ≥ c) + Pr(χ2
r ≥ c)

2
.

(iii) The proposed test statistics T ∗W and T ∗CW are asymptotically equivalent

T ∗CW = T ∗W + op(1).

As discussed in Chapter 2 and Chapter 3, we may either use the substitution method

in Theorem 4.4.1 (i) or the bound method in Theorem 4.4.1 (ii) to approximate the

null distribution. The substitution method would substitute Σ∗n,m by its estimate

Σ̂∗n,m, and compute the weights ωi(p, Σ̂
∗
n,m,O+) by a simulation-based method [Silva-

pulle and Sen, 2005]. The bound method uses the lower and upper bound in Theorem

4.4.1 to compute p-values.

4.5 A Real Data Example

In this section, we illustrate the proposed tests T ∗W and T ∗CW to an HIV/AIDS

study where the viral load, the CD4 count, and other variables for 48 HIV infected

patients were repeatedly measured over a period of 48 weeks after the initiation of

the treatment. The number of repeated measurements for each individual varies from

6 to 10. There were 16 patients with missing viral load at scheduled time points and
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37 out of 403 viral load observations missing at scheduled time points. There also

existed left-censoring in the viral load values due to the detection limit 100 units of

the device and these left-censored values were imputed by half of the detection limit

for simplicity in this dataset. After the treatment, the viral load of each patient

would decay in the initial phase, and the decay rates may reveal the efficacy of the

treatment. However, the viral load may continue to decay, fluctuate, or even start

to rise(rebound) during the time course, which were likely to be contaminated by

long-term clinical factors. Besides, the CD4 count was often measured with substan-

tial errors and measured at time points different from the viral load measurement

schedule, which led to missing values in CD4 cell count. This type of missingness

may be ignorable (or missing at random) in the sense of Little and Rubin [2002].

Therefore, a bi-exponential NLME model has been suggested to fit the viral load

trajectories in this HIV study

yij = log10(eP1i−λ1ijtij + eP2i−λ2itij) + eij, i = 1, · · · , n, j = 1, · · · ,mi,

P1i =P1 + b1i, λ1ij = λ1 + ξ1CD4∗ij + b2i, P2i = P2 + b3i, λ2i = λ2 + b4i,

(4.7)

where yij is the log10-transformation of viral load measurements for patient i at time

tij, CD4ij is the CD4 count for patient i at time tij, P1i and P2i are the baseline

viral load of the first and second phase, λ1ij and λ2i are the first (initial) and the

second phase of viral decay rates, respectively. β = (P1, P2, λ1, λ2, ξ1)T are the
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fixed-effect parameters, bi = (b1i, b2i, b3i, b4i)
T are random-effects, and eij is a within-

individual random error. We assume that bi
i.i.d.∼ N(0, B), eij

i.i.d.∼ N(0, σ2), and bi is

independent of eij’s.

Moreover, we also consider a LME model to fit the CD4 process in order to

address measurement errors and missing data.

CD4ij = (α1 + ai1) + (α2 + ai2)tij + (α3 + ai3)t2ij + εij ≡ CD4∗ij + εij, (4.8)

where α = (α1, α2, α3)T are the fixed-effects and a = (a1, a2, a3)T are the random-

effects.

Note that the missing response is usually non-ignorable in such studies since some

patients may drop out of the study or miss scheduled visits due to drug-resistance

intolerance and other problems [Liu and Wu, 2007]. Subject-area knowledge suggests

that the non-ignorable missingness may be related to current or previous viral load

and CD4 count measurements. Therefore, we consider the following plausible non-

ignorable missing mechanism models [Fitzmaurice et al., 1996],

Model I: logit[Pr(rij = 1|yi, zi;η)] = η1 + η2CD4ij + η3yij,

Model II: logit[Pr(rij = 1|yi, zi;η)] = η1 + η2CD4ij,

Model III: logit[Pr(rij = 1|yi, zi;η)] = η1 + η2yij.

However, the assumed missing mechanism models are not testable based on the

observed data. It is critical to carry out sensitivity analysis based on different missing
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mechanism models.

As discussed in Section 4.1, we are interested in testing the multivariate one-sided

hypothesis, H0 : λ = 0 versus H1 : λ ≥ 0,λ 6= 0, where λ = (λ1, ξ1). Based on

these models, we conduct MI method for viral load missing data and mis-measured

CD4 count under Bayesian framework with m = 5. There are similar parameter

estimates based on the three non-ignorable missing data models which indicates

that the parameter estimation may be robust under different assumed non-ignorable

missing data models. The average of the parameter estimates of m = 5 multiple

imputations for model (4.7) based on Model I are listed in Table 4.1.

