
TOWARDS AN ONTOLOGY-BASED APPROACH FOR

REUSING NON-FUNCTIONAL REQUIREMENTS

KNOWLEDGE

RODRIGO VAUGHAN VELEDA

A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF ARTS

GRADUATE PROGRAM IN INFORMATION SYSTEMS AND TECHNOLOGIES

YORK UNIVERSITY

TORONTO, ONTARIO

OCTOBER 2016

© RODRIGO VAUGHAN VELEDA, 2016

 ii

Abstract

Requirements Engineering play a crucial role during the software development process.

Many works have pointed out that Non-Functional Requirements (NFR) are currently

more important than Functional Requirements. NFRs can be very complicated to

understand due to its diversity and subjective nature. The NDR Framework has been

proposed to fill some of the existing gaps to facilitate NFR elicitation and modeling. In

this thesis, we introduce a tool that plays a major role in the NDR Framework allowing

software engineers to store and reuse NFR knowledge. The NDR Tool converts the

knowledge contained in Softgoal Interdependency Graphs (SIGs) into a machine-

readable format that follows the NFR and Design Rationale (NDR) Ontology. It also

provides mechanisms to query the knowledge base and produces graphical representation

for the results obtained. To evaluate whether our approach aids eliciting NFRs, we

conducted an experiment performing a software development scenario.

 iii

Acknowledgements

This accomplishment would not have been possible without the support and assistance of

those people who surrounded me during this endeavor.

Firstly, I would like to express gratitude to my supervisor. Professor Cysneiros

was responsible for introducing me a greater view of the Requirements Engineering field

still during my undergraduate studies. I feel honored to have worked with him throughout

this experience. His unconditional academic support and life advices guided me to

overcome every challenge associated with pursuing a Master's degree, especially in a

foreign country. Without his guidance, this achievement would never have been possible.

I am also grateful for the assistance and support provided by my co-supervisor,

Professor Litoiu. I feel privileged to be his student and appreciate the opportunity he

granted me to be part of his research team. The learning curve that I exposed myself as a

result of this experience is unmeasurable. By being such a renowned expert both in

academic and industry fields, Professor Litoiu inspires me as a role-model.

Moreover, I would like to thank the committee members Professor Liaskos and

Professor Lesperance for participating and providing feedback during my thesis defense.

I would also like to express gratitude to everyone I worked with at CERAS lab.

Dr. Hamzeh Khazaei, Dr. Marios-Eleftherios Fokaefs, Dr. Cornel Barna, Dr. Mark

 iv

Shtern, Nasim Beigi Mohammadi, Saeed Zareian, and Brian Rampasad. Thanks for

sharing your knowledge and time with myself. I have learned a lot with all of you.

Lastly, I would like to dedicate this work to my lovely family and friends who

always stood beside me, even in person or remotely. This achievement would not have

been possible without your support and kind thoughts. Thank you for providing me the

necessary strength to thrive in this challenge.

 v

Table of Contents

Abstract ... ii	

Acknowledgements .. iii	

Table of Contents .. v	

List of Tables ... viii	

List of Figures .. ix	

CHAPTER 1 Introduction .. 1	

1.1	 Problem and Motivation ... 1	

1.2	 Research objectives and questions .. 3	

1.3	 Thesis Contributions ... 4	

1.4	 Thesis organization ... 5	

CHAPTER 2 Related Work ... 7	

2.1	 Representing NFR knowledge .. 7	

2.2	 Using ontologies to deal with NFRs ... 11	

2.3	 Summary ... 14	

CHAPTER 3 Foundation .. 16	

3.1	 NFR Framework ... 16	

3.2	 Ontology ... 20	

3.3	 NDR Ontology .. 26	

 vi

CHAPTER 4 NDR Tool: The core of NDR Framework ... 32	

4.1	 Definition .. 32	

4.2	 Architecture ... 35	

4.3	 Main utilized technologies .. 39	

4.4	 Importing NFR Knowledge .. 42	

4.5	 Searching NFR Knowledge .. 48	

4.6	 Current Limitations ... 54	

4.7	 Summary ... 56	

CHAPTER 5 Evaluating the Tool .. 57	

5.1	 Research hypotheses and variables ... 59	

5.2	 Experiment Design and Strategy .. 60	

5.3	 Threats to Validity .. 62	

5.4	 Sampling ... 63	

5.5	 Data Measurement and Collection .. 64	

5.6	 Proposed Scenario ... 66	

5.7	 Summary ... 72	

CHAPTER 6 Findings and Discussion .. 74	

6.1	 Overview ... 74	

6.2	 Analysis... 75	

6.3	 Hypotheses testing .. 79	

 vii

6.4	 Discussion ... 82	

6.5	 Summary ... 84	

CHAPTER 7 Conclusions .. 86	

7.1	 Future work ... 88	

Bibliography ... 90	

Appendices .. 94	

Appendix A – Proposed Scenario Documentation ... 94	

Appendix B – Authoritative Control ... 100	

 viii

List of Tables

Table 1 Expected functionalities in the experiment scenario ... 68	

 ix

List of Figures

Figure 1 The usage of NFR Graphs [19] .. 9	

Figure 2 Catalog of conflicts amid NFRs [20] .. 10	

Figure 3 The architecture of ElicitO [22] ... 12	

Figure 4 The potential elements of a SIG catalog [6] ... 17	

Figure 5 The potential Explicit Interdependencies among softgoals [6] 19	

Figure 6 Partial SIG developed with NFR Framework [17] .. 20	

Figure 7 Node graph in RDF/XML [32] ... 22	

Figure 8 RDF Schema in RDF/XML [33] .. 23	

Figure 9 SPARQL query and its output [35] .. 24	

Figure 10 Ontology being modeled in Protégé ... 25	

Figure 11 Main elements of the NDR Ontology [29] ... 26	

Figure 12 Interdependency elements of the NDR Ontology [29] 27	

Figure 13 Decompositions definitions of the NDR Ontology [29] 28	

Figure 14 Argumentation definitions of the NDR Ontology [29] 29	

Figure 15 Partial SIG of Usability [29] ... 30	

Figure 16 Decomposition individual in NDR Ontology [29] ... 31	

Figure 17 Decomposition individual in OWL format following NDR Ontology [29] 31	

Figure 18 NDR Framework's architecture overview .. 35	

 x

Figure 19 NDR Tool's architecture overview ... 37	

Figure 20 The architecture of Apache Jena [41] ... 40	

Figure 21 DOT Language syntax and output .. 42	

Figure 22 NFR Knowledge importation phases .. 42	

Figure 23 NFR Knowledge importation Activity Diagram .. 43	

Figure 24 SIG representing the NFR of Transparency ... 44	

Figure 25 Partial XML format of the SIG representing the NFR of Transparency 45	

Figure 26 A Decomposition between Transparency and Informativeness in OWL 46	

Figure 27 NDR Tool: Search for NFR Knowledge .. 48	

Figure 28 NDR Tool: Graphical Output ... 49	

Figure 29 NDR Tool: Non-restrictive Search ... 50	

Figure 30 NDR Tool: Partial graphic output resulted from search 51	

Figure 31 NDR Tool: Correlation inferences ... 52	

Figure 32 NDR Tool: Conflict between Security and Privacy ... 53	

Figure 33 Search for Knowledge Activity Diagram ... 54	

Figure 34 Use Case for the proposed scenario .. 69	

Figure 35 Class Diagram for the proposed scenario ... 69	

Figure 36 Sequence Diagram for the proposed scenario .. 70	

Figure 37 Positive Control: Privacy SIG .. 71	

Figure 38 Positive Control: Security SIG ... 72	

 xi

Figure 39 Box plot of Descriptive findings: Percentage of found Operationalizations ... 77	

Figure 40 Box plot of Descriptive findings: Percentage of Correlations 78	

Figure 41 Mann-Whitney Test results for H1 ... 80	

Figure 42 Mann-Whitney Test results for H2 ... 81	

 1

Chapter 1
Introduction

Software engineers must address both Functional and Non-Functional Requirements

(NFRs) during the software development process [1]. Functional requirements represent

procedures that a given system will be capable of executing. In a different manner, NFRs

are known to define quality attributes for a software system [2, 3], including

characteristics such as privacy, security, usability, and other similar aspects related to

software quality.

1.1 Problem and Motivation

Currently, most of the notations and techniques available for representing requirements

focus on functional characteristics for a given system. Software engineers rarely take into

account the elicitation and modelling of NFRs during the early stage of the development

cycle [1]. The incident with the London Ambulance System is a comprehensive example

of how neglecting or not adequately addressing NFRs can affect a software system [4].

The system had to be shut down right after its first deployment due to major problems

mostly related to a set of NFRs including performance and usability.

It is noteworthy to mention that NFRs are considered complex due to its diversity

and fuzziness. Different types of NFRs include constraints that may not be presentable in

a formal way and also not defined as clear as they should be. For instance, some

constraints such as expected response time and failure provisioning may be related to

 2

design implementations that are not acknowledged by the time NFR requirements are

specified [5]. Also, interpreting NFRs is a task that relies on a subjective understanding.

Possible Tasks and/or Operationalizations for satisficing a given NFR might differ

according to each stakeholder's needs. Moreover, one solution to implement a single NFR

may produce synergies and perhaps more important conflicts with another NFR. A

necessary task such as 'Use of Cryptography' for satisficing an NFR of Security, for

instance, might directly affect the satisficing of a Performance NFR in a negative manner

hence, leading to a possible conflict. Therefore, this relationship behavior brings the

perception that one NFR can rarely be 100% satisfied. As a result of this understanding,

the term Satisficed was introduced in [6, 7] to represent the idea of having a given NFR

satisfied within tolerable limits.

The need to deal with the frequent scenario where one NFR has many

interdependencies with other NFRs has led many researchers to investigate how to

improve elicitation and modelling of NFRs. Chung et al. [6] proposed the representation

of NFRs through Softgoal Interdependency Graphs (SIGs) as part of the NFR Framework

[6], [8]. SIG catalogues denote a graphical illustration of fundamental quality aspects,

including conflicts and trade-offs, for satisficing a given NFR. By using this graphical

approach, a software engineer can record the design and reasoning process of each NFR

into distinct graphs. Consequently, generated graph records can be further applied as a

supportive knowledge regarding NFRs in a given domain in the future. Also, an empirical

work proposed by Cysneiros [9] illustrates that using SIG catalogues can contribute to

 3

avoiding omissions and missed conflicts among NFRs, despite the fact that SIG

catalogues do not scale too well. Additionally, a comprehensive analysis performed by de

Gramatica et al. [10] demonstrates that the use of catalogs can assist non-expert users to

adequately identify satisfactory characteristics regarding a particular field even

considering the difficulty of navigating through extensive models.

Although SIG catalogues provide the storage of NFR knowledge, identifying the

desired reusable knowledge among a vast number of graphs can be a tedious and tricky

task. As denoted by Cysneiros [9], SIG catalogues tend to grow in a complex graphical

way. Therefore, even providing a graphical notation, SIG catalogues can be hard to be

interpreted by humans if we are dealing with broad contexts with a large amount of

design rationale descriptions. Also, access to information embedded in multiple SIGs

tends to be limited to a particular and local use only, hence preventing a broader

knowledge re-utilization.

1.2 Research objectives and questions

The primary objective of the research work in this thesis is to assemble a strong

foundation for the NDR Framework to grow. Therefore, we decompose our main

objective into two major accomplishments:

1. Provide a mechanism to facilitate the reuse of NF knowledge. In order to do that

we designed and implemented a tool which operates as the framework's core. The

tool mainly works as information browser regarding NFR knowledge.

