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Abstract 

Human cognitive performance is ultimately the result of many factors. Previous inquiries note 

the contributions of demographic and lifestyle cognitive performance. I used a series of structural 

equation models and dimensionality reduction methods to identify how demographic and 

lifestyle measures simultaneously contribute to cognitive performance: a theory-driven model 

using combined measures of cognitive performance and latent variable structure; and a data-

driven model using principal components analysis. Participants (N = 1141, Mage = 23.13 years) 

completed a battery of tasks and questionnaires measuring cognitive performance and collecting 

demographic and lifestyle measures. Overall, both models provided evidence that the inclusion 

of lifestyle measures over and above demographic measures accounted for and predicted 

cognitive performance. Further, the two models give rise to complementary but distinct insights 

into the basic components of cognitive performance. This work provides a methodology and 

evidence for accounting for difference in cognitive performance with demographic and lifestyle 

measures. 
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Chapter 1: Introduction and Literature Review 

Every interaction we have with our environment or with other people is a complex process. Even 

the simplest and seemingly mundane tasks require the extraordinary coordination of several 

neural mechanisms. Our environment is dynamic, and it follows that human functioning is 

contingent on our ability to be adaptive to our environment. This adaptability and flexibility are 

the core and foundation of human cognition.  

Cognition has varying definitions based on discipline and perspective. In psychological 

inquiry, cognition encompasses the mental processes by which information is acquired, stored, 

and transformed (Eysenck & Brysbeart, 2018). In the general sense, cognition concerns the 

entirety and complexity of human experience. The model for input to behaviour is such that 

sensory information is received by the brain from the receptors of the peripheral nervous system. 

The brain processes this information by the means of cognition, this then drives a motor response 

(e.g., speaking, moving). This motor output is characterized as behaviour. The mechanisms 

underlying cognition have been heavily presented, disputed, and reconceptualized. For this 

reason, while there are some distinct functions with notable neural underpinnings, there exists 

simultaneously considerable overlap.  

An Experience-driven Perspective on Cognition 

People and their cognitive processes exist within their environment, which is determined 

and shaped by their experiences. The real world is complex and dynamic. There is familiarity 

and it allows for responsiveness. Consequently, our experience can have long-term implications 

on our cognition. The complement is that there are attributes of ourselves that affect our 

cognition and the environment. This can be understood in theory, but how can this be 

represented in the statistical analyses that we conduct? One approach to understanding the 



 

 

2 

2 

factors that affect cognition is through statistical modelling. Structural Equation Modelling is a 

technique being used to try and mathematically define this relationship.  

For my thesis, I will be investigating how our experiences can affect cognitive 

performance. I will use demographic and lifestyle information as a smaller scale representation 

of life experience and measure cognitive performance through tasks assessing working memory, 

attention, and response inhibition. The analyses will be conducted using a series of Structural 

Equation Models to uncover a factor structure and allow for the simultaneous effects of lifestyle 

and demographics on cognitive performance. While only a scaled model, this series of analyses 

will garner a greater insight into how cognitive performance is determined in part by a person’s 

experiences.  

Structural Equation Modelling 

Structural Equation Modelling (SEM) is a statistical approach that is used to make 

inferences surrounding, and statistically test, cause-effect relationships (Karimi & Meyer, 2014). 

SEMs have two primary elements in the model: (1) measured or observed variables, and (2) 

unobserved variables, more commonly called latent factors or latent variables (LVs). Latent 

variables are explained by measured variables, such as using several measures of physical ability 

to give an overall index of physical fitness. In the cognition context, we can think of cognition 

itself as a latent construct and all our measures as the observed variables. Within the SEM 

framework, there are specific uses and goals to their use. Factor structures, and the constructs 

they represent, can be uncovered, or imposed and subsequently tested. The former is an 

exploratory factor analyses (EFA), and the latter is a confirmatory factor analysis (CFA). Both 

are widely used and serve distinct purposes, and often applied in succession.  

Within the context of cognition, there is a large body of research employing SEM 
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methods. Lemes and colleagues (2017) defined an SEM to explore how the relationship between 

physical fitness and cognition is mediated by other health-related lifestyle factors (age, sleep, 

quality of life, school vulnerability [measure of socioeconomic status], physical activity, and 

weight) in children aged 10 to 14 years. The authors wanted to simultaneously explore all their 

factors of interest, which is possible using an SEM approach. As alluded to above, physical 

fitness was a LV composed of three measures of fitness, and cognitive performance was a LV 

composed of eight neurocognitive assessments. For specific measures, please refer to Lemes et al 

(2017). In short, Lemes et al. found that fitness was predictive of cognitive performance and that 

age, sleep, and quality of life were not associated with fitness. Quality of life was only predictive 

of cognitive performance in the male sample. Further, socioeconomic status was the greatest 

predictor of cognitive performance in their sample. This analysis that considered many other 

known correlates of cognitive performance and fitness was possible using the SEM framework.  

 The study by Lemes et al. (2017), highlights another feature of SEM analyses in 

psychology and cognitive psychology in particular. Recall, that SEM allows for multiple 

relationships to be explored simultaneously and how many predictors (measured or observed 

variables) measure the same constructs (unmeasured or LVs), and any relationships between 

these measured and LVs. Lemes et al. (2017), were able to appropriately model the complexity 

and multi-deterministic nature of performance, garnering insights which may have otherwise 

been unobserved or discarded as error or variance using other methods.  

Measures of Cognitive Performance 

A wide array of tasks have been developed and validated in an to attempt to isolate 

certain cognitive processes. These processes underlie our ability to function and engage 

cognitive control. For certain aspects of cognition, there are tasks developed to measure it, such 
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as response inhibition, attention, and working memory. While each task is meant to probe 

specific processes related to cognition, there is undeniably overlap among these processes. That 

is, it is ultimately the coordination of many networks and processes that give rise to cognitive 

performance.  

Response Inhibition 

 Also referred to as impulse inhibition, response inhibition is the ability to suppress or 

withhold a response (Wright et al., 2014). The active control required to withhold a speeded 

motor response, or to stop it once it has been initiated, is a functional and adaptive process 

underlying healthy cognition. Miller and Cohen (2001), note response inhibition is necessary to 

support cognitive processes such as executive or cognitive control. Healthy and adaptive 

behaviour necessitates control. Several pathologies are hallmarked by the inability to exert 

control over impulses, as deficits can be detrimental. Attention Deficit Hyperactivity Disorder 

(ADHD), substance use disorders, and classes of personality disorders are often associated with 

control over impulses, and the lack thereof (Wright et al., 2014).  

 Go/No-go. The Go/No-go task is among the most common and validated tasks to 

measure response inhibition (Wright et al., 2014). Participants are presented with one of two 

cues, a go or no-go, and must make a speeded response. When a cue appears from a blank 

screen, participants are motivated to quickly make a response, such as a keyboard press. 

However, they must engage restraint and withhold the impulse to immediately respond and first 

decide if the cue is “go” or “no-go” before acting.  

 Of note is that the Go/No-go procedure should not be confused with a similar forced two-

choice procedure where a response is required for both types of stimuli. In a two-choice task, the 

discrimination is made by two different responses, such as two different keys as opposed to 
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withholding and acting. However, work by Gomez et al., (2017) shows that even though a 

Go/No-go only provides one measured response, that the action of withholding marks a similar 

discrimination as would be observed in two-choice task where both responses are measured.  

Attention 

Broadly, attention describes the series of process that allow information in the 

environment to be selected, filtered, and processed. What we attend to determines the 

information we are processing which has direct limiting effect on our decisions and subsequent 

behaviour. There is a class of disorders that are marked by deficits and misattribution of 

attention, where the misattribution of attention underlies maladaptive behaviours (Mahone & 

Denckla, 2017).   

The literature covers a broad array of evidence with support for various theories on what 

exactly comprises attention, how attention facilitates cognition, and on what principles attention 

relies. While this debate remains and new evidence continues to be garnered and implications 

explored, there are dominating theories and properties that are well-supported in the literature. 

Petersen and Posner (2012), suggest a tripartite framework to describe attention being comprised 

of networks, each of which facilitate a specific function. In brief, the authors identify and 

describe three networks: alerting, orienting, executive control. The alerting network concerns 

arousal and has often been referred to as vigilance (Ocasio, 2011). The orienting network 

supports the ability to select the sensory input to attend to, and not to be confused with executive 

control (Petersen & Posner, 2012). Once selected, the attenuation to a target is underpinned by 

the executive control network. While these networks are long supported by, and originally 

conceptualized using, behavioural findings, they continue to be supported in conjunction with 

contemporary and evolving methods such as neuroimaging and physiological. 
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In addition to the networks and functions attention serves, the operating principles have 

an equally well-supported framework: the top-down versus bottom-up processes. Top-down 

processes are those in which our perception is affected by our cognition (Sarter et al., 2001); 

wherein our previous experience has a tangible impact on how we perceive stimuli. Top-down 

accounts, or goal-driven accounts, generally posit that behaviour is attributable to the influences 

of cognition, such as prior beliefs or priming on attention etc. The converse are bottom-up 

processes, whereby our perception is a product of the sensory input from a stimulus. How likely 

our bottom-up attention is captured is described as stimulus salience. Here, what we attend to is 

driven by the properties of the stimulus itself. Consequently, bottom-up attention is also referred 

to as stimulus-driven in the literature. The top-down versus bottom-up distinction can also be 

thought of as attention being directed (top-down) versus drawn (bottom-up) (Wolfe & Horowitz, 

2017). The general consensus in the research is that attention cannot be described as relying 

purely on top-down or bottom-up processes, but rather our attention functions using a 

combination of these two processes. The mechanism of top-down user driven guidance and 

bottom-up stimulus salience interact to drive attention, the determination of the information 

entering memory.  

 Visual Attention. Attention as described is a complex process to filter sensory input to 

be processed by the finite cognitive resources at our disposal at any given moment. Given the 

prevalence of visual information, a proportionally large body of the literature on attention 

concerns specifically visual attention.  

Visual Search Task. The visual search task is a validated measure of visual attention 

whereby participants must scan an array to identify a target among other stimuli, distractors.  

Inquiries and investigations on attention using the visual search task focuses on the 
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bottom-up mechanisms. The salience of items in the array, target or distractors, can impede or 

improve the participant’s ability to correctly identify the presence of a target. Salience, generally, 

is the extent that an object is attended to; the more salient an object is, the more it draws 

attention. Bottom-up attention, and how it can be manipulated, greatly impacts performance on a 

visual search task. When a target is more salient than the distractors, it is easier to identify, 

target-distractor heterogeneity (Wolfe & Horowitz, 2017). The presence of any distractors slows 

participant response to a target (van Doest & Zonk, 2004). However, if a distractor is salient, 

response time is further slowed, and even slower if the target is less salient that any distractors.  

The process of holding the memory a target to search for functions based on a top-down 

process as it is goal directed. This process can also be described as feature guidance (Wolfe & 

Horowitz, 2017). When the distractors are similar to a target, response time is slowed (van Doest 

& Zonk, 2004), This finding is not explained by purely bottom-up accounts, as the goal and 

knowledge of the target affects search behaviour. The cohesion of the bottom-up and top-down 

processes is ultimately the best account for the visual search task, as is the case for attention 

more generally.  

 Attention Shifting. Shifting the focus and goals of our attention is an imperative 

function. When completing a composite task, as are real-world tasks, we need to attend to several 

things, each with different demands. As is the case for attention more generally, this is an 

adaptive process, but it is not immune to error (Monsell, 2003).  