Here, we use the following noninformative prior distributions for model parame-

ters,

β ∼ N(0, diag(100, 100, 100, 100, 100)),

α ∼ N(0, diag(100, 100, 100)), η ∼ N(0, diag(100, 100)),

σ2 ∼ G−1(0.01, 100), D ∼ W−1(1, 1),

A ∼ W−1(I, 3), B ∼ W−1(I, 4),

where the I’s are appropriate identity matrices and W (1, 1) (i.e., the chi-square

distribution with degree of freedom 1) is a prior Wishart distribution for the scale

parameter D. The number of “burn-in” iterations is 2000. After an initial number of

2000 burn-in iterations, every 500th MCMC sample is retained from the next 2500

95



samples for m = 5 independent multiple imputations. The 5 estimates of λ1 and

ξ1 based on the 5 imputed datasets are (66.93, 1.40), (67.01, 1.50), (66.97, 1.51),

(66.94, 1.48), (67.05, 1.49) respectively. Thus, we have λ̄m = (66.98, 1.48). The

proposed overall test statistics are calculated as T ∗W = 540.16 and T ∗CW = 538.41.

Both the substitution method and the bound method are used to calculate the p-

values and both p-values are close to 0. For comparison purpose, we also consider

a two-sided test based on multiple imputation method which doesn’t incorporate

the constraints, as well as a a naive method which ignores response missingness and

covariate measurement errors. Here, the two-sided alternative hypothesis H1 : λ1 6=

0, or ξ1 6= 0, which ignores the one-sided constraints, is considered to investigate

whether there is gain in power when the constraints are incorporated in hypothesis

testing based on the imputed datasets. Moreover, the Wald testing statistics based

on the unconstrained two-sided test and the native method are 483.08 and 301.15

respectively, which are substantially smaller than T ∗W and T ∗CW , and thus they provide

weaker evidence against H0. In other words, the proposed new tests provide stronger

evidence about the efficacy of the treatment and its association with CD4 than

existing tests.

Therefore, we have strong evidence to reject H0 and conclude that the viral

load declines significantly during the anti-HIV treatment and the CD4 count has a
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significantly positive association with the initial viral decay rate. That is, the higher

the CD4 count is, the faster the viral load declines during the initial period of the

treatment.

Table 4.1: Parameter estimates of the viral load model (4.7) based on m = 5 multiple

imputations

Response model

Fixed effect Covariance matrix

P1 11.52 B σ

λ1 66.98



1.13 0.63 1.49 −2.30

67.19 0.77 −1.02

2.00 −4.88

20.86


0.36

ξ1 1.48

P2 6.92

λ2 -2.63

4.6 Simulation Study

In this section, we conduct a simulation study to evaluate the performance of

the proposed test procedures for the multivariate one-sided hypothesis testing and

compare them with the counterpart two-sided tests based on multiple imputation

method and the naive method respectively. Both the substitution method and the
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bound method are used to calculate the approximate p-values. All the simulation

settings are repeated for 1000 times. We evaluate the performance of the tests in

terms of both the type I error probability and the test power. The significance level

α = 0.05 is set.

In the simulation study, we use the NLME response model (4.7), the covari-

ate model (4.8), and the missing mechanism model I, with different choices of the

true parameters of λ1 and ξ1 values in order to evaluate the tests under different

settings. The true values of the parameters λ1 and ξ1 are listed in Table 4.2 – 4.4.

The true values of the other fixed-effect parameters are (P1, P2, λ2) = (10, 5,−3), α =

(α0, α1, α2) = (−0.5, 4,−4), Diag(A) = (0.5, 2, 1), D = 0.5, Diag(B) = (1, 10, 2, 5), σ =

0.5, where the covariance matrices A and B are set to be diagonal matrices. We con-

sider two different sample sizes n = 50 and n = 100 and three different average

missing rate 10%, 20% and 40%. The number of response measurement times mi

and covariate measurement times ni are both set to be 8.

The simulation results are reported in Table 4.2 – 4.4. We can see that the pro-

posed multivariate one-sided Wald-type test T ∗W and combined Wald-type test T ∗CW

using both the substitution and the bound method consistently provide the lower type

I error rates which are close to the nominal level 5%, while the two-sided test Wald

test gives the higher type I error rates, especially for the scenarios with the smaller
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sample size and the higher response missing rates. The naive method also approx-

imately attains the nominal significant level α = 5% in most of the cases since it

may underestimate the parameters. Note that the type I errors of the proposed tests

for the smaller sampler size (n = 50) based on the substitution method are slightly

higher than the nominal level. This may be due to the fact that the substitution

method may not estimate the covariance matrix Σ∗n,m well under the small sample

size (n = 50), and this problem disappears for large sample sizes (n = 100).