 4

2. Evaluate whether using the tool helps stakeholders to better satisfice NFRs on

real-world software systems.

To achieve these accomplishments and consequently our main objective, we

address the following research questions:

1. What is the overall applicability of the tool?

2. How granular is the knowledge provided by the tool?

3. How can the tool help with identifying trade-offs and conflicts among NFRs?

1.3 Thesis Contributions

The work developed in this thesis is directed towards the reuse of NFR knowledge. By

answering the previously mentioned research questions, our contributions are the

following:

• Firstly, we designed and implemented the NDR Tool, which plays a key role in

the NDR Framework. The tool is responsible for concentrating NFR knowledge

into an ontology base and allowing its reuse. Its architecture follows the web

service principles for cloud computing. Also, it provides a graphical user interface

as a requirement to enhance user experience. The NDR Tool is the baseline of the

work developed in this thesis.

• Secondly, we have conducted a study on the evaluation involving the usage of the

NDR Tool by human participants. The experiment scenario was related to the

development of a real-world software system, and the participants had to identify

 5

and model possible NFRs following the NFR Framework notation. The NDR

Tool supported just half of the participants. The other half could only rely on SIG

catalogs previously developed according to the literature and represented by static

images expressing the same NFRs offered by the NDR Tool.

• Our final contribution is the assessment of the overall applicability of the NDR

Tool based on the analysis of the results obtained from the case study evaluation.

As the NDR Tool represents an important role in the framework, our findings

statistically demonstrate that our proposed solution can increase the support to

software engineers to better satisfice NFRs in real-world scenarios during the

software development life cycle. More than graphically express NFRs, the NDR

Tool provides an amalgamation of diverse SIG catalogs associated with multiple

NFRs into a single representation, defining a permanent NFR knowledge

evolution.

Additionally, the work presented in this thesis is the unfolding research output

first introduced in a short paper published in proceedings of the 8th International I*

Workshop (iStar 2015). The full citation can be found in [11].

1.4 Thesis organization

The research work in this thesis is structured as follows. Chapter 2 emphasizes the related

work to this research field. Chapter 3 presents our proposed approach and describes its

architecture and characteristics. We describe the performed experiment for evaluation of

 6

the proposed work on Chapter 4. On Chapter 5, we discuss the obtained findings from the

performed experiment. Finally, on Chapter 6 we illustrate our conclusions and present

future ideas.

 7

Chapter 2
Related Work

Since errors due to improperly dealing with NFR are among the most difficult and

expensive to fix [12]–[14] identification and proper expression of NFRs are essential for

understanding and reasoning about NFR satisficing. Some works have been trying to

address this issue through different perspectives.

In this chapter, we illustrate relevant literature on NFR knowledge representation

including diverse approaches and perspectives. Moreover, we aggregated and divided the

findings of our literature research into two main groups: Representing NFR Knowledge

and Using ontologies to deal with NFRs.

2.1 Representing NFR knowledge

Mylopoulos et al. [8] and Chung et al. [6] idealized and established the NFR Framework

approach where SIGs represent NFR information. As the NFR Framework acts as a part

of the baseline of the proposed work in this thesis, a further description regarding its

features and components will be depicted in the subsequent Chapter unitedly with the

characteristics of this developed study.

Chung and Nixon [15] proposed the NFR-Assistant as a proof of concept CASE

tool for modeling NFRs according to the NFR Framework guidelines. OpenOME [16],

RE-Tools for StarUML [17], and jUCMNav [18] are also modeling mechanisms for

representing NFR Knowledge using NFR Framework. Nevertheless, none of these

 8

technologies promote the reuse of knowledge by concentrating and linking NFR

information from multiple developed models. In other words, they simply provide the

software engineer the ability of visual modeling NFR characteristics as part of the system

they are modelling.

Cysneiros et al. [19] illustrated a framework to integrate the representation of

NFRs as NFR Graphs linked and integrated to functional conceptual models expressed

using UML and Object-Oriented models, commonly used in the industry. Figure 1

illustrates the designated usage of NFR Graphs within the proposed framework. The main

link between the functional and non-functional views is provided by the Language

Extended Lexicon (LEL). For validation, the authors carried three different case studies

based on a software system specification. The findings of the performed evaluation

suggest that their proposed approach leads to a more prolific software development

process and conceptual models with greater quality regarding both functional and non-

functional characteristics.

 9

Figure 1 The usage of NFR Graphs [19]

Mairiza and Zowghi [20] developed a catalog of conflicts amid NFRs. As a result

of an extensive analysis of the understanding of NFRs throughout the relevant literature,

the proposed conflict catalog is designated to assist software engineers in identifying and

resolving potential conflicts among NFRs during several phases of software

development. Moreover, the catalog defines three different levels for conflict

categorization: absolute conflict, relative conflict, and never conflict. The following

Figure 2 illustrates the catalog of conflicts amid NFRs where "X" represents absolute

conflict, "*" denotes relative conflict, and "0" expresses the never conflict category.

 10

Figure 2 Catalog of conflicts amid NFRs [20]

 Doerr et al. [21] proposed an experience-based NFR Method to elicit, document,

and analyze NFRs. The NFR Method is designed to define a minimum and adequate

group of weighable and accountable NFRs. As an evaluation of the proposed work, the

authors demonstrated three different case studies for requirements elicitation utilizing the

NFR method. The experiments were performed in real industry, and each case study had

different input settings. As an outcome of the study, overall, more detailed NFRs were

identified and documented using the suggested NFR Method.

 Considering that all these proposed approaches are appropriately associated with

the representation of NFR knowledge, none of them exploits the storage and reuse of

NFR information in a dynamic manner. Some techniques [6], [8], [19]–[21] indeed

document and describe NFR knowledge. However, taking into the account their outputs,

 11

software engineers still rely on a manual manner for searching for specific knowledge

and identifying possible associations. Others [15]–[18] provide methods for modeling

NFR knowledge. Still, none of these tools offers such a mechanism to aggregate and

make dynamically available the generated knowledge.

2.2 Using ontologies to deal with NFRs

Al Balushi et al. [22] proposed the ElicitO as an ontology-based framework and

tool that meets the elicitation, prioritization, and validation of functional and non-

functional requirements. Figure 3 illustrates the architecture of ElicitO. Mainly, the

ontology level presents information regarding quality metrics and characteristics

according to the model specified in the ISO 9126 standard. The user interaction level

provides a graphical interface for registering NFRs based on a needed scenario. Also, it

communicates with the ontology level and verifies the satisfaction and possible conflicts

among NFRs based on pre-defined rules originated from the quality model. In order to

validate the developed work, the authors performed a case study by developing an

intranet portal and were able to conclude that NFRs can be better understood, negotiated,

captured, and documented with the ElicitO assistance.

 12

Figure 3 The architecture of ElicitO [22]

Guizzardi et al. [23] proposed a UFO ontology-based [24] technique for

understanding NFRs as quality attributes. This approach provides guidelines for

differentiating functional and non-functional requirements. Additionally, this method

suggests a specification language designed to assist in the capture of NFRs.

An ontology-based for dealing with conflicts among NFRs was proposed by Liu

[25]. This method uses ontologies and metadata for representing NFR knowledge and

pre-defined rules for reasoning about possible conflicts. These rules may vary according

to the target domain.

Dobson et al. [26] proposed a domain-independent ontology for expressing NFR

information regarding Quality of Service (QoS) constraints. Despite the semantic model,

this suggested method also includes useful rules for automatic conversion between

 13

metrics and units for a given constraint. As an evaluation process, the proposed ontology

was successfully applied in a case study designed to exploit its reasoning functionalities.

Regarding a domain-specific ontology for representing NFR knowledge, Koay et

al. [27] suggested an ontological model for making provisions in pervasive healthcare.

Multiple ontologies were modeled as part of the core of a remote patient monitoring

system. As a result of ontology integrations, several semantical rules representing a

possible scenario associated with a patient were designed to assist with needed

provisions.

In regards to the representation of NFR knowledge through ontologies, Sancho et

al. [28] proposed an ontological database consisting of two ontologies: The NFR Type

Ontology and SIG Ontology. Both ontologies combined can represent the knowledge

from models generated according to the NFR Framework guidelines. However, the main

shortcoming of this developed approach is the absence of a class for defining a

Correlation between Softgoals. Consequently, this lack of definition implies the

impossibility of reasoning involving more than one NFR. To overcome this drawback,

Lopez et al. [29] introduced the NDR Ontology. As the NDR Ontology plays a significant

role in our developed work, we further emphasize its usage and characteristics in the

following Chapter.

Hu et al. [30] proposed an ontology model as a baseline for modeling NFRs. The

approach also follows the NFR Framework guidelines for representing NFR knowledge.

Additionally, the developed solution provides a rule-based method for promoting an

 14

automated reasoning of possible conflicts among NFRs. However, the proposed work

does not mention any storing feature for handling NFR knowledge involving multiple

contexts. Also, despite promoting automated reasoning of conflicts, the suggested

approach does not seem to offer a search method to facilitate knowledge retrieval.

Despite the utilization of ontologies, none of the mentioned approaches suggest

the reuse of NFR knowledge as the main feature and in a dynamic manner. ElicitO

framework and tool [22] employs a knowledge base for storing NFR information through

a user interface. However, it does not sufficiently exploit the stored knowledge in order to

demonstrate possible synergies between NFRs. Although it can indicate conflicts among

NFRs by following a static rule-based strategy, the framework does not depict adequately

in which level such friction may occur and the primary reason associated with it.

Furthermore, despite other approaches [23], [25]–[30] define ontologies for

representing NFR knowledge, none of them cover details about handling and storing the

generated information as a whole for future use. Since ontology models tend to be vast

and complex, dynamically adding new information and handling persisted knowledge in

an efficient manner may be an alternative to assure a well-maintained environment that

promotes the reuse of NFR knowledge.

2.3 Summary

In this chapter, we introduced relevant literature on NFR knowledge representation.

Firstly, we discussed important approaches simply regarding the representation of NFR

information.

 15

Lastly, we emphasized fundamental methods for representing NFR knowledge

with ontologies. Regarding both sections, we stated the most important circumstances

where the mentioned approaches differ from our developed work.

 16

Chapter 3
Foundation

In this chapter, we introduce essential concepts adopted as a baseline for our work.

Firstly, we highlight the NFR Framework [6], [8], which is an approach for representing

NFRs in a graphical manner. Next, we emphasize the Ontology concept in the Semantic

Web field and describe its main components and characteristics. Lastly, we explain the

NDR Ontology [29], which plays a major role in our developed work.

3.1 NFR Framework

The NFR Framework was first idealized by Mylopoulos et al. [8] and further established

by Chung et al. [6]. Essentially, the framework defines a systematic and practical method

for representing and using NFRs during the software development process as quality

attributes [6].

Fundamentally, the NFR Framework promotes the idea that completely satisfying

a given NFR is quite unusual. Hence, the term Satisficed was adopted to represent this

notion of fulfilling a particular NFR within reasonable boundaries. Reflecting this

understanding, the NFR Framework describes NFRs as softgoals.

Softgoals detail goals that have no sharply defined criteria or rationale

characterizing its satisfaction [6]. Moreover, the potential relationships among softgoals

are denoted as interdependencies. Consequently, softgoals and its interdependencies are

 17

graphically represented as catalogs named as Softgoal Interdependency Graphs (SIGs).