Task Switching Task. The task switching task assesses the ability to direct attention 

differently conditional a set of rules. It is a well-validated and widely used measure of attention 

shifting. Each task condition requires the participant to attend to a different attribute of the 

stimulus, such as colour, size, orientation, or components (Monsell, 2003). When the task 
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demands changes from, the following trial is a switch trial, whereas when the demands do not 

change between trials, that trial is a non-switch trial. Switch trials are more difficult for the 

participant and incur a switch cost (Monsell, 2003). Behaviourally, the shift cost is the slowing 

of responses and increase in incorrect responses, or errors. When participants are provided with 

cues that a switch trial is approaching, the cost is reduced, but not eliminated.  

Trail Making Test (B). Trail Making Test (TMT) as a whole is a commonly administered 

neuropsychological assessment aimed at assessing attention, specifically both visual attention 

and attention shifting. Participants are to connect a series of scattered letters (Test A), or letters 

and numbers, in sequential order (i.e., A-B-C… and 1-A-2-B-3-C…) (Test B). The latter task, 

called Trail Making Test B (TMT-B) is the more difficult of the two as it requires participant to 

orient their visual attention and shift between the numbers and letters (Reitan & Wolfson, 1985 

as cited in Tombaugh, 2003).  

Working Memory 

One facet of cognition is working memory, often presented with Baddeley and Hitch’s 

(1974) theory of working memory. They describe working memory as a component within the 

larger memory system that controls the temporary storage of information. Further inquiry by 

Baddeley (1983) proposes a refinement of this model that introduces more specific components 

to describe how working memory supports memory and cognition. This model defines working 

memory as being a Central Executive being supported by the Visuospatial Sketchpad and the 

Phonological Loop (Baddeley, 1983). The Central Executive controls and coordinates the 

information being processed by these two supporting systems. Working memory has been 

studied extensively and shown to be a predictor of overall cognitive ability, educational 

achievement, cognitive flexibility, and health outcomes (Cowan, 2014).  
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N-Back Task. The N-Back task, first presented by Kircher in 1958, is robust and well-

validated assessment of working memory. Since then, it has been used widely in experimental 

paradigms to assess working memory as a greater proxy of overall cognitive performance. In this 

task, participants are presented with a series of visual stimuli and are asked to report is the 

stimulus presented is the same as presented N trials, or stimuli, before. An N-level of 3, referred 

to as a 3-back, requires participants to compare the current stimulus to the one presented three 

trials earlier (Gajewski et al., 2018). The stimuli used are heavily spatial in nature, often stimuli 

are different locations of a target in an array. This task requires the participant to hold the 

visuospatial information of each stimulus, maintaining and updating constantly with each trial 

and subsequent stimulus presented. A participant must use their working memory to make a 

constant comparison between stimuli, keep track of which stimuli they are comparing, and then 

use this information to make an appropriate decision and produce a response. Even a seemingly 

simple task, especially compared to those taken on outside of the laboratory, demands the 

coordination of several cognitive mechanisms.  

The N-Back task is shown to be sensitive to varying cognitive states and processes 

including both or normal and pathological aging and other disease (Gajewski et al., 2018). 

Behavioural findings have been supported with concurrent evidence from neuroimaging and 

physiological measures (Lamichhane et al., 2020; Missonnier et al., 2003). 

Tunneling Task. The Tunneling task assess broadly visuomotor function. It recruits 

visuospatial working memory among other cognitive faculties, such as motor planning and 

coordination (Mirdamadi & Block, 2020). In a computerized task, participants are required to 

navigate a cursor through a “tunnel” created by visual boundaries from a starting point to an 

ending point. The complexity of the track is aimed to measure the speed-accuracy trade-off, the 
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reduction in speed with increase in accuracy and vice versa, in participants.  

Mirdamadi and Block (2020) employed the tunneling task in their investigation into 

motor skill learning and proprioception. In their original procedure, participants grasped a handle 

to manipulate a robotic manipulandum (BKIN; see Fig. 1A in Mirdamadi and Block) with vision 

of their shoulder, arm, and hand obscured. Using the handle, participants navigated their cursor 

through a series of tunnel tracks. Improved speed-accuracy trade-off (i.e., reduction in speed 

without a reduction in accuracy) was seen for all participants with practice. Concurrent measures 

of sensorimotor integration found that motor skill learning, as measured by the tunneling task, 

was correlated with increased sensorimotor integration.  

Construct Overlap Between Attention and Working Memory 

While often categorized as measuring different facets, each of the aforementioned tasks 

represent overlap in the processes they are attributed to. Aside from the broad construct of 

cognition, any of these tasks or components cannot measure any construct in isolation. Attention 

and working memory are two distinct constructs but are nearly inextricable in measurement. 

Attention is conceptualized as a filter to information that can enter working memory and 

subsequent processing (Han & Kim, 2009).  

To form a decision or make a discrimination and then produce a response requires both 

attention and working memory in sequence. You must attend to the stimuli, such as a target, for 

it to be processed. This information is then manipulated in our working memory and used to 

make a response. Thus, in the grander schema, there is a serial processing sequence of attention 

to processing in memory to decision to response generation. Consequently, overlap is expected. 

There is some measurement of attention in a working memory task and vice versa. This exact 

overlap, or more operationally, statistical redundancy poses a challenge and consideration with 
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many statistical models. This issue with construct overlap, measurement, and analysis is not 

unique and holds true for many other constructs measured, especially in the case of behaviour.  

Relationships between Cognition and Demographic and Lifestyle Determinants  

 Cognition is not an independent process, both internally within the supporting processes, 

and with respect to the effect of external factors. Many approaches to study psychology are 

limited and explore only a few main effects. In reality, cognitive performance is shaped by many 

aspects including demographic attributes such as age or sex and gender (Gajewski et al., 2018; 

Hyde, 2016; Smittenaar et al., 2015). While also being subject to lifestyle factors such as sleep, 

stress, affect, and physical fitness (Frenda & Fenn, 2016; Schoofs et al., 2008; Yang et al., 2013). 

Our behaviour is a result of our cognition, and our cognition is also affected by many aspects of 

our lifestyle which are related to demographics attributes. From this view, we can construct 

statistical models to show these relationships. It follows that demographic and lifestyle factors 

affect cognition, which ultimately give rise to behaviour. Each of these proposed relationships 

have been, and continue to be, well-studied. The demographic attributes/background can account 

for differences in cognitive performance. This is equally true for the lifestyle of participants. The 

nature of these relationships remains a productive inquiry.  

Demographics Account for Differences in Cognitive Performance  

 Among the earliest inquiries in psychology concern the study of individual differences 

(Goodwin, 2008). In that, how can we account for differences in behaviour? These individual 

differences were often explored in relation to demographic groups, including race, 

ethnicity/culture, sex/gender. The continued study of individual differences has brought forward 

competing findings.  

Sex and Gender  
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There are many established beliefs regarding cognition and gender. Some include a male 

advantage on mathematical and visuospatial ability, and a female advantage in verbal ability 

(Hyde, 2016). Also, that males have superior cognitive processing and are more analytic in their 

reasoning. With evolutions in social climate and psychological methods, many of these gender 

differences are no longer supported, and nuances identified.  

Working Memory. Studies have found memory ability to have systematic variance 

attributed to gender. Pauls and colleagues (2013) aimed to investigate how visual working 

memory performance was different between males and females. Using subtests of the WMS-IV 

(spatial addition, symbol span) to index spatial working memory, the authors found an overall 

significant effect of gender on spatial working memory, with males outperforming females (d = 

0.34). This value is for a sample of males and females (N = 696, nfemale = 366) with an age range 

of 16 to 69 years.  

 In contrast, using the N-Back task specifically as a measure of visuospatial ability, 

Schmidt et al. (2009), found no gender differences in behavioural performance nor in activation 

through fMRI. Through samples of males and females matched on age, education, and ethnicity, 

Schmidt et al., did not detect statistically significant difference between accuracy and response 

times attributable to gender. Subsequent fMRI data supports the lack of gender bifurcation in 

behavioural data. Schmidt et al., observed the activation between females and males to be 

“remarkably similar”. The same regions are implicated between the female and male participants 

while undergoing fMRI scanning and completing the N-Back task. The authors note that they 

believe the incongruency with the trend of poorer female performance is due to their sampling 

methods. They boast a sample matched on each of age, education, and ethnicity, and larger 

sample compared to past studies.  
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In light of competing results, contemporary analysis methods, notably the meta-analysis, 

have been sought out by researchers to further probe the presence of gender differences in 

cognition. Hyde (2016) references a body of meta-analyses to illustrate the research on gender 

differences in cognition. The focus on visuospatial ability found gender effects, a male 

advantage, ranging d = 0.51 – 0.77. Importantly, these meta-analyses draw on results from a 

specific visuospatial task, the 3D rotation task where participants demonstrate their ability to 

manipulate and hold a mental image or representation of an object. Consequently, incongruent 

findings could be reduced to a measurement issue.  

Works of Hyde (2016, 2005) on disentangling the literature proposes the Gender 

Similarity Hypotheses (GSH). In short, the GSH holds the conjecture that those of differing 

gender are more similar than they are distinct (Hyde, 2005). Variance within those of a shared 

gender are greater than those between distinct genders. Acknowledging the moderate male 

visuospatial advantage, Hyde (2016) proposes the domain of testing in visuospatial ability is 

unique. There is no formal education curriculum targeting visuospatial ability as there is for 

many other cognitive domains where there are little to no observed gender differences (verbal 

ability & mathematics). Males are more likely to engage in activities drawing on spatial ability 

such as sports activities and video games. An additional important factor is that spatial abilities 

can be improved through training intervention. In tandem, Hyde (2016) suggests that this 

difference in gender on visuospatial ability is less likely an innate ability but rather due to the 

activities and environment of males.  

Attention. Research concerning gender and attention have competing findings. Similar to 

as observed in working memory. Given the intractability of attention from working memory as 

previously discussed, the same pattern in findings between working memory and attention is not 
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surprising.  

Selective visual attention shows distinct patterns of behaviours for male and female 

participants. In a cueing task, female participants’ performance was worsened with an invalid 

cue compared to no cue (Merritt et al., 2007). In contrast, the male participants’ performance was 

increased with an invalid cue compared to no cue. The validity of a cue, the knowledge of a 

stimulus being relevant to the task, draws on top-down attention rather than stimulus-driven 

bottom-up. Feng et al. (2011), present similar physiological findings corroborating the increased 

cueing effect on females. Event-related potential (ERP) data analysis found that female 

participants show a greater amplitude, meaning, they change in electrical potential of the scalp is 

greater. The authors offer the greater endogenous efforts of females as explanation for greater 

activation.  

Focusing on a task-switching task (attention shifting), Hirsch et al. (2019) find no gender 

advantage in either of response time or accuracy. The authors report an effort to control for any 

gender difference in working memory, processing speed, and fluid intelligence. Moreover, of the 

ten attentional tasks aimed at evaluating multitasking abilities, none of them produced evidence 

for gender differences.  

Response Inhibition. Li et al. (2006) explore response inhibition using a Go/No-go task in 

20 male and 20 female age – and education – matched participants who also underwent fMRI 

imaging. The authors did not find evidence for gender differences in their behavioural analyses. 

Accuracy and reaction times for go and no-go trials did not differ, nor did self-reported 

frustration. However, the fMRI data did reveal that their male participants showed consistently 

higher level of cortical activation in their areas of interest than the female participants on no-go 

trials. On go trials, the two samples show different areas of activation. Li et al., describe this 
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finding as male participants rely on motor networks whereas female participants relied on visual 

and learning networks when engaging in response inhibition. While there are differing neural 

correlates, the behaviour initiated by the males and females do not differ.  

Age   

Across the developmental lifespan, there are notable difference in working memory, 

attention, and response inhibition. Using an N-Back task, Gajewski et al. (2018) show that young 

adults (20 – 40 years) have greater working memory performance than middle aged (41 – 60 

years) and older adults (61 – 80 years). This is indexed by reaction times slowing and decreased 

target detection with older age. Using concurrent psychometric testing, the authors suggest that 

the change in performance is driven by processing changes as we age. Younger adult 

performance was most related to executive functioning, whereas the older adults’ performance 

correlated most to attention and working memory abilities. Older adults appear to use different 

strategies and rely on different processes than do younger adults. However, within age cohorts, 

performance is quite uniform. Thus, in participants from the same age group, we would not 

expect to see differences in attention and working memory attributable to age.  

