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Abstract

Computational intensity in using full likelihood estimation of multivariate and corre-

lated data is a valid motivation to employ composite likelihood as an alternative that eases

the process by using marginal or conditional densities and reducing the dimension .

We study the problem of multiple hypothesis testing for multidimensional clustered

data. The problem of multiple comparisons is common in many applications. We propose

to construct multiple comparisons procedures based on composite likelihood statistics. The

simultaneous multivariate normal quantile is chosen as the threshold that controls the mul-

tiplicity. We focus on data arising in four cases: multivariate Gaussian, probit, quadratic

exponential models and gamma. To assess the quality of our proposed methods, we as-

sess their empirical performance via Monte Carlo simulations. It is shown that composite

likelihood based procedures maintain good control of the familywise type I error rate in

the presence of intra-cluster correlation, whereas ignoring the correlation leads to invalid

performance. Using data arising from a depression study and also kidney study, we show

how our composite likelihood approach makes an otherwise intractable analysis possible.

Moreover, we study distribution of composite likelihood ratio test when the true param-

eter is not an interior point of the parameter space. We approached the problem looking

at the geometry of the parameter space and approximating it at the true parameter by a

cone under Chernoff’s regularity. First, we established the asymptotic properties of the test
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statistic for testing continuous differentiable linear and non-linear combinations of parame-

ters and then we provide algorithms to compute the distribution of both full and composite

likelihood ratio tests for different cases and dimensions. The proposed approach is evalu-

ated by running simulations.
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Chapter 1

Composite Likelihood Estimation

1.1 Introduction

Composite likelihood methods are extensions of the likelihood method that project high-

dimensional likelihood functions to low-dimensional ones that results in less complex com-

putations [7, 30]. This dimension reduction is achieved by compounding valid marginal

or conditional densities instead of using the joint density. It has been shown that, under

regularity conditions, the composite likelihood estimator has desirable properties, such as

consistency and asymptotic normality [7, 30, 49, 50]. This makes it an appealing alternative

in inferential procedures. Xu and Reid [54] also discussed efficiency and robustness of the

composite likelihood method. They concluded that composite likelihood method is often

more reliable than full likelihood as the high dimensional joint density is more likely to

be mis-specified than lower dimensional densities. Furthermore, composite likelihood is

often more computationally convenient than full likelihood at a cost of some mild loss of
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efficiency. The magnitude of this loss depends on the dimension of the multivariate vector

and its dependency structure.

One situation that motivates us to use composite likelihood estimation is when applying

maximum likelihood on multivariate distributions encounter computational challenges, es-

pecially when sub-groups of data are correlated. For example, evaluating the full likelihood

of a multivariate probit model involves multi-dimensional integration, which quickly be-

comes computationally prohibitive. Composite likelihood reduce this computational bur-

den by using marginal densities instead of the joined density. Ignoring correlations among

the subjects in order to lower the complexity in maximum likelihood approach can lead to

invalid inferences.

Moreover, composite likelihood can help us to make the models simpler and the com-

putation less complex. For the quadratic exponential model, the normalizing constant has

to be computed through summation of all possible configurations of the clustered data and

computational intensity increases with the cluster size. By using conditional density in

composite likelihood the normalizing constant will be removed.

Composite likelihood is applicable in any situation that maximum likelihood fits and

makes the computation easier or possible.

1.1.1 Previous work

Composite likelihood methods was suggested by Lindsay [30]. It has been shown that

under regularity conditions, the composite likelihood estimator has desirable properties,

such as consistency and asymptotic normality (Cox and Reid [7], Lindsay [30], Varin [49],
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Varin et al. [50]). Although usually there is a little loss of efficiency compared to maximum

likelihood method, composite likelihood is robust in the sense that the inference is still

valid in the case of misspecification of the statistical models or parameters of the densities

(Xu and Reid [54]) and also more reliable than full likelihood since in modelling the high

dimensional joint density, misspecification is more likely to happen with lower dimensional

densities. The magnitude of loss of efficiency depends on the dimension of the multivariate

vector and its dependency structure. In some cases even the composite likelihood is fully

efficient. Let θ̂c
n denote the maximum composite likelihood estimator (MCLE). Xu and Reid

[54] give precise conditions under which θ̂c
n is consistent for θ.

Composite likelihood methodology has been applied to numerous statistical problems:

Zhao and Joe [55] proposed composite likelihood methods for multivariate data analysis.

Renard et al. [36] used it in the generalized linear mixed model; Fearnhead and Donnelly

[11] proposed to maximize the compounded marginal probabilities in genetics; Geys et al.

[16] presented a composite likelihood method for clustered binary data in the quadratic

exponential model. Composite likelihood method has also been successfully applied in

other areas including spatial statistics ( Heagerty and Lele [19], Hjort and Omre [20], Varin

and Vidoni [51] ), Markov random fields (Besag [3]), and multivariate survival analysis

(Li and Lin [29], Parner [34]). However, the potential of composite likelihood in multiple

testing has yet to be explored.

1.1.2 Outline

In this thesis, we focus on studying composite likelihood in two areas.
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• Chapter 1 covers the concept of composite likelihood estimation and its asymptotic

behaviour and shows the consistency and asymptotic normality of the estimator in

context of clustered data.

• In chapters 2 − 3, we employ composite likelihood estimation as an alternative to

full likelihood and a multivariate normal quantile as the threshold to perform mul-

tiple hypothesis testing in multidimensional and correlated data. We examine the

proposed approach via simulation and then apply it on some real data sets.

• In chapters 4− 5, we are concerned with the cases that some regularity assumptions

in composite likelihood ratio testing does not hold. we develop a theory to find the

limiting distribution of composite likelihood ratio test in the situations that the true

parameter has non-standard conditions. Then we derive the limiting distribution

and propose some algorithms to compute the test statistic in high dimensions for

testing a continuously differentiable function of the parameters. Then the approach

is validated through simulations.

• In chapter 6, two areas that the suggested approach in likelihood ratio testing can be

applied , are described as future works.

Each study is described in detail in the next chapters.
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1.2 Composite likelihood approach

Let yn×m = (y1, . . . , yn) denote a sample of size n from a joint m−variate density function

f (y; θ) where θ ∈ Θ ⊂ Rp.

For Ak ⊂ {(i, j) : j = 1, . . . , m, i = 1, . . . , n}, let yAk = {yij, (i, j) ∈ Ak} denote a subset of

the data, where k = 1, . . . , K. The composite likelihood function is then defined as

CL(θ; y) =
K

∏
k=1

f (yAk ; θ)wAk ,

where f (yAk ; θ) is the density for the subset vector yAk , and wAk are some suitably chosen

weights. The composite likelihood function can be constructed in two main ways.

Composite marginal likelihood function is built based on lower dimensional marginal

densities. For example, the univariate marginal composite likelihood function is

CL(θ) =
n

∏
i=1

m

∏
j=1

f (yij; θ)

where any dependence structure is ignored. The second class of composite likelihood

functions is constructed by univariate conditional likelihood functions

CL(θ) = ∏
i,j
(yij|yi(−j); θ)

where yi(−j) denotes the sub-vector of yi with its jth element removed.
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The composite log likelihood function is denoted by

cl(θ) = log CL(θ)

and the maximum composite likelihood estimate (MCLE) is defined as θ̂c
n = argmaxθ∈Θcl(θ).

In general, composite likelihood is a compounded form of marginal or conditional like-

lihoods, which is often easier to maximize than full likelihood. In practice, the type of

composite likelihood should be chosen so that the resulting composite score equation is

consistent for the parameters, and the computation complexity is sufficiently manageable.

Xu and Reid [54] give precise conditions under which θ̂c
n is consistent for θ. Under ap-

propriate assumptions,
√

n(θ̂c
n − θ) is also asymptotically normally distributed with mean

zero and limiting variance given by the inverse of the the Godambe information matrix

[30, 51], where

G−1(θ) = H−1(θ)J(θ)H−1(θ), (1.1)

with H(θ) = limn E(−cl(2)(θ; y))/n and J(θ) = limn var(cl(1)(θ; y))/n. Here, cl(1) is the

vector of first derivatives and cl(2) is the matrix of second order derivatives of cl(θ; y) =

log CL(θ; y) with respect to θ. The matrix H(θ) can be estimated as the negative Hessian

matrix evaluated at the maximum composite likelihood estimator, whereas the matrix J(θ)

can be estimated as the sample covariance matrix of the composite score vectors. Both

estimators, which we denote as Ĥn and Ĵn, are consistent [51].
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1.3 Asymptotic properties of composite likelihood estimator

in clustered data

Xu and Reid (2011) provided a detailed proof of consistency under misspecification, along

with a precise list of required conditions. One can obtain from their work sufficient con-

ditions for consistency even in the well-specified setting. Here, for reference, we give a

proof of some asymptotic properties of the composite likelihood estimator provided that

the model is correctly specified and data is formed by n independent clusters, each with

fixed sample size m. For the composite marginal likelihoods, regularity conditions can be

stated with slight modification of the conditions in full likelihood context.

Regularity conditions:

(A1). The marginal density function of yij, f (y; θ) is distinct for different values of y, i.e. if

θ1 6= θ2 then P( f (yij; θ) 6= f (yij; θ)) > 0, for all j = 1, . . . , m.

(A2). The marginal densities of yij have common support for all θ.

(A3). The true value θ0 is an interior point of Ω, the space of possible values of the param-

eter θ.

(A4). Let α and ∂α denote the index and partial derivative operator, respectively, as in

the standard multi-index notation from multivariable calculus. The marginal density

log f is three times continuously differentiable in a closed ball around θ0. Moreover,
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there exists a constant c and an integrable function M(y) such that

|(∂α∂θi log f )(y; θ)| ≤ M(y),

for all ||θ− θ0||2 < c, all |α| = 2, and any i = 1, . . . , p. Here, θ ∈ RP and || · ||2 denotes

the Euclidean norm.

(A5). J(θ0) is well-defined (i.e. exists and is finite) and invertible.

(A6). H(θ0) is well-defined (i.e. exists and is finite) and (strictly) positive-definite.

Define the marginal composite log-likelihood function as

cl(θ) = log CL(θ; y) =
n

∑
i=1

m

∑
j=1

log f (yij; θ),

and let clm(θ; yi) = ∑m
j=1 log f (yij; θ)).

Theorem 1.3.1. Under the regularity conditions (A1)-(A6), there exists a solution to the composite

likelihood equation, θ̂c
n, which satisfies

√
n(θ̂c

n − θ0) ⇒ G−1/2(θ0) Z

where G(θ) = H(θ)J−1(θ)H(θ), and Z is a standard normal random vector.

The proof is provided in the appendix A.
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1.3.1 Estimating H(θ) and J(θ)

Ĥn and Ĵn are estimators of H(θ) and J(θ), respectively.

To estimate H(θ) and J(θ), it is proposed in Cox and Reid [7] that

Ĥn = − 1
n

n

∑
i=1

cl(2)(θ; yi)

∣∣∣∣∣
θ=θ̂c

n

,

that Ĥ is the negative Hessian matrix evaluated at the maximum composite likelihood esti-

mator. To estimate the matrix J, we can use the sample covariance matrix of the composite

score vectors:

Ĵn =
1
n

n

∑
i=1

(cl(1)(θ; yi))
Tcl(1)(θ; yi).

Both estimators Ĥn and Ĵn are consistent [51, page 523]. For more details on the estimation

of H and J, we refer to Cox and Reid [7] and Varin [49].
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Chapter 2

Multiple Comparisons Using Composite

Likelihood in Clustered Data

2.1 Introduction

”Clustered” is referred to correlated data with a grouped structure that individual in each

group/sub-population are relating in some manners. For example, repeated measurements

in clinical studies, that each individual can be considered as a cluster, parent-sibling data,

such as data from different stages of disease spreading, or data from same pedigree, spatial

data and longitudinal studies.

This correlation structure within the clusters should be taken into account in the analy-

sis, otherwise ignoring it leads to invalid inferences. As computing full likelihood could be

challenging for correlated data, composite likelihood is introduced as a feasible alternative.

Composite likelihood method has been successfully applied in many areas. As clustered
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data is correlated, full likelihood again might encounter computational difficulty. Here, we

explore it in multiple testing problems on clustered data.

Multiplicity of hypothesis tests is an intrinsic issue arising when the number of simulta-

neous comparisons is greater than one, leading to a family-wise type I error rate larger than

α. The greater the number of comparisons, the more serious this effect becomes. Different

multiple testing procedures try to adjust this issue [4, 21]. The classical Bonferroni method

is the simplest procedure to adjust the overall type I error rate, but it is very conservative.

The Dunn-Sidák procedure [43] generalizes the Bonferroni procedure by using a slightly

less conservative p-value threshold for each comparison. Scheffe [40] established a method

for testing all possible linear comparisons among a set of normally distributed variables,

which tends to be over-conservative for a finite family of multiple comparisons. There are

some stage-wise procedures as well to improve the power. Simes [44] modified the Bon-

ferroni procedure based on ordered p-values. Holm [22] proposed a multi-stage procedure

that adjusts the family-wise error rate in each step using the number of remaining null hy-

potheses. Hommel [23] suggested a stagewise rejective multiple test based on the principle

of closed test procedures. All of these methods are less conservative and therefore more

powerful than the Bonferroni method.

However, it is difficult to construct simultaneous confidence intervals based on stage-

wise procedures. As another alternative, Hothorn, Bretz and Westfall [24] proposed to use

quantiles of the multivariate normal and multivariate t-distribution to perform multiple

comparisons in parametric methods. Therefore, the correlation structure is taken into ac-

count in this procedure and it offers more accurate control of the family-wise type I error
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rate. The approach has been employed in many parametric and nonparametric settings to

provide both multiple inferences and simultaneous intervals [24, 26, 27].

In this chapter, we propose a new procedure to handle multiple testing with a more effi-

cient threshold and with employing composite likelihood methodology. This enables us to

overcome problems with computational intensity and multiplicity issue in multiple testing

of clustered data. We explore in detail different multivariate models for correlated clus-

tered data including the multivariate normal, multivariate probit, gamma and quadratic

exponential models to illustrate our multiple comparisons approach. Moreover, we explore

the Bonferroni, Scheffé, Dunn-Sidák, Holm, and the multivariate normal quantile (MNQ)

of Hothorn et al. [24] methods with both univariate and conditional composite likelihood

formulations. Among these methods, the multivariate normal quantile threshold appears

to have the best control of the familywise type I error rate in most simulation settings.

The structure of this chapter is as follows: In Section 2.2, we develop our composite like-

lihood based test statistics for multiple inferences and establish their asymptotic properties.

In Section 2.3, we provide details on how to apply the general approach on different multi-

variate models, including normal, probit, quadratic exponential and gamma. We continue

with examining the proposed approach in the next chapter.
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2.2 Multiple comparisons procedures based on composite

likelihood

In parametric statistical model, suppose y ∼ { f (y; θ), θ ∈ Θ}, where θ = (θ1, . . . , θp)T, and

θ ∈ Θ ⊂ Rp. Let y = (yT
1 , · · · , yT

n ) denote the response variables, where yi = (yi1, · · · , yimi)
T

is the vector of observations from cluster i, i = 1, · · · , n from a study population. It is

assumed that observations across different clusters are independent, whereas observations

within the same cluster may be dependent. Note that overall sample size is ∑n
i=1 mi. We

assume that the cluster size, mi, is uniformly bounded.

Let C = Cp×c = (C(1), C(2), · · · , C(c)) denote the contrast matrix and the family of c

linear combinations of the parameters can then be specified by Cθ.

Consider the testing of the family of hypotheses {H0l : CT
(l)θ = 0, l = 1, · · · , c}. In

multiple testing, the family-wise type I error (FWER) rate is the probability of false rejection

of at least one individual null hypothesis when all null hypotheses are true:

P(rejecting at least oneH0i |
⋂
k

H0k) = α.

Let θ̂c
n be the maximum composite likelihood estimator. It is shown that

√
n(θ̂c

n− θ) −→

Np(0, G−1(θ)) where G denote the Godambe information matrix (1.1). Consider the hy-

pothesis test on a family of linear combinations of the parameters: {H0 : CTθ = 0}. Denote

by Γ = G−1(θ), and let Γ̂n denote the consistent estimator of Γ, where Γ̂n = Ĥ−1
n ĴnĤ−1

n . We

13



propose the following test statistics for our hypothesis test

Tl,n =
C(l)

T θ̂c
n√(

C(l)
TΓ̂nC(l)

)
/n

, l = 1, . . . , c. (2.1)

The limiting distribution of Tn = (T1,n, · · · , Tl,n)
T is multivariate normal MVN(0, V),

where

V = diag(D)−1/2D diag(D)−1/2, D = CG−1(θ)CT. (2.2)

Furthermore, since Vi,i = 1, the marginal asymptotic distribution of each individual Tl,n is

standard normal. In practice, we estimate V by plugging Γ̂n as a consistent estimator of

G−1(θ) into (2.2). This results in a consistent estimator of V.

The proposed test statistics are Wald-type statistics which are not invariant under re-

parametrization. Under re-parametrization, the new statistics follow the same type of lim-

iting distributions, but the values of the statistics are not the same. This is a standard

limitation that Wald-type statistics encounter.

The multivariate distribution of Tn can be approximated by a multivariate t distribution.

The denominator C(l)
TΓ̂nC(l)/n has an asymptotic equivalent distribution as C(l)

T H−1 ĴnH−1C(l)/n

based on Slutsky’ Theorem. Furthermore, Ĵn = (cl(1))Tcl(1) asymptotically follows a

Wishart (J, n). This entails that asymptotically C(l)
T H−1 ĴnH−1C(l) follows σ2

l χ2
n, where σ2

l =

14



C(l)
T H−1 JH−1C(l). Reformulate Tl,n as

C(l)
T θ̂c

n/σl√(
(C(l))

TΓ̂nC(l)

)
/(nσ2

l )

,

where the numerator is asymptotically a multivariate normal MVN (0, V), and the de-

nominator is asymptotically
√

χ2
n/n. Therefore, the multivariate distribution of Tn can be

approximated as a multivariate t(V, n), where V is the covariance matrix and n is the de-

grees of freedom.

Different procedures have been suggested to control the FWER and adjust individual test

levels. In this work we illustrate a few of these approaches.

• The Bonferroni procedure: The global intersection hypothesis ∩m
l=1H0l will be rejected

if maxl |Tl,n| > Zα/m. Each individual hypothesis H0l will be rejected if |Tl,n| > Zα/m.

• The Holm’s procedure: For each H0l, evaluate the p-value pl = 2P(Z > |Tl,n|). Order

the p-values from the least to the greatest as p(1), . . . , p(m) and the corresponding hy-

potheses are reordered as H(01), . . . , H(0m). The global intersection hypothesis ∩m
l=1H0l

will be rejected if p01 ≤ α/m. Let k denote the smallest l so that p(l) > α/m− l + 1. If

k > 1, then the individual hypotheses H01, . . . , H0,k−1 will be rejected.

• The MNQ procedure: The global intersection hypothesis ∩m
l=1H0l will be rejected if

maxl |Tl,n| > Qα,V , where Qα,V denote the equi-coordinate α quantile for a multivari-

ate normal vector with covariance matrix V. Each individual hypothesis H0l will be
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rejected if |Tl,n| > Qα,V .

The MNQ approach is handled based on the p-dimensional approximation

P
(

max |Tl,n ≤ t) ∼=
∫ t

−t
. . .
∫ t

−t
ϕp(x1, . . . , xp, V, ν)dx1, . . . , dxp

where ϕ is the limiting p-variate normal density (ν = ∞ )or the exact multivariate t-

distribution (with ν < ∞). In MNQ approach, we find Qα,V such that P
(

max |Tl,n ≤

Qα,V) = 1− α.

The MNQ method also helps to constructe the simultaneous confidence intervals. The

simultaneous (1− α)100% confidence interval for Cθ is

(
C(l)

T θ̂c
n −Qα,V

√(
C(l)

TΓ̂nC(l)

)
/n, C(l)

T θ̂c
n + Qα,V

√(
C(l)

TΓ̂nC(l)

)
/n
)
. (2.3)

Consider G(θ) = (G1(θ), . . . , Gc(θ))′ being a general nonlinear mapping from p-dimensional

θ to c-dimensional G. Let B denote the Jacobian matrix with Blm = ∂Gl/∂θm evaluated at

θ0, and Bl = (Bl1 . . . , Blp)
T. Let D∗ = BΓBT and V∗ = diag(D∗)−1/2D∗ diag(D∗)−1/2. Using

the Delta method, the approximate simultaneous 100(1− α)% confidence interval will be

(
Gl(θ̂

c
n)−Qα,V∗

√(
BT

l Γ̂nBl

)
/n, Gl(θ̂

c
n) + Qα,V∗

√(
BT

l Γ̂nBl

)
/n
)
. (2.4)

In some applications, the collection of effect sizes are nonlinear monotone transforma-

tions of the parameters. For example, we obtain odds ratio from log odds ratio by apply-

ing the exponential function. Then the simultaneous (1− α)100% confidence interval for
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G[(C(l))
Tθ], l = 1, . . . , c, is

(
G[C(l)

T θ̂c
n −Qα,V

√(
C(l)

TΓ̂nC(l)

)
/n], G[C(l)

T θ̂c
n + Qα,V

√(
C(l)

TΓ̂nC(l)

)
/n]
)
. (2.5)

2.3 Four multivariate models

To examine our methodology, we consider four different multivariate distributions: The

multivariate normal, multivariate probit, quadratic exponential and gamma distributions.

Gamma distribution is considered as an example of a skewed multivariate model. For the

all mentioned distributions except the third one, the composite likelihood is constructed as

sum of univariate likelihoods, whereas for the third distribution, the composite likelihood is

constructed as conditional likelihood. Our methodology is not limited to these distributions

and can be applied to other distributions as well.

Let Xi denote an mi × p matrix containing the values of p covariates for the mi individ-

uals in the ith cluster and β = (β1, . . . , βp)T denote the vector of regression coefficients. Let

~xij denote the jth row of the matrix Xi (this is the vector of covariates for individual j in

cluster i).

2.3.1 Multivariate Gaussian distribution

Let {(yi, Xi), i = 1, · · · n}, denote the response and covariates arising from a multivariate

normal model, with yi = Xiβ + εi, i = 1, . . . , n, and mi = m. We assume that εi ∼ Nm(0, Σ)

where Σ = (σij), i, j = 1, . . . , m, is an arbitrary covariance matrix. The univariate composite
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likelihood is thus equal to

cl (β) =
n

∑
i=1

m

∑
j=1

(
−1

2
log(2πσjj)−

1
2σjj

(yij −~xijβ)
2

)
,

where the σjj’s are nuisance parameters and with ~xij denoting the jth row of the matrix

Xi. To estimate the regression coefficients, an iterative algorithm is used: Given the current

estimate for the nuisance parameters σjj’s, we maximize the composite likelihood to obtain

an estimate of

β̂c
n = (

n

∑
i=1

XT
i WXi)

−1
n

∑
i=1

XT
i Wyi,

where W = diag(Σ)−1, and given a current estimate for β, we use the sample covariance

matrix of residuals to estimate Σ. To estimate the sample covariance we use the unbiased

empirical estimator

σ̂jk
∣∣
β

=
1

n− p

n

∑
i=1

(yij −~xijβ)(yik −~xikβ), 1 ≤ j, k ≤ m.