The following Figure 4 illustrates the potential elements of a SIG catalog:

Figure 4 The potential elements of a SIG catalog [6]

Softgoals

 As previously mentioned, softgoals mainly represent NFRs. Therefore, the NFR

Framework defines three different types of softgoals including NFR Softgoal,

Operationalizing Softgoal, and Claim Softgoal.

NFR Softgoal elements typically denote a major NFR type. Decomposition

methods can be applied to refine the softgoal into lower-level softgoals towards

determining one or more solutions to implement this softgoal.

 18

On the other hand, Operationalizing Softgoals are responsible for expressing

certain positive or negative guidelines attached to another softgoal. Typically, an

operationalization will reflect a characteristic the software should provide in order to

satisfice a softgoal and therefore will frequently have a positive contribution. However,

in many situations an operationalization may also present negative contributions not only

to its direct parent softgoal but more important to other softgoals. In many cases

operationalizations will reflect new functional requirements that should be implemented

in the software.

Lastly, Claim Softgoal elements commonly represent the rationale associated to

another softgoal or interdependency.

 Contributions

 A Contribution defines each relationship between softgoal elements. In other

words, a Contribution characterizes the type of an interdependency among softgoals. It

varies not only from negative (BREAK, HURT, and SOME-) to positive (HELP, MAKE,

and SOME+) definitions, but it also incorporates a neutral (UNKNOWN) type and

equality (EQUAL) and conditional (AND and OR) operators.

 Softgoal Labels

 The NFR Framework also provides a manual procedure for evaluating the

decisions related to satisficing a particular softgoal. Hence, Softgoal Labels are applied to

previous softgoal elements as a result of the decision assessment.

 19

Figure 5 The potential Explicit Interdependencies among softgoals [6]

Figure 5 illustrates the potential Explicit Interdependencies among softgoals.

Essentially, each softgoal can be linked by using Decompositions, Operationalizations, or

Argumentations. Decompositions produce an Interdependency involving softgoals of the

same type. Operationalizations create an Interdependency relating an NFR softgoal and

an Operationalizing softgoal. Lastly, Argumentations represent the recording of design

rationale through the use of Claim softgoal. Hence, this type of element is the only one

that can be applied to every type of softgoal and Interdependencies.

The NFR Framework also specifies Implicit Interdependencies. Their main

element is defined as Correlations. Correlations are used to link softgoals related to a

 20

given NFR to softgoals associated with another NFR, characterizing synergies and

conflicts.

Figure 6 Partial SIG developed with NFR Framework [17]

Figure 6 demonstrates a representation of a partial SIG developed using some of

the inherent elements of NFR Framework. It is noteworthy to mention that SIGs may be

domain-free or related to a particular field. In this particular case, Figure 6 depicts a SIG

related to Confidentiality regarding the access of a user account.

3.2 Ontology

Beners-lee et al. [31] define Ontology as a fundamental concept of the Semantic Web.

Differently from the Philosophy domain where it explores the study of the human being

existence, Ontology in the Semantic Web field points towards the aggregation of term

 21

definitions that can express the semantic knowledge of a particular artifact through the

taxonomy and inference rules.

Within an Ontology, the taxonomy allows the definition of classes of objects and

its relationships. For instance, Address and GeoLocation classes may be defined as

subclasses of a parent class LocationType, and CityCodes may be established to be

applied only to objects that serve as a LocationType. In this scenario, CityCodes would

only be able to be applied to objects representing either an Address or a GeoLocation.

Additionally, classes of objects may have subclasses that inherit parent properties. For

example, if CityCodes must be a type of City and City objects typically have Websites, it

is reasonable to assume that CityCodes also have Websites [31].

On the other hand, inference rules in Ontology can provide a more robust

applicability. If a CityCode is linked to a StateCode, and a given Address has that

CityCode, one can assume that the Address is associated with the State Code as well [31].

In other words, for example, a tax software system employing this Ontology could

effortlessly identify that the address of York University in Toronto must be associated

with the Ontario province, which is in Canada. Therefore, the tax software system must

comply with Canadian tax regulations.

The modeling and description of an Ontology may involve different technologies.

Resource Description Framework (RDF) [32] and RDF Schema (RDFS) [33], Web

Ontology Language (OWL) [34], and SPARQL [35] are technologies that unitedly

provides mechanisms to represent and explore a given Ontology.

 22

Resource Description Framework (RDF) and RDF Schema (RDFS)

RDF denotes a specification for expressing content through web identifiers

commonly known as Uniform Resource Identifiers (URIs) [32]. Therefore, RDF provides

the possibility of representing resources through a node graph, including properties and

values. The following Figure 7 demonstrates a node graph that follows the RDF

specification. As it is noticeable, an individual of type Person is instantiated according to

a target ontology. The attribute type, which characterizes Person, is defined by the

standard RDF specification. Therefore, its URI differs from the other ones. On the other

hand, fullName, mailbox, and personalTitle custom attributes follow the same URI as the

individual one since they are defined by the target ontology.

Figure 7 Node graph in RDF/XML [32]

In order to acquire the most from representing resources with RDF, a vocabulary

description language identified as RDF Schema have been proposed. Mostly, RDF

 23

Schema defines classes and properties over RDF resources in a comparable approach to

object-oriented programming languages. In other words, RDF Schema proposes

fundamental classes to handle common attributes such as collections and literals. Also, it

provides essential properties including range and domain definition that can be applied to

a specific class. Figure 8 demonstrates the applicability of RDF Schema in RDF/XML:

Figure 8 RDF Schema in RDF/XML [33]

 Web Ontology Language (OWL)

 OWL proposes an additional vocabulary for classes and properties. The language

specification is defined based on the RDF Schema. Consequently, it inherits all the

previous mentioned features provided by RDF Schema. Additionally, OWL supplements

RDF Schema with peculiarities that include Property Cardinality and Class Intersection.

Also, OWL introduces the concept of Axioms. Axioms link classes and properties,

 24

creating statements or definitions that assert what is valid in a given domain [36]. For

instance, two distinct classes can be defined as to be disjoint classes by using Axioms.

 SPARQL

 SPARQL is a query language for RDF. Similar to database query languages,

SPARQL provides a mechanism to retrieve any element specified in a particular

Ontology by writing a simple query. This query can also match data types for specific

properties if necessary. The output of an SPARQL query can either be standard result sets

or RDF node graphs. The following Figure 9 shows a snippet of an SPARQL query that

inquiries name and mbox from a dataset based on the FOAF vocabulary specification1:

Figure 9 SPARQL query and its output [35]

1 http://xmlns.com/foaf/spec/

 25

There are several tools to model and visualize Ontologies using OWL including

Protégé2, NeON Toolkit3, and Vitro4. In this research work, we particularly preferred the

use of Protégé for our Ontology needs due to our previous expertise with this tool in past

studies. Protégé is an open-source platform and provides multiple plugins to design and

visualize Ontologies. Also, Protégé project is maintained by Stanford University and has

an active community of users. Figure 10 illustrates an Ontology being modeled in

Protégé:

Figure 10 Ontology being modeled in Protégé

2 http://protege.stanford.edu/

3 http://neon-toolkit.org/

4 http://vitro.mannlib.cornell.edu/

 26

3.3 NDR Ontology

Lopez et al. [29] proposed the Non-Functional Requirements and Design Rationale

(NDR) Ontology as a mechanism to represent NFR and design argumentative logic

knowledge in a machine-readable format. The ontology was developed on the top of the

approach proposed by Sancho et al. [28], which partially follows the guidelines of the

NFR Framework. More important, the NDR Ontology adds the concepts of Claims and

Correlation among NFRs that are not covered in Sancho et al. [28]. Also, it supplements

the handling of Decompositions on a specialized element level. In other words, the NDR

Ontology defines specialized elements as Head and Tail properties according to a

Decomposition type. For instance, a given NFRDecomposition must have only

NFRSoftgoal elements as Head and Tail properties. Consequently, the NDR Ontology

describes in OWL all the necessary elements, properties, and interdependencies of the

NFR Framework previously mentioned at the beginning of this section.

Figure 11 Main elements of the NDR Ontology [29]

 27

 Figure 11 shows the main elements of the NDR Ontology and its properties. As it

is noticeable, the Softgoal class act as a parent of OperSoftgoal and NFRSoftgoal classes.

This class inheritance is necessary since both OperSoftgoal and NFRSoftgoal share

equivalent properties such as Type, Label, Priority, and Topic. The property Type links

the target Softgoal to its particular NFR type. Label associates a Softgoal with its status

after a decision assessment. Priority defines whether a given Softgoal has preference over

the other ones. Topic connects a Softgoal to a specific domain. In this work, only Type is

handled. The other properties are part of the NDR Ontology but they are intended to

cover the evolutionary aspect of NFR during a project. Since this work aims at capturing

as much alternative as possible to facilitate reuse in different domains/projects, these

properties were left for future work. Lastly, a Claim class represents the Claim Softgoal

element. As Claim Softgoals are designed to record the design rationale behind certain

decompositions, Claim is defined as a separated class.

Figure 12 Interdependency elements of the NDR Ontology [29]

 28

 As illustrated in Figure 12, the NDR Ontology describes every Interdependency

elements of the NFR Framework. Each possible Interdependency has a Contribution

kind. Therefore, Contribution is represented as a separated class containing an

enumeration of pre-defined labels. Moreover, Correlation is defined as Implicit

Interdependency, being able to have Softgoal individuals of any kind as its Tail and Head

properties. As Explicit Interdependencies, the ontology expresses Operationalization and

Decomposition classes. Operationalization can only have NFRSoftgoal individuals as

Head property and OperSoftgoal as Tail attribute. Decomposition is a parent class for

OperDecomposition and NFRDecomposition classes. The former represents a

Decomposition between OperSoftgoal individuals, and the latter describes a

Decomposition among NFRSoftgoal individuals. Figure 13 illustrates the mentioned

Decomposition definitions.

Figure 13 Decompositions definitions of the NDR Ontology [29]

 29

Argumentation is also defined as a separated class in the NDR Ontology. It has a

Kind attribute represented by the Contribution class as well. On the other hand, it has two

specialized classes: ArgNFRSoftgoal and ArgInterdependency. Both classes define a

Claim Softgoal individual as their Tail attribute. However, ArgNFRSofgoal class can only

have a Softgoal individual as a Head property. Similarly, ArgInterdependency can only

have an Interdependency individual as a Head attribute. These definitions express the fact

that an Argumentation can be associated to both Softgoal and Interdependency elements.

Figure 14 shows these Argumentation characteristics:

Figure 14 Argumentation definitions of the NDR Ontology [29]

Holding all the fundamental elements and relations of the NFR Framework, the

NDR Ontology can adequately portray the knowledge existent in SIGs. The following

Figure 15 shows a partial SIG depicting the NFR of Usability:

 30

Figure 15 Partial SIG of Usability [29]

 Accordingly, the representation of the knowledge contained in the partial SIG of

Figure 15 is demonstrated in Figure 16 as OWL node graph. An NFRDecomposition,

between Usability and Usefulness Softgoals, with the Contribution kind of Help, and

Satisficed as the Label is expressed using the NDR Ontology classes. This same

Decomposition can be envisioned in Figure 15.

 31

Figure 16 Decomposition individual in NDR Ontology [29]

Finally, Figure 17 depicts the same example scenario mentioned but expressed in

a machine-readable format. The NFRDecomposition between Usability and Usefulness is

described in OWL format following the guidelines of the NDR Ontology.