Age-related differences in response inhibition are a similar trend as to working memory 

attention, which is expected. Older adults are slower to respond to stimuli, however, the 

processes relied on are different than younger adults as is the case for attention and working 

memory (Smittenaar et al., 2015). Smittenaar et al. (2015), suggest that the case of reactive 

responding is distinct and relies on separate mechanisms than when responses are proactive, 

when we are prepared to make a response. In the proactive case, older adults do not show the 

same deterioration in response time. Further, this case has been argued to be more representative 

of the responses encountered in daily settings. As such, it is sensible that older adults would 
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continue to react to these appropriately as this is adaptive and necessary for functioning. As with 

attention and working memory, performance on inhibition tasks is homogenous within an age 

cohort and observed differences are unlikely to be attributable to age alone.  

Lifestyle Affects Cognitive Performance 

 The environment of a person is shaped by patterns of behaviour that culminates as their 

lifestyle. Given, that people exist within their environment, it follows that these factors would 

correspond to describable cognitive performance.  

Sleep  

Anecdotally, it is widely endorsed that proper sleep is a necessary component for daily 

functioning. Proper sleep is crucial to many aspects of cognitive processing from the neural level 

and the subsequent network activity that support and give rise to behaviour (Walker, 2009). 

Unsurprisingly, sleep deprivation results in poorer performance on an array of working memory 

and attention tasks (Frenda & Fenn, 2016). Response times and response accuracy are both 

comprised when a participant is sleep deprived. This can be seen in slowed responses, reduced 

accuracy, or both (Frenda & Fenn, 2016).  

Further, inadequate sleep reduces response inhibition (van Peer et al., 2018). Using a 

Go/No-go paradigm, van Peer et al. (2018) show that participants deprived of sleep for three 

nights were significantly less accurate than the well-rested control group. The sleep deprived 

participants also report decreased attention and alertness in addition to a more negative affect. 

Drummond et al. (2006), show that while acute sleep-related detriments in cognitive 

performance are observed, they have the potential to be recovered. Depriving participants of 

sleep for two nights resulted in significant difficulty withholding responses, showing an 

increased response rate where a response should have been withheld. However, by restoring 
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proper sleep for two more nights, participants can return to their baseline level of response 

inhibition.  

Affect  

Affect is the emotional state of a person at the time of interest (Kaufmann et al., 2020). 

Not to be confused with mood, which is used in a longer time frame, less transient than would be 

affect. Although often used synonymously, clinically and through psychological measurement, 

they address related but separate constructs about emotion. To further explain the distinction, 

Kauffman et al. (2020) describe mood as reported by a participant whereas affect can be reported 

but it is also observable. Affect is described by its valence, negative or positive. 

 When considering cognitive performance, affect is not a unique mental attribute. There 

exists a body of literature on the relationship between a person’s affect and their cognitive 

performance on attributes such as working memory, attention, and response inhibition. Research 

by Yang and colleagues (2013) probed how the processing of information in working memory is 

related to positive affect. The authors manipulated the affect of their participants by 

experimentally inducing a positive affect in half of the sample, and then had all participants 

complete both a word-span and operation-span task. Those in the positive affect conditions 

performed better than those in the neutral condition on both span tasks, suggesting a working 

memory and attention benefit of positive affect. Further probing showed that this gain in 

attention and working memory was not solely accounted for by motivation. Another study using 

an N-Back task conducted by Brose et al. (2012) echo these findings using the converse: reduced 

working memory performance is correlated with negative affect. Of note is this investigation 

used correlational data and was not an experiment. Participants were from a larger longitudinal 

study and completed the same measures at multiple timepoints. The analyses revealed that 
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sessions where N-Back performance was low, the participants tended to report a negative affect 

more often than not. Consequently, the authors draw a relationship between affect and working 

memory and attention.  

 On response inhibition, there is evidence to conjugate affect with response behaviour. 

Albert et al. (2010) had participants complete a Go/No-go task with stimuli present 

superimposed on emotionally (affectively) valanced images (see Albert et al. (2010) for 

materials). Electrophysiological data, ERP, were also recorded in their procedure to measure 

activation in networks associated with inhibitory control, the orbitofrontal cortex (OFC) and the 

anterior cingulate cortex (ACC). The researchers found greater ACC activation during trials 

using positively valanced images, implying that more inhibitory control must be exerted when 

stimuli are positive than neutral or negative. Albert and colleagues propose that this could be due 

to approach and withdrawal. In that approaching behaviour is related to positive affect and 

emotion, whereas withdrawing behaviour is related to negative affect and emotion. Taken 

together, in a positive affect, the increased effort required to inhibit responses may be due to 

approaching behaviour. Lending to participants initiating responses when they should withhold. 

Of note is that this inquiry concerns the affect and valence of the stimuli and not of the 

participant themselves. The underlying assumption is that positively valanced stimuli elicit 

positive affect in participants. However, this may not be the case invariably when considering 

affect.  

Stress  

Stress is well known to impact general cognitive functioning and performance on specific 

tasks. A prevailing theory surrounds the stress-performance curve, also known as the Yerkes-

Dodson law (Yerkes & Dodson, 1908). This describes the concept that there exists some 
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intermediate level of stress that drives peak performance. Further, that levels of stress that are too 

high or low result in poorer performance (Teigan, 1994). Consequently, when participants 

experience these extremes we expect, and observe, poorer task performance. In one example, 

Schoofs et al. (2008) show that performance on an N-Back task can be hindered by induced 

sufficient acute stress. Increased stress as measured by self-report and salivatory samples 

(cortisol, hormone & alpha-amylase, enzyme) correlated with increased negative affect and 

resulted in longer response latencies and lower accuracy in the N-Back task. Thus, increases in 

acute stress in reduce working memory performance.  

Likewise, Janelle (2001) proposed that attention, specifically visual attention, is affected 

by stress. Increased stress can cause participants to use visual search strategies that are not 

effective and lend to worse performance as indexed by increased reaction times and lower 

accuracy. Qi et al (2018), support this with faster reaction times under stress, but lower accuracy 

rates in only one task. Thus, stress affects behavioural performance and modulates how attention 

is allocated. The impact of stress on performance has been further corroborated in tasks 

involving response inhibition. Inducing stress in participants concurrently affects response 

inhibition. Qi et al. (2017) induced stress and found that response inhibition was reduced, in that 

responses were made more quickly in a stress-induced condition than at baseline. However, 

response accuracy was not affected.  

Fitness  

Increased fitness, measured and self-reported, is consistently shown to have positive 

psychological and neurocognitive effects. An investigation by Basso et al. (2022) investigates the 

effects of increased aerobic exercise on an array of psychological and neurocognitive measures 

including affect and working memory. Half of the participants were instructed to maintain their 
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current exercise regimen, control group, while the other increased their load over three months. 

Participants completed all assessments before and after the three months period. Increasing 

aerobic exercise resulted in in decreased negative affect and sadness. Working memory was 

measured using the N-Back task, the increased group outperformed the control group in accuracy 

but only for the 0-back condition. This was the only group-time interaction.  

Acknowledging that aerobic exercise may not be the best measure for fitness and 

cognition, Gu et al. (2019) further delve into different types of fitness and exercise. Gu et al., 

argue that while much of the literature is concerned with advantages stemming from aerobic 

exercise, when considering neurocognitive effects, sports may be a better measure. Since, sports 

involve a higher cognitive demand. Through systematic review, they identify many findings and 

trends within the literature. Overall, sports requiring attention, active decision making, and 

cognitive flexibility (e.g., basketball, tennis) show greater benefits in cognitive functioning than 

sports that are more skill-based (e.g., running, swimming, cycling). However, all engagement in 

sports was shown to related to increased cognitive performance in the several domains including 

response inhibition, visuospatial attention, attention shifting, and working memory.  

Lifestyle and Demographics Interact to Affect Cognitive Performance 

The study of cognition and performance is far reaching. There are some competing 

results into how certain factors can account for our cognitive performance. Examining 

demographic factors, age has well-supported trends with aging. Younger adults tend to 

outperform older adults and rely on different mechanisms. However, performance within those 

age cohorts is homogenous. Sex and gender have less consistent results. Overall, male and 

female participants show equal performance with the exception of a slight male advantage in 

visuospatial working memory. Lifestyle factors also have tangible impacts on cognitive 
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performance. Generally, cognitive performance worsens with decreased sleep and fitness, 

increased stress, and negative affect. Working memory and attention are affected in accord with 

each other, as is expected with the aforementioned construct overlap. Response inhibition tends 

to follow as well.   

Factors pertaining to our lifestyle and demographic characteristics are not mutually 

exclusive, in that they are intrinsically tied. For example, gender differences in many cognitive 

and other outcomes are diminishing or have disappeared from statistical significance altogether. 

Since, what was measured as a difference attributable gender was ultimately accounting for 

many other contributing factors, such as education, socioeconomic status, and experience. This 

principle of non-unique attribution equally applies to other demographic and lifestyle indicators.  

Are demographic factors such as gender or age uniquely and causally contributing to any 

patterns in cognitive performance? Or can any relationships be better explained by other factors? 

For example, the research on stress and cognitive performance also measures and reports on 

affect, given the stress and affect relationship (Qi et al., 2017; Qi et al., 2018; Schoofs, 2008). Is 

it stress driving the cognitive performance, or affect? Or some other causal chain. It is also 

known that decreased sleep and increased stress inhibit cognitive performance. Are these effects 

independent or causal? To acknowledge these more ecologically valid and complex questions, 

exploring multiple effects simultaneously is required.  

Structural Equation Models for Modelling Cognition 

To address the causality issues left by using single or limited predictors, SEM has been 

adopted by researchers to explore factors affecting cognitive performance. Recall, Lemes et al. 

(2017) used an SEM to determine how children’s physical fitness mediated the relationship 

between many known predictors of cognitive performance. This insight was possible by 
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exploring all relationships of interest simultaneously.  

A similar study by Padulo and colleagues (2019), also explored physical activity and 

fitness on school performance in children (Mage = 11 years, SD = 0.3 years). Here, school 

performance is thought of as a cognitive measure. Using their extensive inventory of measures, 

their final model comprised four LVs: family context, socio-demographics lifestyle, and school 

performance. The authors proposed an original model that included a latent factor for their 

measures of physical fitness of each participant, but their revised model did not include these 

measures. The SEM framework allowed for the metrics and ability to adjust their original 

hypotheses and create a revised model better suited to their data. In brief, school performance 

was predicted by family context, socio-demographics and lifestyle. Further, lifestyle fully 

moderated the relationship between family content and school performance. Padulo and 

colleagues demonstrate both how cognitive performance is impacted by many factors, how 

lifestyle can account for some of these relationships, and the utility of an SEM approach. 

Within the domain of cognition, Fino et al. (2014), used SEM to confirm the theoretical 

constructs in in impulsive behaviour and inhibitory control in adolescents (Mage = 17 years, SD = 

0.82 years). Executive function was predicted by control and impulsivity, and itself predicted 

task errors. Turning to older adults, Hull et al. (2008), investigated the factor structure underlying 

executive functioning in older adults. Using a Confirmatory Factor Analysis (CFA), they tested a 

proposed model of executive functioning comprised of three factors representing the constructs 

of: shifting, updating, and inhibition. Shifting referring to set shifting or (task switching, 

cognitive flexibility), updating being monitoring and updating information (attention and 

working memory), and inhibition representing response inhibition. However, their analyses 

revealed that a two-factor model using only shifting and updating to be the best fitting model. 
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Hull et al., suggest their findings support that updating abilities in older adults underlies age-

related in executive functioning.  