Based on the estimates β̂c
n and Σ̂, we obtain estimates for H(β) = n−1 (∑n

i=1 XT
i WXi

)
and

J(β) = n−1 (∑n
i=1 XT

i W Σ WXi
)

, with W being replaced by its estimate Ŵ = diag(Σ̂). This

is repeated until convergence is observed for β̂c
n. The correlation is taken into account in

estimating the covariance matrix, since Ŵσ̂jkŴ = Σ̂

Cov(β̂) =

(
n

∑
i=1

XT
i ŴXi

)−1( n

∑
i=1

XT
i Ŵσ̂jkŴXi

)( n

∑
i=1

XT
i ŴXi

)−1
T
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The result is similar to the ones in generalized estimating equations (GEE). However,

GEE uses the model of the mean of the data and covariance matrix needs to be specified

too. But in composite likelihood estimation, the model could be any marginal or conditional

densities.

2.3.2 Multivariate probit model

Let y∗i = Xiβ + εi with εi ∼ Nm(0, Σ) and Σ = σR, where R is an m×m correlation matrix.

The variables y∗i are the latent response variables, and their dichotomized version of the

latent variable with yij = I(y∗ij > 0), j = 1, · · · , m yield the multivariate probit model.

We therefore have that P(yij = 1|Xi) = Φ(~xijβ/σ) where Φ denotes the univariate

standard normal cumulative distribution function. It follows that the parameters β and σ

are not fully identifiable in the model, and we can only estimate the ratio β/σ. To simplify

notation, σ is set equal to 1 in what follows. The univariate composite log-likelihood

function of the probit model is then formulated as

cl(β; y) = ∑n
i=1 ∑m

j=1[yij log Φ
(
~xijβ

)
+ (1− yij) log

(
1−Φ

(
~xijβ

))
].

Denoting µij = P(yij = 1|Xi), and µi = (µi1, . . . , µim)
T, we have

cl(1)(β; y) = ∑n
i=1

(
∂µi
∂β

)T
Π−1

i (yi − µi),
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where Πi = diag(var(yi1), · · · , var(yim)), and var(yij) = µij(1− µij). This yields

H(β) = n−1 ∑n
i=1

(
∂µi
∂β

)T
Π−1

i

(
∂µi
∂β

)
and J(β) = n−1 ∑n

i=1

(
∂µi
∂β

)T
Π−1

i cov(yi)Π−1
i

(
∂µi
∂β

)
.

To find the estimates β̂c
n, we use the Newton-Raphson algorithm. Denote µ̂in = {µ̂i1n, µ̂i2n, . . . , µ̂imn}T,

where µ̂i = Φ(Xi β̂
c
n). Let Π̂in denote the estimator of Πi obtained by substituting µ̂ijn for

µij. We estimate H(β) and J(β) as

Ĥn = n−1 ∑n
i=1(

∂µi
∂β

∣∣∣
β̂c

n
)TΠ̂−1

in ( ∂µi
∂β

∣∣∣
β̂c

n
)

Ĵn = n−1 ∑n
i=1(

∂µi
∂β

∣∣∣
β̂c

n
)TΠ̂−1

in ĉovn(yi) Π̂−1
in ( ∂µi

∂β

∣∣∣
β̂c

n
),

calculating the empirical variance as ĉovn(yi) = (yi − µ̂in)(yi − µ̂in)
T.

Computational Aspects

The score vector of the probit model is

S = ∑
yij=1

φ1(~xijβ)

Φ1(~xijβ)
(~xij)

T − ∑
yij=0

φ1(~xijβ)

1−Φ1(~xijβ)
(~xij)

T

and the expectation of Hessian matrix

E(− ∂

∂β
S) =

n

∑
i=1

m

∑
j=1

φ2
1(~xijβ)

Φ1(~xijβ)(1−Φ1(~xijβ))
(~xij)

T~xij (2.6)
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and

Var(S) =
n

∑
i=1

m

∑
j=1

φ2
1(~xijβ)

Φ1(~xijβ)(1−Φ1(~xijβ))
(~xij)

T~xij

+
n

∑
i=1

∑
j 6=k

E(yijyik)−Φ1(~xijβ)Φ1(~xikβ)

Φ1(~xijβ)(1−Φ1(~xijβ))Φ1(~xikβ)(1−Φ1(~xikβ))
φ1(~xijβ)φ1(~xikβ)(~xij)

T~xik

(2.7)

Where E(yijyik) = Φ2(~xijβ,~xikβ, ρ). As the correlation of the latent variables ρ = Corr(y∗ij, y∗ik)

can’t be computed explicitly, we estimate it using the response variables,

E(yijyik) = ∑
j<k

yijyik

(m
2 )

i = 1 · · · , n, j, k = 1, · · · , m.

In estimation of β̂c
n, occasionally the value of ~xijβ is either very small or large, which

leads Φ(~xijβ) to be very close to zero or one, which in turn makes the computation unstable.

To avoid this problem, we adopt Demidenko [8] suggestion of approximation based on the

following limits for the standard normal density function

lim
s−→−∞

φ(s)
sΦ(s)

= −1, lim
s−→∞

φ(s)
s(1−Φ(s))

= 1,

sΦ(s) + φ(s) > 0, φ(s)− s(1−Φ(s)) > 0, ∀s ∈ R
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Therefore first and second terms of the Var(S) are approximated as

φ2
1(s)

Φ1(s)(1−Φ1(s))
=



φ2
1(s)

Φ1(s)(1−Φ1(s))
, if |s| ≤ 5.

φ(s)× s, if s > 5.

−φ(s)× s, if s < −5.

Let E = E(yijyik), then

E−Φ1(s)Φ1(t)
Φ(s)(1−Φ(s))Φ(t)(1−Φ(t))

φ(s)φ(t) =



E−Φ(s)Φ(t)
Φ(s)(1−Φ(s))Φ(t)(1−Φ(t))φ(s)φ(t), if |t| ≤ 5, |s| ≤ 5.

(E−Φ(t)) φ(t)s
Φ(t)(1−Φ(t)) , if |t| ≤ 5, s > 5.

−Esφ(t)
Φ(t)(1−Φ(t)) , if |t| ≤ 5, s < −5.

(E−Φ(s)) φ(s)t
Φ(s)(1−Φ(s)) , if t > 5, |s| ≤ 5.

st(E− 1), if t > 5, s > 5.

−Est, if t > 5, s < −5.

−Etφ(s)
Φ(s)(1−Φ(s)) , if t < −5, |s| ≤ 5.

−Est, if t < −5, s > 5.

Est, if t < −5, s < −5.
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2.3.3 Quadratic exponential model

The quadratic exponential model is a popular tool that captures the mean function and

within family correlation structure simultaneously. Therefore, it is used to model clustered

binary data with intra-cluster interactions (Geys et al. [16]). In this model, the binary

observations take values yij ∈ {−1, 1}. This coding for the response variable is used instead

of 0 and 1 to provides a parametrization that is more suitable when success and failure

demonstrate completely reversed situations. The joint distribution is given by

fy(yi) ∝ exp
{

∑mi
j=1 µ∗ijyij + ∑j<j′ w∗ijj′yijyij′

}
, (2.8)

where µ∗ij is a parameter which describes the main effect of the measurements and w∗ijj′ de-

scribes the association between pairs of measurements within the cluster yi. Independence

corresponds to the case that w∗ijj′ = 0 and positive or negative correlation corresponds to

w∗ijj′ > 0 or w∗ijj′ < 0, respectively. For simplicity, we consider the case that µ∗ij = µ∗i and

w∗ijj′ = w∗i , noting that our methodology can be readily applied to the general scenario as

well. Under this simplification, Molenberghs and Ryan [33], showed that the joint distribu-

tion can be equivalently written in terms of zi = ∑mi
j=1 I(yij = 1) (the number of successes

in the ith cluster) as

fy(yi) ∝ exp{µizi − wizi(mi − zi)},

where wi = 2w∗i and µi = 2µ∗i .

Specifying the normalizing constant in (2.8) is famously difficult, yet necessary to com-
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pute the full likelihood function. Employing composite likelihood approach helps to get

rid of such an intensive calculation. Replacing the joint distribution function with the

conditional distributions leads to a conditional composite likelihood function cl(µ, w; y) =

∑n
i=1 ∑mi

j=1 log f (yij|{yij′}, j′ 6= j), which does not require computation of the normalizing

constant.

The two conditional probabilities are defined as

pis =
exp{µi−wi(mi−2zi+1)}

1+exp{µi−wi(mi−2zi+1)} , pi f =
exp{−µi+wi(mi−2zi−1)}

1+exp{−µi+wi(mi−2zi−1)} .

where pis is the conditional probability of one more success, given zi− 1 successes and mi−

zi failures, while pi f is the conditional probability of one more failure, given zi successes

and mi − zi − 1 failures. Note that pi f 6= 1 − pis, because of the term mi − 2zi ± 1. The

composite likelihood can now be expressed as

cl(µ, w; y) =
n

∑
i=1

(
zi log pis + (mi − zi) log pi f

)
. (2.9)

The obtained form of the composite likelihood shows that a logistic regression approach

can be used to estimate the parameters. We model a covariate effect by using the linear

model µi = Xiβ, with wi = w interpreted as an additional parameter. That is, for the param-

eter w, the value of the covariate is set to −(mi − 2zi + 1) when yij = 1 and −(mi − 2zi − 1)

when yij = −1. This allows us to obtain MCLE estimates of both β and w using iterative

re-weighted least squares, commonly used to solve logistic regression maximization prob-
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lems. To estimate the covariance of β̂c
n, we computed Ĵn as the empirical variance of the

score vector,


∂ fyi
∂µ

∂ fyi
∂w

 =

 zi(1− pis)− (mi − zi)(1− pi f )

−zi(mi − 2zi + 1)(1− pis)− (mi − zi)(mi − 2zi − 1)(1− pi f )



plugging in estimates of µ∗i , w∗ throughout. The Hessian matrix Ĥn is estimated using the

result from fitting the logistic model in R, see Geys et al. [16].

2.3.4 Multivariate gamma distribution

Given n independent multivariate gamma vectors y = (y1, y2, . . . , yn)T, with yi = (yi1, . . . , yim)
T.

The univariate composite log-likelihood function for the multivariate gamma model can be

formulated as

cl(β; y) =
n

∑
i=1

m

∑
j=1

(
−

νyij

µij
− ν log µij + νlogν + (ν− 1) log yij − log Γ(ν)

)
,

where µij = E(yij), ν is the shape parameter, and µij/ν is the scale parameter. We used the

log link to define the mean parameter: µij = exp{~xijβ}. Denote µi = (µi1, . . . , µim)
T. Under

this set up, we have

cl(1)(β; y) =
n

∑
i=1

(
∂µi

∂β

)T
V(µ)−1

i (yi − µi),
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where Vi = diag(µ2
i1, · · · , µ2

im)/ν, and

H(β) = n−1
n

∑
i=1

(
∂µi

∂β

)T
V−1

i

(
∂µi

∂β

)
,

J(β) = n−1
n

∑
i=1

(
∂µi

∂β

)T
V−1

i cov(yi)V−1
i

(
∂µi

∂β

)
.

The dispersion parameter is 1
ν = D(6(n−p)+nD)

6(n−p)+2nD , where D = 2
nm−p ∑i,j

(
yij−µij

µij
+ log

µij
yij

)
. Let

V̂in denote the estimator of Vi obtained by substituting µ̂ijn for µij. We estimate H(β) and

J(β) as

Ĥn = n−1
n

∑
i=1

XT
i V̂−1

in Xi,

Ĵn = n−1
n

∑
i=1

XT
i V̂−1

in ĉovn(yi) V̂−1
in Xi,

with empirical variance ĉovn(yi) = (yi − µ̂in)(yi − µ̂in)
T, where where µ̂i is the vector

µ̂i = exp{Xi β̂
c
n}.
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Chapter 3

Simulation Results and Application of

Multiple Comparisons Using Composite

Likelihood

In this chapter, we evaluate MNQ approach numerically. In Section 3.1, we conduct sim-

ulation studies to evaluate empirical performance of the proposed method. Finally, in

Section 3.2 we analyze the depression data and kidney function data sets to demonstrate

the practical utility of the method. We conclude the chapter with a brief discussion of the

results.
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3.1 Simulation results

To examine how our proposed approach works for multiple hypothesis testing in clustered

data, we evaluated it as well as some well-known testing procedures through simulations.

Two different global null hypothesis on the regression coefficients β1, · · · , βp are tested:

(a) many-to-one comparisons, H01 : ∩p
i=2{β1 = βi}, (b) all pairwise comparisons H02 :

∩1≤i,j≤n{βi = β j} .

In addition to MNQ approach, multiple comparisons is performed based on several

approaches including Bonferroni, Dunn-Sidak, as well as multi-stage Holm and Scheffé’s

method. In order to show the result in the situation that correlation structure is ignored, a

naive method is also considered in which the threshold is computed by ignoring the existed

intra-cluster correlation.

We use univariate composite likelihood estimation, then such a misspecification is

equivalent to H(θ) = J(β) in (1.1). This results in an estimate of Γ̂n = Ĥ−1
n . This mis-

specified scenario is included for comparison, and we consider it only with the MNQ

multiple comparison method (that is, the MNQ cutoff is calculated based on V estimated

by plugging in Γ̂n = Ĥ−1
n ). The equi-coordinate critical values for multivariate normal and

multivariate t distributions are obtained using the R package mvtnorm [25].

In our simulations, we study the four models described in the previous section. For

each model, a different sample size is needed for our asymptotic approximations to be

valid. We determine this sample size with an initial simulation. For each simulation setting,

10 000 simulated data sets were generated and the family-wise type I error rate was set to
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0.05. The standard deviation for the observed FWER is hence approximately 0.002. These

preliminary simulation results are given in Table 3.1. We observe that n = 200, 500, 700 and

3000 are required for the multivariate normal, multivariate probit, quadratic exponential

and gamma models to maintain FWER within two standard deviations away from 0.05,

respectively. These are the sample sizes used for the simulation results which follow.

Table 3.1: FWER for different sample sizes

model

Sample size

200 500 700 1000 4000

multivariate normal 0.0509 0.0492 0.0483 0.0495 0.050

multivariate probit 0.0576 0.0501 0.0511 0.0506 0.0511

quadratic exponential 0.0580 0.0543 0.0519 0.0520 0.0504

To compute the power of each of the different methods, we consider two different al-

ternative scenarios: (1) a1 with only one non-zero parameter with a large effect size, (2)

a2 with five true non-zero parameters but with small effect sizes for all. We are interested

in the ability of the test to reject both the global and individual null hypotheses. Under

the alternative scenario a1, we calculate the power to reject the global hypothesis (denoted

as “a1” in the tables) and for the alternative configuration a2, we calculate both the power

to reject the global null hypothesis (denoted as “a2” in the tables) and the sum of the five

powers to rejected the five individual true alternatives (denoted as “ind a2” in the tables).
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3.1.1 Multivariate Gaussian model

We consider the multivariate normal model with n = 200 clusters, cluster size m = 4

or 10, and the number of covariates set to p = 10 or 20. Four different Σ scenarios are

considered: 1) three exchangeable structures with σ2 = 0.8 and ρ = cov(yij, yik) = 0,

0.2 or 0.5; 2) one arbitrary structure, where Σ = ((1.3, 0.9, 0.5, 0.3)T, (0.9, 1.9, 1.3, 0.3)T,

(0.5, 1.3, 1.3, 0.1)T, (0.3, 0.9, 0.1, 0.7)T). In each simulation, the m × p covariate matrix Xi is

obtained by randomly sampling from normal distributions.

We consider here the many-to-one comparisons where the first parameter is taken as the

baseline. Under the global null hypothesis H0, the true value of the regression parameters

is set to βT = 0, and the power is calculated under two different alternative configurations

βT
a1

= (0, 0, 0, 0.032, 0, . . . , 0) and βT
a2

= (0, 0.008, 0.01,−0.03, 0.005,−0.01, 0, . . . , 0). Under

βa1 , there is only one true alternative, and we evaluate the power to reject the global null

hypothesis. Under βa2 , there are five true alternatives and we evaluate both the power to

reject the global null and the sum of five powers to reject the five true alternatives.

Table 3.2 (three exchangeable Σ scenarios) and Table 3.3 (general Σ) summarize the

results of our simulations. Overall, it is shown that the MNQ method has the best perfor-

mance among all of the multiple comparison procedures. A comparison of MNQ and naive

MNQ clearly shows the cost of ignoring these correlations: the FWER of MNQ is superior

to that of naive MNQ for ρ 6= 0 (when ρ = 0 the two methods are almost identical). No-

tably, the power of the naive MNQ is occasionally higher than that of MNQ, however, this

is only due to the over-inflation of the naive MNQ’s FWER. The small effect sizes chosen
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under a2 allow us to detect more subtle differences in the performance of the methods.

Notice that for the rejection of the global null hypothesis, Holm’s method has exactly the

same power as that of the Bonferroni method. However, for the individual powers, Holm’s

method has higher power to reject individual hypothesis than the Bonferroni method.

We also evaluate the efficiency of the maximum composite likelihood estimator versus

maximum likelihood estimator. That is, we compute the ratio of the standard error of the

MLE versus that of the MCLE. For small ρ, the ratio is close to one and as ρ increases,

the ratio decreases. This demonstrates that the efficiency of composite likelihood estimator

decreases with the increase of the intra-cluster correlation, as expected.

It is observed that with increasing ρ and p for the multivariate distribution of the clus-

tered data, the power of Bonferroni was not substantially smaller. The increase of ρ will

increase the variability of each estimate C(l)T β̂ and hence decrease the power. When ρ

increases from 0 to 0.5, we observe about 10% increase in the variability of the estimates

and this is in compatible with the 5-10% power loss that we observe. We also conduct

simulations with smaller sample sizes n = 50, and n = 100. It is shown that with n greater

than 50, the statistics based on the plug-in estimate of the Godambe information matrix

has satisfactory performance. Table 3.4 shows for n = 50, MNQ and Bonferroni maintains

the FWER only for normal distribution, whereas for other two distributions, MNQ and

Bonferroni tend to be liberal. The control of FWER is greatly improved with n = 100 for

all three multivariate distributions. As the multivariate distribution of Tn can be approxi-

mated as a multivariate t distribution with n degrees of freedom, we conduct simulations

to investigate the multivariate t approximation. Table 3.5 shows that the multivariate t

31



approximation provides improved control of FWER for normal, probit and quadratic expo-

nential distribution compared to multivariate normal approximation with the same sample

of n = 50.
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Table 3.2: Simulations results for many to one comparisons in the multivariate normal
model with exchangeable Σ

ρ m p MNQ naive Bonf S-D Holm Scheffé efficiency

FWER

0

4

10

0.0545 0.0553 0.0419 0.0427 0.0419 0.0007 0.9983
a1 0.8164 0.8166 0.7894 0.7918 0.7894 0.2801
a2 0.8057 0.8053 0.7617 0.7738 0.7617 0.2226

ind a2 0.9080 0.9079 0.8417 0.8503 0.8848 0.2242

FWER

20

0.0511 0.0502 0.0352 0.0363 0.0352 0.0000 0.9980
a1 0.7487 0.7476 0.7062 0.7086 0.7062 0.0259
a2 0.7150 0.7134 0.6687 0.6628 0.6687 0.0162

ind a2 0.7698 0.7674 0.7081 0.7007 0.7518 0.0162

FWER

10

10

0.0479 0.0471 0.0375 0.0378 0.0375 0.0001 0.9989
a1 0.9983 0.9983 0.9979 0.9980 0.9979 0.9284
a2 0.9993 0.9993 0.9986 0.9990 0.9986 0.8792

ind a2 1.4822 1.4816 1.4219 1.4284 1.4896 0.8933

FWER

20

0.0487 0.0485 0.0363 0.0373 0.0363 0.0000 0.9986
a1 0.9981 0.9980 0.9967 0.9969 0.9967 0.5428
a2 0.9978 0.9977 0.9963 0.9957 0.9963 0.4137

ind a2 1.3439 1.3406 1.2759 1.2776 1.3267 0.4139

FWER

0.2

4

10

0.0494 0.0670 0.0389 0.0397 0.0389 0.0001 0.9453
a1 0.7760 0.8113 0.7453 0.7476 0.7453 0.2481
a2 0.7630 0.8044 0.7224 0.7280 0.7224 0.1831

ind a2 0.8556 0.9268 0.7939 0.8032 0.8317 0.1845

FWER

20

0.0533 0.0734 0.0390 0.0397 0.0390 0.0000 0.9430
a1 0.7044 0.7490 0.6591 0.6617 0.6591 0.0191
a2 0.6713 0.7200 0.6187 0.6148 0.6187 0.0102

ind a2 0.7106 0.7777 0.6476 0.6438 0.6937 0.0102

FWER

10

10

0.0467 0.1019 0.0357 0.0365 0.0357 0.0003 0.8685
a1 0.9912 0.9974 0.9875 0.9880 0.9875 0.8098
a2 0.9925 0.9983 0.9877 0.9897 0.9877 0.7295

ind a2 1.3506 1.5795 1.2871 1.2968 1.3407 0.7374

FWER

20

0.0468 0.1057 0.0320 0.0331 0.0320 0.0000 0.8636
a1 0.9868 0.9970 0.9813 0.9819 0.9813 0.3114
a2 0.9820 0.9964 0.9758 0.9752 0.9758 0.2146

ind a2 1.2100 1.4205 1.1495 1.1545 1.1891 0.2146

FWER

0.5

4

10

0.0513 0.0977 0.0390 0.0398 0.0390 0.0007 0.7491
a1 0.7235 0.8129 0.6867 0.6904 0.6867 0.1947
a2 0.6922 0.8042 0.6615 0.6571 0.6615 0.1497

ind a2 0.7570 0.9391 0.7208 0.7074 0.7533 0.1502

FWER

20

0.0510 0.1029 0.0377 0.0385 0.0377 0.0000 0.7343
a1 0.6420 0.7526 0.5950 0.5985 0.5950 0.0140
a2 0.6031 0.7322 0.5437 0.5508 0.5437 0.0076

ind a2 0.6369 0.8035 0.5677 0.5750 0.6109 0.0076

FWER

10

10

0.0520 0.2079 0.0410 0.0417 0.0410 0.0000 0.6070
a1 0.9570 0.9936 0.9466 0.9469 0.9466 0.6125
a2 0.9555 0.9982 0.9438 0.9431 0.9438 0.5062

ind a2 1.1914 1.6903 1.1367 1.1372 1.1877 0.5096

FWER

20

0.0459 0.2271 0.0328 0.0337 0.0328 0.0000 0.5898
a1 0.9403 0.9938 0.9224 0.9243 0.9224 0.1408
a2 0.9222 0.9948 0.8932 0.8968 0.8932 0.0871

ind a2 1.0589 1.5362 0.9907 0.9983 1.0306 0.0871

a1, a2: two global powers, ind a2: individual power, MNQ: multivariate normal quantile method, S-D: Dunn-Sidak, ρ : correlation, m:
cluster size, p : length of β
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Table 3.3: Simulations results for many to one comparisons in multivariate normal with
unstructured Σ

m p MNQ naive Bonf S-D Holm Scheffé

FWER

4

10

0.0464 0.0729 0.0345 0.0358 0.0345 0.0004
a1 0.6348 0.7089 0.5962 0.5992 0.5962 0.1358
a2 0.5123 0.6045 0.4763 0.4714 0.4763 0.0614

ind a2 0.1100 0.1341 0.1019 0.1022 0.1071 0.0123

FWER

20

0.0390 0.0664 0.0285 0.0290 0.0285 0.0000
a1 0.5205 0.6081 0.4694 0.4736 0.4694 0.0046
a2 0.3913 0.4864 0.3378 0.3428 0.3378 0.0011

ind a2 0.0811 0.1018 0.0687 0.0702 0.0749 0.0002

FWER

10

10

0.0472 0.0407 0.0360 0.0367 0.0360 0.0004
a1 0.6310 0.6102 0.5906 0.5940 0.5906 0.1198
a2 0.5025 0.4779 0.4560 0.4599 0.4560 0.0537

ind a2 0.1088 0.1028 0.0974 0.0982 0.1032 0.0107

FWER

20

0.0361 0.0302 0.0262 0.0267 0.0262 0.0000
a1 0.5078 0.4865 0.4585 0.4615 0.4585 0.0025
a2 0.3668 0.3448 0.3148 0.3167 0.3148 0.0010

ind a2 0.0742 0.0698 0.0637 0.0641 0.0692 0.0002

a1, a2: two global powers, ind a2: individual power, MNQ: multivariate normal quantile method, S-D: Dunn-Sidak, ρ : correlation, m:
cluster size, p : length of β

Table 3.4: Simulations results for different models with small sample sizes

Normal Probit Quad Exp

n MNQ naive Bonf MNQ naive Bonf MNQ naive Bonf

FWER

50

0.0531 0.0962 0.0419 0.0839 0.0837 0.0674 0.1139 0.0003 0.0912
a1 0.1750 0.2645 0.1502 0.1353 0.1411 0.1139 0.1551 0.0015 0.1273
a2 0.1760 0.2628 0.1496 0.2849 0.3034 0.2398 0.1810 0.0034 0.1480

FWER

100

0.0474 0.0931 0.0379 0.0631 0.0808 0.0496 0.0704 0.0000 0.0551
a1 0.3751 0.4836 0.3382 0.1832 0.2203 0.1594 0.1458 0.0004 0.1190
a2 0.3563 0.4754 0.3181 0.5159 0.5835 0.4604 0.2016 0.0007 0.1703

a1, a2: two global powers, MNQ: multivariate normal quantile method, S-D: Dunn-Sidak, n : number of clusters
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Table 3.5: Simulations results using multivariate t approximation with n = 50

model MNQ naive Bonf

Normal

FWER 0.0509 0.0896 0.0509
a1 0.1513 0.2245 0.1547
a2 0.1470 0.2241 0.1503

Probit

FWER 0.0667 0.0660 0.0673
a1 0.1112 0.1130 0.1152
a2 0.1206 0.1218 0.1143

ind a2 0.0227 0.0237 0.0214

Quad Exp

FWER 0.0934 0.0001 0.0912
a1 0.1305 0.0008 0.1269
a2 0.1629 0.0013 0.1600

This result is consistent with the result from GEE since both have misspecified covari-

ance structure.