Figure 17 Decomposition individual in OWL format following NDR Ontology [29]

 32

Chapter 4
NDR Tool: The core of NDR Framework

In this chapter, we describe our proposal for concentrating NFR knowledge into an

ontology base and allow its reuse. The NDR Tool was designed from the scratch to help

software engineers to elicit more and better NFRs. Therefore, the tool promotes the reuse

of existent NFR knowledge expressed using Softgoal Interdependency Graphs (SIGs) in

accordance with the work proposed on [6], [29]. We have investigated and consolidated

into the NDR Tool mechanisms to add knowledge to the NDR ontology as well as

mechanisms to facilitate knowledge retrieval.

4.1 Definition

The NDR Tool plays a significant role in the NDR Framework as a knowledge handler.

Hence, as a first implementation version, we designed the tool from the ground up aiming

to fulfill the following major requirements:

• FRQ1: The tool must be able to extract information from SIGs generated by

third-party applications. An administrator user must be able to provide an XML

version of a SIG as an input file, and the tool needs to parse its existent

information.

• FRQ2: The proposed tool needs to transform obtained information from SIGs to

NFR knowledge according to the NDR Ontology specification.

 33

• FRQ3: The tool must be able to query NFR information from a Knowledge

Repository based on the search for a particular term. The provided NFR

information must be as much complete as possible. It must include all the

interdependencies related to a given element and its occurrence among parent

NFRs whether applicable.

• NFR1: The tool must provide a graphic visualization that illustrates the result of

querying a Knowledge Repository for NFR knowledge. The graphic visualization

must illustrate all the information related to a query result, including every

element and its relationships. Also, the graphic display should let the end-user

navigate throughout the generated illustration.

 Within the NDR Framework, the tool is intended to be used as a supporting

system for software engineers during the elicitation and modeling of NFRs. We believe

that the knowledge provided by the tool can be queried at any time by a software

engineer working on the development of a new software system for a particular scenario.

For instance, a software engineer may utilize the NDR Tool to identify potential

alternatives for satisficing NFRs that apply for a needed scenario. Since the tool

demonstrates all the possible options for satisficing a particular NFR, a software engineer

may be able to choose the ones that apply to the required scenario, meeting stakeholders’

expectations. Additionally, a software engineer may be able to identify new needed NFRs

based on the trade-offs demonstrated by the NDR Tool. As the tool illustrates the

 34

conflicts and synergies among NFRs, it may help software engineers to obtain a solid

idea of the consequences involved in satisficing a particular NFR.

Consequently, our approach can be employed as a reference guide regarding

NFRs. We aim to keep a solid knowledge base regarding domain-free NFR information

as a short-term goal. However, we envision to expand our knowledge base to domain-

specific NFR information in the near future.

The following sections illustrate the architecture of our tool and the utilized

technologies. Also, we demonstrate how our solution addresses the mentioned major

requirements by emphasizing its main features. Lastly, we discuss the current limitations

of the NDR Tool.

 35

4.2 Architecture

Figure 18 NDR Framework's architecture overview

Figure 18 demonstrates a high-level overview of the NDR Framework's

architecture, which is the primary context of our proposed approach. The NDR Tool

represents a fundamental part of the framework.

The tool is designed to centralize all the features involving NFR information,

including knowledge extraction and creation, querying, and visualization. Therefore,

approaches proposed in the NDR Framework such as Integration Methods and Reuse

Techniques are dependent on the functionality of the NDR Tool.

We designed the NDR Tool to be deployed in a Cloud environment. The system

has a full implemented RESTful API, characterizing the behavior of a Web Service. The

 36

motivation behind this design choice is associated to the application's extensibility.

Consequently, the tool can provide a greater integration with third-party modeling

applications. Also, smart applications can communicate with the NDR Tool in order to

retrieve NFR knowledge information on demand. We envision that in the near future, the

NDR Tool can be utilized by self-adaptive systems as a resource for supporting real-time

decisions regarding NFRs.

Zareian et al. [37] proposed a data-oriented approach for analyzing and

provisioning application performance in Cloud environments. We believe that the NDR

Tool can be integrated into this framework to support satisficing Performance as a type of

NFR. Hence, working as a Web Service, the tool can provide real-time needed knowledge

for satisficing Performance in Cloud for a particular application based on the produced

analysis of the K-Feed framework.

We also believe that the NDR Tool can be utilized towards real-time big data

analysis. Khazaei et al. [38] demonstrates an approach for big data analysis regarding

smart transportation. Since big data studies usually involve clustering techniques in a

shared Cloud environment, the NDR Tool can provide NFR knowledge regarding

possible scaling decisions on demand.

Additionally, we designed the tool based on two main repositories: Knowledge

and Ontology. The Knowledge Repository aggregates information regarding the

knowledge evolution associated to a particular ontology. On the other hand, the Ontology

Repository is responsible for storing different ontology definitions. Our intention behind

 37

this design is to keep the NDR Tool modular and able to handle multiple ontologies in the

future.

Figure 19 NDR Tool's architecture overview

Figure 19 illustrates a more specific detailed level of the NDR Tool's architecture,

demonstrating its layers. In this work, Java5 is the primarily utilized language, and the

implementation mainly follows the standard Model, View, and Controller (MVC) pattern

[39] with some customization in order to fulfill our requirements.

As Models, we define every essential entity in the system. They vary from

considerably simple classes such as User and NFRCatalog to more enhanced

implementations including NDR Ontology-related classes such as NFRSoftgoal and

OperDecomposition. Essentially, most of the Models are used as object instances

throughout our application's lifecycle.

5 https://www.oracle.com/java/index.html

 38

Our Controller layer is mainly defined by a Web Request handler class. It follows

the standards of a RESTful6 endpoint. As the NDR Tool is designed to be deployed in a

Cloud environment, the Controller layer works as a Web Service. Additionally, the

Controller layer is mostly responsible for linking the View layer with the Business layer.

The logic performed by the application defines the Business layer. Services and

Converters are the most common classes implemented in this layer. Basically, Services

are responsible for handling the necessary logic regarding a specific Web Request. It

receives the required information from the Controller layer and performs the appropriate

method calls. Similarly, Converters also control the logic associated with a particular

need. However, the use of Converters is aimed towards the first step of knowledge

creation only, which is associated with the extraction of information. Since creating

knowledge expresses a complex task, we decided to separate its logic over Service and

Converter classes. As a result, Service classes have more responsibilities in an overall

context, although both Service and Converter classes are necessary for handling

knowledge creation.

The View layer represents every Web Page of our proposed solution. They are the

entry point of the interaction between the end-user and the system. Also, they are

responsible for illustrating every output provided by the tool, including the graphic

representation of NFR knowledge once requested. These Web Pages were developed

6 https://www.w3.org/2001/sw/wiki/REST

 39

using Scala7 templates. Scala facilitates the reuse of object-oriented standards at a coding

level, generating pure HTML as an output on the client side.

4.3 Main utilized technologies

The NDR Tool applies different technologies to fulfill its operation. To keep our

proposed solution suitable to an academic environment and attract as many collaborators

as possible, we adopted technologies that match certain criteria such as open-source

implementation and active community support. Therefore, we identified the following

frameworks as our primary utilized technologies:

PlayFramework

PlayFramework [40] is a Web framework that can be utilized in Java and Scala

projects. It provides a range of techniques that facilitate the coding, compiling, and

building of a project.

We applied the PlayFramework as the core of our system. The entire MVC

architecture previously described is handled by this technology. PlayFramework

guarantees the flow among the system layers, manipulating every web request and

response.

7 http://www.scala-lang.org/

 40

Apache Jena

Apache Jena [41] is a framework that provides functionalities for dealing with

Semantic Web needs at a Java programming level. The following Figure 20 illustrates the

architecture of Apache Jena:

Figure 20 The architecture of Apache Jena [41]

Mainly, we exploit the Application Programming Interfaces (APIs) from Apache

Jena to support our Ontology Repository needs. These APIs provide an abstraction that

facilitates the information manipulation within an ontology. Instead of dealing directly

with pure OWL and RDF/XML, a software developer can treat ontology elements as Java

Objects, facilitating operations such as addition and removal of individuals. Also, these

APIs allow the execution of SPARQL queries directly from source-code. Hence, every

 41

task performed by the NDR Tool regarding knowledge importation and search is assisted

by Apache Jena at an object-oriented level.

Apache Fuseki

Similarly to Apache Jena, Apache Fuseki [42] also operates towards the ontology

assistance. However, instead of defining a framework, Apache Fuseki characterizes a

SPARQL server.

As also demonstrated in Figure 20, Apache Fuseki can be combined with Apache

Jena. Therefore, we decided to employ Apache Fuseki as the primary component of our

Knowledge and Ontology Repositories. The server can handle multiple ontologies at the

same time and execute SPARQL queries over the resources and individuals of each

ontology. Apache Fuseki also follows a RESTful implementation. Consequently, it

exposes its main operations as Web services endpoints. The NDR Tool invokes these

endpoints to manipulate the existent information regarding a particular ontology.

GraphViz

Graphviz [43] is a framework for graphical visualization. It allows the drawing of

diagrams by interpreting elements defined using the DOT language. The following Figure

21 illustrates an example of DOT language syntax on the left side and its graphical output

on the right side:

 42

Figure 21 DOT Language syntax and output

The NDR Tool employs the Graphviz as the primary component for representing

knowledge graphically. After every search on the Knowledge Repository, the tool

converts the query result into DOT language syntax and produces the graphical output.

4.4 Importing NFR Knowledge

Importing Knowledge into the NDR Tool consists of a three-step process: Information

Extraction, Knowledge Conversion, Ontology Update. Figure 22 illustrates the sequence

of these main phases:

Figure 22 NFR Knowledge importation phases

 43

Furthermore, to accurately represent the behavior of this process, we demonstrate

these three primary stages decomposed into multiple activities triggered by a system-user

interaction flow. Figure 23 expresses this representation:

Figure 23 NFR Knowledge importation Activity Diagram

To fully explain every activity involved in this process, we propose the given

scenario: A software engineer as an administrator user needs to import a SIG containing

knowledge related to the NFR of Transparency. After performing the login into the

system, the user uploads the artifact in XML format. For this particular example, both the

SIG and its XML representation were generated using RE-Tools (StarUML) due to our

expertise with this modeling tool. However, the central idea is to keep the NDR Tool

 44

capable of handling XML representations from multiple modeling tools. Figure 24 and

Figure 25 demonstrate both the graphical and a partial XML representation of a SIG

containing Transparency knowledge:

Figure 24 SIG representing the NFR of Transparency

 45

Figure 25 Partial XML format of the SIG representing the NFR of Transparency

Once the SIG catalog is uploaded into the system and has a valid format, the NDR

Tool performs a series of actions in order to extract the existent information and convert

it into NDR Ontology individuals. Firstly, after receiving the request from the Controller

layer, methods within a Converter class parse every XML element and store them in

memory as new Model instances, which characterizes new NDR ontology individuals.

Subsequently, the NDR Tool verifies if the recently created elements already exist

in the Knowledge Repository. If they previously exist as NFR Knowledge, instead of

keeping them as new NDR ontology instances in memory, the system disregards these

elements and utilizes the already existent ones for the knowledge addition process. This

behavior expresses how the NDR Tool handles the knowledge evolution by reutilizing

existent NFR Knowledge and associating them with the identified new ontology

individuals when adding new information into the Knowledge Repository. As a

 46

consequence, this activity may lead to new interdependencies among existent and new

knowledge. By following our mentioned scenario, Traceability is listed as a result of a

Decomposition in the SIG of Transparency. If the Knowledge Repository contains

information about Traceability, the NDR Tool will automatically associate Transparency

with all the knowledge related to Traceability after successfully importing the SIG.