Using SEM, these authors were able to test complex hypotheses with several statistical 

relationships simultaneously. Moreover, to define models with several latent factors and to test 

the suitability of these models, allowing them to be refined. In context, Lemes et al. (2017) and 

Padulo et al. (2019) were able to show how cognitive performance was affected by several 

lifestyle factors and especially the importance of physical fitness. Fino et al. (2014) and Hull et 

al. (2008) created and refined models for executive functioning in adolescents and older adults, 

respectively. Testing hypotheses involving complex relationships is required to support the 

development of theories and models of cognition. Thus, the implementation of SEM in cognitive 

psychology in an essential advance. 

Summary and Current Study 

 Cognition encompasses the mental processes that underlie how we attend to, store, and 

process information (Eysenck & Brysbeart, 2018). The mechanisms underlying cognition are 

subject to external influence, such as the environment that a person functions within. 

Disentangling these complex relationships is imperative to understanding the nature of cognition. 

Demographic attributes such as age and gender are shown to account for variance observed in 

cognitive performance. Additionally, characteristics of a person’s lifestyle is related to their 

cognitive performance. Understanding the nature of these relationships requires a simultaneous 

investigation of the influence of both demographic and lifestyle factors on cognitive 

performance. Testing theories of cognition requires a quantifiable means for evaluation and 

refinement. This is done using statistical modelling, which is facilitated through SEM. Research 

in cognitive psychology leverages SEM analyses to understand cognition at several levels on 
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inquiry spanning networks of neural activity and behaviour.  

The aim of the current study is to parse the relationships and influence exerted by 

demographic and lifestyle measures on cognitive performance, and how this ultimately drives 

behaviour. Using a battery of cognitive tasks and several questionnaires to collect demographic 

and lifestyle data, I will create statistical models using the SEM framework. All tasks were built 

in PsychoPy and hosted online via Pavlovia (Peirce et al., 2019). Questionnaires were hosted on 

Qualtrics (Provo, UT, USA).  

I hypothesize that each of the measured cognitive variables will load onto one or more 

latent factors representing three aspects of cognitive task performance: (1) Cognitive control 

which will encompass processes such as response inhibition and general executive functioning; 

(2) visuospatial working memory and visual attention; and (3) visuomotor functioning as each 

cognitive task is visual in nature and requires motor responses. Further that demographic and 

lifestyle measures will account for variance in cognitive performance.  

Chapter 2: Method 

Participants 

A total of 1141participants (nfemales = 781, Mage = 23.13 years, SD = 7.38 years) were 

recruited from introductory psychology classes at York University and completed the study 

remotely. Participants received course credit for their participation.  

Materials 

 The study was administered online, and participants used their own devices to complete 

the browser-based battery. All cognitive tasks and surveys are conducted online, consequently, 

all hardware is not standardized and are that of the participant. Participants were required to use 

a desktop or laptop computer. Visual stimuli presented on remote devices could vary based on 
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the size of display used by each participant but was scaled proportionally. The study comprised a 

series of cognitive tasks built using PsychoPy software (Peirce et al., 2019) and hosted through 

on a server Pavlovia, and a series of questionnaires hosted through Qualtrics (Version: 

September 2020).  

 Participants completed eight cognitive tasks and an extensive questionnaire to collect 

demographic and lifestyle data. Only a subset of these tasks and measures were used and those 

will be described. A full list of tasks and measures can be found in Appendix A.  

Cognitive Tasks 

 Participants completed questionnaires and eight tasks over two online sessions, each 

around 1.5 hours-long scheduled one week apart. These tasks are meant to assess varied facets of 

cognitive and a subset of four tasks are used in this analysis.  

 N-Back. The N-Back task assess visuospatial working memory. The current instantiation 

is adapted from that of Dores et al. (2015). The N-level corresponds to the number of positions, 

or trials, before the one currently presented that the participant must compare to. Increasing the 

N-level is a harder task for the participants as cognitive load increases with having to maintain 

information for each stimulus presented. Participants are presented a 3x3 grid on their screen and 

are asked to attend to a white square that will appear in one of the nine cells. See figure 1. In a 2-

back block, participants must choose via a keyboard response (spacebar if correct position, no 

response if not) if the white square is in the same position (cell) that it was two trials (positions) 

prior; similar to one prior in a 1-back and three in a 3-back. Each participants completes three 

blocks of trials for each of the 1-, 2-, and 3-back conditions.  

The outline of the grid changes from the default white to green for a correct response, and red for 

an incorrect response. For trials when the participant does not hit the spacebar, no feedback as 
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Figure 1. Procedure and Stimulus Example for the N-Back Task. 

colour change appears. A response is not required in approximately 75% of trials. 180 trials (3 

blocks of 60 trials each) are completed at 2000ms each, for an approximate time of 6mins. 

Response time and accuracy are recorded.  

 Task Switching. The task-switching task is a measure of cognitive flexibility (Monsell, 

2003). The current instantiation is adapted from that of Stoet (2010). Participants are required to 

respond to a set of stimuli based on two different response rules in an alternating sequence. 

Participants are presented with a white 2x2 grid containing 4 cells. In each cell, a compound 

stimulus with a shape and filling (dots) attribute would appear. The shape could be either a 

square or a diamond (square rotated 90 degrees); the filling was small solid circles (dots) 

arranged vertically and could be either two or three. A grid with example stimuli is shown in 

Figure 2.  

Each of the three blocks had different instructions. In all blocks participants made 

keyboard responses. In the first block, participants were instructed to respond to the shape 

attribute and ignore the figure attribute, whereby the ‘x’ key was for a diamond and ‘m’ key for 

the square shape. The second block had participants only respond to the filling and ignore the 
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Figure 2. Stimulus Array in Grid for the Task Switching Task. Bottom two arrays display the 

shape and filling participants must attend to.  

shape attribute of the stimulus; ‘x’ 3 dots and ‘m’ for 2 dots. The third block introduced the task-

switching component, where the attribute to which the participated responded to would alternate 

every two trials (AABB) between the shape and dots. The stimuli would appear in the cells in the 

grid in a clockwise rotation (1,1 to 1,2 to 2,1 to 2,2) beginning with the (1,1) cell (first row, first 

column).  

Trials advanced by participants making a keyboard response, or a set timeout of 10secs. 

Feedback was given by the colour of the grid, changing from white to green for correct 

responses, and white to red for incorrect. The first two blocks would reshow the instructions for 

keyboard responses on incorrect trials. Each participant completed 74 trials distributed across 3 

blocks. The first two blocks consisted of 12 trials, and the third 50 trials. Response time and 

accuracy are recorded.  

 Visual Search. The visual search task measures visual attention and requires participant 
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to locate an upright letter ‘T’ in an array of other distractors of similar shapes. This instantiation 

was adapted from Triesman and Gelade (1980) and Stoet (2010, 2017). An example of an 

example trial with stimulus array is shown in Figure 3. 

       

Figure 3. Example Trials for the Visual Search Task. The left example shows a size 6 array, and 

the right a size 12 array. 

Participants must search the array for the target ‘T’ and make a keyboard response, “x” if 

the target is in the array (present) and “m” if it is not (absent). Each of the array items, target or 

distractors, can appear in one of 25 locations on the screen, these positions are randomized. The 

size of the array is either 6, 12, or 18 items; and the target is present 50% of the time. Trials are 

completed and advanced following the participant’s response. No feedback is given.  

Each participants completes a total of 162 trials distributed evenly across three blocks (54 

trials per block), with interleaved rest between blocks. In each block, each combination (6 

unique) of array size (6, 12, 18) and corresponding target status (present or absent) occurs nine 

times. Response time and accuracy rates are recorded.  

Go/No-go. The Go/No-go task assess impulse inhibition, the ability to ignore or withhold 

a response when not appropriate (Wright et al., 2014). Participants are required to make a 

speeded decision and simultaneously control the impulse to respond to the stimulus. This 

instantiation is adapted from Stoet (2010, 2017). Participants are presented with a circle 

containing a cue for either “go” where they must make a keyboard response, or “no-go” where 
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they must refrain. As shown in Figure 5, all “go” cues are a blue circle with the text “go” in the 

centre, and all “no-go cues” are orange circles with the text “no go”. The task comprises three 

blocks of 100 trial each, with a 1:5 go to no-go ratio (20% go, 80% no-go). Reponses can be 

made at stimulus onset and was timed out at 2secs regardless of if a response was made. 

Response time and accuracy are recorded for go and no-go trials.  

      

Figure 4. Go and No-go Stimuli. 

 Trail Making Test B (TMT-B). The Trail Making Test B (TMT-B) is the second part of 

the Trail Making Test (TMT), a neuropsychological assessment where participants must draw on 

visual attention and task switching to connect a series of circles containing letters and numbers 

(Reitan & Wolfson, 1993). The circles must be connected from 1 to A to 2 to B and so on, 

alternating ascending numbers and letters. This experiment used a shortened version that uses 

letters A-I and 1-9, as seen in Figure 5, as opposed to the original longer version extending to 

letter L and number 13. Participants were forced to complete the trials correctly as drawing a 

trail was contingent on the participant completing the previous trail correctly. Meaning, 

participants were forced to draw trails in the correct order. Time to completion, or movement 

time was recorded for each of the 5 trials of different mapping layouts.  

Tunneling. The tunneling task is a visuomotor task requires participants to draw on 

motor acuity and goal directed processes to move their cursor through a bordered track (tunnel). 
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Figure 5. Example Completed Trail Making Trial. 

The instantiation used is adapted from McGrath & Kantak (2015) and Mirdamadi & Block 

(2020). Participants to navigate their cursor through a series of 24 tunnels, as seen in Figure 6. 

Trials begin once the cursor is in the orange home position, and end once participants navigate to 

the blue target position and return to home. Tunnels are presented in a variety of conditions with 

varying scales (40%, 60%, 80%, and 100% - original scale) and orientation (original orientation 

or flipped 180). Time to complete the track, movement time, and proportion of time within the 

track is recorded for each trial.  

 

Figure 6. Example Tunneling Trials. Left is example of original size and orientation, right is 

flipped 180 and 40% scale. 
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Questionnaire Data 

 Demographic Information. The demographic information used are age, sex. 

Information concerning the lifestyle of participants was also collected.  

 Lifestyle Information. A subset of all lifestyle measures collected are used for analysis. 

A full list of all data collected from participants, tasks, and questionnaire, can be found in 

Appendix A.   

Sleep. Self-reported sleep quality was assessed using the Pittsburgh Sleep Quality Index 

(PSQI) (Buysse et al., 1989). The PSQI asks participant to reflect on their sleep during the past 

month or the night before. The 10 questions represent seven component scores. Each response to 

a question is then contributed to a component score using the criteria outlined by Buyesse and 

colleagues. Each component score ranges from 0 to 3. Total scores range from 0 to 21, where 

higher scores are indicative of poorer sleep quality.  

Affect. Affect was measured using the International Positive and Negative Affect Scale – 

Short Form (I-PANAS-SF) (Thompson, 2007). The I-PANAS-SF is a validated 10-item 

questionnaire that assess participant affect. The prompt “Thinking about yourself and how you 

normally feel, to what extent do you generally feel: __” is presented and participants rate 10 

feelings on a 5-point Likert scale ranging from 1 (never) to 5 (always). The 10 items are divided 

evenly to form two subscales, (1) Positive Affect (PA) and (2) Negative Affect (NA); see Table 

1. Higher summed scores across each subscale range from 5-25, where higher scores correspond 

to higher feelings of PA or NA.  