3.1.2 Multivariate Probit model

Here, we consider n = 500 clusters with a cluster size m = 4, or 10. The binary variables are

generated by dichotomizing latent multivariate normal variables with a threshold of zero.

For each cluster, an m× p covariate matrix Xi, with p = 10 or 20, is obtained by randomly

sampling from normal distributions. The regression coefficients under the global null hy-

pothesis is βT = 0 and the two alternative configurations are βT
a1 = (0, 0, 0, 0.03, 0, . . . , 0)

and βT
a2 = (0, 0.008, 0.01,−0.03, 0.005,−0.01, 0, . . . , 0). The latent multivariate random vec-

tor has a mean Xiβ and a correlation matrix with ρ on the off-diagonals and σ = 1. Here,

we consider ρ = 0, or 0.5.

The empirical results are given in Table 3.6. The results show that the MNQ method

has overall the best performance. We note though that for the two settings when ρ = 0.5
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and p = 20, the MNQ method has FWER more than 2 standard deviations away from 0.05.

Similarly to the multivariate normal setting, the naive MNQ for the multivariate probit

model has large FWER when ρ = 0.5. For the global hypothesis, the Sidák method has

higher power than that of the Bonferroni and Holm method, whereas the Holm method has

higher power to reject individual null hypotheses than the Bonferroni and Sidák method.

3.1.3 Quadratic exponential model

Here, we take a total of n = 700 clusters, and p = 10 or 20 predictors. The number of ob-

servations within each clusters, mi, varies between clusters and is uniformly sampled from

{4, 5, 6, 7, 8}. The mi × p covariate matrix Xi is sampled from a standard normal distribu-

tion. We also consider two different values for the interaction parameter: w = 0 or 0.5. The

null value of the regression coefficients is βT ≡ 0 and the two alternative configurations

are to βT
a1 = (0, 0, 0, 0.12, 0, . . . , 0) and βT

a2 = (0, 0.08, 0.12,−0.03, 0.05,−0.08, 0, . . . , 0). The

empirical FWER and power are computed and summarized in Table 3.7. Overall, MNQ

has clearly the best performance.
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Table 3.6: Simulation results for many to one comparisons in the probit model

ρ m p MNQ naive Bonf S-D Holm Scheffé

FWER

0

4

10

0.0530 0.0506 0.0413 0.0424 0.0413 0.0001
a1 0.8700 0.8705 0.8477 0.8496 0.8477 0.3420
a2 0.9114 0.9109 0.8885 0.8907 0.8885 0.3572

ind a2 1.0828 1.0779 1.0193 1.0305 1.0682 0.3590

FWER

20

0.0528 0.0503 0.0389 0.0395 0.0389 0.0000
a1 0.8258 0.8232 0.7902 0.7924 0.7902 0.0460
a2 0.8547 0.8511 0.8149 0.8159 0.8149 0.0410

ind a2 0.9436 0.9389 0.8847 0.8825 0.9308 0.0410

FWER

10

10

0.0526 0.0515 0.0423 0.0428 0.0423 0.0005
a1 0.9996 0.9996 0.9995 0.9995 0.9995 0.9641
a2 1.0000 1.0000 1.0000 1.0000 1.0000 0.9695

ind a2 1.6649 1.6594 1.5839 1.5939 1.6658 1.0024

FWER

20

0.0527 0.0508 0.0364 0.0375 0.0364 0.0000
a1 0.9993 0.9995 0.9985 0.9985 0.9985 0.6596
a2 1.0000 0.9999 0.9997 0.9997 0.9997 0.6603

ind a2 1.4867 1.4780 1.4057 1.4062 1.4624 0.6607

FWER

0.5

4

10

0.0508 0.0793 0.0393 0.0404 0.0393 0.0003
a1 0.8102 0.8601 0.7808 0.7841 0.7808 0.2726
a2 0.8530 0.9038 0.8305 0.8258 0.8305 0.2689

ind a2 0.9852 1.1028 0.9321 0.9334 0.9768 0.2708

FWER

20

0.0585 0.0915 0.0406 0.0415 0.0406 0.0000
a1 0.7578 0.8196 0.7082 0.7106 0.7082 0.0264
a2 0.7891 0.8534 0.7365 0.7428 0.7365 0.0247

ind a2 0.8637 0.9712 0.7855 0.7963 0.8330 0.0247

FWER

10

10

0.0513 0.1437 0.0402 0.0412 0.0402 0.0005
a1 0.9900 0.9979 0.9871 0.9876 0.9871 0.8017
a2 0.9952 0.9997 0.9966 0.9939 0.9966 0.8038

ind a2 1.4075 1.7926 1.3520 1.3552 1.4154 0.8147

FWER

20

0.0543 0.1622 0.0382 0.0389 0.0382 0.0000
a1 0.9862 0.9974 0.9784 0.9787 0.9784 0.3081
a2 0.9935 0.9998 0.9894 0.9883 0.9894 0.3006

ind a2 1.2873 1.6251 1.2248 1.2218 1.2777 0.3006

a1, a2: two global powers, ind a2: individual power, MNQ: multivariate normal quantile method, S-D: Dunn-Sidak, ρ : correlation, m:
cluster size, p : length of β
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Table 3.7: Simulation results for many to one comparisons in the quadratic exponential
model

w m p MNQ naive Bonf S-D Holm Scheffé

FWER

0

4

10

0.0514 0.0562 0.0400 0.0403 0.0400 0.0001
a1 0.5390 0.5534 0.5010 0.5046 0.5010 0.0777
a2 0.7067 0.7240 0.6573 0.6636 0.6573 0.0935

ind a2 0.9779 1.0283 0.8826 0.8888 0.9373 0.0986

FWER

20

0.0561 0.0767 0.0404 0.0412 0.0404 0.0000
a1 0.4551 0.4853 0.3990 0.4021 0.3990 0.0025
a2 0.6040 0.6365 0.5237 0.5403 0.5237 0.0027

ind a2 0.7731 0.8347 0.6514 0.6679 0.7029 0.0027

FWER

10

10

0.0491 0.0549 0.0381 0.0384 0.0381 0.0001
a1 0.5391 0.5535 0.5010 0.5046 0.5010 0.0779
a2 0.7066 0.7239 0.6573 0.6636 0.6573 0.0934

ind a2 0.9780 1.0284 0.8826 0.8890 0.9373 0.0985

FWER

20

0.0561 0.0767 0.0404 0.0412 0.0404 0.0000
a1 0.4548 0.4849 0.3989 0.4020 0.3989 0.0026
a2 0.5971 0.6309 0.5255 0.5361 0.5255 0.0013

ind a2 0.7681 0.8316 0.6527 0.6688 0.7043 0.0013

FWER

0.5

4

10

0.0521 0.0000 0.0417 0.0424 0.0417 0.0002
a1 0.7864 0.0307 0.7546 0.7582 0.7546 0.2329
a2 0.9050 0.0444 0.8800 0.8772 0.8800 0.2531

ind a2 1.5136 0.0452 1.4102 1.4089 1.4915 0.2753

FWER

20

0.0509 0.0000 0.0377 0.0383 0.0377 0.0000
a1 0.7214 0.0158 0.6739 0.6769 0.6739 0.0178
a2 0.8460 0.0148 0.7998 0.7976 0.7998 0.0132

ind a2 1.2902 0.0150 1.1532 1.1612 1.2141 0.0134

FWER

10

10

0.0521 0.0000 0.0417 0.0424 0.0417 0.0002
a1 0.7864 0.0307 0.7546 0.7582 0.7546 0.2329
a2 0.9141 0.0407 0.8800 0.8855 0.8800 0.2518

ind a2 1.5326 0.0416 1.4102 1.4261 1.4915 0.2746

FWER

20

0.0509 0.0000 0.0378 0.0384 0.0378 0.0000
a 0.7202 0.0161 0.6731 0.6760 0.6731 0.0178
a2 0.8460 0.0148 0.7998 0.7976 0.7998 0.0132

ind a2 1.2902 0.0150 1.1532 1.1612 1.2141 0.0134

a1, a2: two global powers, ind a2: individual power, MNQ: multivariate normal quantile method, S-D: Dunn-Sidak, w : association
parameter, m: cluster size, p : length of β
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Table 3.8: Simulations results for all pairwise comparisons in the multivariate normal,
probit, and quadratic exponential models

model ρ MNQ naive Bonf S-D Scheffé Tukey

normal

FWER
0

0.0537 0.0562 0.0411 0.0420 0.0038 0.0536
a1 0.9274 0.9266 0.9096 0.9113 0.6115 0.9256
a2 0.9800 0.9807 0.9735 0.9740 0.8173 0.9792

FWER
0.5

0.0484 0.1101 0.0358 0.0365 0.0032 0.0489
a1 0.8611 0.9245 0.8325 0.8346 0.4769 0.8587
a2 0.9492 0.9775 0.9346 0.9361 0.6854 0.9482

probit

FWER
0

0.0534 0.0494 0.0409 0.0412 0.0026 0.0524
a1 0.9792 0.9790 0.9745 0.9747 0.7972 0.9791
a2 0.9961 0.9961 0.9946 0.9946 0.9321 0.9959

FWER
0.5

0.0523 0.0864 0.0394 0.0394 0.0023 0.0514
a1 0.9586 0.9754 0.9467 0.9484 0.6991 0.9577
a2 0.9885 0.9938 0.9842 0.9848 0.8707 0.9884

quad. exp.

FWER
0

0.0534 0.0631 0.0399 0.0407 0.0018 0.0530
a1 0.7710 0.7869 0.7270 0.7301 0.3224 0.7678
a2 0.9706 0.9741 0.9613 0.9621 0.7348 0.9701

FWER
0.5

0.0548 0.0000 0.0388 0.0393 0.0014 0.0535
a1 0.9360 0.0197 0.9199 0.9213 0.6417 0.9356
a2 0.9976 0.2855 0.9957 0.9958 0.9408 0.9974

a1, a2: two global powers, MNQ: multivariate normal quantile method, S-D: Dunn-Sidak, p : length of β

3.1.4 Multivariate gamma distribution

To generate a multivariate gamma model, let g1 be m × 1 independent vectors from a

gamma distribution with shape parameters γ1, a positive vector of dimension m. Define

G = Kg1, where K is a full rank matrix with all entries equal to either zero or one that

follows some properties [38]. (K is called the incidence matrix). Then G has a multivariate

gamma distribution with shape parameter α = Kγ1 and covariance matrix Σ = K Γ1KT,

where the (diagonal) matrix Γ1 is the variance matrix of g1.

In the simulation ν = 1, and under the global null hypothesis H0, the true value of

the regression parameters is set to β = 0.75, and the power is calculated under two

different alternative configurations βT
a1

= (0.75, 0.75, 0.68, 0.75, . . . , 0.75) and also βT
a2

=
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(0.75, 0.80, 0.68, 0.70, 0.79, 0.69, 0.75, . . . , 0.75). We simulate 10 000 data sets with m = 3, and

p = 10. We perform many-to-one comparisons with the MNQ, naive MNQ, Bonferroni,

Dunn-Sidák, Holm and Scheffé method. We consider both independent and correlated

cases. We simulate with the sample size n = 3 000 as we found that it takes at least

n = 3 000 for the MNQ method to have the FWER fall within 2 standard deviations away

from 0.05. This larger sample size is expected for a skewed distribution such as the multi-

variate gamma. Among all the methods, the MNQ method continues to achieve the highest

power and exhibits the best performance. The results are presented in Table 3.9.

Table 3.9: FWER and power for many to one comparisons in multivariate gamma distribu-
tion

MNQ naive Bonf S-D Schéffe

FWER independent 0.0554 0.0507 0.0437 0.0444 0.0003
a1 0.8763 0.8777 0.8508 0.8531 0.3055
a2 0.9906 0.9899 0.9856 0.9862 0.4526

FWER correlated 0.0588 0.3427 0.0468 0.0479 0.0003
a1 0.8223 0.9883 0.7853 0.7877 0.2378
a2 0.9778 0.9999 0.9638 0.9653 0.3683

a1, a2: two global powers, MNQ: multivariate normal quantile method, S-D: Dunn-Sidak

3.2 Application to real data

In this section, the method is applied to two different data set.
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3.2.1 Analysis of kidney function data

To examine the performance of the proposed methodology, we analyze data from a diabetic

nephropathy (DN) study at the University of Michigan. DN is damage to the kidneys,

caused by the destruction of the kidney’s blood vessels by high blood sugar levels. This

study was performed to determine if any biomarkers, among 500 candidate genes, have

important influence on the risk of DN, as part of a therapeutic program.

In the study, Glomerular filtration rate (GFR), relating to renal function of 35 patients

with abnormal DN was assessed at multiple time points, and the number of these mea-

surements varies between 10 to 15 across the patients and in total 402 measurements were

collected. A binary factor showing the kind of treatment was also recorded.

In the original data set, there were 500 candidate covariates, each one representing a

gene. In the analysis, a binary response variable is created by dichotomizing GFR using

100 as the cut-off point, that is yij = 1 if GFR of the patient j at time i was atleast 100.

First we need to find a suitable model that defines the effects of genes and treatments on

GFR. As there are more than 500 covariates, including such large number of covariates in

a model fitting process may cause some problems such as over-fitting or singularity. So,

it is beneficial to shrink the number of covariate by finding the most significant ones and

using only those factors in the analysis. To achieve this goal, generalized regression with

L1-constraint on the parameters (LASSO, Tibshirani [47]) is used. As the response variable

is binary, a logistic regression model is fitted to 500 covariates and the parameters are esti-

mated by minimizing the least-squares, adding a penalty term that keeps the absolute size
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of the regression parameter, α||β||1, less than a known value. The constraint causes some

coefficients to be shrunken to zero exactly and then 9 covariates with the most significant

effect on the response variable are chosen. So just 9 genes, which have the most effect on

GFR will be used in the next steps of the analysis(using the R package lasso2 [31]).

Next, we would like to compare the effect of the 9 selected genes on the binary response

variable based on GFR. The presence of correlation among repeated measurements within

each patient can not be ignored. This problem can be handled by performing a multiple

comparison test using composite likelihood estimation. Considering the binary response

variable, we fit a quadratic exponential model to the data. Each patient is considered as a

cluster and equal intra-correlation, wi = w for all clusters is assumed.

We define a quadratic exponential model such as fY(yi; Θ) = exp{ΘiWi − A(Θ)} and

the vector of parameters Θ is assumed to be the linear model Xβ, with the design matrix

X contains the level of genes and β represents the vector of gene’s effects. To achieve a

composite likelihood function as (2.9), mi and zi are considered as the number of measure-

ments for the patient i and the number of GFR values measured from patient i which are

greater than or equal to 100, respectively. Association parameter w∗ in can be treated as

an intercept that is multiplied by the value (mi − zi + 1) for the response value 1(the GFR

values greater than or equal to 100) and value (mi − zi − 1) otherwise.

The parameters are estimated fitting a logistic model to the 9 chosen genes adjusting for

the type of treatment that each patient received, on the defined binary response variable.

Covariance of regression coefficients (gene effects), is estimated by MNQ method regarding

the correlation structure and also by the naive method which ignores it.
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Here, we compare all pair-wise effects of the predictors (genes) on the response (GFR),

namely, H0,i,j = {βi = β j, 1 ≤ i, j ≤ 9}, for a total of 36 null hypotheses. We consider

the MNQ, Bonferroni and naive multiple testing approaches. All three methods reject the

null hypothesis H0 = ∩i<jH0,i,j. However, on the individual level, the results are quite

different. Using the MNQ, only three individual hypotheses are rejected, whereas using

the naive method, 29 are rejected and as it is expected Bonferroni as the most conservative

method, rejects only 2 individual hypotheses. The test statistics for the rejected individual

comparisons based on MNQ and naive methods are provided in Table 3.10. Bonferroni

uses the same value of test statistics as MNQ with threshold 3.196.

Table 3.10: value of test statistics for the rejected individual null hypothesis from MNQ and
naive method in analysis of kidney function

rejected H0 in naive MNQ naive

β3 = β4 -5.858 -27.257

β3 = β6 -2.856 -14.137

β4 = β7 6.831 18.314

threshold 2.728 3.163

In order to explain the drastic difference between the MNQ and naive methods, recall

that there is correlation between the repeated measurements across the time points. The

interaction is shown to be very significant with w∗ = −0.49. By ignoring this correlation,

which is done by the naive method, the dependence between the points is underestimated

and the standard error tends to be very liberal. On the other hand, the MNQ approach

takes the inter-correlation into account properly.
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3.2.2 Analysis of depression data

The Health and Retirement Study (HRS) dataset is used to show the application of the

proposed approach. Information about health, financial situation, family structure and so

on were collected by RAND center. Here the effect of some factors on depression during

the elderly is studied. Depression is considered as the binary response variable (0 for no

depression and 1 for depression). 7 factors are chosen as independent variables. Age (in

month), smoke ( 0 for no and 1 for yes), restless sleep ( 0 for no and 1 for yes), diabetes,

high blood pressure, frequent vigorous physical activity and difficulty in walking (0 for

no and 1 for yes) are considered as covariates. For each individual we just considered the

years that all the factors are recorded. So there was no missing in the data, but the number

of repeated measurements varied across people. In this data set 33636 people have been

measured in 1994, 1996, 1998, 2000, 2002, 2004, 2006, 2008, 2010 and 2012. As the response

variable is binary, the quadratic exponential model is one natural choice to analyze this

data that also easily allows us to perform multiple comparison when the clusters have

different sizes. The effect of these 7 factors on depression was compared. Also we entered

the augmented w parameter to account for the within-person correlations.

Here, we compare all pair-wise comparisons for the factors, H0,i,j = {βi = β j}, for a

total of 21 null hypotheses. We use the MNQ approach, MNQ “naive”, and Bonferroni

method. The hypothesis test based on the MNQ method rejected three hypotheses. Each of

these test were also rejected by the MNQ naive method (and the three were the top 3 most

significant), but this approach rejected in total 18 hypotheses out of the possible 21 and the
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Table 3.11: estimate of the coefficients in analysis of depression data

Estimate Std. Error P-value

sleepless 1.333 0.0156 < 2e− 16

diabetes 0.071 0.0146 8.96e− 07

smoke 0.2826 0.0200 < 2e− 16

age 0.0007 5.964e− 05 < 2e− 16

activity -0.0156 0.0036 2.35e− 05

high blood pres. 0.0764 0.0114 2.07e− 11

difficulty in walking 0.0695 0.0054 < 2e− 16

w 0.2877 0.0023 < 2e− 16

conservative Bonferroni method fails to reject the null hypotheses.

In order to explain the drastic difference between the two methods, recall that there is

correlation between the repeated measurements across the time points of size ŵn = 0.285.

By ignoring this correlation, as shown in the naive method, the dependence between the

points is underestimated and the standard error tends to be very liberal, leading to false

results.

Table 3.12: Results of MNQ, Bonferroni, and naive method in testing individual null hy-
potheses in analysis of depression data. A: fail to reject, R: rejectH0

H0 MNQ naive Bonf. H0 MNQ naive Bonf.

βsleep = βdiabet A R A βsmoke = βage A R A

βsleep = βsmoke A R A βsmoke = βactivity A R A

βsleep = βage R R A βsmoke = βhibp A R A

βsleep = βactivity R R A βsmoke = βdi f walk A R A

βsleep = βhibp A R A βage = βactivity A R A

βsleep = βdi f walk R R A βage = βhibp A R A

βdiabet = βsmoke A R A βage = βdi f walk A R A

βdiabet = βage A R A βactivity = βhibp A R A

βdiabet = βactivity A R A βactivity = βdi f walk A R A

βdiabet = βhibp A A A βhibp = βdi f walk A A A

βdiabet = βdi f walk A A A
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3.3 Discussion

In many correlated multivariate models, it is often difficult to perform multiple compar-

isons based on the full likelihood. In this work, we construct the multiple comparison

procedures based on the composite likelihood method to overcome this computational dif-

ficulty. Theory is developed based on the asymptotic properties of the composite likelihood

test statistic. Then the simultaneous quantile of multivariate normal is used as a threshold

for test statistics to handle larger errors in multiple comparisons. Therefore, we address is-

sues of computational intensity and multiplicity. We illustrated the theory for four different

models: multivariate normal, multivariate probit, quadratic exponential and gamma. The

comparison between the proposed method and some well-known traditional approaches

including Bonferroni, Dunn-Sidak, Holm, and Schéffe shows that the MNQ method, which

is based on composite likelihood test statistics and uses multivariate normal quantiles to

derive cut-off values for the test statistics, possesses a more acceptable family-wise type I

error rate in most simulation settings, compared to the other test procedures.
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Chapter 4

Asymptotic Distribution of Composite

Likelihood Ratio Test in Non-standard

Conditions

4.1 Introduction

Let y = (y1, . . . , yn) be a sample taken from a population with density function f (y; θ) of

parameter space Θ ⊆ Rk. We wish to test

H0 : θ ∈ Θ0 vs Ha : θ ∈ Θ1,

where Θ = Θ0 ∪ Θ1. In every classical hypothesis testing procedure, there is a set of

regularity conditions, consisting of two kinds of assumptions. Firstly, there are some prob-
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abilistic assumptions about the model f (y; θ). Secondly, there are some assumptions about

the parameter space Θ, the space under the null hypothesis Θ0, and the local geometry of

the true parameter point θ0. In likelihood ratio testing, the second set of assumptions is

expressed as

• In a simple null hypothesis, it is assumed that Θ contains an open region ω and that

θ0 is an interior point of ω.