Finally, after handling the knowledge addition process, the NDR Tool updates the

ontology baseline on the Ontology Repository. In this particular scenario, the system will

update the NDR Ontology by adding all the provided knowledge associated to

Transparency. This process occurs on the SPARQL server, and it is performed in a OWL

level. Figure 26 demonstrates the result of the ontology update process. A Decomposition

between Transparency and Informativeness is described in OWL and now part of the

NDR Ontology as a new individual. This same Interdependency is illustrated in Figure

24, which expresses a SIG representing Transparency as NFR. Lastly, when the NDR

Ontology is successfully updated, and the process is eventually completed, the tool shows

a confirmation to the end-user.

Figure 26 A Decomposition between Transparency and Informativeness in OWL

 47

Currently, the NDR Tool uses inference capabilities provided by the use of

ontologies during the association of information that is being imported with already

existent data in the knowledge base. If the information that is being imported already

exists in the knowledge base, the tool verifies and performs inferences on each provided

element. For instance, if Usability already exists in the knowledge base as an

Operationalizing Softgoal related to an Operationalization of Transparency, and a new

SIG representing Usability as a NFR Softgoal is imported, the tool will automatically

redefine the already existent version of Usability to the one that was just imported. In

other words, the Operationalizing Softgoal of Usability will become a NFR Softgoal of

Usability. This behavior is a result of an inference rule that defines that an

Operationalizing Softgoal may become a NFR Softgoal during the importation of new

information. This rule is based on the constraints of the NFR Framework. Additionally,

this scenario would also produce a new inference rule stating an association between

Transparency and Usability. Consequently, the tool can assert the occurrence of Usability

among the alternatives to satisfice Transparency.

We aim to expand the use of a reasoner for automatically inference identification

in future versions of the tool to deal with the support of domain-specific knowledge. Such

a mechanism will provide the ability to automatically identify relationships between

different individuals representing knowledge regarding the same NFR according to

distinct domains. In an ontology level, we aim to keep every individual representing a

 48

NFR related to a particular domain as a new subclass of the individual that represents the

same domain-free NFR.

4.5 Searching NFR Knowledge

After logging into the system, a user may search for NFR knowledge by following one of

the two possibilities: (i) choose one of the NFRs from the drop-down menu, or (ii) search

for any element by providing a specific term in the search box. Figure 27 demonstrates

the interface where a user may choose one of the two possibilities:

Figure 27 NDR Tool: Search for NFR Knowledge

 The available NFRs in the drop-down menu represents the major NFRs available

in the Knowledge Repository. By selecting one of them, the system will search and show

all the relevant information associated with the chosen NFR. This process occurs as the

following:

After gathering all the necessary knowledge related to a provided input, the tool

prepares a graphical representation for the end-user. By using GraphViz as a drawing

framework, the system transforms the collected knowledge into a SIG catalog on

demand. Moreover, the NDR Tool follows the same notation proposed by the NFR

 49

Framework in order to guarantee a consistent understanding. Also, the system provides

the occurrences for the queried element. Figure 28 expresses the graphical output

generated in real-time by the NDR Tool based on a provided input. Above the graphical

representation, it is possible to visualize and understand that the queried element,

Usability in this particular case, is also associated with Privacy, Security, and

Transparency. If the user selects one of these associated NFRs, the system will once

again generate in real-time another graphical output for the chosen item.

Figure 28 NDR Tool: Graphical Output

On the other hand, by entering a search term, the NDR Tool will perform an

extensive search for the provided term throughout the entire Knowledge Repository. It is

noteworthy to mention that this broad search is not restrictive. In other words, the system

 50

will search for every element that contains the provided term, and not only for those

elements that match the provided term. The following Figure 29 illustrates this mentioned

behavior:

Figure 29 NDR Tool: Non-restrictive Search

Once a user selects one of the search possibilities, the system identifies the search

element and produces a series of SPARQL queries. These queries are then executed on

the SPARQL server side in a recursive manner. Hence, the system can retrieve every

interdependency associated with each element related to the search one. By the moment

the tool finishes performing the necessary queries, the drawing process begins. As a

result, the system outputs a partial graphic visualization starting from the chosen search

possibility. If necessary, the user can still select among the NFRs associated with the

target possibility. Figure 30 illustrates the partial graphic output originated from a search

possibility selection. In this particular case, Reduce Need For Personal Data Disclosure

was the selected option among the listed results for Disclosure.

 51

Figure 30 NDR Tool: Partial graphic output resulted from search

It is important to mention that the search ability provided by the NDR Tool works

on different levels of granularity. In other words, a software engineer can search for any

NFR related capabilities, ranging from early refinements to a very specific refinement

level. This characteristic provides a versatile mechanism for scenarios where the granular

level of a needed NFR related solution is unknown. The previous Figure 30 demonstrates

a search result at a specific granularity level.

Also, the search capability can provide inferences among available NFRs in the

Knowledge Repository. As a consequence of demonstrating the occurrences of a queried

element, the NDR Tool may infer existent correlations when a parent NFR is utilized as a

query term. Figure 31 illustrates this scenario. After searching for Security, the tool

graphically outputs the whole existent knowledge associated with Security and also

 52

denotes its occurrences in other NFRs. At this point, in this particular scenario, a software

engineer can assume that Security correlates with Privacy, Traceability, and Usability.

Figure 31 NDR Tool: Correlation inferences

To find out whether the correlation produces a synergy or a conflict, a software

engineer can simply click on one of the listed NFRs and visually verify the nature of the

correlation. Figure 32 demonstrates a partial graphical output generated after selecting

Privacy from the list of occurrences. It is possible to notice the details of the correlation

between Security and Privacy. In this case, there are multiple correlations with a negative

nature, characterizing a potential conflict among Security and Privacy.

 53

Figure 32 NDR Tool: Conflict between Security and Privacy

To adequately emphasize the search for NFR Knowledge among the levels of the

NDR Tool, we demonstrate the following activity diagram. Figure 33 illustrates the

previously specified behavior of the NDR Tool on handling the search for knowledge

user interaction:

 54

Figure 33 Search for Knowledge Activity Diagram

4.6 Current Limitations

As a preliminary implementation, the present version of the NDR Tool includes a few

limitations. Currently, the system does not allow any exportation of information. We first

focused our efforts on having a stable knowledge explorer version of the tool. However,

 55

we envision to implement a generic exportation mechanism in a evolved version of the

system.

Also, the existing NFR knowledge importation process requires an automated

mechanism for knowledge recognition. Currently, the system assumes that every SIG

provided as an input to the import process contains a valid NFR information. Hence, the

tool still relies on a manual knowledge validation as a pre-step before the importation.

We aim to fulfill this requirement by exploring the Axioms and Inferences features

provided within the OWL specification for a particular ontology. Axioms and Inferences

provide implicit information about ontology elements generated by a reasoner. Therefore,

to overcome this challenge, we believe in the possibility of implementing an automated

reasoner that can exploit the implicit knowledge within an ontology and automatically

validate new individuals before its importation.

Despite the fact that the first version of the NDR Tool is already deployed and

running in a cloud environment, its availability is yet limited for academic purposes only.

We envision to have the tool available for both academic and professional areas in a near

future. However, at this moment, we are still aiming at a robust implementation version

and using the educational field as our testable environment.

Lastly, the present implementation of the NDR Tool is designed to work with

domain-free NFR knowledge only. We believe that the system is already capable of

working with multiple domains. However, this feature still has to be extensively validated

 56

by our test cases before being implemented in a production environment. Hence, we

assume that a future version of the tool will certainly include this feature.

4.7 Summary

In this chapter, we presented our proposed approach for reusing NFR knowledge. We

introduced the NDR Tool as our major developed work. Subsequently, we emphasized its

architecture by detailing the information flow through the system layers and describing

every associated component. We also reported the key technologies employed in the

processes within the tool.

Furthermore, we demonstrated two usage scenarios that fully covers the

previously stated requirements. We described different situations for both scenarios to

facilitate their understanding. We also included Activity Diagrams in order to express the

decisions associated with every process that occurs on the system side.

Lastly, we emphasized the current limitations of our proposed approach. As a

preliminary version, the NDR Tool has a few restrictions regarding its availability,

features, and domain coverage.

 57

Chapter 5
Evaluating the Tool

This chapter emphasizes the methodology for evaluating the applicability of our proposed

approach. We denote our main hypothesis and the associated variables followed by the

strategy and design of our research experiment. We also describe the characteristics

related to the participants in this study, the expected outcomes, and the proposed

scenario.

Easterbrook et al. [44] suggests a controlled experiment as an empirical

evaluation method for software engineering research. It is intended to verify the cause

and effect relationship among independent and dependent variables in a testable

hypothesis. Consequently, to assess whether our approach can facilitate software

engineers to elicit more and better NFRs, we conducted a controlled experiment with

human participants.

In this proposed experiment, the participants performed the role of a software

engineer and were asked to elicit and model NFRs under a particular scenario that

involved the development of a software system. The NFRs had to be modeled according

to the notation specified by the NFR Framework. Hence, we provided multiple

workshops as training sessions for every participant of this study before the experiment

execution.

 58

As an outcome, multiple SIGs were modeled by each participant. Participants

were asked to produce SIGs for every NFR they deemed necessary and evaluate all

possible Operationalizations as well as Correlations they could identify. They were not

requested to choose one alternative over another or to produce a single solution. Instead,

they were carefully instructed that the more correct alternatives regarding

Operationalizations and Correlations they could identify the better their achieved

performance would be.

After gathering the results, we compared each developed SIG to a positive

control. This positive control was produced based on the literature on SIG catalogs and

represented the elicited NFRs we were expecting for that particular scenario. The author

of this thesis elicited and modeled every expected NFR, including its Operationalizations

and Correlations and later submitted to Prof. Cysneiros to further check for missing or

invalid options. Mainly, we focused the comparison on the number of

Operationalizations and Correlations obtained for a specific NFR. We followed the

notion that the higher the number of Operationalizations, the greater the chance of better

satisficing a NFR. The same theory applies for Correlations, notably because it expresses

possible synergies and conflicts among NFRs. Furthermore, following the idea that each

project may demand different solutions for the same NFR, we wanted to evaluate if a

software engineer using the NDR tool would be able to recognize a more comprehensive

set of alternatives for satisficing a NFR than a software engineer not using it. Evaluating

 59

if this software engineer would still be able to make to correct choice is a much more

complex task and is outside the scope of this work.

5.1 Research hypotheses and variables

The central premise of the assessment performed in this thesis evaluates whether using

the NDR Tool can help software engineers to elicit and model better NFRs. We designed

a research experiment intended to assess the resulted NFR models of each participant.

The observed measures involved in the assessment were the number of identified

Operationalizations and Correlations. Therefore, in order to adequately represent our

appraisal needs, we state the formal hypotheses:

• H1: There is a significant difference between the NDR Tool and NFR

Catalogs regarding the identification of Operationalizations.

• H0: There is no difference between the NDR Tool and NFR Catalogs

regarding the identification of Operationalizations.

• H2: There is a significant difference between the NDR Tool and NFR

Catalogs regarding the identification of Correlations.

• H0: There is no difference between the NDR Tool and NFR Catalogs

regarding the identification of Correlations.

Additionally, as a requirement for conducting a controlled research experiment

within this thesis work, we determined independent and dependent variables to allow the

 60

analysis of a possible cause and effect relationship between them. We state it as the

following:

• Independent Variable: Knowledge-assistance technique (NDR Tool or

Pure NFR Catalogs).