Stress and Fitness. Participants self-reported their subjective levels of personal stress and 

fitness. Participants were asked “how stressed have you been feeling this week” and “how 

fit/physically active do you consider yourself?”. Each of these items were answered on 7-point   
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Table 1 

I-PANAS-SF Items with Affect Valence 

Positive Affect Negative Affect 

Active 

Alert 

Attentive 

Determined 

Inspired 

Afraid 

Ashamed 

Hostile 

Nervous 

Upset 

 

Likert scale ranging from 1 (not at all) to 7 (extremely). The single-point measure is used for 

each participant. 

Procedure 

 Following informed consent, participants respond to the questionnaire items and then 

proceed to the cognitive tasks. Due to the length of the study, full participation is split evenly 

across two parts. All demographic information (e.g., age and sex) was collected in part one 

alongside fitness, stress, sleep, and affect. The visual search, Go/No-go, and task switching tasks 

were also completed in part one. Part two comprised another measure of sleep, affect, stress; as 

well as the N-Back task. Since the parts are completed on different days, sleep, affect, and stress 

are in each part. This is because these measures ask participants about themselves and their state 

when they are completing the study. Within each part, the order of cognitive tasks is randomized. 

The order of questionnaire items is not randomized.  

Analysis 

 The hypothesized model of cognitive performance includes the demographic and lifestyle 

measures as regressed onto LVs for cognition. Cognitive performance is measured through six 

cognitive tasks and each of these tasks has multiple response time (RT) and accuracy (Ac) 
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measures per participant, 40 in total. Consequently, it is likely that many measures are redundant. 

Redundancy in data is handled through dimensionality reduction. Some techniques for 

dimensionality reduction rely on theory and frameworks in the literature, theory-driven 

approaches. The first step was to reduce the number of indicators per task.  

Consider the visual search task, where there are three array sizes and conditions for when 

the target was absent and present for each, which is 6 indicators for one task. For this task, the 

proposed measure is to regress RT on array size for each participant. The slope of this regression 

represents the increase in RT with a one-unit increase in array size for each participant. A 

regression is performed, and slope calculated, for the each of the target absent and target present 

conditions.  

For the N-Back task, d’ (“d prime”), is used as a measure of sensitivity is used for each 

N-level. Similarly, d’ is used for the Go/No-go task. The task-switching task uses switch-cost, 

which is defined as the difference in RT between trials when participants were required to switch 

from responding to the shape of the stimuli to instead responding to the dots. For the TMT-B and 

tunneling the mean movement time across paths/tracks is used. These combined measures of 

cognitive performance were used within the SEM analysis.  

Chapter 3: Results 

 All analyses were conducted in R software (Version 3.6.1) using the Lavaan (Version 

0.6.13), regSEM (Version 1.9.5), FactoMineR (Version 2.8), and missMDA (Version 1.18) 

packages.  

Regularized SEM on Combined Indices of Cognitive Performance 

 As mentioned in the analysis section, data from all 45 indicators across each of the six 

tasks were reduced to 10 using a theory-driven approach (see Analysis). Descriptive data for all 
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10 measures can be found in Table 2.  

Table 2  

Descriptive Statistics for the Combined Measures Data 

 Mean (SD) Skew Kurtosis 

Nbk. 1-back d’ 3.00 (0.81) - 1.02 2.16 

Nbk. 2-back d’ 2.18 (0.91) - 0.54 -  0.13 

Nbk. 3-back d’ 1.27 (0.64) - 0.24 - 0.50 

Vis. absent slope 0.21 (0.10) - 0.83 2.33 

Vis. present slope 0.14 (0.07) 0.51 0.94 

Gng go d’ 3.90 (0.64) 0.12 2.38 

Tsw. Switch cost 0.58 (0.48) 1.20 2.85 

Trl. Mean Movement Time 37.43 (14.52) 2.38 10.63 

Tun. Mean Movement Time 4.69 (2.05) 1.05 2.31 

 

Employing combined measures is the first theory-driven dimensionality reduction 

technique. The second step involves creating the SEM model, with the LV loadings hypothesized 

to represent cognitive processes underlying the combined behavioural measures. Three LVs were 

created: (1) cognitive control, (2) visuospatial working memory and visual attention, and (3) 

visuomotor functioning. This model was fitted along with the lifestyle and demographic 

measures. Descriptive data for the demographic and lifestyle measures can be found in Table 3.  

The relationships between the cognitive LVs and the lifestyle and demographic measures 

were originally hypothesized to be directional, however, issues with missing data meant that this 

would not be possible. In the SEM framework, directional hypothesis and relationships require 

complete cases as it maps participants’ response across several items. Consequently, 

bidirectional relationships computed as covariances were used. Also note that all measures were 

scaled such that the estimated loadings were comparable. Each of the demographic and lifestyle 
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Table 3  

Descriptive Statistics for the Demographic and Lifestyle Measures 

 Mean (SD) Skew Kurtosis 

Age (years) 23.13 (7.38) 2.28 5.04 

Stress 4.57 (1.65) - 0.43 - 0.57 

Fitness 4.24 (1.33) - 0.49 - 0.07 

Sleep (PSQI) 6.59 (3.36) 0.52 0.09 

Pos. Affect (PANAS-PA) 16.28 (0.64) - 0.04 - 0.26 

Neg, Affect (PANAS-NA) 12.25 (3.83) 0.33 - 0.36 

Note. The Stress and Fitness can range from 1(not at all) to 7(extremely), PSQI scores can range 

from 0(no sleep difficulty) to 21(severe sleep difficulties), and Affect can range from 5(low 

affect) to 25(high affect).  

 

measures were specified to covary with each of the LVs. Combined measures were specified to 

load onto any LVs representing its hypothesized cognitive construct. This model is presented in 

Figure 7.  

The regularized structural equation model (regSEM) runs the initially specified SEM and 

iteratively applies a penalty score, regularization, to penalize large and complicated models and 

aims to a reduce to a simpler model with fewer indicators and connections. The initial model was 

specified with a penalty of  𝜆 = 0 and increased by .05 each iteration. Penalties were applied to 

the loadings of measured items onto LVs. The best model as selected through lowest BIC. The 

best model was the original model, the starting model with a penalty of  𝜆 = 0.0. This model with 

significant paths as presented in Figure 8 and loadings in Table 4. Holistically, the model fit is 

poor. Model fit indices presented in Table 5.  

Cognitive Model 

Looking first to the cognitive portion of the model, some hypothesized loadings are not 
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Figure 7. Initial Hypothesized Cognitive Latent Variable Model 

included. For (2) visuospatial working memory and visual attention, three of the six 

hypothesized indicators were not loaded. None of the three N-Back d’ measures loaded 

significantly onto the LV, whereas visual search (target absent and target present) and tunneling 

did load. For both of (1) cognitive control and (3) visuomotor functioning, all hypothesized 

loadings were significant. Within the LVs, each of the three LVs were positively correlated with 

each other. Covariances between LVs are not pictured but can be found in Table 4. 

Reduced switch cost and lower meant MT for TMT-B and increased d’ across N-Back 

and Go/No-go result in increased (1) cognitive control. These findings are cohesive as reduced 

switch cost, faster TMT-B completion time and increased sensitivity are all indicative of greater  
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Figure 8. Final Cognitive Latent Variable Model. Only significant paths are included, and red 

paths represent negative estimates. 

cognitive control. Each of the visual search (target absent and targe present) and switch cost load 

positively onto (2) visuospatial working memory and visual attention. This is interpreted as a 

greater increase in RT with increases in array size are in visual search and increases slowing of 

RT between instruction sets in task switching were related to increases in working and memory 

and attention. Longer TMT-B and tunneling MTs, increased switch cost, and reduced sensitivity 

were correlated with increased (3) visuomotor functioning.  
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Table 4  

Final Model Loadings 

Latent Variable  Loaded/Covaried Variable Estimate 

Cognitive Control 

=~ 

Gng. go d’ 0.29*** 

TMT-B mean MT -0.33*** 

Tsw. switch cost -0.23*** 

Nbk. 1-back d’ 0.32*** 

Nbk. 2-back d’ 1.30*** 

Nbk. 3-back d’ 0.63*** 

~~ 

Age 0.51*** 

Sleep -0.09*** 

Pos. affect -0.10*** 

Neg. affect -0.17*** 

Visuospatial Working 

Memory and Attention 
0.62*** 

Visuomotor 0.42*** 

Visuospatial Working 

Memory and Visual 

Attention 

=~ 

Vis. absent slope 0.80*** 

Vis. present slope 0.86*** 

Tsw. switch cost 0.25*** 

~~ 

Age 0.21*** 

Pos. affect -0.10*** 

Neg. affect -0.14*** 

Visuomotor 0.49*** 

Visuomotor 

Functioning 

=~ 

TMT-B Mean MT 0.70*** 

Tsw. switch cost 0.33*** 

Gng. go d’ -0.11*** 

Tun. mean MT 0.55*** 

~~ 

Age 0.51*** 

Stress -0.15*** 

Sleep 0.13*** 

Pos. affect -0.19*** 

Note. =~ specifies a variable loading, ~~ specifies a covariance. * = p < .05, ** = p < .01. *** = 

p < .001 

 

Demographic and Lifestyle 

Age and affect (PA, NA, or both) was related to each cognitive LV. Lower sleep quality,  
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Table 5  

Final Model Fit Indices 

𝜒2(79) RMSEA SRMR 

1152.34, p < .001 0.109, 90% CI [0.104, 0.115] 0.104 

 

GFI CLI TLI BIC 

0.850 0.611 0.409 39 933.53 

 

reduced levels of PA and NA, and increased ages was related to increased (1) cognitive control. 

Similarly, reduced levels of PA and NA, and increased ages was related to increased (2) 

visuospatial working memory and visual attention. Increased (3) visuomotor functioning was 

related to reduced stress, lower PA, increased sleep quality, and increased age.  

Hierarchical Multiple Regression on Cognitive Measures  

As mentioned above, the limiting factor for directional relationships is the missing data in 

the lifestyle and demographic measures. For directional insights, a follow-up series of 

hierarchical multiple regressions was conducted. Hierarchical multiple regressions allow for the 

evaluation of the relative strength of predictors when accounting for the shared variable among 

predictors. Recall, that the model fit is not optimal. It is possible that the specified cognitive LV 

structure is not well suited. Therefore, the following series of hierarchical multiple regressions 

will use the measured combined cognitive task measures and not the LVs. For the N-Back task, 

the 2-back condition was selected, all other combined cognitive task measures are included.  

The first model step in each is a demographic model that regresses each combined 

measured on age and sex. The second model step is the full lifestyle model that adds stress, 

fitness, sleep (PSQI), and affect (PANAS – PA & NA). For each of the models, the second 

lifestyle model accounted for more variance in the combined measure outcome variable. For a 
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full summary and all parameters, see Appendix C. Of note is that the condition for regression is 

complete cases, the regression models for each criterion variable uses a different subset of 

participants. A condensed summary of regression equations with significant predictors (p < .05) 

is presented below. These seven regression equations show that while controlling for 

demographics, lifestyle measures account for a statistically significant proportion of the variance 

in the combined task measures. This insight serves as reassurance that lifestyle measures have 

predictive properties on the cognitive performance and lays foundation that a different modelling 

approach.  