• In a composite hypothesis test, the parameter space Θ is linear and the null space

Θ0 is a linear sub-spaces of Θ [53]. In other words, the parameter θ0 lies on an r-

dimensional hyperplane Θ0 of a k-dimensional space Θ ⊆ Rk, where r = dim(Θ0)

[6].

Holding each of the regularity conditions is essential for the model approximation and if

any of these assumptions fails, the known asymptotic results may no longer be valid. For

instance, for testing a simple hypothesis, H0 : θ = θ0, if the true value of the parameter lies

on the boundary of the parameter space Θ, the standard condition does not hold, since θ0

is not an interior point of Θ. Also, it might be of interest to test if the parameter θ is on a

subspace of Rk, e.g. in the positive side of a k-dimensional Euclidean space, or inside the

unit ball. In one-sided hypothesis, the null parameter space is not linear sub-space. If this

happens, the standard theory may not be applicable. These situations that give rise to the

limiting distributions other than the known classical one, are referred to as non-standard

conditions.
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To understand what is happening theoretically, let θ̂c
n,0 and θ̂c

n denote the maximum

composite likelihood estimators in Θ0 and Θ under the null and alternative hypotheses,

respectively, similar to section 1.2. Using Taylor’s series the composite likelihood ratio test

is written as

λ̃n(θ) = 2(sup
θ∈Θ

n

∑
i=1

log CL(θ, yi)− sup
θ∈Θ0

n

∑
i=1

log CL(θ, yi))

=
n

∑
i=1

(
cl(θ̂c

n, yi)− cl(θ̂c
n,0, yi)

)
= n(θ̂c

n − θ̂c
n,0)

Tg(θ̂c
n, y) + n(θ̂c

n − θ̂c
n,0)

T H(θ̂n, y)(θ̂c
n − θ̂c

n,0) + op(1) (4.1)

where g(θ̂c
n, y) = ∂cl(θ,y)

∂θ and H(θ̂n, y) = ∂2cl(θ,y)
∂θ2 are first and second derivatives of cl(θ, yi) at

θ̂c
n. If the θ̂c

n is an interior point of Θ, the first term vanishes and the second term converges

to

√
n(θ̂c

n − θ̂n,0)
T Hθ0

√
n(θ̂c

n − θ̂n,0) + op(1)

which is, in fact, the transformed quadratic distance between the estimated values under

each hypothesis. However, this can be quite different if the true parameter point lies on

the boundary since the first term in (4.1) may not disappear and the limiting distribution

would be affected.

In order to illustrate the issues, suppose the observation y = (y1, y2) has a bivariate

normal distribution with mean µ = (µ1, µ2) and variance Σ = I. In this case, the full
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likelihood ratio test statistic is

−2 log Λ(µ) = inf
µ∈Θ0

||y− µ||2 − inf
µ∈Θ
||y− µ||2 = QΘ0 −QΘ

which is the difference between the squared distance of a normal observation and null/

alternative parameter space. The following example from Chernoff [6] demonstrates a

simple case of the non-standard situation. In this example, the true parameter is a boundary

point of Θ and the distribution of the LRT becomes a mixture of chi-square distributions.

Example 4.1.1. Let Θ = {(µ1, µ2) : µ1 ≥ 0, µ2 ≥ 0} and Θ0 = {(µ1, µ2) : µ1 = µ2 = 0}, the

origin alone. Consider the likelihood ratio test of H0 : µ1 = µ2 = 0 versus Ha : µ1 ≥ 0µ2 ≥

0, then QΘ0 = y2
1 + y2

2 and

y1 ≤ 0 y1 ≥ 0
y2 ≥ 0 y2

2 0
y2 ≤ 0 y2

1 + y2
2 y2

1

Table 4.1: QΘ

y1 ≤ 0 y1 ≥ 0
y2 ≥ 0 y2

1 y2
1 + y2

2
y2 ≤ 0 0 y2

2

Table 4.2: −2 log Λ(θ)

Then

P(2 log Λ(θ) ≤ c) =


1
4 P(χ2

2 ≤ c) + 1
2 P(χ2

1 ≤ c), if c ≥ 0.

0, if c < 0.

This work focuses on the composite likelihood ratio test on situations where the second

set of the regularity assumptions are violated. In particular, the focus is on some non-

standard conditions where the true parameter θ0 lies on the boundary of the parameter

space. We stablish the asymptotic properties of the composite likelihood estimator and
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limiting distribution of the composite likelihood ratio test when some parameters lie on

the boundary.

In addition to the theoretical work, the limiting distribution of composite likelihood

ratio tests is derived by partitioning the parameter space into smaller subsets called relative

interior sets and projecting the observation points onto each set. The result can be applied

to the full likelihood case too. However, the full likelihood ratio test in non-standard

conditions has already been studied by several authors; existing theoretical results do not

provide a direct method to derive the limiting distribution of the likelihood ratio test when

the dimension of the parameters on the boundary is greater than four or the Hessian matrix

is non-diagonal.

We assume that Θ0 and Θ1 follow Chernoff [6]’s assumption and can be approximated

by polyhedral tangent cones. Then we expand Shapiro [42]’s approach to obtain a general

form of the test statistic which is a weighted sum of the mixture of chi-square variables. We

propose some algorithms to compute the elements of the test statistic. For a p dimensional

parameter, the cone has 2p faces. So the number of dimensions increases exponentially and

this is the reason of difficulty of finding the distribution in higher dimensions.

In non-standard parametric problem, bootstrap is another method that seems useful.

However, some authors such as Andrews [1] and Drton [10] show that bootstrap is in-

consistent in estimating the limiting distribution. Andrews [1] suggests some variations of

bootstrap that can be consistent, but a tuning parameters is required to be found, which is

not easy. Drton [10] shows that bootstrap likelihood ratio test with the boundary problem

is always anti-conservative.

51



a1 a2

a0
1

a0
2

T0
Θ

TΘ

Figure 4.1: A 2-d polyhedral cone TΘ and its polar cone T0
Θ. That is a1 ⊥ a0

1 and a2 ⊥ a0
2

Section (4.2) covers a review on likelihood ratio test (LRT) and composite likelihood

ratio test (CLRT) in standard conditions, as well as some geometrical and mathematical

concepts, commonly applied in statistics and used in this chapter. The limiting distribution

of likelihood ratio test is stated in section (4.3), done by Chernoff [6]. Then consistency

and limiting distribution of composite likelihood ratio test is studied in section (4.4) which

is developed in this thesis. In section (4.5) the parameter space assumed in this work is

introduced and the method of approximating it by the tangent cone is described. In section

(4.6), first a general form of limiting distribution of the likelihood ratio test, which is a

mixture of weighted sum of chi-squares, is defined. This is a more complicated form of

the chi-bar distribution and contains coefficients and weights that need to be estimated. In

the next subsections, some algorithms for computing the weight and methods for finding

other elements of the test statistic and quantile is discussed.
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4.1.1 Full likelihood ratio test (LRT)

The likelihood ratio test (LRT) is a classical hypothesis test that is the most powerful hy-

pothesis approach for testing simple hypotheses by the Neyman-Pearson lemma. For test-

ing composite hypothesis, the generalized LRT is often uniformly most powerful test.

Let the parameter space Θ be an open set and Θ0 ⊆ Θ ⊆ Rk. The hypotheses of interest

are H0 : θ ∈ Θ0 versus Ha : θ ∈ Θ1 (Θ = Θ0 ∪Θ1). Suppose the sample y = (y1, . . . , yn)

is iid with density f (y; θ) and the likelihood function L(θ; y) = ∏n
i=1 f (yi; θ). Then the

likelihood ratio test rejects the H0 for the small values of

Λn =
supθ∈Θ0

L(θ; y)
supθ∈Θ L(θ; y)

.

Then the −2 log likelihood ratio test statistic is

λn = −2 log Λn = −2

(
sup
θ∈Θ0

L(θ; y)− sup
θ∈Θ

L(θ; y)

)
.

Let θ̂n and θ̂n,0 denote the maximum likelihood estimators in Θ and Θ0, respectively.

Under classical regularity conditions, the limiting distribution of Λ is determined. It is

known that

1. For testing a simple hypothesis H0 : θ = θ0, the likelihood ratio statistic is Λn = L(θ0;y)
L(θ̂n;y)

and λn(θ)→ χ2
k as n grows to infinity.

2. To test the composite null hypothesis H0 : θ ∈ Θ0, where Θ0 = {θ : A(θ − b) = 0}

and A is a r× k matrix with rank r and k× 1 vector b, the likelihood ratio statistic is
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Λn =
L(θ̂n,0;y)
L(θ̂n;y)

, and λn → χ2
r .

3. More generally, suppose that Θ0 = {θ : g = (g1(θ), ..., gr(θ))T = 0} , where gi(θ) is a

continuously differentiable function from Rk → R. It is shown that λn → χ2
r .

In fact, the number of degrees of freedom is equal to the difference between the dimen-

sion of Θ and Θ0.

Holding each of the regularity conditions is essential for chi-square approximation and

if any of these assumptions fail, the limiting distribution may not be chi-square any more.

4.1.2 Composite likelihood ratio test (CLRT)

Let f (y; θ) be the density function of the random variables y = (y1, . . . , yn) with pa-

rameter θ ∈ Θ ⊆ Rk and the composite log-likelihood function is defined as cl(θ; y) =

log CL(θ; y) = ∑s∈S log fs(ys; θ), where θ ∈ Θ ⊆ Rk, and fs(ys; θ) is a marginal

or conditional density function corresponding to the subset s, and S is a set of indices.

Let An be a vector of score function with elements Aj = 1
n ∑n

i=1
∂ log f (yi;θ)

∂θj
. From central

limit theorem
√

nAn −→ N(0, J(θ)), where J(θ) = Var( ∂ log f (yi;θ)
∂θj

). Let θ̂c
n be the maxi-

mum composite likelihood estimator (MCLE) in Θ. Then
√

n(θ̂c
n − θ) −→ Nk(0, G−1(θ)),

where G(θ) = H(θ)J−1(θ)H(θ) and where H(θ) = limn E(−cl(2)(θ; y))/n and J(θ) =

limn var(cl(1)(θ; y))/n. Here, cl(1) is the vector of first derivatives and cl(2) is the matrix

of second order derivatives of cl(θ; y). Also

(θ̂c
n − θ)G(θ̂c

n − θ)→ χ2
k, nAn J−1An → χ2

k.
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Let the true parameter θ0 lie in a Euclidean space Θ ⊆ Rk and Θ0 ⊆ Θ. The com-

posite likelihood ratio test statistic for testing H0 : θ ∈ Θ0 against Ha : θ ∈ Θ1, is

Λ̃n =
supθ∈Θ0

CL(θ;y)
supθ∈Θ CL(θ;y) . Then define

λ̃n = −2 log Λ̃n = −2

(
sup
θ∈Θ0

cl(θ; y)− sup
θ∈Θ

cl(θ; y)

)

The distribution of composite likelihood ratio statistic λ̃n under classical regularity con-

dition is shown to converge to a mixture of chi-squared random variables with one degree

of freedom, where the weight depends on the elements of the Godambe information matrix.

Theorem 4.1.1. [56] Suppose that the true parameter θ0 is a smooth interior point of the parameter

space Θ ⊆ Rk. Under the regularity condition [reference], the composite likelihood ratio statistic

λ̃n(θ) is asymptotically distributed as ∑k
i=1 λiVi, where Vi, i = 1, . . . , k, are independent χ2

1 and

λi’s, i = 1, . . . , k are the eigenvalues of J(θ)H−1(θ).

4.1.3 Previous work

Likelihood ratio test under non-standard condition has been discussed by several authors.

Under the assumption that the parameter spaces can be approximated by a cone, Chernoff

[6] provided a representation of the limiting distribution of the likelihood ratio statistic

when the true value of the parameter is on the boundary of the parameter space. Shapiro

[42] showed that the distribution of a class of tests including likelihood ratio when the true

parameter is a boundary point of Θ0 and the space Θ is open, is asymptotically a mixture

of chi-square random variables, which is referred to a chi-bar-squared statistic that is a
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mixture of chi-squares. He also proposed a method to find the weights corresponding to

chi-bar for the maximum of four dimensions.

Self and Liang [41] studied distribution of likelihood ratio test with boundary problem

in Θ0 and Θ for higher dimension parameters with diagonal fisher information matrix. In

addition to the existence and consistency of maximum likelihood estimator for the large

sample distribution, they followed Chernoff (1954) to show that the limiting distribution of

the maximum likelihood estimator is the same as the distribution of the projection of the

Gaussian random variable onto the region of possible values for the parameter. Chen and

Liang [5] studied the asymptotic distribution of a pseudo-likelihood ratio test statistics.

They used the pseudo-likelihood approach, studied by Gong and Samaniego (1981), for

testing the parameter of interest θ in presence of a nuisance parameter φ when φ is esti-

mated by a method other than maximum likelihood. They studied the cases that the pa-

rameter of interest or the nuisance parameter lies on the boundary of the two-dimensional

parameter space for the total of dimension two. These situations usually lead to mixtures

of chi-square distributions with a sandwich type covariance structure.

Following Chernoff’s work, Drton [9] introduced a situation that Chernoff’s regular-

ity assumption always hold. That is when the parameter space under the null hypoth-

esis can be defined by a finite union of polynomial equalities and inequalities, so called

a semi-algebraic set. The boundary problem is not the only non-standard condition that

might raise. Drton [9] used tools from algebraic geometry to study the asymptotic dis-

tribution of likelihood ratio test when the parameter is a singularity point. Assume that

Θ0 = {θ ∈ R2|θ2
2 = θ3

1 + θ2
1}. This space is a curve with a self-intersection at θ = 0
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(see Drton [9] example 1.1). It can be seen that the distribution of likelihood ratio test

when the true parameter is zero converges to the minimum of two chi-squared random

variables with one degree of freedom. Such points (such as self-intersections and cusps),

while possibly interior, are not smooth and give rise to a non-standard condition and are

called singularities. Drton [9] used tools from algebraic geometry to study the asymptotic

distribution of likelihood ratio test when the parameter is a singularity.

Recently, Susko [46] developed an approach as an alternative to the chi-bar statistic for

independent data with interior nuisance parameter. He did this by conditioning on the

number of parameters that are interior of parameter space.

4.2 Some useful background

4.2.1 Cone

A cone C(θ) with vertex at θ is the set of the vectors such that if x ∈ C(θ) then a(x− θ)+ θ ∈

C(θ), where a is a non-negative real number. Let a1, . . . , ar be points in Rr. The cone is

finitely generated by {a1, . . . , ar} if it can be written as C = {x1a1 + . . . + xrar : xi ≥ 0, i =

1, . . . , r}. Let A = [a1, . . . , ar] be a k× r matrix that each column is one of the points, then

the cone C can be defined as C = {Ax : x ≥ 0} . The cone C is called tight, if it can not be

generated by a sub-matrix of columns of A.

A polyhedral cone P is a set of vectors P = {x ∈ Rk : ATx ≥ 0}, where A = [a1, . . . , ar]

is a k× r (r ≤ k) matrix with rank r. P is a closed convex cone, that is the intersection of

half-spaces {x : aT
1 x ≥ 0} ,. . ., and {x : aT

r x ≥ 0}.
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Theorem 4.2.1. (Mikowski-Weyl’s theorem): A cone is polyhedral if and only if it is finitely gener-

ated.

The orthogonal space to the cone C is called the polar (or negative dual) cone, C0. A

polar cone of the cone C, is the set of vectors C0 = {y ∈ Rk : aT
i y ≤ 0, i = 1, . . . , r} = {y :

ATy ≤ 0}. The polar polyhedral cone for the polyhedral cone is P0 = {Ay : y ≤ 0}, a

space spanned by the columns of A.

4.2.2 Projection onto the cone

Let A1, A2 and A3 be q× k, r− q× k and k− r× k real valued matrices. Consider the set

P = P1 ∩P2 ∩P3 where

P1 = {θ ∈ Rk : A1θ ≥ 0} = ∩q
i=1{θ ∈ Rk : aT

i θ ≥ 0}

P2 = {θ ∈ Rk : A2θ = 0} = ∩r
i=q+1{θ ∈ Rk : aT

i θ = 0} (4.2)

P3 = {θ ∈ Rk : A3θ ∈ Rk−r} = {θr+1 ∈ R} × {θr+2 ∈ R} × · · · × {θk ∈ R},

where A3 is the matrix equal to zero, except the right hand (k− r)× (k− r) submatrix is

the identity matrix Ik−r. The matrix A = [AT
1 AT

2 ] has rank r.

For any I ⊆ {1, . . . , q} we define the face of the polyhedral cone P1 as

FI =
{
∩i∈I{θ : aT

i θ = 0}
}
∩
{
∩i∈I c{θ : aT

i θ ≥ 0}
}

.

The dimension of the face is given by the size of the set I c denoting by |I c|. If I is the
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empty set we recover the P1 itself, while if I = {1, . . . , q} we obtain a single vertex. Let

F = {FI , I ∈ 2{1,...,q}} denote the set of faces of P1. Here, 2{1,...,q} denotes the power set of

{1, . . . , q}. Therefore, the number of possible faces is 2q. For each face, we also define the

relative interior of the face as

ri (FI) =
{
∩i∈I{θ : aT

i θ = 0}
}
∩
{
∩i∈I c{θ : aT

i θ > 0}
}

.

The collection of relative interiors partitions the polyhedral cone P1 into 2q disjoint spaces.

Except for the vertex, that is ri(F{1,...,q}) = F{1,...,q}, the rest of these sets are open in a linear

subspace and hence there is no boundary issue and the standard results can be applied to

each part separately.

Example 4.2.1. Let A =

 2 4

−1 1

 and P be a polyhedral cone generated by A. That is

P = {x : 2x1 − x2 ≥ 0, 4x1 + x2 ≥ 0}. The faces of P are

F1 = {x : 2x1 − x2 ≥ 0, 4x1 + x2 ≥ 0} , F2 = {x : 2x1 − x2 = 0, 4x1 + x2 ≥ 0},

F3 = {x : 2x1 − x2 ≥ 0, 4x1 + x2 = 0} , F4 = {x : 2x1 − x2 = 0, 4x1 + x2 = 0}.
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Figure 4.2: Four different relative interior sets of the cone P. gray: ri(F1), red: ri(F2), blue:
ri(F3), black: ri(F4).

The relative interiors correspond to each face are described below and also can be seen

in Figure 4.2.

ri(F1) = The cone P excluding the boundary,

ri(F2) = the upper boundary of P excluding the origin,

ri(F3) = the lower boundary of P excluding the origin,

ri(F4) = the origin

For any point y ∈ Rk, we define the projection of y onto P, Π(y|P), as the point satisfy-

ing

inf
θ∈P
‖y− θ‖ = ‖y−Π(y|P)‖. (4.3)

That is, Π(y|P) is the closest point in P to y. Due to the convex structure of the cone, the
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point Π(y|P) is unique. There exist I ∈ 2{1,...,q} such that Π(y|P) = Π(y|P1 ∩P2 ∩P3) =

Π(y| ri(FI) ∩P2 ∩P3). This is because the relative interior sets partition the cone P1. Note

that each element yl in P3 belong to R, therefore Π(yl|P3) = yl.

Proposition 4.2.2. Let P = P1 ∩P2 ∩P3 be as defined earlier. Let A1,I = [ai1 , . . . , aim ], where

I = {i1, . . . , im} and AI is the r − q + m × r upper matrix of [AT
1,I AT

2 ] . Then, Π(y|P) is

unique and

‖y−Π(y|P)‖2 = ∑
I∈2{1,...,q}

yTQI y I
(

Π(y|P1 ∩P2) ∈ ri(FI) ∩P2

)
.

where QI = AT
I (AIAT

I )
−1AI and y = (y1, . . . , yr) ∈ Rr denotes the subvector of the first r

elements of y.

A proof of

Π(y| ri(FI)) = AT
I (AIAT

I )
−1AIy. (4.4)

is provided in the Appendix (D).

4.2.3 Tangent approximation

When θ is an interior point of Θ, a tangent space can be defined in an open neighborhood

of θ. Tangent space is defined as the first order linear approximation of Θ around θ. When θ

lies on the boundary of Θ, the tangent space can not be defined and the concept of tangent

space is replaced by the tangent cone. Chernoff [6] defined a tangent approximation to Θ
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in a neighborhood of the parameter point θ.

Definition 4.2.1. The set Θ ⊆ Rk is approximated at point θ by a cone CΘ(θ), if

d(CΘ, y) = o(||y− θ||), for all y ∈ Θ,

and

d(Θ, x) = o(||x− θ||), for all x ∈ CΘ,

where d(Φ, x) = in fy∈Φ||x− y||, the distance between point x and its projection on Θ.

θ

Θ
Cθ

Figure 4.3: Approximating cone based on the Chernoff’s assumption

Figure 4.3 demonstrates the approximating cone CΘ of the parameter space Θ. Cher-

noff’s approximation can be applied to many different forms of parameter spaces.

Tangent cone is the other concept that can describe the geometry of the θ in the param-

eter space. A tangent cone TΘ(θ) is the set of all the directions from which sequences in Θ

converge to θ. Assume there exist a sequence {θn} in Θ converging to θ, and a sequence

of positive real numbers {an} . Then limn→∞an(θn − θ) is a tangent vector. The set of all
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tangent vectors form a tangent cone TΘ(θ) of Θ at the point θ.

So the tangent cone is a cone with vertex at the origin and can be defined by the limit

of a−1
n (Θn − θ0), when n→ ∞.

Next definition is related to directional derivative, is called Chernoff-regularity .

Definition 4.2.2. The parameter space Θ ⊆ Rk is Chernoff-regular at the point θ if for every

vector τ in the tangent cone TΘ(θ) and a sequence {an} converging to zero, there exists a

sequence {θn} converging to θ in Θ such that τ = limn→∞ a−1
n (θn − θ).

Intuitively, it says each vector τ in the tangent cone TΘ(θ) corresponds to a smooth

curve in Θ starting from θ, with slope parallel to τ at θ. For example, the set {θ ∈ R2 : θ2 =

θ1 sin(θ−1
1 )} is not Chernoff regular at θ0 = 0, although θ0 is an interior point of Θ,.

Geyer [15], Theorem 2.1, shows that Θ is approximated by a cone at θ0 if and only if Θ

is Chernoff-regular.

Therefore the tangent cone, TΘ(θ), can be defined by the limit of a−1
n (Θn − θ0), when

n → ∞. As we work with the sequence of full and composite likelihood estimators and

it is shown that both are n1/2−consistent estimator of θ0, then an = n−1/2 seems a proper

choice and the set
√

n(Θ− θ0) converges to TΘ(θ0).

As an specific case, assume the parameter space Θ can be shown as the Cartesian prod-

uct Θ = Θ1 ×Θ2 × . . .×Θk, For a simple hypothesis test, if the jth coordinate of θ0 lies on

the boundary, then limn→∞
√

n(Θj − θ0j) = {0}. In general, let Θj = [aj, bj], j = 1, . . . , k

which is any interval in R, ( an open, a close or a half interval), then
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true value of θ0j is on Θj − θ0j limn→∞
√

n(Θj − θ0j)

c ∈ (aj, bj)(interior) [aj − c, bj − c] R

aj (boundary) [0, bj − aj] [0, ∞)

bj (boundary) [aj − bj, 0] (−∞, 0]

It can be seen that if Θj, j = 1, . . . , k corresponds to any nonnull subset of R other than

the whole real line in the tangent cone, then its corresponding parameter may lay on the

boundary.