• Dependent Variable: Number of identified Operationalizations; Number

of identified Correlations.

5.2 Experiment Design and Strategy

To appropriately test our mentioned hypotheses, we designed a research experiment that

follows a between-subject design. Mostly, we divided and randomly assigned the

participants into two groups: experimental group and control group.

Participants in the experimental group were in charge of eliciting and modeling

NFRs with the NDR Tool as a knowledge-assistance technique. On the other hand,

subjects in the control group could only rely on pure NFR catalogs as a knowledge-

assistance method for identifying and modeling NFRs. Pure NFR catalogs are represented

by static image files following the SIG format. Both knowledge-assistance techniques

held the same amount and type of knowledge regarding NFRs. Also, both groups strived

to elicit and model NFRs under an identical software system development scenario.

The participants were students enrolled in the Requirements Management course,

a 4th year course in the School of Information Technology at York University, Toronto,

Canada. Participation was on a voluntary basis, and it would count as an assignment that

 61

would add up to 10 marks to the final exam grade depending on the achieved

performance in finding valid Operationalizations and Correlations.

In regards to the expected expertise associated with the NFR Framework notation

necessary for producing the output models, subjects of this experiment attended training

sessions before participating in the study. We provided these practice sessions in a

workshop manner, totalizing twelve non-consecutive hours of training for each

participant. It is important to mention that participants were at the final two weeks of a

Requirements Management course. Hence, they had already been exposed and trained in

aspects related to eliciting and modeling requirements as well as the concepts of NFRs,

methods to elicit and models them and techniques to link them to functional

requirements.

Regarding the reliability of our proposed assessment, we based our experiment

design in previous research studies [19], [22]. Cysneiros et al. [19] conducted a similar

research experiment for evaluation of an approach for representing NFR knowledge

within conceptual models. Likewise, Al Balushi et al. [22] carried a comparison between

groups of participants in order to assess the applicability of an ontology-based tool for

assisting the elicitation and prioritization of NFRs.

Finally, we ethically treated the participants in this study by assuring

confidentiality. Unfortunately, we cannot assure total anonymity regarding the

participants in this study since each subject received academic credit such as a bonus

mark on the final exam regarding their participation in this experiment. However, we can

 62

guarantee that the demonstration of the findings of this study will not be traced and

associated back to any participant.

5.3 Threats to Validity

In this section, we explain the possible factors that could affect the validity of our

performed experiment and how we tried to address it as a concern.

Threats to Internal Validity

• Maturation: Not considered a threat for our study since each participant

had to perform the tasks for the experiment only once.

• Instrumentation: We controlled this threat by providing identical

conditions for every subject regarding tools and execution time. Also, we

designed the experiment in a similar manner to an optional academic

course assignment.

• Biased subject selection: This threat prevailed partially uncontrolled in

our study since each target subject consisted of an undergraduate student

attending a Requirements Management course. However, among this

population, we randomly choose the eligible ones since the participation in

the experiment was not mandatory.

• Experimental mortality: To avoid and control this threat, after providing

the entire essential material through a web-portal, we let each subject

perform the experiment in their timely manner until a specific due date.

 63

• Statistical Regression, Testing, and History: Not applicable in this

study.

Threats to External Validity

• Interactions between selection biases and the independent variable:

This threat remained uncontrolled due to our target population in this

study. Our findings may only represent a group of subjects consisted of

undergraduate students of Information Technology.

• Multiple treatment interference: Not applicable in this study since there

was no exposure to early treatments that could affect the responses of later

treatments.

• Reactive Testing: Not applicable in this study.

5.4 Sampling

The target population for this experiment consists of undergraduate students enrolled in a

Requirements Management course taught by the research supervisor of this thesis at York

University, Toronto, Canada. However, not all the students enrolled participated in the

study. The experiment was considered an optional assignment for the course, hence

students could opt to not to do it. For the purpose of this research work, the sample size is

consisted of 12 individuals, randomly divided into two groups of 6 participants each

regarding the knowledge-assistance technique.

 64

We expected that the age of the research subjects variated from 18 to 30 years old.

However, as the age factor does not impact on our hypotheses analysis, we decided not to

collect this information from the participants. Also, none of the participants were

expected to be previously known to the researcher of this thesis.

5.5 Data Measurement and Collection

The data collection regarding this experiment was based on the outcomes of each

participant. These were graphical representations of NFRs in the form of SIGs. The

dependent variables based on which the two groups were compared include technical

aspects expressed in the resultant SIGs. These were the number of correctly identified

particular interdependencies. For this study, we considered the number of correctly

identified Correlations and Operationalizations as these elements represent specialized

refinements that are directly associated with a better satisficing of NFRs.

 As a deliverable of this experiment, we asked the participants to submit their SIGs

with a signed informed consent by email. In this manner, we could officialize the

participation of every individual and gather the outcome models for comparison with the

authoritative control and further analysis.

 To measure response correctness, we compared each SIG produced by each

participant with an authoritative one that we have developed based on previous studies

performed by Prof. Cysneiros, representing our control sample. To gauge the similarity

between the participant's model and the authoritative model, we counted the number of

correctly identified Correlations and Operationalizations in the participant's response. A

 65

Correlation or Operationalization had to be expressed in the authoritative model to be

considered correct.

 During the comparison of each participant's resultant model with our control

sample, we also have taken into the account taxonomy variations regarding the name of

elements used for Correlations and Operationalizations. For instance, an element

described as "Use Voice" involved in a Operationalization in an outcome SIG, was

considered as a correct answer although the same Operationalization was outlined in our

control sample with a "Voice Recognition" labeled element. The same principle was

applied for all the elements involved in Correlations. We decided to follow this method

based on the fact that NFRs are usually defined in a subjective manner. Therefore,

different terms can be used to emphasize the same solution for satisficing a particular

NFR.

 Additionally, it is important to mention that we conducted a blind evaluation

regarding the outcomes of each participant. In other words, after gathering all the results

provided by the subjects, we performed the comparison against our control sample

disregarding the group of the target participant. To achieve this purpose, we arranged all

the obtained results unitedly and conducted our analysis in a random order. The name of

the participant and consequently the group which he/she belonged was kept hidden until

all the evaluations were finished.

 Despite the measures that we have taken to mitigate threats regarding the internal

and external validity of our experiment, we have also performed post-experiment actions.

 66

We have assured that every outcome provided by the participants was modeled according

to the NFR Framework notation in order to make the comparison with the control sample

possible. Also, among our initial population for this study, we have eliminated two

participants due to the detection of mutual collaboration. The outcome of both

participants included the same amount of elicited NFRs, the equivalent number of found

Operationalizations and Correlations, and the identical taxonomy regarding the name of

elements. As a result of this action, our sample size for this study was reduced to a total

of 12 participants.

5.6 Proposed Scenario

In order to bring this research experiment as close to reality as possible, we suggested the

participants a practical scenario for developing a software system. We wanted to create a

scenario that would appeal to students as an interesting one to participate, yet at the same

time be complex enough to demand a significant number of NFRs to be elicited and

therefore could serve as a reliable scenario to test the effectiveness of our approach.

Hence, we developed a hypothetical situation involving the development of a software

system for an Autonomous Taxi Service company as the following:

ATS is a company that provides a riding service with driverless taxi vehicles. Its

market share is worldwide, and their number of active users is exponentially growing.

Therefore, the company aims to invest in a modern and innovative software system to

adequate their business properly. The following TABLE 1 emphasizes the main expected

functionalities of the system for the target business.

 67

Description Actor

FRQ1

A customer must be able to order a taxi from any device

with internet connection, including smartphones, tablets,

and computers.

Customer

FRQ2
The system must be able to detect the nearest available

vehicle and assign it to the current customer.

Geolocation

Service

FRQ3

A customer must be able to create an account with personal

information such as full name, email, telephone, and

desired payment method and details.

Customer

FRQ4
A customer must be able to delete its account and

unsubscribe the service at any time.
Customer

FRQ5
The system must handle credit card payments. Credit card

information should be linked to a customer account.

Credit Payment

Service

FRQ6
The system must keep track of customer destinations in

order to identify and suggest alternative routes.

Geolocation

Service

FRQ7
A customer must agree to terms and conditions of the

service provided by the time the account is created.
Customer

FRQ8
The system must calculate the price for a specific trip by

the request time.
Vehicle

FRQ9

A customer must be able to cancel its trip at any time. In

case of trip cancellation, the system should direct the

driverless car to the safest drop-off point.

Customer

FRQ10
The system must charge the customer by the end of the

trip.
Vehicle

FRQ11
The system must track the live location of driverless

vehicles for management purposes.

Geolocation

Service

 68

FRQ12
The system must provide reports for management

purposes.

Service

Administrator

Table 1 Expected functionalities in the experiment scenario

 To appropriately represent the hypothetical client needs, we also provided a

supporting software documentation. Figures Figure 34, Figure 35, and Figure 36 illustrate

samples of the produced documentation. The full documentation can be visualized in

Appendix A.

Additionally, it is important to mention that the identification of NFRs for this

proposed scenario was part of the experiment. We expected this outcome from each

subject. Therefore, our documentation does not provide information about NFRs as we

left it for the participant's interpretation.

 69

Figure 34 Use Case for the proposed scenario

Figure 35 Class Diagram for the proposed scenario

 70

Figure 36 Sequence Diagram for the proposed scenario

Our positive control for the proposed scenario covered a set of expected NFRs,

including Privacy, Security, Traceability, Transparency, Usability, and Performance.

Figures Figure 37 and Figure 38 illustrate two SIGs that were part of this authoritative

control. The full documentation regarding our control sample can be visualized in

Appendix B of this thesis. Once more, it is important to emphasize that these SIGs do not

aim at choosing one Operationalization over another. The goal is to represent the largest

set of alternatives possible that could be used by a software engineer during a project.

The whole set of expected NFRs represented a total number of 52

Operationalizations and 28 Correlations. Every participant was able to elicit and model

 71

at least one of the expected NFRs expressed in the positive control. We demonstrate a

comprehensive analysis of the findings of this study in the following chapter.

Figure 37 Positive Control: Privacy SIG

 72

Figure 38 Positive Control: Security SIG

5.7 Summary

In this chapter, we emphasized the methodology applied in our research experiment. We

discussed the hypothesis and variables of this study. Also, we described our research

design and its characteristics including the utilized methods and techniques for collecting

data, addressing threats to validity, and dividing participants into designated groups.

 73

Furthermore, we described the proposed scenario for our experiment. We

suggested a realistic scenario for a software system development, with the necessary

fundamental documentation. Consequently, we believe that participants in this research

study were able to identify and elicit NFRs in a reasonable industrial manner.

 74

Chapter 6
Findings and Discussion

In this chapter, we discuss our findings based on the performed evaluation experiment.

Unfortunately, we are not able to expose detailed information about the collected data

due to a non-disclosure agreement. Therefore, we only demonstrate a resultant analysis

represented by average and percentage values.

Also, we present our interpretation based on the demonstrated analytical results.

We state our beliefs and critical findings associated with the outcomes of this research

experiment.

6.1 Overview

As a result of conducting our evaluation, we were able to collect a sample composed of

12 participants. Half of the participants performed the experiment using the NDR Tool as

a knowledge-assistance technique. The other half of subjects completed the study using

only pure NFR catalogs as a knowledge-assistance technique.