(1) 𝑁𝑏𝑘. 2 − 𝑏𝑎𝑐𝑘 𝑑’ ̂ =  (−0.22) ∗ sex +  (−0.02) ∗ neg. affect +  2.95 

(2) 𝑉𝑖𝑠. 𝑎𝑏𝑠𝑒𝑛𝑡 𝑠𝑙𝑜𝑝𝑒 ̂ =  (0.002) ∗ age + (−0.002) ∗ neg. affect + 0.26   

(3) 𝑉𝑖𝑠. 𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑠𝑙𝑜𝑝𝑒 ̂ =  (0.002) ∗ age + (−0.002) ∗ neg. affect + (−0.002) ∗ pos. affect + 0.16   

(4) 𝐺𝑛𝑔 𝑔𝑜 𝑑’̂ =  (−0.020) ∗ age + (−0.035) ∗  neg. affect + 4.93  

(5) 𝑇𝑠𝑤. 𝑆𝑤𝑖𝑡𝑐ℎ 𝑐𝑜𝑠𝑡̂ =  (0.013) ∗ age + (−0.040) ∗ fitness + (0.018) ∗ sleep +  0.25   

(6) 𝑇𝑟𝑙. 𝑀𝑒𝑎𝑛 𝑀𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑇𝑖𝑚𝑒̂ =  (0.664) ∗ age + (−1.086) ∗ stress + (1.044) ∗ fitness +

                                                                   (−0.448) ∗ pos. affect + 23.53  

(7) 𝑇𝑢𝑛. 𝑀𝑒𝑎𝑛 𝑀𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑇𝑖𝑚𝑒̂ =  (0.082) ∗ age + (0.344) ∗ sex + (−0.056) ∗  neg. affect +

                                                                    (−0.060) ∗ pos. affect + 4.27 

In sum, the combined measures method provides insight into the latent constructs 

underlying cognitive performance and how these are related to lifestyle and demographic 

attributes. However, the model specified could not account for directionality and the structure 

itself may have not been optimal as evidenced by the poor model fit. To acknowledge these 

limitations, a data-driven approach and directionality are tested in an exploratory PCA-SEM 

approach.  

PCA on Response Time and Accuracy Data 

Given the limitations of the combined measures model, an additional series of 

exploratory analyses were tested. These models retained response time (RT) and performance 
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accuracy (Ac) as predictors of cognitive performance. Recall, movement time (TMT-B and 

tunneling) and proportion in-track (tunneling) are considered equivalent to RT and Ac, 

respectively. Unlike the combined measures, this method for dimensionality reduction is purely 

data-driven. For descriptive statistics of all 45 measures of cognitive performance, see Appendix 

B. A Principal Components Analysis (PCA) was conducted on the RT and Ac data from each 

task, as there are several RTs and ACs for each. The dimensionality reduction will reduce the 

total number of measures from 40.  

 Data was assuming to be Missing Completely at Random (MCAR) (Rubin, 1976). 

Missing values in the behavioural cognitive performance data were imputed using a regularized 

method, which is recommended as it reduces the probability of overfitting (Husson & Josse, 

2020). A PCA on 40 variables would create 40 principal components (PCs) along those 40 

dimensions. First, the optimal number of PCs was estimated to be 5. Then, data was imputed 

along these 5 PCs. The properties of these PCs are presented in Table 6. Regularized imputation 

methods involve estimating missing data based on the similarity across participants and the 

between variables. These five PCs are used as a representation of the behavioural data. The 

correlations between the RT and Ac measures and the PCs above |.50| are presented in Table 7. 

For full correlation table, see Appendix D. 

Table 6  

First 5 Principal Components of RT and AC Performance Measures 

Principal 

Component 
Eigenvalues % of Variance 

Cumulative % of 

Variance 

1 9.60 21.33 21.33 

2 7.52 16.70 38.03 

3 4.83 10.73 48.77 

4 3.90 8.68 57.44 

5 2.80 6.21 63.65 
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Table 7  

Correlations Between PCs and Cognitive Task Measures 

Principal 

Component (PC) 
Cognitive Task Measures 

PC1 - Response 

Time 

Task-switching  

 

Switch RT (0.62), Non-switch RT (0.52), Congruent RT 

(0.59), Non-congruent RT (0.58) 

Go/No-go  “Go” RT (0.53) 

Visual Search  

 

target absent slope [6 (0.72), 12 (0.73), 18 (0.71)],  

target present slope [6 (0.61), 12 (0.71), 18 (0.73)] 

Tunneling  MT [40% (0.68), 60% (0.67), 80% (0.69), 100% (0.69)] 

PC2 - Speed-

accuracy trade-off 

Task-switching  

Switch RT (0.51), Non-switch RT (0.62), Congruent RT 

(0.56), Non-congruent RT (0.58),  

Switch Ac (-0.59), Non-switch Ac (-0.68), Congruent 

Ac (-0.64), Non-congruent Ac (-0.63) 

N-Back:  2-back absent Ac (-0.65), 3-back absent Ac (-0.57), 

PC3 - Tunneling Tunneling:  
MT [40% (0.56), 60% (0.58), 80% (0.58), 100% (0.58)], 

Ac [40% (0.54), 60% (0.51), 80% (0.57), 100% (0.52)] 

PC4 - Sensitivity 
N-Back:  

1-back false alarm RT (0.55), 2-back hits RT (0.58), 3-

back hits RT (0.64), 3-back false alarm RT (0.67) 

TMT-B  MT 2 (-0.52) 

PC 5 - Detection 

Error 
N-Back:  2-back present Ac (-0.56), 3-back present Ac (-0.50) 

 

Based on the correlated cognitive task measures, the PCs are interpreted to represent the 

psychophysical properties in the behavioural data. The first PC is exclusive RT and MT across 

the tasks and “Go” signals, where increases in these measures correlated with increases along the 

Response Time PC. Speed-accuracy trade-off is the second PC as increases in RT and decreases 

in Ac are correlated to the PC. The tunneling task Ac and MT loads exclusively onto its own PC 

for each of the 4 scales. Hit rates and false alarms from the N-Back task, along with a single trail 

making measure, load onto a shared PC. This PC likely represents these distributions which from 

signal detection theory determines sensitivity, the TMT-B negative correlation may be an 
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artefact as none of the other TMT-B measures reach threshold. The last PC is correlated with 

participant’s accuracy on the N-Back task, in that lower accuracy was correlated with the fifth 

PC. Thus, detection error could be captured in this PC.  

SEM on Principal Components 

 With the PC structure, the addition of the lifestyle and demographic measures can be 

done simultaneously using a structural SEM. This effectively creates a simultaneous series of 

regressions that regresses each PC on each of the lifestyle and demographic measures. All data 

from the PC and lifestyle and demographics are standardized. Since the cognitive data was 

imputed, any missing data is due to missingness in the lifestyle and demographic measures. The 

significant paths are presented Figure 9. Given the standardization of the PCs and lifestyle and 

demographic data, the magnitudes of estimated coefficents, as shown in Table 8, can be 

interpreted as relative importance of each demographic and lifestyle measure to the PC.  

 

Figure 9. SEM of Cognitive PC and Demographic and Lifestyle Measures. Red lines indicate 

negative estimates. 
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From the estimated loadings in Table 8, Response Time is increased with older ages and greater 

fitness and decreased with increased positive affect and self-reported stress. Age is the most 

important factor, contributing to the largest changes in Response Time.  

Table 8  

Coefficents for SEM of Cognitive PCs, Demographic, and Lifestyle Measures 

Principal Component  
Demographic/ 

Lifestyle 
Estimate 

Response Time  ~ 

Age 0.33*** 

Stress -0.10*** 

Fitness 0.12*** 

Positive affect -0.14*** 

Speed-accuracy Trade-off  ~ 
Age 0.10*** 

Fitness -0.10*** 

Tunneling  ~ 
Age -0.17*** 

Positive affect -0.08*** 

Sensitivity  ~ Age -0.21*** 

Detection Error  ~ Sleep quality -0.11*** 

* = p < .05, ** = p < .01, *** = p < .001 

Increased Speed-accuracy Trade-off is seen in older participants with lower self-reported fitness. 

Reduced levels of positive affect and younger age account for increases on the Tunneling PC. 

Increased Sensitivity is seen in younger participants, and increased Detection Error in those with 

poorer sleep quality. 

Chapter 4: Discussion 

Summary of Findings 

I aimed to examine how both demographics and lifestyle affect cognitive performance 

simultaneously using the SEM framework. I expected that lifestyle factors in addition, and 

perhaps above, demographics would account for the variability in cognitive performance. The 

hypothesized LV model for the combined measures of cognitive performance showed generally 
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poor fit. Additionally, issues with missing data impeded the testing of directional relationships 

with the demographic and lifestyle measures. It should be noted that while this approach was 

entirely theory-driven, a regularized SEM was specified as a data-driven method to identify weak 

or uninformative loadings in the cognitive LV model. Removing indicators from the model did 

not result in improved model fit and as a result, the initially specified model was retained. While 

not all combined measures loaded where hypothesized, each of the three LVs: (1) cognitive 

control, (2) visuospatial working memory and visual attention, and (3) visuomotor functioning 

were positively correlated with each other. This is important as increases in one latent construct 

should be correlated increases with the other.  

Post-hoc hierarchical multiple regression analyses were performed with the demographic 

indicators, age and sex, serving as the base model and the simultaneous addition of the lifestyle 

measures serving as the second, lifestyle model. Since the LV structure had poor model fit, the 

combined indicators themselves were used. These analyses revealed that the addition of lifestyle 

measures did not fully reduce the variance accounted for by the demographic measures as in 

each model, with significant lifestyle predictors, either sex or age remained a significant 

predictor of the combined cognitive measure.  

Together, my findings from the LV model and hierarchical multiple regression support 

the general hypothesis that lifestyle factors in addition to demographic measures would account 

for variability in cognitive performance. However, due to data constraints, these analyses were 

not directional and only represent covariances (equivalent to correlations since all measures were 

scaled). To further probe these relationships and acknowledge some limitations in this approach, 

a follow-up data-driven model was tested.  
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Follow-up PCA and SEM 

An additional series of analyses was conducted using PCA as a means for dimensionality 

reduction in the cognitive performance data. Missing data issues in the cognitive data were 

handled through imputation to preserve more data. The five PCs used represented the 

psychophysical properties in behavioural response patterns. Sex and negative affect (NA) were 

the only two lifestyle measures not predictive of any PC. Only Detection Error was not predicted 

by age and was the only PC to be predicted by sleep quality. In sum, evidence from both the 

theory-driven LV and data-driven PCA approach provide evidence that variability and predictor 

of cognitive performance is improved, and perhaps contingent on, not only demographic but 

lifestyle as well.  

Findings in Context 

 Across the LV and PC approaches, each of the four lifestyle indicators were found to be 

related to either LV or PC. Fitness was only included as a predictor of the Response Time PC. 

However, increased self-reported fitness predicted increased Response Time, where Response 

Time was also increased by lower stress. Increased fitness cooccurring with decreased stress is 

congruent with the literature, but in a PC representing Response Time remains an unexpected 

finding. In the SEM analyses by Padulo et al. (2019), fitness was a hypothesized LV, but the 

revised model did not include fitness, but rather it was found it be a moderator. It may be that a 

simultaneous linear relationship is not appropriate for modelling the effect of fitness on cognitive 

performance. Additionally, fitness was self-reported and a single-item measure and much of the 

literature employs performance or biometric measures for fitness (Lemes et al., 2017).  

 Interestingly, sex only appeared as a significant predictor in the hierarchical regression 

analyses. Mean MT across tunneling trials and 2-back d’ had a significant proportion of variance 
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accounted for by sex, where females had longer MT and lower sensitivity (d’). However, the 

failure of sex to correlate with a LV or predict a PC suggests that sex is not a strong predictor. 

This is endorsed by the literature, and the competing results surround sex difference in cognition. 

The present findings are aligned with the Gender similarity Hypothesis (GSH), as sex difference 

fail to account for a consistent and significant proportion of variance in cognitive performance 

(Hyde, 2005). 

Affect, both positive and negative was negatively related to the LVs and PCs. Cognitive 

control and visuospatial working memory and visual attention both were increased with 

reduction in both valences for affect. If affect is shifted into an arousal contest, greater 

magnitude of PA and NA represent greater arousal. In this case, it could be argued that greater, 

or too much, arousal is associated with decreased cognitive control and visuospatial working 

memory and visual attention. This would be mirrored, on the visuospatial working memory and 

visual attention LV where increases in stress was correlated with a reduction in the LV. 