4.3 LRT under non-standard conditions

The limiting distribution of likelihood ratio statistic, λn(θ) is examined by Chernoff [6]

when the value of parameter is a boundary point of both parameter spaces corresponding

to the null and alternative hypotheses.

Theorem 4.3.1. [6] Under the regularity condition in Chernoff [6] , assume θ0 ∈ Θ0 ⊆ Θ ⊆ Rk is

the true parameter point at which the sets Θ and Θ0 are Chernoff-regular. Let z ∼ Nk(0, I−1(θ0))

that I(θ) is the Fisher information matrix and the maximum likelihood estimator θ̂n is consistent.

Then the asymptotic distribution of the likelihood ratio statistic is the same as the distribution of

χ̄2 = min
θ∈TΘ0(θ0)

(z− θ)T I(θ0)(z− θ)− min
θ∈TΘ(θ0)

(z− θ)T I(θ0)(z− θ) (4.5)

which TΘ(θ) is the tangent cone of the set Θ at the point θ.

64



4.4 CLRT under non-standard conditions

Let f (y; θ) be the density function with parameter θ ∈ Θ ⊆ Rk. We wish to test H0 : θ ∈ Θ0

versus Ha : θ ∈ Θ1, where Θ0 ∪Θ1 = Θ . When θ lies on the boundary, the score function

at the composite likelihood estimation evaluated at θ̂c
n, may not be zero and consequently,

the limiting distribution of the θ̂c
n may not be normal.

Here, under Chernoff’s regularity, the asymptotic properties of the composite likelihood

ratio test statistic is studied. First, the classical regularity conditions is modified for the

composite likelihood estimation in non-standard cases.

4.4.1 Regularity conditions

Let y ⊆ {y1, . . . , yn} be the vector of observations with the density f (y; θ). Let Nδ(θ0)

denote a neighbourhood around the point θ0 and cl(Nδ(θ0)) is a closure of Nδ(θ0). Then

f (y; θ) should satisfy

(B1). The marginal density function of y, f (y; θ) is distinct for different values of y, i.e. if

θ1 6= θ2 then P( f (y; θ) 6= f (y; θ)) > 0, and θ is in the parameter space Θ.

(B2). The marginal densities of y have common support for all θ.

(B3). The marginal density log f is three times continuously differentiable in θ ∈ cl(Nδ(θ0)).

Moreover, there exists an integrable function M(y) such that

|(∂α∂θi log f )(y; θ)| ≤ M(y),
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for i = 1, · · · , k. And for α = 3 there is a constant B (independent of θ) such that

E{M(y)} < B.

(B4). If θ ∈ Nδ(θ0), J(θ0) is well-defined (i.e. exists and is finite) and invertible.

(B5). If θ ∈ Nδ(θ0), H(θ0) is well-defined (i.e. exists and is finite) and (strictly) positive-

definite.

4.4.2 Asymptotic behaviour of CLRT in non-standard condition

In this section, the main results about the asymptotic properties of the composite likelihood

ratio test are discussed. The first lemma shows an expansion for the composite likelihood

function. Then the root-n consistency of the composite maximum likelihood estimator

when θ0 lies on the boundary of Θ is discussed. For this result instead of assuming that θ0

is an interior point, we require a closed set around θ0 in Θ. Finally, the limiting distribution

of composite likelihood ratio test statistic is concluded in a theorem. Proof of the lemmas

and theorems are given in the appendix (C).

Lemma 4.4.1. Under the regularity conditions (B1)− (B5), when intersection of Θ and a closure

of a neighbourhood around θ0 is a closed set φ, there exists a sequence θn in φ such that

1
n

n

∑
i=1

(
log fθn − log fθ0

)
= (θn − θ0)

T An,θ0 −
1
2
(θn − θ0)

T H(θn − θ0) + op(|θn − θ0|2)(4.6)

The next lemma shows that the root-n consistency of the maximum composite likelihood

estimator is not affected by the location of the parameter.
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Lemma 4.4.2. Under the regularity conditions (B1)− (B5), when θ0 is a limiting point of Θ and

the intersection of Θ and a closure of a neighbourhood around θ0 is a closed set φ ⊆ Rk, then there

exists a sequence θ̂c
n in φ which is a consistent maximum composite likelihood estimator of θ0 and

√
n(θ̂c

n − θ0) = Op(1).

Proposition 4.4.3. Under the Chernoff regularity, let θ̂c
n be a consistent estimator of θ0 in φ. Then,

θ̂c
n = θ0 + H−1(θ0)An,θ0 + op(1/

√
n)

Remark 1. The statement (4.7) is true if the sequence θ̂c
n lies in Θ. Without Chernoff’s

assumption, if θ0 lies on the boundary of Θ, ∑n
i=1

∂ log f (θ̂c
n,yi)

∂θ may not be zero which is

required in the proof. Because θ̂c
n converges to θ0, but it might converge from outside

of Θ. Consequently, the limiting distribution of the composite likelihood ratio test might

be different. This is why modification in the regularity condition seems necessary. By

imposing Chernoff’s regularity, the sequence θ̂c
n converges to θ0 in a closed set around θ0

in Θ.

Now a representation for the limiting distribution of the composite likelihood ratio test

can be derived. Suppose θ̂c
n is the sequence of local MCLE in Θ. It is shown that the

sequence of standardized local maximum composite likelihood estimators
√

n(θ̂c
n − θ0) is

bounded in probability. Define ĥn =
√

n(θ̂c
n − θ0), that converges in distribution to θ < ∞,

a vector in the tangent cone at θ0. From definition of the tangent vector, it is seen that the

limit of
√

n(θ̂c
n − θ0) when n→ ∞ is tangent to θ at θ0. The parameter space Θ contains all

the sequences that converge to θ0. Consider the local parameter space
√

n(Θ− θ0). Then
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Chernoff’s regularity holds, if the set
√

n(Θ− θ0) converges to a tangent cone at θ0.

Theorem 4.4.4. Assume the regularity assumptions (B1)− (B5) are satisfied and θ0 ∈ Rk be the

true parameter point at which the parameter spaces Θ0 and Θ ∈ Rk are Chernoff regular. Assume

that θ̂n,0 and θ̂n are the consistent composite maximum likelihood estimators of θ0 in Θ0 and Θ,

respectively. Letz be a multivariate normal random variable with mean zero and covariance matrix

G−1(θ0) = H−1(θ0)J(θ0)H−1(θ0). Then the limiting distribution of likelihood ratio test statistic

λ̃n is the same as distribution of

χ̄2 = inf
θ∈TΘ0 (θ0)

(z− θ)T H(z− θ)− inf
θ∈TΘ(θ0)

(z− θ)T H(z− θ) (4.7)

which TΘ(θ0) is the tangent cone of the set Θ at the point θ0.

which gives the subtraction of two squared Mahalanobis distance when the covariance

matrix of y is misspecified as H−1.

Lemma 4.4.5. Under the condition of the theorem 4.4.4,
√

n|θ̂c
n − θ̃n| = op(1), where

θ̃n = argmaxθ∈φ

(√
n(θ − θ0)

T − H−1 J1/2z
)T

H
(√

n(θ − θ0)
T − H−1 J1/2z

)
.

That is, θ̃n is asymptotically equivalent to θ̂c
n.

Hence, in order to estimate the limiting distribution of composite likelihood ratio we

need to compute infθ∈TΘ(θ)
(z− θ)T H(z− θ) under the null and alternative hypothesis.
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4.5 Parameter space

Here, we introduce the space that we assume the parameters lie onto in this work. Assume

θT
0 = (θ01, θ02, . . . , θ0k)

T be the true parameter point. The k-dimensional parameter vector

θ is decomposed into four parts. The first two parts denote the elements that are to be

tested, that one of them represents the parameters which may lie on the boundary and the

other part contains the interiors. The last two parts are the elements that are not of interest

in hypothesis testing, yet one part is for the boundary parameters and the last one for the

parameters which are located in the interior of the parameter space.

Here, we consider the rather general form of the parameter space.

Let Ω denote an open subset of Rk with 0 ≤ κ1 ≤ κ2 ≤ k. Assume that

Θ = {θ ∈ Ω : gi(θ) ≥ 0 i = 1, . . . , κ1, gi(θ) = 0 i = κ1 + 1, . . . , κ2} , (4.8)

where the functions gi : Rk → R are assumed to be continuously differentiable (i =

1, . . . , κ2). For i = 1, . . . , κ2, let ai = {∂θ1 gi(θ0), . . . , ∂θk gi(θ0)}T denote the gradient vector at

θ0. Next, we relabel the indices {1, . . . , κ2} : Set {1, . . . , q} = {i : gi(θ0) ≥ 0, 1 ≤ i ≤ κ1},

and {q + 1, . . . , r} = {κ1 + 1, . . . , κ2}.

The next proposition from Silvapulle, M.J., Sen, P.K. [45] shows that the tangent cone of

the defined Θ is a polyhedral cone under some assumptions.

Proposition 4.5.1. [45] Assume Θ is defined similar to (4.8). Let AT = [aT
1 . . . aT

r ] be the r× k

Jacobian matrix at θ0. Assume that
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• ai, i = q + 1, . . . , r are linearly independent,

also, there exist a nonzero vector b ∈ Rk such that

• aT
i b ≥ 0, i = 1, . . . , q,

• aT
i b = 0, i ∈ i = q + 1, . . . , r.

Then the tangent cone is equal to

TΘ(θ) =
{

θ ∈ Rk : aT
i θ ≥ 0 i = 1 . . . , q, aT

i θ = 0 i = q + 1, . . . , r
}

. (4.9)

The result suggests that the tangent cone is obtained by the first-order linear approxi-

mation at θ0. Let S = {s : gs(θ0) > 0, 1 ≤ s ≤ q}. If S = {1, . . . , r}, then θ0 is an interior

point of Θ and its corresponding tangent space is Rk. Also, (4.9) suggests that gs(θ), s ∈ S

does not have a role in approximation and constructing the tangent cone TΘ(θ0).

Let A = [AT
1 ,AT

2 ] be a k× r matrix such that TΘ(θ0) = P = P1 ∩P2, where

P1 = {θ ∈ Rk : A1θ ≥ 0} = ∩q
i=1{θ ∈ Rk : aT

i θ ≥ 0}

P2 = {θ ∈ Rk : A2θ = 0} = ∩r
i=q+1{θ ∈ Rk : aT

i θ = 0}

are polyhedral cones and A1 is a q× k matrix with rank q, and A2 is a (r− q)× k matrix

with rank r− q. The cone P1 represent the boundary parameters which are not of interest

in hypothesis testing under H0 or the parameters of interest that lie on the boundary under

70



Ha. The cone P2 represents the parameters of interest under H0. It is shown that the cone

P3 = {θr+1 ∈ R} × {θr+2 ∈ R} × · · · × {θk ∈ R}

that represent the interior parameters does not have an impact on the overall tangent cone

TΘ(θ). The cone TΘ(θ) is the linear space spanned by the columns of A and it can be

written as

TΘ(θ) = {θ ∈ Rk : ATθ ≥ 0}

As TΘ(θ) is a polyhedral cone and by Minkowski-Weyl’s theorem (4.2.1), is finitely

generated. Also we assume that the set of constraints defining TΘ(θ) is tight, so there is

not a sub-matrix of A that generates the same cone.

Therefore, under the assumptions of proposition (4.5.1), the linear and non-linear pa-

rameter spaces can be well-approximated by a polyhedral cone.

Remark 2. If gi(θ) = θi, i = 1, . . . , k, and

Θ0 =
{

θ ∈ Rk : θi ≥ 0 i = 1, . . . , q, θi = 0 i = q + 1, . . . , r
}

the parameter space Θ can be shown as Θ1×Θ2× . . .×Θk, product of intervals of real line

R. Under the null hypothesis Θ0 = {0}r−q× [0, ∞)q×Rk−r. The term {0}r−q contains both

kinds of interior and boundary parameters of interest under the null hypothesis. Then

Θ = [0, ∞)p ×Rr−p−q × [0, ∞)q ×Rk−r, where p is the number of parameters of interest

which may lie on the boundary.
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Then, computing the Jacobian matrix the general form of the tangent cones are TΘ0(θ) =

{0}r−q × [0, ∞)q and TΘ(θ) = [0, ∞)p × [0, ∞)q.

From now on, we assume the parameter spaces are defined by continuously differen-

tiable functions that satisfy the assumption of the proposition (4.5.1).

4.6 Methodology

In this section, we compute the distribution of χ̄2. It is seen that λ̃ = 0 when θ ∈ R and

the cone P3 is related to the interior areas of the parameter space and doesd not have an

effect on constructing the tangent cone. Therefore, to reduce the dimension from now on

we only consider the parameters which may lie on the boundaries and locates in the sets

A1 and A2 and their corresponding tangent cone can be built by P1 and P2. We consider

θ ∈ Rr the first r elements of θ, and so only consider the the r× r upper left sub-matrix of

Σ, H and J. Similarly, let A be is the r× r upper matrix of [AT
1 AT

2 ]. However, in general

A is not a square matrix and is a r×m matrix with rank m, for m constraints imposed on

the r parameters

Let z ∼ Nr(0, Σ), from theorem (4.3.1) and theorem (4.4.4) it is seen that full and

composite likelihood ratio test statistic is represented in terms of Mahalanobis distances,

infθ∈TΘ(θ)
(z− θ)TΣ(z− θ) where Σ in full likelihood is estimated by the Fisher information

matrix while in composite likelihood setting the covariance is misspecified as the Hessian

matrix H.

The matrix Σ is symmetric and positive definite. Using the matrix factorization, such as
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Cholesky, define

Σ−1 = UTU, (4.10)

Hence the equations (4.5) and (4.7) can be represented as

χ̄2 = inf
θ∈TΘ0

(Uz−Uθ)T(Uz−Uθ)− inf
θ∈TΘ

(Uz−Uθ)T(Uz−Uθ) (4.11)

= inf
θ∈T̃Θ0

||z̃− θ̃||2 − inf
θ∈T̃Θ

||z̃− θ̃||2 (4.12)

where z̃ = Uz and T̃Θ = {θ̃ : θ̃ = Uh, for any θ ∈ TΘ(θ)}. Then, infθ∈T̃Θ
||z̃ − θ̃||2

is the squared distance between a normal random variable z̃ and its projection on the

linearly transformed cone T̃Θ. In full likelihood z̃ has standard normal distribution and in

composite likelihood z̃ ∼ N(0, U−T JU−1).

Consider the tangent cone TΘ(θ) =
{

θ ∈ Rk : ATθ ≥ 0
}

. The transformed tangent cone

for θ̃ = Uθ

T̃Θ(θ) = UTΘ(θ)

=
{

Uθ ∈ Rr : ATθ ≥ 0
}

= {θ̃ : ATU−1θ̃ ≥ 0}

= {θ̃ : A1U−1θ̃ ≥ 0} ∩ {θ̃ : A2U−1θ̃ = 0}

= P̃1 ∩ P̃2

Let bi = (ATU−1)i, i = 1, . . . , r denote the row of the matrix, then ri (FI) = {∩i∈I{θ : biθ = 0}}∩

73



{∩i∈I c{θ : biθ > 0}} . Similarly, define T̃Θ0(θ), the transformed tangent cone of the null pa-

rameter space and let ri(FI0) denote relative interior set of the null cone, I0 ⊆ {1, . . . , q0}.

From (4.3), it is deduced that each term of χ̄2 can be computed by finding the projection

of each point on the tangent cone, which is partitioned into its relative interior sets, then

using (D.1) and proposition (4.2.2)

inf
θ∈T̃Θ

||z̃− θ̃||2 = ‖z̃−Π(z̃|T̃Θ(θ))‖2

= ‖z̃−Π(z̃|P̃1 ∩ P̃2)‖2

= ∑
I∈2{1,...,q}

‖z̃−Π(z̃|ri(FIj) ∩ P̃2)‖2 I
(

Π(z̃|P̃1 ∩ P̃2) ∈ ri(FI) ∩ P̃2

)
= ∑

I∈2{1,...,q}
z̃TQI z̃ I

(
Π(z̃|P̃1 ∩ P̃2) ∈ ri(FI) ∩ P̃2

)
(4.13)

Let m = 2q and m0 = 2q0 . From (4.13) the random variable χ̄2 is written as

χ̄2 = ∑
I0∈2{1,...,q0}

z̃TQ0I0 z̃ I
(

Π(z̃|P̃01 ∩ P̃02) ∈ ri(FI0) ∩ P̃02

)
− ∑

I∈2{1,...,q}
z̃TQI z̃ I

(
Π(z̃|P̃1 ∩ P̃2) ∈ ri(FI) ∩ P̃2

)
=

m0

∑
j=1

m

∑
i=1

z̃T
(
Q0Ij,0 −QIi

)
z̃

× I
(

Π(z̃|P̃01 ∩ P̃02) ∈ ri(FI0j) ∩ P̃02, Π(z̃|P̃1 ∩ P̃2) ∈ ri(FIi) ∩ P̃2

)
(4.14)

where Q0Ij,0 is the r× r matrix equal to Q0I0 in the upper left hand r0 × r0 submatrix, and

zero everywhere else. We compute Q0Ij,0 and QIi in the next subsection. Then from (4.11),
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using (4.3), distribution of the random variable χ̄2 is written as

P(χ̄2 ≤ c) =
m0

∑
j=1

m

∑
i=1

P
(

χ̄2 ≤ c | Π(z̃|T̃Θ0) ∈ ri(FI0j) ∩ P̃02, Π(z̃|T̃Θ) ∈ ri(FIi) ∩ P̃2

)
× P(Π(z̃|T̃Θ0) ∈ ri(FI0j) ∩ P̃02, Π(z̃|T̃Θ) ∈ ri(FIi) ∩ P̃2)

=
m0

∑
j=1

m

∑
i=1

P
(
‖z̃−Π(z̃|P̃01 ∩ P̃02)‖2 − ‖z̃−Π(z̃|P̃1 ∩ P̃2)‖2 ≤ c

)
× P

(
Π(z̃|P̃01 ∩ P̃02) ∈ ri(FI0j) ∩ P̃02, Π(z̃|P̃1 ∩ P̃2) ∈ ri(FIi) ∩ P̃2

)
(4.15)

4.6.1 Computing the distribution of χ̄2

By equation (4.15), we find a representation for the distribution of χ̄2. Here, we discuss

finding the random variable Sij = ‖z̃ − Π(z̃| ri(FI0j) ∩ P̃02‖2 − ‖z̃ − Π(z̃| ri(FIi) ∩ P̃2‖2,

as well as computing the quantile c and the probability P(Sij ≤ c). The weight wij =

P
(

Π(z̃|P̃01 ∩ P̃02) ∈ ri(FI0j) ∩ P̃02, Π(z̃|P̃1 ∩ P̃2) ∈ ri(FIi) ∩ P̃2

)
and the underlying distri-

bution of the sum of weighted probabilities are also needed to be studied.

For the transformed tangent cone T̃Θ(θ) = {θ̃ ∈ Rr : ATU−1θ ≥ 0}, define (ATU−1)I =

{(ATU−1)i, i ∈ I} ,the set of the rows of ATU−1 which correspond to the elements of I in

the relative interior set of P̃1 ∩ P̃2. From (4.4), we get

‖z̃−Π(z̃|ri(FI) ∩P2)‖2 = z̃TÜT
I

(
ÜIÜT

I

)−1
ÜI z̃ (4.16)

where Ü = ATU−1
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Define Ü0I similar to ÜI for null tangent cone T̃Θ0 . Then

Sij = ‖z̃−Π(z̃|T̃Θ0(θ))‖
2 − ‖z̃−Π(z̃|T̃Θ(θ))‖2

= ‖z̃−Π(z̃|ri(FI0j) ∩ P̃02)‖2 − ‖z̃−Π(z̃|ri(FIi) ∩ P̃2)‖2

= z̃T
(

ÜT
I0j

(
ÜI0jÜ

T
I0j

)−1
ÜI0j

)
z̃− z̃T

(
ÜT
Ii

(
ÜIiÜ

T
Ii

)−1
ÜIi

)
z̃

= z̃T
(
Q0Ij,0 −QIi

)
z̃

Therefore (4.15) becomes

P(χ̄2 ≤ c) =
m0

∑
j=1

m

∑
i=1

P
(

z̃T
(
Q0Ij,0 −QIi

)
z̃ ≤ c

)
wij (4.17)

Remark 3. Let I be any subset of {1, . . . , r},

• If I = 2{1,...,q} , the power set, then ‖z̃−Π(z̃|ri(FI)) ∩ P̃2‖2 = ‖z̃‖2,

• If I = ∅ then ||z̃−Π(z̃|ri(FI))‖2 = 0,

• As we consider only the rows corresponds to the set I , the matrix U−1
I is not neces-

sarily a square matrix and therefore we cannot say that (U−T
I U−1

I )−1 = UIUT
I .

Some specific cases

• Case 1: Consider the case Θ0 = {θ : gi(θ) = 0, i = 1, . . . , r} and Θ = {θ : gi(θ) ≥ 0, i =

1, . . . , r} therefore the tangent cones are TΘ0(θ) = ∩r
i=1{θ : aT

i θ = 0} = {θ : ATθ = 0}

and TΘ(θ) = ∩
q
i=1{θ : aT

i θ ≥ 0} ∩ {∩r
i=q+1{θi ∈ R}} = {θ ∈ Rr : ATθ ≥ 0}.
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Under the null hypothesis,

inf
θ∈TΘ0

(z− θ)T H(z− θ) = inf
θ∈TΘ0

(Uz−Uθ)T(Uz−Uθ)

= inf
θ∈TΘ0

(UA−TATz−UA−TATθ)T(UA−TATz−UA−TATθ)

= (Uz)T(Uz) = z̃T z̃

Hence for θ̃ = Uθ and T̃Θ = {θ̃ : ATU−1θ̃ ≥ 0}.

the test statistic can be written as

χ̄2 = z̃T z̃− inf
θ∈T̃Θ

(z̃− θ̃)T(z̃− θ̃)

=
m

∑
i=1

z̃T
(

Ir×r − (U−TAT)Ii

[
(AU−1)Ii(U

−TAT)Ii

]−T
(AU−1)Ii

)
z̃

× I(Π(z̃|P̃1 ∩ P̃2) ∈ ri(FIi) ∩ P̃2)

and the distribution (4.17) is written as

P(χ̄2 ≤ c) =
m

∑
i=1

P
(

z̃T (Ir×r −QIi

)
z̃ ≤ c

)
P
(

Π(z̃|P̃1 ∩ P̃2) ∈ ri(FIi) ∩ P̃2

)
(4.18)

• Case 2: If in the parameter space Θ, gi(θ) = θi, i = 1, . . . , r, then the matrix A =
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[AT
1 AT

2 ] becomes an r× r identity matrix. Then (4.17) is simplified to

‖z̃−Π(z̃|ri(FI0j) ∩ P̃02)‖2 − ‖z̃−Π(z̃|ri(FIi) ∩ P̃2)‖2

= z̃T
(

U−T
0Ij

(U−1
I0j

U−T
I0j

)−1U−1
I0j
−U−T

Ii
(U−1
Ii

U−T
Ii

)−1U−1
Ii

)
z̃ (4.19)

= z̃T
(
Q0Ij,0 −QIi

)
z̃

Therefore, distribution of χ̄2 is similar to (4.17), with Ü = U.