Along this chapter, we will refer to this division among participants as Group with

NDR Tool for those individuals that performed the study assisted by the NDR Tool, and

Group with NFR Catalogs for those subjects that were aided by simple NFR catalogs

during the experiment.

 75

Both groups could rely on the same amount of knowledge. In other words, either

knowledge-assistance techniques offered identical information about the following NFRs:

Privacy, Security, Traceability, Transparency, and Usability.

The main difference between both knowledge-assistance techniques is associated

with the representation of information. The NDR Tool provides an aggregated approach

for visualizing NFR knowledge. Additionally, it allows users to search for a particular

element by simply providing a search term. It also allows one to navigate from one NFR

to another when correlations are in place. On the other hand, pure NFR catalogs

demonstrate NFR knowledge simply through static pre-generated images. Even

illustrating the same amount of information as the NDR Tool, pure NFR catalogs do not

offer any dynamic functionality that may be used to search a specific element or

demonstrate trade-offs among different NFRs.

Ultimately, our authoritative control emphasized the main expected NFRs for the

provided scenario, including Privacy, Security, Traceability, Transparency, Usability,

and Performance. Each participant in this study was able to elicit and model more than

one of the required NFRs. The following sections describe a comprehensive analysis

regarding the outcomes of this research experiment.

6.2 Analysis

Before demonstrating our comprehensive analysis, we first introduce fundamental

statistical concepts applied in our investigation described in this section. We denote them

as the following:

 76

• Min: The minimum existent numerical value in a given dataset.

• Max: The maximum existent numerical value in a given dataset.

• Median: Represents the central tendency value in a population.

• Mean: Describes an average value in a dataset.

• Standard Deviation: Describes a statistical value for indicating the

general variability in a numerical dataset.

After gathering the models from each participant, we manually measured the

number of correct Operationalizations and Correlations according to our positive

control. Also, we identified each NFR elicited by every participant. Then, we registered

the totals in a CSV file and imported it into the IBM Statistical Analysis Software

Package (SPSS)8 in order to conduct our statistical analysis.

8 http://www.ibm.com/analytics/us/en/technology/spss/spss.html

 77

Operationalizations

Figure 39 Box plot of Descriptive findings: Percentage of found Operationalizations

 Figure 39 illustrates a box plot as a graphical visualization for our detailed

findings regarding the percentage of the identified Operationalizations in each group.

Both groups define a population positively skewed. The central tendency measure

(Median) indicates that the average within Group with NDR Tool (Median=25%) is

significantly greater than the one within Group with NFR Catalogs (Median=11.54%).

Additionally, both groups demonstrate related variability since their spread of data points

are similar regarding the graphical size and value of the Interquartile Range (IQR).

Furthermore, Group with NFR Catalogs presents a distribution of results more

concentrated towards to the minimum possible value than the produced distribution of

Group with NDR Tool. This observation means that most of the participants in Group

 78

with NFR Catalogs identified a low percentage of Operationalizations in comparison to

participants in Group with NDR Tool.

It is important to mention that both datasets representing each group were free of

outliers. Every evaluated data point regarding the identified percentage of

Operationalizations by each participant was part of the upper and lower limit range of

this evaluation.

Correlations

Figure 40 Box plot of Descriptive findings: Percentage of Correlations

 Figure 40 expresses a graphical representation for our findings regarding the

percentage of found Correlations. The box plot graph demonstrates a positively skewed

 79

dataset for both groups. The central tendency measure (Median) shows that the average

of Group with NDR Tool (Median=30.36%) is significantly higher than the one from

Group with NFR Catalogs (Median=8.93%). Moreover, the Group with NDR Tool

indicates a greater variability regarding the spread of data. Both the graphical and

numerical value of the Interquartile Range (IQR) are greater than the Group with NFR

Catalogs one. Furthermore, in this case, both groups present a distribution more

concentrated towards the minimum value of each dataset. However, it is noticeable that

participants within the Group with NDR Tool were responsible for eliciting a high

percentage of Correlations in comparison to the other group because their minimum

possible percentage value is still considered a medium-high percentage amount overall.

 Lastly, as also observed in the Operationalizations evaluation, both of the datasets

employed in this Correlation analysis were free of outliers. The calculated upper and

lower range of the datasets in this investigation embraced all the available data points.

6.3 Hypotheses testing

In regards to our inferential analysis, we decided to evaluate the previously stated

hypotheses. As our dataset does not characterize a normal distribution, the inferential

evaluation of our hypotheses must be performed by a non-parametric test. Additionally,

as our investigation only observes two categories regarding the independent variable of

this study, Mann-Whitney turned to be the appropriated statistical test for adequately

analyze our hypotheses.

 The following Figure 41 demonstrates the evaluation of our H1:

 80

Figure 41 Mann-Whitney Test results for H1

 The results indicate that the null hypothesis should be rejected. The Mann-

Whitney test calculated a 2-tailed sigma of 0.036, which satisfies the condition for

accepting or rejecting a given hypothesis (p < 0.05). Additionally, through the Mann-

Whitney test, it is possible to note mean rank among both groups. Group with NDR Tool

(label 2.00) demonstrated a significantly higher mean rank (8.67) in comparison to the

value (4.33) denoted by Group with NFR Catalogs (label 1.00).

 As a consequence, we can confirm our H1 hypothesis: The NDR Tool helps

software engineers to identify more Operationalizations.

 81

 The following Figure 42 Mann-Whitney Test results for H2 illustrates the

evaluation of H2:

Figure 42 Mann-Whitney Test results for H2

 The findings also indicate that the null hypothesis should be rejected. The test

measured a 2-tailed sigma of 0.015, meeting the necessary condition for accepting or

denying a particular hypothesis (p < 0.05). The mean rank for each group is also

demonstrated in this analysis. Group with NDR Tool (label 2.00) showed a greater mean

rank value (9.00) in comparison to the other group (4.00).

 82

 As a result of this analysis, we can also confirm our H2 hypothesis: The NDR

Tool helps software engineers to identify more Correlations.

6.4 Discussion

This research experimentation was conducted to evaluate whether the use of a customized

knowledge-assistance technique can support software engineers to better elicit NFRs. Our

results suggest that the NDR Tool can facilitate the reuse of NFR knowledge and

therefore contribute to elicit more and better NFRs. Aside from the statistical

conclusions, we also raise the following assumptions that could have influenced the

outcomes of this evaluation.

In both descriptive and inferential analysis, we were able to notice the significant

results from Group with NDR Tool over Group with NFR Catalogs. We believe that the

features provided by the NDR Tool played an influential role in the overall outcome of

the experiment analysis. Among these features we should mention:

• The capability to navigate from one NFR to another with a simple click.

• The ability to query one particular NFR and get back its

Operationalizations unitedly with possible Correlations that could be

triggered from these Operationalizations.

• The non-restrictive search ability that allows the software engineer to

exercise different levels of granularity to search for NFR related

 83

capabilities. For instance, Search for “fingerprint”, Search for “Data

Disclosure”, Search for “Speech Recognition”.

• The inferences provided by the NDR Tool regarding the occurrences of a

particular element across the available NFRs in the Knowledge Repository

(Correlations).

We believe that this set of features offered convenience and helped participants

within the Group with NDR Tool to easily navigate through the available NFR knowledge

and identify a target characteristic required by the proposed scenario. For instance, the

proposed scenario demanded that the needed system had to be accessible from any device

with internet connection. A participant could simply use the NDR Tool to search for

"tablet" and understand that there is a "Use Tablets" capability in a certain refinement

level that helps satisficing Usability.

We also consider that this collection of functionalities assisted Group with NDR

Tool participants to better identify possible synergies and conflicts regarding an element

that occurs in the satisficing of multiple NFRs. For example, a user wondering whether

Performance correlates with another NFR could quickly use the NDR Tool to search for

"Performance" and see its occurrence across the Knowledge Repository. As a result, after

identifying the NFRs that correlates with Performance, the user could still verify specific

details of the correlation by selecting a NFR from the list of occurrences.

Regarding the sample size of the experiment, we understand that a larger dataset

may produce more accurate outcomes regarding both groups. Due to a class size

 84

limitation, we could only gather valid results from 12 participants. We aim to reproduce

this study in a near future with a bigger population to try to generate more precise

statistical results and identify more relationships regarding our variables.

In an overall manner, we consider that it was possible to highlight our proposed

approach as an alternative for dealing and facilitating the reuse of NFR Knowledge

through the performed research experiment. In an era where NFRs are still incorrectly

underestimated on software projects, we believe that our developed work arises as an

important contribution to the alternatives of relatively new resources for dealing with the

reuse of NFR knowledge during the early phases of software development lifecycle.

6.5 Summary

In this chapter, we demonstrated our findings regarding the performed controlled

experiment. Firstly, we emphasized an overview associated with the circumstances of the

experiment and its outcomes.

Then, we depicted a descriptive and inferential analysis conducted over the results

of this study. We compared the statistical outputs generated by the analysis over both

observed groups: Group with NDR Tool and Group with NFR Catalogs. In a statistical

comparison, Group with NDR Tool performance was satisfactorily greater than Group

with NFR Catalogs. We also tested our proposed hypotheses and statistically accepted

them.

Finally, we discussed our findings regarding the performed experiment. We

denoted our central beliefs about the obtained results and which factors could have

 85

affected these outcomes. Mainly, we believe that the main features of our proposed

approach played a significant role in the experiment output. Additionally, we understand

that a larger sample size may produce more accurate results.

 86

Chapter 7
Conclusions

Dealing with NFRs within software projects have always been a challenge since most of

the notations and techniques are currently designed primarily focusing on the

representation and understanding of Functional Requirements. Moreover, several recent

studies have demonstrated that NFRs are still not being addressed adequately since

software engineers rarely take into the account its elicitation and modeling during the

early stage of the development cycle.

 In this study, we proposed an approach for assisting software engineers with the

reuse of NFR Knowledge for a better elicitation and modeling. Our developed approach

uses the NDR Ontology and the NFR Framework as a baseline. The NDR Tool uses SIGs

developed under the NFR Framework notation as input for adding NFR information into

a Knowledge Repository. On the other hand, the NDR Ontology is employed as a model

on a knowledge-representation level. The system follows the ontology guidelines to

transform the information obtained from SIGs into a machine-readable format data. By

having NFR knowledge in a machine-readable composition, the NDR Tool allows

software engineers to search for particular elements associated with multiple NFRs by

abstractly querying the Knowledge Repository. Then, when applicable, it displays a real-

time generated graphical model that also follows the NFR Framework notation. As an

additional feature for identifying possible synergies and conflicts, the tool also

 87

demonstrates the occurrences of a particular element among the existent NFRs in the

Knowledge Repository.

 Our major goal in this thesis is to assemble a strong foundation for the NDR

Framework to grow. Therefore, as part of our contributions, we developed and

implemented the NDR Tool which will be the NDR Framework's core.

 As a second contribution, we conducted a comprehensive analysis of the

applicability of the NDR Tool in a real-world scenario. We carried out a controlled

experiment with human participants. The individuals were divided into two groups, one

required to perform the experiment with the NDR Tool as a knowledge-assistance

method, and the other needed to complete the study using pure NFR Catalogs as a

supporting knowledge technique. Both groups needed to elicit and model as many as

possible NFRs regarding a provided real-world scenario. We evaluated their outcomes on

the number of identified Operationalizations and Correlations level against an

authoritative control.