Age was the only consistent and robust measure across every analysis, corelating with 

each LV and predicting all PCs with the exception of Detection Error. This result is somewhat 

unexpected as the sample of participants was very homogeneous in age. However, the cognitive 

tasks selected are incredibly well-validated, many having clinical applications. Therefore, it may 

serve as a testament to ability of these tasks to detect fine-grained signal from noise or variance 

in age.  

Visuomotor Functioning as a Latent Variable 

Stress was correlated with the visuomotor LV exclusively, where lower levels of stress 

occurred at increased level of visuomotor function. This was in turn representing a higher switch 

cost, lower Go/No-go sensitivity, and longer MT in TMT-B and tunneling. It would be expected 
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that a higher degree of visuomotor functioning would be indexed by better performance on these 

tasks (i.e., lower switch cost, increased sensitivity, faster MT). Taking into consideration the 

relatively expected relationships with the other LVs, the visuomotor LV may be primarily 

responsible for the poor model fit.  

The hypothesized LV structure reflected the frameworks and dominating theories in 

cognition and each of the tasks were contingent on visuomotor functioning as all tasks were 

visual in nature and required responses through keyboard and cursor. Thus, a visuomotor LV was 

specified. However, it could be that this behaviour is not significant contributor to cognitive task 

performance. Or, that visuomotor functioning is not an equal contributor in the same sense as 

processes such as working memory, attention, and cognitive control. The contingency of the 

visuomotor processes may better indicate a mediation or moderation relationship over one with 

equal weighting, or level, to be accounted for. 

In an investigation into the construct validity of the TMT, Sanchez-Cubillo and 

colleagues (2009), explore the contribution of several cognitive processes on TMT performance. 

The contribution of visuomotor ability and performance was a main investigation, as the authors 

highlight the research and notion that the TMT measures and draws on visuomotor processes in 

participants. A cognitive battery of several tasks aimed to measure working memory, response 

inhibition (inhibitory control), task-switching, and visuomotor abilities was conducted. 

Specifically, for TMT-B, Sanchez-Cubillo et al. found that task-switching and working memory 

to account for the greatest variability in performance. The lack of significant visuomotor 

contribution suggests that visuomotor ability may not underlie TMT-B performance. In a similar 

vein, the tunneling task is visuomotor in nature but the primary processes are hypothesized to be 

proprioception. While noting behavioural learning, such as improvement in speed-accuracy 
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trade-off (Mirdamadi & Block, 2020), it is possible that the tunneling task is does not represent 

the same nature of cognitive performance as the remainder of the battery; in particular, those 

hypothesized to represent the visuomotor functioning LV.  

Another consideration is the operational definition of visuomotor contribution. The above 

study with the TMT-B and tunneling describes visuomotor functioning as a key cognitive 

process. In contrast, “visuomotor” in other tasks (visual search, Go/No-go, task switching) is 

conceptualized more as the mapping between visual perception and outputted motor movement. 

TMT-B and tunneling also require proprioception on the part of participants to navigate between 

targets (i.e., connecting circles and drawing trails) (Mirdamadi & Block, 2020; Sanchez-Cubillo 

et al., 2009). The constant coordination in the navigation of the tunneling and TMT-B may be 

functionally distinct the visual perception and motor response required from tasks such as a 

visual search. Consequently, more specificity in what is encompassed in “visuomotor” may 

improve model fit, both with respect to metrics and the framework.  

Theory-driven versus Data-driven Insights 

At a higher level, comparing the two dimensionality techniques on the cognitive data 

yielded very different results. The theory-driven LV structure reduced the measures on each task 

using known measures of performance, combined measures, such as d’ from signal detection 

theory. The measurement model was then created using frameworks from the literature. Given 

each of the two steps drew from pre-existing and adopted frameworks in the literature, the 

following hypothesis was that the tasks would represent these frameworks. The use of LV 

structure for cognition is well explored. A common line of inquiry asks “do there exist some 

latent ability that affects cognitive processing?”, which informs model of the subsequent 

observed behaviour (Vandekerckhove et al., 2014). The functioning and structure of many 
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cognitive domains, such as working memory or executive function, are inferred though the use of 

several tasks and measures (Vandekerckhove et al., 2014). Given the method and application are 

sound, the structure derived from data reduction, or the data itself may have lent to the poor 

model fit.  

The data-driven PCA approach to data reduction used each of the measures across all six 

cognitive tasks. The discriminant validity of each of the 6 tasks were selected to represent 

distinct, yet related, measures of cognitive performance. It follows that the theory-driven model 

aimed to represent this; however, the PCs did not mirror the LVs. The correlation from each of 

those measures to the PCs matched well with the type of indicator across tasks in addition to the 

types of indicators within tasks. The PCs were dominated by psychophysical response patterns 

over cognitive concepts and theory. In a neuropsychological study, Levin et al. (2013), found 

that their PCs on a battery of tasks was best represented by 4 PCs: cognitive processing speed, 

visual memory, verbal memory, and post-concussion and post-traumatic symptoms. While the 

latter clinical component is not of interest, the first 3 represent both theoretical components and 

one on speeded response. Thus, representing a middle point between the theory and 

psychophysical.  

PCA has been credited for reducing the interpretation of spurious relationships. 

Identifying fundamental and underlying cognitive processes is of great interest to cognitive 

scientists. however, some investigations show that PCA for cognitive data may not be as robust 

as previously thought. An investigation by Sperber (2022) on simulated data revealed that PCA 

can produce the proposed underlying variables, even with high simulated noise (i.e., variance). In 

the case that no measures in the data measured the specific proposed PCs, the PC did not well-

represent these constructs, which Sperber attributes to issues with factor rotation. This highlights 
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that while statistical tools, especially data dimensionality reduction techniques, are powerful and 

can perform at high and useful levels, they are entirely dependent on the quality of data used.   

Aside from the approach of the dimensionality reduction method, another distinction 

between the LV model is that at its core, it is a factor analysis. Each latent factor represents a 

series of regression equations, where each measured variable is a function of the LV. PCA, 

however, has each PC represented a single equation. In that, the PC is the linear combination of 

the measured variables. While often discussed together due to the similar aims of reducing data, 

the computations and following interpretations of the results are very distinct. Consequently, 

comparisons across PC and LV models should not ignore the fundamental building blocks of 

both the underlying statistics and the potential weaknesses of either method.  

Online Data Collection during the COVID-19 Pandemic 

 Online implementations of computerized cognitive studies have been shown to produce 

similar results to laboratory-based studies. Crump et al. (2013) recruited participants through 

Amazon’s Mechanical Turk platform, a crowdsourcing platform for research participants, to test 

the validity of several ubiquitous cognitive psychology paradigms through online data collection. 

The results of analyzing RT across four cognitive study protocols (e.g., Stroop task, flanker task, 

task switching task, Simon task) were all replicated. To further probe the reliability of online 

data collection, Semmelmann and Weigelt (2017), divided participants to complete the study into 

three conditions: (1) remotely on the web, (2) in the lab but on the web, and (3) in the lab using 

local software. This procedure allowed for comparisons to isolate software and environment 

contributions across two tasks (e.g., Stroop task, flanker task). Additional to RT, Semmelmann 

and Weigelt collected Ac data. Participants in each of the three conditions replicated literature 

findings in both the RT and Ac analyses. Taken together, the process of online data collection 
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alone is a reliable instantiation and means of testing cognitive performance.  

 However, these studies remained highly controlled and were conducted on motivated 

participants. Other consideration in the current study is that collection of data was concurrent to, 

and a result of, the COVID-19 Pandemic. Unfortunately, the myriad of effects on both 

immediate cognitive functioning secondary to societal shifts are incredibly difficult to quantify. 

However, what is known is that the environments and lifestyles of participants changed 

drastically. A study on university students in the United States revealed that most of the 

participants, 71%, experienced an increase in self-reported stress and anxiety due to the 

pandemic (Wang et al., 2020). Furthermore, only 43% of students reported being able to cope 

with the added stress from academic, health, and their personal lifestyles. In a systematic review 

conducted by Vindegaard and Benros (2020), the authors found that studies reported increased 

depressive and anxious symptoms in the general public during COVID-19 Pandemic than before. 

It is well understood that clinical symptoms such as heightened levels of anxiety, stress, and 

depression are correlated with changes in memory and attention tasks. Depression is correlated 

with impairment on cognitive tasks spanning the domains of attention, executive function, 

visuospatial memory (Porter et al., 2003). Accordingly, the results presented here may be limited 

in generalizability.  

Limitation and Future Directions  

Missing Data 

 The issue of missing data is a field of research in and of itself. Missing data, and the 

methods for handling it, can have undue and artificial influence on the data and subsequent 

results and inferences drawn. In the LV approach and subsequent regressions, missing data by 

case-wise deletion. The loss of data impeded testing the directional effects of demographic and 



 

 

53 

53 

lifestyle measures on the cognitive LVs. In the exploratory PCA, all cognitive task data was 

assumed to be MCAR, meaning that missing data was not due to systematic issues with 

participants, study confounds, etc. (Rubin, 1976). Thus, the only issue to be considered is the 

loss of data itself. Therefore, missing data could be imputed using a regularization algorithm. 

However, this was only done for the cognitive task data and not for the demographic and 

lifestyle data.  

Imputing data in the demographic and lifestyle measures was not done in the PCA, as the 

rationale for estimating variables such as age or sex based on the similarities within and across 

variables was not justified. This is corroborated by the imputation of the cognitive task data, as 

imputing the predictor variables would be influenced by the imputation of the outcome variables. 

Further, the assumption that demographic and lifestyle data is MCAR, is more difficult to 

conceptualize than a missed RT. While future studies may be concerned with recovering the 

missing data in the demographic and lifestyle measures., this study used a more conservative 

method by opting remove missing cases.  

Analysis Design 

 Beyond handling missingness in data sets, analysis methods are subject to limitations, 

often as a consequence to the nature of data. In the context of SEM models and dimensionality 

reduction, the methods selected offer restrictions. Thus, follow-up analyses of entirely different 

approaches may be better suited for the data, or the inferences intended to be drawn.  

 For example, statistical tools such as machine learning offer a novel set of insights. 

Machine learning methods, namely neural network models, are being heavily used to draw 

mechanistic insights into human cognition. Approaches such as deep neural networks and the 

following convolutional neural networks allow for hidden layers of variables to drive the 
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relationship between input and output. Efforts to create machine learning-based models have 

employed human constraints to simulate cognitive processes such as attention (Pulvermüller et 

al., 2021). These “brain-constrained models” may be improved by understanding and accounting 

for the influences demographic and lifestyle have on cognitive processes such as attention, 

memory, visuomotor functioning.  

 Many statistical and analytical approaches are built upon fairly simple foundations. Many 

of the commonly used univariate methods (t-tests, ANOVA, regression) are specific or limited 

cases of the SEM framework. Additionally, these methods are linear, as they assume linear 

relationships between variables of interest. However, many aspects of human performance are 

non-linear. A foremost example being the curvilinear inverted-U shape (where stress or arousal 

in along the X-axis and performance along the Y-axis), whereby there is an optimal level of 

stress and arousal that results in peak performance (highest point in the inverted-U) (Sandi, 

2013). This phenomenon is commonly referred to as the Yerkes-Dodson Law. With this insight, 

allowing for non-linear relationships between certain lifestyle measures may better represent the 

drivers of human cognitive performance.  