As for the power of these tests, we can see that the proposed tests T ∗W and T ∗CW are

more powerful in all the scenarios than the two-sided counterparts. These simulation

results clearly show the better performance of the proposed testing approaches than

the two-sided counterparts, indicating the gain of power when the constraints are

incorporated in the hypothesis tests. Note that the bound method is more conservative

than the substitution method because it uses the upper and the lower bound of the

null distributions to compute the p-values, i.e., the substitution method produces

higher powers in both n = 50 and n = 100 cases. However, the substitution method

relies on good estimation of the covariance matrix Σ∗n,m, so it might not perform well

when the sample size is small.
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Table 4.2: Type I error probabilities and powers with 10% response missing rate.

n (λ1, ξ1) T
∗(b)
W

† T
∗(b)
CW
† T

∗(s)
W
† T

∗(s)
CW

† T
(u)
W

† Naive

Type I error probability in %

50 (0,0) 3.1 4.0 5.3 6.1 7.2 4.5

100 (0,0) 2.2 2.7 4.2 4.4 6.0 3.9

Power in %

50 (0,0.02) 22.3 24.6 23.4 24.5 20.4 13.5

100 (0,0.02) 45.3 46.1 46.8 47.1 40.6 28.1

50 (0.02,0) 29.2 30.4 32.3 33.5 25.8 18.3

100 (0.02,0) 50.4 53.3 51.6 52.7 45.8 38.3

50 (0.05,0.01) 64.1 64.7 66.6 67.2 60.3 48.5

100 (0.05,0.01) 88.5 88.7 89.1 90.6 84.3 66.2

† T ∗(b) and T ∗(s) denote the constrained Wald-type test statistics based

on the bound and the substitution method, respectively. T
(u)
W denotes

the unconstrained Wald test statistic.
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Table 4.3: Type I error probabilities and powers with 20% response missing rate.

n (λ1, ξ1) T
∗(b)
W T

∗(b)
CW T

∗(s)
W T

∗(s)
CW T

(u)
W Naive

Type I error probability

50 (0,0) 3.5 3.4 4.8 5.1 7.8 4.2

100 (0,0) 2.5 2.2 3.1 3.3 6.5 3.0

Power

50 (0,0.02) 22.0 23.4 24.3 24.5 19.5 11.3

100 (0,0.02) 44.6 45.3 45.6 46.7 40.5 23.8

50 (0.02, 0) 29.0 30.4 33.1 33.5 25.1 13.8

100 (0.02,0) 49.5 52.7 55.6 56.9 45.3 28.0

50 (0.05,0.01) 64.0 65.3 66.5 66.9 61.4 48.1

100 (0.05,0.01) 85.1 85.3 86.5 86.9 83.5 60.4
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Table 4.4: Type I error probabilities and powers with 40% response missing rate.

n (λ1, ξ1) T
∗(b)
W T

∗(b)
CW T

∗(s)
W T

∗(s)
CW T

(u)
W Naive

Type I error probability

50 (0,0) 3.9 4.0 6.7 6.3 8.9 6.5

100 (0,0) 3.1 3.0 4.6 4.7 7.4 5.0

Power

50 (0,0.02) 19.8 20.3 24.3 24.5 18.1 11.0

100 (0,0.02) 42.4 43. 44.5 45.6 39.3 20.8

50 (0.02,0) 27.1 28.4 29.5 31.0 24.9 14.7

100 (0.02,0) 46.4 47.1 49.2 50.6 42.7 37.6

50 (0.05,0.01) 63.7 64.2 65.6 66.2 60.3 58.2

100 (0.05,0.01) 82.9 83.3 84.9 86.0 78.7 59.5

4.7 Discussions

In this chapter, we have proposed a multiple imputation method to address both

non-ignorable missing response and covariate measurement errors in NLME models.

Based on multiple imputation for missing response and covariate measurement error
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and missing data, we have proposed two Wald-type test statistics for the multivariate

one-sided hypothesis testing, and we have derived their null distributions. Simulation

results show that the proposed multivariate one-sided tests perform better than the

two-sided tests in the sense that they offer higher powers while maintaining nominal

type I errors.