 As a final contribution, we interpreted the results of our extensive analysis over

the NDR Tool's applicability. Our findings statistically demonstrated that the NDR Tool

could help software engineers to elicit better NFRs by providing the reuse of its

knowledge. More than providing a graphical visualization, the NDR Tool provides an

integration of different SIGs regarding one or multiple NFRs into a sole representation,

characterizing a constant NFR knowledge evolution.

 88

7.1 Future work

As a future work of this study, we aim to reproduce our controlled experiment with a

larger population. We believe that having a greater sample size will increase the chances

of producing more accurate results on the analysis of the applicability of the NDR Tool.

As well it will provide us important feedback on weaknesses and strengths of the current

approach.

Additionally, we aim to add more features to the NDR Tool. As the graphical

representations tend to scale in a broad manner, we intend to implement alternative

methods to visualize the information. We consider developing filters regarding

refinements and interdependencies in order to demonstrate the knowledge with different

granularity levels. Also, we aim to implement an exportation feature to promote the

integration of existent systems with our proposed approach.

We also envision to exploit the possible extensibility of our proposed approach.

As a cloud-designed system, we believe that the NDR Tool can be employed as a service

for self-adaptive systems. In other words, we envision to provide NFR knowledge in a

real-time manner for self-adaptive systems through the NDR Tool. Several of these

systems rely on NFR characteristics such as Performance and Availability. Therefore, we

envision our approach as a decision-making support regarding NFR knowledge in

adaptive scenarios. A suitable environment for our developed approach would be the

MAPE-K Loop [45]. We understand that the NDR Tool can fit as a resource on the

 89

knowledge layer and provide information when requested during the Analyze and Plan

stages of the MAPE-K Loop.

 90

Bibliography

[1] L. Chung and J. do Prado Leite, “On Non-Functional Requirements in Software
Engineering,” in Conceptual Modeling: Foundations and Applications, vol. 5600,
A. Borgida, V. Chaudhri, P. Giorgini, and E. Yu, Eds. Springer Berlin Heidelberg,
2009, pp. 363–379.

[2] B. W. Boehm, J. R. Brown, H. Kaspar, and M. Lipow, Characteristics of software
quality. Amsterdam: North-Holland, 1978.

[3] S. E. Keller, L. G. Kahn, and R. B. Panara, “Specifying software quality
requirements with metrics,” Syst. Softw. Requir. Eng., pp. 145–163, 1990.

[4] A. Finkelstein and J. Dowell, “A comedy of errors: the London Ambulance
Service case study,” in Software Specification and Design, 1996., Proceedings of
the 8th International Workshop on, 1996, pp. 2–4.

[5] G. Roman, “A taxonomy of current issues in requirements engineering,” Computer
(Long. Beach. Calif)., vol. 18, no. 4, pp. 14–23, Apr. 1985.

[6] L. Chung, B. A. Nixon, E. Yu, and J. Mylopoulos, Non-Functional Requirements
in Software Engineering. Springer US, 1999.

[7] H. A. Simon, The sciences of the artificial, vol. 136. 1996.
[8] J. Mylopoulos, L. Chung, and B. Nixon, “Representing and using nonfunctional

requirements: a process-oriented approach,” Softw. Eng. IEEE Trans., vol. 18, no.
6, pp. 483–497, Jun. 1992.

[9] L. M. Cysneiros, “Evaluating the Effectiveness of Using Catalogues to Elicit Non-
Functional Requirements,” in WER, 2007, pp. 107–115.

[10] M. de Gramatica, K. Labunets, F. Massacci, F. Paci, and A. Tedeschi, “The Role
of Catalogues of Threats and Security Controls in Security Risk Assessment: An
Empirical Study with ATM Professionals,” in Requirements Engineering:
Foundation for Software Quality: 21st International Working Conference, REFSQ
2015, Essen, Germany, March 23-26, 2015. Proceedings, A. S. Fricker and K.
Schneider, Eds. Cham: Springer International Publishing, 2015, pp. 98–114.

[11] R. Veleda and L. M. Cysneiros, “An Initial Approach to Reuse Non-Functional
Requirements Knowledge,” in Proceedings of the Eighth International i*
Workshop (istar 2015), 2015, pp. 25–30.

[12] N. S. Bullet, “Essence and Accidents of Software Engineering, FP Brooks,” IEEE
Comput., vol. 20, no. 4, pp. 10–19, 1987.

[13] A. M. Davis, Software Requirements: Objects, Functions, and States. Upper
Saddle River, NJ, USA: Prentice-Hall, Inc., 1993.

[14] L. M. Cysneiros and J. C. S. do Prado Leite, “Nonfunctional requirements: from
elicitation to conceptual models,” IEEE Trans. Softw. Eng., vol. 30, no. 5, pp. 328–
350, May 2004.

[15] L. Chung and B. A. Nixon, “Tool Support for Systematic Treatment of Non-

 91

Functional Requirements.",” Manuscript, December, 1994.
[16] J. Horkoff, Y. Yu, and S. K. Eric, “OpenOME: An Open-source Goal and Agent-

Oriented Model Drawing and Analysis Tool.,” in iStar, 2011, pp. 154–156.
[17] S. Supakkul and L. Chung, “The RE-Tools: A multi-notational requirements

modeling toolkit,” in Requirements Engineering Conference (RE), 2012 20th IEEE
International, 2012, pp. 333–334.

[18] G. Mussbacher and D. Amyot, “Goal and scenario modeling, analysis, and
transformation with jUCMNav,” in Software Engineering - Companion Volume,
2009. ICSE-Companion 2009. 31st International Conference on, 2009, pp. 431–
432.

[19] L. M. Cysneiros, J. C. S. do Prado Leite, and J. de Melo Sabat Neto, “A
Framework for Integrating Non-Functional Requirements into Conceptual
Models,” Requir. Eng., vol. 6, no. 2, pp. 97–115, 2001.

[20] D. Mairiza and D. Zowghi, “Constructing a Catalogue of Conflicts among Non-
functional Requirements,” in Evaluation of Novel Approaches to Software
Engineering: 5th International Conference, ENASE 2010, Athens, Greece, July 22-
24, 2010, Revised Selected Papers, L. A. Maciaszek and P. Loucopoulos, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 31–44.

[21] J. Doerr, D. Kerkow, T. Koenig, T. Olsson, and T. Suzuki, “Non-functional
requirements in industry - three case studies adopting an experience-based NFR
method,” in Requirements Engineering, 2005. Proceedings. 13th IEEE
International Conference on, 2005, pp. 373–382.

[22] T. H. Al Balushi, P. R. F. Sampaio, and P. Loucopoulos, “Eliciting and prioritizing
quality requirements supported by ontologies: a case study using the ElicitO
framework and tool,” Expert Syst., vol. 30, no. 2, pp. 129–151, 2013.

[23] R. Guizzardi, F.-L. Li, A. Borgida, G. Guizzardi, J. Horkoff, and J. Mylopoulos,
“An Ontological Interpretation of Non-Functional Requirements,” 2014.

[24] G. Guizzardi and G. Wagner, “A Unified Foundational Ontology and some
Applications of it in Business Modeling.,” in CAiSE Workshops (3), 2004, pp.
129–143.

[25] C. L. Liu, “Ontology-Based Conflict Analysis Method in Non-functional
Requirements,” in Computer and Information Science (ICIS), 2010 IEEE/ACIS 9th
International Conference on, 2010, pp. 491–496.

[26] G. Dobson, S. Hall, and G. Kotonya, “A Domain-Independent Ontology for Non-
Functional Requirements,” in e-Business Engineering, 2007. ICEBE 2007. IEEE
International Conference on, 2007, pp. 563–566.

[27] N. Koay, P. Kataria, R. Juric, P. Oberndorf, and G. Terstyanszky, “Ontological
support for managing non-functional requirements in pervasive healthcare,” in
System Sciences, 2009. HICSS’09. 42nd Hawaii International Conference on,
2009, pp. 1–10.

[28] P. P. Sancho, C. Juiz, R. Puigjaner, L. Chung, and N. Subramanian, “An Approach
to Ontology-aided Performance Engineering Through NFR Framework,” in

 92

Proceedings of the 6th International Workshop on Software and Performance,
2007, pp. 125–128.

[29] C. Lopez, L. M. Cysneiros, and H. Astudillo, “NDR Ontology: Sharing and
Reusing NFR and Design Rationale Knowledge,” in Managing Requirements
Knowledge, 2008. MARK ’08. First International Workshop on, 2008, pp. 1–10.

[30] H. Hu, Q. Ma, T. Zhang, Y. Tan, H. Xiang, C. Fu, and Y. Feng, “Semantic
modelling and automated reasoning of non-functional requirement conflicts in the
context of softgoal interdependencies,” IET Softw., vol. 9, no. 6, pp. 145–156,
2015.

[31] T. Berners-Lee, J. Hendler, O. Lassila, and others, “The semantic web,” Sci. Am.,
vol. 284, no. 5, pp. 28–37, 2001.

[32] F. Manola and E. Miller, “RDF Primer,” 2004. [Online]. Available:
http://www.w3.org/TR/2004/REC-rdf-primer-20040210/.

[33] D. Brickley and R. V. Guha, “RDF Vocabulary Description Language 1.0: RDF
Schema,” 2002. [Online]. Available: https://www.w3.org/TR/2002/WD-rdf-
schema-20021112/.

[34] D. L. McGuinness, F. Van Harmelen, and others, “OWL web ontology language
overview,” 2004.

[35] E. Prud’hommeaux and A. Seaborne, “SPARQL Query Language for RDF,”
techreport, Jan. 2008.

[36] P. F. Patel-Schneider, P. Hayes, I. Horrocks, and F. Van Harmelen, “Web
Ontology Language (OWL) Abstract Syntax and Semantics,” 2002.

[37] S. Zareian, R. Veleda, M. Litoiu, M. Shtern, H. Ghanbari, and M. Garg, “K-Feed -
A Data-Oriented Approach to Application Performance Management in Cloud,” in
Cloud Computing (CLOUD), 2015 IEEE 8th International Conference on, 2015,
pp. 1045–1048.

[38] H. Khazaei, S. Zareian, R. Veleda, and M. Litoiu, “Sipresk: A Big Data Analytic
Platform for Smart Transportation,” EAI Int. Conf. Big Data Anal. Smart Cities,
2015.

[39] A. Leff and J. T. Rayfield, “Web-application development using the
Model/View/Controller design pattern,” in Enterprise Distributed Object
Computing Conference, 2001. EDOC ’01. Proceedings. Fifth IEEE International,
2001, pp. 118–127.

[40] PlayFramework, “PlayFramework,” 2016. [Online]. Available:
https://www.playframework.com/.

[41] Apache Foundation, “Apache Jena,” 2016. [Online]. Available:
https://jena.apache.org/.

[42] Apache Foundation, “Apache Fuseki,” 2016. [Online]. Available:
https://jena.apache.org/documentation/serving_data/.

[43] Graphviz, “Graphviz - Graph Visualization Software,” 2016. [Online]. Available:
http://www.graphviz.org/.

[44] S. Easterbrook, J. Singer, M.-A. Storey, and D. Damian, “Selecting Empirical

 93

Methods for Software Engineering Research,” in Guide to Advanced Empirical
Software Engineering, F. Shull, J. Singer, and D. I. K. Sjøberg, Eds. London:
Springer London, 2008, pp. 285–311.

[45] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,” Computer
(Long. Beach. Calif)., vol. 36, no. 1, pp. 41–50, Jan. 2003.

 94

Appendices

Appendix A – Proposed Scenario Documentation

 95

 96

 97

 98

 99

 100

Appendix B – Authoritative Control

 101

 102

 103