Conclusions 

 I sought to disentangle how lifestyle in addition to demographic factors can account for 

and predict performance on cognitive tasks. Through two methods, I reduced the cognitive task 

measures to summarize cognitive performance and examine how demographic and lifestyle 

measures are related to these latent, or unmeasured, variables (LVs) and principal components 

(PCs). Lifestyle measures did significantly account for and predict cognitive performance above 

and beyond the influence of demographics. The dimensionality reduction techniques of cognitive 

performance data differ in their basis, challenges, relationship with demographic and lifestyle 
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measures, and subsequent inferences drawn. These differences could be due to artefact from 

missing data, the conceptual difference that are captured by each approach, or other components 

in the study process. Overall, cognition and cognitive performance is subject to the complex, and 

challenging to measure, influences of our lifestyle.    
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Appendix A 

Complete List of Data Collected  

Cognitive Tasks Demographic Measures Lifestyle Measures 

N-Back* 

Task Switching* 

Visual Search* 

Go/No-go* 

Trail Making Test B* 

Tunneling* 

Interesting Points 

Mirror Reversal 

Mirror 

Generalization 

Frame Dots 

Iowa Gambling Task  

Age* 

Sex* 

Height (in cm) 

Year of study 

Handedness 

Neurological disorder 

Method of birth 

Born preterm 

Family history of dementia 

Fitness* 

Stress* 

(multi)Lingualism 

Video game use 

Mediation 

Recreational drugs use (excl. marijuana 

and alcohol) 

Marijuana use 

Sleep quality (PSQI)* 

Affect (I-PANAS-SF)* 

History of concussion 

ADHD diagnosis 

ASD diagnosis 

Musical ability 

 

COVID-19 Device/Experiment 

History of COVID-19 

Hospitalization due to COVID-19 

Symptom onset 

Symptom length 

Symptoms following negative test 

Peri-COVID-19 Functional Status Scale 

Post-COVID-19 Functional Status Scale 

Device being used 

Cursor control 

Hand being used 

Browser 

Computer adeptness 

Visual corrective aids (vision) 

Use of visual corrective aid 

 

Note. Items indicated with * are those included in the present study.   
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Appendix B 

Descriptive Statistics for all Cognitive Response Time and Accuracy Measures 

Measure Mean(SD) Skew Kurtosis 

N-Back (12)    

 1-back hit RT 0.598(0.462) 2.75 14.27 

 1-back false alarm RT 0.658(0.314) 1.05 1.96 

 2-back hit RT 0.617(0.165) 1.81 7.53 

 2-back false alarm RT 0.762(0.234) 1.45 3.01 

 3-back hit RT 0.585(0.190) 1.82 6.44 

 3-back false alarm RT 0.644(0.244) 1.15 2.04 

 1-back target abs. Ac 0.950(0.135) -5.02 27.71 

 1-back target pres. Ac 0.845(0.122) -0.71 -0.19 

 2-back target abs. Ac 0.910(0.133) -3.44 15.04 

 2-back target pres. Ac 0.725(0.211) -0.522 -1.00 

 3-back target abs. Ac 0.885(0.149) -3.08 10.96 

 3-back target pres. Ac 0.505(0.225) 0.33 -0.60 

Task Switching (8)    

 Congruent RT 1.196(0.417) 1.60 5.64 

 Non-congruent RT 1.249(0.408) 1.39 4.57 

 Switch RT 1.424(0.488) 1.28 3.30 

 Non-switch RT 0.996(0.359) 1.75 5.97 

 Congruent Ac 0.951(0.060) -1.99 5.81 

 Non-congruent Ac 0.901(0.010) -1.59 2.75 

 Switch Ac 0.898(0.103) -1.08 0.21 

 Non-switch Ac 0.940(0.065) -2.11 6.05 

Go/No-go (1)    

 “Go” RT 0.366(0.058) 0.916 2.34 

Visual Search (6)    

 6-absent RT 2.131(0.694) 0.93 2.58 

 12-absent RT 3.458(1.210) 0.53 1.36 

 18-absent RT 4.616(1.740) 0.38 0.62 

 6-present RT 1.614(0.491) 2.50 15.29 

 12-present RT 2.484(0.734) 0.51 1.36 

 18-present RT 3.240(1.036) 0.43 1.74 
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Measure Mean(SD) Skew Kurtosis 

TMT-B (5)    

 Trail 1 MT 53.570(33.094) 7.28 105.08 

 Trail 2 MT 37.570(17.269) 2.68 11.41 

 Trail 3 MT 33.907(19.436) 8.91 119.75 

 Trail 4 MT 33.097(14.448) 5.40 61.27 

 Trail 5 MT 31.284(12.526) 3.06 20.56 

Tunneling (8)    

 40% MT 4.730(2.086) 0.90 1.87 

 60% MT 4.681(2.154) 1.09 2.21 

 80% MT 4.693(2.179) 1.34 4.51 

 100% MT 4.768(2.160) 1.27 3.72 

 40% Ac 0.872(0.162) -1.57 1.80 

 60% Ac 0.896(0.135) -1.70 2.63 

 80% Ac 0.897(0.156) -1.95 2.83 

 100% Ac 0.921(0.115) -1.96 3.90 
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Appendix C 

Full Results of Hierarchical Regressions 

For all tables, Model 1 is the base demographics model including only age and sex. Model 2 is 

the lifestyle model which adds stress, fitness, sleep (PSQI), and affect (PANAS - negative affect 

and positive affect). An ANOVA was run between the two models to determine which model is 

retained. A non-significant F-test would retain base demographic model as the addition of the 

lifestyle measures did not improve the variance accounted for in the outcome variable, a 

combined measure of cognitive performance, whereas the lifestyle model retained for a 

significant F-test. The retained model is bolded.  

Table 1 

N-Back N2 d’ 

 
Age Sex Stress Fitness Sleep 

Neg. 

Affect 

Positive 

Affect 

Demographic Model 0.018*** -0.300**      

Lifestyle Model 0.003 -0.221* -0.050 0.066 -0.022 -0.029* -0.017 

Note. Lifestyle model retained (R2 = 0.096), F(5) = 6.92, p < .001. 

Table 2 

Task-switching switch cost 

 
Age Sex Stress Fitness Sleep 

Neg. 

Affect 

Positive 

Affect 

Demographic Model 0.012*** 0.068      

Lifestyle Model 0.013*** 0.080 -0.016 -0.040* 0.018* -0.003 0.009 

Note. Lifestyle model retained (R2 = 0.068), F(5) = 2.82, p = .016. 
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Table 3 

Go/no-go d’ 

 
Age Sex Stress Fitness Sleep 

Neg. 

Affect 

Positive 

Affect 

Demographic Model -0.010* -0.134      

Lifestyle Model -0.020*** -0.076 -0.041 -0.009 -0.009 -0.035** 0.000 

Note. Lifestyle model retained (R2 = 0.042), F(5) = 4.41, p < .001. 

Table 4 

Visual Search Target-absent Slope 

 
Age Sex Stress Fitness Sleep 

Neg. 

Affect 

Positive 

Affect 

Demographic Model 0.003*** -0.003      

Lifestyle Model 0.002*** -0.003 -0.001 -0.004 -0.002 -0.002* -0.002 

Note. Lifestyle model retained (R2 = 0.090), F(5) = 3.52, p = .004. 

Table 5 

Visual Search Target-present Slope 

 
Age Sex Stress Fitness Sleep 

Neg. 

Affect 

Positive 

Affect 

Demographic 

Model 
0.002*** 0.001      

Lifestyle Model 0.002*** 0.002 0.000 0.001 -0.000 -0.002** -0.002*** 

Note. Lifestyle model retained (R2 = 0.103), F(5) = 4.16, p < .001. 

Table 6 

Trail making Mean Movement Time 

 
Age Sex Stress Fitness Sleep 

Neg. 

Affect 

Positive 

Affect 

Demographic 

Model 
0.724*** 2.030      

Lifestyle Model 0.664*** 2.199 -1.086** 1.043* 0.323 0.213 -0.448*** 

Note. Lifestyle model retained (R2 = 0.215), F(5) = 7.29, p < .001. 
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Table 7 

Tunneling Mean Movement Time 

 
Age Sex Stress Fitness Sleep 

Neg. 

Affect 

Positive 

Affect 

Demographic 

Model 
0.092*** 0.315      

Lifestyle Model 0.082*** 0.344* -0.021 -0.085 0.046 -0.056* -0.060*** 

Note. Lifestyle model retained (R2 = 0.186), F(5) = 5.44, p < .001. 
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Appendix D 

All Correlations Between the Principal Components and the Cognitive Performance Data 

 

 Measure PC 1 PC 2 PC 3 PC 4 PC 5 

N-Back (12)      

 
1-back hit RT 0.39 0.42 -0.07 0.37 0.10 

 1-back false alarm RT -0.11 0.25 -0.27 0.55 0.15 

 2-back hit RT 0.04 0.49 -0.02 0.58 0.09 

 2-back false alarm RT 0.12 0.21 0.10 0.46 0.25 

 3-back hit RT 0.07 0.41 0.19 0.64 -0.19 

 3-back false alarm RT -0.07 0.36 0.05 0.67 0.02 

 1-back target abs. Ac 0.35 -0.47 -0.33 0.03 -0.02 

 1-back target pres. Ac 0.02 -0.19 -0.06 0.03 -0.28 

 2-back target abs. Ac 0.32 -0.65 -0.25 -0.24 0.00 

 2-back target pres. Ac -0.03 -0.20 0.29 0.11 -0.56 

 3-back target abs. Ac 0.24 -0.57 -0.27 -0.33 0.10 

 3-back target pres. Ac -0.16 0.00 0.39 0.23 -0.50 

Task Switching (8)     

 
Congruent RT 0.59 0.56 -0.21 0.03 0.31 

 Non-congruent RT 0.58 0.58 -0.23 0.00 0.31 

 Switch RT 0.62 0.51 -0.20 -0.02 0.29 

 Non-switch RT 0.52 0.62 -0.23 0.04 0.29 

 Congruent Ac 0.30 -0.64 -0.23 0.01 0.30 

 Non-congruent Ac 0.43 -0.63 -0.28 0.11 0.28 

 Switch Ac 0.36 -0.59 -0.24 0.17 0.34 

 Non-switch Ac 0.43 -0.68 -0.29 -0.01 0.25 

Go/No-go (1)      

 “Go” RT 0.53 0.35 -0.16 -0.10 0.22 

Visual Search (6)      

 
6-absent RT 0.72 0.02 -0.40 0.11 -0.41 

 12-absent RT 0.73 -0.09 -0.39 0.14 -0.43 

 18-absent RT 0.71 -0.13 -0.38 0.10 -0.43 

 6-present RT 0.61 0.18 -0.32 0.19 -0.33 

 12-present RT 0.70 0.04 -0.37 0.15 -0.42 

 18-present RT 0.73 -0.04 -0.35 0.10 -0.44 

 



 

 

72 

72 

Measure PC 1 PC 2 PC 3 PC 4 PC 5 

TMT-B (5)      

 
Trail 1 MT 0.34 0.34 0.12 -0.41 -0.19 

 Trail 2 MT 0.48 0.37 0.23 -0.52 -0.14 

 Trail 3 MT 0.28 0.39 0.17 -0.36 0.07 

 Trail 4 MT 0.33 0.37 0.24 -0.48 -0.15 

 Trail 5 MT 0.33 0.42 0.21 -0.48 -0.08 

Tunneling (8)     

 
40% MT 0.68 -0.16 0.56 -0.05 0.08 

 60% MT 0.67 -0.14 0.58 -0.09 0.08 

 80% MT 0.69 -0.12 0.58 -0.07 0.07 

 100% MT 0.69 -0.13 0.58 -0.13 0.05 

 40% Ac 0.48 -0.44 0.54 0.33 0.07 

 60% Ac 0.47 -0.46 0.51 0.33 0.06 

 80% Ac 0.45 -0.37 0.57 0.34 0.07 

 100% Ac 0.46 -0.47 0.52 0.28 0.07 

Note. PC 1 – Response Time, PC 2 – Speed-accuracy Trade-off, PC3 – Tunneling, PC 4 – 

Sensitivity, PC 5 – Detection Error. Correlations above |.50| are highlighted, green for positive 

valence and red for negative valence.  
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