We assume the non-ignorable missing data model depends on the observed re-

sponse or unobserved covariates, which is called outcome-based missing mechanism.

However, the missing mechanism could also be related to the random-effects in re-

sponse and covariate process. The methods in this chapter may be extended to

the random-effect based missing mechanism models. And the sensitivity analysis

is needed based on both outcome-based missing mechanism models and random-

effects-based missing mechanism models. Besides, the proposed methods may also

be extended to generalized linear mixed-effects models or semi-parametric mixed-

effects models. The proposed methods can also be used in the case where there are

measurement errors, censoring and missing are all present simultaneously.
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5 Conclusions and Future Work

5.1 Conclusions

In this thesis, we have proposed testing statistics for the multivariate one-sided

testing problems in NLME models with: (i) mis-measured time-varying covariates,

(ii) both mis-measured time-varying covariates and left-censored response, and (iii)

both mis-measured time-varying covariates and non-ignorable missing response. Mul-

tiple imputation methods are used throughout this thesis to address the mentioned

data complications. For each project, we have developed the two Wald-type tests

for the multivariate one-sided hypothesis on the parameters of NLME models based

on multiple imputations for incomplete data. Specifically, we generate the multi-

ple “complete-data” sets for NLME models, then the proposed test statistics can

be obtained by either combining the m “complete data” parameter estimates and

then constructing an overall single test statistic or combing the m sufficient statistics

based on each of the m “complete datasets” to obtain an overall test statistic.
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For the both test statistics, T ∗W and T ∗CW , we have derived their asymptotic

null distributions. For the calculation of p-values, we have proposed two methods:

(i) the substitution method which substitutes the unknown parameters in the null

distributions with their estimates; (ii) the bound method which uses the upper and

the lower bound of the null probabilities as conservative p-values. Simulation results

have shown that in terms of the test powers, the two proposed one-sided tests based

on MI method perform better than the commonly used two-sided tests based on the

naive and the two-step method. In particular, the substitution method performs well

in most cases except when the sample size is small, it may produces liberal type

I errors. This exception may be due to the fact that the substitution method may

not estimate the covariance matrix Σ∗n,m well under the small sample size, and this

problem disappears for large sample size. The bound method also performs well in

all cases, although it may be conservative to some extent since it uses the upper and

the lower bound of the null probabilities to calculate the p-values.

The scientific contribution of this thesis is that, by jointly addressing covariate

measurement errors and censoring/non-ignorable missing response for NLME models,

more reliable one-sided hypothesis tests based on multiple imputation method are

proposed, which fill the research gap.
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5.2 Future Work

We discuss possible future work relevant to this thesis as follows.

1 In Chapter 3 and Chapter 4, we addressed the covariate measurement errors with

the left-censoring response as well as covariate measurement errors and non-

ignorable missing response in NLME models, respectively. However, in prac-

tice, there may exist covariate measurement errors, left-censoring, and non-

ignorable missing response simultaneously in a study. A new project can be

conducted to develop statistical methodologies to address these three issues

simultaneously.

2 In Chapter 4, we have proposed the test statistics for multivariate one-sided hy-

pothesis testing for the NLME models with both covariate measurement errors

and outcome-based missing mechanism. Another plausible missing data model

is random-effect-based missing mechanism which assumes the missingness is re-

lated to the unobserved individual-related information. In the future, we may

consider the random-effect-based non-ignorable missing mechanism, and both

the outcome-based missing mechanism models and the random-effect-based

missing mechanism models will be used for the sensitivity analysis.

3 In this thesis, the multivariate one-sided test is based on Wald-type statistics. An
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intuitive extension is that we may develop Likelihood Ratio type statistics and

Score type statistics. Theories and performances for the testing approaches

based on Likelihood Ratio type and Score type statistics can be investigated

and reported in the future.

4 The methods proposed in this thesis may be extended to other mixed-effects mod-

els, such as generalized linear mixed-effects models, and semi-parametric or

non-parametric mixed-effects models. The extensions are conceptually straight-

forward, but the technical details may be complicated in some cases and the

performances of the multivariate one-sided tests under different models need

to be evaluated separately.
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A Appendix

A.1 Some results for Section 1.1

Recall that, in Section (1.1), the Wald test statistic for testing the one parameter

two-sided hypothesis H0 : µ = 0 versus H1 : µ 6= 0 is given by

TW =
X̄2

V̂ar(X̄)
=

n2X̄2∑n
i=1

(
Xi − X̄

)2

where Xi
i.i.d.∼ N(µ, σ2), i = 1, . . . , n, and X̄ =

∑n
i=1Xi/n is the sample mean. Let

d→

and
p→ denote convergence in distribution and in probability as n→ n respectively.