• Case 3: Assume Θ0 = {θ : θ1 = . . . = θr = 0} and Θ = {θ : θi ≥ 0, i = 1, . . . q, θj ∈

R, j = q + 1, . . . , r}, that is q parameters lie on the boundary and r− q parameters are

interior. By computing the Jacobian matrix, it is clear that the tangent cone TΘ0(θ) =

Θ0 = {0}r, and TΘ(θ) = {θ ∈ Rk : θi ≥ 0, i = 1, . . . , q} = [0, ∞)q. The null cone has

only one face with I = {1, . . . , r}. Therefore, U0I is a r× r matrix and Q0Ij,0 in (4.19)

becomes an identity matrix. Similar to (4.18) the distribution of χ̄2 becomes

P(χ̄2 ≤ c) =
m

∑
i=1

P
(

z̃T
(

Ir×r −U−T
Ii

(U−1
Ii

U−T
Ii

)−1U−1
Ii

)
z̃ ≤ c

)
× P

(
Π(z̃|P̃1 ∩ P̃2) ∈ ri(FIi)

)
=

m

∑
i=1

P
(

z̃T (Ir×r −QIi

)
z̃ ≤ c

)
P
(

Π(z̃|P̃1 ∩ P̃2) ∈ ri(FIi) ∩ P̃2

)
(4.20)

Example 4.6.1. In a 3−dimensional parameter space, Θ = {θ ∈ R3 : θi ≥ 0, i = 1, 2, 3} =

[0, ∞)3. One is interested to test H0 : θ1 = θ2 = 0, and θ3 may lie on the boundary. Then
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Θ0 = {θ ∈ R3 : θ1 = θ2 = 0} ∩ {θ ∈ R3 : θ3 ≥ 0} = {0}2 × [0, ∞). The tangent cones

TΘ(θ) = P1 and TΘ0 = P02 ∩ P01 are equal to Θ and Θ0, respectively with m = 23 and

m0 = 2 relative interior sets in each one.

After estimating parameters through composite likelihood and estimating H = UTU

and covariance Σ̂ matrix, we can compute the 3× 3 matrix Q0Ij,0 −QIi in the test statistics,

similar to the case 2,

χ̄2 =
2

∑
j=1

23

∑
i=1

z̃T(Q0Ij,0 −QIi)z̃ P
(

Π(z̃|P̃01 ∩ P̃02) ∈ ri(FI0j) ∩ P̃02, Π(z̃|P̃1) ∈ ri(FIi) ∩ P̃2

)
(4.21)

where Ij,0 and Ii belong to 2{3} ∪ {1, 2} and 2{1,2,3}, respectively.

4.6.2 Computing the weight

Recall wij = P
(

Π(z̃|P̃01 ∩ P̃02) ∈ ri(FI0j) ∩ P̃02, Π(z̃|P̃1 ∩ P̃2) ∈ ri(FIi) ∩ P̃2

)
. The exact

computation of the weight wij could be very complicated specially in dimensions larger

than three. To explain why computation of weight can be complicated in practice, let us

look at the two dimensional example. Assume in hypothesis testing there is one param-

eter of interest and one which is not tested and both lie on the boundary. For simplicity

assume gi(θ) = θi, i = 1, 2. Under the null TΘ0 = {0} × [0, ∞) and under the alternative

TΘ = [0, ∞)× [0, ∞). The transferred tangent cones are T̃Θ0 = {θ̃ : U−1
1 θ̃ = 0, U−1

2 θ̃ ≥ 0}

and T̃Θ = {θ̃ : U−1
1 θ̃ ≥ 0, U−1

2 θ̃ ≥ 0}, where U1 and U2 denote the rows of matrix U. The

figure (4.4c) shows that there are five non-empty intersections which are the weights in the
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Figure 4.4: Tangent cones for H0 : aT
1 θ = 0 vs H0 : aT

1 θ ≥ 0, while aT
2 θ2 ≥ 0

test statistic. For higher dimensions, the number of weights increases dramatically.

We propose two algorithm for computing the weight; one based on quadratic optimiza-

tion and the second one by looking at the regions between each relative interior set of the

cone and its corresponding set on the polar cone.

First Algorithm

In this method, we use quadratic programming to minimize equation (z − θ)T H(z − θ),

subject to
{

θ ∈ Rk : ATθ ≥ 0
}

, where A = [AT
1 AT

2 ] That is,

minimize Q(x) = xTΣ−1x, x = z− θ,

−A1x ≥ −A1z

A2x = A2z

when z ∼ N(0, Σ). The constraint A2x = A2z represents the parameters which lie on the

boundary under the null hypothesis and show up in P2. Suppose x∗ is the minimizer of

Q(x), then the point on the cone with minimum distance from z is z− x∗. We solved the
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quadratic equations using the ”quadprog” R-package. The results are the projection points

for any given samples on the polyhedral cone. The coordinate of the projection points is

either zero or greater than zero that the number of zeros shows k− dimension of the face

and the location of the zeros specifies which relative interior set in TΘ0(θ) contains z− x∗.

The steps for computing the weight are

1. generate n data point z1, z2, . . . , zn from Nk(0, Σ̂). The matrix Σ̂ is the estimated co-

variance structure estimated by from the full or composite likelihood approach.

2. minimizing over the total tangent cone ; for each zi, i = 1, . . . , n, finding the projection

point θ01 that minimizes (zi− θ)TΣ̂(zi− θ) over TΘ(θ), using quadratic programming.

3. minimizing over the null cone; for each zi, i = 1, . . . , n, finding the projection point

θ00 that minimizes (zi − θ)TΣ̂(zi − θ) over TΘ0(θ). (In cases that there is no nuisance

parameters on the boundary, in fθ∈TΘ0 (θ)
(zi − θ)TΣ̂(zi − θ) = zT

i Σ̂zi. So dismiss this

step and go to the next one).

4. Define n× k matrix P1, where P1 = [θ00 θ01].

5. allocating zero and one to elements of P1 such that if the projection is not zero and

1 if that is zero. Then, finding the proportion of identical rows which shows the

proportion of zi’s which their projection lie simultaneously in a relative interior set

of TΘ0(θ) and one of TΘ(θ). The proportion of identical rows gives the empirical

weights.

To clarify the algorithm, we explain the steps using an example.
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Example 4.6.2. (continued) In example 4.6.1, the test statistic for hypothesis testing in a 3-

dimensional space with one nuisance parameter one the boundary was defined. To find

the weights, first we generate a sample z1, . . . , z100 from N3(0, Σ̂), where Σ̂ is estimated

full or composite maximum likelihood covariance structure. To compute the weight, we

use quadratic programming. Under the null hypothesis, the constraints matrices of the

quadratic programming are A1 = diag(1, 1, 0) and A2 = diag(0, 0, 1) and under the alter-

native are A1 = 0 and A2 = diag(1, 1, 1). The two left columns of the Table 4.3 shows the

projection of the first 20 generated observations on the null and alternative cones.

Table 4.3: infθ(z− θ)T H(z− θ) under H0 and Ha
under H0 under Ha under H0 under Ha

0 0 0 0 0.058 0 1 1 1 1 0 1
0 0 0 0 0 0 1 1 1 1 1 1
0 0 0 0 0 0 1 1 1 1 1 1
0 0 0 0.020 0 0 1 1 1 0 1 1
0 0 0 0.036 0 0 1 1 1 0 1 1
0 0 0.022 0.077 0 0.007 1 1 0 0 1 0
0 0 0.040 0 0 0.040 1 1 0 1 1 0
0 0 0.018 0 0.056 0 1 1 0 1 0 1
0 0 0.041 0 0.031 0.026 1 1 0 1 0 0
0 0 0 0 0 0 1 1 1 1 1 1
0 0 0 0 0 0 1 1 1 1 1 1
0 0 0.008 0 0 0.008 1 1 0 1 1 0
0 0 0 0 0.021 0 1 1 1 1 0 1
0 0 0 0 0 0 1 1 1 1 1 1
0 0 0.006 0.082 0 0 1 1 0 0 1 1
0 0 0.025 0 0 0.025 1 1 0 1 1 0
0 0 0 0.011 0 0 1 1 1 0 1 1
0 0 0 0.028 0 0 1 1 1 0 1 1
0 0 0 0 0 0 1 1 1 1 1 1
0 0 0 0 0 0 1 1 1 1 1 1
...

As it can be seen the optimal values of θ on the cone are either zero or greater than zero.

The two right columns of the Table 4.3 is made by allocating 0 and 1 to interior coordinates

and the boundary ones of the projection points in the right side, which each row uniquely
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specifies the relative interior set that projection point belongs to it. As an example some

identical series in the table 4.3 are shadowed. Finding the proportion of identical series of

0 and 1 gives an estimation of the weights for each relative interior set.

In total, there are 16 possible series of 0 and 1’s. In this example, observations place

such that 7 of the relative interior sets contains at least a projection point and weight of the

rest of the sets are zero. The proportion of identical rows gives an estimation of the weights

for the two relative interior set simultaneously. Weights are shown in table 4.4.

Second Algorithm

Define the sets

W0,j =
{

z ∈ Rr : Π(z|P01 ∩P02) ∈ ri(FI0j) ∩P02

}
,

Wi =
{

z ∈ Rr : Π(z|P1 ∩P2) ∈ ri(FIi) ∩P2
}

.

The weight wij = P
(

Π(z|P01 ∩P02) ∈ ri(FI0) ∩P02, Π(z|P1 ∩P2) ∈ ri(FI) ∩P2

)
is equiv-

alent to P
(

z ∈W0,j ∩Wi

)
probability that an observation z locates in the region that its

projection onto TΘ(θ) and TΘ0(θ) lie on ri(FIi) ∩P2 and ri(FI0j) ∩P02, simultaneously.

First we find the region Wi. Let AT = [aT
1 aT

2 . . . aT
r ], the tangent cone is P = {θ :

ATU−1θ ≥ 0} and the polar cone is P0 = {y : (ATU−1)−Ty ≤ 0}. Let bi and ḃi denote

the rows of ATU−1 and (ATU−1)−T, respectively. The relative interior sets of P and P0 are

ri (FI) = {∩i∈I{θ : biθ = 0}} ∩ {∩i∈I c{θ : biθ > 0}} and ri
(

F0
I
)
=
{
∩i∈I{θ : ḃiθ < 0}

}
∩
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{
∩i∈I c{θ : ḃiθ = 0}

}
. Then

Wi = {y : B−Ty ≤ 0},

where B =

 bI

−ḃI c

. If I = ∅, then Wi is inside the cone P and if I = {1, . . . , r}, then Wi

represents inside the polar cone P0. For I ⊂ {1, . . . , r}|∅ the region is constructed between

the relative interior of the cone and its corresponding relative interior on the polar cone

which is perpendicular to it. It means the area between {bi : i ∈ I} and {ḃi : i ∈ I c}, which

is a polyhedral cone.

Then, to find W0,j let A01 = [aT
1 aT

2 . . . aT
q0
] and A02 = [aT

q0+1 . . . aT
r ], the tangent

cone is P0 = {θ : A01U−1θ ≥ 0} ∩ {θ : A02U−1θ = 0} and the polar cone is P0
0 =

{y : (A01U−1)−Ty ≤ 0} ∩ R. The relative interior sets of P01 = {θ : A01U−1θ ≥ 0}

is ri
(

FI0

)
=
{
∩i∈I0{θ : biθ = 0}

}
∩
{
∩i∈I c

0
{θ : b0iθ > 0}

}
, where b0i denote the rows of

A01U−1. Similarly, for P0
0 define ri

(
F0
I0

)
=
{
∩i∈I0{θ : ḃ0iθ < 0}

}
∩
{
∩i∈I c

0
{θ : ḃ0iθ = 0}

}
and ḃ0i denote the rows of (A01U−1)−T. Then W0,j = {y : B−T

0 y ≤ 0}, where B0 =

 bI ′0

−ḃI c
0


and I ′0 = I0 ∪ {q0 + 1, . . . , r}.

The steps of this algorithm are

1. generating data y1, . . . , yn from Nr(0, Σ̂),

(total cone)

2. A = the Jacobian matrix under the alternative hypothesis and I ⊆ 2{1,...,r}

3. computing ATU−1 and (ATU−1)−T. If the latter is not square we use a pseudo-
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inverse that is B−1 = (BTB)−1BT.

4. defining bI for the cone and −ḃ−T
I c for the polar cone.

5. constructing the matrix
(

bI
ḃIc

)
by by combining orthogonal rows from P and P0.

6. computing Y =
(

bI
ḃIc

)−T
ỹ for the generated sample and ỹ = Uy. For each observa-

tion, Y is a r × 2r matrix. Each column corresponds to one relative interior set. If

all elements of a specific column are negative then it results that the observation lies

inside the side polyhedral cone made by relative interior set corresponding to that

column and the one on the polar cone. Let ind = # of relative interior set specified by

the column.

(null cone)

7. computing AT
0 U−1 and (AT

0 U−1)−T, where AT
0 = [A01 A02].

8. q0 = number of constraints and defining I0 ⊆ 2{1,...,q0} and I ′0 = I0 ∪ {q0 + 1, . . . , r}.

9. defining ḃI ′0 for the cone and −ḃ−T
I c

0
for the polar cone.

10. constructing q0 × r matrix
( bI′0

ḃIc
0

)
by by combining orthogonal rows from P0 and P0

0.

11. computing Y0 =
( bI′0

ḃIc
0

)−T
ỹ for the generated sample and ỹ = Uy. If elements 1 to q0

are negative then ind0 = # of relative interior set specified by the column of Y0.

12. merging ind and ind0 into one matrix [ind0 ind] and finding the proportion of the

similar rows, that gives the weight for simultaneous relative interior sets from null

and total cone.
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4.6.3 Computing the coefficients

In equation (4.17), it is shown that to find the distribution of χ̄2 we need to compute the dis-

tribution of the quadratic form z̃T(Q0Ij,0−QIi)z̃. Using lemma 3.2 in Kudo [28], it is shown

that the distribution of z̃T(Q0Ij,0 − QIi)z̃ is independent of wij, therefore P(z̃T(Q0Ij,0 −

QIi)z̃ ≤ c|z̃) = P(z̃T(Q0Ij,0 −QIi)z̃ ≤ c). Then the distribution of z̃T(Q0Ij,0 −QIi)z̃ is the

same as ∑
q
l=1 λlVl that Vl, l = 1, . . . , q are independent non-central chi-square distribution

with one degrees of freedom.

Hence (4.17) with the form P(χ̄2 ≤ c) = ∑m0
j=1 ∑m

i=1 P
(

z̃T(Q0Ij,0 −QIi)z̃ ≤ c
)

wij can be

expressed in this form

P(χ̄2 ≤ c) =
s

∑
k=1

P

 lijk

∑
l=1

λklχ
2
1 ≤ c

wk (4.22)

where s is the number of non-zero weights.

In composite likelihood, the weights λkl are the eigenvalues of (Q0Ij,0 −QIi)(U
−T JU−1)

and lijk is the number of eigenvalues for the relative interiors that are corresponded to the

weight wk.

In full likelihood case, the weights λkl become equal to one. Therefore z̃T(Q0Ij,0 −

QIi)z̃ is distributed as χ2
lijk

, where lijk is rank of (Q0Ij,0 − QIi). That is P(χ̄2 ≤ c) =

∑s
k=1 P

(
χ2

lijk
≤ c
)

wk.

Approximation

The obtained formula for P(χ̄2 ≤ c) can become very large even for a slightly large number
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of parameters. We employed Satterthwaite [39] approach that approximate the mixture of

independent χ2
1 as cχ2

d f , where c and d f are chosen so that the first two moments of the

two distributions are equal. The expectation and variance of ∑ λklχ
2
1 are defined as Ek =

∑l λkl and Vk = 2 ∑l λ2
kl. Then the coefficient and degree of freedom are gk = Vk/(2Ek)

d fk = 2E2
k /Vk, respectively. Finally the distribution of χ̄2 becomes

P(χ̄2 ≤ c) =
s

∑
k=1

P
(

gkχ2
d fk
≤ c
)

wk

The algorithm for approximating the weighted sum of χ2
1 into one chi-square term is:

1. if length of non-zero elements in vector (λk1, . . .) > 1 then go to step 2, otherwise

gk = λk1 and d fk = 1,

2. Ek = ∑l λkl and V = 2 ∑l λ2
kl,

3. if (Ek = 0&Vk = 0) then gk = 0 and d fk = 0 otherwise gk = Vk/(2Ek) and d fk =

2E2
k /Vk,

4.6.4 Computing quantile

After computing the weights, to find the quantile of the distribution, define G(c) = P(χ̄2 ≤

c). Newton’s method give the estimate of the c through

cn+1 = cn −
G(cn)

G′(cn)
,
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where G′ is the derivative of g. The algorithm for finding the quantile in composite likeli-

hood is:

Example 4.6.3. ( continued ) In example 4.6.1, the matrix (Q0Ij,0 − QIi) is computed.

To find the coefficient of the mixture of the chi-squares, we find the eigenvalues of the

(Q0Ij,0 − QIi)U
−T JU−1, for every relative interior set with non-zero probability. In total

there are 23 × 2 cases with with at most 3 eigenvalues, but in our example only 7 cases

have non-zero weight. Let lijk ∈ {1, 2, 3}. Table 4.4 shows the coefficients λ1, λ2, λ3 in

P(χ̄2 ≤ c) =
7

∑
k=1

P(
lijk

∑
l=1

λklχ
2
1 ≤ c)wk,

Table 4.4: All coefficients and weights. There are only 7 non-zero weights
λ1 λ2 λ3 weight

1 2.461 1.895 0 0.140
2 2.455 0 0 0.190
3 1.944 0 0 0.080
4 2.149 1.808 -1.303 0
5 0 0 0 0.150
6 2.118 -1.303 0 0
7 1.808 -1.614 0 0
8 -1.648 0 0 0
9 2.540 1.997 1.467 0

10 2.540 1.563 0 0
11 1.998 1.594 0 0
12 2.478 1.824 0 0
13 1.648 0 0 0
14 2.463 0 0 0.120
15 1.843 0 0 0.170
16 0 0 0 0.150

Approximating the coefficients into one term, we can estimate the distribution by a
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mixture of chi-squares

P(χ̄2 ≤ c) =
7

∑
k=1

P(gkχ2
d fk
≤ c)wk.

g df
1 2.21 1.97
2 2.45 1.00
3 1.94 1.00
4 0.00 0.00
5 2.46 1.00
6 1.84 1.00
7 0.00 0.00

Then using Newton’s algorithm the quantile c is computed as 8.323.
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Chapter 5

Simulation of Likelihood Ratio Testing in

Non-standard Condition

In this chapter, first, different steps in finding the distribution of χ̄2 is demonstrated by

some examples. Then the methods and algorithms are evaluated through simulation in

section (5.2).

5.1 Examples

Example 5.1.1. Assume y = xβ + ε, where y4×1 has multivariate normal distribution and

the parameter βp×1 is restricted to be non-negative. The matrix x is a 4× p matrix where

in parts A and B, p = 3 and in C, p = 2. Three different scenarios are considered in this

example. The suggested composite likelihood ratio test is applied in this case.

A. Test in 3-dimensional β, testing H0 : β1 = β2 = 0 versus Ha : β1 ≥ 0, β2 ≥ 0, and β3
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Table 5.1: testing if β1 = β2 = 0 and β3 lies on the boundary.

λ1 λ2 λ3 I0j Ii weights

1.16 1.09 0 0 1 2 0 0 0 0.129

1.15 0 0 0 1 2 0 1 0 0.111

1.09 0 0 0 1 2 0 0 2 0.127

0 0 0 0 1 2 0 1 2 0.140

1.16 1.09 1.03 1 2 3 0 0 0 0.006

1.09 1.04 0 1 2 3 0 0 2 0.001

1.16 1.09 0 1 2 3 0 0 3 0.127

1.15 0 0 1 2 3 1 0 3 0.112

1.09 0 0 1 2 3 1 2 3 0.120

0 0 0 1 2 3 1 2 3 0.127

may lie on the boundary.

Assume β is a three dimensional vector, that β3 is a nuisance boundary point. For

this case, Θ0 = {β ∈ R3 : A1β = 0,A2 ≥ 0} and Θ = {β ∈ R3 : I3×3β ≥ 0}, where

A1 =
(

1 0 0
0 1 0

)
, and A2 = (0 0 1 ) matrix.

Then it is concluded that TΘ0(θ) = Θ0 and TΘ(θ) = Θ. The tangent cone TΘ(θ) and

TΘ0(θ) have 23 and 2 faces, respectively and the set Ii ∈ 2{1,2,3} and I0j ∈ 2{3} ∪ {1, 2}.

That is, before the transformation the tangent cone TΘ(θ) is the first octant and the null

tangent cone is positive side of the z axis plus zero. Then χ̄2 is the same as (4.21). The

results of composite likelihood ratio test suggest that 11 cases out of 16 possible intersection

between the faces of two cones have non-zero probability. The distribution can be written

as P(χ̄2 ≤ c) = ∑10
k=1 P

(
∑

lijk
l=1 λklχ

2
1 ≤ c

)
wk. In Table 5.1, λk1, λk2 and λk3 are shown. Also

different possible matches of Ii and I0j is available in the Table 5.1.
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Then the test statistic can be written as

χ̄2 =



1.16χ2
1 + 1.09χ2

1 , w.p. 0.129

1.15χ2
1 , w.p. 0.111

1.09χ2
1 , w.p. 0.127

1.16χ2
1 + 1.09χ2

1 + 1.03 , w.p. 0.006

1.09χ2
1 + 1.04χ2

1 , w.p. 0.001

1.16χ2
1 + 1.09χ2

1 , w.p. 0.127

1.15χ2
1 , w.p. 0.112

1.09χ2
1 , w.p. 0.120

0 , w.p. 0.267

(5.1)

The obtained result so far is a weighted sum of mixture of chi-squares. It is possible to

approximate each term into one, and it results in a mixture of chi-squares,

P(χ̄2 ≤ c) = 0.129P(1.12 χ2
1.99 ≤ c) + 0.111P(1.15 χ2

1 ≤ c) + 0.127P(1.09 χ2
1 ≤ c)

+ 0.006P(1.09 χ2
2.99 ≤ c) + 0.001P(1.06 χ2

1.99 ≤ c) + 0.127P(1.12 χ2
1.99 ≤ c)

+ 0.112P(1.15 χ2
1 ≤ c) + 0.120P(1.09 χ2

1 ≤ c) + 0.267 (5.2)

Applying newton’s method, the %95 quantile becomes 4.78.
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To assess the accuracy of the approximation, the cdf of (5.1) and the approximated one

in (5.2) and their Q-Q plot, are shown through simulation in figure 5.1.

Figure 5.1: Q-Q plot and cdf’s of P(χ̄2 ≤ c) befor and after approximation

B. Test in 3-dimensional β = (β1, β2, β3), testing H0 :


β1 + 2β2 = 0

3β1 − 5β2 = 0
versus Ha :


β1 + 2β2 ≥ 0

3β1 − 5β2 ≥ 0
and β3 may lie on the boundary.

Assume β is a three dimensional vector, that β3 could be a boundary point that is not

tested. The null parameter space is Θ0 = {β ∈ R3 : A1β = 0,A2β ≥ 0} and Θ = {β ∈ R3 :

Aβ ≥ 0}, where

A1 =

1 2 0

3 −5 0

 , A2 =

(
0 0 1

)
, A =


1 2 0

3 −5 0

0 0 1


Due to linearity of constraints, the Jacobian matix is equal to matrix A and the tangent
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cones are the same as parameter spaces. Table 5.2 shows the coefficient and non-zero

weights and their corresponding relative interior set in each cone.