We will show that TW
d→ χ2

1 holds under H0.

Proof. Given µ = 0, by the central limit theorem (CLT), we have

√
nX̄

σ

d→ N(0, 1),

which is equivalent to

nX̄2

σ2

d→ χ2
1.
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By the law of large numbers, we have∑n
i=1 (Xi − µ)2

n

p→ σ2,

X̄
p→ µ.

Therefore, we have the following results from the Slutsky’s theorem,∑n
i=1

(
Xi − X̄

)2

n
=

∑n
i=1 (Xi − µ)2

n
−
(
X̄ − µ

)2 p→ σ2,

σ2∑n
i=1

(
Xi − X̄

)2 /
n

p→ 1,

Therefore, we have

TW =
n2X̄2∑n

i=1

(
Xi − X̄

)2 =
nX̄2

σ2
× σ2∑n

i=1

(
Xi − X̄

)2 /
n

d→ χ2
1 × 1 = χ2

1.

The Wald test for testing the one one-sided hypothesis H0 : µ = 0 versus H1 :

µ > 0 is given by

TW =


0, if X̄ ≤ 0,

n2X̄2∑n
i=1

(
Xi − X̄

)2 , if X̄ > 0.

We will show that as n→∞, Pr(TW ≤ c)→ 1

2
+

1

2
Fχ2(c; 1) under H0.

Proof. First, when µ = 0, we have

Pr(TW ≤ c) = Pr(TW ≤ c|X̄ ≤ 0) Pr(|X̄ ≤ 0) + Pr(TW ≤ c|X̄ > 0) Pr(|X̄ > 0)

=
1

2
+

1

2
Pr

[
n2X̄2∑n

i=1

(
Xi − X̄

)2 ≤ c

]
→ 1

2
+

1

2
Fχ2(c; 1)

since that
n2X̄2∑n

i=1

(
Xi − X̄

)2

d→ χ2
1 shown in the previous proof.
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A.2 Proofs of Theorems

A.2.1 Proof of Theorem 2.3.1

Proof. We begin to show the
√
n-consistency of θ̃ and θ̂. Let A denote a

subset of Ω containing θ0 which is the true value of θ. Specifically, A = {θ : Rθ ≥

0, Rθ 6= 0} when H0 does not hold and A = {θ : Rθ = 0} when H0 holds. Let

θ̂A = arg max
θ∈A

lobs(θ). For any sufficiently small ε > 0, the intersection of the closure

of a ε-neighborhood of θ0 and the closure of A is closed. The local maximum of the

continuous function lobs(θ) would be attained in this intersection set. By C7, θ̂A is

the local maximum. We first show that ∀ε > 0, ∃δ > 0, when n is greater than some

Nδ depending on δ, for any θ such that ||θ − θ0|| ≤ ε,

Pr [lobs(θ)− lobs(θ0) < 0] > 1− δ. (A.1)

Then the consistency of θ̂A holds by definition.

To show (A.1), we consider the following Taylor expansion of
1

n
lobs(θ) at θ = θ0

1

n
lobs(θ)− 1

n
lobs(θ0) =(θ − θ0)T

1

n
∇lobs(θ0)

+
1

2
(θ − θ0)T

1

n
∇2lobs(θ0)(θ − θ0)

+Op(1)||θ − θ0||3.

(A.2)

Note that the first term can be arbitrarily small for all large n since
1

n
∇lobs(θ0) =
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1√
n
× 1√

n
∇lobs(θ0)

p→ 0 by (2.7), and the third term is smaller in norm than the

second term for all sufficiently small ε. Therefore, the sign of the right side of (A.2)

be the determined by the second term for all large n. Note that the second term

has a negative limit (in probability) −(θ− θ0)THθ0(θ− θ0) by (2.6). Then we have

1

n
lobs(θ)− 1

n
lobs(θ0) < 0 as n→∞, and (A.1) is justified accordingly.

Furthermore, under C7, we have l(θ0) =
1

n
lobs(θ0) + op(1) and thus,

l(θ0)− l(θ̂A) =
1

n
lobs(θ0)− l(θ̂A) + op(1)

≤ 1

n
lobs(θ̂A)− l(θ̂A) + op(1)

≤ sup
θ∈Ω

∣∣∣ 1
n
lobs(θ)− l(θ)

∣∣∣+ op(1)
p→ 0.

(A.3)

For any ε > 0, we have l(θ0) − sup
{θ:||θ−θ0||≥ε}

l(θ) > 0 by C7 and ∃0 < ηε < l(θ0) −

sup
{θ:||θ−θ0||≥ε}

l(θ), then l(θ) < l(θ0) − ηε as long as ||θ − θ0|| ≥ ε. That is, the event{∣∣∣∣∣∣θ̂A − θ0

∣∣∣∣∣∣ ≥ ε
}

is contained in the event
{
l(θ̂A) < l(θ0)− ηε

}
whose probability

converges to 0 as n→∞ by (A.3). Then we have θ̂A
p→ θ0 by definition.

Next we show the
√
n-consistency of θ̂A in a similar way as the proof of Lemma 1

in Chernoff [1954]. ∀ε > 0, ∃ a positive sequence δnε → 0 and a positive Kε depending
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on ε such that

Pr
[∣∣∣∣∣∣θ̂A − θ0

∣∣∣∣∣∣ < δnε

]
> 1− ε (by the consistency of θ̂A),

Pr

[∣∣∣∣∣∣∣∣ 1√
n
∇lobs(θ0)

∣∣∣∣∣∣∣∣ < Kε

]
> 1− ε (by (2.6)),

Pr

[∣∣∣∣∣∣∣∣ 1n∇2lobs(θ0) +Hθ0

∣∣∣∣∣∣∣∣ < δnε

]
> 1− ε (by (2.7)).

and Op(1)||θ − θ0||3 < Kε||θ − θ0||3. With lobs(θ̂A) ≥ lobs(θ0),

0 ≤ 1

n
lobs(θ̂A)− 1

n
lobs(θ0)

= (θ̂A − θ0)T
1

n
∇lobs(θ0) +

1

2
(θ̂A − θ0)T

1

n
∇2lobs(θ0)(θ̂A − θ0) +Op(1)

∣∣∣∣∣∣θ̂A − θ0

∣∣∣∣∣∣3
= T1 + T2 + T3.

(A.4)

With the first term T1 = (θ̂A − θ0)T
1

n
∇lobs(θ0), the second term T2 = 1

2
(θ̂A −

θ0)T
1

n
∇2lobs, and the third term T3 = Op(1)||θ − θ0||3. Based on the above inequal-

ities, there exist K∗ε such that

T1 +T2 +T3 < −
1

2
(θ̂A−θ0)THθ0(θ̂A−θ0) +K∗ε ·


∣∣∣∣∣∣θ̂A − θ0

∣∣∣∣∣∣
√
n

+ δnε ·
∣∣∣∣∣∣θ̂A − θ0

∣∣∣∣∣∣2
 .

(A.5)

As n → ∞ (A.5) holds implies that there exists a K∗∗ε > 0 such that
∣∣∣∣∣∣θ̂A − θ0

∣∣∣∣∣∣ <
K∗∗ε√
n

occurs with probability 1−ε for all sufficiently large n. Then the
√
n-consistency

of θ̂A holds by definition. Therefore, we have θ̃ and θ̂ is
√
n-consistent.

Finally, we derive the asymptotic null distribution of the Wald statistic as follows.

We consider the following quadratic approximation of lobs(θ) [Silvapulle and Sen,
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2005]

lobs(θ) =lobs(θ̂)− 1

2
(Zn − u)THθ0(Zn − u) + rn(u),

where Zn =
√
n
(
θ̂ − θ0

)
, θ̂ is

√
n-consistent, u =

√
n (θ − θ0) and the reminder

rn(u) satisfies sup
||u||<K

|rn(u)| = op(1) for K > 0. Moreover, we have

inf
θ=0

(Zn − u)THθ0(Zn − u) = min
{
||Zn − µ||2Hθ0

: θ = 0
}

and

inf
θ≥0

(Zn − u)THθ0(Zn − u) = min
{
||Zn − µ||2Hθ0

: θ ≥ 0
}

,

Also we have the first-order Taylor expansion of ∇lobs(θ̂) at θ0

∇lobs(θ̂) =∇lobs(θ0) +∇2lobs(θ0)(θ̂ − θ0) + op(
1√
n

)

since θ̂ is
√
n-consistent. With ∇lobs(θ̂) = 0, we have

√
n
(
θ̂ − θ0

)
=

(
− 1

n
∇2lobs(θ0)

)−1
1√
n
∇lobs(θ0) + op(1). (A.6)

By the Slutsky theorem, we have

√
n
(
θ̂ − θ0

)
d→ N

(
0, H−1

θ0

)
.