Table 5.2: testing H0 : β1 + 2β2 = 0, 3β1 − 5β2 = 0 and β3 lies on the boundary.
λ1 λ2 λ3 I0j Ii weights

1.156 1.085 0 1 2 0 0 0 0 0.350
0 0 0 1 2 0 1 2 0 0.180

1.157 1.092 1.035 1 2 3 0 0 0 0.005
1.156 1.086 0 1 2 3 0 0 3 0.355

0 0 0 1 2 3 1 2 3 0.110

then the test statistic can be written as

χ̄2 =



1.156χ2
1 + 1.085χ2

1 , w.p. 0.350

1.157χ2
1 + 1.092χ2

1 + 1.035χ2
1 , w.p. 0.005

1.156χ2
1 + 1.086χ2

1 , w.p. 0.355

0 , w.p. 0.290

Also we can approximate the distribution function (5.1.1) as

P(χ̄2 ≤ c) = 0.35P(1.12χ2
1.99 ≤ c) + 0.005P(1.10χ2

2.99 ≤ c) + 0.355P(1.12χ2
1.99 ≤ c) + 0.290

C. Test in 2-dimensional β, testing H0 : β3
1 = β2

2 versus Ha : β3
1 ≥ β2

2.

The limitation of the proposed approach can be illustrated for hypotheses about the

mean vector of a bivariate normal distribution in the following example.

Let Θ0 = {β ∈ R2 : β3
1 − β2

2 = 0} that is shown in figure 5.2 and Θ = {β ∈ R2 :

β3
1 − β2

2 ≥ 0}.
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Figure 5.2: β3
1 − β2

2 = 0

Then k = 2, r = 1 and the Jacobian matrix becomes J(β) = (3β2
1 − 2β2)

T. If the true

parameter point is β0 = (0, 0), the cusp, then rank(J(β0)) = 0 < r. One of our assumptions

is violated and our approach does not give the tangent cone at this point. This point is a

singularity point which is another non-standard case that we have not studied here.

Now assume that the true parameter point is β0 = (1, 1), a boundary point. Then A =

(3 − 2)T and TΘ0(θ) = {β ∈ R2 : 3β1 − 2β2 = 0} and TΘ(θ) = {β ∈ R2 : 3β1 − 2β2 ≥ 0}

The suggested composite likelihood ratio test is applied on this case. The distribution

of χ̄2 is obtained as

P(χ̄2 ≤ c) = 0.5P(0.8232χ2
1 + 0.8185χ2

1 ≤ c) + 0.5P(0.8203χ2
1 ≤ c)

approximating into one term results in

P(χ̄2 ≤ c) = 0.5P(0.8209χ2
1.999 ≤ c) + 0.5P(0.8203χ2

1 ≤ c)

The %95 quantile is 4.217.
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5.2 Simulation: Mixed Models

Next, we examined the performance of the proposed approach for testing some different

hypothesis tests through simulation studies with regard to the maintenance of the nominal

level of type I error α = 1%, 5% under the null hypothesis and the powers under specific

alternatives. In total, the results of four approaches are compared: the asymptotic full

likelihood (LRT), the asymptotic composite likelihood (CLRT), the naive likelihood ratio

tests (F-naive , CL-naive), and a conditional method (cond-LRT, cond-CLRT). In the naive

likelihood test, the boundary problem is ignored and it is treated as classical hypothesis

testing with interior parameters. The threshold of the naive method is considered as χ2
k−r,α.

The conditional method is based on Susko [46] work, that threshold is χ2
d,α, where d is the

number of parameters which lie on the interior of the parameter space. Since conditional

method is basically developed for the cases with interior nuisance parameter, a modification

is applied for the tests with nuisance parameters on the boundary. For these cases the

threshold is χ2
d′,α, where d′ is the difference between number the interior parameters of the

whole parameter space and the null parameter space.

Data is generated from linear mixed model yi = Xiβ+ zb+ ε, i = 1, . . . , n, where yi ’s are

vectors of length m, β is a p× 1 fixed effect parameter, z is a m× s matrix and b denote the

random effect vector where b ∼ Ns(0, Σb) and Σb = diag(σ2
1 , σ2

2 , . . . , σ2
s ) and ε ∼ N(0, σ2

ε Is).

Then Σy = zΣbzT + σ2
ε Im. For estimating the parameters we used a reparametrization

suggested by Hartley and Rao [18] such that Σy = σ2
ε (∑

s
i=1 λizizT

i + Is), where λi = σ2
i /σ2

ε

and zi, i = 1, . . . , s are the columns of z. Then using Newton-Raphson’s method parameters
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through full likelihood and bivariate composite likelihood are estimated.

The bivariate composite likelihood function is

CL =
n

∏
i=1

∏
1≤j<l≤m

f (yij, yil)

log CL = cl =
−nm(m− 1)

2
log 2π − nm(m− 1)

2
log σ2

ε −
n
2 ∑

j<l
log |Φjk|

− 1
2σ2

ε

n

∑
i=1

∑
j<l

(
yij − µij yil − µil

)
Φ−1

jl

 yij − µij

yil − µil



where Φ = ∑s
i=1 λizizT

i + Is

To compute a bivariate composite likelihood, it is helpful to define a 2×m elimination

matrix ejl that the j element of the first row and l element of its second row is one and the

rest are zero. Let

Φjl = ejlΦeT
jl

Zm
jl = ejlZmZT

meT
jl

Eijl = ejl(yi − µi)

then the score vector can be written as

∂cl
∂λm

=
1
2

n

∑
i=1

∑
j<l

[
− tr(Φ−1

jl Zm
jl ) +

1
σ2

ε
ET

ijlΦ
−1
jl Zm

jl Φ−1
jl Eijl

]
∂cl
∂σ2

ε
=

n

∑
i=1

∑
j<l

[−1
σ2

ε
+

1
2σ4

ε

ET
ijlΦ

−1
jl Eijl

]
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and hessian matrix is obtained by

∂2cl
∂λn∂λm

=
1
2

n

∑
i=1

∑
j<l

[
tr(Φ−1

jl Zn
jlZ

m
jl Φ−1

jl )

− 1
σ2

ε
ET

ijlΦ
−1
jl Zm

jl Φ−1
jl Zn

jlΦ
−1
jl Eijl −

1
σ2

ε
ET

ijlΦ
−1
jl Zn

jlΦ
−1
jl Zm

jl Φ−1
jl Eijl

]
∂2cl

∂σ2
ε ∂λl

=
−1
2σ4

ε

n

∑
i=1

∑
j<l

[
ET

ijlΦ
−1
jl Zm

jl Φ−1
jl Eijl

]
∂2cl
∂σ4

ε

=
n

∑
i=1

∑
j<l

[ 1
2σ4

ε

− 1
σ6

ε
ET

ijlΦ
−1
jl Eijl

]

Four different hypothesis tests are designed. All simulations were performed using R (R

Development Core Team (2013)). In each setting, the family size m = 5, p = 2, β = (1 1)T

and σε = 1. The parameter β is treated as known. The type I error is calculated for

number of families n = 70, 100 and power test is done for n = 100. In the first two tests, to

evaluate the power of each method, we consider two different alternative scenarios: in first

configuration only two non-zero parameters are available with five different effect sizes

0.05, 0.1, 0.2, 0.3, 0.5 and a second alternative configuration with eight non-zero parameters

and five other effect sizes 0.01, 0.03, 0.06, 0.09, 0.1. In the third test, power is computed when

four non-zero parameters are available with effect sizes 0.01, 0.03, 0.06, 0.09 and 0.1. Power

of the Test 4, is computed when the first three element of the parameters are equal and

non-zero and with a value of 0.05, 0.1, 0.2, 0.3, 0.5.

• Test 1: only parameters of interest lie on the boundary (results in 5.4),

• Test 2: there is one parameter that is not tested but may lie on the boundary (results

in 5.5),
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• Test 3: there are three parameters that is not tested but may lie on the boundary

(results in 5.6),

• Test 4: hypothesis testing with nonlinear constraints (results in 5.7).

Test 1: Let k = 8 and H0 : σ2
i = 0 versus Ha : σ2

i ≥ 0, i = 1, . . . , 7, and parameter σ2
ε is

an interior parameters. Then Θ0 = {σ ∈ R8 : gi(σ) = σi = 0, i = 1, . . . , 7, g8(σ) = σε ≥ 0}

and Θ = {σ ∈ R8 : gi(σ) = σi ≥ 0, i = 1, . . . , 7, g8(σ) = σε ≥ 0}. The tangent cone can be

shown as TΘ0 = {0}7 and TΘ = [0, ∞)7. The test statistic is similar to (4.20) in the Case 3.

Simulation result is shown in Table 5.4.

Test 2: Let k = 11, and H0 : σ2
i = 0 versus H0 : σ2

i ≥ 0, i = 1, . . . , 8, while σ2
9 may

lie on the boundary and parameters σ2
10 and σ2

ε are interiors. Therefore Θ0 = {σ2 ∈ R11 :

gi(σ
2) = σ2

i = 0, i = 1, . . . , 8, gj(σ
2) = σ2

j ≥ 0, j = 9, 10, ε} and Θ = {σ2 ∈ R11 : gi(σ
2) =

σ2
i ≥ 0, i = 1, . . . , 10, ε}.

Then the null tangent cone becomes TΘ0 = {σ2 ∈ R11 : A01σ = 0,A02σ ≥ 0} =

{0}8 × [0, ∞) , where A01 is a 8× 11 zero matrix with an 8× 8 identity matrix on its left

side and A02 is a 1× 11 zero matrix that its 9th element is one. The cone TΘ = {σ2 ∈ R11 :

A1σ ≥ 0} = [0, ∞)9 is the total cone where A1 is a 9× 11 zero matrix with an 9× 9 identity

matrix on its left side.

Similar to the Case 2, the test statistic becomes

χ̄2 =
2

∑
j=1

29

∑
i=1

z̃T
(

U−T
I0j

(U−1
I0j

U−T
I0j

)−1U−1
I0j
−U−T

Ii
(U−1
Ii

U−T
Ii

)−1U−1
Ii

)
z̃wij (5.3)

Table 5.5 shows the type I error and power for this test.
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Table 5.3: Type I error for two different sample sizes

type I error

n α LRT CLRT F-naive CL-naive cond-LRT cond-CLRT

Test 1

70 0.01 0.012 0.012 0.002 0.045 0.009 0.129

100 0.01 0.010 0.014 0.003 0.030 0.010 0.138

70 0.05 0.050 0.045 0.008 0.045 0.053 0.259

100 0.05 0.052 0.051 0.004 0.096 0.047 0.267

Test 2

70 0.01 0.005 0.0113 0.002 0.028 0.01 0.086

100 0.01 0.0048 0.011 0.0015 0.033 0.013 0.079

70 0.05 0.051 0.046 0.001 0.051 0.053 0.168

100 0.05 0.050 0.047 0.005 0.072 0.053 0.189

Table 5.4: Type I error and power for Test 1, n = 100 , α = 0.05, B = 1000 simulation

σi LRT CLRT F-naive CL-naive cond-LRT cond-CLRT

2 nonzero variance

0 0.052 0.051 0.004 0.096 0.047 0.267

0.05 0.178 0.099 0.054 0.142 0.126 0.383

0.1 0.405 0.247 0.140 0.304 0.365 0.612

0.2 0.879 0.684 0.681 0.792 0.857 0.927

0.3 0.992 0.973 0.960 0.985 0.988 0.998

0.5 1 1 1 1 1 1

8 nonzero variance

0 0.052 0.051 0.004 0.096 0.047 0.267

0.01 0.153 0.085 0.016 0.164 0.089 0.346

0.03 0.480 0.274 0.181 0.401 0.302 0.594

0.06 0.898 0.716 0.692 0.825 0.758 0.830

0.09 0.990 0.945 0.941 0.962 0.953 0.974

0.1 0.996 0.947 0.977 0.967 0.981 0.991
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Table 5.5: Type I error and power for Test 2, n = 100 , α = 0.05, B = 1000 simulation

σi LRT CLRT F-naive CL-naive cond-LRT cond-CLRT

2 nonzero variance

0 0.050 0.047 0.005 0.072 0.053 0.189

0.05 0.102 0.070 0.015 0.089 0.091 0.269

0.1 0.204 0.163 0.037 0.181 0.186 0.421

0.2 0.668 0.502 0.272 0.525 0.603 0.750

0.3 0.912 0.856 0.691 0.878 0.897 0.946

0.5 1 1 1 1 1 1

8 nonzero variance

0 0.050 0.047 0.005 0.072 0.053 0.189

0.01 0.077 0.055 0.003 0.071 0.067 0.222

0.03 0.183 0.162 0.029 0.177 0.141 0.349

0.06 0.523 0.364 0.144 0.392 0.328 0.570

0.09 0.772 0.675 0.420 0.695 0.636 0.787

0.1 0.858 0.753 0.589 0.766 0.738 0.844

Test 3: Assume k = 8, and H0 : σ2
1 = σ2

2 = σ2
3 = σ2

4 = 0 versus Ha : σ2
i ≥ 0, i = 1, . . . , 4.

Parameters σ2
5 , σ2

6 and σ2
7 may lie on the boundary. Θ0 = {σ2 ∈ R8 : gi(σ

2) = σ2
i = 0, i =

1, . . . , 4, gj(σ
2) = σ2

j ≥ 0, j = 5, 6, 7, ε} and Θ = {σ2 ∈ R8 : gi(σ
2) = σ2

i ≥ 0, i = 1, . . . , 7, ε}

Then tangent cone can be expressed as TΘ0 = {σ2 ∈ R8 : A01σ2 = 0,A02σ2 ≥ 0} =

{0}4 × [0, ∞)3 , where A01 is a 3 × 8 zero matrix with an 3 × 3 identity matrix on its

left side and A02 is a 4 × 8 zero matrix with an 4 × 4 identity matrix on its right side.

TΘ0 = {σ2 ∈ R8 : I7×7 σ2 ≥ 0} = [0, ∞)7.

This test can be performed using the statistic in Case 2, while i = 1, . . . , 27 and j =

1, . . . , 23. Table 5.6 contains the simulation results related to this test.
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Table 5.6: Type I error and power for Test 3, n = 100 , α = 0.05, B = 1000 simulation

4 nonzero variance LRT CLRT F-naive CL-naive cond-LRT cond-CLRT

0 0.0511 0.0507 0.001 0.270 0.047 0.156

0.01 0.143 0.130 0.006 0.101 0.120 0.296

0.03 0.587 0.482 0.147 0.379 0.466 0.576

0.06 0.960 0.955 0.781 0.959 0.916 0.962

0.09 1 1 0.977 1 0.995 0.997

0.1 1 1 1 1 1 1

Test 4 : Let σ2
b = diag(σ2

1 , σ2
2 , σ2

3 , σ2
4 ).One is interested to test

H0 :


σ2

1 − 2σ2
2 = 0

σ2
1 σ2

3 − σ4
4 = 0

versus Ha :


σ2

1 − 2σ2
2 ≥ 0

σ2
1 σ2

3 − σ4
4 ≥ 0

Then the parameter space for σ2 = (σ2
1 , σ2

2 , σ2
3 , σ2

4 ) is given by

Θ = {σ2 ∈ Rk : g1(σ
2) = σ2

1 − 2σ2
2 ≥ 0, g2(σ

2) = σ2
1 σ2

3 − σ4
4 ≥ 0},

and under the null hypothesis

Θ0 = {σ2 ∈ Rk : g1(σ
2) = σ2

1 − 2σ2
2 = 0, g2(σ

2) = σ2
1 σ2

3 − σ4
4 = 0}.

Assume the true point be σ2
0 = (σ2

1 , σ2
2 , σ2

3 , σ2
4 ) = (2, 1, 2, 2). Let J be the Jacobian of

gi(σ
2), i = 1, 2 then

JT =

 1 −2 0 0

σ2
3 0 σ2

1 −2σ2
2


Therefore, the tangent cones can be written as TΘ0(σ

2
0 ) =

{
σ2 ∈ R4 : Aσ2 = 0

}
, and TΘ(σ

2
0 ) =
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{
σ2 ∈ R4 : Aσ2 ≥ 0

}
, where

A =

1 −2 0 0

2 0 2 −4


Then the test statistic for Test 4 becomes similar to (4.18). Table 5.7 shows the type I

error rate and power of the test when three elements are non-zero.

Table 5.7: Type I error and power for Test 4, n = 100 , α = 0.05, B = 1500 simulation

3 nonzero variance LRT CLRT F-naive CL-naive cond-LRT cond-CLRT

0 0.050 0.051 0.136 0.575 0.819 0.592

0.05 0.199 0.074 0.337 0.588 0.875 0.615

0.1 0.639 0.144 0.783 0.698 0.930 0.692

0.2 0.995 0.457 0.997 0.927 0.996 0.874

0.3 1 0.815 1 0.989 0.999 0.956

0.5 1 0.995 1 0.999 1 0.997

Time of the algorithm depends on the number of parameters of interest, existing of the

boundary parameters even if are not included in the hypothesis testing, and sample size.

In general, average times of full likelihood ratio testing is less than composite likelihood

version. In the whole process, the time is mostly spent on the step of estimating the param-

eters. This is because full likelihood requires less computation compared with a bivariate

composite likelihood, even though it might need more iteration to converge sometimes.

In Table 5.8, the run time of the algorithm in for some different case discussed in

simulation part is reported. The reported times are for mixed model. This time is shorter
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for a simple normal regression model.

Table 5.8: run time in seconds

k n LRT CLRT

Test 1
8 70 20.05 67.42

8 100 32.11 97.79

Test 2
11 70 36.69 76.50

10 100 48.86 102.90

Test 3
7 70 26.82 128.39

7 100 38.24 182.21

Test 4
4 70 3.67 9.25

4 100 5.85 12.22

In addition, the algorithm converges in a reasonable number of iterations. The Figure 5.3

show the convergence for different number of iterations for the four types of test in the

simulation studies.
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Figure 5.3: convergence of algorithm for different number of iterations

The Tables 5.4, 5.5 and 5.6 show that the three approaches likelihood ratio, composite
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likelihood ratio and the conditional tests maitain the nominal level for type I error rate. As

it is expected full likelihood has the highest power and there is a bit of loss of power in

composite likelihood approach. The naive methods which ignore the boundary problem

cannot provide a reasonable error rate and also the conditional approach for composite

likelihood is not a suitable choice.

The simulation result suggests that the proposed method works well for all cases of

likelihood ratio tests under study. Although Susko’s conditional method works well for the

full likelihood case when the nuisance parameters are interior point, with only a little power

loss and it is an easier approach, it does not work properly in the situations that composite

likelihood is the more suitable option. Because in full likelihood case, the distribution of

infθ(z̃ − θ̃)T I(θ0)(z̃ − θ̃) conditioned on the location of z̃, is exactly chi-square where the

degree of freedom is the dimension of the region that z̃ is located on it, while in composite

likelihood, z̃ is not a standard normal random variable and the conditional distribution

of infθ(z̃ − θ̃)T H(θ0)(z̃ − θ̃) follows a mixture of chi-squares and not only a chi-square.

The misspecified covariance H(θ0) in composite likelihood causes the test statistic becomes

larger. Also, the naive method does not provide an accurate result. Full likelihood ratio

test with the naive threshold is very conservative with low power. However, composite

likelihood version of the test leads to high type I error rate, which is again due to the larger

value of the test statistic with the H(θ0) matrix.
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5.3 Discussion

Composite likelihood ratio test (CLRT) is an alternative to the full likelihood approach and

follows a mixture of chi-square distribution with one degree of freedom. But this result is

not valid when the true parameter lies on the boundary of the parameter space which is

not a rare situation. Ignoring the boundary problem and treating it as standard cases leads

in false inferences.

The limiting distribution of CLRT in this situation is studied and it is shown that CLRT

at the boundary points follow a mixture of weighted sum of chi-square variables. Em-

pirical study provides the results that the proposed approach gives a good estimation of

distribution for different dimensions and linear and nonlinear combination of parameters

in hypothesis tests.
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Chapter 6

Future Work

Based on the assumption of the work and as it is shown in example 5.1.1, part (C), the

proposed approach does not work when the boundary point is also a singularity. Drton

[9] works on likelihood ratio test on singularity points. Regarding limitation of using full

likelihood in many situations, it is useful to extend this study to composite likelihood ratio

tests as well.

Here are two applied field that it is known that due to the nature of the response

variable, usually composite likelihood is a more suitable option to estimate the parameters.

Moreover, despite having higher dimension parameters in reality, for hypothesis testing in

literature, usually no more than 2−dimensional cases are considered, or the parameters that

are not involved in hypothesis testing directly, are ignored due to computational limitation.

Using our proposed approach, the hypothesis test can be performed in higher dimensions.
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6.1 Simultaneous linkage and heritability analysis in pedi-

gree data

Suppose that the data contain N families or general pedigrees, with mi relatives in the

ith pedigree and yi = (yi1, yi2, . . . , yimi) where yij is the trait value of the jth individual in a

family i. Traits could follow different kinds of distributions such as normal, gamma, binary

and so on. Let µ denote the mean of the traits. For a link function g(.),

g(µij) = xikβ + zijgG + zijuU + zijpP + eij

the vector β = (β1, . . . , βr) is the coefficient vector of fixed effects at the individual, and the

rest of the coefficients are the vector of random effects at the pedigree level. The constants

G and P are the genetic effect of one disease allele and the polygenic effect, respectively.

U1×s shows the effect of s covariates at the pedigree level on the trait Under the trait model,

we have r coefficients of fixed effects β at the first level, s variances σ2
u = (σ2

u1, σ2
u2, . . . , σ2

us)

and the two variances σ2
p and σ2

g at the second level, and σ2
e .

The parameters are θ = (β, G, U, P, σ2
u1, . . . , σ2

us, σ2
p, σ2

g , σ2
e ). Here it is assumed that the

traits follow normal distribution and the link function is identity. Then it can be put in

a generalized mixed model framework, where yi ∼ Nmi(xiβ, Vk). The variance-covariance

matrix for pedigree k(k = 1, 2, . . . , N) is given by Vk = zkΩzT
k + σ2

e I , where the entries in
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zk are defined based on linkage analysis [52], and I is an identity matrix and

Ω =


σ2

u 0 0

0 σ2
p 0

0 0 σ2
g



We can perform likelihood ratio test for testing linkage and heritabilityH0 : σ2
p = 0, σ2

g =

0 against Ha : σ2
p ≥ 0, σ2

g ≥ 0 while the first q elements of the nuisance parameter

(σ2
u1, . . . , σ2

uq, σ2
u(q+1), . . . , σ2

us) may lie on the boundary. Considering θ = (σ2
p, σ2

g , σ2
u1, . . . , σ2

uq),

then TΘ0 = {0}2 × [0, ∞)q and TΘ = [0, ∞)q+2. Applying Case 2 to find the test statistic,

and finding the weights through finding possible intersections between the 2q faces of TΘ0

and 2q+2 faces of TΘ(θ).

6.2 Ferromagnetic Ising model

Here we focus on a type of this model developed in statistical physics to model ferromag-

netism. Consider n atoms in the presence of a 2-directed magnetic field of strength h (that

forms a 2-dimensional lattice. In general, we could have any dimension). The local mag-

netic moment of each atom is represented by a spin, and the model supposes that spin of

each atom of a ferromagnet, interact with its neighbors. The spins has just two possible

states described by yi = ±1, i = 1, . . . , n, which means spin is either pointing up or point-

ing down. Let Jij denote a coefficient giving the interaction strength and hi be the effect of
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the magnetic field on each spin i, then the association between spins is modelled by

P(y) =
1
Z

exp{−β

(
n

∑
i=1

hiyi +
n−1

∑
i=1

n

∑
j=i+1

Jijyiyj

)
}

which has a quadratic exponential form.