As given in Silvapulle and Sen [2005], with Zn
d→ N

(
0, H−1

θ0

)
, the asymptotic null

distribution of D(Zn) = inf
θ=0

(Zn − u)THθ0(Zn − u) − inf
θ≥0

(Zn − u)THθ0(Zn − u)
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is the χ2-bar distribution (denoted by χ̄2) which is given by lim
n→∞

Pr (Zn ≤ c) =∑k
i=0 ωi(k,H

−1
θ0
,O+) Pr(χ2

i ≤ c) for any c ≥ 0.

Let ZnR =
√
n
(
Rθ̂ −Rθ0

)
, uR =

√
n (Rθ −Rθ0), we have

√
n
(
Rθ̂ −Rθ0

)
d→

N
(
0, RH−1

θ0
RT
)
. Note that under H0 : Rθ = 0, we also have Rθ̄ = 0.

D(ZnR) = inf
Rθ=0

(ZnR − uR)T
(
RH−1

θ0
RT
)−1

(ZnR − uR)

− inf
Rθ≥0

(ZnR − uR)T
(
RH−1

θ0
RT
)−1

(ZnR − uR)

= inf
Rθ=0

(√
nRθ̂ −

√
nRθ

)T (
RH−1

θ0
RT
)−1
(√

nRθ̂ −
√
nRθ

)
− inf

Rθ≥0

(√
nRθ̂ −

√
nRθ

)T (
RH−1

θ0
RT
)−1
(√

nRθ̂ −
√
nRθ

)
+ op(1)

= min

{∣∣∣∣∣∣√nRθ̂ −√nRθ∣∣∣∣∣∣
RHθ0

RT
: Rθ = 0

}
−min

{∣∣∣∣∣∣√nRθ̂ −√nRθ∣∣∣∣∣∣
RHθ0

RT
: Rθ ≥ 0

}
=
∣∣∣∣∣∣√nRθ̂ −√nRθ∣∣∣∣∣∣

RHθ0
RT
−min

{∣∣∣∣∣∣√nRθ̂ −√nRθ∣∣∣∣∣∣
RHθ0

RT
: Rθ ≥ 0

}
=
∣∣∣∣∣∣√nRθ̃∣∣∣∣∣∣

RHθ0
RT

=n
(
Rθ̃
)T (

RĤ−1
θ RT

)−1 (
Rθ̃
)

+ op(1)

=TW + op(1)

Note that D(ZnR)
d→ χ̄2, which is given as

∑r
i=0 ωi(r, RH

−1
θ0
RT ,O+)Fχ2(c; i) [Silva-

pulle and Sen, 2005], so is the TW .
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A.2.2 Proof of Theorem 2.3.2

Proof. It is straightforward to estimate the asymptotic null distribution of TW

by P̂r(TW ≤ c|Rθ = 0) =
∑r

i=0 ωi(r, RĤθR
T ,O+) Pr(χ2

i ≤ c), for any c ≥ 0, since

the observed information matrix − 1
n
∇2lobs(θ̃) is a consistent estimator of Hθ0 .

Note that Pr(χ2
i ≥ c) ≤ Pr(χ2

j ≥ c) for i < j,
∑r

i=0 ωi(r,Hθ0 ,O+) = 1 and

0 ≤ ωi(r,Hθ0 ,O+) ≤ 1
2

for any positive definite matrix Hθ0 [Silvapulle and Sen,

2005].

We have

r∑
i=0

ωi(r, RĤ
−1

θ̃
RT ,O+) Pr(χi ≥ c) ≥

r∑
i=1

ωi Pr(χ2
1 ≥ c) + ω0 Pr(χ2

0 ≥ c)

= (1− ω0) Pr(χ2
1 ≥ c) + ω0 Pr(χ2

0 ≥ c)

≥ Pr(χ2
1 ≥ c) + Pr(χ2

0 ≥ c)

2

Similarly, we have

r∑
i=0

ωi(r, RĤ
−1

θ̃
RT ,O+) Pr(χ2

i ≥ c) ≤
Pr(χ2

r−1 ≥ c) + Pr(χ2
r ≥ c)

2
.

The proof is completed.