The case Jij ≥ 0 is called the ferromagnetic Ising model. The parameter β ≥ 0 is

the inverse of the temperature. The normalizing constant Z is called partition function.

Derivation of the partition function is difficult. As the model is quadratic exponential,

using a conditional composite likelihood can help to get rid of the partition function and

estimate the rest of the parameters.

Let define the set of parameters θ = {h, J, β}, where h = {h1, . . . , hn}, J = {Jij, 1 ≤ i <

j ≤ n}. We wish to test H0 : J = 0 versus Ha : J ≥ 0. The null hypothesis means that the

model in non-interacting. The parameters h ∈ R and β ≥ 0 are the nuisance, where the

latter may lie on the boundary. Therefore, there is boundary issue in both parameters of

interest and the nuisance ones. The tangent cones are TΘ0 = {0}
n(n−1)

2 and TΘ = [0, ∞)
n(n−1)

2 ,

and the CLRT test statistic becomes

‖ỹ‖2 − inf
h̃∈T̃Θ

‖ỹ− h̃‖2

where T̃Θ = UTΘ = {UJ|J ∈ [0, ∞)3}.

We can use the result of estimating parameters in quadratic exponential model by com-

posite likelihood and then the suggested approach for composite likelihood ratio test en-
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ables us to draw the distribution of different kind of hypothesis tests on elements of J.

Details of computation for n = 3 case is provided in the appendix E.
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Appendix A

Proof of asymptotic distribution of

composite likelihood estimator for cluster

data

Proof of theorem 1.3.1

Proof. The proof is divided into two main steps. We first show that there exists a θ̂c
n which

is of order O(n−1/2), and then we derive its asymptotic normality.

Let h(θ; y) = cl(θ; y). Note that for fixed y, h maps Rp into R. Then, by a Taylor

expansion, we have that

h(θ; y)− h(θ0; y) = (∇h)(θ0; y)T(θ − θ0) + (θ − θ0)
T(Dh)(θ∗; y)(θ − θ0),

where θ∗ lies on a line joining θ and θ0. We use ∇, D to denote the gradient and Hessian
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operators, respectively. Our goal will be to show that there exists a θ in a n−1/2 ball of θ0,

the left hand side of the above equation is negative. This in turn will imply that there exists

a MCLE which satisfies
√

n(θ̂c
n − θ0) = Op(1).

To this end, let θ − θ0 = ξM/
√

n, with ||ξ||2 = 1. Assume also that ||θ − θ0||2 < c, that

is, M < c
√

n. Then, by the above, we have

ξT

{
1√
n

n

∑
i=1

(∇clm)(θ0, yi)

}
+ ξT

{
1
n

n

∑
i=1

(Dclm)(θ∗, yi)

}
ξ

≡ ξTbnM + ξTBnξM2, (A.1)

where bn is a random vector converging to a mean-zero Gaussian RV, and Bn is the random

matrix converging to the negative definite matrix −H(θ0). The first of these follows by the

central limit theorem, along with assumption (A5). The second follows by applying the law

of large numbers, along with assumptions (A4) and (A6). Note that the second fact implies

also that the eigenvalues of Bn converge almost surely to the eigenvalues of −H(θ0).

Let λ
(p)
n denote the largest eigenvalue of −Bn, and let S = {ξ : ||ξ||2 = 1}. Since bn

converges as a random Gaussian vector (with mean zero), and ξTbn is uniformly continuous

on S, it follows that ξTbn converges to a mean-zero Gaussian process in C(S), the space of

continuous functions on S endowed with the uniform metric. This implies that ξTbn is tight

in C(S), and hence for all ε > 0, there exists an Mε, such that

lim sup
n

P

(
sup
ξ∈S

ξTbn/λ
(p)
n < Mε

)
≥ 1− ε.
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Then, by (A.1), if ξTbn/λ
(p)
n < M, then ξTbnM + ξTBnξM2 < 0, which in turn implies that

lim sup
n

P
(

ξTbnMε + ξTBnξM2
ε < 0 ∀ξ ∈ S

)
≥ 1− ε.

Note that if ξTbnMε + ξTBnξM2
ε < 0 ∀ξ ∈ S, then, by the above and continuity of clm,

this implies that for sufficiently large n, (with a probability of at least 1− ε) there exists at

least one local maximum on the set BMε/
√

n(θ0) ∩ Bc(θ0). This implies that there exists a θ̂c
n

which satisfies
√

n(θ̂c
n − θ0) = Op(1).

Using a multivariate Taylor expansion, we have that

∇clm(θ̂c
n; y) = ∇clm(θ0; y) + ∑

|α|=1
(∂αcl(1)m )(θ0; y)(θ̂c

n − θ0)
α

+ ∑
|α|=2

2
α!
(θ̂c

n − θ0)
α
∫ 1

0
(1− t)(∂αcl(1)m )(θ0 + t(θ̂c

n − θ0); y)dt,

again using the multi-index notation. We take θ̂c
n to be the local maximizer found above.

This time, for fixed y, ∇clm maps Rp into Rp, so we have chosen to bound the error term a

little differently than above. We let Rn,i denote the third term on the right hand side of this

equation when y is replaced with yi. Next, as by definition ∑n
i=1 cl(1)m (θ̂c

n; yi) = 0, we have

that

1√
n

n

∑
i=1

(Dclm)(θ; yi)
T(θ̂c

n − θ0) +
1√
n

n

∑
i=1

Rn,i =
1√
n

n

∑
i=1

f (θ0; yi). (A.2)
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By condition (A4), we have that

∣∣∣∣∣∣ ∑
|α|=2

2
α!
(θ̂c

n − θ0)
α
∫ 1

0
(1− t)(Dαcl(1)m )(θ0 + t(θ̂c

n − θ0); y)dt

∣∣∣∣∣∣
≤ ∑

|α|=2

1
α!
|θ̂c

n − θ0|α|M(y)|,

from which it follows that,

∣∣∣∣∣ 1√
n

n

∑
i=1

Rn,i

∣∣∣∣∣ ≤ {√
n||θ̂c

n − θ0||22
}{ 1

n

n

∑
i=1
|M(yi)|

}
.

The first term is then op(1) by the first part of this proof, and by the law of large numbers

(since M(y) is integrable), the second term is Op(1). Next, consider

√
n

{
1
n

n

∑
i=1

cl(2)m (θ; yi)− H(θ0)

}
(θ̂c

n − θ0).

By similar argument to that above, this is also op(1). This allows us to re-write (A.2) as

√
nH(θ0)(θ̂

c
n − θ0) =

1√
n

n

∑
i=1

f (θ0; yi) + op(1)

A straightforward application of the central limit theorem shows that the term on the right

hand side has a Gaussian limiting distribution with mean zero and variance J(θ0). The full

result follows.
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Appendix B

Some useful definitions and theorems

Theorem B.0.1. (Graybill [17] theorem 4.4.4) Let y ∼ Np(µ, Σ) where Σ has rank n. The limiting

distribution of the random variable yT Ay is the same as V = ∑n
i=1 λiVi, that λiare the eigenvalue

of the matrix AΣ and V1, . . . , Vn are independent non-central chi-square variables with one degree

of freedom.

hyperplane: a hyperplane H in Rn is defined by H = {y; aTY = b}, a ∈ Rn, a 6= 0, b ∈

R.

interior point: A point θ ∈ Θ is called an interior point if there is a small neighbourhood

centred at θ that lies entirely in Θ.

boundary point: A point θ ∈ Θ is called a boundary point if any small neighbourhood

centred at θ has non-empty intersection with both Θ and its complement.

open and closed space: the space Θ is said to be open if any point in Θ is an interior

point and it is closed if its boundary is contained in Θ.

closure :The closure of a set is the smallest closed set containing that set. In other
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words, the closure of Θ is the union of Θ and its boundary.

limiting point : A point x is a limit point of a set A if ∀δ > 0, (x− δ, x + δ)∪ A{x} 6= ∅.

In other words, a limit point is a point that has points around it of arbitrary closeness,

so one can make a sequence of distinct points that converges to limit point. Statistically

speaking, x is a limit point of a sequence xn of distributions if there exist a subsequence xnj

that converges in distribution to x.

tight: The family Π is said to be tight, if for all ε > 0, there is a compact set K such that

µ(K) > 1− ε for all µ ∈ Π.

relatively compact: A family of probability measures Π is relatively compact if every

sequence µn ∈ Π has a subsequence µnj such that µnj → µ.

Prohorov’s theorem: A sequence {µn} of probability measures on (Rn, B) is tight if and

only if it is relatively compact.

Mahalanobis distance: The Mahalanobis distance of a point x = (x1, x2, . . . , xr)T from

a set of points with mean µ = (µ1, µ2, . . . , µr)T and covariance matrix Σ is defined as:

(
(x− µ)TΣ−1(x− µ)

)1/2

chi-bar squared distribution: In non-standard conditions, a distribution that may raise

naturally is a mixture of chi-squares that is called chi-bar square distribution, which is in

fact the convex combination (or wighted mean) of tail probabilities of chi-square random

variables with possible degrees of freedom.

Let Cθ ⊆ Rp be a closed convex cone and z ∼ Np(0, Σ) . Then the random variable
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χ̄2(Σ, C) has chi-bar squared distribution, which has the same distribution as zTΣ−1z −

infθ∈C(z− θ)TΣ−1(z− θ). Then the chi-bar random variable is written as

χ̄2(Σ, C) = zTΣ−1z− inf
θ∈C

(z− θ)TΣ−1(z− θ)
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Appendix C

Proofs of theorems and lemmas

Proof of lemma (4.4.1)

Proof. By the regularity condition, there exist a point-wise Taylor expansion of the log

composite likelihood function of fθ around the point θ0,

1
n

n

∑
i=1

log fθ =
1
n

n

∑
i=1

log fθ0 +
1
n

n

∑
i=1

(θ − θ0)
T ∂ log fθ0

∂θ

+
1

2n

n

∑
i=1

(θ − θ0)
T ∂2 log fθ0

∂θ2 (θ − θ0)

+
1

2n

n

∑
i=1

(θ − θ0)
T

(
∂2 log fθ∗

∂θ2 −
∂2 log fθ0

∂θ2

)
(θ − θ0)

that θ∗ lies on the line connecting θ and θ0 in φ.

Assume |θ − θ0| < δ, then by (B3),

sup
|θ−θ0|<δ

|∂
2 log fθ∗

∂θ2 −
∂2 log fθ0

∂θ2 | ≤ |∂
2 log fθ∗

∂θ2 |+ |
∂2 log fθ0

∂θ2 | ≤ 2M(y)
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By dominated convergence theorem,
(

∂2 log fθ∗
∂θ2 − ∂2 log fθ0

∂θ2

)
converges to its expectation and

E(| ∂
2 log fθ∗

∂θ2 − ∂2 log fθ0
∂θ2 |) converges to zero as δ → 0. Then by (B4) and (B5) the proof is

completed.

Proof of lemma (4.4.2)

Proof. Since θ0 is a limiting point of Θ, for each ε > 0 and cε → 0, there exist θ ∈ φ such

that ‖θ0 − θ‖2 < cε.

For δ > 0 let Nδ(θ0) = {θ ∈ Θ| ‖θ − θ0‖2 < δ} be a neighbourhood around θ0. Let

cl(Nδ(θ0)) denote the closure of Nδ(θ0). It is assumed that φ = cl(Nδ(θ0)) ∩Θ is a closed

set. Therefore for each n, a local maximum, θ̂n, exists in this closed set.

We need to show that there exist a sequence θ̂c
n, converging to θ0, in the intersection of

the ball around θ0 with radius M√
n and Θ. Assume cε = ψ Mε√

n and θ − θ0 = ψ Mε√
n = c with

‖ψ‖2 = 1.

Taylor expansion of the log composite likelihood around θ0, is

n

∑
i=1

log f (θ, yi)−
n

∑
i=1

log f (θ0, yi) =
√

n(θ − θ0)
T√nAn,θ0

+
√

n(θ − θ0)
TBn,θ∗

√
n(θ − θ0) (C.1)

As the sequence
√

nAn,θ0 converging to normal distribution with zero mean and covari-

ance J(θ0), by Prohorov’s theorem
√

nAn,θ0 is uniformly tight. That is, for every ε > 0,

there exist an Kε for which supn P(
√

n|An,θ0 | ≤ Kε) > 1− ε.

And θ∗ is a point between θ and θ0. By (B4) and LLN, Bn,θ∗ → −H(θ0). So there exist a
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K′ε such that |Bn,θ∗ + H(θ0)| < K′ε.

Let λ1 be the smallest eigenvalue of H(θ∗). Then , if |An,θ0 | ≤
Kε√

n

√
n(θ − θ0)

T√nAn,θ0 +
√

n(θ − θ0)
TBn,θ∗

√
n(θ − θ0)

= ψT M
√

nAn,θ0 + ψT(Bn,θ∗ + H(θ∗))ψM2 − ψT H(θ∗)ψM2

≤ ψT MKε + K′εM2 − λ1M2

So the left side of (C.1) that is cl(θ) − cl(θ0) is negative if ψTKε/(K′ε − λp) < M. So

for a proper amount of M and sufficiently large n, there exist a local maximum θ̂c
n in

NMn√
n
(θ0) ∩ Nδ(θ0) ∩Θ0 that satisfies

√
n(θ̂c

n − θ0) = Op(1).

Proof of lemma (4.4.5)

Proof. Let zn =
√

nJ−1/2An,θ0 , where zn is a standard normal random variable, then

cl(θ)− cl(θ0) =
n

∑
i=1

(
log fθ − log fθ0

)
= n(θ − θ0)

T An,θ0 −
n
2
(θ − θ0)

T H(θ − θ0) + op(1)

=
√

n(θ − θ0)
T J1/2zn +

1
2
√

n(θ − θ0)
T H
√

n(θ − θ0) + op(1)

=
1
2

(√
n(θ − θ0)

T − H−1 J1/2zn

)T
H
(√

n(θ − θ0)
T − H−1 J1/2zn

)
− zn J1/2H−1 J1/2zn + op(1) (C.2)
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Let k(θ) is the first term of (C.2) and r(θ) be the last term of (C.2), then

0 ≤ l(θ̂c
n)− l(θ̃n) = k(θ̂c

n)− k(θ̃n) + r(θ̂c
n)− r(θ̃n)

Since k(θ̂c
n)− k(θ̃n) ≤ 0 then it is concluded that |k(θ̂c

n)− k(θ̃n)| ≤ r(θ̂c
n)− r(θ̃n) ,

k(θ̂c
n)− k(θ̃n) =

1
2 n(θ̂c

n − θ̃n)T H(θ̂c
n − θ̃n)T ≤ op(1)

Since H is positive definite,

|
√

n(θ̂n − θ̃n)
T| = op(1)

and the proof is completed.

Proof of theorem (4.4.4)

Proof. Let hn =
√

n(θ̂n− θ0) and hn,0 =
√

n(θ̂n,0− θ0) be converging sequences in Θ and Θ0,

that converge to h and h0 in TΘ(θ) and TΘ0(θ), consequently. Then the composite likelihood

122



ratio test statistic is

λ̃n = −2 log Λ̃n = −2

(
sup
θ∈Θ0

n

∑
i=1

log
fθ

fθ0

− sup
θ∈Θ

n

∑
i=1

log
fθ

fθ0

)

= 2 inf
h0∈TΘ0

n

∑
i=1

log
f
θ0+

h0√
n

fθ0

− 2 inf
h∈TΘ

n

∑
i=1

log
fθ0+

h√
n

fθ0

= 2 inf
h0∈TΘ0

(
√

nhT
0 An,θ0 −

1
2

hT Hh0)− 2 inf
h∈TΘ

(
√

nhT An,θ0 −
1
2

hT Hh) + op(1)

= inf
h0∈TΘ0

‖
√

nH−1/2An,θ0 − H1/2h0‖2 − inf
h∈TΘ
‖
√

nH−1/2An,θ0 − H1/2h‖2 + op(1)

= inf
h0∈TΘ0

(zn − h0)
T H(zn − h0)− inf

h∈TΘ
(zn − h)T H(zn − h) + op(1)

the third equality is written using (4.6). The random sequence zn =
√

nH−1An,θ0 that

converges to a random variable z with normal distribution with zero mean and covariance

matrix H−1 JH−1 . And the forth equality is from the complete square

√
nhT An,θ0 −

1
2

hT Hh = ‖
√

nH−1/2An,θ0 − H1/2h‖2 − nAT
n,θ0

H−1An,θ0

Therefore the distribution of composite likelihood ratio test converges to the distribution

of

inf
h∈TΘ0

(z− h)T H(z− h)− inf
h∈TΘ

(z− h)T H(z− h).

which gives the squared Mahalanobis distance when the covariance matrix is misspecified.

That is QTΘ(z) is the H−1-distance between z and Tθ while the true covariance matrix is

H−1 JH−1.

Proof of proposition (4.4.3)
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Proof. Consider the Taylor expansion of the first derivative of log composite likelihood

function around θ0,

1√
n

n

∑
i=1

(
∂ log f (θ̂c

n, yi)

∂θ
− ∂ log f (θ0, yi)

∂θ

)

=
√

n(θ̂c
n − θ0)

T 1
n

n

∑
i=1

∑
j,k

∂2 log f (θ0, yi)

∂θjθk
(C.3)

+
√

n ∑
j,k
(θ̂c

nj − θ0j)(θ̂
c
nk − θ0k)∑

l

1
2n

n

∑
i=1

∂3 log f (θ∗, yi)

∂θjθkθl

=
√

n(θ̂c
n − θ0)Bn,θ0

+
√

n ∑
l

1
2n

n

∑
i=1

(θ̂c
n − θ0)

T

(
∂3 log f (θ∗, yi)

∂θjθkθl

)
j,k

(θ̂c
n − θ0)

≤
√

n(θ̂c
n − θ0)Bn,θ0 +

p
2

1
n

n

∑
i=1
|M(yi)|

√
n‖θ̂c

n − θ0‖2
2

= op(1)−
√

n(θ̂c
n − θ0)H(θ0) +

p
2

Op(1)op(1) (C.4)

where the inequality is witten by (B3). As θ̂c
n is the local maximizer of cl(θ) in φ, ∑n

i=1
∂ log f (θ̂c

n,yi)
∂θ =

0. By (B5), H−1 exist, then

1√
n

n

∑
i=1

∂ log f (θ0, yi)

∂θ
H−1(θ0) ≥

√
n(θ̂c

n − θ0) + op(1) (C.5)

Since
√

n(θ̂c
n − θ0) is bounded in probability,

√
n(θ̂c

n − θ0) = H−1(θ0)
√

nAn,θ0 + op(1), and

the proof is completed.
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Appendix D

Projection matrix on a relative interior set

Assume for A = [a1, . . . , ar], P = {θ̃ : AT θ̃ ≥ 0} that equivalently be written as {A−Tθ : θ ≥

0}. The relative interior set of P is ri (FI) = {θ̃ : AT
I θ̃ = 0} ∩ {θ̃ : AT

I c θ̃ > 0}. Let Π(z|P)

denote the projection of point z onto the cone P, then infx∈P ‖y − x‖ = ‖y − Π(y|P)‖,

that is the closest point on P to y. Note that y − Π(y|ri(FI)) is orthogonal to the cone

that y is being projected onto and therefore to every point in ri(FI) as well as Π(y|ri(FI)).

The relative interior set ri (FI) is spanned by the columns of A−T
I ′ , such that A−T

I ′ θ gives

equivalent space as AT
I θ̃ in relative interior set. Then

0 = A−1
I ′ (y−Π(y|ri(FI))) = A−1

I ′ (y− A−T
I ′ z))

Then z = (A−1
I ′ A−T

I ′ )
−1A−1

I ′ y and Π(y|ri(FI)) = A−T
I ′ (A−1

I ′ A−T
I ′ )

−1A−1
I ′ y. This gives a projec-

tion matrix onto a linear space spanned by the face FI . Therefore it can also be expressed
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as

Π(y|ri(FI)) = AT
I (AIAT

I )
−1AIy. (D.1)
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Appendix E

Special case of ferromagnetic Ising model

fixed temperature case: Assume n = 3, so yT = (y1, y2, y3) and the inverse temperature

β = 1. In this case, nuisance are interior points,

fY(y) ∝ exp

{
3

∑
i=1

hiyi + J12y1y2 + J13y1y3 + J23y2y3

}
.

We wish to test H0 : J = 0 versus Ha : J ≥ 0. The parameters are θ = (h1, h2, h3, J12, J13, J23)

and Θ0 = R3 × {0}3 and Θ = R3 × [0, ∞)3. Hence TΘ0 = {0}3 and TΘ(θ) = [0, ∞)3. We

need to find the distribution of χ̄2 = yT Hy− in fh∈TΘ(y− h)T H(y− h). This can be done

using the Case 3.

The conditional probabilities are

prs =
1

1 + e−2[hr+∑i 6=r Jriyi]
, pr f =

1

1 + e2[hr+∑i 6=r Jriyi]
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and the log-composite likelihood function is

cl = log CL(h, β, J; y) =
n

∑
i=1

(
I(yi = 1) log pis + I(yi = −1) log pi f

)
, (E.1)

with score vector U(θ) = ∂cl
∂θ and the Hessian matrix H(θ) = ∂2cl

∂θ2 with elements,

∂cl
∂Jij

= 2[yj I(yi = 1)(1− pis)− yj I(yi = −1)(1− pi f )

+ yi I(yj = 1)(1− pjs)− yi I(yj = −1)(1− pj f )]

∂2cl
∂J2

ij
= −4[I(yi = 1)pis(1− pis) + I(yi = −1)pi f (1− pi f )

+ I(yj = 1)pjs(1− pjs) + I(yj = −1)pj f (1− pj f )]

∂2cl
∂Jij∂Jik

= −4yjyk[I(yi = 1)pis(1− pis) + I(yi = −1)pi f (1− pi f )]

In matrix H, for i, j, k = 1, 2, 3,

Hi,i =
∂2cl
∂J2

ij
= − 1

cosh
(
hi + ∑k 6=i Jik yk

)2 −
1

cosh
(

hj + ∑k 6=j Jjk yk

)2

Hi,j =
∂2cl

∂Jij∂Jik
= −

yj yk

cosh
(
hi + Jij yj + Jik yk

)2

Hj,k =
∂2cl

∂Jij∂Jkj
= − yi yk

cosh
(
hj + Jij yi + Jkj yk

)2

By Cholesky decomposition, we find the matrix U such that H = UTU.
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U =



√
2
√
− 1

T1
2 − 1

T2
2 0 0

−
√

2 y2 y3

T1
2
√
− 1

T1
2−

1
T2

2

√
−2 (T1

2+T2
2+T3

2)
T3

2 (T1
2+T2

2)
0

−
√

2 y1 y3

T2
2
√
− 1

T1
2−

1
T2

2

−
√

2 y1 y2 (T1
2+T2

2−T3
2)

T3
2 (T1

2+T2
2)
√
− T1

2+T2
2+T3

2

T3
2 (T1

2+T2
2)

2
√

2
√
− 1

T1
2+T2

2+T3
2


where

T1 = cosh(h1 + J12 y2 + J13 y3)

T2 = cosh(h2 + J12 y1 + J23 y3)

T3 = cosh(h3 + J13 y1 + J23 y2)
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