A.2.3 Proof of Theorem 2.3.3

Proof. (i)The
√
n-consistency of θ̄m can be shown in a similar way as in the

proof of Theorem 2.3.1. Moreover, we have that Rθ̄m ∼ N(Rθ,Σ∗n,m), where Σ∗n,m =
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RHnR
T +(1+1/m)RHnR

T . By substituting Σ̂∗n,m for Σ∗n,m, we have the approximate

distribution Rθ̄m ∼ N(Rθ, Σ̂∗n,m). Therefore, the asymptotic null distribution of T ∗W

can be estimated by

P̂r(T ∗W ≤ c) =
r∑
i=0

ωi(r, Σ̂
∗
n,m,O+) Pr(χi ≤ c), for any c ≥ 0.

(ii) Following the proof of theorem 2.3.2, we have

r∑
i=0

ωi Pr(χi ≥ c) ≥
r∑
i=1

ωi Pr(χ2
1 ≥ c) + ω0 Pr(χ2

0 ≥ c)

= (1− ω0) Pr(χ2
1 ≥ c) + ω0 Pr(χ2

0 ≥ c)

≥ Pr(χ2
1 ≥ c) + Pr(χ2

0 ≥ c)

2
,

where ωi = ωi(r, Σ̂
∗
n,m,O+).

Similarly, we have

r∑
i=0

ωi Pr(χ2
i ≥ c) ≤

Pr(χ2
r−1 ≥ c) + Pr(χ2

r ≥ c)

2
.

Therefore, the tail probability of the above null distribution of T ∗W has the lower

and upper bound:

Pr(χ2
0 ≥ c) + Pr(χ2

1 ≥ c)

2
≤ Pr(T ∗W ≥ c|Rθ = 0)

≤
Pr(χ2

r−1 ≥ c) + Pr(χ2
r ≥ c)

2
.
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A.2.4 Proof of Theorem 2.3.4

Proof. Following Meng and Rubin [1992], when the sample size n goes to infinity,

we have Ĥn∗l = Hn + op(1) and H̄m = Hn + op(1). By the Cholesky decomposition,

the positive definite matrix
(
RH−1

n RT
)−1

can be factorized as
(
RH−1

n RT
)−1

= CTC
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. Then Wm is given by

Wm =
1

m

m∑
l=1

W∗l

=
1

m

m∑
l=1

n(Rθ̃∗l)
T
(
RĤ−1

n∗lR
T
)−1

(Rθ̃∗l)

=
n

m

m∑
l=1

(Rθ̃∗l)
TCTC(Rθ̃∗l) + op(1)

=
n

m

m∑
l=1

(CRθ̃∗l)
T (CRθ̃∗l) + op(1) (A.7)

=n

[
1

m

m∑
l=1

(
CRθ̃∗l − CRθ̄m

)T (
CRθ̃∗l − CRθ̄m

)
+
(
CRθ̄m

)T (
CRθ̄m

)]
+ op(1)

(A.8)

=
n

m

m∑
l=1

(
Rθ̂∗l −Rθ̄m

)T (
RH−1

n RT
)−1
(
Rθ̃∗l −Rθ̄m

)
+ n

(
Rθ̄m

)T (
RH̄−1

m RT
)−1 (

Rθ̄m
)

+ op(1) (A.9)

=n
(
Rθ̄m

)T (
RH̄mR

T
)−1 (

Rθ̄m
)

+ n
m− 1

m
tr
[
RBmR

T
(
RH−1

n RT
)−1
]

+ op(1)

(A.10)

=n
(
Rθ̄m

)T (
RH̄mR

T
)−1 (

Rθ̄m
)

+ n
m− 1

m
tr
[
RBmR

T
(
RH̄−1

m RT
)−1
]

+ op(1)

=n(Rθ̄m)T
(
RH̄−1

m RT
)−1

(Rθ̄m) + n
(m− 1)r

m+ 1
r∗m + op(1)

=(1 + r∗m)T ∗W +
(m− 1)r

m+ 1
r∗m + op(1).
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In the above arguments, the equivalence between (A.7) and (A.8) holds by letting

Ql = CRθ̂∗l in the following equation

1

m

m∑
l=1

(
Ql − Q̄m

)T (
Ql − Q̄m

)
=

1

m

m∑
l=1

QT
l Ql − Q̄T

mQ̄m,

where Q̄m = 1
m

∑m
l=1 Ql. And the equivalence between (A.9) and (A.10) holds by

noting Bm = 1
m−1

∑m
l=1(θ̃∗l − θ̄m)(θ̃∗l − θ̄m)T .

Now we have

T ∗CW =
Wm − (m−1)r

m+1
r∗m

1 + r∗m
= T ∗W + op(1).

Therefore, The proposed overall test statistics T ∗W and T ∗CW are asymptotically

equal when n is large. This completes the proof.
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